2017-09-26
Functional Pancreatic Neuroendocrine Tumor; Malignant Somatostatinoma; Merkel Cell Carcinoma; Metastatic Adrenal Gland Pheochromocytoma; Metastatic Carcinoid Tumor; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine Neoplasia Type 2A; Multiple Endocrine Neoplasia Type 2B; Neuroendocrine Neoplasm; Non-Functional Pancreatic Neuroendocrine Tumor; Pancreatic Glucagonoma; Pancreatic Insulinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adrenal Gland Pheochromocytoma; Recurrent Merkel Cell Carcinoma; Somatostatin-Producing Neuroendocrine Tumor; Stage III Adrenal Cortex Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IIIA Merkel Cell Carcinoma; Stage IIIB Merkel Cell Carcinoma; Stage IV Adrenal Cortex Carcinoma; Stage IV Merkel Cell Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Thymic Carcinoid Tumor; VIP-Producing Neuroendocrine Tumor; Well Differentiated Adrenal Cortex Carcinoma; Zollinger Ellison Syndrome
Adrenocortical Carcinoma—Health Professional Version
Adrenocortical carcinoma is also called cancer of the adrenal cortex. A tumor of the adrenal cortex may be functioning or nonfunctioning. Most adrenocortical tumors are functioning. Find evidence-based information on adrenocortical carcinoma including treatment and research.
NASA Technical Reports Server (NTRS)
Kirichek, L. T.; Zholudeva, V. I.
1979-01-01
Functional and morphological manifestations of adrenal cortex response to hypodynamia (2-hr immobilization on an operating table) under the influence of bromine preparations were studied. The sodium bromide was administered intraperitoneally in 100, 250, and 500 mg/kg doses once and repeatedly during ten days. The adrenal gland was evaluated functionally by ascorbic acid and cholesterol content and morphologically by coloring it with hematoxylin-eosin and Sudans for lipid revealing at freezing. Results are displayed in two tables and microphotographs. They are summarized as follows: the bromine weakens the functional state of the adrenal cortex in intact rats, causing changes similar to those under stress. During immobilization combined with preliminary bromine administration, a less pronounced stress reaction is noticeable.
Ishimoto, Hitoshi
2011-01-01
Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591
Double NF1 Inactivation Affects Adrenocortical Function in NF1Prx1 Mice and a Human Patient
Kobus, Karolina; Hartl, Daniela; Ott, Claus Eric; Osswald, Monika; Huebner, Angela; von der Hagen, Maja; Emmerich, Denise; Kühnisch, Jirko; Morreau, Hans; Hes, Frederik J.; Mautner, Victor F.; Harder, Anja; Tinschert, Sigrid; Mundlos, Stefan; Kolanczyk, Mateusz
2015-01-01
Background Neurofibromatosis type I (NF1, MIM#162200) is a relatively frequent genetic condition, which predisposes to tumor formation. Apart from tumors, individuals with NF1 often exhibit endocrine abnormalities such as precocious puberty (2,5–5% of NF1 patients) and some cases of hypertension (16% of NF1 patients). Several cases of adrenal cortex adenomas have been described in NF1 individuals supporting the notion that neurofibromin might play a role in adrenal cortex homeostasis. However, no experimental data were available to prove this hypothesis. Materials and Methods We analysed Nf1Prx1 mice and one case of adrenal cortical hyperplasia in a NF1patient. Results In Nf1Prx1 mice Nf1 is inactivated in the developing limbs, head mesenchyme as well as in the adrenal gland cortex, but not the adrenal medulla or brain. We show that adrenal gland size is increased in NF1Prx1 mice. Nf1Prx1 female mice showed corticosterone and aldosterone overproduction. Molecular analysis of Nf1 deficient adrenals revealed deregulation of multiple proteins, including steroidogenic acute regulatory protein (StAR), a vital mitochondrial factor promoting transfer of cholesterol into steroid making mitochondria. This was associated with a marked upregulation of MAPK pathway and a female specific increase of cAMP concentration in murine adrenal lysates. Complementarily, we characterized a patient with neurofibromatosis type I with macronodular adrenal hyperplasia with ACTH-independent cortisol overproduction. Comparison of normal control tissue- and adrenal hyperplasia- derived genomic DNA revealed loss of heterozygosity (LOH) of the wild type NF1 allele, showing that biallelic NF1 gene inactivation occurred in the hyperplastic adrenal gland. Conclusions Our data suggest that biallelic loss of Nf1 induces autonomous adrenal hyper-activity. We conclude that Nf1 is involved in the regulation of adrenal cortex function in mice and humans. PMID:25775093
Falconer, I R
1976-03-01
To examine the relationship between the functioning of the adrenal and thyroid glands in sheep, plasma cortisol concentration, concentration of protein-bound 125I from thyroid vein plasma, heart rate and blood pressure were measured in ewes bearing exteriorized thyroid glands. During these measurements stresses were imposed on the animals: fear induced by pistol shots or by a barking dog, cold by cooling and wetting, and physical restraint by a loose harness. Increases in plasma cortisol concentration of 2-6 mug/100 ml were observed with each type of stressor, the response rapidly decreasing with habituation of the animal. Increases in the concentration of protein-bound 125I from thyroid vein plasma were also observed repeatedly during cooling and wetting, occasionally after the introduction of a barking dog, and during continued restraint. Cooling and wetting was the only stress causing consistent parallel activation of the adrenal cortex and thyroid gland; the other stressors resulted in independent fluctuations of secretions, as indicated by plasma cortisol concentration and concentration of protein-bound 125I from thyroid vein plasma. No reciprocal relationship between thyroid gland and adrenal cortex activity was detected. It was concluded taht these ewes, which had been accustomed to normal experimental procedures for a period of 2 years, demonstrated functional independence of thyroid and adrenal cortical secretions when subjected to stress.
Diagnosis and classification of Addison's disease (autoimmune adrenalitis).
Brandão Neto, Rodrigo Antonio; de Carvalho, Jozélio Freire
2014-01-01
Autoimmune adrenalitis, or autoimmune Addison disease (AAD), is the most prevalent cause of primary adrenal insufficiency in the developed world. AAD is rare and can easily be misdiagnosed as other conditions. The diagnosis depends on demonstrating inappropriately low cortisol production and the presence of high titers of adrenal cortex autoantibodies (ACAs), along with excluding other causes of adrenal failure using other tests as necessary. The treatment corticosteroid replacement, and the prognosis following the treatment is the same as the normal population. Spontaneous recovery of adrenal function has been described but is rare. Copyright © 2014 Elsevier B.V. All rights reserved.
1993-06-01
hydroxysteroid substrate specificities (32 and 33 kilodaltons, respectively) were previously purified from guinea pig adrenal cortex and characterized. Western...labeling with these antisera revealed that the sulfortransferases were expressed only within the ACTH- responsive layers of the guinea pig adrenal cortex
Regulation of the Adrenal Cortex Function During Stress
NASA Technical Reports Server (NTRS)
Soliman, K. F. A.
1978-01-01
A proposal to study the function of the adrenal gland in the rat during stress is presented. In the proposed project, three different phases of experimentation will be undertaken. The first phase includes establishment of the circadian rhythm of both brain amines and glucocoticoids, under normal conditions and under chronic and acute stressful conditions. The second phase includes the study of the pharmacokinetics of glucocorticoid binding under normal and stress conditions. The third phase includes brain uptake and binding under different experimental conditions. In the outlined experiments brain biogenic amines will be evaluated, adrenal functions will be measured and stress effect on those parameters will be studied. It is hoped that this investigation can explain some of the complex relationships between the brain neurotransmitter and adrenal function.
Betterle, Corrado; Garelli, Silvia; Presotto, Fabio; Furmaniak, Jadwiga
2016-01-01
Recent progress in the immunopathology field has greatly improved our understanding of the natural history of autoimmune diseases, particularly of Addison's disease. Addison's disease is known to be a chronic illness characterized by adrenocortical gland insufficiency that develops following a long and mainly asymptomatic period, characterized by the presence of circulating autoantibodies directed to adrenal cortex antigens. In this chapter we describe the groups of subjects at risk of developing Addison's disease, together with the diagnostic tests considered the most appropriate for evaluating adrenal function: determination of basal plasma adrenocorticotropic hormone (ACTH) levels, plasma renin activity, plasma aldosterone and cortisol levels, and cortisol levels after intravenous stimulation with ACTH (ACTH test). The employment of specific clinical, immunological and functional criteria in the subjects with autoantibodies to the adrenal cortex allows identifying those at risk of developing overt disease. The independent risk factors for the progression to adrenal failure have also been identified and they contribute to different risks of developing clinical Addison's disease. Based on the risk level, the subjects should be monitored over time to observe early signs of adrenal dysfunction, and start substitutive treatment as soon as possible. For patients presenting with high risk, prevention strategies and trials might be available. © 2016 S. Karger AG, Basel.
Mendonça, Pedro O R de; Lotfi, Claudimara F P
2011-04-10
Modified synthetic N-POMC(1-28) without disulfide bridges has been shown to act as an adrenal mitogen. Cyclins and their inhibitors are the major cell cycle controls, but in the adrenal cortex the effect of ACTH and N-POMC on the expression of these proteins remains unclear. In this work, we evaluate the effect of different synthetic N-POMC peptides on the S-phase of the cell cycle. In addition, we examine the cyclin E expression in rat adrenal cortex. Rats treated with dexamethasone were injected with ACTH and/or synthetic modified N-POMC and/or synthetic N-POMC with disulfide bridges. DNA synthesis was determined by BrdU incorporation and protein expression was analyzed by immunoblotting and immunohistochemistry. The results showed that similarly to modified N-POMC without disulfide bridges, administration of synthetic N-POMC with disulfide bridges and the combination of ACTH and N-POMC promoted an increase of BrdU-positive nuclei in adrenal cortex. However, the proliferative effect of N-POMC was comparable to that of ACTH only in the zona glomerulosa. An increase in cyclin E expression was observed 6 h after N-POMC treatment in the outer fraction of the adrenal cortex, in agreement with immunohistochemical findings in the zona glomerulosa. In summary, the effect of synthetic N-POMC with disulfide bridges was similar to modified synthetic N-POMC, increasing proliferation in the adrenal cortex, confirming previous evidence that disulfide bridges are not essential to the N-POMC mitogenic effect. Moreover, cyclin E appears to be involved in the N-POMC- and ACTH-stimulated proliferation in the zona glomerulosa of the adrenal cortex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Autonomic control of adrenal function.
Edwards, A V; Jones, C T
1993-01-01
Recent studies of adrenal function in conscious calves are reviewed. These have involved collecting the whole of the adrenal effluent blood from the right adrenal gland at intervals and, where necessary, prior functional hypophysectomy by destruction of the pituitary stalk under general halothane anaesthesia 3 d previously. The adrenal medulla was found to release numerous neuropeptides, in addition to catecholamines, in response to stimulation of the peripheral end of the right splanchnic nerve, which was carried out below behavioural threshold. Many of these responses were enhanced by stimulating intermittently at a relatively high frequency. Intra-aortic infusions of a relatively low dose of acetylcholine (4.5 nmol min-1 kg-1) elicited similar responses. In the adrenal cortex, agonists which either potentiated the steroidogenic response to ACTH or exerted a direct steroidogenic action included VIP, CGRP, CRF and ACh acting via muscarinic receptors. Stimulation of the peripheral end of the right splanchnic nerve strongly potentiated the steroidogenic response to ACTH and there is compelling evidence that the innervation normally plays an important part in cortisol secretion. PMID:8300417
Alm, Ylva Hedberg; Sukjumlong, Sayamon; Kindahl, Hans; Dalin, Anne-Marie
2009-07-22
Sex steroid hormone receptors have been identified in the adrenal gland of rat, sheep and rhesus monkey, indicating a direct effect of sex steroids on adrenal gland function. In the present study, immunohistochemistry using two different mouse monoclonal antibodies was employed to determine the presence of oestrogen receptor alpha (ERalpha) and progesterone receptor (PR) in the mare adrenal gland. Adrenal glands from intact (n = 5) and ovariectomised (OVX) (n = 5) mares, as well as uterine tissue (n = 9), were collected after euthanasia. Three of the OVX mares were treated with a single intramuscular injection of oestradiol benzoate (2.5 mg) 18-22 hours prior to euthanasia and tissue collection (OVX+Oe). Uterine tissue was used as a positive control and showed positive staining for both ERalpha and PR. ERalpha staining was detected in the adrenal zona glomerulosa, fasciculata and reticularis of all mare groups. Ovariectomy increased cortical ERalpha staining intensity. In OVX mares and one intact mare, positive ERalpha staining was also detected in adrenal medullary cells. PR staining of weak intensity was present in a low proportion of cells in the zona fasciculata and reticularis of all mare groups. Weak PR staining was also found in a high proportion of adrenal medullary cells. In contrast to staining in the adrenal cortex, which was always located within the cell nuclei, medullary staining for both ERalpha and PR was observed only in the cell cytoplasm. The present results show the presence of ERalpha in the adrenal cortex, indicating oestradiol may have a direct effect on mare adrenal function. However, further studies are needed to confirm the presence of PR as staining in the present study was only weak and/or minor. Also, any possible effect of oestradiol treatment on the levels of steroid receptors cannot be determined by the present study, as treatment time was of a too short duration.
Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini
2016-08-01
Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.
Addison's Disease: A Diagnostic Dilemma.
Afroz, S; Bain, S
2017-07-01
Adrenal insufficiency is a rare disease, but is life threatening when overlooked. Addison's disease may be an acquired form of adrenal insufficiency due to the destruction or dysfunction of the adrenal cortex. It affects both glucocorticoid and mineralocorticoid function. Main presenting symptoms of Addison's disease such as fatigue, anorexia, vomiting and convulsion often mimics central nervous system (CNS) infections. We describe a case of Addison's disease who was initially misdiagnosed as a case of meningo-encephalitis subsequently renal tubular acidosis and finally Addison's disease. Addison's disease can remain unrecognized until acute crisis and sometimes it may be misdiagnosed.
Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia.
Penny, Morgan K; Finco, Isabella; Hammer, Gary D
2017-04-15
The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Prochukhanov, R A; Rostovtseva, T I
1977-11-01
A method of quantitative histenzymatic analysis was applied for determination of the involution changes of the neuroendocrine system. The activity of NAD- and NADP-reductases, acid and alkaline phosphatases, glucose-6-phosphoric dehydrogenase, 3-OH-steroid-dehydrogenase, 11-hydroxysteroid dehydrogenases was investigated in the adenohypophysis and in the adrenal cortex of rats aged 4 and 12 months. There were revealed peculiarities attending the structural-metabolic provision of physiological reconstructions of the neuro-endocrine system under conditions of the estral cycle at the early involution stages. An initial reduction of the cell ular-vascular transport with the retention of the functional activity of the intracellular organoids was demonstrated in ageing animals.
Adrenal cortex expression quantitative trait loci in a German Holstein × Charolais cross.
Brand, Bodo; Scheinhardt, Markus O; Friedrich, Juliane; Zimmer, Daisy; Reinsch, Norbert; Ponsuksili, Siriluck; Schwerin, Manfred; Ziegler, Andreas
2016-10-06
The importance of the adrenal gland in regard to lactation and reproduction in cattle has been recognized early. Caused by interest in animal welfare and the impact of stress on economically important traits in farm animals the adrenal gland and its function within the stress response is of increasing interest. However, the molecular mechanisms and pathways involved in stress-related effects on economically important traits in farm animals are not fully understood. Gene expression is an important mechanism underlying complex traits, and genetic variants affecting the transcript abundance are thought to influence the manifestation of an expressed phenotype. We therefore investigated the genetic background of adrenocortical gene expression by applying an adaptive linear rank test to identify genome-wide expression quantitative trait loci (eQTL) for adrenal cortex transcripts in cattle. A total of 10,986 adrenal cortex transcripts and 37,204 single nucleotide polymorphisms (SNPs) were analysed in 145 F2 cows of a Charolais × German Holstein cross. We identified 505 SNPs that were associated with the abundance of 129 transcripts, comprising 482 cis effects and 17 trans effects. These SNPs were located on all chromosomes but X, 16, 24 and 28. Associated genes are mainly involved in molecular and cellular functions comprising free radical scavenging, cellular compromise, cell morphology and lipid metabolism, including genes such as CYP27A1 and LHCGR that have been shown to affect economically important traits in cattle. In this study we showed that adrenocortical eQTL affect the expression of genes known to contribute to the phenotypic manifestation in cattle. Furthermore, some of the identified genes and related molecular pathways were previously shown to contribute to the phenotypic variation of behaviour, temperament and growth at the onset of puberty in the same population investigated here. We conclude that eQTL analysis appears to be a useful approach providing insight into the molecular and genetic background of complex traits in cattle and will help to understand molecular networks involved.
NASA Technical Reports Server (NTRS)
Ryzhenkov, V. Y.
1980-01-01
The immobilization of guinea pigs for 5, 12, 24 and 48 hours, by securing to a slab, results in a persistent rise of the blood plasma 17-oxycorticosteroid concentration. Repeated administration of phenobarbital (50 mg/kg) and of the sodium salt of gamma-oxybutyric acid (500 mg/kg), as well as the combined administration of central m- and n-cholinolytics with small doses of phenobarbital tends to inhibit activation of the adrenal cortex during 48 hour immobilization of the animals. Repeated administration of aminazine (20 mg/kg) tends to decrease activation of the adrenal cortex. The administration of reserpine (0.1-5 mg/kg) 12-18 hours before immobilization of guinea pigs increases the response of the hypophysis-adrenal cortex system.
Trejter, Marcin; Jopek, Karol; Celichowski, Piotr; Tyczewska, Marianna; Malendowicz, Ludwik K; Rucinski, Marcin
2015-01-01
Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ mRNA. In adrenals of adult male and female rats expression levels of estrogen-related receptors ERRα and ERRβ were similar, and only in the ZF/R of female rats ERRγ expression levels were significantly higher than in males. We also analyzed expression profile of three isoforms of steroid 5α-reductase (Srd5a1, Srd5a2 and Srd5a3) and aromatase (Cyp19a1) and expression levels of all these genes were similar in ZG and ZF/R of male and female rats. In contrast to Affymetrix microarray data QPCR revealed higher expression levels of AR gene in adrenal glands of the male rats. In adrenals of both sexes expression levels of ERa, ERb, non-genomic GPR30 (GPER-1), ERR α and ERRβ receptors were comparable. The obtained results suggest that acute steroidogenic effect of estrogens on corticosteroid secretion may be mediated by non-genomic GPR30.
Central effects of ghrelin on the adrenal cortex: a morphological and hormonal study.
Milosević, Verica Lj; Stevanović, Darko M; Nesić, Dejan M; Sosić-Jurjević, Branka T; Ajdzanović, Vladimir Z; Starcević, Vesna P; Severs, Walter B
2010-06-01
Ghrelin, a growth hormone secretagogue that exerts an important role in appetite and weight regulation, participates in the activation of the hypothalamo-pituitary-adrenal (HPA) axis. Male Wistar rats (5/group) received daily for 5 days, via an ICV (intracerebroventricular) cannula, 5 microl phosphate buffered saline with or without 1 microg of rat ghrelin. Two hours after the last injection, blood and adrenal glands were collected from decapitated rats for blood hormone analyses and histologic and morphometric processing. Ghrelin treatment resulted in increased (p<0.05) body weight (13%), absolute whole adrenal gland weight (18%) and whole adrenal gland volume (20%). The absolute volumes of the entire adrenal cortex, ZG, ZF, and ZR also increased (p<0.05) after ghrelin by 20%, 21%, 21% and 11%, respectively. Ghrelin-treated rats had elevated (p<0.05) blood concentrations of ACTH, aldosterone and corticosterone (68%, 32% and 67%, respectively). The data clearly provide both morphological and hormonal status that ghrelin acts centrally to exert a global stimulatory effect on the adrenal cortex. Clarifying of the ghrelin precise role in the multiple networks affecting the stress hormone release, besides its well known energy and metabolic unbalance effects, remains a very important research goal.
60 YEARS OF POMC: N-terminal POMC peptides and adrenal growth.
Bicknell, Andrew B
2016-05-01
The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered. © 2016 Society for Endocrinology.
The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3
Vidal, Valerie; Sacco, Sonia; Rocha, Ana Sofia; da Silva, Fabio; Panzolini, Clara; Dumontet, Typhanie; Doan, Thi Mai Phuong; Shan, Jingdong; Rak-Raszewska, Aleksandra; Bird, Tom; Vainio, Seppo; Martinez, Antoine; Schedl, Andreas
2016-01-01
Adrenal glands are zonated endocrine organs that are essential in controlling body homeostasis. How zonation is induced and maintained and how renewal of the adrenal cortex is ensured remain a mystery. Here we show that capsular RSPO3 signals to the underlying steroidogenic compartment to induce β-catenin signaling and imprint glomerulosa cell fate. Deletion of RSPO3 leads to loss of SHH signaling and impaired organ growth. Importantly, Rspo3 function remains essential in adult life to ensure replenishment of lost cells and maintain the properties of the zona glomerulosa. Thus, the adrenal capsule acts as a central signaling center that ensures replacement of damaged cells and is required to maintain zonation throughout life. PMID:27313319
Vidal, Óscar; Delgado-Oliver, Eduardo; Díaz Del Gobbo, Rafael; Hanzu, Felicia; Squarcia, Mattia; Martínez, Daniel; Fuster, David; Fondevila, Constantino
2018-05-24
Cortical-sparing adrenalectomy is a suitable treatment for hereditary and sporadic bilateral pheochromocytoma, in cases of low risk of malignancy, to reduce the possibility of adrenal insufficiency assuming the chance of local recurrence. The aim of the study is to analyze the functional results of partial adrenalectomy by retroperitoneal endoscopic approach in single-adrenal patients or patients requiring bilateral adrenalectomy. Prospective study between January 2015 and February 2016 including pheochromocytoma patients diagnosed with low risk of malignant mutations. All patients agreed to be included in the study. Experienced endocrine surgeons who have been trained in minimally invasive endocrine surgery performed the procedure using the same surgical technique. Demographic variables and clinical characteristics were collected, subsequently carrying out the descriptive analysis of the data. A total of 6 patients were registered, four associated with MEN type 2 syndrome and two in the context of VHL syndrome. Retroperitoneoscopic resection was performed without laparoscopic or open conversion and no postoperative complications; the average hospital stay was 2.5 days. Preservation of the functional cortex without corticosteroids was achieved in 5 (83%) of out 6 cases with a follow-up of 26.2 ± 6 months. Today, these 5 patients have a preserved adrenal function without hormone replacement. Cortical-sparing adrenalectomy by the retroperitoneal endoscopic approach, in expert hands, is safe and feasible for the treatment of hereditary and sporadic pheochromocytoma in a context of low malignancy, making it possible to avoid the need for corticoid replacement in most cases. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Kovacs, K.; Horvath, E.; Singer, W.
1973-01-01
Numerous spironolactone bodies have been detected in the zona glomerulosa cells of the adrenal cortex of a 36-year-old spironolactone-treated woman whose non-tumorous right adrenal gland was removed surgically because of primary hyperaldosteronism. Electron microscopy revealed spherical laminated whorls which consisted of a central core composed of an amorphous electron-dense material surrounded by numerous smooth-walled concentric membranes. Continuous with and deriving from the endoplasmic reticulum, they were present in viable cells and were not associated with ultrastructural features indicating cellular injury. Cytoplasmic inclusions similar to spironolactone bodies can be detected in other organs after the administration of various compounds. Thus, they can be regarded as neither specific to spironolactone treatment nor exclusively inducible in the zona glomerulosa of the adrenal cortex. Images PMID:4131694
Rucinski, Marcin; Albertin, Giovanna; Spinazzi, Raffaella; Ziolkowska, Agnieszka; Nussdorfer, Gastone G; Malendowicz, Ludwick K
2005-03-01
Cerebellin (CER) is a regulatory peptide, originally isolated from rat cerebellum, which derives from the cleavage of precerebellin (Cbln), three types of which (Cbln1-3) have been identified in humans and rats. CER is also expressed in several extra-cerebellar tissues, including adrenal gland, and evidence has been provided that CER exerts a modulatory action on human and rat adrenal gland. Hence, we have investigated the expression of Cbln1-3 mRNAs and CER protein-immunoreactivity (IR) in the various zones of rat adrenal glands, and the effects of CER and its metabolite [des-Ser(1)]CER (des-CER) on the secretion and growth of cultured rat adrenocortical cells. Reverse transcription-polymerase chain reaction showed high and low expression of Cbln2 mRNA in zona glomerulosa (ZG) and zona fasciculata-reticularis, respectively. Cbln1 was not expressed, and Cbln3 mRNA was detected only in ZG. No Cbln expression was found in adrenal medulla. Immunocytochemistry demonstrated the presence of CER-IR exclusively in the adrenal cortex, the reaction being more intense in ZG. As expected, ACTH (10(-8) M) markedly enhanced corticosterone secretion and lowered proliferation rate of cultured adrenocortical cells. CER was ineffective, while des-CER exerted an ACTH-like effect, but only at the lowest concentration (10(-10) M). Taken together, these findings allow us to conclude that CER is expressed in rat adrenal cortex, and to suggest that CER conversion to des-CER by endopeptidases is needed for CER to exert its autocrine-paracrine regulatory functions.
How to learn from patients: Fuller Albright's exploration of adrenal function.
Schwartz, T B
1995-08-01
Fuller Albright (1900-1969) was acknowledged as the preeminent clinical and investigative endocrinologist of his day by many of his contemporaries, but his many achievements are all but unknown to the present generation of physicians. This article describes how he used his clinical knowledge and a few tools--the measurement of urinary 17-ketosteroid excretion and the administration of methyltestosterone--to elucidate the major hormonal functions of the adrenal cortex and to clarify the pathophysiology of the Cushing syndrome. In addition, in a tour de force of clinical reasoning, he predicted, 5 years before the event, the discovery of a hormone that would reverse the endocrinologic abnormalities of congenital adrenal hyperplasia. Fittingly, he and pioneer pediatric endocrinologist Lawson Wilkins were the first to treat this disease successfully with cortisone.
... three types of steroid hormones. In adrenal insufficiency (AI), the cortex does not make enough steroid hormones. ... unlike “adrenal fatigue.” There are two kinds of AI: • Primary AI, also called Addison’s disease. In this ...
The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3.
Vidal, Valerie; Sacco, Sonia; Rocha, Ana Sofia; da Silva, Fabio; Panzolini, Clara; Dumontet, Typhanie; Doan, Thi Mai Phuong; Shan, Jingdong; Rak-Raszewska, Aleksandra; Bird, Tom; Vainio, Seppo; Martinez, Antoine; Schedl, Andreas
2016-06-15
Adrenal glands are zonated endocrine organs that are essential in controlling body homeostasis. How zonation is induced and maintained and how renewal of the adrenal cortex is ensured remain a mystery. Here we show that capsular RSPO3 signals to the underlying steroidogenic compartment to induce β-catenin signaling and imprint glomerulosa cell fate. Deletion of RSPO3 leads to loss of SHH signaling and impaired organ growth. Importantly, Rspo3 function remains essential in adult life to ensure replenishment of lost cells and maintain the properties of the zona glomerulosa. Thus, the adrenal capsule acts as a central signaling center that ensures replacement of damaged cells and is required to maintain zonation throughout life. © 2016 Vidal et al.; Published by Cold Spring Harbor Laboratory Press.
Standards of ultrasound imaging of the adrenal glands
Jakubowski, Wiesław S.; Dobruch-Sobczak, Katarzyna; Kasperlik-Załuska, Anna A.
2015-01-01
Adrenal glands are paired endocrine glands located over the upper renal poles. Adrenal pathologies have various clinical presentations. They can coexist with the hyperfunction of individual cortical zones or the medulla, insufficiency of the adrenal cortex or retained normal hormonal function. The most common adrenal masses are tumors incidentally detected in imaging examinations (ultrasound, tomography, magnetic resonance imaging), referred to as incidentalomas. They include a range of histopathological entities but cortical adenomas without hormonal hyperfunction are the most common. Each abdominal ultrasound scan of a child or adult should include the assessment of the suprarenal areas. If a previously non-reported, incidental solid focal lesion exceeding 1 cm (incidentaloma) is detected in the suprarenal area, computed tomography or magnetic resonance imaging should be conducted to confirm its presence and for differentiation and the tumor functional status should be determined. Ultrasound imaging is also used to monitor adrenal incidentaloma that is not eligible for a surgery. The paper presents recommendations concerning the performance and assessment of ultrasound examinations of the adrenal glands and their pathological lesions. The article includes new ultrasound techniques, such as tissue harmonic imaging, spatial compound imaging, three-dimensional ultrasound, elastography, contrast-enhanced ultrasound and parametric imaging. The guidelines presented above are consistent with the recommendations of the Polish Ultrasound Society. PMID:26807295
GROWTH AND DIFFERENTIATION OF MITOCHONDRIA IN THE REGENERATING RAT ADRENAL CORTEX
Yago, Nagasumi; Seki, Masatoshi; Sekiyama, Shigetaka; Kobayashi, Shigeru; Kurokawa, Hiromi; Iwai, Yuko; Sato, Fumiaki; Shiragai, Akihiro
1972-01-01
Diameters of the circular profiles of spherical mitochondria in parenchymal cells of the zona fasciculata in rat adrenal cortex were measured for intact controls and for the regenerating adrenal cortex on electron micrographs recorded at random. The diameter data were then processed by Bach's method which deals with the sphere size distribution. The structural parameters of the mitochondria were computed with the aid of an electronic computer. The total number of mitochondria in all the parenchymal cells of the zona fasciculata were calculated. The surface area of the inner mitochondrial membrane was then determined stereologically. Biochemical parameters were obtained for the protein, the phospholipid, and the cytochrome P-450 content, per averaged mitochondrion. The number of cytochrome P-450 molecules contained in the inner membrane was determined in terms of the unit surface area and of the unit amount of phospholipid. These correlated biochemical and stereological parameters have led to the following conclusions. (a) The genesis of the mitochondria after the adrenal enucleation is almost completed within 10 days. (b) During the period of mitochondrial proliferation, the mitochondria are small in size and also immature both in the structure and in the function of their inner membrane, (c) These small and immature mitochondria grow through an increase of the phospholipid and protein, and this increase is accompanied by expansion of the area of the membrane surface, (d) An enrichment of the inner membrane with cytochrome P-450 molecules occurs, thus indicating the differentiation of adrenocortical mitochondria. The process of membrane differentiation is not tightly coupled with that of membrane growth. PMID:5009515
Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.
Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck
2017-01-01
Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F 2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.
Aldo-Keto Reductases 1B in Adrenal Cortex Physiology
Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie
2016-01-01
Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746
García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.
2013-01-01
Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex of CTRL animals, it strongly increased in the adrenal cortex of CRS animals. No TPH protein was detected in AG from both animal groups. Results suggest that CRS promotes endocrine disruption involving decreased ACTH and sensitized CORT responses to acute restraint. This phenomenon may be associated with increased function and expression of 5-HT7 receptors as well as 5-HT turnover in AG. PMID:23542440
Effect of acute heat stress on rat adrenal glands: a morphological and stereological study.
Koko, Vesna; Djordjeviae, Jelena; Cvijiae, Gordana; Davidoviae, Vukosava
2004-11-01
The morphological and stereological structure of rat adrenal gland was analysed by light microscopy after an acute (60 min) exposure to high ambient temperature (38 degrees C). A significant increase in plasma corticotrophin (ACTH) and serum corticosterone (CORT) concentrations was observed, confirming that acute heat exposure has a strong stressful effect. Under these conditions the adrenal gland mass and volume were decreased, probably as the consequence of adrenal cortex reduction, especially that of the zona fasciculata (ZF). Histological examination revealed that many ZF cells were deprived of lipid droplets. Fibrosis was observed in all parts of the adrenal gland, both cortex and medulla, of heat stressed animals. Mitotic figures were absent in cortical cells after heat exposure, but there were no differences in ZF and zona reticularis (ZR) small blood vessels compared to nonstressed controls.
Imaging of adrenal masses with emphasis on adrenocortical tumors.
Sundin, Anders
2012-01-01
Because of the more widespread and frequent use of cross-sectional techniques, mainly computed tomography (CT), an increasing number of adrenal tumors are detected as incidental findings ("incidentalomas"). These incidentaloma patients are much more frequent than those undergoing imaging because of symptoms related to adrenal disease. CT and magnetic resonance imaging (MRI) are in most patients sufficient for characterization and follow-up of the incidentaloma. In a minor portion of patients, biochemical screening reveals a functional tumor and further diagnostic work-up and therapy need to be performed according to the type of hormonal overproduction. In oncological patients, especially when the morphological imaging criteria indicate an adrenal metastasis, biopsy of the lesion should be considered after pheochromocytoma is ruled out biochemically. In the minority of patients in whom CT and MRI fail to characterize the tumor and when time is of essence, functional imaging mainly by positron emission tomography (PET) is available using various tracers. The most used PET tracer, [(18)F]fluoro-deoxy-glucose ((18)FDG), is able to differentiate benign from malignant adrenal tumors in many patients. (11)C-metomidate ((11)C-MTO) is a more specialized PET tracer that binds to the 11-beta-hydroxylase enzyme in the adrenal cortex and thus makes it possible to differ adrenal tumors (benign adrenocortical adenoma and adrenocortical cancer) from those of non-adrenocortical origin.
[Adrenal tumours in childhood].
Martos-Moreno, G A; Pozo-Román, J; Argente, J
2013-09-01
This special article aims to summarise the current knowledge regarding the two groups of tumours with their origin in the adrenal gland: 1) adrenocortical tumours, derived from the cortex of the adrenal gland and 2) phaeochromocytomas and paragangliomas, neuroendocrine tumours derived from nodes of neural crest derived cells symmetrically distributed at both sides of the entire spine (paragangliomas [PG]). These PGs can be functioning tumors that secrete catecholamines, which confers their typical dark colour after staining with chromium salts (chromaffin tumors). Among these, the term phaeochromocytoma (PC) is restricted to those PGs derived from the chromaffin cells in the adrenal medulla (intra-adrenal PGs), whereas the term PG is used for those sympathetic or parasympathetic ones in an extra-adrenal location. We analyse the state of the art of their pathogenic and genetic bases, as well as their clinical signs and symptoms, the tests currently available for performing their diagnosis (biochemical, hormonal, imaging and molecular studies) and management (surgery, pre- and post-surgical medical treatment), considering the current and developing strategies in chemo- and radiotherapy. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M
2013-01-01
Evidence for a detrimental impact of chronic work stress on health has accumulated in epidemiological research. Recent studies indicate altered hypothalamus-pituitary-adrenal (HPA) axis regulation as a possible biological pathway underlying the link between stress and disease. However, the direction of dysregulation remains unclear, with reported HPA hyper- or hyporeactivity. To disentangle potential effects on different functional levels in the HPA axis, we examined responses using two pharmacological stimulation tests in 53 healthy teachers (31 females, 22 males; mean age: 49.3 years; age range: 30-64 years): a low-dose adrenocorticotrophic hormone (ACTH(1-24), Synacthen) test was used to assess adrenal cortex sensitivity and the combined dexamethasone-corticotropin releasing hormone (DEX-CRH) test to examine pituitary and adrenal cortex reactivity. Blood and saliva samples were collected at - 1,+15,+30,+45,+60,+90,+120 min. Emotional exhaustion (EE), the core dimension of burnout, was measured with the Maslach Burnout Inventory. Overcommitment (OC) was assessed according to Siegrist's effort-reward-imbalance model. We found a significant association between EE and higher plasma cortisol profiles after Synacthen (p = 0.045). By contrast, OC was significantly associated with attenuated ACTH (p = 0.045), plasma cortisol (p = 0.005), and salivary cortisol (p = 0.023) concentrations following DEX-CRH. Results support the notion of altered HPA axis regulation in chronically work-stressed teachers, with differential patterns of hyper- and hyporeactivity depending on individual stress condition and the tested functional level of the HPA axis.
Dang, Wei-min; Wang, Sheng; Tian, Shi-xiu; Chen, Bing; Sun, Fei; Li, Wei; Jiao, Yan; He, Li-hua
2007-02-01
To explore the biological effects of infrasound on the polygonal cells in adrenal cortex zona fasciculation in mice. The biological effects of infrasound on the activities of 3beta hydroxysteroid dehydrogenase (3-betaHSDH) and acid phosphatase(ACP) of the polygonal cells in adrenal cortex zona fasciculate were observed when exposure to 8 and 16 Hz infrasound at 80, 90, 100, 110, 120 and 130 dB for 1 day, 7 days and 14 days or 14 days after the exposure. When exposure to 8 Hz infrasound, the enzyme activities of 3-betaHSDH increase as the sound pressure levels increase. Only when the sound pressure levels reach 130 dB, the enzyme activities began to decrease exceptionally. When exposure to 16 Hz, 80 dB infrasound, no significant difference between the treatment and control group in the activities of 3-betaHSDH could be observed, but the injury of the polygonal cells had appeared. When exposure to 16 Hz, 100 dB infrasound, the activities of 3-betaHSDH started to increase. The cell injury still existed. When exposed to 16 Hz, 120 dB infrasound, the local tissue damage represented. Fourteen days after the mice exposure to 8 Hz, 90 dB and 130 dB infrasound for 14 days continuously, the local tissue injury of the adrenal cortex zona fasciculation began to recover at certain extent, but the higher the exposure sound pressure level, the poorer the tissue recovery. The biological effects of infrasound on the polygonal cells in adrenal cortex zona fasciculation response to the frequency of the infrasound are found at certain action strength range, but this characteristic usually is covered by the severe tissue injury. When exposure to infrasound is stopped for a period of time, the local tissue injury of the adrenal cortex zona fasciculation could recovers at certain extent, but the higher the exposure sound pressure level, the more poorer the tissue recovery.
... condition that occurs when there is not enough cortisol. This is a hormone produced by the adrenal ... parts. The outer portion, called the cortex, produces cortisol. This is an important hormone for controlling blood ...
Lai, Guey-Jen; McCobb, David P
2006-08-01
Stress triggers release of ACTH from the pituitary, glucocorticoids from the adrenal cortex, and epinephrine from the adrenal medulla. Although functions differ, these hormone systems interact in many ways. Previous evidence indicates that pituitary and steroid hormones regulate alternative splicing of the Slo gene at the stress axis-regulated exon (STREX), with functional implications for the calcium-activated K+ channels prominent in adrenal medullary and pituitary cells. Here we examine the role of corticosterone in Slo splicing regulation in pituitary and adrenal tissues during the stress-hyporesponsive period of early rat postnatal life. The sharp drop in plasma corticosterone (CORT) that defines this period offers a unique opportunity to test CORT's role in Slo splicing. We report that in both adrenal and pituitary tissues, the percentage of Slo transcripts having STREX declines and recovers in parallel with CORT. Moreover, addition of 500 nm CORT to cultures of anterior pituitary cells from 13-, 21-, and 30-d postnatal animals increased the percentage of Slo transcripts with STREX, whereas 20 microm CORT reduced STREX representation. Applied to adrenal chromaffin cells, 20 microm CORT decreased STREX inclusion, whereas neither 500 nm nor 2 microm had any effect. The mineralocorticoid receptor antagonist RU28318 abolished the effect of 500 nm CORT on splicing in pituitary cells, whereas the glucocorticoid receptor antagonist RU38486 blocked the effect of 20 microm CORT on adrenal chromaffin cells. These results support the hypothesis that the abrupt, transient drop in CORT during the stress-hyporesponsive period drives the transient decline in STREX splice variant representation in pituitary, but not adrenal.
Romero, Damian G; Zhou, Ming Yi; Yanes, Licy L; Plonczynski, Maria W; Washington, Tanganika R; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P
2007-08-01
Regulators of G-protein signaling (RGS proteins) interact with Galpha subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)-ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. We studied RGS4 expression and regulation in the rat adrenal gland, including the signaling pathways involved, as well as the role of RGS4 in steroidogenesis in human adrenocortical H295R cells. We reported that RGS4 mRNA expression in the rat adrenal gland was restricted to the adrenal zonal glomerulosa and upregulated by low-salt diet and Ang II infusion in rat adrenal glands in vivo. In H295R cells, Ang II caused a rapid and transient increase in RGS4 mRNA levels mediated by the calcium/calmodulin/calmodulin-dependent protein kinase and protein kinase C pathways. RGS4 overexpression by retroviral infection in H295R cells decreased Ang II-stimulated aldosterone secretion. In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.
Cell-To-Cell Communication in Bilateral Macronodular Adrenal Hyperplasia Causing Hypercortisolism
Lefebvre, Hervé; Duparc, Céline; Prévost, Gaëtan; Bertherat, Jérôme; Louiset, Estelle
2015-01-01
It has been well established that, in the human adrenal gland, cortisol secretion is not only controlled by circulating corticotropin but is also influenced by a wide variety of bioactive signals, including conventional neurotransmitters and neuropeptides, released within the cortex by various cell types such as chromaffin cells, neurons, cells of the immune system, adipocytes, and endothelial cells. These different types of cells are present in bilateral macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing’s syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal differentiation that results in illicit expression of paracrine regulatory factors and their receptors in adrenocortical cells. All these defects constitute the molecular basis for aberrant autocrine/paracrine regulatory mechanisms, which are likely to play a role in the pathophysiology of BMAH-associated hypercortisolism. The present review summarizes the current knowledge on this topic as well as the therapeutic perspectives offered by this new pathophysiological concept. PMID:25941513
Naloxone inhibits and morphine potentiates. The adrenal steroidogenic response to ACTH
NASA Technical Reports Server (NTRS)
Heybach, J. P.; Vernikos, J.
1980-01-01
The adrenal actions were stereospecific since neither the positve stereoisomer of morphine, nor that of naloxone, had any effect on the adrenal response to exogenous adrenocorticotrophic hormone (ACTH). The administration of human beta endorphin to phyophysectomized rats had no effect on the adrenal corticosterone concentration nor did it alter the response of the adrenal gland to ACTH. These results indicate that morphine can potentiate the action of ACTH on the adrenal by a direct, stereospecific, dose dependent mechanism that is prevented by naloxone pretreatment and which may involve competition for ACTH receptors on the corticosterone secreting cells of the adrenal cortex.
Altered Exocytosis in Chromaffin Cells from Mouse Models of Neurodegenerative Diseases.
de Diego, Antonio M G; García, Antonio G
2018-05-09
Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context we review here the following themes: (i) how the discharge of catecholamines is centrally and peripherally regulated at the sympatho-adrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affects the kinetics of exocytotic events; (v) finally we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Adrenocortical Carcinoma—Patient Version
Adrenocortical carcinoma is a rare cancer which forms in the cortex (outer layer) of an adrenal gland. There are two adrenal glands. One sits on top of each kidney. Start here to find information on adrenocortical carcinoma treatment and research.
Li, Jie; Wang, Jian; Shao, Jia-Qing; Du, Hong; Wang, Yang-Tian; Peng, Li
2015-01-01
To investigate the effect of Chinese medicine (CM) Schisandra chinensis on interleukin (IL), glucose metabolism, and pituitary-adrenal and gonadal axis of rats after strenuous navigation and exercise. A total of 45 Sprague-Dawley rats were randomized into the quiet control group, the stress group, and the CM group (15 in each group). The CM group received 2.5 g/kg of Schisandra chinensis twice per day for one week before modeling. Except the quiet controls, rats were trained using the Bedford mode for 10 days. On the 11th day, they performed 3 h of stressful experimental navigation and 3 h of strenuous treadmill exercise. The levels of serum testosterone (T), cortisol (CORT), luteinizing hormone (LH), IL-1, IL-2, and IL-6 were tested by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The adrenal cortex ultrastructure was observed using electron microscopy. Compared with the quiet control group, after navigation and strenuous exercise, blood glucose was increased, and T level was decreased in the stress group (both P<0.01). The blood glucose, CORT, IL-1 and IL-2 levels were significantly reduced in the CM group (P<0.05 or P<0.01) as compared with the stress group. Electron microscopy revealed that the rats in the CM group had a smaller decrease in adrenal intracellular lipid droplets and higher levels of apoptosis than those in the stress group. Schisandra chinensis can reduce serum CORT and blood glucose levels in stressed rats. It appears to protect the cell structure of the adrenal cortex, and offset the negative effects of psychological stress and strenuous exercise related to immune dysfunction. Schisandra chinensis plays a regulatory role in immune function, and can decrease the influence of stress in rats.
Pascoe, L; Jeunemaitre, X; Lebrethon, M C; Curnow, K M; Gomez-Sanchez, C E; Gasc, J M; Saez, J M; Corvol, P
1995-01-01
Glucocorticoid-suppressible hyperaldosteronism is a dominantly inherited form of hypertension believed to be caused by the presence of a hybrid CYP11B1/CYP11B2 gene which has arisen from an unequal crossing over between the two CYP11B genes in a previous meiosis. We have studied a French pedigree with seven affected individuals in which two affected individuals also have adrenal tumors and two others have micronodular adrenal hyperplasia. One of the adrenal tumors and the surrounding adrenal tissue has been removed, giving a rare opportunity to study the regulation and action of the hybrid gene causing the disease. The hybrid CYP11B gene was demonstrated to be expressed at higher levels than either CYP11B1 or CYP11B2 in the cortex of the adrenal by RT-PCR and Northern blot analysis. In situ hybridization showed that both CYP11B1 and the hybrid gene were expressed in all three zones of the cortex. In cell culture experiments hybrid gene expression was stimulated by ACTH leading to increased production of aldosterone and the hybrid steroids characteristic of glucocorticoid-suppressible hyperaldosteronism. The genetic basis of the adrenal pathologies in this family is not known but may be related to the duplication causing the hyperaldosteronism. Images PMID:7593610
Luo, Wei; Fang, Meixia; Xu, Haiping; Xing, Huijie; Nie, Qinghua
2015-10-01
Chronic stress can induce a series of maladjustments, and the response to stress is partly regulated by the hypothalamus-pituitary-adrenal axis. The aim of this study was to investigate the genetic mechanisms of this axis regulating stress responsiveness. The pituitary and adrenal cortex of Beagle and Chinese Field Dog (CFD) from a stress exposure group [including Beagle pituitary 1 (BP1), CFD pituitary 1 (CFDP1), Beagle adrenal cortex 1 (BAC1), CFD adrenal cortex 1 (CFDAC1)] and a control group [including Beagle pituitary 2 (BP2), CFD pituitary 2 (CFDP2), Beagle adrenal cortex 2 (BAC2), CFD adrenal cortex 2 (CFDAC2)], selected to perform RNA-seq transcriptome comparisons, showed that 40, 346, 376, 69, 70, 38, 57 and 71 differentially expressed genes were detected in BP1 vs. BP2, CFDP1 vs. CFDP2, BP1 vs. CFDP1, BP2 vs. CFDP2, BAC1 vs. BAC2, CFDAC1 vs. CFDAC2, BAC1 vs. CFDAC1 and BAC2 vs. CFDAC2 respectively. NPB was a gene common to BAC1 vs. BAC2 and CFDAC1 vs. CFDAC2, indicating it was a potential gene affecting response to chronic stress, regardless of the extent of chronic stress induced. PLP1 was a gene common to BP1 vs. CFDP1 and BP2 vs. CFDP2, suggesting its important roles in affecting the stress-tolerance difference between the two breeds, regardless of whether there was stress exposure or not. Pathway analysis found 12, 4, 11 and 1 enriched pathway in the comparisons of BP1 vs. CFDP1, BP2 vs. CFDP2, CFDP1 vs. CFDP2 and BAC1 vs. BAC2 respectively. Glutamatergic synapse, neuroactive ligand-receptor interaction, retrograde endocannabinoid signaling, GABAergic synapse, calcium signaling pathway and dopaminergic synapse were the most significantly enriched pathways in both CFDP1 vs. CFDP2 and BP1 vs. CFDP1. GO, KEGG pathway and gene network analysis demonstrated that GRIA3, GRIN2A, GRIN2B and NPY were important in regulating the stress response in CFD. Nevertheless, ADORA1, CAMK2A, GRM1, GRM7 and NR4A1 might be critical genes contributing to the stress-tolerance difference between CFD and Beagle when subjected to stress exposure. In addition, RGS4 and SYN1 might play important roles both in regulating the stress response in CFD and in affecting the stress-tolerance difference in different breeds. These observations clearly showed that some genes in the adrenal cortex and pituitary could regulate the stress response in Beagle and CFDs, whereas some others could affect the stress-tolerance difference between these two breeds. Our results can contribute to a more comprehensive understanding of the genetic mechanisms of response to chronic stress. © 2015 Stichting International Foundation for Animal Genetics.
Johnson, Elizabeth O; Kamilaris, Themis C; Calogero, Aldo E; Gold, Philip W; Chrousos, George P
2005-07-01
Previous studies on the effects of altered thyroid function on the secretion and metabolism of adrenocortical hormones suggest a degree of adrenocortical hyperactivity in hyperthyroidism. We have previously shown that experimentally-induced hyperthyroidism is associated with significant alterations in pituitary-adrenal responsiveness to synthetic ovine corticotropin-releasing hormone (oCRH) that are contingent upon the duration of the altered thyroid function. The purpose of this study was to assess the time-dependent effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis by in vivo stimulation of the hypothalamic CRH neuron and adrenal cortex. The functional integrity of the HPA axis was examined in vivo in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given 50 mug of thyroxine every day for 7 or 60 days. Responses to insulin-induced hypoglycemia and IL-1alpha stimulation were used to assess the hypothalamic CRH neuron. Adrenocortical reserve was assessed in response to low-dose adrenocorticotropic hormone (ACTH), following suppression of the HPA axis with dexamethasone. Adrenal and thymus tissue weight, in addition to basal plasma ACTH, corticosterone and thyroid indices were also determined. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days, cerebrospinal fluid (CSF) corticosterone levels were significantly increased. Basal plasma ACTH levels were similar to controls. Although plasma ACTH responses to hypoglycemic stress and IL-1alpha administration in both short- and long-term hyperthyroidism were normal, corticosterone responses to the ACTH release during the administration of these stimuli were significantly increased. The adrenal reserve was significantly elevated in short-term hyperthyroidsim. Long-term hyperthyroidism, however, was associated with a significant reduction in adrenocortical reserve. A significant increase in adrenal weights and a decrease in thymus weights were observed in both short- and long-term hyperthyroidism. The available data confirms that hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally affected still remains unclear. Despite the sustained hyperactivity of the HPA axis, long-term experimentally-induced hyperthyroidism is associated with diminished adrenal functional reserve. The alterations in HPA function in states of disturbed thyroid function were found to be somewhat more pronounced as the duration of thyroid dysfunction increased.
Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui
2015-10-01
Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a "two-programming" mechanism for PEE-induced adrenal developmental toxicity: "the first programming" is a lower functional programming of adrenal steroidogenesis, and "the second programming" is GC-metabolic activation system-related GC-IGF1 axis programming. Copyright © 2015 Elsevier Inc. All rights reserved.
Local Control of Aldosterone Production and Primary Aldosteronism.
Lalli, Enzo; Barhanin, Jacques; Zennaro, Maria-Christina; Warth, Richard
2016-03-01
Primary aldosteronism (PA) is caused by excessive production of aldosterone by the adrenal cortex and is determined by a benign aldosterone-producing adenoma (APA) in a significant proportion of cases. Local mechanisms, as opposed to circulatory ones, that control aldosterone production in the adrenal cortex are particularly relevant in the physiopathological setting and in the pathogenesis of PA. A breakthrough in our understanding of the pathogenetic mechanisms in APA has been the identification of somatic mutations in genes controlling membrane potential and intracellular calcium concentrations. However, recent data show that the processes of nodule formation and aldosterone hypersecretion can be dissociated in pathological adrenals and suggest a model envisaging different molecular events for the pathogenesis of APA. Copyright © 2016 Elsevier Ltd. All rights reserved.
The acute effect of ethanol on adrenal cortex in female rats--possible role of nitric oxide.
Dikić, Dragoslava; Budeč, Mirela; Vranješ-Durić, Sanja; Koko, Vesna; Vignjević, Sanja; Mitrović, Olivera
2011-01-01
The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.
Classic congenital adrenal hyperplasia and puberty.
Charmandari, Evangelia; Brook, Charles G D; Hindmarsh, Peter C
2004-11-01
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders resulting from deficiency of one of the five enzymes required for synthesis of cortisol in the adrenal cortex. The most common form of the disease is classic 21-hydroxylase deficiency, which is characterized by decreased synthesis of glucocorticoids and often mineralocorticoids, adrenal hyperandrogenism and impaired development and function of the adrenal medulla. The clinical management of classic 21-hydroxylase deficiency is often suboptimal, and patients are at risk of developing in tandem iatrogenic hypercortisolism and/or hyperandogenism. Limitations of current medical therapy include the inability to control hyperandrogenism without employing supraphysiologic doses of glucocorticoid, hyperresponsiveness of the hypertrophied adrenal glands to adrenocorticotropic hormone (ACTH) and difficulty in suppressing ACTH secretion from the anterior pituitary. Puberty imposes increased difficulty in attaining adrenocortical suppression despite optimal substitution therapy and adherence to medical treatment. Alterations in the endocrine milieu at puberty may influence cortisol pharmacokinetics and, consequently, the handling of hydrocortisone used as replacement therapy. Recent studies have demonstrated a significant increase in cortisol clearance at puberty and a shorter half-life of free cortisol in pubertal females compared with males. Furthermore, children with classic CAH have elevated fasting serum insulin concentrations and insulin resistance. The latter may further enhance adrenal and/or ovarian androgen secretion, decrease the therapeutic efficacy of glucocorticoids and contribute to later development of the metabolic syndrome and its complications.
Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A
2009-03-01
Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hegui; He, Zheng; Zhu, Chunyan
Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less
The effect of a low potassium diet on the glomerular zone of the adrenal cortex of rats.
Kawai, K; Sugihara, H; Tsuchiyama, H
1979-05-01
Rats were fed on low potassium diets in order to observe the effect of dietary low potassium on the adrenal cortex. The authors clarified morphological changes of the hypofunctional glomerular zone and compared these changes with those of the hyperfunctional glomerular zone. Three weeks after or 2 months after the start of a low potassium diet, slight narrowing of the glomerular zone of the adrenal cortex was observed followed by miniaturization of cells, presence of binuclear cells and an increase of lipid with enlarged lipid drops. Electron microscope mainly disclosed changes of mitochondrial cristae consisting of markedly reduced, enlarged and irregularly dilated cristae with shortening or elongation. Granules appeared in mitochondria. Lysosomes or dense bodies were enlarged. The Golgi's apparatus was atrophied but endoplasmic reticulum did not show remarkable changes. These changes were directly opposite to those of the hyperfunctional glomerular zone noted after a pottasium load or seen in sodium deficiency. Consequently, these changes were considered to be the changes of the hypofunctional glomerular zone associated with decrease of aldosterone production.
Autoantibodies against Leydig cells in patients after spermatic cord torsion.
Zanchetta, R; Mastrogiacomo, I; Graziotti, P; Foresta, C; Betterle, C
1984-01-01
This study is aimed at searching for the presence of circulating antibodies against frozen sections of human testis, ovary and trophoblast in patients that had spermatic cord torsion. Sixty-eight sera samples were studied. Nine patients (13.2%) were positive for organ specific anti-testis autoantibodies. Six patients were positive for antibodies against Leydig cells: five were positive only with the indirect immunofluorescence technique of complement fixing (ITT/CF), the sixth patient was positive only with the indirect immunofluorescence technique (ITT). The other three patients were positive for antibodies against germ line cells: two patients were positive with both techniques, the third was positive only with indirect immunofluorescence technique. Eight of these patients were negative for antibodies against adrenal cortex while only one case was positive with indirect immunofluorescence technique both on adrenal cortex and Leydig cells. Human lyophilized testis absorbed the reactive antibodies against Leydig cells and germ line cells, while adrenal cortex and lyophilized testosterone were ineffective. This study shows the identification of a specific antibody against Leydig cells and germ line cells in patients after spermatic cord torsion. PMID:6362937
Mineral element correlation with adenohypophyseal-adrenal cortex function and stress.
Flynn, A; Pories, W J; Strain, W H; Hill, O A
1971-09-10
A statistical correlationl was made between adrenocorticotropin (ACTH) and four elements in rats under control, stress, and stress-recovery conditions. Blood serum zinc showed a strong positive correlation with the rise in ACTH during stress and its decline in stress recovery. Serum calcium, copper, and magnesium demonstrated little correlation with ACTH changes. The strong ACTH-zinc correlation points to an as yet undefined interaction between ACTH and zinc
Hormone supply of the organism in prolonged emotional stress
NASA Technical Reports Server (NTRS)
Amiragova, M. G.; Stulnikov, B. V.; Svirskaya, R. I.
1980-01-01
The effect of prolonged emotional stress of varying genesis on the hormonal function of the pancreas, thyroid gland, and adrenal cortex was studied. The amount of the hormonal secretion was found to depend on the type of adaptation activity and its duration. High secretion of the hormones observed outside the adaptation activity was examined as an index of the phase transition of defense reactions to the phase of overstress.
Manso, Jacopo; Pezzani, Raffaele; Scarpa, Riccardo; Gallo, Nicoletta; Betterle, Corrado
2018-05-24
Autoimmune Addison's disease (AAD) is the most frequent cause of adrenocortical insufficiency. The natural history of AAD usually comprises five consecutive stages with the first stage characterized by the increase of plasma renin consistent with the impairment of pars glomerulosa, which is usually the first affected layer of the adrenal cortex. We describe a 19-year-old female with Hashimoto's thyroiditis (HT) who underwent an autoantibody screening due to having the personal and family history of other autoimmune diseases in the absence of relevant clinical manifestations. She was positive for adrenal cortex autoantibodies (ACA) and steroid 21-hydroxylase autoantibodies (21-OH Ab) at high titers. She had increased basal levels of ACTH with normal basal cortisol not responding to ACTH stimulation, reduced levels of dehydroepiandrosterone-sulfate but normal levels of orthostatic renin and aldosterone. This scenario was consistent with a subclinical AAD presenting with first impairments in pars fasciculata and reticularis and conserved pars glomerulosa function. Only subsequently, progressive deficiency in pars glomerulosa function has become evident. Review of the literature showed that there was only one case, reported to date, with a similar atypical natural history of AAD. The strategies for screening for ACA/21-OH Ab in patients with HT are discussed.
Addison disease: early detection and treatment principles.
Michels, Aaron; Michels, Nicole
2014-04-01
Primary adrenal insufficiency, or Addison disease, has many causes, the most common of which is autoimmune adrenalitis. Autoimmune adrenalitis results from destruction of the adrenal cortex, which leads to deficiencies in glucocorticoids, mineralocorticoids, and adrenal androgens. In the United States and Western Europe, the estimated prevalence of Addison disease is one in 20,000 persons; therefore, a high clinical suspicion is needed to avoid misdiagnosing a life-threatening adrenal crisis (i.e., shock, hypotension, and volume depletion). The clinical manifestations before an adrenal crisis are subtle and can include hyperpigmentation, fatigue, anorexia, orthostasis, nausea, muscle and joint pain, and salt craving. Cortisol levels decrease and adrenocorticotropic hormone levels increase. When clinically suspected, patients should undergo a cosyntropin stimulation test to confirm the diagnosis. Treatment of primary adrenal insufficiency requires replacement of mineralocorticoids and glucocorticoids. During times of stress (e.g., illness, invasive surgical procedures), stress-dose glucocorticoids are required because destruction of the adrenal glands prevents an adequate physiologic response. Management of primary adrenal insufficiency or autoimmune adrenalitis requires vigilance for concomitant autoimmune diseases; up to 50% of patients develop another autoimmune disorder during their lifetime.
Torres-Farfan, C; Abarzua-Catalan, L; Valenzuela, F J; Mendez, N; Richter, H G; Valenzuela, G J; Serón-Ferré, M
2009-06-01
Timely production of glucocorticoid hormones in response to ACTH is essential for survival by coordinating energy intake and expenditure and acting as homeostatic regulators against stress. Adrenal cortisol response to ACTH is clock time dependent, suggesting that an intrinsic circadian oscillator in the adrenal cortex contributes to modulate the response to ACTH. Circadian clock gene expression has been reported in the adrenal cortex of several species. However, there are no reports accounting for potential involvement of adrenal clock proteins on cortisol response to ACTH. Here we explored whether the clock protein cryptochrome 2 (CRY2) knockdown modifies the adrenal response to ACTH in a primate. Adrenal gland explants from adult capuchin monkey (n = 5) were preincubated for 6 h with transfection vehicle (control) or with two different Cry2 antisense and sense probes followed by 48 h incubation in medium alone (no ACTH) or with 100 nm ACTH. Under control and sense conditions, ACTH increased cortisol production, whereas CRY2 suppression inhibited ACTH-stimulated cortisol production. Expression of the steroidogenic enzymes steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase at 48 h of incubation was increased by ACTH in control explants and suppressed by Cry2 knockdown. Additionally, we found that Cry2 knockdown decreased the expression of the clock gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal1) at the mRNA and protein levels. Altogether these results strongly support that the clock protein CRY2 is involved in the mechanism by which ACTH increases the expression of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase. Thus, adequate expression levels of components of the adrenal circadian clock are required for an appropriate cortisol response to ACTH.
78 FR 57280 - Chlorantraniliprole; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-18
... toxicity studies in rats, minimally increased microvesiculation of adrenal cortex was observed in males... cortex effects observed in rat studies were not considered adverse. Chlorantraniliprole does not exhibit.... 601 et seq.), do not apply. This final rule directly regulates growers, food processors, food handlers...
Molecular Mechanisms of Stem/Progenitor Cell Maintenance in the Adrenal Cortex
Lerario, Antonio Marcondes; Finco, Isabella; LaPensee, Christopher; Hammer, Gary Douglas
2017-01-01
The adrenal cortex is characterized by three histologically and functionally distinct zones: the outermost zona glomerulosa (zG), the intermediate zona fasciculata, and the innermost zona reticularis. Important aspects of the physiology and maintenance of the adrenocortical stem/progenitor cells have emerged in the last few years. Studies have shown that the adrenocortical cells descend from a pool of progenitors that are localized in the subcapsular region of the zG. These cells continually undergo a process of centripetal displacement and differentiation, which is orchestrated by several paracrine and endocrine cues, including the pituitary-derived adrenocorticotrophic hormone, and angiotensin II. However, while several roles of the endocrine axes on adrenocortical function are well established, the mechanisms coordinating the maintenance of an undifferentiated progenitor cell pool with self-renewal capacity are poorly understood. Local factors, such as the composition of the extracellular matrix (ECM) with embedded signaling molecules, and the activity of major paracrine effectors, including ligands of the sonic hedgehog and Wnt signaling pathways, are thought to play a major role. Particularly, the composition of the ECM, which exhibits substantial differences within each of the three histologically distinct concentric zones, has been shown to influence the differentiation status of adrenocortical cells. New data from other organ systems and different experimental paradigms strongly support the conclusion that the interactions of ECM components with cell-surface receptors and secreted factors are key determinants of cell fate. In this review, we summarize established and emerging data on the paracrine and autocrine regulatory loops that regulate the biology of the progenitor cell niche and propose a role for bioengineered ECM models in further elucidating this biology in the adrenal. PMID:28386245
Morphology and ultrastructure of the adrenal gland in Bactrian camels (Camelus bactrianus).
Ye, Wen-Ling; Wang, Feng-Ling; Wang, Hong-Ju; Wang, Jian-Lin
2017-04-01
In the present study, we examined the morphological features of the adrenal gland in Bactrian camel by means of digital anatomy, light and electron microscopy. Our findings testified that the gland was divided into three parts, capsule, cortex and medulla from outside to inside as other mammals, and the cortex itself was further distinguished into four zones: zona glomerulosa, zona intermedia, zona fasciculate and zona reticularis. Notably, the zona intermedia could be seen clearly in the glands from females and castrated males, whereas it was not morphologically clear in male. There was a great deal of lipid droplets in the zona fasciculate, while it was fewer in the zona glomerulosa and zona reticularis. The cytoplasm of adrenocortical cell contained rich mitochondria and endoplasmic reticulum. The adrenal medulla was well-developed with two separations of external and internal zones. The most obvious histological property of adrenal medulla cells were that they contained a huge number of electron-dense granules enveloped by the membrane, and so medulla cells could be divided into norepinephrine cells and epinephrine cells. Moreover, the cortical cuffs were frequently present in adrenal gland. Results of this study provides a theoretical basis necessary for ongoing investigations on Bactrian camels and their good adaptability in arid and semi-arid circumstances. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kapas, S; Hinson, J P
1996-01-01
1. The experiments described in this study were carried out to investigate the role of tyrosine kinase in the acute adrenal response to peptide hormone stimulation, and to determine whether the activity of this kinase may be subject to regulation by other intracellular signalling mechanisms in the adrenal zona glomerulosa. 2. Previous studies from this laboratory have shown that angiotensin II stimulates tyrosine kinase activity in the rat adrenal cortex. This study has shown, for the first time, that endothelin-1 also stimulates tyrosine kinase activity in this tissue. 3. Using the specific inhibitor of protein kinase C (PKC) activity, Ro 31-8220, we have shown that stimulation of tyrosine kinase activity, in response to endothelin-1, angiotensin II or the phorbol ester phorbol 12-myristate 13-acetate, is at least partly dependent on increased PKC activity. 4. The data presented also provide further evidence of cross-talk between signalling systems in the adrenal cortex. Corticotrophin and its intracellular second messenger, cyclic AMP, significantly attenuate the increment in tyrosine kinase activity seen in response to each of the effectors used. 5. The results of this study provide important new evidence for the regulation of protein kinases by other intracellular second messenger systems. PMID:8611168
Huang, Chen-Che Jeff; Kraft, Cary; Moy, Nicole; Ng, Lily
2015-01-01
The development of the adrenal cortex involves the formation and then subsequent regression of immature or fetal inner cell layers as the mature steroidogenic outer layers expand. However, controls over this remodeling, especially in the immature inner layer, are incompletely understood. Here we identify an inner cortical cell population that expresses thyroid hormone receptor-β1 (TRβ1), one of two receptor isoforms encoded by the Thrb gene. Using mice with a Thrbb1 reporter allele that expresses lacZ instead of TRβ1, β-galactosidase was detected in the inner cortex from early stages. Expression peaked at juvenile ages in an inner zone that included cells expressing 20-α-hydroxysteroid dehydrogenase, a marker of the transient, so-called X-zone in mice. The β-galactosidase-positive zone displayed sexually dimorphic regression in males after approximately 4 weeks of age but persisted in females into adulthood in either nulliparous or parous states. T3 treatment promoted hypertrophy of inner cortical cells, induced some markers of mature cortical cells, and, in males, delayed the regression of the TRβ1-positive zone, suggesting that TRβ1 could partly divert the differentiation fate and counteract male-specific regression of inner zone cells. TRβ1-deficient mice were resistant to these actions of T3, supporting a functional role for TRβ1 in the inner cortex. PMID:25774556
Effects of acute administration of ethanol on the rat adrenal cortex.
Milovanović, Tatjana; Budec, Mirela; Balint-Perić, Ljiljana; Koko, Vesna; Todorović, Vera
2003-09-01
The purpose of this study was to investigate the effect of a single dose of ethanol on rat adrenal cortex and to determine whether the estrous cycle can influence this effect of ethanol. Adult female Wistar rats showing proestrus or diestrus Day 1 (n = 12) were treated intraperitoneally with ethanol (4 g/kg body weight). Untreated (n = 15) and saline-injected (n = 14) rats were used as controls. The animals were sacrificed by decapitation 0.5 hour after ethanol administration. Stereological analysis was performed on paraffin sections of adrenal glands stained with AZAN, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata and the zona reticularis, numerical density, volume and the mean diameter of adrenocortical cells and of their nuclei, and diameter and length of capillaries. The diameter and volume of adrenocortical cells in the zona fasciculata and the zona reticularis were significantly increased by acute ethanol treatment at proestrus. In the same group of animals, a single dose of ethanol induced significant decrease in numerical density of adrenocortical cells and of their nuclei in all three zones. Increased length of capillaries of the zona fasciculata as well as enhanced level of serum corticosterone was found in ethanol-treated rats at both phases of the estrous cycle, proestrus and diestrus Day 1. The obtained results indicate that a single dose of ethanol activates adrenal cortex in female rats and that the effect is more pronounced on morphometric parameters at proestrus.
Jin, Peng; Yu, Hai-Ling; Tian-Lan; Zhang, Feng; Quan, Zhe-Shan
2015-06-01
Oleoylethanolamide (OEA) is an endocannabinoid analog that belongs to a family of endogenous acylethanolamides. Increasing evidence suggests that OEA may act as an endogenous neuroprotective factor and participate in the control of mental disorder-related behaviors. In this study, we examined whether OEA is effective against depression and investigated the role of circulating endogenous acylethanolamides during stress. Mice were subjected to 28days of chronic unpredictable mild stress (CUMS), and during the last 21days, treated with oral OEA (1.5-6mg/kg) or 6mg/kg fluoxetine. Sucrose preference and open field test activity were used to evaluate depression-like behaviors during CUMS and after OEA treatment. Weights of the prefrontal cortex and hippocampus were determined, and the adrenal index was measured. Furthermore, changes in serum adrenocorticotropic hormone (ACTH), corticosterone (CORT) and total antioxidant capacity (T-AOC), brain-derived neurotrophic factor (BDNF), and lipid peroxidation product malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities in the hippocampus and prefrontal cortex were detected. Our findings indicate that OEA normalized sucrose preferences, locomotion distances, rearing frequencies, prefrontal cortex and hippocampal atrophy, and adrenal indices. In addition, OEA reversed the abnormalities of BDNF and MDA levels and SOD activities in the hippocampus and prefrontal cortex, as well as changes in serum levels of ACTH, CORT, and T-AOC. The antidepressant effects of OEA may be related to the regulation of BDNF levels in the hippocampus and prefrontal cortex, antioxidant defenses, and normalizing hyperactivity in the hypothalamic-pituitary-adrenal axis (HPA). Copyright © 2015 Elsevier Inc. All rights reserved.
Monogenic Disorders of Adrenal Steroidogenesis.
Baranowski, Elizabeth S; Arlt, Wiebke; Idkowiak, Jan
2018-06-06
Disorders of adrenal steroidogenesis comprise autosomal recessive conditions affecting steroidogenic enzymes of the adrenal cortex. Those are located within the 3 major branches of the steroidogenic machinery involved in the production of mineralocorticoids, glucocorticoids, and androgens. This mini review describes the principles of adrenal steroidogenesis, including the newly appreciated 11-oxygenated androgen pathway. This is followed by a description of pathophysiology, biochemistry, and clinical implications of steroidogenic disorders, including mutations affecting cholesterol import and steroid synthesis, the latter comprising both mutations affecting steroidogenic enzymes and co-factors required for efficient catalysis. A good understanding of adrenal steroidogenic pathways and their regulation is crucial as the basis for sound management of these disorders, which in the majority present in early childhood. © 2018 The Author(s) Published by S. Karger AG, Basel.
News about the genetics of congenital primary adrenal insufficiency.
Roucher-Boulez, Florence; Mallet-Motak, Delphine; Tardy-Guidollet, Véronique; Menassa, Rita; Goursaud, Claire; Plotton, Ingrid; Morel, Yves
2018-04-13
Primary adrenal insufficiency (PAI) is characterized by impaired production of steroid hormones due to an adrenal cortex defect. This condition incurs a risk of acute insufficiency which may be life-threatening. Today, 80% of pediatric forms of PAI have a genetic origin but 5% have no clear genetic support. Recently discovered mutations in genes relating to oxidative stress have opened the way to research on genes unrelated to the adrenal gland. Identification of causal mutations in a gene responsible for PAI allows genetic counseling, guidance of follow-up and prevention of complications. This is particularly true for stress oxidative anomalies, as extra-adrenal manifestations may occur due to the sensitivity to oxidative stress of other organs such as the heart, thyroid, liver, kidney and pancreas. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Sex differences in oestrogen receptor levels in adrenal glands of sheep during the breeding season.
van Lier, E; Meikle, A; Bielli, A; Akerberg, S; Forsberg, M; Sahlin, L
2003-11-01
The concentrations of the oestrogen receptor (ER), and the mRNA levels of ERalpha, progesterone receptor (PR) and insulin-like growth factor I (IGF-I) were characterised in adrenal glands and uterine tissue of adult Corriedale sheep during the breeding season. The sheep were of different sex and gonadal status. Ewes had higher levels of cytosolic ER in the adrenals than the rams (mean+/-S.E.M.: 7.3+/-2.0 fmol/mg protein and 2.5+/-1.0 fmol/mg protein, respectively; P=0.0091) and gonadectomy increased ER (mean+/-S.E.M.: 2.9+/-1.2 fmol/mg protein and 8.6+/-2.3 fmol/mg protein, intact and gonadectomised sheep, respectively; P=0.0071). No differences could be observed in mRNA levels for ERalpha and IGF-I in the adrenal glands of all of the sheep. PR mRNA levels were reduced in ovariectomised ewes and enhanced in castrated rams (sex x gonadal status: P=0.009). PR mRNA levels tended to be higher in ewes in the follicular phase than in ovariectomised ewes and intact rams (P<0.1). All of the animals had positive nuclear staining for ERalpha in the adrenal cortex, but no differences were observed between the groups. In this study, we demonstrated the existence of ER in the adrenal gland of sheep and found varying sensitivity to oestrogens as the ER levels differed among sex and gonadal status. These findings indicate that oestrogens most likely affect steroidogenesis directly at the adrenal cortex and suggest that oestrogens are partly responsible for the sex differences in cortisol secretion in sheep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompkins, R.G.; Schnitzer, J.J.; Yarmush, M.L.
1988-09-01
A recently developed technique of absolute quantitative light microscopic autoradiography of /sup 125/I-labeled proteins in biologic specimens was used to measure /sup 125/I-low density lipoprotein (/sup 125/I-LDL) concentration levels in various tissues of the squirrel monkey after 30 minutes of in vivo LDL circulation. Liver and adrenal cortex exhibited high /sup 125/I-LDL concentrations, presumably because of binding to specific cell surface receptors and/or internalization in vascular beds with high permeability to LDL. High tissue concentrations of LDL were associated with the zona fasciculata and reticularis of the adrenal cortex and the interstitial cells of Leydig in the testis; significantly lowermore » levels of /sup 125/I-LDL were observed in the adrenal medulla, the zona glomerulosa, and germinal centers of the testis. Contrary to previous reports, low /sup 125/I-LDL concentrations were observed throughout the gastrointestinal tract and in lymph nodes. In addition, multiple arterial intramural focal areas of high /sup 125/I-LDL concentrations were identified in arteries supplying the adrenal gland, lymph node, small bowel, and liver.« less
Bogmat, L F
1993-01-01
The components of blood lipid spectrum (total cholesterol, triglycerides and high density lipoprotein cholesterol) were studied in 131 adolescents (12-18 years old) with primary arterial hypertension at various levels of adrenal hormones (hydrocortisone and aldosterone) and blood plasma renin activity. The optimal ratio of lipid components in blood was detected if concentrations of adrenal hormones and blood plasma renin activity were low. Hyperfunction of the adrenal cortex in teen-agers contributed both to the development of hypertension and to atherosclerotic changes in vessels. This suggests that definite forms of hypertension occurred in adults, with specific impairments in the metabolism of blood serum lipids, were developed during the juvenile age.
Autoimmune Addison's disease - An update on pathogenesis.
Hellesen, Alexander; Bratland, Eirik; Husebye, Eystein S
2018-06-01
Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Anatomy, histology, and ultrasonography of the normal adrenal gland in brown lemur: Eulemur fulvus.
Raharison, Fidiniaina; Bourges Abella, Nathalie; Sautet, Jean; Deviers, Alexandra; Mogicato, Giovanni
2017-04-01
The medical care currently to brown lemurs (Eulemur fulvus) is limited by a lack of knowledge of their anatomy. The aim of this study was to describe the anatomy and histology and obtain ultrasonographic measurements of normal adrenal glands in these animals. The adrenal glands of four lemurs cadavers were used for the anatomical and histological studies, and those of 15 anesthetized lemurs were examined by ultrasonography. Anatomically, the adrenal glands of brown lemurs are comparable to those of other species. The histological findings showed that the cortex is organized into three distinct layers, whereas most domestic mammals have an additional zone. The surface area of the adrenal glands increased with body weight, and the area of the right adrenal was slightly larger than the left. We suggest using ultrasonography to aid the etiological diagnosis of behavioral abnormalities that might be due to dysfunctions of the adrenal gland. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ciancio, Gaetano; Nielsen, Gunnlaugur Petur; Jorda, Merce
2017-01-01
The adrenal glands produce a variety of hormones that play a key role in the regulation of blood pressure, electrolyte homeostasis, metabolism, immune system suppression, and the body's physiologic response to stress. Adrenal neoplasms can be asymptomatic or can overproduce certain hormones that lead to different clinical manifestations. Oncocytic adrenal neoplasms are infrequent tumors that arise from cells in the adrenal cortex and display a characteristic increase in the number of cytoplasmic mitochondria. Since the rate-limiting step in steroidogenesis includes the transport of cholesterol across the mitochondrial membranes, in part carried out by the 18-kDa translocator protein (TSPO), we assessed the expression of TSPO in a case of adrenal oncocytic neoplasm using residual adrenal gland of the patient as internal control. We observed a significant loss of TSPO immunofluorescence expression in the adrenal oncocytic tumor cells when compared to adjacent normal adrenal tissue. We further confirmed this finding by employing Western blot analysis to semiquantify TSPO expression in tumor and normal adrenal cells. Our findings could suggest a potential role of TSPO in the tumorigenesis of this case of adrenocortical oncocytic neoplasm. PMID:29318061
Angiotensin II receptors in cortical and medullary adrenal tumors.
Opocher, G; Rocco, S; Cimolato, M; Vianello, B; Arnaldi, G; Mantero, F
1997-03-01
Several pieces of evidences suggest that angiotensin II (Ang II) has mitogenic effects, and a link between Ang II receptors and adrenal tumors can be suggested. In various adrenal tumors, aldosterone-producing adenoma (APA), Cushing's adrenal adenomas (Cush), pheochromocytomas (Pheo), and adrenal carcinomas, we studied the density, affinity, and subtype of Ang II receptors. Ang II binding was tested in cell membrane homogenates. [125I]Ang II was used as ligand, and Losartan and CGP 42112 were used as selective Ang II type 1 and type 2 antagonists, respectively. In APA, Ang II receptor density was 178.5 +/- 82.7 fmol/mg: however, due to the high degree of variability, the receptor density was not significantly higher than that in nontumorous adrenal cortex (59.3 +/- 8.4 fmol/mg). In Cush, the receptor density (27.6 +/- 8.2 fmol/mg; P < 0.05) was significantly lower than that in controls, whereas in Pheo and cortical carcinoma, Ang II binding was very low and in several cases almost undetectable. There was no remarkable difference in the Ang II receptor affinity among all tissues tested. The ratio between type 1 and type 2 Ang II receptors showed a large prevalence of type 1 in controls, APA, and three cases of Cush; in two cases of Cush, this ratio was reversed. In conclusion, our data indicate that Ang II receptors are normally expressed in APA and can also be detected in Cush, whereas they have a very low density in Pheo and adrenal carcinoma. Therefore, Ang II receptors are not involved in the lack of response to Ang II that is characteristic of APA; additionally, a reduction of Ang II receptors can be associated with dedifferentiation or malignancy of adrenal tumors. Further investigation of the expression and functional characterization of Ang II receptors is required to better clarify their possible role in adrenal tumorigenesis.
Cook, Jason B; Nelli, Stephanie M; Neighbors, Mackenzie R; Morrow, Danielle H; O'Buckley, Todd K; Maldonado-Devincci, Antoniette M; Morrow, A Leslie
2014-01-01
The neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a positive modulator of GABAA receptors synthesized in the brain, adrenal glands, and gonads. In rats, ethanol activates the hypothalamic–pituitary–adrenal axis and elevates 3α,5α-THP in plasma, cerebral cortex, and hippocampus. In vivo, these effects are dependent on both the pituitary and adrenal glands. In vitro, however, ethanol locally increases 3α,5α-THP in hippocampal slices, in the absence of adrenal influence. Therefore, it is not known whether ethanol can change local brain levels of 3α,5α-THP in vivo, independent of the adrenals. To directly address this controversy, we administered ethanol (2 g/kg) or saline to rats that underwent adrenalectomy (ADX) or received sham surgery and performed immunohistochemistry for 3α,5α-THP. In the medial prefrontal cortex (mPFC), ethanol increased 3α,5α-THP after sham surgery, compared with saline controls, with no ethanol-induced change in 3α,5α-THP following ADX. In subcortical regions, 3α,5α-THP was increased independent of adrenals in the CA1 pyramidal cell layer, dentate gyrus polymorphic layer, bed nucleus of the stria terminalis, and paraventricular nucleus of the hypothalamus. Furthermore, ethanol decreased 3α,5α-THP labeling in the nucleus accumbens shore and central nucleus of the amygdala, independent of the adrenal glands. These data indicate that ethanol dynamically regulates local 3α,5α-THP levels in several subcortical regions; however, the adrenal glands contribute to 3α,5α-THP elevations in the mPFC. Using double immunofluorescent labeling we determined that adrenal dependence of 3α,5α-THP induction by ethanol is not due to a lack of colocalization of 3α,5α-THP with the cholesterol transporters steroidogenic acute regulatory protein (StAR) or translocator protein (TSPO). PMID:24566803
2013-01-01
Background Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with high mutational heterogeneity and a generally poor clinical outcome. Despite implicated roles of deregulated TP53, IGF-2 and Wnt signaling pathways, a clear genetic association or unique mutational link to the disease is still missing. Recent studies suggest a crucial role for epigenetic modifications in the genesis and/or progression of ACC. This study specifically evaluates the potential role of epigenetic silencing of RASSF1A, the most commonly silenced tumor suppressor gene, in adrenocortical malignancy. Results Using adrenocortical tumor and normal tissue specimens, we show a significant reduction in expression of RASSF1A mRNA and protein in ACC. Methylation-sensitive and -dependent restriction enzyme based PCR assays revealed significant DNA hypermethylation of the RASSF1A promoter, suggesting an epigenetic mechanism for RASSF1A silencing in ACC. Conversely, the RASSF1A promoter methylation profile in benign adrenocortical adenomas (ACAs) was found to be very similar to that found in normal adrenal cortex. Enforced expression of ectopic RASSF1A in the SW-13 ACC cell line reduced the overall malignant behavior of the cells, which included impairment of invasion through the basement membrane, cell motility, and solitary cell survival and growth. On the other hand, expression of RASSF1A/A133S, a loss-of-function mutant form of RASSF1A, failed to elicit similar malignancy-suppressing responses in ACC cells. Moreover, association of RASSF1A with the cytoskeleton in RASSF1A-expressing ACC cells and normal adrenal cortex suggests a role for RASSF1A in modulating microtubule dynamics in the adrenal cortex, and thereby potentially blocking malignant progression. Conclusions Downregulation of RASSF1A via promoter hypermethylation may play a role in the malignant progression of adrenocortical carcinoma possibly by abrogating differentiation-promoting RASSF1A- microtubule interactions. PMID:23915220
Wang, Weiye; Wang, Lishan; Endoh, Akira; Hummelke, Geoffrey; Hawks, Christina L; Hornsby, Peter J
2005-01-01
In order to establish whether there are differences in DNA-binding proteins between zona fasciculata (ZF) and zona reticularis (ZR) cells of the human adrenal cortex, we prepared nuclear extracts from separated ZF and ZR cells. The formation of DNA-protein complexes was studied using an element in the first intron of the type I and type II 3beta-hydroxysteroid dehydrogenase genes (HSD3B1 and HSD3B2). Using the element in the HSD3B2 gene as a probe, a complex (C1) was formed with extracts from ZF cells but was formed only at a low level with ZR cell extracts. Another pair of complexes (C2/C3) was formed with both ZF and ZR cell extracts. The ZF-specific protein forming C1 was enriched by column chromatography on DEAE-Sepharose and carboxymethyl-Sepharose. Oligonucleotide competition analysis on the enriched fraction gave results consistent with those obtained on the unfractionated material. A further enrichment was brought about by passing the protein over an oligonucleotide affinity column based on the HSD3B2 element. The protein bound to the column was identified as alpha-enolase by mass spectrometry. Although alpha-enolase is a glycolytic enzyme, it binds to specific DNA sequences and has been found to be present in nuclei of various cell types. We performed immunohistochemistry on sections of adult human adrenal cortex and found alpha-enolase to be located in nuclei of ZF cells but to be predominantly cytoplasmic in ZR cells. Transfection of an alpha-enolase expression vector into NCI-H295R human adrenocortical cells increased HSD3B2 promoter activity, suggesting a possible functional role for this protein in regulation of HSD3B2 expression.
[Morphological studies of rat adrenal glands after space flight on "Kosmos-1667"].
Prodan, N G; Bara'nska, V
1989-01-01
Histological and histomorphometric examinations of rat adrenals after a 7-day flight revealed the following changes: blood congestion in the cortex and medulla, progressive delipoidization of the cortex, slight enlargement of the nuclear volume of glomerular and fascicular zones, vacuolization of the cytoplasm of medulla cells, reduction of the area of noradrenocyte islets and cell nuclei of the medulla; the adrenal weight remained however unchanged. It is concluded that an early period of adaptation to microgravity was accompanied by a weak stress-reaction. Upon return to Earth the rats developed an acute gravitational stress. From the morphological point of view the stress manifested as: increased volume of nuclei in fascicular cells, decreased content of lipids in them, and greater vacuolization of the cytoplasm of medulla cells. The lack of medulla hypertrophy, reduction of the area of noradrenocyte islets and nuclei of medulla cells suggest that 7-day exposure to microgravity did not exert of stimulating effect on the sympathetic system of rats.
Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.
Schimmer, Bernard P; Cordova, Martha
2015-06-15
The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dokhnadze, T D
2011-06-01
The impact of therapeutic Akhtala muds and electromagnetic radiation of millimeter range on biochemical indices in patients with post discectomy syndrome has been investigated. The research showed that medical rehabilitation with Akhtala medical muds and electromagnetic radiation of millimeter range stimulates sympathetic-adrenal system, adrenocorticotrophic function of the hypophysis and glucocorticoid function of adrenal cortex, induces a weakening/removal of an inflammatory process in the operated area, enhances antioxidant defense of the organism, oppresses calcium metabolism and peroxide oxidation of lipids. The noted positive process was manifested in the increase up to upper limit of the norm of daily excretion of adrenalin and noradrenalin, the content of adrenocorticotrophic hormone and cortisol in blood plasma and in the decrease of the amount of malonic dialdehyde in it, also in the increase of antioxidative activity of blood plasma, in the decrease of the content of "С"-reactive protein, haptoglobin, seroglicoids, common and ionic calcium in blood serum.
Addison's disease: a survey on 633 patients in Padova.
Betterle, Corrado; Scarpa, Riccardo; Garelli, Silvia; Morlin, Luca; Lazzarotto, Francesca; Presotto, Fabio; Coco, Graziella; Masiero, Stefano; Parolo, Anna; Albergoni, Maria Paola; Favero, Roberta; Barollo, Susi; Salvà, Monica; Basso, Daniela; Chen, Shu; Rees Smith, Bernard; Furmaniak, Jadwiga; Mantero, Franco
2013-12-01
Addison's disease (AD) is a rare endocrine condition. We aimed to evaluate clinical, immunologic, adrenal imaging, and genetic features in 633 Italian patients with AD followed up since 1967. Adrenal cortex autoantibodies, presence of other autoimmune and nonautoimmune diseases, nonadrenal autoantibodies, adrenal imaging, and genetic profile for HLA-DRB1 and AIRE were analyzed. A total of 492 (77.7%) patients were found to be affected by autoimmune AD (A-AD), 57 (9%) tuberculous AD, 29 (4.6%) genetic-associated AD, 10 (1.6%) adrenal cancer, six (0.94%) post-surgical AD, four (0.6%) vascular disorder-related AD, three (0.5%) post-infectious AD, and 32 (5.1%) were defined as idiopathic. Adrenal cortex antibodies were detected in the vast majority (88100%) of patients with recent onset A-AD, but in none of those with nonautoimmune AD. Adrenal imaging revealed normal/atrophic glands in all A-AD patients: 88% of patients with A-AD had other clinical or subclinical autoimmune diseases or were positive for nonadrenal autoantibodies. Based on the coexistence of other autoimmune disorders, 65.6% of patients with A-AD were found to have type 2 autoimmune polyendocrine syndrome (APS2), 14.4% have APS1, and 8.5% have APS4. Class II HLA alleles DRB1*03 and DRB1*04 were increased, and DRB1*01, DRB1*07, DRB1*013 were reduced in APS2 patients when compared with controls. Of the patients with APS1, 96% were revealed to have AIRE gene mutations. A-AD is the most prevalent form of adrenal insufficiency in Italy, and ∼90% of the patients are adrenal autoantibody-positive at the onset. Assessment of patients with A-AD for the presence of other autoimmune diseases should be helpful in monitoring and diagnosing APS types 1, 2, or 4 and improving patients' care.
Volpato, M; Prentice, L; Chen, S; Betterle, C; Rees Smith, B; Furmaniak, J
1998-01-01
Steroid 21-hydroxylase (21-OH) autoantibodies are found in patients with autoimmune Addison's disease (AAD), either isolated or associated with autoimmune polyglandular syndrome (APS) type I and II and in adrenal-cortex autoantibody (ACA)-positive patients without AAD. In order to assess any differences in the 21-OH autoantibodies in these different patient groups, we have studied their reactivity with different epitopes on 21-OH using full length and modified 35S-labelled 21-OH proteins produced in an in vitro transcription/translation system. There were no major differences in the pattern of autoantibody reactivity with the different modified 21-OH proteins in patients with isolated AAD or with APS types I and II, and in 21-OH autoantibody-positive patients with clinical AAD, subclinical AAD and those maintaining a normal adrenal function. Our studies also indicate that the main epitopes for 21-OH autoantibodies in patients with different forms of autoimmune adrenal disease are located in the C-terminal end and in a central region of 21-OH. PMID:9486414
Patchev, Alexandre V; Fischer, Dieter; Wolf, Siegmund S; Herkenham, Miles; Götz, Franziska; Gehin, Martine; Chambon, Pierre; Patchev, Vladimir K; Almeida, Osborne F X
2007-01-01
The transcription-intermediary-factor-2 (TIF-2) is a coactivator of the glucocorticoid receptor (GR), and its disruption would be expected to influence glucocorticoid-mediated control of the hypothalamo-pituitary-adrenal (HPA) axis. Here, we show that its targeted deletion in mice is associated with altered expression of several glucocorticoid-dependent components of HPA regulation (e.g., corticotropin-releasing hormone, vasopressin, ACTH, glucocorticoid receptors), suggestive of hyperactivity under basal conditions. At the same time, TIF-2(-/-) mice display significantly lower basal corticosterone levels and a sluggish and blunted initial secretory response to brief emotional and prolonged physical stress. Subsequent analysis revealed this discrepancy to result from pronounced aberrations in the structure and function of the adrenal gland, including the cytoarchitectural organization of the zona fasciculata and basal and stress-induced expression of key elements of steroid hormone synthesis, such as the steroidogenic acute regulatory (StAR) protein and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). In addition, altered expression levels of two nuclear receptors, DAX-1 and steroidogenic factor 1 (SF-1), in the adrenal cortex strengthen the view that TIF-2 deletion disrupts adrenocortical development and steroid biosynthesis. Thus, hyperactivity of the hypothalamo-pituitary unit is ascribed to insidious adrenal insufficiency and impaired glucocorticoid feedback.
Guillemette, G; Favreau, I; Lamontagne, S; Boulay, G
1990-04-25
Inositol 1,4,5-trisphosphate (InsP3) is an important second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C in response to Ca2(+)-mobilizing stimuli. InsP3 interacts with specific intracellular receptors and triggers the release of sequestered Ca2+ from an intracellular store. We have looked at the influence of 2,3-diphosphoglycerate on the action and metabolism of InsP3 in the bovine adrenal cortex. 2,3-Diphosphoglycerate blocked InsP3 binding to adrenal cortex microsomes with a half-maximal efficiency of 0.5 mM. Scatchard analyses revealed that 2,3-diphosphoglycerate did not change the maximal capacity of the microsomes, but decreased their binding affinity for InsP3. The Ca2(+)-releasing activity of InsP3 on the same microsomal preparation was monitored with the fluorescent indicator, Fura-2. 2,3-Diphosphoglycerate blocked this activity with a half-maximal efficiency of 2 mM. The effect of 2,3-diphosphoglycerate could be overcome by supramaximal doses of InsP3, indicating a competitive inhibitory effect. The activity of InsP3 phosphatase from bovine adrenal cortex microsomes was also studied. 2,3-Diphosphoglycerate inhibited the activity of the phosphatase with a half-maximal efficiency of 0.3 mM. Lineweaver-Burke plots revealed that this effect was competitive. Finally, 2,3-diphosphoglycerate was also able to inhibit the activity of a partially purified preparation of InsP3 kinase from bovine adrenal cortex cytosol. The half-maximal dose was around 10 mM and the Lineweaver-Burke plot showed that the inhibition was competitive. These results show that 2,3-diphosphoglycerate can be considered as a structural analog of InsP3. Its inhibitory effects, however, are not selective enough to use it as an InsP3 protective agent in Ca2(+)-mobilization studies.
[Adrenal incidentaloma and nuclear medicine examination].
Tenenbaum, F
2009-03-01
In the setting of adrenal incidentaloma, nuclear medicine evaluation is only indicated after biological and imaging work-up has been completed. MIBG scintigraphy is helpful to characterize pheochromocytomas. In lesions without MIBG uptake, 18F FDG or 18F DOPA PET can be considered to characterize chromaffin cell tumours. To characterize lesions of the adrenal cortex, iodocholesterol scintigraphy is performed to confirm the origin of the adenoma and the benign or malignant nature of the lesion since benign adenomas show tracer uptake and malignant lesions show no tracer uptake. 18F FDG PET only characterizes the lesion as benign or malignant.
Principles and management of adrenal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javadpour, N.
1987-01-01
This book provides information on adrenal diseases of latest developments and guides the clinicians in the care of their patients. The book is divided into two parts. The first section gives an overview of the embryology, anatomy, physiology, markers, pathology, imaging and the current progress in the field. The second edition covers specific diseases of the adrenal cortex and medulla. The increasingly significant roles played by steroids, catecholamines, blockers, computed tomography and magnetic resonance are elucidated and discussed. The contents include: Overview of progress; current problems, and perspectives - embryology anatomy, physiology, and biologic markers; pathology; advances in diagnosis; imagingmore » techniques; adrenal disorders in childhood; primary aldosteronism; Cushing's syndrome; carcinoma; pheochromocytoma; neuroblastoma; metastatic disease; surgical management; and subject index.« less
Androstenedione and testosterone biosynthesis by the adrenal cortex of the horse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberzahn, P.; Rashed, F.; Zwain, I.
1984-02-01
An homogenate from cortical tissue of mare adrenals was incubated in the presence of tritiated pregnenolone. The (/sup 3/H) androstenedione and the (/sup 3/H) testosterone synthesized during the incubation were extracted, purified, and co-crystallized to constant specific activity in the presence of unlabeled carriers. The rate of conversion of pregnenolone to androstenedione and testosterone was of the order of 5 and 0.15 per cent respectively. The high ratio of (/sup 3/H) androstenedione to (/sup 3/H) testosterone observed in this study suggests that androstenedione is the main androgen produced by mare adrenals. It is concluded that adrenals could contribute to themore » production of blood androgens in normal as well as hyperandrogenic mares.« less
Cushing's syndrome: from physiological principles to diagnosis and clinical care
Raff, Hershel; Carroll, Ty
2015-01-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic–pituitary–adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism – Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. PMID:25480800
Kimmel, G. L.; Péron, F. G.; Haksar, A.; Bedigian, E.; Robidoux, W. F.; Lin, M. T.
1974-01-01
Electron microscope studies were carried out with the adrenocortical carcinoma 494 and normal adrenal cortex tissue. The mitochondria of the tumor cells showed marked differences when compared with mitochondria from fasciculata cells of the normal adrenal cortex. These differences were primarily related to mitochondrial number and crista structure. Corticosterone production in isolated tumor cells was extremely low and neither ACTH nor dibutyryl cyclic AMP had any stimulatory effect. Normal adrenal cells showed at least a tenfold increase under identical conditions. In the presence of corticosteroid precursors the amount of corticosterone produced by the tumor cells was much less than that produced by normal cells. The results indicate a reduced capacity for 11β-hydroxylation in the tumor mitochondria and a possible reduced capacity for biosynthetic steps before the 11β-hydroxylation reaction. Glycolysis in isolated tumor cells was also lower than in normal cells. Isolated tumor mitochondria oxidized succinate normally with a good degree of coupling with phosphorylation. However, unlike normal adrenal mitochondria, the tumor mitochondria showed little or no oxygen uptake with other Krebs cycle substrates. These data suggest that the tumor mitochondria may be lacking in the flavoprotein dehydrogenases responsible for the oxidation of NADH and NADPH, although other components of the respiratory chain may be intact. PMID:4366105
Mattner, Filomena; Mardon, Karine; Loc'h, Christian; Katsifis, Andrew
2006-06-13
In vitro binding of the iodinated imidazopyridine, N',N'-dimethyl-6-methyl-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [(123)I]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [(123)I]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K(d)=30 nM). The density of binding sites was 22+/-6 and 1.2+/-0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [(123)I]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [(123)I]IZOL by 30% (p<0.05) in olfactory bulbs and by 51-86% (p<0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p<0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p<0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [(123)I]IZOL in peripheral organs and in the brain. [(123)I]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites.
Raff, Hershel; Sharma, Susmeeta T; Nieman, Lynnette K
2014-04-01
The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing's syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing's syndrome). Endogenous Cushing's syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing's syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. © 2014 American Physiological Society.
Raff, Hershel; Sharma, Susmeeta T.; Nieman, Lynnette K.
2014-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing’s syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing’s syndrome). Endogenous Cushing’s syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing’s syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. PMID:24715566
[Sudden death from hypoglycemia].
Asmundo, A; Aragona, M; Gualniera, P; Aragona, F
1995-12-01
The sudden death by hypoglycemia is an aspect of the forensic pathology frequently neglected. Authors initially described the pathogenesis of different hypoglycemia forms, distinguishing the primary ones due to hyperinsulinism and the secondary ones due to functional insufficiency of other organs (hypophysis, thyroid, adrenal gland, liver); after that Authors described three cases of sudden death induced hypoglycemia by hyperinsulinism: two were unweaned with nesidioblastosis and one adolescent. In any form of hypoglycemia the central nervous system damage is present with evident neuronal degenerative-necrotic phenomena, widespread edema with microhemorrhage, swollen and dissociation of myelin sheath, glial cells hyperplasia. Death caused by primary hypoglycemia is histopathologically different from the secondary one because of the maintenance of hepatic glycogen content in the former, that increase in striated muscles, including the heart, in spite of the constant secretion of catecholamine from the adrenal medulla. Glycogen is depleted in secondary hypoglycemia. In the primary form, behind the adrenal medulla hyperfunction, the increased functional activity of the adrenal cortex is moderate, contrasting with the seriousness of the syndrome, due prevalently to inhibit the gluconeogenesis response conditioned by the persistence of stored glycogen in the liver, heart and striated muscles. The rare anoxic processes coming with resynthesis of hepatic glycogen have to be considered in the differential diagnosis. The primary hypoglycemic death, especially in unweaned, is frequently promoted by other processes inducing hypoxia (fetal asphyxia outcome, pneumonia, etc.) or worsening the hypoglycemia (hypothyroidism, etc.). The secondary hypoglycemias are characterized by the normality of exocrine pancreas and by organic alterations that cause glycogen depletion from the liver.
Vesicular monoamine transporter-1 (VMAT-1) mRNA and immunoreactive proteins in mouse brain.
Ashe, Karen M; Chiu, Wan-Ling; Khalifa, Ahmed M; Nicolas, Antoine N; Brown, Bonnie L; De Martino, Randall R; Alexander, Clayton P; Waggener, Christopher T; Fischer-Stenger, Krista; Stewart, Jennifer K
2011-01-01
Vesicular monoamine transporter 1 (VMAT-1) mRNA and protein were examined (1) to determine whether adult mouse brain expresses full-length VMAT-1 mRNA that can be translated to functional transporter protein and (2) to compare immunoreactive VMAT-1 proteins in brain and adrenal. VMAT-1 mRNA was detected in mouse brain with RT-PCR. The cDNA was sequenced, cloned into an expression vector, transfected into COS-1 cells, and cell protein was assayed for VMAT-1 activity. Immunoreactive proteins were examined on western blots probed with four different antibodies to VMAT-1. Sequencing confirmed identity of the entire coding sequences of VMAT-1 cDNA from mouse medulla oblongata/pons and adrenal to a Gen-Bank reference sequence. Transfection of the brain cDNA into COS-1 cells resulted in transporter activity that was blocked by the VMAT inhibitor reserpine and a proton ionophore, but not by tetrabenazine, which has a high affinity for VMAT-2. Antibodies to either the C- or N- terminus of VMAT-1 detected two proteins (73 and 55 kD) in transfected COS-1 cells. The C-terminal antibodies detected both proteins in extracts of mouse medulla/pons, cortex, hypothalamus, and cerebellum but only the 73 kD protein and higher molecular weight immunoreactive proteins in mouse adrenal and rat PC12 cells, which are positive controls for rodent VMAT-1. These findings demonstrate that a functional VMAT-1 mRNA coding sequence is expressed in mouse brain and suggest processing of VMAT-1 protein differs in mouse adrenal and brain.
Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E
2014-06-01
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. © 2014 British Society for Immunology.
Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E
2014-01-01
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ-and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. PMID:24666275
TCGA analysis of adrenocortical carcinoma - TCGA
In the most comprehensive molecular characterization to date of adrenocortical carcinoma, a rare cancer of the adrenal cortex, researchers extensively analyzed 91 cases for alterations in the tumor genomes.
de Krijger, Ronald R; Papathomas, Thomas G
2012-01-01
Adrenocortical carcinoma (ACC) is a rare, heterogeneous malignancy with a poor prognosis. According to WHO classification 2004, ACC variants include oncocytic ACCs, myxoid ACCs and ACCs with sarcomatous areas. Herein, we provide a comprehensive review of these rare subtypes of adrenocortical malignancy and emphasize their clinicopathological features with the aim of elucidating aspects of diagnostic categorization, differential diagnostics and biological behavior. The issue of current terminology, applied to biphasic tumors with pleomorphic, sarcomatous or sarcomatoid elements arising in adrenal cortex, is also discussed. We additionally present emerging evidence concerning the adrenal cortical tumorigenesis and the putative adenoma-carcinoma sequence as well.
Strosberg, Jonathan R
2013-02-01
Pheochromocytomas, paragangliomas, and medullary thyroid carcinomas (MTCs) originate in cells that share a common neuroectodermal origin. Like other neuroendocrine neoplasms, they are characterized by a propensity to secrete amines (epinephrine and norepinephrine) and peptide hormones (calcitonin). Improved understanding of underlying molecular pathways, such as mutations of the RET (rearranged during transfection) proto-oncogene, has led to new rational targeted therapies. Adrenocortical carcinomas (ACCs) originate in the steroid hormone-producing adrenal cortex. While tumors of the adrenal cortex are not, strictly speaking, part the "diffuse neuroendocrine system," they are often included in neuroendocrine tumor guidelines due to their orphan status. In this update on management of unusual neuroendocrine tumors, we review the biology and treatment of these rare neoplasms. Copyright © 2013 Elsevier Inc. All rights reserved.
2018-06-25
Adrenal Cortex Carcinoma; Adult Alveolar Soft Part Sarcoma; Adult Clear Cell Sarcoma of Soft Parts; Adult Hepatocellular Carcinoma; Adult Rhabdomyosarcoma; Adult Soft Tissue Sarcoma; Childhood Alveolar Soft Part Sarcoma; Childhood Central Nervous System Neoplasm; Childhood Clear Cell Sarcoma of Soft Parts; Childhood Hepatocellular Carcinoma; Childhood Rhabdomyosarcoma; Childhood Soft Tissue Sarcoma; Childhood Solid Neoplasm; Ewing Sarcoma; Hepatoblastoma; Hepatocellular Carcinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adult Hepatocellular Carcinoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Alveolar Soft Part Sarcoma; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Childhood Hepatocellular Carcinoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma; Recurrent Hepatoblastoma; Recurrent Malignant Solid Neoplasm; Recurrent Osteosarcoma; Recurrent Renal Cell Carcinoma; Recurrent Rhabdomyosarcoma; Refractory Osteosarcoma; Renal Cell Carcinoma; Thyroid Gland Medullary Carcinoma; Wilms Tumor
Horvath, Anelia; Giatzakis, Christoforos; Tsang, Kitman; Greene, Elizabeth; Osorio, Paulo; Boikos, Sosipatros; Libè, Rossella; Patronas, Yianna; Robinson-White, Audrey; Remmers, Elaine; Bertherat, Jerôme; Nesterova, Maria; Stratakis, Constantine A.
2009-01-01
Bilateral adrenocortical hyperplasia (BAH) is the second most common cause of corticotropin-independent Cushing syndrome (CS). Genetic forms of BAH have been associated with complex syndromes such as Carney Complex and McCune Albright syndrome or may present as isolated micronodular adrenocortical disease (iMAD) usually in children and young adults with CS. A genome-wide association study identified inactivating phosphodiesterase (PDE) 11A (PDE11A) sequencing defects as low-penetrance predisposing factors for iMAD and related abnormalities; we also described a mutation (c.914A>C/H305P) in cAMP-specific PDE8B, in a patient with iMAD. In this study we further characterize this mutation; we also found a novel PDE8B isoform, highly expressed in the adrenal gland. This mutation is shown to significantly affect the ability of the protein to degrade cAMP in vitro. Tumor tissues from patients with iMAD and no mutations in the coding PDE8B sequence or any other related genes (PRKAR1A, PDE11A) showed down-regulated PDE8B expression (compared to normal adrenal cortex). Pde8b is detectable in the adrenal gland of newborn mice and is widely expressed in other mouse tissues. We conclude that PDE8B is another PDE gene linked to iMAD; it is a candidate causative gene for other adrenocortical lesions linked to the cAMP-signaling pathway, and possibly for tumors in other tissues. PMID:18431404
Cushing's syndrome: from physiological principles to diagnosis and clinical care.
Raff, Hershel; Carroll, Ty
2015-02-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic-pituitary-adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism--Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Mazzuco, Tania L; Chabre, Olivier; Sturm, Nathalie; Feige, Jean-Jacques; Thomas, Michaël
2006-02-01
Aberrant expression of ectopic G protein-coupled receptors (GPCRs) in adrenal cortex tissue has been observed in several cases of ACTH-independent macronodular adrenal hyperplasias and adenomas associated with Cushing's syndrome. Although there is clear clinical evidence for the implication of these ectopic receptors in abnormal regulation of cortisol production, whether this aberrant GPCR expression is the cause or the consequence of the development of an adrenal hyperplasia is still an open question. To answer it, we genetically engineered primary bovine adrenocortical cells to have them express the gastric inhibitory polypeptide receptor. After transplantation of these modified cells under the renal capsule of adrenalectomized immunodeficient mice, tissues formed had their functional and histological characteristics analyzed. We observed the formation of an enlarged and hyperproliferative adenomatous adrenocortical tissue that secreted cortisol in a gastric inhibitory polypeptide-dependent manner and induced a mild Cushing's syndrome with hyperglycemia. Moreover, we show that tumor development was ACTH independent. Thus, a single genetic event, inappropriate expression of a nonmutated GPCR gene, is sufficient to initiate the complete phenotypic alterations that ultimately lead to the formation of a benign adrenocortical tumor.
Amiragova, M G; Arkhangel'skaia, M I; Polyntsev, Iu V; Vorontsov, V I
1985-08-01
A study was made of the effect of chronic emotional stress on the formation of hypertension in animals. This was shown to be related to dynamic changes in the function of the CNS, particularly in the hypothalamic apparatus of the neuroendocrine control. The above changes played a role in the formation of hypertensive vascular reactions accompanied by a high hormonal secretion of the adrenal cortex and thyroid. During stabilization of high arterial blood pressure at the late stages of the "after-effect", the hormonal secretion returns to normal.
Polushina, N D; Kozhevnikov, S A; Makarov, V A; Vergeĭchik, E N; Kartazaeva, V A; Liubchik, V E
1997-01-01
Before modelling of experimental ulcer according to I. S. Zavodskaia the animals (157 male Wistar rats) were given for 24 days mineral water Essentuki N 17 and rutin in a dose 20 or 40 mg. Those given 20 mg of rutin in combination with mineral water demonstrated a higher rise in blood concentrations of hydrocortisone, insulin and thyroxine. Gastric mucosa and levels of serum alpha-1, alpha-2, beta-globulins and albumins were less damaged.
21 CFR 862.1615 - Pregnenolone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... diseases of the adrenal cortex or the gonads. (b) Classification. Class I (general controls). The device is...
Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein S; Pearce, Simon H; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo
2014-09-01
The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. Copyright © 2014 by The American Association of Immunologists, Inc.
Clark, Barbara J.
2016-01-01
Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies. PMID:27999527
Clark, Barbara J
2016-01-01
Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies.
Hedgehog signaling: endocrine gland development and function.
Cohen, M Michael
2010-01-01
The role of hedgehog signaling is analyzed in relation to the developing endocrine glands: pituitary, ovary, testis, adrenal cortex, pancreas, prostate, and epiphyseal growth. Experimental and pathological correlates of these organs are also discussed. The second section addresses a number of topics. First, the pituitary gland, no matter how hypoplastic, is present in most cases of human holoprosencephaly, unlike animals in which it is always said to be absent. The difference appears to be that animal mutations and teratogenic models involve both copies of the gene in question, whereas in humans the condition is most commonly heterozygous. Second, tests of endocrine function are not reported with great frequency, and an early demise in severe cases of holoprosencephaly accounts for this trend. Reported tests of endocrine function are reviewed. Third, diabetes insipidus has been recorded in a number of cases of holoprosencephaly. Its frequency is unknown because it could be masked by adrenal insufficiency in some cases and may not be recognized in others. Because of the abnormal hypothalamic-infundibular region in holoprosencephaly, diabetes insipidus could be caused by a defect in the supra-optic or paraventricular hypothalamic nuclei or in release of ADH via the infundibulum and posterior pituitary.
Adrenal tuberculosis in Cushing's disease with bilateral macronodular adrenocortical hyperplasia.
Kwon, Hyuk-Sang; Kim, Sang-Il; Yoo, Soon-Jib; Yoon, Kun-Ho; Lee, Kwang-Woo; Kang, Moon-Won; Son, Ho-Young; Kang, Sung-Koo; Cha, Bong-Yun
2006-04-01
Cushing's disease is a disorder of hypercortisolism caused by a pituitary micro- or macro-adenoma. Most patients with Cushing's disease have a bilateral adrenal enlargement, which depends on the duration of the disease, as a result of the long standing ACTH stimulation of both adrenal glands. However, in macronodular adrenocortical hyperplasia (MNH) that is caused by Cushing's disease, if the MNH gains autonomy, a bilateral adrenalectomy, as well as the removal of pituitary adenoma, is often essential. We encountered a patient diagnosed with Cushing's disease with bilateral adrenal tuberculosis simulating MNH. She had taken anti-tuberculosis medications one year prior to admission due to spinal tuberculosis. Sellar MRI revealed a pituitary macroadenoma, but adrenal CT showed enlargement in both adrenal glands that appeared to be MNH. A hormonal study and bilateral inferior petrosal sinus sampling revealed Cushing's disease. Therefore, she underwent trans-sphenoidal surgery of the pituitary mass. The pituitary surgery was successful and the serum cortisol returned to normal range. However, the adrenal mass rapidly enlarged after removing the pituitary tumor without showing evidence of a recurrence or adrenal autonomy of hypercortisolism. Accordingly, a laparoscopic left adrenalectomy was performed to examine the nature of the mass. The resected left adrenal gland was pathologically determined to have a lesion of tuberculosis with some part of the intact cortex. So we assumed that the cause of rapid adrenal enlargement might be due to adrenal tuberculosis. In summary, to the best of our knowledge, this is the first case of Cushing's disease coexisting with both adrenal tuberculosis simulating a bilateral MNH.
An Addison disease revealed with a serious hyponatremia.
Maguet, Hadrien; Carreau, Agnès; Hautefeuille, Serge; Bonnin, Pierre; Beaune, Gaspard
2017-02-01
We present the case of an Addison's disease revealed by a serious hyponatremia. The serum concentration of ACTH and 21-hydroxylase antibodies were increased and lead to the diagnosis. The cortisol blood level was lowered but required to take into account the stress induced by the hospitalisation of the patient. Addison's disease is characterized by the destruction of the adrenal cortex. Autoimmune adrenalitis is the main cause of adrenal insufficiency. Treatment involves normalisation of sodium concentration and corticosteroids replacement. With a good patient compliance, the survival rate of Addisonian patient is similar to that of the normal population. Management of patient requires vigilance because of the occurrence of others autoimmunes diseases during patient life.
Gonul, Ali Saffet; Kula, Mustafa; Bilgin, Arzu Guler; Tutus, Ahmet; Oguz, Aslan
2004-09-01
Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.
Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses.
Nussdorfer, G G; Mazzocchi, G
1998-01-01
Several cytokines, which are the major mediators of the inflammatory responses, are well-known to stimulate the hypothalamopituitary corticotropin-releasing hormone (CRH)/adrenocorticotropic hormone (ACTH) system, thereby evoking secretory responses by the adrenal cortex. Many of these cytokines, including interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma) are synthesized in the adrenal gland by both parenchymal cells and resident macrophages, and the release of some of them (e.g., IL-6 and TNF-alpha) is regulated by the main agonists of steroid hormone secretion (e.g., ACTH and angiotensin-II) and bacterial endotoxins. Adrenocortical and adrenomedullary cells are provided with specific receptors for IL-1, IL-2, and IL-6. IL-1 and TNF-alpha directly inhibit aldosterone secretion of zona glomerulosa cells, whereas IL-6 enhances it. IL-2, IL-3, IL-6, and INF-alpha are able to directly stimulate glucocorticoid production by zona fasciculata and zona reticularis cells, whereas IL-1 exerts an analogous effect through an indirect mechanism involving the stimulation of catecholamine release by chromaffin cells and/or the activation of the intramedullary CRH/ACTH system; again, TNF-alpha depresses glucocorticoid synthesis. IL-6 raises androgen secretion by inner adrenocortical layers. IL-1 enhances the proliferation of adrenocortical cells, and findings suggest that cytokines may control the apoptotic deletion of senescent zona reticularis cells. The relevance of the intraadrenal cytokine system in the fine-tuning of the secretion and growth of the adrenal cortex under normal conditions remains to be explored. However, indirect proof is available that local immune-endocrine interactions may play an important role in modulating adrenal responses to inflammatory and immune challenges and stresses.
Li, Xin; Huang, Wen Xu; Lu, Ju Ming; Yang, Guang; Ma, Fang Ling; Lan, Ya Ting; Meng, Jun Hua; Dou, Jing Tao
2013-07-01
To investigate the effects of vitamin-mineral supplement on young males with physical overtraining. Two hundred and forty male Chinese field artillery personnel who undertook large scale and endurance military training and were on ordinary Chinese diet were randomized to receive a multivitamin/multimineral supplement or a placebo for 1 week. After a 1-week wash-out period, a cross-over with 1 week course of a placebo or multivitamin/multimineral supplement was conducted. Blood and urine samples were analyzed for adrenal, gonadal and thyroid hormones. In addition, cellular immune parameters (CD3+, CD3+CD4+, CD3+CD8+, CD4/CD8, CD3-CD56+, CD3-CD19+) were examined and psychological tests were performed before and after the training program and nutrition intervention. After a large scale and endurance military training, the participants showed significantly increased thyroid function, decreased adrenal cortex, testosterone and immunological function, and significantly increased somatization, anger and tension. Compared to placebo, multivitamin/ multimineral intervention showed significant effects on functional recovery of the pituitary - adrenal axis, pituitary-gonadal axis, pituitary- thyroid axis and immune system as well as psychological parameters. High-intensity military operations have significant impacts on the psychology, physical ability and neuroendocrine-immune system in young males. Appropriate supplementation of multivitamin/multimineral can facilitate the recovery of the psychology, physical ability and neuroendocrine-immune system in young males who take ordinary Chinese diet. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Poliakova, T I
1984-07-01
By means of histological, historadioautographical and biochemical methods the effect produced by disturbances in hormonal balance of the adrenal cortex (corticosteroids) on the islet apparatus of the pancreas in the lamprey (Lampetra fluviatilis), the frog (Rana temporaria), the tortoise (Testudo horsfieldi), the pigeon (Columbia livia), the white rat (Rattus rattus) has been studied during autumn-winter period. Chronic injections of hydrocortisone and desoxycorticosterone-acetate are used to change the hormonal balance in the adrenal cortex. In Cyclostomata, Amphibia and Reptilia gluco- and mineralocorticoids produce similar effects by increasing glycemia level. In birds and Mammalia glucocorticoids increase glycemia level, and mineralocorticoids do not change it. An increased glucose level in the organism of the representatives of various Mammalian classes after an excess injection of glucocorticoids is accompanied with a mainfested degranulation, hypertrophy of the Golgi complex, vacuolization of aldehydefuchsin-positive B-cell. Glucocorticoides increase the level of 35S-methyonine incorporation into B-cells of Langerhans islet in the representatives of all the vertebral classes studied. Mineralocorticoids act similarly as glucocorticoids stimulating protein metabolism only in Amphibia and birds. The level of immunoreactive insulin (IRI) in response to glucocorticoids injection increases in Amphibia and Mammalia and remains unchanged in Cyclostomata, Reptilia and birds. IRI remains unchanged after injection of mineralocorticoids in all representatives of Vertebrata, besides Cyclostomata in which IRI decreases.
Ney, Robert L.; Dexter, Richard N.; Davis, Warren W.; Garren, Leonard D.
1967-01-01
Following hypophysectomy in the rat, there was a progressive decline in the rate of adrenal protein synthesis in vivo during the ensuing 24-48 hr, and an accompanying decrease in the acute corticosterone secretory response to an intravenous injection of ACTH. There was a similar decrease in the in vitro conversion of Δ5-pregnenolone, progesterone, and deoxycorticosterone to corticosterone. These in vivo and in vitro effects of hypophysectomy could be reversed by the administration of depot ACTH for an additional 7 hr period. However, if cycloheximide, an inhibitor of protein synthesis, was administered concomitantly with the depot ACTH, then the restorative actions of ACTH on the steroid biosynthetic pathway were prevented. These experiments suggest that ACTH maintains not only the general structure of the adrenal cortex, but also the level of the steroid biosynthetic mechanism, through its effects on adrenal protein synthesis. PMID:4294571
Karaismailoglu, S; Tuncer, M; Bayrak, S; Erdogan, G; Ergun, E L; Erdem, A
2017-08-01
Testosterone, estradiol, and dihydrotestosterone are the main sex steroid hormones responsible for the organization and sexual differentiation of brain structures during early development. The hypothalamo-pituitary-adrenocortical axis, adrenal cells, and gonads play a key role in the production of sex steroids and express adenosine receptors. Caffeine is a non-selective adenosine antagonist; therefore, it can modulate metabolic pathways in these tissues. Besides, the proportion of pregnant women that consume caffeine is ∼60%. That is why the relationship between maternal caffeine consumption and fetal development is important. Therefore, we aimed to investigate this modulatory effect of maternal caffeine consumption on sex steroids in the fetal and neonatal brain tissues. Pregnant rats were treated with a low (0.3 g/L) or high (0.8 g/L) dose of caffeine in their drinking water during pregnancy and lactation. The testosterone, estradiol, and dihydrotestosterone levels in the frontal cortex and hypothalamus were measured using radioimmunoassay at embryonic day 19 (E19), birth (PN0), and postnatal day 4 (PN4). The administration of low-dose caffeine increased the body weight in PN4 male and female rats and anogenital index in PN4 males. The administration of high-dose caffeine decreased the adrenal weight in E19 male rats and increased testosterone levels in the frontal cortex of E19 female rats and the hypothalamus of PN0 male rats. Maternal caffeine intake during pregnancy affects sex steroid levels in the frontal cortex and hypothalamus of the offspring. This concentration changes of the sex steroids in the brain may influence behavioral and neuroendocrine functions at some point in adult life.
Khalil, Mahmoud Salah
2015-01-01
Ketoconazole (KZ) is used widely for treating the superficial, systemic fungal activities and hyperandrogenemic states. Its uses are limited by its deleterious effect on histological structure and function of the adrenal cortex. This study investigates whether vitamin D3 supplement can ameliorate the morphological changes induced by KZ. Thirty four adult male albino rats were randomized into control group (Group I) which was subdivided into: control 1 (n=7) and control 2 (n=7): In control 1, rats were intraperitoneal (I.P) injected once with 1 ml of polyethylene glycol-400 for 15 consecutive days and control 2 rats were injected I.P with (1 μg/kg) of vitamin D3 for the same period. Group II (n=10): rats were I.P injected with KZ (10 mg/100 g of body weight) once daily for 15 days; Group III (n=10): rats were I.P concomitantly injected with KZ and vitamin D3 similar doses to animals in groups II and control 2 respectively. Blood samples were collected to determine plasma ACTH, corticosterone and aldosterone levels. The right adrenal specimens sections were stained with Haematoxylin & Eosin and Masson Trichrome for histological studies and treated with Bax, Ubiquitin and vitamin D receptors for immunohistochemical studies. KZ induced adrenal cortical morphological changes in forms of disturbed adrenocorticocyte cytological architecture, nuclear changes, and intracellular lipid accumulation. KZ also increased adrenal Bax and Ub but decreased the vitamin D receptors immunopositive staining expression, in addition to increased plasma ACTH as well as decreased corticosterone and aldosterone levels. These changes were ameliorated by supplementing with vitamin D3. PMID:26379312
Khalil, Mahmoud Salah
2015-08-27
Ketoconazole (KZ) is used widely for treating the superficial, systemic fungal activities and hyperandrogenemic states. Its uses are limited by its deleterious effect on histological structure and function of the adrenal cortex. This study investigates whether vitamin D3 supplement can ameliorate the morphological changes induced by KZ. Thirty four adult male albino rats were randomized into control group (Group I) which was subdivided into: control 1 (n=7) and control 2 (n=7): In control 1, rats were intraperitoneal (I.P) injected once with 1 ml of polyethylene glycol-400 for 15 consecutive days and control 2 rats were injected I.P with (1 μg/kg) of vitamin D3 for the same period. Group II (n=10): rats were I.P injected with KZ (10 mg/100 g of body weight) once daily for 15 days; Group III (n=10): rats were I.P concomitantly injected with KZ and vitamin D3 similar doses to animals in groups II and control 2 respectively. Blood samples were collected to determine plasma ACTH, corticosterone and aldosterone levels. The right adrenal specimens sections were stained with Haematoxylin & Eosin and Masson Trichrome for histological studies and treated with Bax, Ubiquitin and vitamin D receptors for immunohistochemical studies. KZ induced adrenal cortical morphological changes in forms of disturbed adrenocorticocyte cytological architecture, nuclear changes, and intracellular lipid accumulation. KZ also increased adrenal Bax and Ub but decreased the vitamin D receptors immunopositive staining expression, in addition to increased plasma ACTH as well as decreased corticosterone and aldosterone levels. These changes were ameliorated by supplementing with vitamin D3.
Mangelis, Anastasios; Dieterich, Peter; Peitzsch, Mirko; Richter, Susan; Jühlen, Ramona; Hübner, Angela; Willenberg, Holger S; Deussen, Andreas; Lenders, Jacques W M; Eisenhofer, Graeme
2016-01-01
Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein; Pearce, Simon H.; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo
2016-01-01
The mechanisms behind the destruction of the adrenal glands in autoimmune Addison’s disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in over 90% of patients, but these autoantibodies are not thought to mediate the disease. Here we demonstrate highly frequent 21-hydroxylase specific T cells detectable in 20 patients with Addison’s disease. Using overlapping 18aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8+ and CD4+ T cell responses in a large proportion of Addison’s patients both ex-vivo and after in-vitro culture of peripheral blood lymphocytes up to 20 years after diagnosis. In a large proportion of patients, CD8+ 21-hydroxylase specific T cells and CD4+ 21-hydroxylase specific T cells were very abundant and detectable in ex-vivo assays. HLA class-I tetramer-guided isolation of 21-hydroxylase specific CD8+ T cells showed their ability to lyse 21-hydroxylase positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate strong cytotoxic T lymphocyte responses to 21-hydroxylase often occur in-vivo, and that reactive cytotoxic T lymphocytes have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. PMID:25063864
Acute ethanol treatment increases level of progesterone in ovariectomized rats.
Budec, Mirela; Koko, Vesna; Milovanović, Tatjana; Balint-Perić, Ljiljana; Petković, Aleksandra
2002-04-01
To determine whether an increased level of progesterone in adult female rats after acute ethanol treatment, described previously in our study, is the result of activation of adrenal glands, we analyzed adrenal cortex morphologically and measured serum levels of corticosterone and progesterone in ovariectomized rats. In addition, a possible involvement of the opioid system in an observed phenomenon was tested. Adult female Wistar rats were ovariectomized, and 3 weeks after surgery they were treated intraperitoneally with (a) ethanol (4 g/kg), (b) naltrexone (5 mg/kg), followed by ethanol (4 g/kg) 45 min later, and (c) naltrexone (5 mg/kg), followed by saline 45 min later. Untreated and saline-injected rats were used as controls. The animals were killed 0.5 h after ethanol administration. Morphometric analysis was carried out on paraffin sections of adrenal glands, stained with hematoxylin-eosin, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata, and the zona reticularis; numerical density, volume, and the mean diameter of adrenocortical cells and of their nuclei; and mean diameter and length of capillaries. The results showed that acute ethanol treatment significantly increased absolute volume of the zona fasciculata and length of its capillaries but did not alter other stereological parameters. Also, serum levels of corticosterone and progesterone were enhanced. Pretreatment with naltrexone had no effect on ethanol-induced changes. These findings are consistent with our previous hypothesis that an ethanol-induced increase of the progesterone level in adult female rats originates from the adrenal cortex.
Protective effect of Brewer's yeast on methimazole-induced-adrenal atrophy (a stereological study).
Dehghani, Farzaneh; Zabolizadeh, Jamal; Noorafshan, Ali; Panjehshahin, Mohammad Reza; Karbalay-Doust, Saied
2010-04-20
Induction of hypothyroidism by thioamide drugs will cause adrenal gland atrophy and decrease in its hormones. To prevent side effect on the adrenal gland, brewer's yeast, a natural product rich in vitamins and minerals was used. Serological techniques were applied to measure the volume of adrenal gland. For this purpose, 48 Sprague-Dawley rats were randomly divided into one control and three experimental groups. In group 1, methimazole was administered at the dose of 30 mg/kg/day days, in group 2, 120 mg/kg/day of, brewer's yeast, in group 3, 30 mg/kg/day of methimazole plus 120 mg/kg/day of brewer yeast, and for the control group, an equal volume of saline (0.5 ml/rat/day) was orally given. After 30 days, all the animals were anesthetized and their adrenal glands were removed, fixed, embedded and stained. The volume of different zones of the adrenal glands was estimated by Cavalieri principle and point counting methods. statistical analysis was performed using Mann-Withney test and p < 0.05 was considered as statistically significant. The results indicated that methimazole decreased the volume of fasciculata zone in the cortex of the adrenal gland and also decreased the blood cortisol level. Brewer's yeast reduced the methimazole side effects on this zone. In conclusion, it seems that the use of brewer's yeast could prevent methimazole-induced atrophy of the adrenal gland.
Mizuno, Haruo; Ohro, Yoichiro; Sugiyama, Yukari; Ito, Tetsuya; Hasegawa, Tomonobu; Homma, Keiko; Ueshiba, Hajime; Ono, Makoto; Togari, Hajime
2004-01-01
To clarify the pathogenesis of transient hyper-17alpha-hydroxyprogesteronemia, we initiated a laboratory investigation in a pre-term infant with persistently high serum 17alpha-hydroxyprogesterone (17-OHP) until 2 months of age. Serum 17-OHP level was measured by high-performance liquid chromatography and radioimmunoassay, and gene analysis of CYP21A2 (21-hydroxylase) was performed. Serum 17-OHP level on the 29th day of life was 25.4 ng/ml, and the urinary steroid profile showed low pregnanetriolone. Gene analysis of 21-hydroxylase disclosed no mutation, and 17-OHP normalized by 3 months of age without specific treatment. Transient elevations in 17-OHP, which do not appear related to cross-reactions with products of a residual fetal adrenal cortex, may occur in the first few months of life. Copyright 2004 S. Karger AG, Basel
Dubrovsky, B
1993-01-01
Cushing's disorder and depression present overlapping although not identical psychological symptomatology. In turn, a subset of patients with affective disorders present with hypercortisolemia and disturbances, specifically disinhibition, of the hypothalamic hypophysio adrenal axis (HHAA). Memory disturbances, in particular, biasing toward negative contents, overlapping sleep abnormalities (marked reduction of stages 3 and 4) increased fatigue and loss of energy, attentional deficits and irritability, are just part of the common symptomatology presented by patients with both Cushing's disorder and depression. All of these behavioral manifestations are known to be affected by adrenal steroid hormones. There is consensus that hippocampal structures are a main target for adrenal steroid hormones; hence, these neural regions are some of the most likely mediators of the effects of corticoadrenal steroids on behavior. This paper proposes that an imbalance of adrenal steroids and their metabolites may play a fundamental role in the psychophysiopathology of Cushing's and depressive disorders. The imbalance of these hormones, especially at limbic sites, could distort mood and memory content affecting cognition based on recollection and present experiences. Reestablishing an adrenal balance could therefore be considered as a therapeutic aid in a subset of depressive disorders. PMID:8461280
Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge
2013-01-01
Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479
"More than skin deep": stress neurobiology and mental health consequences of racial discrimination.
Berger, Maximus; Sarnyai, Zoltán
2015-01-01
Ethnic minority groups across the world face a complex set of adverse social and psychological challenges linked to their minority status, often involving racial discrimination. Racial discrimination is increasingly recognized as an important contributing factor to health disparities among non-dominant ethnic minorities. A growing body of literature has recognized these health disparities and has investigated the relationship between racial discrimination and poor health outcomes. Chronically elevated cortisol levels and a dysregulated hypothalamic-pituitary-adrenal (HPA) axis appear to mediate effects of racial discrimination on allostatic load and disease. Racial discrimination seems to converge on the anterior cingulate cortex (ACC) and may impair the function of the prefrontal cortex (PFC), hence showing substantial similarities to chronic social stress. This review provides a summary of recent literature on hormonal and neural effects of racial discrimination and a synthesis of potential neurobiological pathways by which discrimination affects mental health.
Waterhouse-Friderichsen syndrome
... Neisseri meningitides . In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, Updated Edition . 8th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 213. Stewart PM, Newell-Price JDC. The adrenal cortex. In: Melmed S, Polonsky ...
Functional Zonation of the Adult Mammalian Adrenal Cortex
Vinson, Gavin P.
2016-01-01
The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts. PMID:27378832
Tobón, Angela M.; Agudelo, Carlos A.; Restrepo, Carlos A.; Villa, Carlos A.; Quiceno, William; Estrada, Santiago; Restrepo, Angela
2010-01-01
This study assessed adrenal function in patients with paracoccididioidomycosis who had been treated to determine a possible connection between high antibody titers and adrenal dysfunction attributable to persistence of the fungus in adrenal gland. Adrenal gland function was studied in 28 previously treated patients, 2 (7.1%) of whom were shown to have adrenal insufficiency and 7 (259%) who showed a below normal response to stimuli by adrenocorticotropic hormone. Paracoccidioides brasiliensis was detected in the adrenal gland from one of the patients with adrenal insufficiency. Although the study failed to demonstrate a significant difference between high antibody titers and low cortisol levels, the proportion of adrenal insufficiency detected and the subnormal response to adrenocorticotropic hormone confirmed that adrenal damage is an important sequela of paracoccidioidomycosis. Studies with a larger number of patients should be conducted to confirm the hypothesis of persistence of P. brasiliensis in adrenal gland after therapy. PMID:20595488
Gehrand, Ashley; Bruder, Eric D.; Hoffman, Matthew J.; Engeland, William C.; Moreno, Carol
2014-01-01
The classic renin-angiotensin system is partly responsible for controlling aldosterone secretion from the adrenal cortex via the peptide angiotensin II (ANG II). In addition, there is a local adrenocortical renin-angiotensin system that may be involved in the control of aldosterone synthesis in the zona glomerulosa (ZG). To characterize the long-term control of adrenal steroidogenesis, we utilized adrenal glands from renin knockout (KO) rats and compared steroidogenesis in vitro and steroidogenic enzyme expression to wild-type (WT) controls (Dahl S rat). Adrenal capsules (ZG; aldosterone production) and subcapsules [zona reticularis/fasciculata (ZFR); corticosterone production] were separately dispersed and studied in vitro. Plasma renin activity and ANG II concentrations were extremely low in the KO rats. Basal and cAMP-stimulated aldosterone production was significantly reduced in renin KO ZG cells, whereas corticosterone production was not different between WT and KO ZFR cells. As expected, adrenal renin mRNA expression was lower in the renin KO compared with the WT rat. Real-time PCR and immunohistochemical analysis showed a significant decrease in P450aldo (Cyp11b2) mRNA and protein expression in the ZG from the renin KO rat. The reduction in aldosterone synthesis in the ZG of the renin KO adrenal seems to be accounted for by a specific decrease in P450aldo and may be due to the absence of chronic stimulation of the ZG by circulating ANG II or to a reduction in locally released ANG II within the adrenal gland. PMID:25394830
Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J
2008-01-01
Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of dehydroepiandrosterone sulfate (DHEAS), typical of polycystic ovary syndrome (PCOS) women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS.
Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J
2008-01-01
Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of DHEAS, typical of PCOS women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS. PMID:18493139
Liu, Guanghua; Wang, Fen; Jiang, Jun; Yan, Zhaoli; Zhang, Dianxi; Zhang, Yinsheng
2016-01-01
Context: To date, all the familial hyperaldosteronism type III (FH-III) patients reported presenting with typical primary aldosteronism (PA), without showing other adrenal hormone abnormalities. Objective: This study characterized a novel phenotype of FH-III and explored the possible pathogenesis. Patients and Methods: A male patient presented with severe hypertension and hypokalemia at the age of 2 years and developed Cushing's syndrome at 20 years. He was diagnosed with PA and Cushing's syndrome on the basis of typical biochemical findings. He had massive bilateral adrenal hyperplasia and underwent left adrenalectomy. KCNJ5 was sequenced, and secretion of aldosterone and cortisol were observed both in vivo and in vitro. Results: A heterozygous germline p.Glu145Gln mutation of KCNJ5 was identified. ARMC5, PRKAR1A, PDE8B, PDE11A, and PRKACA genes and β-catenin, P53 immunoactivity were normal in the adrenal. CYP11B2 was highly expressed, whereas mRNA expression of CYP11B1, CYP17A1, and STAR was relatively low in the hyperplastic adrenal, compared with normal adrenal cortex and other adrenal diseases. In the primary cell culture of the resected hyperplastic adrenal, verapamil and nifedipine, two calcium channel blockers, markedly inhibited the secretion of both aldosterone and cortisol and the mRNA expression of CYP11B1, CYP11B2, CYP17A1, and STAR. Conclusions: We presented the first FH-III patient who had both severe PA and Cushing's syndrome. Hypersecretion of cortisol might be ascribed to overly large size of the hyperplastic adrenal because CYP11B1 expression was relatively low in his adrenal. Like aldosterone, synthesis and secretion of cortisol in the mutant adrenal may be mediated by voltage-gated Ca2+ channels. PMID:27403928
2012-01-01
Background Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2Ay mice (F2 mice with the Ay allele) and F2 non-Ay mice (F2 mice without the Ay allele). These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The Ay allele is dominant and homozygous lethal; therefore, living Ay mice are invariably heterozygotes. Results Single QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-Ay mice, and on chromosomes 2, 6, and 12 for F2Ay mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8. Conclusions The extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone. Identifying the genes responsible for the QTLs will be essential for understanding the molecular basis of X-zone function, which is currently unclear. PMID:23131041
Suto, Jun-Ichi
2012-11-06
Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2Ay mice (F2 mice with the Ay allele) and F2 non-Ay mice (F2 mice without the Ay allele). These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The Ay allele is dominant and homozygous lethal; therefore, living Ay mice are invariably heterozygotes. Single QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-Ay mice, and on chromosomes 2, 6, and 12 for F2Ay mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8. The extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone. Identifying the genes responsible for the QTLs will be essential for understanding the molecular basis of X-zone function, which is currently unclear.
Tang, Kunlong; Wang, Liang; Yang, Zhongyuan; Sui, Yingying; Li, Liming; Huang, Yuting; Gao, Peng
2017-12-01
Cushing's syndrome requires glucocorticoid replacement following adrenalectomy. Based on a simplified glucocorticoid therapy scheme and the peri-operative observation, we investigated its efficacy and safety up to 6 months post-adrenalectomy in this cohort study. We found the adrenocorticotropic hormone (ACTH) levels were normal post-adrenalectomy, and sufficient to stimulate the recovery of the dystrophic adrenal cortex, thus exogenous supplemental ACTH might not be necessary. Patients were grouped by oral reception of either hydrocortisone or prednisone since day 2 post-adrenalectomy. Both groups had similar baseline responses to adrenalectomy, regarding the correction of hypertension (10/15 vs.12/19), hyperglycemia (6/11 vs. 7/10), and hypokalemia (12/12 vs. 11/11). Most patients lost weight (17/20 vs. 20/22). Both groups reported significant improvement in a subjective evaluation questionnaire. Hydrocortisone showed advantages over prednisone in improving liver function (7/8 vs. 2/7, p = 0.035), but also caused significant lower extremety edema ( p = 0.034). Both groups developed adrenal insufficiency (AI) during glucocorticoid withdrawal, with no significant difference regarding the incidence rate (7/20 vs. 10/22) or severity. Most AI symptoms were relieved by resuming the prior oral doses, while two severe cases were hospitalized. The withdrawal process may last longer time for hydrocortisone than prednisone. In conclusion, our data supports the use of both hydrocortisone and prednisone in the glucocorticoid replacement therapy post-adrenalectomy for patients of adrenal adenoma or Cushing's disease. Hydrocortisone showed advantages over prednisone in improving liver function, and prednisone exhibited significantly lower risk of edema.
Stress-induced changes in corticosteroid metabolism. [plasma and urine concentrations
NASA Technical Reports Server (NTRS)
Tacker, M. M.
1975-01-01
Because plasma and urine corticosteroid concentrations are influenced by several factors in addition to adrenal cortex secretion, the effect of stress on all of these factors was determined in order to interpret the plasma and urine concentrations. Progress on the investigation is reported.
Hassani, M
1978-01-01
Estrogen-induced changes in peripheral blood progesterone concentration have been studied in dexamethasone (DEX) and metopyrone (MET) treated 4-day cyclic female rats. Estradiol benzoate (EB) was injected at 10--11 h on diestrus I and peripheral blood was collected at 16--17 h on diestrus II for progesterone radioimmunoassay. The EB induced-increase in blood progesterone concentration was more pronounced, compared to non-injected females in intact DEX-treated females and in adrenalectomized females treated or not with DEX than in their intact counterparts. The adrenal cortex was then supposed to inhibit the luteotrophic action of EB. When injected for 10--12 days, MET caused an increase in blood progesterone concentration compared to uninjected control animals. No cumulative effects of EB and MET were observed. These results are discussed in the light of knowledge, on the feed-back mechanisms which are involved in the action of estrogen on the pituitary-ovarian-adrenocortical system.
Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.
Villa, R F; Ferrari, F; Gorini, A
2012-12-27
Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Colombo-Benkmann, Mario; Muhm, Markus; Gahlen, Johannes; Heym, Christine; Senninger, Norbert
1997-12-01
Rat adrenal glands exhibit an intense mTHPC-induced fluorescence. The objective of our study was the identification of adrenal cells exhibiting mTHPC-induced fluorescence under normal conditions and under stimulation of adrenal proliferation by reserpine. Furthermore mTHPC-uptake of rat pheochromocytoma (PC 12) cells was investigated. Four male Wistar rats received 0.5 mg mTHPC/kg iv 48 hours before perfusion. Furthermore four rats received reserpine (2 mg/kg im od), bromo-deoxy-uridine (BrdU; 50 mg/kg ip od) each for one week and mTHPC (0.5 mg/kg) 48 hours before perfusion. BrdU was detected immunohistochemically. PC 12-cells were incubated with 0.5 mg mTHPC/l culture medium for 24 or 48 hours. Cells and tissues were examined by fluorescence microscopy. The adrenal cortex exhibited an intense mTHPC-induced fluorescence. The adrenal medulla fluoresced faintly. Reserpine increased fluorescence of intramedullary cells, not coinciding with adrenal proliferation. Cortical fluorescence remained unchanged. PC 12-cells lying singly or in small groups and differentiating cells showed a more intense mTHPC- induced fluorescence than confluent cells. Differences of cortical and medullary uptake of mTHPC are independent of proliferation and may be explained by lipophilia of mTHPC, since adrenocytes have an uptake mechanism for cholesterol. The difference of mTHPC-uptake between PC 12-cells and chromaffin cells implicate the possibility of photodynamic applications for medullary neoplasia.
Rare endocrine cancers have novel genetic alterations
A molecular characterization of adrenocortical carcinoma, a rare cancer of the adrenal cortex, analyzed 91 cases for alterations in the tumor genomes and identified several novel genetic mutations as likely mechanisms driving the disease as well as whole genome doubling as a probable driver of the disease.
Ye, Ping; Kenyon, Christopher J; MacKenzie, Scott M; Nichol, Katherine; Seckl, Jonathan R; Fraser, Robert; Connell, John M C; Davies, Eleanor
2008-01-01
Using a highly sensitive quantitative RT-PCR method for the measurement of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) mRNAs, we previously demonstrated that CYP11B2 expression in the central nervous system (CNS) is subject to regulation by dietary sodium. We have now quantified the expression of these genes in the CNS of male Wistar Kyoto (WKY) rats in response to systemic ACTH infusion, dexamethasone infusion, and to adrenalectomy. CYP11B1 and CYP11B2 mRNA levels were measured in total RNA isolated from the adrenal gland and discrete brain regions using real-time quantitative RT-PCR. ACTH infusion (40 ng/day for 7 days, N=8) significantly increased CYP11B1 mRNA in the adrenal gland, hypothalamus, and cerebral cortex compared with animals infused with vehicle only. ACTH infusion decreased adrenal CYP11B2 expression but increased expression in all of the CNS regions except the cortex. Dexamethasone (10 μg/day for 7 days, N=8) reduced adrenal CYP11B1 mRNA compared with control animals but had no significant effect on either gene's expression in the CNS. Adrenalectomy (N=6 per group) significantly increased CYP11B1 expression in the hippocampus and hypothalamus and raised CYP11B2 expression in the cerebellum relative to sham-operated animals. This study confirms the transcription of CYP11B1 and CYP11B2 throughout the CNS and demonstrates that gene transcription is subject to differential regulation by ACTH and circulating corticosteroid levels. PMID:18252953
Szabo, Sandor; Yoshida, Masashi; Filakovszky, Janos; Juhasz, Gyorgy
2017-01-01
The first scientific publication on 'general adaption syndrome', or as we know today 'biologic stress' has been published in Nature in 1936 by the 29-year old Hans Selye. His results in that short publication that contained no references or illustrations, were based on experiments in rats that were exposed to severe insults/ stressors, but his idea about a 'nonspecific bodily response' originated from his observations of sick patients whom he had seen as a medical student and young clinician. Autopsy of stressed rats revealed three major, grossly visible changes: hyperemia and enlargement of the adrenals, atrophy of the thymus and lymph nodes as well as hemorrhagic gastric erosions/ulcers (the "stress triad"). Based on this and additional observations, he concluded that the key master organ in stress reactions is the adrenal cortex (although he also accepted the limited and short lasting effect of catecholamines released from the adrenal medulla) which stimulated by an increased secretion of ACTH, secreted by the anterior pituitary gland. He thus identified the first molecular mediators of the stress reaction, i.e., steroids released from the adrenal cortex that we call today glucocorticoids, based on his classification and naming of steroids. At the end of a very productive life in experimental medicine, Selye recognized that under both unpleasant and demanding stressors as well as positive, rewarding stimuli adrenal cortex releases the same glucocorticoids and only certain brain structures may distinguish the stimuli under distress and eustress - terms he introduced in 1974, that also contained his last definition of stress: the nonspecific response of the body on any demand on it. After brief description of the history of stress research, the rest of this review is focused on one element of stress triad, i.e., gastroduodenal ulceration, especially its pathogenesis, prevention and treatment. Following a short description of acute gastroprotection, discovered by one of Selye's students, we discuss new molecular mediators of gastroduodenal ulceration like dopamine and new drugs that either only heal (very potently, on molar basis) or prevent and heal ulcers like sucralfate derivatives and the relatively new peptide BPC-157. We conclude that despite the extensive and multidisciplinary research on stress during the last 80 years, a lot of basic and clinical research is needed to better understand the manifestations, central and peripheral molecular regulators of stress response, especially the modes of prevention/management of distress or its transformation into eustress and the treatment of stress-related diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Premature adrenarche: etiology, clinical findings, and consequences.
Voutilainen, Raimo; Jääskeläinen, Jarmo
2015-01-01
Adrenarche means the morphological and functional change of the adrenal cortex leading to increasing production of adrenal androgen precursors (AAPs) in mid childhood, typically at around 5-8 years of age in humans. The AAPs dehydroepiandrosterone (DHEA) and its sulfate conjugate (DHEAS) are the best serum markers of adrenal androgen (AA) secretion and adrenarche. Normal ACTH secretion and action are needed for adrenarche, but additional inherent and exogenous factors regulate AA secretion. Inter-individual variation in the timing of adrenarche and serum concentrations of DHEA(S) in adolescence and adulthood are remarkable. Premature adrenarche (PA) is defined as the appearance of clinical signs of androgen action (pubic/axillary hair, adult type body odor, oily skin or hair, comedones, acne, accelerated statural growth) before the age of 8 years in girls or 9 years in boys associated with AAP concentrations high for the prepubertal chronological age. To accept the diagnosis of PA, central puberty, adrenocortical and gonadal sex hormone secreting tumors, congenital adrenal hyperplasia, and exogenous source of androgens need to be excluded. The individually variable peripheral conversion of circulating AAPs to biologically more active androgens (testosterone, dihydrotestosterone) and the androgen receptor activity in the target tissues are as important as the circulating AAP concentrations as determinants of androgen action. PA has gained much attention during the last decades, as it has been associated with small birth size, the metabolic and polycystic ovarian syndrome (PCOS), and thus with an increased risk for type 2 diabetes and cardiovascular diseases in later life. The aim of this review is to describe the known hormonal changes and their possible regulators in on-time and premature adrenarche, and the clinical features and possible later health problems associating with PA. Copyright © 2014 Elsevier Ltd. All rights reserved.
van Hasselt, Felisa N.; de Visser, Leonie; Tieskens, Jacintha M.; Cornelisse, Sandra; Baars, Annemarie M.; Lavrijsen, Marla; Krugers, Harm J.; van den Bos, Ruud; Joëls, Marian
2012-01-01
Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures. PMID:22693577
[Effect of drinking boron on microtructure of adrenal gland in rats].
Li, Shenghe; Wang, Jue; Zhou, Jinxing; Jin, Guangming; Gu, Youfang; Xu, Wanxiang
2012-09-01
The effects of drinking boron exposure on the mass, organ indexes and structure of adrenal gland were studied in the paper. Methods 192 Sprague-Dawley rats (28 +/- 2 days) with no bacteria infecting were divided into six groups (n = 32, male = female) randomly. Treated rats drunk the distilled water which supplemented with boron of 0, 40, 80, 160, 320 and 640 mg/L, respectively, for 60 days. At the 30th and the 60th day of experiment, 16 rats (n = 8, male = female) of each group were selected and made into narcosis with 10% Chloral Hydrate. The adrenal glands were obtained, weighted and fixed after dissection, then the samples were made into paraffin sections, stained with HE stain and chromaffin, observed and photographed by Olympus CH-30 microphotograph system. Compared with control group, the average mass of adrenal gland of male rats in each experiment group decreased significantly or most significantly at the 30th day of experiment (P < 0.05 or P < 0.01), but the index of adrenal gland of male rats in the group of 640 mg/L boron at 60th day of experiment increased significantly (P < 0.05). Under the microscope, the microstructure of adrenal gland of rats in the group of 40 mg/L boron were better obviously than control group, and the numbers of chromaffin granules in chromaffin cell increased obviously. The histopathological changes of different degree could be observed in the group of 80 to 640 mg/L boron, and they became remarkable with the boron supplementation. By comparative observation, the damage of cells in adrenal medulla appeared ahead of them in adrenal cortex, and the pathological change of adrenal gland in male rats were obvious than female rats. Drinking supplemented with 40 mg/L boron could prompt the structure of adrenal gland in rats, but could cause different degree damage, or even obvious toxic effect when the concentration of boron supplementation in drinking from 80 to 640 mg/L.
NASA Technical Reports Server (NTRS)
Talyansky, Y.; Moyer, E. L.; Oijala, E.; Baer, L. A.; Ronca, A. E.
2016-01-01
During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.
Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice.
Zhang, R; Asai, M; Mahoney, C E; Joachim, M; Shen, Y; Gunner, G; Majzoub, J A
2017-05-01
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.
Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice
Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A
2016-01-01
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593
Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis
Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han
2016-01-01
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate–limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/−) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency–induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/−) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency–induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. PMID:26471128
[Two 150 years anniversaries: Claude Bernard's internal environment and Addison disease].
Schreiber, V
2005-01-01
In 2005 two 150 years anniversaries, which essentially influenced the development of modern medicine will be celebrated. French physiologist Claude Bernard from College de France published his work "Lectures on Experimental Physiology, applied to medicine" and British medical doctor T. Addison described insufficiency of adrenal cortex, today known as Addison disease.
SOME HISTOCHEMICAL RESPONSES OF GUINEA PIG TISSUES TO COLD,
Guinea pigs weighing approximately 300 gm were kept in a cold room, held at 6C, for two weeks. Various organs were then studied histochemically...Liver glycogen is rapidly used up in cold-exposed guinea pigs . The fate of liver lipids is unknown. Lipids in the cortex of the adrenals appear to
[The incidence of the pituitary autoantibodies in Addison disease].
Gut, Paweł; Kosowicz, Jerzy; Ziemnicka, Katarzyna; Baczyk, Maciej; Sowiński, Jerzy
2008-01-01
Addison disease (primary insufficience of adrenal cortex) characterized by clinical signs and symptoms associated with deficiency of adrenal hormones. The most frequent etiopathogenesis of Addison disease is related with autoimmunization. In sera of Addison patients are detectable autoantibodies against another endocrine glands. The aim of the study was evaluation of pituitary autoantibodies in Addison disease patients using immunoblotting methods. Studies were performed in 19 Addison disease patients, 16 women (age range: 28-63 yrs, median: 43.5 +/- 8.9) and 3 men (age range: 18-45 yrs, median: 30.6 +/- 9.8). All patients presented signs and symptoms typical of primary insufficiency of adrenal cortex. Sera of control subjects were obtained from 10 healthy blood donors, 7 women, 3 men (age range 21-45 yrs, median: 30.6 +/- 7.1). Incidence of pituitary autoantibodies was assessed by polyacrylamide electrophoresis gel and western-blotting. Pituitary microsomes were obtained from human pituitary tissues by ultracentrifugation and solubilisation in 1% desoxycholic acid. In 14 sera from 19 we detected autoantibodies against pituitary microsomal antigen 67 kDa, 12 sera were recting with 60 kDa and 10 sera with 55 kDa. It is important to note that 10 sera were reacting with 67 and 55 kDa, and 9 sera with 55, 60 and 67 kDa. In sera of Addison disease patients autoantibodies against pituitary microsomal antigens can be frequently detected. The most frequent are antibodies against 55, 60 and 67 kDa antigens.
Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats
Robertson, Donald; Rodger, Jennifer; Martin-Iverson, Mathew T.
2016-01-01
The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease. PMID:27936175
Colucci, Randall; Jimenez, Rafael E; Farrar, William; Malgor, Ramiro; Kohn, Leonard; Schwartz, Frank L
2012-06-01
A 56-year-old woman presented with an incidental adrenal adenoma and physical examination findings that included moderate obesity, a slight cervicothoracic fat pad ("buffalo hump"), increased supraclavicular fat pads, and white abdominal striae. Biochemical workup revealed elevated levels of 24-hour urinary free cortisol but normal serum morning cortisol and suppressed levels of corticotropin, suggestive of adrenal-dependent Cushing syndrome. The resected adrenal gland revealed macronodular cortical hyperplasia with a dominant nodule. Other findings included an absent cortisol response to corticotropin stimulation, presence of serum anti-21-hydroxylase antibodies, and mononuclear cell infiltration--consistent with adrenalitis. The findings represent, to the authors' knowledge, the first known case of a patient with coexistent functional cortisol-secreting macronodular adrenal tumor resulting in Cushing syndrome and immune-mediated adrenalitis resulting in Addison disease.
[Primary hyperaldosteronism: problems of diagnostic approaches].
Widimský, Jiří
2015-05-01
Primary hyperaldosteronism (PH) is common cause of endocrine/secondary hypertension with autonomous aldosterone overproduction by adrenal cortex. PH is typically characterized by hypertension, hypokalemia, high plasma aldosterone/renin ratio, high aldosterone, suppressed renin and nonsupressibilty of aldosterone during confirmatory tests. Diagnosis of PH can be difficult since hypokalemia is found only in 50 % of cases and measurement of the parameters of renin-angiotensin-aldosterone system can be influenced by several factors. Morphological dia-gnosis requires in majority of cases adrenal venous sampling. Early diagnostic and therapeutic measures are very important due to high prevalence of PH and potential cure. Patients with suspicion to PH should be investigated in experienced hypertensive centers due to relatively difficult laboratory and morphological diagnostic approaches.
Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model
Faraji, Jamshid; Soltanpour, Nabiollah; Ambeskovic, Mirela; Zucchi, Fabiola C. R.; Beaumier, Pierre; Kovalchuk, Igor; Metz, Gerlinde A. S.
2017-01-01
In a continuously stressful environment, the effects of recurrent prenatal stress (PS) may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS) were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA) axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK) pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress. PMID:28553212
Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model.
Faraji, Jamshid; Soltanpour, Nabiollah; Ambeskovic, Mirela; Zucchi, Fabiola C R; Beaumier, Pierre; Kovalchuk, Igor; Metz, Gerlinde A S
2017-01-01
In a continuously stressful environment, the effects of recurrent prenatal stress (PS) may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS) were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA) axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2 . Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK) pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second "hit" by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.
Morphological changes in the pituitary-adrenocortical axis in natives of La Paz
NASA Astrophysics Data System (ADS)
Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime
1991-03-01
Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.
Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis.
Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han; Sun, Zhongjie
2016-06-01
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. Copyright © 2016 by the American Society of Nephrology.
Faa, Armando; Faa, Gavino; Papalois, Apostolos; Obinu, Eleonora; Locci, Giorgia; Pais, Maria Elena; Lelovas, Pavlos; Barouxis, Dimitrios; Pantazopoulos, Charalampos; Vasileiou, Panagiotis V; Iacovidou, Nicoletta; Xanthos, Theodoros
2016-01-01
Aim. To evaluate the effects of erythropoietin administration on the adrenal glands in a swine model of ventricular fibrillation and resuscitation. Methods. Ventricular fibrillation was induced via pacing wire forwarded into the right ventricle in 20 female Landrace/Large White pigs, allocated into 2 groups: experimental group treated with bolus dose of erythropoietin (EPO) and control group which received normal saline. Cardiopulmonary resuscitation (CPR) was performed immediately after drug administration as per the 2010 European Resuscitation Council (ERC) guidelines for Advanced Life Support (ALS) until return of spontaneous circulation (ROSC) or death. Animals who achieved ROSC were monitored, mechanically ventilated, extubated, observed, and euthanized. At necroscopy, adrenal glands samples were formalin-fixed, paraffin-embedded, and routinely processed. Sections were stained with hematoxylin-eosin. Results. Oedema and apoptosis were the most frequent histological changes and were detected in all animals in the adrenal cortex and in the medulla. Mild and focal endothelial lesions were also detected. A marked interindividual variability in the degree of the intensity of apoptosis and oedema at cortical and medullary level was observed within groups. Comparing the two groups, higher levels of pathological changes were detected in the control group. No significant difference between the two groups was observed regarding the endothelial changes. Conclusions. In animals exposed to ventricular fibrillation, EPO treatment has protective effects on the adrenal gland.
Early Hormonal Influences on Cognitive Functioning in Congenital Adrenal Hyperplasia.
ERIC Educational Resources Information Center
Resnick, Susan M.; And Others
1986-01-01
Reports the results of cognitive test performance and early childhood activities in individuals with congenital adrenal hyperplasia, an autosomal recessive disorder associated with elevated prenatal adrenal androgen levels, demonstrating the effects of early exposure to excess androgenizing hormones on sexually dimorphic cognitive functioning.…
Mattner, Filomena; Mardon, Karine; Katsifis, Andrew
2008-04-01
The study aims to evaluate the iodinated imidazopyridine, N',N'-diethyl-6-Chloro-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide ([(123)I]-CLINDE) as a tracer for the study of peripheral benzodiazepine binding sites (PBBS). In vitro studies were performed using membrane homogenates and sections from kidney, adrenals, and brain cortex of Sprague-Dawley (SD) rats and incubated with [(123)I]-CLINDE. For in vivo studies, the rats were injected with [(123)I]-CLINDE. In competition studies, PBBS-specific drugs PK11195 and Ro 5-4864 and the CBR specific drug Flumazenil were injected before the radiotracer. In vitro binding studies in adrenal, kidney, and cortex mitochondrial membranes indicated that [(123)I]-CLINDE binds with high affinity to PBBS, K(d) = 12.6, 0.20, and 3.84 nM, respectively. The density of binding sites was 163, 5.3, and 0.34 pmol/mg protein, respectively. In vivo biodistribution indicated high uptake in adrenals (5.4), heart (1.5), lungs (1.5), kidney (1.5) %ID/g at 6 h p.i. In the central nervous system (CNS), the olfactory bulbs displayed the highest uptake; up to six times the activity in blood. Pre-administration of unlabeled CLINDE, PK11195 and Ro 5-4864 (1 mg/kg) reduced the uptake of [(123)I]-CLINDE by 70-55% in olfactory bulbs. In the kidney and heart, a reduction of 60-80% ID/g was observed, while an increase was observed in the adrenals requiring 10 mg/kg for significant displacement. Flumazenil had no effect on uptake in peripheral organs and brain. Metabolite analysis indicated >90% of the radioactivity in the above tissues was intact [(123)I]-CLINDE. [(123)I]-CLINDE displays high and selective uptake for the PBBS and warrants further development as a probe for imaging PBBS using single photon emission computed tomography (SPECT).
Novel mechanisms for DHEA action.
Prough, Russell A; Clark, Barbara J; Klinge, Carolyn M
2016-04-01
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA), secreted by the adrenal cortex, gastrointestinal tract, gonads, and brain, and its sulfated metabolite DHEA-S are the most abundant endogeneous circulating steroid hormones. DHEA actions are classically associated with age-related changes in cardiovascular tissues, female fertility, metabolism, and neuronal/CNS functions. Early work on DHEA action focused on the metabolism to more potent sex hormones, testosterone and estradiol, and the subsequent effect on the activation of the androgen and estrogen steroid receptors. However, it is now clear that DHEA and DHEA-S act directly as ligands for many hepatic nuclear receptors and G-protein-coupled receptors. In addition, it can function to mediate acute cell signaling pathways. This review summarizes the molecular mechanisms by which DHEA acts in cells and animal models with a focus on the 'novel' and physiological modes of DHEA action. © 2016 Society for Endocrinology.
Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M
2013-01-01
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.
Sominsky, Luba; Fuller, Erin A.; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R.; Dickson, Phillip W.; Hodgson, Deborah M.
2013-01-01
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes. PMID:23483921
Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation
NASA Astrophysics Data System (ADS)
Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.
1999-12-01
Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.
[X-linked adrenoleukodystrophy: a report of three cases. The importance of early diagnosis].
López Úbeda, Marta; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José I; García Jiménez, María C
2017-10-01
X-linked adrenoleukodystrophy is the most common peroxisomal disorder. This disease is caused by a defect in the ABCD1 gen. Saturated very long chain fatty acids are accumulated in serum, adrenal cortex and central nervous system white matter. The clinical spectrum is characterized by progressive neurological dysfunction and adrenal insufficiency with a devastating prognosis. We report a first case of X-linked adrenoleukodystrophy with fatal evolution which identified two asymptomatic family members and established a preventive treatment. Although there is no definitive cure, we stress the importance of family study and evaluation of the individual in situation of risk to establish an early preventive treatment and to give in each particular situation suitable professional advice. Sociedad Argentina de Pediatría.
Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.
Leliavski, Alexei; Dumbell, Rebecca; Ott, Volker; Oster, Henrik
2015-02-01
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders. © 2014 The Author(s).
2016-04-01
compared to 50 healthy veteran controls in a protocol that includes physical and neuropsychological evaluations, neuroimaging (MRI, fMRI, DTI), adrenal...SUBJECT TERMS Gulf War illness, neuroimaging, neuropsychological testing, immune function, hypothalamic-pituitary-adrenal testing 16. SECURITY... neuropsychological evaluations, assessment of hypothalamic-pituitary-adrenal function, standard clinical diagnostic laboratory tests, and research
Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure
van Bodegom, Miranda; Homberg, Judith R.; Henckens, Marloes J. A. G.
2017-01-01
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar (“matching”) adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory. PMID:28469557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strittmatter, S.M.
(/sup 3/H)Captopril binds to angiotensin converting enzyme (ACE) in rat tissue homogenates. The pharmacology, regional distribution and copurification of (/sup 3/H)captopril binding with enzymatic activity demonstrate the selectivity of (/sup 3/H)captopril labeling of ACE. (/sup 3/H)Captopril binding to purified ACE reveals differences in cationic dependence and anionic regulation between substrate catalysis and inhibitor recognition. (/sup 3/H)Captopril association with ACE is entropically driven. The selectivity of (/sup 3/H)captopril binding permits autoradiographic localization of the ACE in the brain, male reproductive system, pituitary gland and adrenal gland. In the brain, ACE is visualized in a striatonigral neuronal pathway which develops between 1more » and 7 d after birth. In the male reproductive system, (/sup 3/H)captopril associated silver grains are found over spermatid heads and in the lumen of seminiferous tubules in stages I-VIII and XII-XIV. In the pituitary gland, ACE is localized to the posterior lobe and patches of the anterior lobe. The adrenal medulla contains moderate ACE levels while low levels are found in the adrenal cortex. Adrenal medullary ACE is increased after hypophysectomy and after reserpine treatment. The general of ligand binding techniques for the study of enzymes is demonstrated by the specific labeling of another enzyme, enkephaline convertase, in crude tissue homogenates by the inhibitor (/sup 3/H)GEMSA.« less
Pomara, G; Cappello, F; Barzon, L; Morelli, G; Rappa, F; Benvegna, L; Giannarini, G; Palù, G; Selli, C
2006-01-01
We report a case of a 64-year-old woman who underwent left adrenalectomy with removal of a 8,5 cm clinically non-functioning adrenocortical adenoma and a 4-cm myelolipoma. Molecular testing for viral infection demonstrated the presence of cytomegalovirus (CMV) DNA sequences in the adrenal adenoma, but not in the myelolipoma (confirmed by immunohistochemistry). Moreover, the adrenal adenoma was also positive for parvovirus B19, and both adrenal tumor samples were positive for polyomavirus BK (BKV) and adenovirus DNA sequences. This is the first report of co-infection of an adrenocortical adenoma by CMV and BKV. The role of these viruses in adrenal tumorigenesis was postulated.
Weizman, A; Bidder, M; Fares, F; Gavish, M
1990-12-03
The effect of 5 days of food deprivation followed by 5 days of refeeding on gamma-aminobutyric acid (GABA) receptors, central benzodiazepine receptors (CBR), and peripheral benzodiazepine binding sites (PBzS) was studied in female Sprague-Dawley rats. Starvation induced a decrease in the density of PBzS in peripheral organs: adrenal (35%; P less than 0.001), kidney (33%; P less than 0.01), and heart (34%; P less than 0.001). Restoration of [3H]PK 11195 binding to normal values was observed in all three organs after 5 days of refeeding. The density of PBzS in the ovary, pituitary, and hypothalamus was not affected by starvation. Food deprivation resulted in a 35% decrease in cerebellar GABA receptors (P less than 0.01), while CBR in the hypothalamus and cerebral cortex remained unaltered. The changes in PBzS observed in the heart and kidney may be related to the long-term metabolic stress associated with starvation and to the functional changes occurring in these organs. The down-regulation of the adrenal PBzS is attributable to the suppressive effect of hypercortisolemia on pituitary ACTH release. The reduction in cerebellar GABA receptors may be an adaptive response to food deprivation stress and may be relevant to the proaggressive effect of hunger.
Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas.
Fallo, F; Pezzi, V; Barzon, L; Mulatero, P; Veglio, F; Sonino, N; Mathis, J M
2002-12-01
The presence and pathophysiological role of CYP11B1 (11beta-hydroxylase) gene in the zona glomerulosa of human adrenal cortex is still controversial. In order to specifically quantify CYP11B1, CYP11B2 (aldosterone synthase) and CYP17(17alpha-hydroxylase) mRNA levels, we developed a real-time RT-PCR assay and examined the expression in a series of adrenal tIssues, including six normal adrenals from patients adrenalectomized for renal cancer and twelve aldosterone-producing adenomas (APA) from patients with primary aldosteronism. CYP11B1 mRNA levels were clearly detected in normal adrenals, which comprised both zona glomerulosa and fasciculata/reticularis cells, but were also measured at a lower range (P<0.05) in APA. The levels of CYP11B2 mRNA were lower (P<0.005) in normal adrenals than in APA. CYP17 mRNAlevels were similar in normal adrenals and in APA. In patients with APA, CYP11B2 and CYP11B1 mRNA levels were not correlated either with basal aldosterone or with the change from basal aldosterone in response to posture or to dexamethasone. No correlation between CYP11B1 mRNA or CYP11B2 mRNA and the percentage of zona fasciculata-like cells was observed in APA. Real-time RT-PCR can be reliably used to quantify CYP11B1 and CYP11B2 mRNA levels in adrenal tIssues. Expression of CYP11B1 in hyperfunctioning zona glomerulosa suggests an additional formation of corticosterone via 11beta-hydroxylase, providing further substrate for aldosterone biosynthesis. CYP11B1 and CYP11B2 mRNA levels in APA are not related to the in vivo secretory activity of glomerulosa cells, where post-transcriptional factors might ultimately regulate aldosterone production.
Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P
2013-02-01
The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.
Role of adrenal hormones in the synthesis of noradrenaline in cardiac sympathetic neurones
Bhagat, B.
1969-01-01
1. Adrenalectomy or adrenal demedullation affected neither the levels of endogenous catecholamines in the rat heart nor the accumulation of 3H-noradrenaline 1 hr after its intravenous administration. 2. Twenty-four hours after intravenous administration of labelled amine, however, its retention was markedly reduced in the heart of adrenalectomized or demedullated rats. Ganglionic blockade prevented this reduction. 3. Rate calculations from the decline of catecholamine levels after blockade of synthesis with α-methyl-tyrosine showed that cardiac synthesis of noradrenaline increased about four-fold after demedullation and about three-fold after adrenalectomy. This increase in synthesis may compensate for the loss of circulating catecholamines. 4. There was no change in catechol-o-methyl-transferase activity, but monoamine oxidase activity was increased in the homogenates of the heart of adrenalectomized and demedullated rats. The increase in the cardiac monoamine oxidase activity was markedly greater in the adrenalectomized rats than in the demedullated rats. 5. It is suggested that adrenal cortex insufficiency may modulate the rate of synthesis of noradrenaline and monoamine oxidase activity in cardiac sympathetic neurones. PMID:5360339
Image-Guided Ablation of Adrenal Lesions
Yamakado, Koichiro
2014-01-01
Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444
Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.
Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B
2012-01-01
Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. Copyright © 2012 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roelofs, Maarke J.E., E-mail: m.j.e.roelofs@uu.nl; Center for Health Protection, National Institute for Public Health and the Environment; Piersma, Aldert H.
The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2more » nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A specific CYP17 assay is a valuable screening for effects early in steroidogenesis.« less
[Progress in diagnosis and treatment of adrenal metastases tumor].
Wu, Chu-jun; Qiu, Min; Ma, Lu-lin
2015-08-18
The adrenal gland is a common site of metastases, only second to pulmonary, liver and bone. The prevalence of adrenal metastases in patients with a history of cancer is between 10%-25%.The most common sites of origin are cancers of the lung, kidney, breast, gastrointestinal tract, and skin (melanoma).The mainstays of adrenal metastases diagnosis are computerized tomogramphy (CT), magnetic resonance imaging (MRI), and positron emission tomogramphy (PET). All patients should undergo complete hormonal evaluation to rule out functional adrenal tumors. Adrenal biopsy should be reserved for cases in which the results of non-invasive techniques are equivocal. In patients with isolated adrenal metastases, adrenalectomy is recommended, because of improved overall survival. For the patient with unresectable adrenal metastases tumor, radiotherapy and ablative therapy are feasible and useful methods for controlling adrenal metastases and offer patients opportunities for improved survival.
Ohara, Nobumasa; Suzuki, Hiroshi; Suzuki, Akiko; Kaneko, Masanori; Ishizawa, Masahiro; Furukawa, Kazuo; Abe, Takahiro; Matsubayashi, Yasuhiro; Yamada, Takaho; Hanyu, Osamu; Shimohata, Takayoshi; Sone, Hirohito
2014-01-01
Endogenous Cushing's syndrome is an endocrine disease resulting from chronic exposure to excessive glucocorticoids produced in the adrenal cortex. Although the ultimate outcome remains uncertain, functional and morphological brain changes are not uncommon in patients with this syndrome, and generally persist even after resolution of hypercortisolemia. We present an adolescent patient with Cushing's syndrome who exhibited cognitive impairment with brain atrophy. A 19-year-old Japanese male visited a local hospital following 5 days of behavioral abnormalities, such as money wasting or nighttime wandering. He had hypertension and a 1-year history of a rounded face. Magnetic resonance imaging (MRI) revealed apparently diffuse brain atrophy. Because of high random plasma cortisol levels (28.7 μg/dL) at 10 AM, he was referred to our hospital in August 2011. Endocrinological testing showed adrenocorticotropic hormone-independent hypercortisolemia, and abdominal computed tomography demonstrated a 2.7 cm tumor in the left adrenal gland. The patient underwent left adrenalectomy in September 2011, and the diagnosis of cortisol-secreting adenoma was confirmed histologically. His hypertension and Cushingoid features regressed. Behavioral abnormalities were no longer observed, and he was classified as cured of his cognitive disturbance caused by Cushing's syndrome in February 2012. MRI performed 8 months after surgery revealed reversal of brain atrophy, and his subsequent course has been uneventful. In summary, the young age at onset and the short duration of Cushing's syndrome probably contributed to the rapid recovery of both cognitive dysfunction and brain atrophy in our patient. Cushing's syndrome should be considered as a possible etiological factor in patients with cognitive impairment and brain atrophy that is atypical for their age.
Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.
2012-01-01
Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent GR activation may partially modulate ethanol’s acute locomotor activation in male D2 mice. Furthermore, since adrenal glucocorticoid basal tone regulated PFC gene expression, including a significant set of acute ethanol-responsive genes, this suggests that glucocorticoid regulated PFC gene expression may be an important factor modulating acute behavioral responses to ethanol. PMID:22671426
[Diagnostics and treatment of polyglandular syndrome of adults].
Larina, A A; Shapoval'iants, O S; Mazurina, N V; Troshina, E A
2012-01-01
Autoimmune polyendocrine syndromes (APS) are rare endocrinopathies characterized by the coexistence of at least two glandular autoimmune diseases. APS comprise a wide spectrum of autoimmune disorders and are divided into a very rare juvenile (APS type 1) and a more common adult type with (APS 2) or without adrenal failure (APS 3). The first clinical manifestations of APS 1 usually occur in childhood whereas APS 2 mostly occurs during the third and fourth decades of life. The third type has been described in adults that, contrary to types 1 and 2, does not involve the adrenal cortex. No clinical differences between types 2 and 3 have been described except the absence of adrenal failure. Type 4 APS is a rare syndrome characterized by the combination of autoimmune conditions not falling into the above categories. It consists of adrenal failure with one or more minor autoimmune disorders barring major components of type 1 and 2 APS. Usually, autoimmune polyendocrine syndrome of adults manifests itself as one of the major autoimmune diseases (such as adrenal failure, Grave's disease, or type 1 diabetes) and minor autoimmune disorders (vitiligo, alopecia) preceding the development of autoimmune deficiency of major endocrine glands. This article describes a patient with type 3 APS, who developed type 1 diabetes. Grave's disease and vitiligo. The development of the syndrome started from vitiligo in the chidhood. Moreover, the patient suffered primary sterility and presented with progressive diabetic nephropathy of autoimmune origin. It is concluded that patients with a single autoimmune component of polyendocrine syndrome should be screened to exclude other autoimmune endocrine disorders.
On the mode of action of ACTH on the isolated perfused adrenal gland
Jaanus, Siret D.; Rosenstein, M. J.; Rubin, R. P.
1970-01-01
1. Isolated cat adrenal glands were perfused with Locke solution, and the corticosteroid outputs in response to adrenocorticotrophin (ACTH) were studied. 2. Steroid outputs varied with the ACTH concentration, as well as with the duration of exposure to a given ACTH concentration. 3. Omission of calcium from the perfusion medium markedly depressed ACTH-evoked steroid release. The steroid output was directly related to the extracellular calcium concentration up to 0·5 mM. 4. During a constant exposure to ACTH, steroid output was maintained for at least 2-3 hr, provided that calcium was present in the perfusion medium. 5. Strontium, but not barium or magnesium, replaced calcium in maintaining the secretory response to ACTH. 6. Magnesium depressed ACTH-evoked secretion in the presence of calcium, and this depression of secretion was antagonized by increasing the calcium concentration. 7. Prolonged perfusion with sodium-free or potassium-free solutions did not markedly inhibit steroid output in response to ACTH. Excess potassium (56 mM) did not produce a consistent or marked increase in spontaneous steroid output and did not affect the response to ACTH. 8. The steroid content of adrenal glands perfused with Locke solution and exposed to ACTH was about 10% of the amount which was secreted. By contrast, adrenal glands perfused with calcium-free media and exposed to ACTH contained much higher amounts of steroid, despite the negligible amount secreted. 9. These data suggest that calcium plays a critical role in the mechanism of corticosteroid secretion from the adrenal cortex. PMID:4322584
Morishita, K; Okumura, H; Ito, N; Takahashi, N
2001-08-28
The present study was conducted to confirm the usefulness of a primary culture system of adrenocortical cells from dogs for detecting the direct effects of the chemicals on adrenal cortex. Corticosteroid levels in the culture supernatant were measured using high-performance liquid chromatography (HPLC) following 24-h incubation with the chemicals. Ketoconazole, miconazole, metyrapone, aminoglutethimide, and 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p-DDD), which were known to inhibit cortisol production were evaluated in this system. Both viable cells and corticosteroid levels were decreased by o,p-DDD treatment. Other chemicals showed various inhibition patterns of corticosteroid levels as follows without affecting cell viability. Ketoconazole decreased total corticosteroids level by mainly due to the decreases in cortisol and 11-deoxycortisol levels. Miconazole decreased cortisol and 11-deoxycortisol levels, however, slightly increased corticosterone level. Metyrapone decreased cortisol and corticosterone levels as 11-deoxycortisol and 11-deoxycorticosterone levels were increased. Aminoglutethimide decreased total corticosteroids level by mainly decreasing cortisol, corticosterone and 11-deoxycortisol levels. These results suggested that determination of the pattern of corticosteroid levels by HPLC in this system well reflected the mode of their action on steroidogenesis. Thus, we conclude this simple system was useful to determine the direct effects of chemicals on steroidogenesis in the adrenal cortex.
Uçar, Ahmet; Öner, Nergiz; Özek, Gülcihan; Çetinçakmak, Mehmet Güli; Abuhandan, Mahmut; Yıldırım, Ali; Kaya, Cemil; Ünverdi, Sena; Emeksiz, Hamdi Cihan; Yılmaz, Yasin; Yetim, Aylin
2016-07-01
The variable presence of adrenal insufficiency (AI) due to hypocortisolemia (HC) in patients with thalassemia is well established; however, the prevalence of adrenocortical hypofunction (ACH) in the zona glomerulosa and zona reticularis of the adrenal cortex is unknown. To establish the prevalence of ACH, we examined the cortisol response to 1-µg and 250-µg ACTH tests, plasma aldosterone (A)/plasma renin activity (PRA) ratio, and serum dehydroepiandrosterone sulfate (DHEAS) levels in a large cohort of patients with thalassemia, and to investigate the impact of total body iron load (TBIL) on adrenocortical function. The setting used was University hospital and government-based tertiary care center. One hundred twenty-one (52 females) patients with β-thalassemia major (β-TM) and 72 healthy peers (38 females) were enrolled. The patients underwent a 250-µg cosyntropin test if their peak cortisol was <500 nmol/L in a 1-µg cosyntropin test. Magnetic resonance imaging (MRI) was performed to assess the MRI-based liver iron content and cardiac MRI T2* iron. The associations between ACH and TBIL were investigated. The patients with thalassemia had lower ACTH, cortisol, DHEAS, and A/PRA values compared with the controls (p < 0.001). Thirty-nine patients (32.2 %) had HC [primary (n = 1), central (n = 36), combined (n = 2)], and 47 (38.8 %) patients had reduced DHEAS levels; 29 (24.0 %) patients had reduced A/PRA ratios. Forty-six (38.0 %) patients had hypofunction in one of the adrenal zones, 26 (21.5 %) had hypofunction in two adrenal zones, and 9 (7.4 %) had hypofunction in all three zones. Patient age and TBIL surrogates were significant independent parameters associated with ACH. Cardiac MRI T2* iron was the only significant parameter that predicted the severity of ACH at a cut-off of 20.6 ms, with 81 % sensitivity and 78 % specificity. Patients with thalassemia have a high prevalence of AI due to HC and zona glomerulosa and zona reticularis hypofunction. TBIL surrogates can predict ACH, but cardiac iron was the only surrogate that was adequately sensitive to predict the severity of ACH.
Impact of duration of critical illness on the adrenal glands of human intensive care patients.
Boonen, Eva; Langouche, Lies; Janssens, Thomas; Meersseman, Philippe; Vervenne, Hilke; De Samblanx, Emilie; Pironet, Zoë; Van Dyck, Lisa; Vander Perre, Sarah; Derese, Inge; Van den Berghe, Greet
2014-11-01
Adrenal insufficiency is considered to be prevalent during critical illness, although the pathophysiology, diagnostic criteria, and optimal therapeutic strategy remain controversial. During critical illness, reduced cortisol breakdown contributes substantially to elevated plasma cortisol and low plasma ACTH concentrations. Because ACTH has a trophic impact on the adrenal cortex, we hypothesized that with a longer duration of critical illness, subnormal ACTH adrenocortical stimulation predisposes to adrenal insufficiency. Adrenal glands were harvested 24 hours or sooner after death from 13 long intensive care unit (ICU)-stay patients, 27 short ICU-stay patients, and 13 controls. Prior glucocorticoid treatment was excluded. MAIN OUTCOME AND MEASURE(S): Microscopic adrenocortical zonational structure was evaluated by hematoxylin and eosin staining. The amount of adrenal cholesterol esters was determined by Oil-Red-O staining, and mRNA expression of ACTH-regulated steroidogenic enzymes was quantified. The adrenocortical zonational structure was disturbed in patients as compared with controls (P < .0001), with indistinguishable adrenocortical zones present only in long ICU-stay patients (P = .003 vs. controls). Adrenal glands from long ICU-stay patients, but not those of short ICU-stay patients, contained 21% less protein (P = .03) and 9% more fluid (P = .01) than those from controls, whereas they tended to weigh less for comparable adrenal surface area. There was 78% less Oil-Red-O staining in long ICU-stay patients than in controls and in short-stay patients (P = .03), the latter similar to controls (P = .31). The mRNA expression of melanocortin 2 receptor, scavenger-receptor class B, member 1, 3-hydroxy-3-methylglutaryl-CoA reductase, steroidogenic acute regulatory protein, and cytochrome P450 cholesterol side-chain cleavage enzyme was at least 58% lower in long ICU-stay patients than in controls (all P ≤ .03) and of melanocortin 2 receptor, scavenger-receptor class B, member 1, steroidogenic acute regulatory protein, and cytochrome P450 cholesterol side-chain cleavage enzyme at least 53% lower than in short ICU-stay patients (all P ≤ .04), whereas gene expression in short ICU-stay patients was similar to controls. Lipid depletion and reduced ACTH-regulated gene expression in prolonged critical illness suggest that sustained lack of ACTH may contribute to the risk of adrenal insufficiency in long-stay ICU patients.
A novel pipeline for adrenal tumour segmentation.
Koyuncu, Hasan; Ceylan, Rahime; Erdogan, Hasan; Sivri, Mesut
2018-06-01
Adrenal tumours occur on adrenal glands surrounded by organs and osteoid. These tumours can be categorized as either functional, non-functional, malign, or benign. Depending on their appearance in the abdomen, adrenal tumours can arise from one adrenal gland (unilateral) or from both adrenal glands (bilateral) and can connect with other organs, including the liver, spleen, pancreas, etc. This connection phenomenon constitutes the most important handicap against adrenal tumour segmentation. Size change, variety of shape, diverse location, and low contrast (similar grey values between the various tissues) are other disadvantages compounding segmentation difficulty. Few studies have considered adrenal tumour segmentation, and no significant improvement has been achieved for unilateral, bilateral, adherent, or noncohesive tumour segmentation. There is also no recognised segmentation pipeline or method for adrenal tumours including different shape, size, or location information. This study proposes an adrenal tumour segmentation (ATUS) pipeline designed to eliminate the above disadvantages for adrenal tumour segmentation. ATUS incorporates a number of image methods, including contrast limited adaptive histogram equalization, split and merge based on quadtree decomposition, mean shift segmentation, large grey level eliminator, and region growing. Performance assessment of ATUS was realised on 32 arterial and portal phase computed tomography images using six metrics: dice, jaccard, sensitivity, specificity, accuracy, and structural similarity index. ATUS achieved remarkable segmentation performance, and was not affected by the discussed handicaps, on particularly adherence to other organs, with success rates of 83.06%, 71.44%, 86.44%, 99.66%, 99.43%, and 98.51% for the metrics, respectively, for images including sufficient contrast uptake. The proposed ATUS system realises detailed adrenal tumour segmentation, and avoids known disadvantages preventing accurate segmentation. Copyright © 2018 Elsevier B.V. All rights reserved.
Guidelines for the diagnosis and treatment of adrenal insufficiency in the adult.
de Miguel Novoa, Paz; Vela, Elena Torres; García, Nuria Palacios; Rodríguez, Manuela Moreira; Guerras, Icíar Solache; Martínez de Salinas Santamaría, María de Los Ángeles; Masó, Anna Aulinas
2014-09-01
Adrenal insufficiency (AI) is a disease characterized by a deficient production or action of glucocorticoids, with or without deficiency in mineral corticoids and/or adrenal androgens. It can result from disease intrinsic to the adrenal cortex (primary AI), from pituitary diseases that hamper the release of corticotropin (secondary AI) or from hypothalamic disorders that impair the secretion of the corticotropin-releasing hormone (tertiary AI). It is a disease with a low prevalence but its impact on the affected individual is very high as it can be life-threathening if not treated or lead to health problems if inadequately treated. However, currently there are no specific guidelines for the management of this disease. Therefore, at the proposal of the Spanish Society of Endocrinology and Nutrition (SEEN) board, a task-force under the Neuroendocrinology Knowledge Area of the SEEN was established, with the mandate of updating the diagnosis and treatment of AI. In fulfilment of this mandate the task-force has elaborated the present guide that, based on a comprehensive review of literature, is intended to provide an answer to questions related to the management of this disease. It is, therefore, an essentially practical document, mainly aimed at guiding the health professionals involved in the care of IA patients. Copyright © 2014 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.
[Hereditary phaeochromocytoma in twins].
Tóth, Géza; Patócs, Attila; Tóth, Miklós
2016-08-01
Phaeochromocytoma is a tumor of the catecholamine-producing cells of the adrenal gland. Extraadrenal phaeochromocytomas are frequently called paragangliomas. The majority of phaeochromocytomas are sporadic, however, about 25-30% are caused by genetic mutation. These tumor are frequently referred as hereditary phaeochromocytomas/paragangliomas. Their incidence increases continuously which can be attributed to availability of genetic examination and to the discovery of novel genes. The 47-year-old female patient underwent abdominal computed tomography which revealed bilateral adrenal gland enlargement. Abdominal magnetic resonance imaging, the 131-I- metaiodobenzylguanidine scintigraphy, urinary catecholamines and serum chomogranin A measurements confirmed the diagnosis of bilateral phaeochromocytomas. The genetically identical twin sister of the patient was also diagnosed with hormonally active bilateral phaechromocytoma, suggesting the genetic origin of phaeochromocytoma. Mutation screening confirmed a germline mutation of the transmembrane protein 127 tumorsupressor gene in both patients. Both patients underwent cortical-sparing adrenalectomy. The adrenal gland with the larger tumor was totally resected, while in the opposite side only the tumor was resected and a small part of the cortex was saved. After the operation urinary catecholamines and serum chromogranin A returned to normal in both patients. Adrenocortical deficiency was absent in the first patient, but her sister developed adrenal insufficiency requiring glucocorticoid replacement. To the best of the authors' knowledge phaeochromocytoma affecting twins has never been described earlier. Genetic examination performed in siblings confirmed the presence of the mutant gene through four generations. Orv. Hetil., 2016, 157(33), 1326-1330.
Changes of the body functions during long-term hypokinesia
NASA Technical Reports Server (NTRS)
Kovalenko, Y. A.; Popkov, V. L.; Kondratev, Y. I.; Mailyan, E. S.; Galushko, Y. S.; Prokhonchukov, A. A.; Kazaryan, V. A.; Morozova, R. S.; Serova, L. V.; Potapov, A. N.
1980-01-01
Prolonged hypokinesis (100-170 days) studied in 2000 rats kept in cages limiting their mobility provoked considerable changes in the gaseous and energetic metabolism: an elevation of the total gaseous metabolism and of the rate of O2 requirement by the muscles (in the late periods of hypokinesis) and a change in the intensity of tissue respiration of the liver and myocardium. There also proved to be a reduction in the level of phosphorylation and separation of oxidative phosphorylation in the myocardium, liver, and partially in the skeletal muscle. Prolonged hypokinesia led to changes in tissue metabolism: a disturbance of development of the animals, a marked delay and an increase in the weight of the organism and the muscular system, and disturbances of the mineral and protein metabolism. Prolonged hypokinesis also lead to exhaustion of the hypothalamus-hypophysis-adrenal cortex system.
Coexistence of autoimmune polyglandular syndrome type 2 and diabetes insipidus in pregnancy.
Krysiak, Robert; Samborek, Malgorzata
2011-11-01
Autoimmune polyglandular syndromes are rarely diagnosed conditions characterized by the association of at least 2 organ-specific autoimmune disorders. Very few cases of these syndromes have been described during pregnancy. The authors report a case of a patient diagnosed with autoimmune thyroiditis and a history of HELLP (hemolysis, elevated liver enzymes and low platelet) syndrome in a prior pregnancy. After increasing the levothyroxine dose, she developed Addisonian crisis. Normalization of adrenal cortex function resulted in the appearance of diabetes insipidus. This report shows that pregnancy may influence the course of preexisting endocrine disorders and lead to their unmasking. Although the risk of the development of autoimmune polyglandular syndromes during pregnancy is small, they may pose a serious health problem. The possible presence of these clinical entities should be considered in every woman with 1 or more endocrine disturbances.
Haj-Mirzaian, A; Amiri, S; Kordjazy, N; Momeny, M; Razmi, A; Rahimi-Balaei, M; Amini-Khoei, H; Haj-Mirzaian, A; Marzban, H; Mehr, S E; Ghaffari, S H; Dehpour, A R
2016-02-19
The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. Results showed that experiencing 4-weeks of juvenile SIS provoked depressive and anxiety-like behaviors that were associated with hyper responsiveness of HPA axis, upregulation of interleukin-1β, and nitric oxide (NO) overproduction in the pre-frontal cortex and hippocampus. Administration of lithium (10 mg/kg) significantly attenuated the depressant and anxiogenic effects of SIS in behavioral tests. Lithium also restored the negative effects of SIS on cortical and hippocampal interleukin-1β and NO as well as HPA axis deregulation. Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
The effect of bedrest on adrenal function
NASA Technical Reports Server (NTRS)
Leach, C. S.; Hulley, S. B.; Rambaut, P. C.; Dietlein, L. F.
1973-01-01
Eight male subjects were subjected to continuous bedrest for 24-80 weeks for the purpose of studying metabolic responses. Three of the subjects did supine exercises daily during part of the study. Adrenal function was examined in relation to adrenal cortical and medullary excretions. The results reveal an increase in hydrocortisone throughout the test period, a decrease in norepinephrine and no change in epinephrine. These data suggest that exercise could decrease the severity of deconditioning caused by bedrest.
NASA Technical Reports Server (NTRS)
Kudryashov, B. A.; Uljanov, A. M.; Shapiro, F. B.; Bazazyan, G. G.
1981-01-01
Thrombin marked with I-131 resulted in a considerable increase of the thrombined clearance rate in healthy male rats during stress caused by an immobilization lasting 30 minutes, and in an increase of thrombin clearance occurred by a combination of immobilization and administration of adrenocorticotropin (ACTH). Contrary to ACTH, the thrombin clearance is not stimulated in healthy animals by hydrocortisone. The results of the examination are presented.
Neglected Issues Concerning Teaching Human Adrenal Steroidogenesis in Popular Biochemistry Textbooks
ERIC Educational Resources Information Center
Han, Zhiyong; Elliott, Mark S.
2017-01-01
In the human body, the adrenal steroids collectively regulate a plethora of fundamental functions, including electrolyte and water balance, blood pressure, stress response, intermediary metabolism, inflammation, and immunity. Therefore, adrenal steroidogenesis is an important biochemistry topic for students to learn in order for them to understand…
Stimulus-secretion coupling in chromaffin cells isolated from bovine adrenal medulla
Schneider, Allan S.; Herz, Ruth; Rosenheck, Kurt
1977-01-01
Bovine adrenal chromaffin cells were isolated by removal of the cortex and sequential collagenase digestion of the medulla. The catecholamine secretory function of these cells was characterized with respect to acetylcholine stimulation, cation requirements, and cytoskeletal elements. The dose-response curve for stimulated release had its half-maximum value at 10-5 M acetylcholine, and maximum secretion was on the average 7 times that of control basal secretion. The differential release of epinephrine versus norepinephrine after stimulation with 0.1 mM acetylcholine occurred in proportion to their distribution in the cell suspension. The cholinergic receptors were found to be predominantly nicotinic. The kinetics of catecholamine release were rapid, with significant secretion occurring in less than 60 sec and 85% of maximum secretion within 5 min. A critical requirement for calcium in the extracellular medium was demonstrated, and 80% of maximum secretion was achieved at physiologic calcium concentrations. Stimulation by excess potassium (65 mM KCl) also induced catecholamine secretion which differed from acetylcholine stimulation in being less potent, in having a different dependence on calcium concentration, and in its response to the local anesthetic tetracaine. Tetracaine, which is thought to inhibit membrane cation permeability, was able to block acetylcholine-stimulated but not KCl-stimulated secretion. The microtubule disrupting agent vinblastine was able to block catecholamine release whereas the microfilament disrupter cytochalasin B had little effect. The results show the isolated bovine chromaffin cells to be viable, functioning, and available in large quantity. These cells now provide an excellent system for studying cell surface regulation of hormone and neurotransmitter release. PMID:270738
De Guise, S; Martineau, D; Béland, P; Fournier, M
1995-01-01
A small isolated population of beluga whales (Delphinapterus leucas) that are highly contaminated by pollutants, mostly of industrial origin, resides in the St. Lawrence estuary, Québec, Canada. Overhunting in the first half of the century was the probable cause for this population to dwindle from several thousand animals to the current estimate of 500. The failure of the population to recover might be due to contamination by organochlorine compounds, which are known to lead to reproductive failure and immunosuppression in domestic and laboratory animals and seals. Functional and morphological changes have been demonstrated in thyroid gland and adrenal cortex in many species exposed to organochlorinated compounds, including seals. Morphological lesions, although different, were also found in belugas. Functional evaluation of thyroid and adrenal glands of contaminated (St. Lawrence) versus much less contaminated (Arctic) belugas is currently under way. Necropsy of St. Lawrence belugas showed numerous severe and disseminated infections with rather mildly pathogenic bacteria, which suggests immunosuppression. Organochlorine compounds and other contaminants found in beluga whales cause immunosuppression in a variety of animal species including seals. Thirty-seven percent of all the tumors reported in cetaceans were observed in St. Lawrence beluga whales. This could be explained by two different mechanisms: high exposure to environmental carcinogens and suppression of immunosurveillance against tumors. Overall, St. Lawrence belugas might well represent the risk associated with long-term exposure to pollutants present in their environment and might be a good model to predict health problems that could emerge in highly exposed human populations over time. PMID:7556028
Surapaneni, Dinesh Kumar; Adapa, Sree Rama Shiva Shanker; Preeti, Kumari; Teja, Gangineni Ravi; Veeraragavan, Muruganandam; Krishnamurthy, Sairam
2012-08-30
Shilajit has been used as a rejuvenator for ages in Indian ancient traditional medicine and has been validated for a number of pharmacological activities. The effect of processed shilajit which was standardized to dibenzo-α-pyrones (DBPs;0.43% w/w), DBP-chromoproteins (DCPs; 20.45% w/w) and fulvic acids (56.75% w/w) was evaluated in a rat model of chronic fatigue syndrome (CFS). The mitochondrial bioenergetics and the activity of hypothalamus-pituitary-adrenal (HPA) axis were evaluated for the plausible mechanism of action of shilajit. CFS was induced by forcing the rats to swim for 15mins for 21 consecutive days. The rats were treated with shilajit (25, 50 and 100mg/kg) for 21 days before exposure to stress procedure. The behavioral consequence of CFS was measured in terms of immobility and the climbing period. The post-CFS anxiety level was assessed by elevated plus maze (EPM) test. Plasma corticosterone and adrenal gland weight were estimated as indices of HPA axis activity. Analysis of mitochondrial complex chain enzymes (Complex I, II, IV and V) and mitochondrial membrane potential (MMP) in prefrontal cortex (PFC) were performed to evaluate the mitochondrial bioenergetics and integrity respectively. Shilajit reversed the CFS-induced increase in immobility period and decrease in climbing behavior as well as attenuated anxiety in the EPM test. Shilajit reversed CFS-induced decrease in plasma corticosterone level and loss of adrenal gland weight indicating modulation of HPA axis. Shilajit prevented CFS-induced mitochondrial dysfunction by stabilizing the complex enzyme activities and the loss of MMP. Shilajit reversed CFS-induced mitochondrial oxidative stress in terms of NO concentration and, LPO, SOD and catalase activities. The results indicate that shilajit mitigates the effects of CFS in this model possibly through the modulation of HPA axis and preservation of mitochondrial function and integrity. The reversal of CFS-induced behavioral symptoms and mitochondrial bioenergetics by shilajit indicates mitochondria as a potential target for treatment of CFS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mello, Marcelo F.; Faria, Alvaro A.; Mello, Andrea F.; Carpenter, Linda L.; Tyrka, Audrey R.; Price, Lawrence H.
2015-01-01
Objective The aim of this paper was to examine the relationship between childhood maltreatment and adult psychopathology, as reflected in hypothalamic-pituitary-adrenal axis dysfunction. Method A selective review of the relevant literature was undertaken in order to identify key and illustrative research findings. Results There is now a substantial body of preclinical and clinical evidence derived from a variety of experimental paradigms showing how early-life stress is related to hypothalamic-pituitary-adrenal axis function and psychological state in adulthood, and how that relationship can be modulated by other factors. Discussion The risk for adult psychopathology and hypothalamic-pituitary-adrenal axis dysfunction is related to a complex interaction among multiple experiential factors, as well as to susceptibility genes that interact with those factors. Although acute hypothalamic-pituitary-adrenal axis responses to stress are generally adaptive, excessive responses can lead to deleterious effects. Early-life stress alters hypothalamic-pituitary-adrenal axis function and behavior, but the pattern of hypothalamic-pituitary-adrenal dysfunction and psychological outcome in adulthood reflect both the characteristics of the stressor and other modifying factors. Conclusion Research to date has identified multiple determinants of the hypothalamic-pituitary-adrenal axis dysfunction seen in adults with a history of childhood maltreatment or other early-life stress. Further work is needed to establish whether hypothalamic-pituitary-adrenal axis abnormalities in this context can be used to develop risk endophenotypes for psychiatric and physical illnesses. PMID:19967199
Nguyen, Thi Phuong Mai; Nguyen, Thu Hien; Ngo, Diem Ngoc; Vu, Chi Dung; Nguyen, Thi Kim Lien; Nong, Van Hai; Nguyen, Huy Hoang
2015-07-10
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is characterized by a deficiency of one of the enzymes involved in the synthesis of cortisol from cholesterol by the adrenal cortex. CAH cases arising from impaired 11β-hydroxylase are the second most common form. Mutations in the CYP11B1 gene are the cause of 11β-hydroxylase deficiency. This study was performed on a patient with congenital adrenal hyperplasia and with premature development such as enlarged penis, muscle development, high blood pressure, and bone age equivalent of 5 years old at 2 years of chronological age. Biochemical tests for steroids confirmed the diagnosis of CAH. We used PCR and sequencing to screen for mutations in CYP11B1 gene. Results showed that the patient has a novel homozygous mutation of guanine (G) to thymine (T) in intron 6 (IVS6+5G>T). The analysis of this mutation by MaxEntScan boundary software indicated that this mutant could affect the gene splicing during transcription. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of adrenal function in patients with tuberculosis.
Sarin, Bipan Chander; Sibia, Keerat; Kukreja, Sahiba
2018-07-01
Although subclinical adrenal insufficiency has been documented in tuberculosis but it has been neglected in mainstream management of TB due to inconclusive data on its prevalence in TB. The fact that adrenal insufficiency may result not only in poor general condition of the patient but also sudden death due to adrenal crisis, makes it all the more important to address this issue seriously. In this non-randomized interventional study comprising of 100 cases of TB, our aim was to assess the adreno-cortical functions in patients with pulmonary TB (50 cases) and extra-pulmonary TB (50 cases) in an attempt to determine if there is any compromise of adrenal function. In this study, 100 cases of active TB were investigated for adrenal insufficiency by measuring morning fasting basal serum cortisol levels, followed by low dose ACTH stimulation test using 1μg synacthen (synthetic ACTH analog). The post-stimulation serum cortisol levels were estimated. Basal serum cortisol levels<220nmol/L or post-stimulation test serum cortisol level increment<200nmol/L or post-stimulation serum cortisol levels<500nmol/L were suggestive of adrenal insufficiency. Basal serum cortisol level was low in 16% cases and after low dose ACTH stimulation test, cortisol response was subnormal in 76% cases. Incidence of adrenal insufficiency in pulmonary TB (74%) and extra-pulmonary TB (78%) were comparable. The number of females having adrenal insufficiency in both the groups was higher than the males (67.3% males and 83.3% females) but the difference was statistically significant only in extra-pulmonary TB group (p=0.011). On analysing the data, the sensitivity of basal serum cortisol level estimation in diagnosing adrenal insufficiency was observed to be 21.05% and its specificity was 100%. Positive predictive value was 100% and negative predictive value was 28.57%. Diagnostic accuracy of basal serum cortisol level estimation was observed to be 40%. The incidence of subclinical adrenal insufficiency in TB cases attending chest department at a tertiary care hospital was significantly high but comparable in both pulmonary and extra-pulmonary type of TB. Females in general and particularly those with extra-pulmonary TB were observed to be at increased risk of adrenal insufficiency. The low dose ACTH stimulation test was able to identify cases with adrenal insufficiency which had normal basal serum cortisol levels. Screening all TB cases for adrenal insufficiency by measuring both morning basal serum cortisol levels and low dose ACTH stimulation test can help identify cases at risk of fatal adrenal crisis and institute timely management, thus improving disease prognosis. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.
Management of adolescents with congenital adrenal hyperplasia
Merke, Deborah P; Poppas, Dix P
2014-01-01
The management of congenital adrenal hyperplasia involves suppression of adrenal androgen production, in addition to treatment of adrenal insufficiency. Management of adolescents with congenital adrenal hyperplasia is especially challenging because changes in the hormonal milieu during puberty can lead to inadequate suppression of adrenal androgens, psychosocial issues often affect adherence to medical therapy, and sexual function plays a major part in adolescence and young adulthood. For these reasons, treatment regimen reassessment is indicated during adolescence. Patients with non-classic congenital adrenal hyperplasia require reassessment regarding the need for glucocorticoid drug treatment. No clinical trials have compared various regimens for classic congenital adrenal hyperplasia in adults, thus therapy is individualised and based on the prevention of adverse outcomes. Extensive patient education is key during transition from paediatric care to adult care and should include education of females with classic congenital adrenal hyperplasia regarding their genital anatomy and surgical history. Common issues for these patients include urinary incontinence, vaginal stenosis, clitoral pain, and cosmetic concerns; for males with classic congenital adrenal hyperplasia, common issues include testicular adrenal rest tumours. Transition from paediatric to adult care is most successful when phased over many years. Education of health-care providers on how to successfully transition patients is greatly needed. PMID:24622419
Riquelme, Raquel A; Sánchez, Gina; Liberona, Leonel; Sanhueza, Emilia M; Giussani, Dino A; Blanco, Carlos E; Hanson, Mark A; Llanos, Aníbal J
2002-01-01
The hypothesis that nitric oxide plays a key role in the regulation of adrenal blood flow and plasma concentrations of cortisol and catecholamines under basal and hypoxaemic conditions in the llama fetus was tested. At 0.6-0.8 of gestation, 11 llama fetuses were surgically prepared for long-term recording under anaesthesia with vascular and amniotic catheters. Following recovery all fetuses underwent an experimental protocol based on 1 h of normoxaemia, 1 h of hypoxaemia and 1 h of recovery. In nine fetuses, the protocol occurred during fetal i.v. infusion with saline and in five fetuses during fetal i.v. treatment with the nitric oxide synthase inhibitor l-NAME. Adrenal blood flow was determined by the radiolabelled microsphere method during each of the experimental periods during saline infusion and treatment with l-NAME. Treatment with l-NAME during normoxaemia led to a marked fall in adrenal blood flow and a pronounced increase in plasma catecholamine concentrations, but it did not affect plasma ACTH or cortisol levels. In saline-infused fetuses, acute hypoxaemia elicited an increase in adrenal blood flow and in plasma ACTH, cortisol, adrenaline and noradrenaline concentrations. Treatment with l-NAME did not affect the increase in fetal plasma ACTH, but prevented the increments in adrenal blood flow and in plasma cortisol and adrenaline concentrations during hypoxaemia in the llama fetus. In contrast, l-NAME further enhanced the increase in fetal plasma noradrenaline. These data support the hypothesis that nitric oxide has important roles in the regulation of adrenal blood flow and adrenal corticomedullary functions during normoxaemia and hypoxaemia functions in the late gestation llama fetus. PMID:12356897
[Cushing syndrome: Physiopathology, etiology and principles of therapy].
Chabre, Olivier
2014-04-01
The most frequent cause of Cushing's syndrome is iatrogenic, as Cushing's syndrome is the unavoidable consequence of long-term glucocorticoid treatment using more than 7.5 mg prednisone per day. The most frequent cause of endogenous Cushing's syndrome is Cushing's disease (CD), which is an ACTH dependent hypercortisolism linked to a pituitary corticotroph adenoma. This adenoma is often very small, its diagnosis may require bilateral inferior petrosal sinus sampling and the first line treatment of CD is transsphenoidal surgery by an expert neurosurgeon. The second line treatments include drugs that can act either on the pituitary adenoma or on adrenal steroidogenesis, pituitary radiotherapy or bilateral adrenalectomy. Ectopic ACTH dependent Cushing's syndrome is linked either to poorly differentiated endocrine tumors with a very poor prognosis, such as small cell lung cancer, or to well differentiated endocrine tumors, such as bronchial carcinoid tumors, which have a good prognosis when treated by surgery, but may be very difficult to localize. Adrenal Cushing's syndromes, which are independent of pituitary ACTH secretion, include adrenal cortex carcinoma, which requires abdominal surgery with extended adrenalectomy by an expert surgeon, adrenal adenoma which is treated by laparoscopic unilateral adrenalectomy and bilateral macronodular hyperplasia, whose surgical treatment may require unilateral or bilateral adrenalectomy. Treatment of Cushing's syndrome generally leads to spectacular clinical results, which must not hide the fact that the reversibility of some signs is actually incomplete. This underlines the need for a timely multidisciplinary management of the patients by an expert team. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
[Adrenal incidentaloma: a clinical problem related to imaging].
de Bruijne, E L E; Burgmans, J P J; Krestin, G P; Pols, H A P; van den Meiracker, A H; de Herder, W W
2005-08-13
Two female patients, 68 and 67 years of age, were referred for right abdominal pain and pyelonephritis, respectively. During the diagnostic work-up, an unsuspected adrenal mass was found in both patients. Hormonal evaluation and imaging showed a benign non-hyperactive functioning adenoma in one patient and a pheochromocytoma in the other. Both patients were successfully treated with endoscopic adrenalectomy. Wider application and improvement of abdominal imaging procedures have caused an increase of incidentally detected adrenal masses, posing a common clinical problem. Typically, a diagnosis can be made on the basis of the characteristic radiological image. The exact nature of the defect is often unclear and further evaluation is required to determine functionality and possible malignancy. An algorithm is presented for the management of adrenal incidentalomas.
Adrenal incidentaloma caused by extramedullary haematopoiesis: conservative management is optimal.
Sekar, Suganya; Burad, Deepak; Abraham, Aby; Paul, Mazhuvanchary Jacob
2015-09-21
We present a thalassaemic patient with extramedullary haematopoiesis in the adrenal gland, which is one of the rare sites of involvement. A 29-year-old man presented with a history of anaemia since childhood which required blood transfusion recently. On examination, he had pallor, icterus and splenomegaly with no other palpable abdominal mass. He was diagnosed to have β-thalassaemia. Ultrasonography of the abdomen showed an incidental right adrenal mass with splenomegaly; CT revealed a large right adrenal mass with heterogeneous density. Adrenal adenoma, carcinoma and extramedullary haematopoiesis were considered in the differential diagnosis. After excluding a functioning tumour, the diagnosis was confirmed by ultrasound-guided biopsy. Since the patient was asymptomatic, the adrenal lesion was managed conservatively. 2015 BMJ Publishing Group Ltd.
NASA Technical Reports Server (NTRS)
Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.
1979-01-01
Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.
Edvardsen, Kine; Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S; Bratland, Eirik
2015-10-01
Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.
Aboul-Fotouh, Sawsan
2015-03-01
Several studies have pointed to the nicotinic acetylcholine receptor (nAChR) antagonists, such as mecamylamine (MEC), as a potential therapeutic target for the treatment of depression. The present study evaluated the behavioral and neurochemical effects of chronic administration of MEC (1, 2, and 4 mg/kg/day, intraperitoneally (i.p.)) in Wistar rats exposed to chronic restraint stress (CRS, 4 h × 6 W). MEC prevented CRS-induced depressive-like behavior via increasing sucrose preference, body weight, and forced swim test (FST) struggling and swimming while reducing immobility in FST and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity (adrenal gland weight and serum corticosterone). At the same time, MEC amended CRS-induced anxiety as indicated by decreasing central zone duration in open field test and increasing active interaction duration. Additionally, MEC modulated the prefrontal cortex (PFC) level of brain-derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), and norepinephrine (NE). In conclusion, the present data suggest that MEC possesses antidepressant and anxiolytic-like activities in rats exposed to CRS. These behavioral effects may be in part mediated by reducing HPA axis hyperactivity and increasing PFC level of BDNF and monoamines. Accordingly, these findings further support the hypothesis that nAChRs blockade might afford a novel promising strategy for pharmacotherapy of depression.
Hypertensive crisis caused by electrocauterization of the adrenal gland during hepatectomy.
Doo, A Ram; Son, Ji-Seon; Han, Young-Jin; Yu, Hee Chul; Ko, Seonghoon
2015-02-14
Hypertensive crisis (i.e., systolic blood pressure over 300 mmHg) is very rare during operation except pheochromocytoma, but it can be a fatal and embarrassing to surgeons and anesthesiologists. The right adrenal gland can be electrocauterized during a right hemi-hepatectomy. We report a case of hypertensive crisis during right hemi-hepatectomy in which the right adrenal gland was stimulated by monopolar electrocautery in a patient with normal neuroendocrine function. A 73-year-old man with hepatocellular carcinoma was scheduled to undergo right hemi-hepatectomy. Three hours into the surgery, the patient's blood pressure increased abruptly from 100/40 to over 350/130 mmHg (the maximum measurement pressure of the monitor; 350 mmHg). The surgeon had cauterized the right adrenal gland using monopolar electrocautery to separate the liver from the adrenal gland immediately prior to the event. Approximately 3 minutes after suspending the operation, blood pressure returned to baseline levels. After the event, the operation was successfully completed without any complication. Hormonal studies and iodine-123 meta-iodobenzylguanidine scintigraphy revealed no neuroendocrine tumor such as a pheochromocytoma. Operations such as hepatectomy that stimulate the adrenal gland may lead to an unexpected catecholamine surge and result in hypertensive crisis, even if neuroendocrine function of the adrenal gland is normal.
Tsavoussis, Areti; Stawicki, Stanislaw P. A.; Stoicea, Nicoleta; Papadimos, Thomas J.
2014-01-01
There is substantial evidence indicating that children who witness domestic violence (DV) have psychosocial maladaptation that is associated with demonstrable changes in the anatomic and physiological make up of their central nervous system. Individuals with these changes do not function well in society and present communities with serious medical, sociological, and economic dilemmas. In this focused perspective, we discuss the psychosocially induced biological alterations (midbrain, cerebral cortex, limbic system, corpus callosum, cerebellum, and the hypothalamic, pituitary, and adrenal axis) that are related to maladaptation (especially post-traumatic stress disorder) in the context of child-witnessed DV, and provide evidence for these physical alterations to the brain. Herein, we hope to stimulate the necessary political discourse to encourage legal systems around the world to make the act of DV in the presence of a child, including a first time act, a stand-alone felony. PMID:25346927
The Neurobiology of Intervention and Prevention in Early Adversity.
Fisher, Philip A; Beauchamp, Kate G; Roos, Leslie E; Noll, Laura K; Flannery, Jessica; Delker, Brianna C
2016-01-01
Early adverse experiences are well understood to affect development and well-being, placing individuals at risk for negative physical and mental health outcomes. A growing literature documents the effects of adversity on developing neurobiological systems. Fewer studies have examined stress neurobiology to understand how to mitigate the effects of early adversity. This review summarizes the research on three neurobiological systems relevant to interventions for populations experiencing high levels of early adversity: the hypothalamic-adrenal-pituitary axis, the prefrontal cortex regions involved in executive functioning, and the system involved in threat detection and response, particularly the amygdala. Also discussed is the emerging field of epigenetics and related interventions to mitigate early adversity. Further emphasized is the need for intervention research to integrate knowledge about the neurobiological effects of prenatal stressors (e.g., drug use, alcohol exposure) and early adversity. The review concludes with a discussion of the implications of this research topic for clinical psychology practice and public policy.
Xu, Ying; Ku, Baoshan; Tie, Lu; Yao, Haiyan; Jiang, Wengao; Ma, Xing; Li, Xuejun
2006-11-29
Curcuma longa is a major constituent of the traditional Chinese medicine Xiaoyao-san, which has been used to effectively manage stress and depression-related disorders in China. Curcumin is the active component of curcuma longa, and its antidepressant effects were described in our prior studies in mouse models of behavioral despair. We hypothesized that curcumin may also alleviate stress-induced depressive-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Thus in present study we assessed whether curcumin treatment (2.5, 5 and 10 mg/kg, p.o.) affects behavior in a chronic unpredictable stress model of depression in rats and examined what its molecular targets may be. We found that subjecting animals to the chronic stress protocol for 20days resulted in performance deficits in the shuttle-box task and several physiological effects, such as an abnormal adrenal gland weight to body weight (AG/B) ratio and increased thickness of the adrenal cortex as well as elevated serum corticosterone levels and reduced glucocorticoid receptor (GR) mRNA expression. These changes were reversed by chronic curcumin administration (5 or 10 mg/kg, p.o.). In addition, we also found that the chronic stress procedure induced a down-regulation of brain-derived neurotrophic factor (BDNF) protein levels and reduced the ratio of phosphorylated cAMP response element-binding protein (pCREB) to CREB levels (pCREB/CREB) in the hippocampus and frontal cortex of stressed rats. Furthermore, these stress-induced decreases in BDNF and pCREB/CREB were also blocked by chronic curcumin administration (5 or 10 mg/kg, p.o.). These results provide compelling evidence that the behavioral effects of curcumin in chronically stressed animals, and by extension humans, may be related to their modulating effects on the HPA axis and neurotrophin factor expressions.
Han, Zhiyong; Elliott, Mark S
2017-11-01
In the human body, the adrenal steroids collectively regulate a plethora of fundamental functions, including electrolyte and water balance, blood pressure, stress response, intermediary metabolism, inflammation, and immunity. Therefore, adrenal steroidogenesis is an important biochemistry topic for students to learn in order for them to understand health consequences caused by deficiencies of enzymes in the adrenal steroidogenic pathways. However, popular biochemistry textbooks contain insufficient information and may sometimes give students a misimpression about certain aspects of human adrenal steroidogenesis. This article highlights two neglected issues in teaching human adrenal steroidogenesis in popular biochemistry textbooks. The purpose of this article is to draw attention to these issues. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):469-474, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertz, L.M.; Catt, K.J.
1991-10-01
The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less
[Spontaneous neoplasms in guinea pigs].
Khar'kovskaia, N A; Khrustalev, S A; Vasil'eva, N N
1977-01-01
The authors present an analysis of the data of foreign literature and the results of their personal studies of spontaneous neoplasms in 40 guinea pigs of national breeding observed during observed during a 5-year period. In 4 of them malignant tumors were diagnosed-lympholeucosis (2 cases), dermoid ovarian cysts and also cancer and adenoma of the adrenal cortex (in one animal). The neoplasms described developed in guinea pigs, aged over 4 years, and they are referred to as mostly common tumors in this species of animals.
Woods, Conor P; Argese, Nicola; Chapman, Matthew; Boot, Christopher; Webster, Rachel; Dabhi, Vijay; Grossman, Ashley B; Toogood, Andrew A; Arlt, Wiebke; Stewart, Paul M; Crowley, Rachel K; Tomlinson, Jeremy W
2015-01-01
Context Up to 3% of US and UK populations are prescribed glucocorticoids (GC). Suppression of the hypothalamo–pituitary–adrenal axis with the potential risk of adrenal crisis is a recognized complication of therapy. The 250 μg short Synacthen stimulation test (SST) is the most commonly used dynamic assessment to diagnose adrenal insufficiency. There are challenges to the use of the SST in routine clinical practice, including both the staff and time constraints and a significant recent increase in Synacthen cost. Methods We performed a retrospective analysis to determine the prevalence of adrenal suppression due to prescribed GCs and the utility of a morning serum cortisol for rapid assessment of adrenal reserve in the routine clinical setting. Results In total, 2773 patients underwent 3603 SSTs in a large secondary/tertiary centre between 2008 and 2013 and 17.9% (n=496) failed the SST. Of 404 patients taking oral, topical, intranasal or inhaled GC therapy for non-endocrine conditions, 33.2% (n=134) had a subnormal SST response. In patients taking inhaled GCs without additional GC therapy, 20.5% (34/166) failed an SST and suppression of adrenal function increased in a dose-dependent fashion. Using receiver operating characteristic curve analysis in patients currently taking inhaled GCs, a basal cortisol ≥348 nmol/l provided 100% specificity for passing the SST; a cortisol value <34 nmol/l had 100% sensitivity for SST failure. Using these cut-offs, 50% (n=83) of SSTs performed on patients prescribed inhaled GCs were unnecessary. Conclusion Adrenal suppression due to GC treatment, particularly inhaled GCs, is common. A basal serum cortisol concentration has utility in helping determine which patients should undergo dynamic assessment of adrenal function. PMID:26294794
Lovelock, Joshua D; Coslet, Sandra; Johnson, Marie; Rich, Stuart; Gomberg-Maitland, Mardi
2007-09-01
Relative adrenal insufficiency in critically ill patients is an important syndrome in septic shock. The insufficient stress response of the hypothalamic-pituitary-adrenal axis in acute illness contributes to hemodynamic instability. Treatment of this state in septic shock improves patient outcomes. In this report, we describe the case of a patient with severe diastolic dysfunction who presented in cardiogenic shock associated with relative adrenal insufficiency and had a complete recovery with corticosteroid replacement. Alteration of the hypothalamic-pituitary-adrenal axis may be more prevalent than suspected in end-stage heart failure, and the diagnosis and treatment of this syndrome may ultimately improve outcomes in a subgroup of heart failure patients.
NASA Technical Reports Server (NTRS)
Dinu, M.; Dolinescu, S.; Sneer, A.
1980-01-01
Tests were performed with 70 rats to determine the effects of restraint on the functions and structure of the myocardium under varying conditions of adrenal imbalance. Results showed that in rats with adrenal imbalance, fasting and restraint produced the same biochemical alterations as in the controls. The morphologic alteractions, as well as their electric expression, were more varied and evident in the animals with adrenal imbalance. Persistence of the microscopic and electrocardiographic alterations after 72 hours restraint in the animals subjected to unilateral adrenalectomy suggests chronic evolution of the myocardial lesions. This proves the necessity of intact adrenals for a good adaptability to stress.
Angerami, Matias; Suarez, Guadalupe; Pascutti, Maria Fernanda; Salomon, Horacio; Bottasso, Oscar; Quiroga, Maria Florencia
2013-07-01
Cell-mediated immunity, cytokines induced during the specific immune response and T-cell populations are crucial factors for containing Mycobacterium tuberculosis infection. Recent reports suggest a cross-regulation between adrenal steroids (glucocorticoids and dehydroepiandrosterone, DHEA) and the function of antigen-presenting cells (APCs). Therefore, we investigated the role of adrenal hormones on the functional capacity of M. tuberculosis-induced dendritic cells (DCs). Cortisol significantly inhibited the functions of M. tuberculosis-induced DCs. Interestingly, the presence of DHEA enhanced the M. tuberculosis-induced expression of MHC I, MHC II and CD86 and also increased ERK1/2 phosphorylation. Moreover, DHEA improved the production of IL-12 in response to M. tuberculosis stimulation, diminished IL-10 secretion and could not modify TNF-α synthesis. Importantly, we observed that DHEA enhanced the antigen-specific T-cell proliferation and IFN-γ production induced by M. tuberculosis-stimulated DC. These data show for the first time the relevance of the adrenal axis (especially of DHEA) in the modulation of DC function in the context of tuberculosis, a disease where the induction of a Th1 environment by APCs is crucial for the development of an effective immune response to the mycobacteria.
Pofi, Riccardo; Feliciano, Chona; Sbardella, Emilia; Argese, Nicola; Woods, Conor P; Grossman, Ashley B; Jafar-Mohammadi, Bahram; Gleeson, Helena; Lenzi, Andrea; Isidori, Andrea M; Tomlinson, Jeremy W
2018-05-25
The 250μg Short Synacthen (corticotropin) Test (SST) is the most commonly used tool to assess hypothalamo-pituitary-adrenal (HPA) axis function. There are many potentially reversible causes of adrenal insufficiency (AI), but currently no data to guide clinicians as to the frequency of repeat testing or likelihood of HPA axis recovery. To use the SST results to predict recovery of adrenal function. A retrospective analysis of data from 1912 SSTs. 776 patients with reversible causes of AI were identified who had at least two SSTs performed. A subgroup analysis was performed on individuals previously treated with suppressive doses of glucocorticoids (n=110). Recovery of HPA axis function. SST 30-minute cortisol levels above or below 350nmol/L (12.7μg/dL) best predicted HPA axis recovery (AUC ROC=0.85; median recovery time 334 vs. 1368 days, p=8.5x10-13): 99% of patients with a 30-minute cortisol >350nmol/L recovered adrenal function within 4-years, compared with 49% in those with cortisol levels <350nmol/L. In patients exposed to suppressive doses of glucocorticoids, delta cortisol (30-minute - basal) was the best predictor of recovery (AUC ROC = 0.77; median recovery time 262 vs. 974 days, p=7.0x10-6). No patient with a delta cortisol <100nmol (3.6μg/dL) and a subsequent random cortisol <200nmol/L (7.3μg/dL) measured approximately 1-year later recovered HPA axis function. Cortisol levels across an SST can be used to predict recovery of AI and may guide the frequency of repeat testing and inform both clinicians and patients as to the likelihood of restoration of HPA axis function.
Ultrasonographic adrenal gland findings in healthy semi-captive cheetahs (Acinonyx jubatus).
Kirberger, Robert M; Tordiffe, Adrian S W
2016-05-01
Cheetahs in captivity are believed to suffer from stress predisposing them to poor health. To date fecal glucocorticoids have been used as a non-invasive indicator of chronic stress. This study examines, the feasibility of transabdominal adrenal gland ultrasonography in cheetahs and determined normal adrenal measurements that can potentially be used as a more reliable indicator of chronic stress and/or adrenal function. Thirty-three adult cheetahs, aged between 2 and 13 years, accommodated in large off-display camps were examined over 9 days under general anesthesia. The adrenals were readily identified, with the right adrenal being more difficult to find and measure than the left, and were smaller than those expected in similar sized dogs. The left adrenal was shorter and slightly more oval shaped than the right with a length and cranial pole width at a 95% prediction interval of 16.3-22.4 and 4.1-8.7 mm. The same measurements for the right adrenal were 16.8-26.2 and 3.4-10.8 mm, respectively. Corticomedullary ratios were larger for the left adrenal. When corrected for body size, females had significantly longer and greater left adrenal corticomedullary ratios than males. Adrenal measurements did not correlate with left renal length, body size measurements, or enclosure size. Measurements that increased with age included the cortical and total adrenal widths. Adrenal ultrasonography offers potential benefits in assessment of individual cheetah adrenal pathology or the evaluation of stress induced adrenomegally especially in combination with other evaluations such as non-invasive fecal glucocorticoid analyses. Zoo Biol. 35:260-268, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A case of adrenal Cushing's syndrome with bilateral adrenal masses.
Guo, Ya-Wun; Hwu, Chii-Min; Won, Justin Ging-Shing; Chu, Chia-Huei; Lin, Liang-Yu
2016-01-01
A functional lesion in corticotrophin (ACTH)-independent Cushing's syndrome is difficult to distinguish from lesions of bilateral adrenal masses. Methods for distinguishing these lesions include adrenal venous sampling and (131)I-6β-iodomethyl-19-norcholesterol ((131)I-NP-59) scintigraphy. We present a case of a 29-year-old Han Chinese female patient with a history of hypercholesterolaemia and polycystic ovary syndrome. She presented with a 6month history of an 8kg body weight gain and gradual rounding of the face. Serial examinations revealed loss of circadian rhythm of cortisol, elevated urinary free-cortisol level and undetectable ACTH level (<5pg/mL). No suppression was observed in both the low- and high-dose dexamethasone suppression tests. Adrenal computed tomography revealed bilateral adrenal masses. Adrenal venous sampling was performed, and the right-to-left lateralisation ratio was 14.29. The finding from adrenal scintigraphy with NP-59 was consistent with right adrenal adenoma. The patient underwent laparoscopic right adrenalectomy, and the pathology report showed adrenocortical adenoma. Her postoperative cortisol level was 3.2μg/dL, and her Cushingoid appearance improved. In sum, both adrenal venous sampling and (131)I-NP-59 scintigraphy are good diagnostic methods for Cushing's syndrome presenting with bilateral adrenal masses. The clinical presentation of Cushing' syndrome includes symptoms and signs of fat redistribution and protein-wasting features.The diagnosis of patients with ACTH-independent Cushing's syndrome with bilateral adrenal masses is challenging for localisation of the lesion.Both adrenal venous sampling and (131)I-NP-59 scintigraphy are good methods to use in these patients with Cushing's syndrome presenting with bilateral adrenal masses.
Pattison, J Christina; Saltzman, Wendy; Abbott, David H; Hogan, Brynn K; Nguyen, Ann D; Husen, Bettina; Einspanier, Almuth; Conley, Alan J; Bird., Ian M
2007-01-01
Neonatal marmosets express an adrenal fetal zone comparable to humans. While adult males fail to express a functional ZR, with barely detectable blood DHEA levels, females produce higher levels of DHEA than males in adulthood. We investigated the presence of a putative functional ZR in adult female marmosets. In contrast to males, immunohistochemical analysis showed the ZR marker cytochrome b5 was elevated in the innermost zone in cycling females (compared to testis-intact males), further elevated in the adrenals from anovulatory females, and substantially elevated and continuous in ovariectomized females. As a functional test in vivo, following overnight dexamethasone treatment, cycling and anovulatory females showed higher levels of DHEA relative to males, but DHEA failed to increase in response to ACTH. In direct contrast, while ovariectomized females exhibited lower initial DHEA levels, clear increases were detectable after ACTH administration (p<0.05), suggesting an adrenal origin. The apparent differences in cytochrome b5 expression between groups were also further verified by western blotting of adrenal microsomes, and compared to 17,20-lyase activity; the two parameters were positively correlated (p<0.01) across multiple treatment groups. We conclude that the cycling female marmoset expresses a rudimentary ZR with at least a capacity for DHEA production that becomes significantly ACTH-responsive after anovulation. Expression of cytochrome b5 in this region may be directly or indirectly controlled by gonadal function, and is, at least in part, a critical determinant in the development of an adrenal ZR that is more defined and significantly ACTH-responsive. PMID:17222503
Growth and Endocrine Function in Tunisian Thalassemia Major Patients.
Dhouib, Naouel Guirat; Ben Khaled, Monia; Ouederni, Monia; Besbes, Habib; Kouki, Ridha; Mellouli, Fethi; Bejaoui, Mohamed
2018-01-01
β-thalassemia major (β-TM) is among the most common hereditary disorders imposing high expenses on health-care system worldwide. The patient's survival is dependent on lifetime blood transfusion which leads to iron overload and its toxicity in various organs including endocrine glands. This article provides an overview of endocrine disorders in beta-TM patients. This single center investigation enrolled 28 β-TM patients (16 males, 12 females) regularly transfused with packed red cell since early years of life. For each patient were determined: age, sex, number of transfusions received, history of splenectomy and anthropometric parameters. All patients underwent an evaluation of hormonal status including growth, gonadal, thyroid, adrenal cortex, and parathyroid glands. Dual-energy X-ray absorptiometry was used to diagnose low bone mass. Assessment of iron overload status was performed by measuring the serum ferritin concentration and the results of magnetic resonance imaging T 2 *. Growth retardation was found in 16 of the 28 studied patients (57 %). Thirteen among them had delayed puberty. Spontaneous puberty was achieved in 16 cases. Growth hormone (GH) deficiency was found in 10 cases (35 %). Seventeen among the studied patients (60 %) developed disorders of glucose homeostasis. Subclinical hypothyroidism was found in six patients (21 %). Intensive chelation therapy had allowed the reversibility of this complication in five cases. Adrenal Insufficiency was observed in 9 cases (32%). Hypoparathyroidism has occurred in one case. Ten of the 28 studied patients had low bone mass (35%). Twenty-three of the 28 studied patients (82%) had at least one endocrine complication.
Adrenal collision tumor (parachordoma and ganglioneuroma): A case report.
Lai, Yulin; Zhou, Liang; Hu, Jia; Li, Wenhua; Cui, Lin; Lai, Yongqing; Ni, Liangchao
2018-06-01
Adrenal collision tumors (ACTs) are distinct tumors that occur simultaneously in the same adrenal gland and are very rare. We herein report the case of a 56-year-old woman who was admitted to the hospital for medical imaging. The findings of the physical and laboratory examinations, including endocrine function, were unremarkable. Contrast-enhanced computed tomography of the abdomen revealed a 28×20×33-mm mass in the left adrenal medial limb, for which a laparoscopic surgery was performed. Postoperative pathological examination revealed two distinct tumors, namely a parachordoma and a ganglioneuroma. To the best of our knowledge, and following a thorough literature search, this is the first report of coexisting parachordoma and ganglioneuroma in the same adrenal gland.
Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei
2003-09-01
Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.
Diagnosis of adrenal insufficiency.
Dorin, Richard I; Qualls, Clifford R; Crapo, Lawrence M
2003-08-05
The cosyntropin stimulation test is the initial endocrine evaluation of suspected primary or secondary adrenal insufficiency. To critically review the utility of the cosyntropin stimulation test for evaluating adrenal insufficiency. The MEDLINE database was searched from 1966 to 2002 for all English-language papers related to the diagnosis of adrenal insufficiency. Studies with fewer than 5 persons with primary or secondary adrenal insufficiency or with fewer than 10 persons as normal controls were excluded. For secondary adrenal insufficiency, only studies that stratified participants by integrated tests of adrenal function were included. Summary receiver-operating characteristic (ROC) curves were generated from all studies that provided sensitivity and specificity data for 250-microg and 1-microg cosyntropin tests; these curves were then compared by using area under the curve (AUC) methods. All estimated values are given with 95% CIs. At a specificity of 95%, sensitivities were 97%, 57%, and 61% for summary ROC curves in tests for primary adrenal insufficiency (250-microg cosyntropin test), secondary adrenal insufficiency (250-microg cosyntropin test), and secondary adrenal insufficiency (1-microg cosyntropin test), respectively. The area under the curve for primary adrenal insufficiency was significantly greater than the AUC for secondary adrenal insufficiency for the high-dose cosyntropin test (P < 0.001), but AUCs for the 250-microg and 1-microg cosyntropin tests did not differ significantly (P > 0.5) for secondary adrenal insufficiency. At a specificity of 95%, summary ROC analysis for the 250-microg cosyntropin test yielded a positive likelihood ratio of 11.5 (95% CI, 8.7 to 14.2) and a negative likelihood ratio of 0.45 (CI, 0.30 to 0.60) for the diagnosis of secondary adrenal insufficiency. Cortisol response to cosyntropin varies considerably among healthy persons. The cosyntropin test performs well in patients with primary adrenal insufficiency, but the lower sensitivity in patients with secondary adrenal insufficiency necessitates use of tests involving stimulation of the hypothalamus if the pretest probability is sufficiently high. The operating characteristics of the 250-microg and 1-microg cosyntropin tests are similar.
Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S.; Bratland, Eirik
2015-01-01
Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10. PMID:25978633
Lavrnja, Irena; Trifunovic, Svetlana; Ajdzanovic, Vladimir; Pekovic, Sanja; Bjelobaba, Ivana; Stojiljkovic, Mirjana; Milosevic, Verica
2014-02-10
Traumatic brain injury (TBI) represents a serious event with far reaching complications, including pituitary dysfunction. Pars distalis corticotropes (ACTH cells), that represent the active module of hypothalamo-pituitary-adrenocortical axis, seem to be affected as well. Since pituitary failure after TBI has been associated with neurobehavioral impairments the aim of this study was to evaluate the effects of TBI on recovery of motor functions, morphology and secretory activity of ACTH cells in the pituitary of adult rats. Wistar male rats, initially exposed to sensorimotor cortex ablation (SCA), were sacrificed at the 2nd, 7th, 14th and 30th days post-surgery (dps). A beam walking test was used to evaluate the recovery of motor functions. Pituitary glands and blood were collected for morphological and hormonal analyses. During the first two weeks post-injury increased recovery of locomotor function was detected, reaching almost the control value at day 30. SCA induces significant increase of pituitary weights compared to their time-matched controls. The volume of ACTH-immunopositive cells was reduced at the 7th dps, while at the 14th dps their volume was enlarged, in comparison to corresponding sham controls. Volume density of ACTH cells was increased only at 14th dps, while at day 30 this increase was insignificant. The plasma level of ACTH transiently increased after the injury. The most pronounced changes were observed at the 7th and 14th dps, and were followed by decrease toward control levels at the 30th dps. Thus, temporal changes in the hypothalamic-pituitary-adrenal axis after traumatic brain injury appear to correlate with the recovery process. Copyright © 2013 Elsevier Inc. All rights reserved.
Maniu, Adina; Aberdeen, Graham; Lynch, Terrie J.; Albrecht, Eugene D.
2016-01-01
We showed that the volume of the fetal zone of the fetal adrenal gland and serum dehydroepiandrosterone sulfate (DHAS) levels at term were increased in baboons in which estradiol levels were suppressed by treatment with aromatase inhibitor 4,4-[1,2,3-triazol-1yl-methylene] bis-benzonitrite (letrozole). The fetal zone remodels postnatally into the reticular zone and DHAS production, and serum levels decline with age. Therefore, we determined whether the trajectory of reticular zone DHAS secretion and response to ACTH were altered in offspring deprived of estrogen in utero. Female offspring were delivered to baboons untreated or treated daily throughout the second half of gestation with letrozole (estradiol reduced >95%) or letrozole plus estradiol and cortisol and DHAS determined in blood samples obtained bimonthly between 4 and 125 months and after iv bolus of ACTH. The slope/rate of decline in serum DHAS with advancing age was greater (P < .01) in letrozole-treated (−0.54 ± 0.005) than untreated (−0.32 ± 0.003) baboons and partially restored by letrozole-estradiol (−0.43 ± 0.004). Serum cortisol was similar and relatively constant in all offspring. Moreover, in letrozole-treated offspring, serum DHAS at 61–66, 67–95, and 96–125 months were lower (P < .05), and cortisol to DHAS ratio was greater (P < .05) than in untreated offspring. ACTH at high level increased cortisol and DHAS in untreated baboons and cortisol but not DHAS in letrozole-treated offspring. We propose that postnatal development of the primate adrenal cortex, including the decline in reticular zone DHAS production, response to ACTH and maintenance of cortisol to DHAS ratio with advancing age is modulated by exposure of the fetal adrenal to estradiol. PMID:26990066
Santana, Magda M; Rosmaninho-Salgado, Joana; Cortez, Vera; Pereira, Frederico C; Kaster, Manuella P; Aveleira, Célia A; Ferreira, Marisa; Álvaro, Ana Rita; Cavadas, Cláudia
2015-10-01
Stress has been considered determinant in the etiology of depression. The adrenal medulla plays a key role in response to stress by releasing catecholamines, which are important to maintain homeostasis. We aimed to study the adrenal medulla in a mouse model of depression induced by 21 days of unpredictable chronic stress (UCS). We observed that UCS induced a differential and time-dependent change in adrenal medulla. After 7 days of UCS, mice did not show depressive-like behavior, but the adrenal medullae show increased protein and/or mRNA levels of catecholamine biosynthetic enzymes (TH, DβH and PNMT), Neuropeptide Y, the SNARE protein SNAP-25, the catecholamine transporter VMAT2 and the chromaffin progenitor cell markers, Mash1 and Phox2b. Moreover, 7 days of UCS induced a decrease in the chromaffin progenitor cell markers, Sox9 and Notch1. This suggests an increased capacity of chromaffin cells to synthesize, store and release catecholamines. In agreement, after 7 days, UCS mice had higher NE and EP levels in adrenal medulla. Opposite, when mice were submitted to 21 days of UCS, and showed a depressive like behavior, adrenal medullae had lower protein and/or mRNA levels of catecholamine biosynthetic enzymes (TH, DβH, PNMT), catecholamine transporters (NET, VMAT1), SNARE proteins (synthaxin1A, SNAP25, VAMP2), catecholamine content (EP, NE), and lower EP serum levels, indicating a reduction in catecholamine synthesis, re-uptake, storage and release. In conclusion, this study suggests that mice exposed to UCS for a period of 21 days develop a depressive-like behavior accompanied by an impairment of adrenal medullary function. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel
2014-10-31
Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Adrenal suppression in bronchiectasis and the impact of inhaled corticosteroids.
Holme, J; Tomlinson, J W; Stockley, R A; Stewart, P M; Barlow, N; Sullivan, A L
2008-10-01
The present study identified three patients with bronchiectasis receiving inhaled corticosteroids (ICSs) who had symptomatic adrenal suppression secondary to ICS. The prevalence of adrenal suppression is unknown in bronchiectasis. The frequency of adrenal suppression and the impact of ICS use in bronchiectasis patients were examined. In total, 50 outpatients (33 receiving ICSs) underwent a short Synacthen test and completed a St George's Respiratory Questionnaire (SGRQ). Symptoms of adrenal suppression, steroid use and lung function were compared between subjects who were suppressed and those who were not. Adrenal suppression was evident in 23.5% of subjects who did not receive ICSs and 48.5% of those who did. Basal cortisol and the increments by which cortisol increased 30 min after Synacthen were lower in suppressed than in nonsuppressed subjects. The incremental cortisol rise was negatively correlated with SGRQ impacts and total score, suggesting a worse quality of life in those who had an impaired adrenal response. The greatest frequency of generalised symptoms was seen in the suppressed group. A significant proportion of subjects with bronchiectasis have evidence of adrenal suppression, and this is increased when inhaled corticosteroids are also used. Impairment of the cortisol response to stimulation is associated with poorer health status.
Diagnosis and management of pediatric adrenal insufficiency.
Uçar, Ahmet; Baş, Firdevs; Saka, Nurçin
2016-08-01
Adrenal insufficiency (AI) is a wellknown cause of potentially life-threatening disorders. Defects at each level of the hypothalamic-pituitary-adrenal axis can impair adrenal function, leading to varying degrees of glucocorticoid (GC) deficiency. Iatrogenic AI induced by exogenous GCs is the most common cause of AI. The criteria for the diagnosis and management of iatrogenic AI, neonatal AI, and critical illness-related corticosteroid insufficiency (CIRCI) are not clear. We reviewed the recent original publications and classical data from the literature, as well as the clinical, diagnostic and management strategies of pediatric AI. Practical points in the diagnosis and management of AI with an emphasis on iatrogenic AI, neonatal AI, and CIRCI are provided. Given the lack of sensitive and practical biochemical tests for diagnosis of subtle AI, GC treatment has to be tailored to highly suggestive clinical symptoms and signs. Treatment of adrenal crisis is well standardized and patients almost invariably respond well to therapy. It is mainly the delay in treatment that is responsible for mortality in adrenal crisis. Education of patients and health care professionals is mandatory for timely interventions for patients with adrenal crisis.
Hyperproteic diet and pregnancy of rat.
Greco, A M; Sticchi, R; Gambardella, P; D'Aponte, D; Ferrante, P
1986-01-01
We have studied the effects of a purified diet enriched with animal protein (casein 40%, lactalbumin 20%) on different stages of rat pregnancy. We observed that hyperproteic diet, especially when administered from the first day of pregnancy, induces morphological alterations of liver, adrenal cortex, heart and kidney. Moreover, haematic dosages, carried out on 15th day of pregnancy, have shown moderate but significant increase of glucose and triglycerides and significant decrease of circulating aldosterone and corticosterone as well. Finally an early administration of hyperproteic diet causes less numerous litters and high mortality rate at birth.
Mongardon, Nicolas; Savary, Guillaume; Geri, Guillaume; El Bejjani, Marie-Rose; Silvera, Stéphane; Dumas, Florence; Charpentier, Julien; Pène, Frédéric; Mira, Jean-Paul; Cariou, Alain
2018-05-28
Adrenal gland volume is associated with survival in septic shock. As sepsis and post-cardiac arrest syndrome share many pathophysiological features, we assessed the association between adrenal gland volume measured by computerized tomography (CT)-scan and post-cardiac arrest shock and intensive care unit (ICU) mortality, in a large cohort of out-of-hospital cardiac arrest (OHCA) patients. We also investigated the association between adrenal hormonal function and both adrenal gland volume and outcomes. Prospective analysis of CT-scan performed at hospital admission in patients admitted after OHCA (2007-2012). A pair of blinded radiologist calculated manually adrenal gland volume. In a subgroup of patients, plasma cortisol was measured at admission and 60 min after a cosyntropin test. Factors associated with post-cardiac arrest shock and ICU mortality were identified using multivariate logistic regression. Among 775 patients admitted during this period after OHCA, 138 patients were included: 72 patients (52.2%) developed a post-cardiac arrest shock, and 98 patients (71.1%) died. In univariate analysis, adrenal gland volume was not different between patients with and without post-cardiac arrest shock: 10.6 and 11.3 cm 3 , respectively (p = 0.9) and between patients discharged alive or dead: 10.2 and 11.8 cm 3 , respectively (p = 0.4). Multivariate analysis confirmed that total adrenal gland volume was associated neither with post-cardiac arrest shock nor mortality. Neither baseline cortisol level nor delta between baseline and after cosyntropin test cortisol levels were associated with adrenal volume, post-cardiac arrest shock onset or mortality. After OHCA, adrenal gland volume is not associated with post-cardiac arrest shock onset or ICU mortality. Adrenal gland volume does not predict adrenal gland hormonal response. Copyright © 2018 Elsevier B.V. All rights reserved.
Lowery, Aoife J; Seeliger, Barbara; Alesina, Pier F; Walz, Martin K
2017-08-01
The treatment of hypercortisolism for patients with bilateral adrenal disease (BAD) is controversial. Bilateral total adrenalectomy results in permanent hypocortisolaemia requiring lifelong steroid replacement. A more conservative surgical approach, with less than bilateral total adrenalectomy (leaving functional adrenal tissue either unilaterally or bilaterally), represents an alternative option; however, long-term outcome or recurrence data are limited. We report our experience with the surgical management of hypercortisolism caused by BAD. Between 2004 and 2016, 42 patients (12 male, 30 female; mean age 58 ± 10 years) with clinical or subclinical Cushing's syndrome (CS/sCS) caused by BAD underwent adrenal surgery via the posterior retroperitoneoscopic approach. Adrenal surgery was defined as "adrenalectomy" when total gland excision was performed or "resection" when a partial or subtotal adrenal resection was performed. Clinical, radiological and biochemical parameters were evaluated preoperatively and postoperatively. Seventy adrenal operations performed in total included unilateral resection (n = 3), unilateral adrenalectomy (n = 15), bilateral resection (n = 9), adrenalectomy and contralateral resection (n = 14) and bilateral total adrenalectomy (n = 3). Median operating time was 47.5 min (30-150) with no difference between unilateral and bilateral (synchronous included) procedures (p = 0.15). Mortality was zero. Clavien-Dindo grade of postoperative complications was I (n = 5) and IV (n = 3). All but one patient with CS and 17/31 patients with sCS received postoperative steroid supplementation for a median duration of 20 (1.5-129) months. After median follow-up of 40 months (3-129), the remission rate was 92%; 11 patients required ongoing steroid supplementation. There were three biochemical recurrences (two underwent contralateral resection); two patients with new/progressive radiological nodularity are biochemically eucortisolaemic. A significant reduction in BMI (p = 0.01) and antihypertensive requirements (p = 0.04) was observed postoperatively. A surgical approach which facilitates the conservation of functional adrenal tissue represents a suitable strategy for hypercortisolism caused by BAD. This approach avoids the necessity for lifelong steroid replacement in the majority of cases with low rates of adrenal insufficiency and recurrence.
Nakavachara, Pairunyar; Viprakasit, Vip
2013-12-01
Transfusion dependency is known to cause endocrinopathies in patients with thalassaemia such as adrenal insufficiency, because transfusion-related iron overload is injurious to endocrine organs. Children with HbE/ß-thalassaemia vary greatly in red cell transfusion requirement and some are transfusion dependent (TD), whereas others are nontransfusion dependent (NTD). Because iron overload is thought to be the primary cause of adrenal insufficiency, TD children with HbE/ß-thalassaemia are considered likely candidates for the development of adrenal insufficiency, while the adrenal function of NTD children is generally considered to be normal. As yet, the prevalence of adrenal insufficiency among children with NTD HbE/β-thalassaemia is not known. The present study was performed to (i) assess the prevalence of adrenal insufficiency in children with both TD and NTD HbE/β-thalassaemia and to evaluate whether there is any difference in the prevalence of adrenal insufficiency between both groups and (ii) determine the type of adrenal insufficiency (primary or secondary). We investigated the prevalence of adrenal insufficiency among TD (n = 42) and NTD (n = 43) children with HbE/β-thalassaemia by assessing morning serum cortisol levels, and we distinguished between primary and secondary adrenal insufficiency by assessing the cortisol responses following the 1- and 250-μg ACTH stimulation tests. The prevalence of adrenal insufficiency among TD and NTD children with HbE/β-thalassaemia was 50% and 53·5%, respectively. By using the 250-μg ACTH stimulation test, at least 39% and 23·5% were diagnosed with adrenal gland hypofunction in TD and NTD children, respectively. This is the first study to show that adrenal insufficiency is common among all children with HbE/β-thalassaemia, irrespective of their transfusion history or requirement. Our findings have important implications for the clinical management of these children. © 2013 John Wiley & Sons Ltd.
Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B
2016-08-01
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Abbott, David H
2005-12-01
Adrenal androgen excess is found in approximately 25-60% of women with polycystic ovary syndrome (PCOS), but the mechanisms underlying PCOS-related adrenal androgen excess are unclear. The objective of this study was to determine whether adrenal androgen excess is manifest in a nonhuman primate model for PCOS. Six prenatally androgenized (PA) and six control female rhesus monkeys of similar age, body weight, and body mass index were studied during d 2-6 of two menstrual cycles or anovulatory 30-d periods. Predexamethasone adrenal steroid levels were assessed in the first cycle (cycle 1). In a subsequent cycle (cycle 2), occurring one to three cycles after cycle 1, adrenal steroids were determined 14.5-16.0 h after an i.m. injection of 0.5 mg/kg dexamethasone (postdexamethasone levels) and after an i.v. injection of 50 microg ACTH-(1-39). Both before and after dexamethasone, serum levels of dehydroepiandrosterone (DHEA) in PA females exceeded those in controls. After ACTH injection, PA females exhibited higher circulating levels of DHEA, androstenedione, and corticosterone but comparable levels of 17alpha-hydroxyprogesterone, cortisol, the sulfoconjugate of DHEA, and testosterone compared with controls. Enhanced basal and ACTH-stimulated adrenal androgen levels in PA female monkeys may reflect up-regulation of 17,20 lyase activity in the adrenal zona reticularis, causing adrenal androgen excess comparable with that found in PCOS women with adrenal androgen excess. These findings open the possibility that PCOS adrenal hyperandrogenism may have its origins in fetal androgen excess reprogramming of adrenocortical function.
Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L
2018-01-01
Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.
Bunce, Scott C; Harris, Jonathan D; Bixler, Edward O; Taylor, Megan; Muelly, Emilie; Deneke, Erin; Thompson, Kenneth W; Meyer, Roger E
2015-01-01
There is growing evidence for a neuroadaptive model underlying vulnerability to relapse in opioid dependence. The purpose of this study was to evaluate clinical measures hypothesized to mirror elements of allostatic dysregulation in patients dependent on prescription opioids at 2 time points after withdrawal, compared with healthy control participants. Recently withdrawn (n = 7) prescription opioid-dependent patients were compared with the patients in supervised residential care for 2 to 3 months (extended care; n = 7) and healthy controls (n = 7) using drug cue reactivity, affect-modulated startle response tasks, salivary cortisol, and 8 days of sleep actigraphy. Prefrontal cortex was monitored with functional near-infrared spectroscopy during the cue reactivity task. Startle response results indicated reduced hedonic response to natural rewards among patients recently withdrawn from opioids relative to extended care patients. The recently withdrawn patients showed increased activation to pill stimuli in right dorsolateral prefrontal cortex relative to extended care patients. Cortisol levels were elevated among recently withdrawn patients and intermediate for extended care relative to healthy controls. Actigraphy indicated disturbed sleep between recently withdrawn patients and extended care patients; extended care patients were similar to controls. Dorsolateral prefrontal cortex activation to drug and natural reward cues, startle responses to natural reward cues, day-time cortisol levels, time in bed, and total time spent sleeping were all correlated with the number of days since last drug use (ie, time in supervised residential treatment). These results suggest possible re-regulation of dysregulated hypothalamic-pituitary-adrenal axis and brain reward systems in prescription opioid-dependent patients over the drug-free period in residential treatment.
Prigent, Hélène; Maxime, Virginie; Annane, Djillali
2004-01-01
This review describes current knowledge on the mechanisms that underlie glucocorticoid insufficiency in sepsis and the molecular action of glucocorticoids. In patients with severe sepsis, numerous factors predispose to glucocorticoid insufficiency, including drugs, coagulation disorders and inflammatory mediators. These factors may compromise the hypothalamic–pituitary axis (i.e. secondary adrenal insufficiency) or the adrenal glands (i.e. primary adrenal failure), or may impair glucocorticoid access to target cells (i.e. peripheral tissue resistance). Irreversible anatomical damages to the hypothalamus, pituitary, or adrenal glands rarely occur. Conversely, transient functional impairment in hormone synthesis may be a common complication of severe sepsis. Glucocorticoids interact with a specific cytosolic glucocorticoid receptor, which undergoes conformational changes, sheds heat shock proteins and translocates to the nucleus. Glucocorticoids may also interact with membrane binding sites at the surface of the cells. The molecular action of glucocorticoids results in genomic and nongenomic effects. Direct and indirect transcriptional and post-transcriptional effects related to the cytosolic glucocorticoid receptor account for the genomic effects. Nongenomic effects are probably subsequent to cytosolic interaction between the glucocorticoid receptor and proteins, or to interaction between glucocorticoids and specific membrane binding sites. PMID:15312206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunce, O.R.; Badary, O.A.; Abou El-Ela, S.
1991-03-15
Adrenal cortical hormones suppress initiation and promotion of DMBA-induced mammary tumorigenesis. The authors found a positive correlation between presence of DMBA-induced adrenal cortical necrosis and mammary tumor incidence. Because they find adrenal medullary as well as cortical lesions in tumor bearing (TB) DMBA-treated rats, they evaluated medullary function by quantitating hybridized cDNA- TH-S{sup 35} with in situ TH-mRNA u sing computer assisted quantitative autoradiographic technique. Virgin female Sprague-Dawley rats were given a 10 mg i.g. dose of DMBA. Three wks later, rats were placed on 20% polyunsaturated (PUFA) fat diets containing omega-6 and omega-3 fatty acids. All were killed 15more » wks post-DMBA. TH-mRNA levels in adrenal medullae of TB animals were decreased compared to non-TB rats. Histopathology indicated a high incidence of medullary necrosis in TB rats, whereas, adrenal necrosis did not occur in non-TB animals. Adrenal necrosis correlated positively with tumor burden, but no correlation was found between incidence of adrenal lesions and type of PUFA in the diet. The authors suggest that DMBA adrenal necrosis may reduce TH-mRNA in the medulla, compromise its catecholamine synthetic capability, and thereby contribute to the overall metabolic stress condition of TB rats.« less
Okamura, Hitoshi; Doi, Masao; Goto, Kaoru; Kojima, Rika
2016-10-01
With the current societal norm of shiftwork and long working hours, maintaining a stable daily life is becoming very difficult. An irregular lifestyle disrupts circadian rhythms, resulting in the malfunction of body physiology and ultimately leading to lifestyle-related diseases, including hypertension. By analyzing completely arrhythmic Cry1/Cry2 double-knockout (Cry-null) mice, we found salt-sensitive hypertension accompanied by hyperaldosteronism. On the basis of a DNA microarray analysis of the adrenal gland and subsequent biochemical analyses, we discovered that Hsd3b6/HSD3B1, a subtype of 3β-HSD, is markedly overexpressed in aldosterone-producing cells in the Cry-null adrenal cortex. In addition, we found that Hsd3b6/HSD3B1, which converts pregnenolone to progesterone, is a clock-controlled gene and might also be a key enzyme for the regulation of aldosterone biosynthesis, in addition to the previously established CYP11B2, which synthesizes aldosterone from deoxycorticosterone. Importantly, angiotensin II induces HSD3B1 via the transcription factor NGFIB in human adrenocortical H295R cells, similarly to CYP11B2. As HSD3B1 levels are abnormally high in the adrenal aldosterone-producing cells of idiopathic hyperaldosteronism (IHA), the temporal component of this system in the pathophysiology of IHA is a promising area for future research.
Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks.
Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin
2018-05-01
Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.
Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks
Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin
2018-01-01
Abstract Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic–pituitary–adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases. PMID:29713692
Effect of Space Flight on Adrenal Medullary Function
NASA Technical Reports Server (NTRS)
Lelkes, Peter I.
1999-01-01
We hypothesize that microgravity conditions during space flight alter the expression and specific activities of the adrenal medullary CA synthesizing enzymes (CASE). Previously, we examined adrenals from six rats flown for six days aboard STS 54 and reported that microgravity induced a decrease in the expression and specific activity of rat adrenal medullary tyrosine hydroxylase, the rate limiting enzyme of CA synthesis, without affecting the expression of other CASE. In the past, we analyzed some of the > 300 adrenals from two previous Space Shuttle missions (PARE 03 and SLS 2). The preliminary results (a) attest to the good state of tissue preservation, thus proving the feasibility of subsequent large-scale evaluation, and (b) confirm and extend our previous findings. With this grant we will be able to expeditiously analyze all our specimens and to complete our studies in a timely fashion.
Renal and adrenal tumors: Pathology, radiology, ultrasonography, therapy, immunology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, E.; Leder, L.D.
1987-01-01
Aspects as diverse as radiology, pathology, urology, pediatrics and immunology have been brought together in one book. The most up-do-date methods of tumor diagnosis by CT, NMR, and ultrasound are covered, as are methods of catheter embolization and radiation techniques in case of primarily inoperable tumors. Contents: Pathology of Renal and Adrenal Neoplasms; Ultrasound Diagnosis of Renal and Pararenal Tumors; Computed-Body-Tomography of Renal Carcinoma and Perirenal Masses; Magnetic Resonance Imaging of Renal Mass Lesions; I-125 Embolotherapy of Renal Tumors; Adrenal Mass Lesions in Infants and Children; Computed Tomography of the Adrenal Glands; Scintigraphic Studies of Renal and Adrenal Function; Surgicalmore » Management of Renal Cell Carcinoma; Operative Therapy of Nephroblastoma; Nonoperative Treatment of Renal Cell Carcinoma; Prenatal Wilms' Tumor; Congenital Neuroblastoma; Nonsurgical Management of Wilms' Tumor; Immunologic Aspects of Malignant Renal Disease.« less
Jablonski, Sarah A.; Graham, Devon L.; Vorhees, Charles V.; Williams, Michael T.
2017-01-01
Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered mono-amines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits. PMID:27817108
Abe, Ichiro; Sugimoto, Kaoru; Miyajima, Tetsumasa; Ide, Tomoko; Minezaki, Midori; Takeshita, Kaori; Takahara, Saori; Nakagawa, Midori; Fujimura, Yuki; Kudo, Tadachika; Miyajima, Shigero; Taira, Hiroshi; Ohe, Kenji; Ishii, Tatsu; Yanase, Toshihiko; Kobayashi, Kunihisa
2018-04-27
Objectives We retrospectively investigated the clinical and endocrinological characteristics of adrenal incidentalomas. Methods We studied 61 patients who had been diagnosed with adrenal incidentalomas and had undergone detailed clinical and endocrinological evaluations while hospitalized. We used common criteria to diagnose the functional tumors, but for sub-clinical Cushing's syndrome, we used an updated set of diagnosis criteria: serum cortisol ≥1.8 μg/dL after a positive response to a 1-mg dexamethasone suppression test if the patient has a low morning ACTH level (<10 pg/mL) and a loss of the diurnal serum cortisol rhythm. Results Of the 61 patients, none (0%) had malignant tumors, 8 (13.1%) had pheochromocytoma, and 15 (24.6%) had primary aldosteronism; when diagnosed by our revised criteria, 13 (21.3%) had cortisol-secreting adenomas (Cushing's syndrome and sub-clinical Cushing's syndrome), and 25 (41.0%) had non-functional tumors. Compared with the non-functional tumor group, the primary aldosteronism group and the cortisol-secreting adenoma group were significantly younger and had significantly lower rates of hypokalemia, whereas the pheochromocytoma group had significantly larger tumors and a significantly lower body mass index. Conclusion Our study found a larger percentage of functional tumors among adrenal incidentalomas than past reports, partly because we used a lower serum cortisol level after a dexamethasone suppression test to diagnose sub-clinical Cushing's syndrome and because all of the patients were hospitalized and could therefore receive more detailed examinations. Young patients with hypokalemia or lean patients with large adrenal tumors warrant particularly careful investigation.
Lee, Younghak; Yi, Hyon Seung; Kim, Hae Ri; Joung, Kyong Hye; Kang, Yea Eun; Lee, Ju Hee; Kim, Koon Soon; Kim, Hyun Jin; Ku, Bon Jeong; Shong, Minho
2017-09-01
Cushing syndrome is characterized by glucose intolerance, cardiovascular disease, and an enhanced systemic inflammatory response caused by chronic exposure to excess cortisol. Eosinopenia is frequently observed in patients with adrenal Cushing syndrome, but the relationship between the eosinophil count in peripheral blood and indicators of glucose level in patients with adrenal Cushing syndrome has not been determined. A retrospective study was undertaken of the clinical and laboratory findings of 40 patients diagnosed with adrenal Cushing syndrome at Chungnam National University Hospital from January 2006 to December 2016. Clinical characteristics, complete blood cell counts with white blood cell differential, measures of their endocrine function, description of imaging studies, and pathologic findings were obtained from their medical records. Eosinophil composition and count were restored by surgical treatment of all of the patients with adrenal Cushing disease. The eosinophil count was inversely correlated with serum and urine cortisol, glycated hemoglobin, and inflammatory markers in the patients with adrenal Cushing syndrome. Smaller eosinophil populations in patients with adrenal Cushing syndrome tend to be correlated with higher levels of blood sugar and glycated hemoglobin. This study suggests that peripheral blood eosinophil composition or count may be associated with serum glucose levels in patients with adrenal Cushing syndrome. Copyright © 2017 Korean Endocrine Society
Lee, Younghak; Kim, Hae Ri; Joung, Kyong Hye; Kang, Yea Eun; Lee, Ju Hee; Kim, Koon Soon; Kim, Hyun Jin; Ku, Bon Jeong; Shong, Minho
2017-01-01
Background Cushing syndrome is characterized by glucose intolerance, cardiovascular disease, and an enhanced systemic inflammatory response caused by chronic exposure to excess cortisol. Eosinopenia is frequently observed in patients with adrenal Cushing syndrome, but the relationship between the eosinophil count in peripheral blood and indicators of glucose level in patients with adrenal Cushing syndrome has not been determined. Methods A retrospective study was undertaken of the clinical and laboratory findings of 40 patients diagnosed with adrenal Cushing syndrome at Chungnam National University Hospital from January 2006 to December 2016. Clinical characteristics, complete blood cell counts with white blood cell differential, measures of their endocrine function, description of imaging studies, and pathologic findings were obtained from their medical records. Results Eosinophil composition and count were restored by surgical treatment of all of the patients with adrenal Cushing disease. The eosinophil count was inversely correlated with serum and urine cortisol, glycated hemoglobin, and inflammatory markers in the patients with adrenal Cushing syndrome. Conclusion Smaller eosinophil populations in patients with adrenal Cushing syndrome tend to be correlated with higher levels of blood sugar and glycated hemoglobin. This study suggests that peripheral blood eosinophil composition or count may be associated with serum glucose levels in patients with adrenal Cushing syndrome. PMID:28956365
Serotonin and pituitary-adrenal function. [in rat under stress
NASA Technical Reports Server (NTRS)
Berger, P. A.; Barchas, J. D.; Vernikos-Danellis, J.
1974-01-01
An investigation is conducted to evaluate the response of the pituitary-adrenal system to a stress stimulus in the rat. In the investigation brain serotonin synthesis was inhibited with p-chlorophenylalanine. In other tests the concentration of serotonin was enhanced with precursors such as tryptophan or 5-hydroxytryptophan. On the basis of the results obtained in the study it is speculated that in some disease states there is a defect in serotonergic neuronal processes which impairs pituitary-adrenal feedback mechanisms.
Fleischer, Norman; Abe, Kaoru; Liddle, Grant W.; Orth, David N.; Nicholson, Wendell E.
1967-01-01
Six patients who had experienced prolonged steroid-induced pituitary-adrenal suppression were treated with 100 U of depot procine ACTH every 2 to 4 days for several months. Such treatment did not hasten the recovery of normal pituitary-adrenal function compared with the rate of recovery of a group of similarly suppressed patients who received no depot ACTH. Eight of nine patients who received prolonged courses of depot porcine ACTH developed antibodies to ACTH that cross-reacted with endogenous ACTH, binding it in the circulation in inactive form and retarding its removal from the circulation. The presence of such antibodies did not in itself grossly alter pituitary-adrenal interrelationships. Images PMID:4289551
Bilateral adrenal masses: a single-centre experience
Bandgar, Tushar; Khare, Shruti; Jadhav, Swati; Lila, Anurag; Goroshi, Manjunath; Kasaliwal, Rajeev; Khadilkar, Kranti; Shah, Nalini S
2016-01-01
Background Bilateral adrenal masses may have aetiologies like hyperplasia and infiltrative lesions, besides tumours. Hyperplastic and infiltrative lesions may have coexisting hypocortisolism. Bilateral tumours are likely to have hereditary/syndromic associations. The data on clinical profile of bilateral adrenal masses are limited. Aims To analyse clinical, biochemical and radiological features, and management outcomes in patients with bilateral adrenal masses. Methods Retrospective analysis of 70 patients with bilateral adrenal masses presenting to a single tertiary care endocrine centre from western India (2002–2015). Results The most common aetiology was pheochromocytoma (40%), followed by tuberculosis (27.1%), primary adrenal lymphoma (PAL) (10%), metastases (5.7%), non-functioning adenomas (4.3%), primary bilateral macronodular adrenal hyperplasia (4.3%), and others (8.6%). Age at presentation was less in patients with pheochromocytoma (33 years) and tuberculosis (41 years) compared with PAL (48 years) and metastases (61 years) (P<0.001). The presenting symptoms for pheochromocytoma were hyperadrenergic spells (54%) and abdominal pain (29%), whereas tuberculosis presented with adrenal insufficiency (AI) (95%). The presenting symptoms for PAL were AI (57%) and abdominal pain (43%), whereas all cases of metastasis had abdominal pain. Mean size of adrenal masses was the largest in lymphoma (5.5cm) followed by pheochromocytoma (4.8cm), metastasis (4cm) and tuberculosis (2.1cm) (P<0.001). Biochemically, most patients with pheochromocytoma (92.8%) had catecholamine excess. Hypocortisolism was common in tuberculosis (100%) and PAL (71.4%) and absent with metastases (P<0.001). Conclusion In evaluation of bilateral adrenal masses, age at presentation, presenting symptoms, lesion size, and biochemical features are helpful in delineating varied underlying aetiologies. PMID:27037294
Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen
2015-05-29
The aim of this study was to compare plasma cortisol concentration during anesthesia of children with congenital heart disease who received dexmedetomidine (DEX) with those who received etomidate (ETO). We recruited 99 ASA physical status II-III pediatric patients scheduled for congenital heart disease (CHD) corrective surgery and divided into them into 3 groups. Group DEX received an infusion of DEX intravenously with a bolus dose of 0.5 µg·kg-1 within 10 min during anesthesia induction, followed by a maintenance dose of DEX 0.5 µg·kg-1·h-1. Group ETO received ETO intravenously with a bolus dose of 0.3 mg·kg-1 without a maintenance dose. Group CON received routine anesthetics as controls. The preset timepoints were: before anesthesia induction (T0), at the end of induction (T1), 30 min after anesthesia induction (T2), at the time of aortic and inferior vena catheterization (T3), and at 180 min (T4) and 24 h (T5) after anesthesia induction. The cortisol concentration decreased gradually after anesthesia induction in all groups, and returned to baseline values after 24 h. The cortisol concentration was significantly lower in Group ETO children than in Group DEX or group CON at T4. The plasma concentrations of cortisol decreased in CHD children after the operation, but returned to baseline after 24 h of anesthesia induction. The adrenal cortex function inhibition induced by ETO in CHD children is longer and more serious than that induced by DEX (if any) during the preoperative period.
Ca(2+) signaling mechanisms in bovine adrenal chromaffin cells.
Weiss, Jamie L
2012-01-01
Calcium (Ca(2+)) is a crucial intracellular messenger in physiological aspects of cell signaling. Adrenal chromaffin cells are the secretory cells from the adrenal gland medulla that secrete catecholamines, which include epinephrine and norepinephrine important in the 'fight or flight' response. Bovine adrenal chromaffin cells have long been used as an important model for secretion -(exocytosis) not only due to their importance in the short-term stress response, but also as a neuroendocrine model of neurotransmtter release, as they have all the same exocytotic proteins as neurons but are easier to prepare, culture and use in functional assays. The components of the Ca(2+) signal transduction cascade and it role in secretion has been extensively characterized in bovine adrenal chromaffin cells. The Ca(2+) sources, signaling molecules and how this relates to the short-term stress response are reviewed in this book chapter in an endeavor to generally -overview these mechanisms in a concise and uncomplicated manner.
While it is known that adrenal steroids impact reproduction and a variety of other physiological and behavioral functions, disruption of the HPA-axis is not typically considered in toxicological studies. Here we characterize changes in basal corticosterone (CORT) and progesterone...
Cheng, Behling; Al-Shammari, Fatema H; Ghader, Isra'a A; Sequeira, Fatima; Thakkar, Jitendra; Mathew, Thazhumpal C
2017-07-01
Adrenal gland reportedly expresses many nuclear receptors that are known to heterodimerize with retinoid-X-receptor (RXR) for functions, but the information regarding the glandular RXR is not adequate. Studies of rat adrenal homogenate by Western blotting revealed three RXR proteins: RXRα (55kDa), RXRβ (47kDa) and RXR (56kDa). RXRγ was not detectable. After fractionation, RXRα was almost exclusively localized in the nuclear fraction. In comparison, substantial portions of RXRβ and RXR were found in both nuclear and post-nuclear particle fractions, suggesting genomic and non-genomic functions. Cells immunostained for RXRα were primarily localized in zona fasciculata (ZF) and medulla, although some stained cells were found in zona glomerulosa (ZG) and zona reticularis (ZR). In contrast, cells immunostained for RXRβ were concentrated principally in ZG, although some stained cells were seen in ZR, ZF, and medulla (in descending order, qualitatively). Analysis of adrenal lipid extracts by LC/MS did not detect 9-cis-retinoic acid (a potent RXR-ligand) but identified all-trans retinoic acid. Since C20 and C22 polyunsaturated fatty acids (PUFAs) can also activate RXR, subcellular availabilities of unesterified fatty acids were investigated by GC/MS. As results, arachidonic acid (C20:4), adrenic acid (C22:4), docosapentaenoic acid (C22:5), and cervonic acid (C22:6) were detected in the lipids extracted from each subcellular fraction. Thus, the RXR-agonizing PUFAs are available in all the main subcellular compartments considerably. The present findings not only shed light on the adrenal network of RXRs but also provide baseline information for further investigations of RXR heterodimers in the regulation of adrenal steroidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
The "yin and yang" of the adrenal and gonadal systems in elite military men.
Taylor, Marcus K; Hernández, Lisa M; Kviatkovsky, Shiloah A; Schoenherr, Matthew R; Stone, Michael S; Sargent, Paul
2017-05-01
We recently established daily, free-living profiles of the adrenal hormone cortisol, the (primarily adrenal) anabolic precursor dehydroepiandrosterone (DHEA) and the (primarily gonadal) anabolic hormone testosterone in elite military men. A prevailing view is that adrenal and gonadal systems reciprocally modulate each other; however, recent paradigm shifts prompted the characterization of these systems as parallel, cooperative processes (i.e. the "positive coupling" hypothesis). In this study, we tested the positive coupling hypothesis in 57 elite military men by evaluating associations between adrenal and gonadal biomarkers across the day. Salivary DHEA was moderately and positively coupled with salivary cortisol, as was salivary testosterone. Anabolic processes (i.e. salivary DHEA and testosterone) were also positively and reliably coupled across the day. In multivariate models, salivary DHEA and cortisol combined to account for substantial variance in salivary testosterone concentrations across the day, but this was driven almost exclusively by DHEA. This may reflect choreographed adrenal release of DHEA with testicular and/or adrenal release of testosterone, systemic conversion of DHEA to testosterone, or both. DHEA and testosterone modestly and less robustly predicted cortisol concentrations; this was confined to the morning, and testosterone was the primary predictor. Altogether, top-down co-activation of adrenal and gonadal hormone secretion may complement bottom-up counter-regulatory functions to foster anabolic balance and neuronal survival; hence, the "yin and yang" of adrenal and gonadal systems. This may be an adaptive process that is amplified by stress, competition, and/or dominance hierarchy.
Armc5 deletion causes developmental defects and compromises T-cell immune responses
Hu, Yan; Lao, Linjiang; Mao, Jianning; Jin, Wei; Luo, Hongyu; Charpentier, Tania; Qi, Shijie; Peng, Junzheng; Hu, Bing; Marcinkiewicz, Mieczyslaw Martin; Lamarre, Alain; Wu, Jiangping
2017-01-01
Armadillo repeat containing 5 (ARMC5) is a cytosolic protein with no enzymatic activities. Little is known about its function and mechanisms of action, except that gene mutations are associated with risks of primary macronodular adrenal gland hyperplasia. Here we map Armc5 expression by in situ hybridization, and generate Armc5 knockout mice, which are small in body size. Armc5 knockout mice have compromised T-cell proliferation and differentiation into Th1 and Th17 cells, increased T-cell apoptosis, reduced severity of experimental autoimmune encephalitis, and defective immune responses to lymphocytic choriomeningitis virus infection. These mice also develop adrenal gland hyperplasia in old age. Yeast 2-hybrid assays identify 16 ARMC5-binding partners. Together these data indicate that ARMC5 is crucial in fetal development, T-cell function and adrenal gland growth homeostasis, and that the functions of ARMC5 probably depend on interaction with multiple signalling pathways. PMID:28169274
The cortisol awakening response and memory performance in older men and women.
Almela, Mercedes; van der Meij, Leander; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia
2012-12-01
The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory). Copyright © 2012 Elsevier Ltd. All rights reserved.
60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH.
Gallo-Payet, Nicole
2016-05-01
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH. © 2016 Society for Endocrinology.
Serotonin involvement in pituitary-adrenal function
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Kellar, K. J.; Kent, D.; Gonzales, C.; Berger, P. A.; Barchas, J. D.
1977-01-01
Experiments clarifying the effects of serotonin (5-HT) in the regulation of the hypothalamic-pituitary-adrenocortical system are surveyed. Lesion experiments which seek to determine functional maps of serotonergic input to areas involved in regulation are reported. Investigations of the effects of 5-HT levels on the plasma ACTH response to stress and the diurnal variation in basal plasma corticosterone are summarized, and the question of whether serotonergic transmission is involved in the regulation of all aspects of pituitary-adrenal function is considered with attention to the stimulatory and inhibitory action of 5-HT.
Heterogeneous levels of oxidative phosphorylation enzymes in rat adrenal glands.
Ogawa, Koichi; Harada, Keita; Endo, Yutaka; Sagawa, Sueko; Inoue, Masumi
2011-01-01
Mitochondria are organelles that produce ATP and reactive oxygen species, which are thought to be responsible for a decline in physiological function with aging. In this study, we morphologically and biochemically examined mitochondria in the rat adrenal gland. Immunohistochemistry showed that the rank order for intensity of immunolabelling for complex IV was zona reticularis > zona fasciculata > adrenal medulla, whereas for complex V α and β subunits, it was zona fasciculata > zona reticularis and adrenal medulla. The immunolabelling for complex I was homogeneous in the adrenal gland. The difference in immunolabelling between complexes I and IV indicates that the ratio of levels of complex I to that of complex IV in the zona reticularis was smaller than that in the zona fasciculata and the adrenal medulla. Electron microscopy revealed that aging rats had zona reticularis cells with many lysosomes and irregular nuclei. The result suggests that the level of proteins involved in oxidative phosphorylation is coordinated within the complex, but differs between the complexes. This might be responsible for degeneration of zona reticularis cells with aging. Copyright © 2009 Elsevier GmbH. All rights reserved.
Modulating the pituitary-adrenal response to stress
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.
1975-01-01
Serotonin is believed to be a transmitter or regulator of neuronal function. A possible relationship between the pituitary-adrenal secretion of steroids and brain serotonin in the rat was investigated by evaluating the effects of altering brain 5-hydroxy tryptamine (HT) levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. The approach was either to inhibit brain 5-HT synthesis with para-chlorophenyl alanine or to raise its level with precursors such as tryptophan or 5-hydroxy tryptophan.
Liver and chorion cytochemistry.
Roels, F; De Prest, B; De Pestel, G
1995-01-01
Microscopic visualization of peroxisomes in chorionic villus cytotrophoblast and in biopsy and autopsy samples of liver and kidney, the presence of enlarged liver macrophages containing lipid droplets insoluble in acetone and n-hexane as well as polarizing inclusions formed by stacks of trilamellar sheets are of diagnostic value in peroxisomal disorders. Methods are presented for evaluating these structures by light microscopy; trilamellar inclusions are only detected by electron microscopy. Macrophage features are preserved in archival paraffin blocks. In adrenal cortex, insoluble lipid, polarizing inclusions and trilamellar structures should be looked for. The stains are easily reproducible, and all reagents are commercially available.
de Brito-Marques, P R; de Melo, R J; Barraquer i Bordas, L
1992-06-01
The authors report a case of adrenoleukodystrophy in a 8 years old male patient whose mother has taken several abortive drugs during the first three months of pregnancy. The disease was progressive starting with auditory, visual and mental disturbances, followed by neurovegetatives and motor changes with convulsion and fetal position. At the final stage the patient became blind, deaf, quadriplegic and dementiated. Death resulted from lung infection. The diagnosis was confirmed by the CSF, electrophysiological, radiological and necropsy findings. Necropsy changes in the brain and adrenal cortex are detailed.
Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.
2016-01-01
Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093
Bilateral neuroblastoma in situ associated with microcephaly.
Park, W. S.; Chi, J. G.
1993-01-01
We present an autopsy case of a two-day-old female infant with a very unusual combination of neuroblastoma in situ in both adrenals and microcephaly. This baby was born to a 28-year-old mother after 38 weeks of gestation, and died of respiratory difficulty 2 days later. At autopsy, the baby weighted 1,840gm, and the brain was extraordinarily small with a weight of 125gm. The gyral pattern was simplified and irregular. Microscopically massive migration defects, pachygyria, micropolygyria, leptomeningeal glioneuronal islands, small corticospinal tract and heterotopic Purkinje cells in the cerebellum were found. In addition, there were medullary nodules in both adrenals. They measured 0.7 x 0.4cm and 0.7 x 0.3cm, respectively. These nodules showed the typical histological features of undifferentiated neuroblastoma. The tumor nodules were confined to the medullary portion and did not extend to the cortex or contiguous structures meeting the criteria of neuroblastoma in situ. Based on these unusual and seemingly unrelated sets of findings, it is suggested that the histogenesis of neuroblastoma in situ could be a part of the generalized dysontogenic process. PMID:8397936
Yoshida, Masanori; Murakami, Miho; Ueda, Harumi; Miyata, Misaki; Takahashi, Norio; Oiso, Yutaka
2014-01-01
Although pituitary function is often impaired in pituitary apoplexy, the development of thyrotoxicosis is rare. We describe an unusual case of hypopituitarism due to pituitary apoplexy coexisting with transient hyperthyroidism. A 74-year-old woman presented with severe fatigue, palpitation, appetite loss, hypotension, and hyponatremia. Endocrine studies showed hyperthyroidism and anterior pituitary hormone deficiencies. A magnetic resonance imaging suggested recent-onset pituitary apoplexy in a pituitary tumor, although the patient had no apoplectic symptoms such as headache and visual disturbance. Thyrotoxicosis and adrenal insufficiency worsened her general condition. Glucocorticoid supplementation improved her clinical symptoms and hyponatremia. Serum anti-thyrotropin receptor and thyroid-stimulating antibody titers were negative, and her thyroid function was spontaneously normalized without antithyroid medication, suggesting painless thyroiditis. Thereafter, her thyroid function decreased because of central hypothyroidism and 75 µg of levothyroxine was needed to maintain thyroid function at the euthyroid stage. The pituitary mass was surgically removed and an old hematoma was detected in the specimen. Considering that painless thyroiditis develops as a result of an autoimmune process, an immune rebound mechanism due to adrenal insufficiency probably caused painless thyroiditis. Although the most common type of thyroid disorder in pituitary apoplexy is central hypothyroidism, thyrotoxicosis caused by painless thyroiditis should be considered even if the patient has pituitary deficiencies. Because thyrotoxicosis with adrenal insufficiency poses a high risk for a life-threatening adrenal crisis, prompt diagnosis and treatment are critical.
Camats, Núria; Pandey, Amit V; Fernández-Cancio, Mónica; Fernández, Juan M; Ortega, Ana M; Udhane, Sameer; Andaluz, Pilar; Audí, Laura; Flück, Christa E
2014-02-01
The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype. © 2013 John Wiley & Sons Ltd.
Adrenocortical Gap Junctions and Their Functions
Bell, Cheryl L.; Murray, Sandra A.
2016-01-01
Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985
Sominsky, Luba; Ong, Lin Kooi; Ziko, Ilvana; Dickson, Phillip W; Spencer, Sarah J
2018-07-15
A poor nutritional environment during early development has long been known to increase disease susceptibility later in life. We have previously shown that rats that are overfed as neonates (i.e. suckled in small litters (4 pups) relative to control conditions (12 pups)) show dysregulated hypothalamic-pituitary-adrenal axis responses to immune stress in adulthood, particularly due to an altered capacity of the adrenal to respond to an immune challenge. Here we hypothesised that neonatal overfeeding similarly affects the sympathomedullary system, testing this by investigating the biochemical function of tyrosine hydroxylase (TH), the first rate-limiting enzyme in the catecholamine synthesis. We also examined changes in adrenal expression of the leptin receptor and in mitogen-activated protein kinase (MAPK) signalling. During the neonatal period, we saw age-dependent changes in TH activity and phosphorylation, with neonatal overfeeding stimulating increased adrenal TH specific activity at postnatal days 7 and 14, along with a compensatory reduction in total TH protein levels. This increased TH activity was maintained into adulthood where neonatally overfed rats exhibited increased adrenal responsiveness 30 min after an immune challenge with lipopolysaccharide, evident in a concomitant increase in TH protein levels and specific activity. Neonatal overfeeding significantly reduced the expression of the leptin receptor in neonatal adrenals at postnatal day 7 and in adult adrenals, but did not affect MAPK signalling. These data suggest neonatal overfeeding alters the capacity of the adrenal to synthesise catecholamines, both acutely and long term, and these effects may be independent of leptin signalling. Copyright © 2017 Elsevier B.V. All rights reserved.
Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones.
Fleshner, Monika; Campisi, Jay; Amiri, Leila; Diamond, David M
2004-10-01
Heat-shock proteins (Hsp) play an important role in stress physiology. Exposure to a variety of stressors will induce intracellular Hsp72, and this induction is believed to be beneficial for cell survival. In contrast, Hsp72 released during stress (extracellular Hsp72; eHsp72) activates pro-inflammatory responses. Clearly, physical stressors such as heat, cold, H(2)O(2), intense exercise and tail shock will induce both intra- and extracellular Hsp72. The current study tested whether a psychological stressor, cat exposure, would also trigger this response. In addition, the potential role of adrenal hormones in the Hsp72 response was examined. Adult, male Sprague Dawley rats were either adrenalectomized (ADX) or sham operated. Ten days post-recovery, rats were exposed to either a cat with no physical contact or control procedures (n = 5-6/group) for 2 h. Levels of intracellular Hsp72 were measured in the brain (frontal cortex, hippocampus, hypothalamus, dorsal vagal complex) and pituitary (ELISA). Levels of eHsp72 (ELISA) and corticosterone (RIA) were measured from serum obtained at the end of the 2-h stress period. Rats that were exposed to a cat had elevated intracellular Hsp72 in hypothalamus and dorsal vagal complex, and elevated eHsp72 and corticosterone in serum. Both the intra- and extracellular Hsp72 responses were blocked or attenuated by ADX. This study demonstrates that cat exposure can stimulate the Hsp72 response and that adrenal hormones contribute to this response.
Antonini, S R; N'Diaye, N; Baldacchino, V; Hamet, P; Tremblay, J; Lacroix, A
2004-07-01
Gastric inhibitory polypeptide (GIP)-dependent Cushing's syndrome (CS) results from the ectopic expression of non-mutated GIP receptor (hGIPR) in the adrenal cortex. We evaluated whether mutations or polymorphisms in the regulatory region of the GIPR gene could lead to this aberrant expression. We studied 9.0kb upstream and 1.3kb downstream of the GIPR gene putative promoter (pProm) by sequencing leukocyte DNA from controls and from adrenal tissues of GIP- and non-GIP-dependent CS patients. The putative proximal promoter region (800 bp) and the first exon and intron of the hGIPR gene were sequenced on adrenal DNA from nine GIP-dependent CS, as well as on leukocyte DNA of nine normal controls. Three variations found in this region were found in all patients and controls; at position -4/-5, an insertion of a T was seen in four out of nine patients and in five out of nine controls. Transient transfection studies conducted in rat GC and mouse Y1 cells showed that the TT allele confers loss of 40% in the promoter activity. The analysis of the 8-kb distal pProm region revealed eight distal single nucleotide polymorphisms (SNPs) without probable association with the disease, since frequencies in patients and controls were very similar. In conclusion, mutations or SNPs in the regulatory region of the GIPR gene are unlikely to underlie GIP-dependent CS. Copyright 2004 Elsevier Ltd.
ERIC Educational Resources Information Center
Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal
2015-01-01
Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…
Gubareva, L I; Kupriĭ, G A; Mishina, N F; Mishina, E A
1996-04-01
Computer classes were shown to affect the sympathetic-adrenal and hypothalamo-hypophyseal-adrenocortical systems in 6-year-old children. The data obtained suggests the necessity of a medical-pedagogical control of the selection of children for computer groups.
Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G
2007-01-01
Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8μg 100 g−1 day−1, s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases. PMID:17218354
Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M
2017-05-17
Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.
Genetic variation of the porcine NR5A1 is associated with meat color.
Görres, Andreas; Ponsuksili, Siriluck; Wimmers, Klaus; Muráni, Eduard
2016-02-01
Because of the central role of Steroidogenic factor 1 in the regulation of the development and function of steroidogenic tissues, including the adrenal gland, we chose the encoding gene NR5A1 as a candidate for stress response, meat quality and carcass composition in the domestic pig. To identify polymorphisms of the porcine NR5A1 we comparatively sequenced the coding, untranslated and regulatory regions in four commercial pig lines. Single nucleotide polymorphisms could be found in the 3' UTR and in an intronic enhancer, whereas no polymorphisms were detected in the proximal promoter and coding region. A subset of the detected polymorphisms was genotyped in Piétrain x (German Large White x German Landrace) and German Landrace pigs. For the same animals, carcass composition traits, meat quality characteristics and parameters of adrenal function were recorded. Associations with meat color were found for two of the discovered SNPs in Piétrain x (German Large White x German Landrace) and German Landrace pigs but no connections to parameters of adrenal function could be established. We conclude that NR5A1 variations influence meat color in a hypothalamus-pituitary-adrenal axis independent manner and that further regulatory regions need to be analyzed for genetic variations to understand the discovered effects.
Mortality of Septic Mice Strongly Correlates With Adrenal Gland Inflammation.
Jennewein, Carla; Tran, Nguyen; Kanczkowski, Waldemar; Heerdegen, Lars; Kantharajah, Ajith; Dröse, Stefan; Bornstein, Stefan; Scheller, Bertram; Zacharowski, Kai
2016-04-01
Sepsis and septic shock are commonly present in the ICU and accompanied by significant morbidity, mortality, and cost. The frequency of secondary adrenal insufficiency in sepsis remains open to debate and a challenge to identify and treat appropriately. Animal models of sepsis using genetic or surgical initiation of adrenal insufficiency resulted in increased mortality, but the mechanisms are still unclear. The present study investigates the impact of adrenal inflammation in septic mice challenged with cecal ligation and puncture. Prospective experimental study. University laboratory. C57BL/6N wild-type mice. Sepsis, induced by cecal ligation and puncture for 24 and 48 hours. Both septic and control mice were carefully monitored (every 30 min) for up to 48 hours and divided into survivors and nonsurvivors. We observed a significant and massive increase of interleukin-6, interleukin-1β, and tumor necrosis factor-α in adrenal protein extracts of nonsurvivors compared with sham animals and survivors. This pattern was partly reflected in liver and lung but not in plasma samples. Notably, a significant increase in nonsurvivors compared with survivors was only found for lung interleukin-6. In line with these findings, we detected a higher degree of leukocyte infiltration and hemorrhage in the adrenal glands of deceased mice. Evaluation of the hypothalamic-pituitary-adrenal axis response in these animals revealed an increase of adrenocorticotropic hormone, which was only partly reflected in the corticosterone level. Notably, using the adrenocorticotropic hormone stimulation test, we found an impaired adrenocorticotropic hormone response, particularly in nonsurvivors, which significantly correlated with the number of infiltrated leukocytes. Cecal ligation and puncture-induced murine sepsis induces a strong inflammatory response in the adrenal glands, which is accompanied by cell death and hemorrhage. Our data suggest that mortality and adrenal incapacitation are associated with the degree of adrenal inflammation, thereby underscoring the importance of adrenal function on survival.
Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.
Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A
2012-03-01
One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.
Endocannabinoids in brain plasticity: Cortical maturation, HPA axis function and behavior.
Dow-Edwards, Diana; Silva, Lindsay
2017-01-01
Marijuana use during adolescence has reached virtually every strata of society. The general population has the perception that marijuana use is safe for mature people and therefore is also safe for developing adolescents. However, both clinical and preclinical research shows that marijuana use, particularly prior to age 16, could have long-term effects on cognition, anxiety and stress-related behaviors, mood disorders and substance abuse. These effects derive from the role of the endocannabinoid system, the endogenous cannabinoid system, in the development of cortex, amygdala, hippocampus and hypothalamus during adolescence. Endocannabinoids are necessary for normal neuronal excitation and inhibition through actions at glutamate and GABA terminals. Synaptic pruning at excitatory synapses and sparing of inhibitory synapses likely results in changes in the balance of excitation/inhibition in individual neurons and within networks; processes which are necessary for normal cortical development. The interaction between prefrontal cortex (PFC), amygdala and hippocampus is responsible for emotional memory, anxiety-related behaviors and drug abuse and all utilize the endogenous cannabinoid system to maintain homeostasis. Also, endocannabinoids are required for fast and slow feedback in the normal stress response, processes which mature during adolescence. Therefore, exogenous cannabinoids, such as marijuana, have the potential to alter the course of development of each of these major systems (limbic, hypothalamic-pituitary-adrenal (HPA) axis and neocortex) if used during the critical period of brain development, adolescence. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.
Age-related effects of dexamethasone administration in adrenal zona reticularis.
Almeida, Henrique; Matos, Liliana; Ferreira, Jorge; Neves, Delminda
2006-05-01
Suppression of adrenocorticotropic hormone results in reduced adrenal steroid output, adrenocortical cell atrophy, and apoptosis in young rats. To verify such effects during aging, dexamethasone was injected into rats for 3 days at five different ages; at day 4, adrenals and blood were collected for morphologic and corticosterone assay. Adrenal structure was similar at all ages, but in dexamethasone-injected animals there were ultrastructural features of apoptosis and a higher percentage of TUNEL and caspase-3-labeled nuclei and cytoplasm; their corticosterone decreased significantly. In both groups, there was age-related decrease in the percentage of apoptotic cells, significant only in dexamethasone-injected rats. The data suggest that aged adrenocortical cells are less susceptible to the lack of adrenocorticotropic hormone (ACTH), possibly as a result of their decreased functional ability.
Partial recovery of adrenal function in a patient with autoimmune Addison's disease.
Smans, L C C J; Zelissen, P M J
2008-07-01
To our knowledge, no case of remission in autoimmune Addison's disease has previously been reported. We describe a patient with primary adrenal insufficiency caused by autoimmune adrenalitis in whom partial remission was observed after 7 yr. A 39-yr-old male was referred because of extreme fatigue, weight loss, anorexia, nausea, and bouts of fever. During physical examination hyperpigmentation was seen. Laboratory tests showed a plasma cortisol of 0.02 micromol/l (08:30 h). Cortisol failed to increase during the ACTH stimulation test (0.02 to 0.03 micromol/l) and ACTH was markedly elevated (920 pmol/l). Adrenal auto-antibodies were weakly positive. A CT-scan showed no evidence of calcifications or other abnormalities of the adrenal glands. The diagnosis of autoimmune Addison's disease was made and replacement therapy with hydrocortisone and fludrocortisone was started. During the following years the dose of hydrocortisone was gradually decreased. Eventually, the patient decided to stop his medication completely. A repeated ACTH-stimulation test revealed a basal cortisol of 0.25 micromol/l and a peak cortisol of 0.30 micromol/l with a basal ACTH of 178 pmol/l. The patient did not have any complaints. Recovery of adrenal insufficiency, due to causes other than autoimmune adrenalitis, has been reported in the past. If our case of partial recovery of autoimmune adrenalitis is not unique this could have profound effects on treatment and follow-up of Addison's disease.
[Vascular adrenal cyst causing difficult to control high blood pressure].
García Escudero, D; Torres Roca, M; Hernández Contreras, M E; Sánchez Rodríguez, C; Oñate Celdrán, J
Hypertension is a prevalent disease in developed countries. Adrenal masses, and especially adrenal cysts, are a rare and usually asymptomatic finding, which can go unnoticed or be detected as incidental findings in imaging tests. These circumstances make the multidisciplinary approach mandatory. The case is presented on a 72 year-old woman with uncontrolled high blood pressure referred to the Urology Department due to the incidental finding of a right retroperitoneal mass. A functional and imaging study was performed, establishing a diagnosis of adrenal cyst causing hypertensive symptoms. A literature search was performed in order to assess diagnostic and therapeutic approaches. With the diagnosis of adrenal cyst causing uncontrolled high blood pressure, a right laparoscopic adrenalectomy was performed. After surgery the patient has maintained blood pressure within the normal range. A multidisciplinary approach is necessary for the management of rare diseases. The surgical approach, if possible, should be laparoscopic. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
Simultaneous peritoneal and retroperitoneal splenosis mimics metastatic right adrenal mass.
Hashem, Abdelwahab; Elbaset, M A; Zahran, Mohamed H; Osman, Yasser
2018-06-05
Right retroperitoneal splenosis is rare with few reported cases. We report, here, the case of simultaneous peritoneal and retroperitoneal splenosis mimics metastatic right adrenal mass. A 28-year-old man who had previously undergone post traumatic splenectomy at childhood and subsequently presented with an large incidental non-functioning right adrenal mass with presence of extra-hepatic peritoneal focal lesion diagnosed as metastasis by magnetic resonance imaging (MRI). Adrenalectomy with metatstectomy was performed, and both masses were identified to be splenosis. Adrenal incidentalomas (AIs) is defined as asymptomatic masses >1 cm. on cross-sectional imaging studies. AIs have significant malignant potential for masses > 6 cm. Splenosis are found most frequently in the left retroperitoneum in cases involving retroperitoneal splenosis. However, right retroperitoneal splenosis have been reported. Traditional imaging techniques cannot differentiate splenosis from malignancy. Large right adrenal incidentalomas present with other abdominal, peritoneal masses could be splenosis in patient following post-traumatic splenectomy. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
State of some peripheral organs during laser puncture correction of ovarian functional deficiency
NASA Astrophysics Data System (ADS)
Vylegzhanina, T. A.; Kuznetsova, Tatiana I.; Maneeva, O.; Ryzhkovskaya, E. L.; Yemelianova, A.
2001-01-01
The findings from studies on structural and functional parameters of the adrenal, thyroid, and pineal glands in conditions of ovarian hypofunction and after its correction by laser puncture are presented. An experimentally induced hypofunction of the ovaries was shown to be accompanied by a decreased hormonal synthesis in the cortical fascicular zone. The epiphysis showed ultra structural signs of increased functional activity. Application of a helium-neon laser to biologically active points of the ovarian reflexogenic zone induced normalization of the ovarian cycle, potentiating of the adrenal functional state, and a decreased thyroid hormone production and abolished the activatory effect of the dark regime on the functional state of the pineal gland.
Jia, Y Y; Wang, S Q; Ni, Y D; Zhang, Y S; Zhuang, S; Shen, X Z
2014-09-01
The aim of this study was to investigate changes of stress status in dairy goats induced to subacute ruminal acidosis (SARA). The level of acute phase proteins (APPs) including haptoglobin (HP) and serum amyloid A (SAA) in plasma and their mRNA expression in liver, as well as plasma cortisol and genes expression of key factors controlling cortisol synthesis in adrenal cortex were compared between SARA and control goats. SARA was induced by feeding high concentrate diet (60% concentrate of dry matter) for 3 weeks (SARA, n=6), while control goats (Con, n=6) received a low concentrate diet (40% concentrate of dry matter) during the experimental time. SARA goats showed ruminal pH below 5.8 for more than 3 h per day, which was significantly lower than control goats (pH>6.0). SARA goats demonstrated a significant increase of hepatic HP and SAA mRNA expression (P<0.05), and the level of HP but not SAA in plasma was markedly increased compared with control (P<0.05). The level of cortisol in plasma showed a trend to increase in SARA goats (0.05
0.05). These results suggested that SARA goats experienced a certain stress status, exhibiting an increase in HP production and cortisol secretion.
Normal sonographic anatomy of the abdomen of coatis (Nasua nasua Linnaeus 1766).
Ribeiro, Rejane G; Costa, Ana Paula A; Bragato, Nathália; Fonseca, Angela M; Duque, Juan C M; Prado, Tales D; Silva, Andrea C R; Borges, Naida C
2013-06-23
The use of ultrasound in veterinary medicine is widespread as a diagnostic supplement in the clinical routine of small animals, but there are few reports in wild animals. The objective of this study was to describe the anatomy, topography and abdominal sonographic features of coatis. The urinary bladder wall measured 0.11 ± 0.03 cm. The symmetrical kidneys were in the left and right cranial quadrant of the abdomen and the cortical, medullary and renal pelvis regions were recognized and in all sections. The medullary rim sign was visualized in the left kidney of two coatis. The liver had homogeneous texture and was in the cranial abdomen under the rib cage. The gallbladder, rounded and filled with anechoic content was visualized in all coatis, to the right of the midline. The spleen was identified in the left cranial abdomen following the greater curvature of the stomach. The parenchyma was homogeneous and hyperechogenic compared to the liver and kidney cortex. The stomach was in the cranial abdomen, limited cranially by the liver and caudo-laterally by the spleen. The left adrenal glands of five coatis were seen in the cranial pole of the left kidney showing hypoechogenic parenchyma without distinction of cortex and medulla. The pancreas was visualized in only two coatis. The left ovary (0.92 cm x 0.56 cm) was visualized on a single coati in the caudal pole of the kidney. The uterus, right adrenal, right ovary and intestines were not visualized. Ultrasound examination of the abdomen of coatis may be accomplished by following the recommendations for dogs and cats. It is possible to evaluate the anatomical and topographical relationships of the abdominal organs together with the knowledge of the peculiarities of parenchymal echogenicity and echotexture of the viscera.
Lefebvre, Hervé; Thomas, Michaël; Duparc, Céline; Bertherat, Jérôme; Louiset, Estelle
2016-01-01
In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions. PMID:27489549
Nishi, Haruhisa; Arai, Hirokazu; Momiyama, Toshihiko
2013-01-01
Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R), a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A(2A) and A(2B)), P2X (P2X₅ and P2X₇), and P2Y (P2Y₁, P2Y₂, P2Y₆, P2Y₁₂, P2Y₁₃, and P2Y₁₄) purinergic receptors were detected in H295R. 2MeS-ATP (10-1000 µM), a P2Y₁ agonist, induced glucocorticoid (GC) secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1-1000 µM) had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca²⁺-mobilization in the cells, independently of the extracellular Ca²⁺ concentration. Increases in intracellular Ca²⁺ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM) and dibutyryl-cyclic AMP (db-cAMP: 500 µM) induced both GC secretion and Ca²⁺-mobilization in the presence of extracellular Ca²⁺ (1.2 mM). GC secretion by AngII was reduced by nifedipine (10-100 µM); whereas the Ca²⁺ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca²⁺ exposure induced Ca²⁺-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE): transient receptor C (TRPC) channels, calcium release-activated calcium channel protein 1 (Orai-1), and the stromal interaction molecule 1 (STIM1). In P2Y₁-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y₁ purinergic receptor for intracellular Ca²⁺-mobilization, and that P2Y₁ is linked to SOCE-activation, leading to Ca²⁺-influx which might be necessary for glucocorticoid secretion.
The Hypothalamic-Pituitary-Adrenal Axis and the Fetus.
Morsi, Amr; DeFranco, Donald; Witchel, Selma
2018-06-06
Glucocorticoids (GCs), cortisol in humans, influence multiple essential maturational events during gestation. In the human fetus, fetal hypothalamic-pituitary-adrenal (HPA) axis function, fetal adrenal steroidogenesis, placental 11β- hydroxysteroid dehydrogenase type 2 activity, maternal cortisol concentrations, and environmental factors impact fetal cortisol exposure. The beneficial effects of synthetic glucocorticoids (sGCs), such as dexamethasone and betamethasone, on fetal lung maturation have significantly shifted the management of preterm labor and threatened preterm birth. Accumulating evidence suggests that exposure to sGCs in utero at critical developmental stages can alter the function of organ systems and that these effects may have sequelae that extend into adult life. Maternal stress and environmental influences may also impact fetal GC exposure. This article explores the vulnerability of the fetal HPA axis to endogenous GCs and exogenous sGCs. © 2018 S. Karger AG, Basel.
Srinivasan, Lakshmi; Roberts, Brian; Bushnik, Tamara; Englander, Jeffrey; Spain, David A; Steinberg, Gary K; Ren, Li; Sandel, M Elizabeth; Al-Lawati, Zahraa; Teraoka, Jeffrey; Hoffman, Andrew R; Katznelson, Laurence
2009-07-01
To correlate deficient pituitary function with life satisfaction and functional performance in subjects with a recent history of traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH). Cross-sectional study. Eighteen subjects with TBI and 16 subjects with SAH underwent pituitary hormonal and functional assessments 5-12 months following the event. Adrenal reserve was assessed with a 1 mcg cosyntropin stimulation test and growth hormone deficiency (GHD) was diagnosed by insufficient GH response to GHRH-Arginine stimulation. Assessments of life satisfaction and performance-function included the Satisfaction with Life Scale (SWLS), Craig Handicap Assessment and Reporting Technique (CHART) and the Mayo Portland Adaptability Inventory-4 (MPAI-4). Hypopituitarism was present in 20 (58.8%) subjects, including 50% with adrenal insufficiency. Hypothyroidism correlated with worse performance on SWLS and CHART measures. GHD was associated with poorer performance on CHART and MPAI-4 scale. In this series of subjects with history of TBI and SAH, hypothyroidism and GHD were associated with diminished life satisfaction and performance-function on multiple assessments. Further studies are necessary to determine the appropriate testing of adrenal reserve in this population and to determine the benefit of pituitary hormone replacement therapy on function following brain injury.
Lawson, Elizabeth A; Holsen, Laura M; Desanti, Rebecca; Santin, McKale; Meenaghan, Erinne; Herzog, David B; Goldstein, Jill M; Klibanski, Anne
2013-11-01
Corticotrophin-releasing hormone (CRH)-mediated hypercortisolemia has been demonstrated in anorexia nervosa (AN), a psychiatric disorder characterized by food restriction despite low body weight. While CRH is anorexigenic, downstream cortisol stimulates hunger. Using a food-related functional magnetic resonance imaging (fMRI) paradigm, we have demonstrated hypoactivation of brain regions involved in food motivation in women with AN, even after weight recovery. The relationship between hypothalamic-pituitary-adrenal (HPA) axis dysregulation and appetite and the association with food-motivation neurocircuitry hypoactivation are unknown in AN. We investigated the relationship between HPA activity, appetite, and food-motivation neurocircuitry hypoactivation in AN. Cross-sectional study of 36 women (13 AN, ten weight-recovered AN (ANWR), and 13 healthy controls (HC)). Peripheral cortisol and ACTH levels were measured in a fasting state and 30, 60, and 120 min after a standardized mixed meal. The visual analog scale was used to assess homeostatic and hedonic appetite. fMRI was performed during visual processing of food and non-food stimuli to measure the brain activation pre- and post-meal. In each group, serum cortisol levels decreased following the meal. Mean fasting, 120 min post-meal, and nadir cortisol levels were high in AN vs HC. Mean postprandial ACTH levels were high in ANWR compared with HC and AN subjects. Cortisol levels were associated with lower fasting homeostatic and hedonic appetite, independent of BMI and depressive symptoms. Cortisol levels were also associated with between-group variance in activation in the food-motivation brain regions (e.g. hypothalamus, amygdala, hippocampus, orbitofrontal cortex, and insula). HPA activation may contribute to the maintenance of AN by the suppression of appetitive drive.
Dysmenorrhoea is associated with central changes in otherwise healthy women.
Vincent, Katy; Warnaby, Catherine; Stagg, Charlotte J; Moore, Jane; Kennedy, Stephen; Tracey, Irene
2011-09-01
Patients with chronic pain conditions demonstrate altered central processing of experimental noxious stimuli, dysfunction of the hypothalamic-pituitary-adrenal axis, and reduced quality of life. Dysmenorrhoea is not considered a chronic pain condition, but is associated with enhanced behavioural responses to experimental noxious stimuli. We used behavioural measures, functional magnetic resonance imaging, and serum steroid hormone levels to investigate the response to experimental thermal stimuli in otherwise healthy women, with and without dysmenorrhoea. Women with dysmenorrhoea reported increased pain to noxious stimulation of the arm and abdomen throughout the menstrual cycle; no menstrual cycle effect was observed in either group. During menstruation, deactivation of brain regions in response to noxious stimulation was observed in control women but not in women with dysmenorrhoea. Without background pain (ie, in nonmenstrual phases), activity in the entorhinal cortex appeared to mediate the increased responses in women with dysmenorrhoea. Mean cortisol was significantly lower in women with dysmenorrhoea and was negatively correlated with the duration of the symptom. Additionally, women with dysmenorrhoea reported significantly lower physical but not mental quality of life. Thus, many features of chronic pain conditions are also seen in women with dysmenorrhoea: specifically a reduction in quality of life, suppression of the hypothalamic-pituitary-adrenal axis, and alterations in the central processing of experimental noxious stimuli. These alterations persist when there is no background pain and occur in response to stimuli at a site distant from that of the clinical pain. These findings indicate the potential importance of early and adequate treatment of dysmenorrhoea. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Miller, Lowell A; Fagerstone, Kathleen A; Wagner, Robert A; Finkler, Mark
2013-09-23
Adrenocortical disease (ACD) is a common problem in surgically sterilized, middle-aged to old ferrets (Mustela putorius furo). The adrenal tissues of these ferrets develop hyperplasia, adenomas, or adenocarcinomas, which produce steroid hormones including estradiol, 17-hydroxyprogesterone, and androstenedione. Major clinical signs attributable to overproduction of these hormones are alopecia (hair loss) in both sexes and a swollen vulva in females. Pruritus, muscle atrophy, hind limb weakness, and sexual activity or aggression are also observed in both sexes. Males can develop prostatic cysts, prostatitis, and urethral obstruction. ACD is thought to be linked to continuous and increased LH secretion, due to lack of gonadal hormone feedback in neutered ferrets. This continuous elevated LH acts on adrenal cortex LH receptors, resulting in adrenal hyperplasia or adrenal tumor. This study investigated whether the immunocontraceptive vaccine GonaCon, a GnRH vaccine developed to reduce the fertility of wildlife species and the spread of disease, could prevent or delay onset of ACD and treat alopecia in ferrets with existing ACD. Results showed that GonaCon provided relief from ACD by causing production of antibodies to GnRH, probably suppressing production and/or release of LH. Treatment caused many ACD symptoms to disappear, allowing the ferrets to return to a normal life. The study also found that the probability of developing ACD was significantly reduced in ferrets treated with GonaCon when young (1-3 years old) compared to untreated control animals. GonaCon caused injection site reaction in some animals when administered as an intramuscular injection but caused few side effects when administered subcutaneously. Both intramuscular and subcutaneous vaccination resulted in similar levels of GnRH antibody titers. Subcutaneous vaccination with GonaCon is thus recommended to prevent the onset of ACD and as a possible treatment for ACD-signs in domestic ferrets. Published by Elsevier Ltd.
Lohuis, P J; Börjesson, P K; Klis, S F; Smoorenburg, G F
2000-05-01
Circulating adrenal hormones affect strial function. Removal of endogenous levels of adrenal steroids by bilateral adrenalectomy (ADX) in rats causes a decrease of Na(+)/K(+)-ATPase activity in the cochlear lateral wall [Rarey et al., 1989. Arch. Otolaryngol. Head Neck Surg. 115, 817-821] and a decrease of the volume of the marginal cells in the stria vascularis [Lohuis et al., 1990. Acta Otolaryngol. (Stockh.) 110, 348-356]. To study further the effect of absence of circulating adrenocorticosteroids on cochlear function, 18 male Long Evans rats underwent either an ADX or a SHAM operation. Electrocochleography was performed 1 week after surgery for tone bursts in a frequency range of 1-16 kHz. Thereafter, the cochleas were harvested and examined histologically. No significant changes in the amplitude growth curves of the summating potential (SP), the compound action potential (CAP) and the cochlear microphonics (CM) were detected after ADX. However, visually, there appeared to be a decrease of endolymphatic volume (tentatively called imdrops). Reissner's membrane (RM) extended less into scala vestibuli in ADX animals than in SHAM-operated animals. The ratio between the length of RM and the straight distance between the medial and lateral attachment points of RM were used as an objective measure to quantify this effect in each sub-apical half turn of the cochlea. The decrease in length of RM was statistically significant. Thus, circulating adrenal hormones appear to be necessary for normal cochlear fluid homeostasis. Absence of one or more of these hormones leads to shrinkage of the scala media (imdrops). However, the absence of adrenal hormones does not affect the gross cochlear potentials. Apparently, the cochlea is capable of compensating for the absence of circulating adrenal hormones to sustain the conditions necessary for proper cochlear transduction.
Parker, Lindsay M; Damanhuri, Hanafi A; Fletcher, Sophie P S; Goodchild, Ann K
2015-04-16
Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate. Copyright © 2015 Elsevier B.V. All rights reserved.
Harada, K; Endo, Y; Warashina, A; Inoue, M
2015-08-20
The effects of mitochondrial inhibitors (CN(-), a complex IV inhibitor and CCCP, protonophore) on catecholamine (CA) secretion and mitochondrial function were explored functionally and biochemically in rat and guinea-pig adrenal chromaffin cells. Guinea-pig chromaffin cells conspicuously secreted CA in response to CN(-) or CCCP, but rat cells showed a little, if any, secretory response to either of them. The resting metabolic rates in rat adrenal medullae did not differ from those in guinea-pig adrenal medullae. On the other hand, the time course of depolarization of the mitochondrial membrane potential (ΔΨm) in guinea-pig chromaffin cells in response to CN(-) was slower than that in rat chromaffin cells, and this difference was abolished by oligomycin, an F1F0-ATPase inhibitor. The extent of CCCP-induced decrease in cellular ATP in guinea-pig chromaffin cells, which was indirectly measured using a Mg(2+) indicator, was smaller than that in rat chromaffin cells. Relative expression levels of F1F0-ATPase inhibitor factor in guinea-pig adrenal medullae were smaller than in rat adrenal medullae, and the opposite was true for F1F0-ATPase α subunit. The present results indicate that guinea-pig chromaffin cells secrete more CA in response to a mitochondrial inhibitor than rat chromaffin cells and this higher susceptibility in the former is accounted for by a larger extent of reversed operation of F1F0-ATPase with the consequent decrease in ATP under conditions where ΔΨm is depolarized. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Torres-Farfan, Claudia; Valenzuela, Francisco J; Mondaca, Mauricio; Valenzuela, Guillermo J; Krause, Bernardo; Herrera, Emilio A; Riquelme, Raquel; Llanos, Anibal J; Seron-Ferre, Maria
2008-01-01
Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (Kd values: MCA 64 ± 1 pm, BAT 98.44 ± 2.12 pm and adrenal 4.123 ± 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life. PMID:18599539
McNeal, Neal; Anderson, Eden M; Moenk, Deirdre; Trahanas, Diane; Matuszewich, Leslie; Grippo, Angela J
2018-04-01
Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.
Endocrinopathy and Aging in Ferrets
Bakthavatchalu, V.; Muthupalani, S.; Marini, R. P.; Fox, J. G.
2017-01-01
Ferrets have become more popular as household pets and as animal models in biomedical research in the past 2 decades. The average life span of ferrets is about 5-11 years with onset of geriatric diseases between 3-4 years including endocrinopathies, neoplasia, gastrointestinal diseases, cardiomyopathy, splenomegaly, renal diseases, dental diseases, and cataract. Endocrinopathies are the most common noninfectious disease affecting middle-aged and older ferrets. Spontaneous neoplasms affecting the endocrine system of ferrets appear to be increasing in prevalence with a preponderance toward proliferative lesions in the adrenal cortex and pancreatic islet cells. Diet, gonadectomy, and genetics may predispose ferrets to an increased incidence of these endocrinopathies. These functional proliferative lesions cause hypersecretion of hormones that alter the physiology and metabolism of the affected ferrets resulting in a wide range of clinical manifestations. However, there is an apparent dearth of information available in the literature about the causal relationship between aging and neoplasia in ferrets. This review provides a comprehensive overview of the anatomy and physiology of endocrine organs, disease incidence, age at diagnosis, clinical signs, pathology, and molecular markers available for diagnosis of various endocrine disorders in ferrets. PMID:26936751
The History of Cortisone Discovery and Development.
Burns, Christopher M
2016-02-01
Philip Hench, Edward Kendall, and Tadeus Reichstein received the Nobel Prize in medicine and physiology in 1950 for their "investigations of the hormones of the adrenal cortex." Hench and Kendall took compound E from the laboratory to the clinic to the Nobel Prize in a span of 2 years. This article examines the paths that led to the day when the first rheumatoid arthritis patient received cortisone, and from there to the 1950 Nobel Prize ceremony. The aftermath of this achievement is also discussed. Although there have been significant advances in corticosteroid preparations and use since 1950, the side effects remain daunting. Copyright © 2016 Elsevier Inc. All rights reserved.
Functioning adrenal tumours in children and adolescents: an institutional experience.
Mishra, A; Agarwal, G; Misra, A K; Agarwal, A; Mishra, S K
2001-02-01
The purpose of the present paper was to carry out an audit of clinicopathological profile and treatment outcome in 13 children with functioning adrenal tumours. The medical records of 13 children with functioning adrenal tumours who were managed between June 1990 and January 1999 were reviewed. Demographic data, clinical features, biochemical and localization studies, operative details and follow-up records were studied. Children with neuroblastoma were excluded. The mean age was 7.4 +/- 5.3 years. Seven patients had Cushing's syndrome (CS), two patients had virilizing tumours, three patients had phaeochromocytoma (PCC) and one patient had Conn's syndrome. All patients (except one child with CS) were treated surgically. Two children with adrenocortical carcinoma (ACCa) died during the perioperative period. Histopathological diagnosis was adrenal cortical adenoma (ACAd) in four patients, ACCa in five patients and PCC in three patients. Two ACCa patients died of metastases at 12 and 14 months, respectively, while the third is alive and well at 30 months. Children with ACAd are alive and well at 91, 56, 32 and 27 months postoperatively. Children with PCC are free of disease (normal urinary metanephrines) at 63, 18 and 8 months after surgery but require antihypertensive drugs in low doses. The outcome of surgery is good in cases of ACAd and PCC. Although outcome is poor in ACCa, surgery remains the mainstay of treatment and offers good palliation.
Brain serotonin and pituitary-adrenal functions
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.
1973-01-01
It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.
Hershkovitz, Eli; Arafat, Maram; Loewenthal, Neta; Haim, Alon; Parvari, Ruti
2015-09-01
The nicotinamide nucleotide transhydrogenase (NNT) enzyme is the main generator of nicotinamide adenine dinucleotide phosphate-oxidase in the mitochondrion. Mutations of the NNT gene have been recently implicated in familial glucocorticoid deficiency. We describe the long-term clinical course of a NNT-deficient 20-year-old patient with combined adrenal failure who had developed a testicular adrenal rest tumor and precocious puberty. The patient's medical records were reviewed. Whole-exome sequencing was performed on DNA obtained from the patient and family members. The patient experienced Addisonian crisis at 10 months of age. Enlarged testicular volume and precocious puberty, accompanied by increased testosterone levels, were noted at 6 years. Testicular biopsy revealed a adrenal rest tumor, which regressed after intensification of glucocorticoid treatment. Genetic studies disclosed a c.1163A>C, p.Tyr388Ser substitution on the NNT gene. This mutation is predicted to be damaging to NNT function. We demonstrated for the first time that the clinical spectrum of NNT deficiency may consist of mineralocorticoid deficiency and testicular involvement as well.
Working-memory capacity protects model-based learning from stress.
Otto, A Ross; Raio, Candace M; Chiang, Alice; Phelps, Elizabeth A; Daw, Nathaniel D
2013-12-24
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response--believed to have detrimental effects on prefrontal cortex function--should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress.
Hidalgo, Vanesa; Almela, Mercedes; Pulopulos, Matias M; Salvador, Alicia
2016-09-01
There are large individual differences in age-related cognitive decline. Hypothalamic-pituitary-adrenal axis (HPA-axis) functioning has been suggested as one of the mechanisms underlying these differences. This study aimed to investigate the relationships between the diurnal cortisol cycle, measured as the cortisol awakening response (CAR), and the diurnal cortisol slope (DCS) and the memory performance of healthy older people. To do so, we assessed the verbal, visual, and working memory performance of 64 participants (32 men) from 57 to 76 years old who also provided 14 saliva samples on two consecutive weekdays to determine their diurnal cortisol cycle. The CAR was linearly and negatively associated with verbal (significantly) and visual (marginally) memory domains, but not with working memory. Sex did not moderate these relationships. Furthermore, no associations were found between the DCS and any of the three memory domains assessed. Our results indicate that the two components of the diurnal cortisol cycle have different relationships with memory performance, with the CAR being more relevant than DCS in understanding the link from HPA-axis activity and regulation to different types of memory. These results suggest that the CAR is related to memory domains dependent on hippocampal functioning (i.e., declarative memory), but not to those that are more dependent on prefrontal cortex functioning (i.e., working memory). Copyright © 2016 Elsevier Ltd. All rights reserved.
Toxicity of Chevron Escravos crude oil and chemical dispersant on guinea pig testicular function.
Afonne, Onyenmechi Johnson; Onyiaorah, Igwebuike Victor; Orisakwe, Orish Ebere
2013-01-01
Chemical contaminants have been found to affect reproductive functions in mammals. This study investigated the effect of Chevron Escravos crude oil and Emulsol L.W. dispersant on the testicular functions of guinea pig. Eight groups of seven sexually mature male guinea pigs each were given 1250, 2500, or 5000 mg/kg of crude oil and dispersant for 7 days. The fluid and food intake and body weight of the animals were measured daily throughout the study. After the exposure period, sperm quality analysis was carried out, and fructose and lactate dehydrogenase were analyzed in tissue homogenate, while testosterone and estradiol were assayed in blood. The right testis was also processed for histological analysis. The epididymal sperm number and fructose level of treated animals showed a significant dose-dependent decrease (p<0.05) compared with controls. Also, sperm motility and morphology were altered in the treated groups, while testosterone and estradiol levels were increased significantly (p<0.05) in the treated groups. Histological examination showed signs of toxicity in the treated animals. From the findings, it was evident that Chevron Escravos crude oil and Emulsol L.W. oil dispersant are able to cause acute testicular toxicity in guinea pigs. The possible mechanism of toxicity is suggested to be by stimulation of hormone production from the adrenal cortex, causing a negative feedback on gonadotropin-releasing hormone in the pituitary gland to suppress spermatogenesis.
Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas
2010-09-10
Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.
Barnes, Peter J
2006-01-01
Current drug therapy for asthma is highly effective and has evolved from naturally occurring substances through logical pharmaceutical developments. Pharmacology has played a critical role in asthma drug development and several key experimental observations have been published in this journal. Understanding the pharmacology of effective drug therapies has also taught us much about the underlying mechanisms of asthma. β2-Adrenoceptor agonists are the most effective bronchodilators and evolved from catecholamines from the adrenal medulla, whereas corticosteroids, from the adrenal cortex, are by far the most effective controllers of the underlying inflammatory process in the airways. The current ‘gold standard' of asthma therapy is a combination inhaler containing a long-acting β2-agonist with a corticosteroid – an improved form of adrenal gland extract. Cromoglycate, derived from a plant product and theophylline, a dietary methyl xanthine, have also been extensively used in the therapy of asthma, but we still do not understand their molecular mechanisms. Pharmacology has played an important role in improving natural products to make effective long lasting and safe asthma therapies, but has so far been challenged to produce new classes of antiasthma therapy. The only novel class of antiasthma therapy introduced in the last 30 years are leukotriene antagonists, which are less effective than existing treatments. New, more specific, therapies targeted at specific cytokines are less effective than corticosteroids, whereas more effective therapies carry a risk of side effects that may not be acceptable. It seems likely that pharmacology, rather than molecular genetics, will remain the main approach to the further improvement of treatment for asthma. PMID:16402117
de Jong, M; Bakker, W H; Krenning, E P; Breeman, W A; van der Pluijm, M E; Bernard, B F; Visser, T J; Jermann, E; Béhé, M; Powell, P; Mäcke, H R
1997-04-01
In vitro octreotide receptor binding of [111In-DOTA0,d-Phe1, Tyr3]octreotide (111In-DOTATOC) and the in vivo metabolism of 90Y- or 111In-labelled DOTATOC were investigated in rats in comparison with [111In-DTPA0]octreotide [111In-DTPAOC). 111In-DOTATOC was found to have an affinity similar to octreotide itself for the octreotide receptor in rat cerebral cortex microsomes. Twenty-four hours after injection of 90Y- or 111In-labelled DOTATOC, uptake of radioactivity in the octreotide receptor-expressing tissues pancreas, pituitary, adrenals and tumour was a factor of 2-6 that after injection of 111In-DTPAOC. Uptake of labelled DOTATOC in pituitary, pancreas, adrenals and tumour was almost completely blocked by pretreatment with 0.5 mg unlabelled octreotide, indicating specific binding to the octreotide receptors. These findings strongly indicate that 90Y-DOTATOC is a promising radiopharmaceutical for radiotherapy and that 111In-DOTATOC is of potential value for diagnosis of patients with octreotide receptor-positive lesions, such as most neuroendocrine tumours.
Molecular identity and gene expression of aldosterone synthase cytochrome P450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Mitsuhiro; Nonaka, Yasuki; Takemori, Hiroshi
11{beta}-Hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11{beta}-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolatedmore » from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression.« less
Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development
Rao, Raghavendra
2015-01-01
Permanent brain injury is a complication of recurrent hypoglycemia during development. Recurrent hypoglycemia also has adverse consequences on the neuroendocrine system. Hypoglycemia-associated autonomic failure, characterized by ineffective glucose counterregulation during hypoglycemia, is well described in children and adults on insulin therapy for diabetes mellitus. Whether recurrent hypoglycemia also has a programming effect on the hypothalamus-pituitary-adrenal cortex (HPA) axis has not been well studied. Hypoglycemia is a potent stress that leads to increased glucocorticoid secretion in all age groups, including the perinatal period. Other conditions associated with exposure to excess glucocorticoid in the perinatal period have a programming effect on the HPA axis activity. Limited animal data suggest the possibility of similar programming effect after recurrent hypoglycemia in the postnatal period. The age at exposure to hypoglycemia likely determines the HPA axis response in adulthood. Recurrent hypoglycemia in the early postnatal period likely leads to a hyperresponsive HPA axis, whereas recurrent hypoglycemia in the late postnatal period lead to a hyporesponsive HPA axis in adulthood. The age-specific programming effects may determine the neuroendocrine response during hypoglycemia and other stressful events in individuals with history of recurrent hypoglycemia during development. PMID:26343738
Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development.
Rao, Raghavendra
2015-08-28
Permanent brain injury is a complication of recurrent hypoglycemia during development. Recurrent hypoglycemia also has adverse consequences on the neuroendocrine system. Hypoglycemia-associated autonomic failure, characterized by ineffective glucose counterregulation during hypoglycemia, is well described in children and adults on insulin therapy for diabetes mellitus. Whether recurrent hypoglycemia also has a programming effect on the hypothalamus-pituitary-adrenal cortex (HPA) axis has not been well studied. Hypoglycemia is a potent stress that leads to increased glucocorticoid secretion in all age groups, including the perinatal period. Other conditions associated with exposure to excess glucocorticoid in the perinatal period have a programming effect on the HPA axis activity. Limited animal data suggest the possibility of similar programming effect after recurrent hypoglycemia in the postnatal period. The age at exposure to hypoglycemia likely determines the HPA axis response in adulthood. Recurrent hypoglycemia in the early postnatal period likely leads to a hyperresponsive HPA axis, whereas recurrent hypoglycemia in the late postnatal period lead to a hyporesponsive HPA axis in adulthood. The age-specific programming effects may determine the neuroendocrine response during hypoglycemia and other stressful events in individuals with history of recurrent hypoglycemia during development.
[Thomas Addison and the adrenal gland].
Smans, Lisanne C C J; Zelissen, Pierre M J
2012-01-01
The famous and beautifully illustrated monograph "On the Constitutional and Local Effects of Disease of the Suprarenal Capsules" was published by Thomas Addison in 1855. This was the first description of the disease that now bears his name. Thomas Addison provided the first real contribution to the knowledge of adrenal function after three centuries of non-productive speculation and is one of the founders of modern endocrinology.
Avian endocrine responses to environmental pollutants
Rattner, B.A.; Eroschenko, V.P.; Fox, G.A.; Fry, D.M.; Gorsline, J.
1984-01-01
Many environmental contaminants are hazardous to populations of wild birds. Chlorinated hydrocarbon pesticides and industrial pollutants are thought to be responsible for population declines of several species of predatory birds through eggshell thinning. Studies have demonstrated that these contaminants have estrogenic potency and may affect the functioning of the gonadal and thyroidal endocrine subsystems. Petroleum crude oil exerts toxicity externally, by oiling of plumage, and internally, by way of ingestion of oil while feeding or preening. Extensive ultrastructural damage to the inner zone of the adrenal, diminished adrenal responsiveness to adrenocorticotrophic hormone, and reduced corticosterone secretion rate suggest that low levels of plasma corticosterone reflect a direct effect of petroleum on the adrenal gland. Suppressive effects of oil on the ovary and decreases in circulating prolactin have been associated with impaired reproductive function. Large-scale field studies of free-living seabirds have confirmed some of the inhibitory effects of oil on reproduction that have been observed in laboratory studies. Organophosphorus insecticides, representing the most widely used class of pesticides in North America, have been shown to impair reproductive function, possibly by altering secretion of luteinizing hormone and progesterone. Relevant areas of future research on the effects of contaminants on avian endocrine function are discussed.
Should the diagnostic and therapeutic protocols for adrenal incidentalomas be changed?
Mateo-Gavira, Isabel; Vilchez-López, Francisco Javier; Larrán-Escandón, Laura; Ojeda-Schuldt, María Belén; Tinoco, Cristina López; Aguilar-Diosdado, Manuel
2015-01-01
The prevalence of adrenal incidentalomas is increasing with the aging of the population and the use of high resolution imaging technics. Current protocols propose a comprehensive monitoring of their functional and morphological state, but with no conclusive clinical evidence that endorses it. Retrospective study of 96 patients diagnosed with adrenal incidentaloma between 2008 and 2012. We evaluated clinical, functional and imaging at baseline and during follow-up. Initially, 9 cases were surgically removed: 4 due to hyperfunction (2 Cushing syndromes and 2 pheochromocytomas) and 5 due to size larger than 4cm. During follow-up one case of pheochromocytoma was diagnosed and another grew more than 1cm, needing surgery. In 98.86% of nonfunctional and benign lesions, there was no functional and/or morphological changes in the final evaluation. The results of our study challenge the validity of current diagnostic-therapeutic protocols of incidentalomas, which should be reassessed in prospective studies taking into account efficiency characteristics. Copyright © 2013 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Use of cognitive behavior therapy for functional hypothalamic amenorrhea.
Berga, Sarah L; Loucks, Tammy L
2006-12-01
Behaviors that chronically activate the hypothalamic-pituitary-adrenal (HPA) axis and/or suppress the hypothalamic-pituitary-thyroidal (HPT) axis disrupt the hypothalamic-pituitary-gonadal axis in women and men. Individuals with functional hypothalamic hypogonadism typically engage in a combination of behaviors that concomitantly heighten psychogenic stress and increase energy demand. Although it is not widely recognized clinically, functional forms of hypothalamic hypogonadism are more than an isolated disruption of gonadotropin-releasing hormone (GnRH) drive and reproductive compromise. Indeed, women with functional hypothalamic amenorrhea display a constellation of neuroendocrine aberrations that reflect allostatic adjustments to chronic stress. Given these considerations, we have suggested that complete neuroendocrine recovery would involve more than reproductive recovery. Hormone replacement strategies have limited benefit because they do not ameliorate allostatic endocrine adjustments, particularly the activation of the adrenal and the suppression of the thyroidal axes. Indeed, the rationale for the use of sex steroid replacement is based on the erroneous assumption that functional forms of hypothalamic hypogonadism represent only or primarily an alteration in the hypothalamic-pituitary-gonadal axis. Potential health consequences of functional hypothalamic amenorrhea, often termed stress-induced anovulation, may include an increased risk of cardiovascular disease, osteoporosis, depression, other psychiatric conditions, and dementia. Although fertility can be restored with exogenous administration of gonadotropins or pulsatile GnRH, fertility management alone will not permit recovery of the adrenal and thyroidal axes. Initiating pregnancy with exogenous means without reversing the hormonal milieu induced by chronic stress may increase the likelihood of poor obstetrical, fetal, or neonatal outcomes. In contrast, behavioral and psychological interventions that address problematic behaviors and attitudes, such as cognitive behavior therapy (CBT), have the potential to permit resumption of full ovarian function along with recovery of the adrenal, thyroidal, and other neuroendocrine aberrations. Full endocrine recovery potentially offers better individual, maternal, and child health.
Zucchi, Fabíola C. R.; Yao, Youli; Ilnytskyy, Yaroslav; Robbins, Jerrah C.; Soltanpour, Nasrin; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A. S.
2014-01-01
Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health. PMID:24651125
Open questions in current models of antidepressant action
Tanti, A; Belzung, C
2010-01-01
Research on depression and antidepressant drugs is necessary, as many patients display poor response to therapy. Different symptomatic and pathophysiological features have been proposed as end points of the depressive phenotype and of the antidepressant action, including anhedonia, depressed mood, alterations in morphology and activity of some brain areas (amygdala, nucleus accumbens, hippocampus, prefrontal cortex and cingulate cortex), modifications in the connectivity between brain structures, changes in neurotransmitters (serotonin, noradrenaline, glutamate and neuropeptides), brain plasticity (neurogenesis, neurotrophins) and abnormal function of the hypothalamic-pituitary adrenal axis. However, few models have been proposed to describe how these end points could induce the depressive phenotype and are involved in the mechanism of action of antidepressants. Here we propose a connectionist-inspired network of depression and antidepressant action, in which the different aetiological factors participating in the release of a depressive episode are represented by input nodes, the different symptomatic as well as pathophysiological end points are represented by an intermediate layer, and the onset of depression or of comorbid disease is represented by the output node. The occurrence of depression and the mechanism of the antidepressant action thus depend upon the weight of the interactions between the different end points, none of them being per se crucial to the onset of a depressive phenotype or to the antidepressant action. This model is heuristic to draw future lines of research concerning new antidepressant therapies, designing new animal models of depression and for a better understanding of the depressive pathology and of its comorbid pathology such as anxiety disorders. PMID:20132212
Development of antibodies against the rat brain somatostatin receptor.
Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T
1992-05-15
Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).
Endocrine complications of topical and intralesional corticosteroid therapy.
Curtis, J A; Cormode, E; Laski, B; Toole, J; Howard, N
1982-03-01
Four previously healthy children acquired skin problems that were treated with topical or intralesional fluorinated corticosteroids. Three developed signs that suggested Cushing's syndrome 1-4 months after initial treatment. Investigation showed low plasma cortisol levels and inadequate response to corticotrophin stimulation. After 7 months of treatment with topical steroids the fourth child presented with failure to thrive; during a febrile illness he had a convulsion followed by acute hypotension which responded to parenteral corticosteroid administration. Adrenal function was not studied in this patient. Although fluorinated corticosteroids seldom lead to overt adrenal suppression in children, they may impair pituitary-adrenal responses in some. Such patients should be given oral or parenteral steroid cover in the event of illness or trauma.
NASA Technical Reports Server (NTRS)
Tomashevskaya, L. I.
1975-01-01
The effect of emotiogenic factors on an operator's intellectual activity were studied for differing working regimes on an experimental control panel that provided for light, sonic, and electrocutaneous stimuli. The latter stimulus was activated automatically if the subject gave an incorrect response. It was shown that the working capacity of the operator under stress depends to a great extent on the effect of the emotiogenic factors on the individual functioning characteristics of the cardiovascular and sympathetic-adrenal systems. Moral, intellectual, willpower, emotional, and other personality traits are decisive factors of operator function.
Functional ectopic adrenal carcinoma in a dog
Taylor, Jim A.; Lee, Maris S.; Nicholson, Matthew E.; Justin, Robert B.
2014-01-01
An 11-year-old spayed female pit bull terrier was presented with a 2-month history of polyuria, polydipsia, polyphagia, and panting. Serum chemistry, blood and urine analysis, and tests for hyperadrenocorticism suggested an adrenal tumor. Abdominal ultrasound identified a mass caudal to the right kidney. The mass was completely excised and histopathology was consistent with endocrine carcinoma. Three years later there was no evidence of recurrence or metastasis. PMID:25183891
Sbardella, Emilia; Isidori, Andrea M; Woods, Conor P; Argese, Nicola; Tomlinson, Jeremy W; Shine, Brian; Jafar-Mohammadi, Bahram; Grossman, Ashley B
2017-02-01
The short ACTH stimulation test (250 μg) is the dynamic test most frequently used to assess adrenal function. It is possible that a single basal cortisol could be used to predict the dynamic response, but research has been hampered by the use of different assays and thresholds. To propose a morning baseline cortisol criterion of three of the most commonly used modern cortisol immunoassays - Advia Centaur (Siemens), Architect (Abbott) and the Roche Modular System (Roche) - that could predict adrenal sufficiency. Observational, retrospective cross-sectional study at two centres. Retrospective analysis of the results of 1019 Short Synacthen tests (SSTs) with the Advia Centaur, 449 SSTs with the Architect and 2050 SSTs with the Roche Modular System assay. Serum cortisol levels were measured prior to injection of 250 μg Synacthen and after 30 min. Overall, we were able to collate data from a total of 3518 SSTs in 3571 patients. Using receiver-operator curve analysis, baseline cortisol levels for predicting passing the SST with 100% specificity were 358 nmol/l for Siemens, 336 nmol/l for Abbott and 506 nmol/l for Roche. Utilizing these criteria, 589, 158 and 578 SSTs, respectively, for Siemens, Abbott and Roche immunoassays could have been avoided. We have defined assay-specific morning cortisol levels that are able to predict the integrity of the hypothalamo-pituitary-adrenal axis. We propose that this represents a valid tool for the initial assessment of adrenal function and has the potential to obviate the need for dynamic testing in a significant number of patients. © 2016 John Wiley & Sons Ltd.
Patel, R S; Wallace, A M; Hinnie, J; McGarry, G W
2001-06-01
Adrenocortical suppression is a well-known risk of systemic steroids, but is thought less likely to occur with topical intranasal corticosteroids. However, the UK Committee on the Safety of Medicines (UKCSM) has expressed concern about the possibility of this complication. We assessed the prevalence of adrenal suppression in patients with rhinitis using intranasal beclomethasone and betamethasone; and the potential value of salivary cortisol as a tool for detecting this complication. Sixty-six patients (38 men: 28 women; mean age 49.6[SD 16.0] years) were prospectively screened for adrenal insufficiency using clinical assessment and salivary cortisol measurements. Abnormalities at this initial screening were confirmed with a Short Synacthen Test (SST). No patient was clinically Cushingoid. All 22 beclomethasone users had normal salivary cortisols. Eleven (25%) of 44 patients using betamethasone had subnormal salivary cortisol levels (mean morning cortisol 2.8[SD 0.9]nmol/l) suggesting adrenal suppression, which was confirmed by an impaired SST in each case. The positive predictive value of salivary cortisol measurements was 100%. Only patients with abnormal salivary cortisols had a SST, so no comment can be made about sensitivity/specificity. Topical betamethasone may produce occult adrenal insufficiency and assessment of adrenal function is recommended in these patients. Measurement of salivary cortisol is a useful, non-invasive and economical test for monitoring patients using intranasal corticosteroids.
Farrugia, Frederick-Anthony; Misiakos, Evangelos; Martikos, Georgios; Tzanetis, Panagiotis; Charalampopoulos, Anestis; Zavras, Nicolaos; Sotiropoulos, Dimitrios; Koliakos, Nikolaos
2017-12-01
To present a step by step approach for the diagnosis of adrenal incidentaloma (AI). An extensive review of the literature was conducted, searching the Pub-Med and Google Scholar using the Mesh terms; Adrenal; Incidentaloma; Adrenal tumours; Radiology; Diagnosis. We also did a cross-referencing search of the literature. Comments on the new European guidelines are presented. The majority of the tumours are non-functioning benign adenomas. The most important radiological characteristic of an adrenal incidentaloma is the radiation attenuation coefficient. Wash out percentage and the imaging characteristics of the tumour may help in diagnosis. Density less than 10 HU is in most cases characteristic of a lipid rich benign adenoma. More than 10 HU or/and history of malignancy raise the possibility for cancer. 1 mg dexamethasone test and plasma metanephrines should be done in all patients. If there is history of hypokalemia and/or resistant hypertension we test the plasma aldosterone to plasma renin ratio (ARR). Newer studies have shown that tumours even nonfunctioning and less than 4 cm may increase the metabolic risks so we may consider surgery at an earlier stage.
Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao
2015-09-09
Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.
Dyshomeostasis, obesity, addiction and chronic stress
Marks, David F
2016-01-01
When eating control is overridden by hedonic reward, a condition of obesity dyshomeostasis occurs. Appetitive hedonic reward is a natural response to an obesogenic environment containing endemic stress and easily accessible and palatable high-energy foods and beverages. Obesity dyshomeostasis is mediated by the prefrontal cortex, amygdala and hypothalamic–pituitary–adrenal axis. The ghrelin axis provides the perfect signalling system for feeding dyshomeostasis, affect control and hedonic reward. Dyshomeostasis plays a central role in obesity causation, the addictions and chronic conditions and in persons with diverse bodies. Prevention and treatment efforts that target sources of dyshomeostasis provide ways of reducing adiposity, ameliorating the health impacts of addiction and raising the quality of life in people suffering from chronic stress. PMID:28070396
Flück, Christa E; Pandey, Amit V; Dick, Bernhard; Camats, Núria; Fernández-Cancio, Mónica; Clemente, María; Gussinyé, Miquel; Carrascosa, Antonio; Mullis, Primus E; Audi, Laura
2011-01-01
Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.
Bancos, Irina; Hazeldine, Jon; Chortis, Vasileios; Hampson, Peter; Taylor, Angela E; Lord, Janet M; Arlt, Wiebke
2017-04-01
Mortality in patients with primary adrenal insufficiency (PAI) is significantly increased, with respiratory infections as a major cause of death. Moreover, patients with PAI report an increased rate of non-fatal infections. Neutrophils and natural killer (NK) cells are innate immune cells that provide frontline protection against invading pathogens. Thus, we compared the function and phenotype of NK cells and neutrophils isolated from PAI patients and healthy controls to ascertain whether altered innate immune responses could be a contributory factor for the increased susceptibility of PAI patients to infection. We undertook a cross-sectional study of 42 patients with PAI due to autoimmune adrenalitis ( n = 37) or bilateral adrenalectomy ( n = 5) and 58 sex- and age-matched controls. A comprehensive screen of innate immune function, consisting of measurements of neutrophil phagocytosis, reactive oxygen species production, NK cell cytotoxicity (NKCC) and NK cell surface receptor expression, was performed on all subjects. Neutrophil function did not differ between PAI and controls. However, NKCC was significantly reduced in PAI (12.0 ± 1.5% vs 21.1 ± 2.6%, P < 0.0001). Phenotypically, the percentage of NK cells expressing the activating receptors NKG2D and NKp46 was significantly lower in PAI, as was the surface density of NKG2D (all P < 0.0001). Intracellular granzyme B expression was significantly increased in NK cells from PAI patients ( P < 0.01). Adrenal insufficiency is associated with significantly decreased NKCC, thereby potentially compromising early recognition and elimination of virally infected cells. This potential impairment in anti-viral immune defense may contribute to the increased rate of respiratory infections and ultimately mortality in PAI. © 2017 The authors.
Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.
2011-01-01
Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650
Shrestha, Prerana; Mousa, Awni; Heintz, Nathaniel
2015-01-01
Major depressive disorder (MDD) is a prevalent illness that can be precipitated by acute or chronic stress. Studies of patients with Wolfram syndrome and carriers have identified Wfs1 mutations as causative for MDD. The medial prefrontal cortex (mPFC) is known to be involved in depression and behavioral resilience, although the cell types and circuits in the mPFC that moderate depressive behaviors in response to stress have not been determined. Here, we report that deletion of Wfs1 from layer 2/3 pyramidal cells impairs the ability of the mPFC to suppress stress-induced depressive behaviors, and results in hyperactivation of the hypothalamic–pituitary–adrenal axis and altered accumulation of important growth and neurotrophic factors. Our data identify superficial layer 2/3 pyramidal cells as critical for moderation of stress in the context of depressive behaviors and suggest that dysfunction in these cells may contribute to the clinical relationship between stress and depression. DOI: http://dx.doi.org/10.7554/eLife.08752.001 PMID:26371510
Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao
2012-02-01
Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.
An Update on CRF Mechanisms Underlying Alcohol Use Disorders and Dependence
Quadros, Isabel Marian Hartmann; Macedo, Giovana Camila; Domingues, Liz Paola; Favoretto, Cristiane Aparecida
2016-01-01
Alcohol is the most commonly used and abused substance worldwide. The emergence of alcohol use disorders, and alcohol dependence in particular, is accompanied by functional changes in brain reward and stress systems, which contribute to escalated alcohol drinking and seeking. Corticotropin-releasing factor (CRF) systems have been critically implied in the transition toward problematic alcohol drinking and alcohol dependence. This review will discuss how dysregulation of CRF function contributes to the vulnerability for escalated alcohol drinking and other consequences of alcohol consumption, based on preclinical evidence. CRF signaling, mostly via CRF1 receptors, seems to be particularly important in conditions of excessive alcohol taking and seeking, including during early and protracted withdrawal, relapse, as well as during withdrawal-induced anxiety and escalated aggression promoted by alcohol. Modulation of CRF1 function seems to exert a less prominent role over low to moderate alcohol intake, or to species-typical behaviors. While CRF mechanisms in the hypothalamic–pituitary–adrenal axis have some contribution to the neurobiology of alcohol abuse and dependence, a pivotal role for extra-hypothalamic CRF pathways, particularly in the extended amygdala, is well characterized. More recent studies further suggest a direct modulation of brain reward function by CRF signaling in the ventral tegmental area, nucleus accumbens, and the prefrontal cortex, among other structures. This review will further discuss a putative role for other components of the CRF system that contribute for the overall balance of CRF function in reward and stress pathways, including CRF2 receptors, CRF-binding protein, and urocortins, a family of CRF-related peptides. PMID:27818644
Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.
2015-01-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470
Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M
2015-11-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).
Piaggio, Lisandro Ariel
2013-01-01
Congenital adrenal hyperplasia (CAH) most commonly due to 21-hydroxylase deficiency is the most common type of disorder of sex development. This review will focus on CAH addressing historical and current surgical techniques with their anatomical foundations, with special attention to long-term results and outcomes on sexual function, patient satisfaction, patient attitude toward surgery, and ongoing controversies in management of these patients. PMID:24400298
The genetics of phaeochromocytoma: using clinical features to guide genetic testing.
Jafri, Mariam; Maher, Eamonn R
2012-02-01
Phaeochromocytoma is a rare, usually benign, tumour predominantly managed by endocrinologists. Over the last decade, major advances have been made in understanding the molecular genetic basis of adrenal and extra-adrenal phaeochromocytoma (also referred to as adrenal phaeochromocytoma (aPCA) and extra-adrenal functional paraganglioma (eFPGL)). In contrast to the previously held belief that only 10% of cases had a genetic component, currently about one-third of all aPCA/eFPGL cases are thought to be attributable to germline mutations in at least nine genes (NF1, RET, SDHA, SDHB, SDHC, SDHD, TMEM127, MAX and VHL). Recognition of inherited cases of aPCA/eFPGL is critical for optimal patient management. Thus, the identification of a germline mutation can predict risks of malignancy, recurrent disease, associated non-chromaffin tumours and risks to other family members. Mutation carriers should be offered specific surveillance programmes (according to the relevant gene). In this review, we will describe the genetics of aPCA/eFPGL and strategies for genetic testing.
NASA Astrophysics Data System (ADS)
Devpura, Suneetha; Thakur, Jagdish S.; Poulik, Janet M.; Rabah, Raja; Naik, Vaman M.; Naik, Ratna
2012-02-01
We have investigated the cellular regions in neuroblastoma and ganglioneuroma using Raman spectroscopy and compared their spectral characteristics with those of normal adrenal gland. Thin sections from both frozen and deparaffinized tissues, obtained from the same tissue specimen, were studied in conjunction with the pathological examination of the tissues. We found a significant difference in the spectral features of frozen sections of normal adrenal gland, neuroblastoma, and ganglioneuroma when compared to deparaffinized tissues. The quantitative analysis of the Raman data using chemometric methods of principal component analysis and discriminant function analysis obtained from the frozen tissues show a sensitivity and specificity of 100% each. The biochemical identification based on the spectral differences shows that the normal adrenal gland tissues have higher levels of carotenoids, lipids, and cholesterol compared to the neuroblastoma and ganglioneuroma frozen tissues. However, deparaffinized tissues show complete removal of these biochemicals in adrenal tissues. This study demonstrates that Raman spectroscopy combined with chemometric methods can successfully distinguish neuroblastoma and ganglioneuroma at cellular level.
Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui
2011-01-01
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485
A review of 17 cases of carcinoma of the thyroid and phaeochromocytoma
Williams, E. D.
1965-01-01
The salient features of 15 cases of carcinoma of the thyroid and phaeochromocytoma taken from the literature and two personal cases are reviewed. The significant points noted are the frequency with which the adrenal tumours were bilateral, the frequency with which a family history of phaeochromocytoma (six cases) and thyroid carcinoma (four cases) was present, and the frequency with which the type of thyroid tumour was medullary carcinoma. In four of the 15 published cases the thyroid tumour was described as being medullary. Two personal cases both had medullary carcinoma of the thyroid, and this was also the type of thyroid carcinoma present in five of the published cases in which the thyroid histology was personally reviewed, making a total of 11 medullary carcinomas out of 17 cases. At least one other tumour was probably medullary, judging by the histological description. It is suggested that the association between phaeochromocytoma and thyroid carcinoma is specifically with medullary carcinoma of the thyroid. Both personal cases showed multiple neural tumours; and because of this and the association with phaeochromocytoma the possible neural origin of medullary carcinoma of the thyroid is briefly discussed. The occurrence in a few cases of parathyroid tumours has raised the possibility that these cases are related to the multiple endocrine adenoma syndrome. The dissimilarity between the cases with medullary carcinoma of the thyroid and phaeochromocytoma and those cases with ademonas involving pituitary, parathyroid, adrenal cortex and pancreatic islets is stressed. The term `medullary tumour syndrome' is suggested as a convenient non-committal name for this association of medullary carcinoma of the thyroid with tumours of the adrenal medulla. Images PMID:14304238
Blizard, David A; Eldridge, J Charles; Jones, Byron C
2015-05-01
The Maudsley Reactive and Maudsley Non-Reactive strains have been selectively bred for differences in open-field defecation (OFD), a putative index of stress. We investigated whether variations in the hypothalamic-pituitary-adrenal (HPA) axis are correlated with strain differences in OFD in the Maudsley model. Exposure to the open-field test did not result in increases in ACTH in male rats of either strain and there were no strain differences in the large increases in ACTH and corticosteroid that occurred in response to intermittent footshock. Parallel studies of prolactin showed that Maudsley Reactive rats had greater response to the open-field and to footshock than Maudsley Non-Reactive rats. The lack of correlation between strain differences in OFD and reactivity of the HPA axis is consistent with the idea that HPA response to stress and OFD reflect the output of different neural systems and that individual differences in emotionality, as indexed by OFD do not influence other measures of stress-reactivity in a simple manner, if at all. The reactivity of the prolactin system to the open-field test and lack of response of ACTH to the same situation is consistent with the idea that the prolactin system is sensitive to lower levels of stress than the HPA axis, a finding at variance with the presumed extreme sensitivity of the latter system. Earlier comparisons of the HPA axis in these strains implicate local factors such as neuropeptide-Y peptide in the adrenal in attenuating the response of the adrenal cortex to ACTH and hints at the complexity of regulation of the HPA axis.
Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N
2017-12-01
Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K
2015-01-23
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.
Different forms of effective connectivity in primate frontotemporal pathways
Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.
2015-01-01
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079
Tirabassi, G; Corona, G; Lamonica, G R; Lenzi, A; Maggi, M; Balercia, G
2016-01-01
Functional hypercortisolism is generated by conditions able to chronically activate hypothalamic-pituitary-adrenal axis and has been proven to have a negative role in several complications. However, no study has evaluated the possible influence of diabetes mellitus-associated functional hypercortisolism on male hypogonadism and sexual function. We aimed to identify any association of hypothalamic-pituitary-adrenal axis dysregulation measures with testosterone and sexual function in men simultaneously affected by diabetes mellitus and late-onset hypogonadism. Fifteen diabetes mellitus and late-onset hypogonadism subjects suffering from functional hypercortisolism and fifteen diabetes mellitus and late-onset hypogonadism subjects who were free of functional hypercortisolism were retrospectively reviewed. Clinical, hormonal, and sexual parameters were considered. Hypercortisolemic subjects showed higher values of body mass index, waist, and glycated hemoglobin and lower ones of testosterone compared to normocortisolemic ones. All sexual parameters, except for orgasmic function, were significantly worse in hypercortisolemic than in normocortisolemic subjects. Hypercortisolemic patients showed higher values of cortisol after dexamethasone and urinary free cortisol as well as a lesser ACTH response after corticotropin releasing hormone test (ACTH area under curve) compared to normocortisolemic ones. No significant association was found at Poisson regression analysis between hormonal and sexual variables in normocortisolemic patients. In hypercortisolemic subjects, negative and significant associations of cortisol response after corticotropin releasing hormone (cortisol area under curve) with erectile function (β: -0.0008; p: 0.015) and total international index of erectile function score (β: -0.0006; p: 0.001) were evident. This study suggests for the first time the impairing influence of the dysregulated hypothalamic-pituitary-adrenal axis on sexual function in diabetes mellitus-associated late-onset hypogonadism. © Georg Thieme Verlag KG Stuttgart · New York.
Cardoso, Estela; Persi, Gabriel; González, Natalia; Tumilasci, Omar; Arregger, Alejandro; Burgos, Myriam; Rodríguez, Viviana; Molina, Ana; Contreras, Liliana N
2007-04-01
Adrenal insufficiency has been reported among critically ill HIV-infected patients. This is the first study that attempts to detect subclinical hypoadrenal states in non-critical HIV patients through salivary steroids in response to intramuscular low-dose ACTH injection. We studied 21 ambulatory adult HIV-infected patients without specific clinical signs or symptoms of adrenal insufficiency. Normal salivary flow-rate and salivary alpha-amylase activity confirmed adequate salivary gland function. Salivary cortisol (SAF) and salivary aldosterone (SAL) were obtained at baseline and 30 min after the injection of 25 microg of ACTH in the deltoid muscle (LDT(s)). Assessment of salivary steroids after stimulation with 250 microg of intramuscular ACTH (HDT(s)) was performed on those who hyporesponded to LDT(s). Basal blood samples were drawn for steroids, renin and ACTH measurements. At baseline SAF and SAL correlated significantly (p=0.0001) with basal serum cortisol and aldosterone (r=0.70 and 0.91, respectively). Plasma ACTH and renin concentrations were within the normal range in all patients. Eight of the twenty-one HIV(+) patients were LDT(s) hyporesponders in either SAF (n:1) or SAL (n:7). LDT(s) repeated in six cases after a year reconfirmed the impairment of aldosterone secretion. LDT(s) hyporesponders had normal steroid responses to HDT(s). LDT(s) is a simple, safe, well-accepted and non-invasive approach to assess adrenal function in HIV-infected ambulatory patients. It revealed subnormal cortisol (5%) and aldosterone responses (33%) when HDT(s) results were normal.
Colagiovanni, Dorothy B; Drolet, Daniel W; Dihel, Larry; Meyer, Dennis J; Hart, Karen; Wolf, Julie
2006-01-01
4'-Thio-beta-D-arabinofuranosylcytosine (OSI-7836) is a nucleoside analogue with structural similarity to gemcitabine and cytarabine (ara-C). Myelosuppression, reversible transaminase elevations, and flu-like symptoms are common side effects associated with human use of gemcitabine and ara-C. Fatigue is also associated with the use of gemcitabine and OSI-7836 in humans. To better understand the toxicity of OSI-7836, subchronic studies were conducted in dogs. OSI-7836 was administered on days 1 and 8 or on days 1, 2, and 3 of a 21-day dose regimen. These schedules attempted to match clinical trial dosing regimens. Routine toxicity study end points demonstrated that OSI-7836 was primarily cytotoxic to the gastrointestinal tract, bone marrow, and testes; the myelotoxicity was mild and reversible. Plasma pharmacokinetics were dose-linear with an elimination half-life of 2.2 h. Follow-up single dose experiments in dogs assessed drug effects on lymphocyte subpopulations and on adrenal and thyroid function. Populations of T and B cells were equally reduced following OSI-7836 administration. There were no adverse effects on thyroid function, but there were marked reductions in circulating cortisol and adrenocorticotropic hormone concentrations suggesting a centrally mediated impairment of the hypothalamic-pituitary-adrenal axis. These findings show a toxicological profile with OSI-7836 similar to other nucleoside analogues and suggest that the beagle is a model for studying one possible cause of OSI-7836-related fatigue, impaired function of the hypothalamic-pituitary-adrenal axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination. Black-Right-Pointing-Pointer Single CpG methylation located at Pax6 binding motif regulates StAR expression.« less
Oxytocin in corticosterone-induced chronic stress model: Focus on adrenal gland function.
Stanić, Dušanka; Plećaš-Solarović, Bosiljka; Mirković, Duško; Jovanović, Predrag; Dronjak, Slađana; Marković, Bojan; Đorđević, Tea; Ignjatović, Svetlana; Pešić, Vesna
2017-06-01
Chronic stress conditions can lead to considerable and extensible changes in physiological and psychological performances, and in emergence of risk for various somatic diseases. On the other hand, the neuropeptide oxytocin is reported to increase the resistance of the organism to stress and modulate activity of autonomic nervous system. Chronic corticosterone administration is used as a rat model for a state observed in terms of chronic stress exposure, when negative feedback mechanism of hypothalamus-pituitary-adrenal axis activity is disrupted. In our study, we aimed to investigate whether chronic administration of oxytocin (10 IU/400μL/day for 14days, s.c.) influenced adrenal gland morphology and activity in adult male Wistar rats during long-term corticosterone administration via drinking water (100mg/L for 21days). We examined the influence of treatments on the levels of adrenal gland hormones, corticosterone, adrenaline and noradrenaline, as well as their response to an acute stress challenge evoked by 15-min forced swimming. In addition, the expression of two main monoamine transporters, the noradrenaline transporter (NAT) and vesicular monoamine transporter 2 (VMAT2) in adrenal medulla was measured in the rats exposed to acute stress. Our results showed that oxytocin treatment prevented corticosterone-induced decrease in body weight gain, attenuated adrenal gland atrophy by increasing glandular weight, and the area of the zona fasciculate and reticularis. Chronic corticosterone intake blunted the response of all measured hormones to acute stress, whereas concomitant oxytocin treatment reversed adrenaline and noradrenaline response to acute stress. Furthermore, in adrenal medulla, oxytocin produced significant vasodilatation and stimulated expression of both catecholamine transporters detected both on mRNA and protein level. Our data suggest that oxytocin, by reducing atrophy of adrenal gland, and by increasing catecholamine storage capacity, may be beneficial in conditions accompanied with high glucocorticoid levels, such as chronic stress exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Normal sonographic anatomy of the abdomen of coatis (Nasua nasua Linnaeus 1766)
2013-01-01
Background The use of ultrasound in veterinary medicine is widespread as a diagnostic supplement in the clinical routine of small animals, but there are few reports in wild animals. The objective of this study was to describe the anatomy, topography and abdominal sonographic features of coatis. Results The urinary bladder wall measured 0.11 ± 0.03 cm. The symmetrical kidneys were in the left and right cranial quadrant of the abdomen and the cortical, medullary and renal pelvis regions were recognized and in all sections. The medullary rim sign was visualized in the left kidney of two coatis. The liver had homogeneous texture and was in the cranial abdomen under the rib cage. The gallbladder, rounded and filled with anechoic content was visualized in all coatis, to the right of the midline. The spleen was identified in the left cranial abdomen following the greater curvature of the stomach. The parenchyma was homogeneous and hyperechogenic compared to the liver and kidney cortex. The stomach was in the cranial abdomen, limited cranially by the liver and caudo-laterally by the spleen. The left adrenal glands of five coatis were seen in the cranial pole of the left kidney showing hypoechogenic parenchyma without distinction of cortex and medulla. The pancreas was visualized in only two coatis. The left ovary (0.92 cm x 0.56 cm) was visualized on a single coati in the caudal pole of the kidney. The uterus, right adrenal, right ovary and intestines were not visualized. Conclusions Ultrasound examination of the abdomen of coatis may be accomplished by following the recommendations for dogs and cats. It is possible to evaluate the anatomical and topographical relationships of the abdominal organs together with the knowledge of the peculiarities of parenchymal echogenicity and echotexture of the viscera. PMID:23800301
Satoh, F; Morimoto, R; Ono, Y; Iwakura, Y; Omata, K; Kudo, M; Satani, N; Ota, H; Seiji, K; Takase, K; Nakamura, Y; Sasano, H; Ito, S
2015-06-01
Adrenal venous sampling (AVS) has been well known to play pivotal roles in clinical differential diagnosis of unilateral aldosterone producing adenoma (APA) from bilateral idiopathic hyperaldosteronism (IHA). However, it is also true that a central vein AVS or c-AVS which collects the blood from right and left central adrenal veins can by no means discriminate bilateral APA from BHA. There have been no published studies reporting the reliable clinical differential diagnosis between bilateral APA and IHA, especially IHA cases with bilateral non-functioning adenomas (NFA), which has been considered practically impossible in clinical differential diagnosis. As an attempt to this clinical dilemma, segmental AVS (S-AVS), which could evaluate segmental effluents from adrenal tributary veins, has been recently developed. We have performed S-AVS in these patients above following C-AVS, via the insertion of a microcatheter in up to three intra-adrenal first-degree tributary veins on bilateral adrenals. S-AVS did enable us to evaluate the intra-adrenal localization of corticosteroidogenesis. These data did indicate that S-AVS should be performed in the PA patients who had increased aldosterone levels in bilateral central vein and demonstrated space occupying lesions in the bilateral adrenals in order to avoid bilateral adrenalectomy or long lasting medical treatment toward persistent PA. In addition to the situations above, we have administere S-AVS to the following patients; those who had clinically suspected APA but not sufficiently high lateralization indexes according to the results of C-AVS, very young ones with higher clinical probability of recurrence and those who could benefit from partial adrenalectomy by demonstrating the sites of specific steroidogenesis. However, it is also entirely true that S-AVS is more expensive, time-consuming and labor-intensive compared to C-AVS.(Figure is included in full-text article.)The angiography during S-AVS (A, B), the coronal CT image (C), and the data in external iliac vein (EIV), each central vein (1, 4) and each tributary vein (2, 3, 5, 6) of 66 year-old male patient with bilateral APAs. We should carefully select the candidate patients who should undergo S-AVS, which will give a benefit to themselves by demonstrating intra-adrenal steroidogenesis for a safer preserving adrenalectomy.
Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn
2014-06-03
This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.
Kasem, Kais; Lam, Alfred K-Y
2014-12-01
Oncocytic phaeochromocytomas are exceedingly rare tumours. To date, there are three reported cases in the literature. This report describes a case of adrenal oncocytic phaeochromocytoma with unique features and malignant potential in a 68-year-old man. The patient presented with an incidental non-functional mass discovered on routine radiological investigation, which was subsequently excised. Histologically, the tumour cells showed oncocytic features with high-grade nuclear abnormalities and foci of extension to the peri-adrenal fat. Immunohistochemistry performed was positive for chromogranin, CD56, S-100 and p53 and negative for inhibin, HMB-45, EMA, AE1/AE3, Cam 5.2 and calretinin. Electron microscopy showed electron dense granules of neurosecretory type, which confirmed the diagnosis. The malignant potential of the tumour was assessed on available histologic scoring systems, which demonstrated a high malignant potential. However, no recurrence was detected after 5 years of follow-up. Compared to all the previously reported cases of oncocytic phaeochromocytoma, this patient was the oldest on presentation, was the only case with identified high malignant potential and has the longest follow-up. A review of the literature showed that all the oncocytic phaeochromocytomas reported were non-functional, non-metastasizing and were described in women. To conclude, oncocytic phaeochromocytoma should be in the differential diagnoses of oncocytic tumours of the adrenal gland. Additional studies are needed to predict the behaviour of this entity.
Fanson, Kerry V; Parrott, Marissa L
2015-11-01
This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Endocrinopathy and Aging in Ferrets.
Bakthavatchalu, V; Muthupalani, S; Marini, R P; Fox, J G
2016-03-01
Ferrets have become more popular as household pets and as animal models in biomedical research in the past 2 decades. The average life span of ferrets is about 5-11 years with onset of geriatric diseases between 3-4 years including endocrinopathies, neoplasia, gastrointestinal diseases, cardiomyopathy, splenomegaly, renal diseases, dental diseases, and cataract. Endocrinopathies are the most common noninfectious disease affecting middle-aged and older ferrets. Spontaneous neoplasms affecting the endocrine system of ferrets appear to be increasing in prevalence with a preponderance toward proliferative lesions in the adrenal cortex and pancreatic islet cells. Diet, gonadectomy, and genetics may predispose ferrets to an increased incidence of these endocrinopathies. These functional proliferative lesions cause hypersecretion of hormones that alter the physiology and metabolism of the affected ferrets resulting in a wide range of clinical manifestations. However, there is an apparent dearth of information available in the literature about the causal relationship between aging and neoplasia in ferrets. This review provides a comprehensive overview of the anatomy and physiology of endocrine organs, disease incidence, age at diagnosis, clinical signs, pathology, and molecular markers available for diagnosis of various endocrine disorders in ferrets. © The Author(s) 2016.
Bale, T L; Contarino, A; Smith, G W; Chan, R; Gold, L H; Sawchenko, P E; Koob, G F; Vale, W W; Lee, K F
2000-04-01
Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh. Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.
The pathology of the Mongolian Gerbil (Meriones unguiculatus): a review.
Vincent, A L; Rodrick, G E; Sodeman, W A
1979-10-01
Both naturally occurring disease processes and experimental models of human disease in the Mongolian gerbil were reviewed. The gerbil was highly susceptible to cerebral infarction following unilateral ligation of one common carotid artery and was useful in studies of the pathogenesis of stroke. Spontaneous epileptiform seizures mimicked those of human idiopathic epilepsy, and both seizure-sensitive and resistant strains have been bred. Perhaps because of its more efficient nephron, the gerbil accumulated four to six times as much renal lead as the rat, and the gerbil has been proposed as an experimental model of lead nephropathy. On standard diets, about 10% of the animals became obese, and some showed decreased glucose tolerance, elevated serum immunoreactive insulin and diabetic changes in the pancreas and other organs. Some breeders exhibited hyperactivity of the adrenal cortex associated with hyperglycemia, hyperlipidemia and degenerative vascular disease. Although dietary supplements of cholesterol were toxic and did not induce atherosclerosis, the gerbil was useful in other studies of cholesterol absorption and metabolism. Spontaneous, insidious periodontal disease became evident after about 6 months on standard diets, and dental caries were induced by cariogenic diets or by pathodontic streptococci. Spontaneous neoplasia occurred in 8.4--24% of gerbils, usually after 2 years of life. Adrenal cortical, ovarian and cutaneous tumors were the most consistently reported neoplasms.
Stress and its influence on reproduction in pigs: a review
Einarsson, Stig; Brandt, Ylva; Lundeheim, Nils; Madej, Andrzej
2008-01-01
The manifestations of stress, defined as a biological response to an event that the individual perceives as a threat to its homeostasis, are commonly linked to enhanced activity of the hypothalamo-pituitary-adrenal (HPA) axis and the activation of the sympathetic adreno-medullary (SA) system. Activation of the HPA system results in the secretion of peptides from the hypothalamus, principally corticotropin releasing hormone (CRH), which stimulates the release of adrenocorticotropic hormone (ACTH) and beta-endorphin. ACTH induces the secretion of corticosteroids from the adrenal cortex, which can be seen in pigs exposed to acute physical and/or psychological stressors. The present paper is a review of studies on the influence of stressors on reproduction in pigs. The effects of stress on reproduction depend on the critical timing of stress, the genetic predisposition to stress, and the type of stress. The effect of stress on reproduction is also influenced by the duration of the responses induced by various stressors. Prolonged or chronic stress usually results in inhibition of reproduction, while the effects of transient or acute stress in certain cases is stimulatory (e.g. anoestrus), but in most cases is of impairment for reproduction. Most sensitive of the reproductive process are ovulation, expression of sexual behaviour and implantation of the embryo, since they are directly controlled by the neuroendocrine system. PMID:19077201
Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu
2014-03-25
Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Decreased catecholamine secretion from the adrenal medullae of chronically diabetic BB-Wistar rats
NASA Technical Reports Server (NTRS)
Wilke, R. A.; Riley, D. A.; Lelkes, P. I.; Hillard, C. J.
1993-01-01
Many humans with IDDM eventually lose the capacity to secrete epinephrine from their adrenal medullae. The mechanism for this pathological change is unknown. We hypothesized that this abnormality is attributable to neuropathic changes in the greater splanchnic nerves or in the chromaffin cells that they innervate. To study this hypothesis, we isolated rat adrenal glands, perfused them ex vivo, and measured the epinephrine content of the perfusate under various conditions of stimulation. We used transmural electrical stimulation (20-80 V, at 10 Hz) to induce epinephrine secretion indirectly by selectively activating residual splanchnic nerve terminals within the isolated glands. Under these conditions, epinephrine secretion was severely attenuated in glands from female BB-Wistar rats with diabetes of 4 mo duration compared with their age-matched, nondiabetic controls. These perfused diabetic adrenal medullae also demonstrated decreased catecholamine release in response to direct chromaffin cell depolarization with 20 mM K+, evidence that a functional alteration exists within the chromaffin cells themselves. Nonetheless, total catecholamine content of adrenal medullae from these diabetic rats was not significantly different from controls, indicating that the secretory defect was not simply attributable to a difference in the amount of catecholamines stored and available for release. Herein, we also provide histological evidence of degenerative changes within the cholinergic nerve terminals that innervate these glands.
Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S.; Kiehl, Kent A.
2017-01-01
Abstract Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. PMID:28402565
Pondiki, S; Stamatakis, A; Fragkouli, A; Philippidis, H; Stylianopoulou, F
2006-10-13
Neonatal handling is an early experience which results in improved function of the hypothalamic-pituitary-adrenal axis, increased adaptability and coping as a response to stress, as well as better cognitive abilities. In the present study, we investigated the effect of neonatal handling on the basal forebrain cholinergic system, since this system is known to play an important role in cognitive processes. We report that neonatal handling results in increased number of choline-acetyl transferase immunopositive cells in the septum/diagonal band, in both sexes, while no such effect was observed in the other cholinergic nuclei, such as the magnocellular preoptic nucleus and the nucleus basalis of Meynert. In addition, neonatal handling resulted in increased M1 and M2 muscarinic receptor binding sites in the cingulate and piriform cortex of both male and female rats. A handling-induced increase in M1 muscarinic receptor binding sites was also observed in the CA3 and CA4 (fields 3 and 4 of Ammon's horn) areas of the hippocampus. Furthermore, a handling-induced increase in acetylcholinesterase staining was found only in the hippocampus of females. Our results thus show that neonatal handling acts in a sexually dimorphic manner on one of the cholinergic parameters, and has a beneficial effect on BFCS function, which could be related to the more efficient and adaptive stress response and the superior cognitive abilities of handled animals.
Working-memory capacity protects model-based learning from stress
Otto, A. Ross; Raio, Candace M.; Chiang, Alice; Phelps, Elizabeth A.; Daw, Nathaniel D.
2013-01-01
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive–dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response—believed to have detrimental effects on prefrontal cortex function—should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress. PMID:24324166
McCreary, J Keiko; Truica, L Sorina; Friesen, Becky; Yao, Youli; Olson, David M; Kovalchuk, Igor; Cross, Albert R; Metz, Gerlinde A S
2016-08-25
Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Mapping Prefrontal Cortex Functions in Human Infancy
ERIC Educational Resources Information Center
Grossmann, Tobias
2013-01-01
It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…
Cheng, Wei; Rolls, Edmund T; Qiu, Jiang; Liu, Wei; Tang, Yanqing; Huang, Chu-Chung; Wang, XinFa; Zhang, Jie; Lin, Wei; Zheng, Lirong; Pu, JunCai; Tsai, Shih-Jen; Yang, Albert C; Lin, Ching-Po; Wang, Fei; Xie, Peng; Feng, Jianfeng
2016-12-01
The first brain-wide voxel-level resting state functional connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 control subjects. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex Brodmann area 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex Brodmann area 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex Brodmann area 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex Brodmann area 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex Brodmann area 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex Brodmann area 21. This enhanced functional connectivity of the non-reward/punishment system (Brodmann area 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Tsvetov, Y. P.; Razin, S. I.; Rychko, A. V.
1980-01-01
The effect of 2 and 4 week hypokinesia regimens on the hypothalamo-pituitary-adrenal system (HPAS) was investigated in 110 inbred mice. Progressive exhaustion and pathological reorganization of the HPAS morphofunctional structures was revealed. On the basis of established facts of interlineary and interspecies differences in the HPAS response, it is suggested that the animal body response reaction to the long term effects of hypokinesia depends largely on its HPAS resistance and the values of this system's defensive adaptation potential.
The Hypothalamic-Pituitary-Adrenal Axis and Anesthetics: A Review.
Besnier, Emmanuel; Clavier, Thomas; Compere, Vincent
2017-04-01
The hypothalamic-pituitary-adrenal (HPA) axis is essential for human adaptation to stress. However, many anesthetic agents may interfere with the activity of this axis. Although etomidate is known for its suppressive effect on HPA axis function, in vitro evidence suggests that many other drugs used in anesthesia care may also interfere with HPA activity. In this review, we discuss the mechanisms by which all HPA axis activity may be altered during anesthesia and critical care and focus on the impact of hypnotic and analgesic drugs.
Influence of laser radiation on some integrative indications of sympathetic-adrenal system activity
NASA Astrophysics Data System (ADS)
Pronchenkova, G. F.; Chesnokova, N. P.
2002-07-01
One of the goals of this experimental research is elucidation of the influence of laser radiation on the functional state of the sympathetic-adrenal system of a microorganism, which to a large extent defines the intensity of an inflammatory reaction development, and in particular regeneration and repair process in the zone of post traumatic influence of infectious and non-infectious pathogen factors. We have also studied the alteration of adrenaline and noradrenaline content in the wound itself in the dynamics of regeneration.
Traumatic and non-traumatic adrenal emergencies.
Chernyak, Victoria; Patlas, Michael N; Menias, Christine O; Soto, Jorge A; Kielar, Ania Z; Rozenblit, Alla M; Romano, Luigia; Katz, Douglas S
2015-12-01
Multiple traumatic and non-traumatic adrenal emergencies are occasionally encountered during the cross-sectional imaging of emergency department patients. Traumatic adrenal hematomas are markers of severe polytrauma, and can be easily overlooked due to multiple concomitant injuries. Patients with non-traumatic adrenal emergencies usually present to an emergency department with a non-specific clinical picture. The detection and management of adrenal emergencies is based on cross-sectional imaging. Adrenal hemorrhage, adrenal infection, or rupture of adrenal neoplasm require immediate detection to avoid dire consequences. More often however, adrenal emergencies are detected incidentally in patients being investigated for non-specific acute abdominal pain. A high index of suspicion is required for the establishment of timely diagnosis and to avert potentially life-threatening complications. We describe cross-sectional imaging findings in patients with traumatic and non-traumatic adrenal hemorrhage, adrenal infarctions, adrenal infections, and complications of adrenal masses.
Warren, W B; Gurewitsch, E D; Goland, R S
1995-02-01
We hypothesized that maternal plasma corticotropin-releasing hormone levels are elevated in chronic hypertension and that elevations modulate maternal and fetal pituitary-adrenal function. Venous blood samples and 24-hour urine specimens were obtained in normal and hypertensive pregnancies at 21 to 40 weeks of gestation. Corticotropin-releasing hormone, corticotropin, cortisol, dehydroepiandrosterone sulfate, and total estriol levels were measured by radioimmunoassay. Mean hormone levels were compared by unpaired t test or two-way analysis of variance. Plasma corticotropin-releasing hormone levels were elevated early in hypertensive pregnancies but did not increase after 36 weeks. Levels of pituitary and adrenal hormones were not different in normal and hypertensive women. However, maternal plasma estriol levels were lower in hypertensive pregnancies compared with normal pregnancies. Fetal 16-hydroxy dehydroepiandrosterone sulfate, the major precursor to placental estriol production, has been reported to be lower than normal in hypertensive pregnancies, possibly explaining the decreased plasma estriol levels reported here. Early stimulation of placental corticotropin-releasing hormone production or secretion may be related to accelerated maturation of placental endocrine function in pregnancies complicated by chronic hypertension.
Deen, Ben; Saxe, Rebecca; Bedny, Marina
2015-08-01
In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.
Psychological evaluation of treated females with virilizing congenital adrenal hyperplasia.
Hurtig, A L; Radhakrishnan, J; Reyes, H M; Rosenthal, I M
1983-12-01
The psychological development of females with congenital adrenal hyperplasia (CAH) has been previously studied by Money, et al, who found that psychological development of sex identity was consistent with sex assignment despite virilizing adrenal hormones and abnormal external genitalia requiring surgical correction. In this study, using a variety of psychological tests, we assessed the sex-dimorphic behavior, body image, cognitive functioning, and sex-role identity of nine patients ranging in age from 13 to 21, all treated with glucocorticoids and surgical correction. Four of the nine showed moderate virilization despite treatment. Psychological measures included the Wechsler Intelligence Scale for Children-Revised (WISC-R), the Bem Sex-Role Inventory, the Draw-A-Person (DAP) and an interview with patient and family. Results indicate that patients fall within the normal expectable range for this developmental period in visual-spatial and verbal cognitive functioning, in sex-role identity, and in social interpersonal early behaviors. In two areas of functioning these patients demonstrated some variance from the norms, specifically in sexual identity and early activity levels. This suggests that sexual identity and physical activity are most prone to hormonal and psychological impact but that cognition and sex-role identity are not affected. Future studies of this sample will look at personality dimensions such as ego functioning, defense and affect to consider the impact of body image concerns and conflicts.
Steroidogenic Factor-1 (SF-1, Ad4BP, NR5A1) and Disorders of Testis Development
Lin, L.; Achermann, J.C.
2009-01-01
Steroidogenic factor-1 (SF-1) (Ad4BP, NR5A1) is a nuclear receptor that regulates many aspects of adrenal and reproductive development and function. Consequently, deletion of the gene (Nr5a1) encoding Sf-1 in XY mice results in impaired adrenal development, complete testicular dysgenesis with Müllerian structures, and female external genitalia. Initial efforts to identify NR5A1 changes in humans focused on 46,XY individuals with combined adrenogonadal failure and Müllerian structures. Although this combination of clinical features is rare, 2 such patients harboring NR5A1 mutations have been described within the past decade. More recently, however, it has emerged that heterozygous loss of function mutations in NR5A1 can be found relatively frequently in children and adults with 46,XY disorders of sex development (DSD) but with apparently normal adrenal function. The phenotypic spectrum associated with these changes ranges from complete testicular dysgenesis with Müllerian structures, through individuals with mild clitoromegaly or genital ambiguity, to severe penoscrotal hypospadias or even anorchia. Furthermore, a non-synonymous polymorphism in NR5A1 may be associated with micropenis or undescended testes within the population. Taken together, these reports suggest that variable loss of SF-1 function can be associated with a wide range of reproductive phenotypes in humans. PMID:18987494
Figueiredo, Helmer F; Bruestle, Amy; Bodie, Bryan; Dolgas, Charles M; Herman, James P
2003-10-01
The medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity. Thus, groups of mPFC-lesioned and sham-operated rats were restrained for 20 min or exposed to ether fumes for 2 min. In both cases, the animals were killed at 40 min from the onset of stress. Interestingly, bilateral lesions of the mPFC significantly enhanced c-fos mRNA expression in the hypothalamic paraventricular nucleus of restrained animals, an effect that was paralleled by potentiation of circulating ACTH concentrations in these animals. On the other hand, lesions of the mPFC did not affect neither PVN c-fos mRNA expression nor plasma ACTH concentrations in animals exposed to ether. Lesions of the mPFC also enhanced c-fos activation in the medial amygdala following restraint, but not following ether exposure. Additional regions whose activity was affected by mPFC lesions or stressor differences included the ventrolateral division of the bed nucleus of the stria terminalis, CA3 hippocampus, piriform cortex, and dorsal endopiriform nucleus. Expression of c-fos mRNA was nearly absent in the central amygdala of all stressed animals, regardless of lesion. Furthermore, prefrontal cortex lesions did not change stress-induction levels of c-fos in the CA1 hippocampus, dentate gyrus, anteromedial division of the bed nucleus of the stria terminalis, lateral septum, and claustrum. Taken together, this study indicates that the medial prefrontal cortex differentially regulates cellular activation of specific stress-related brain regions, thus exerting stressor-dependent inhibition of the HPA axis.
Changes in resting-state connectivity in musicians with embouchure dystonia.
Haslinger, Bernhard; Noé, Jonas; Altenmüller, Eckart; Riedl, Valentin; Zimmer, Claus; Mantel, Tobias; Dresel, Christian
2017-03-01
Embouchure dystonia is a highly disabling task-specific dystonia in professional brass musicians leading to spasms of perioral muscles while playing the instrument. As they are asymptomatic at rest, resting-state functional magnetic resonance imaging in these patients can reveal changes in functional connectivity within and between brain networks independent from dystonic symptoms. We therefore compared embouchure dystonia patients to healthy musicians with resting-state functional magnetic resonance imaging in combination with independent component analyses. Patients showed increased functional connectivity of the bilateral sensorimotor mouth area and right secondary somatosensory cortex, but reduced functional connectivity of the bilateral sensorimotor hand representation, left inferior parietal cortex, and mesial premotor cortex within the lateral motor function network. Within the auditory function network, the functional connectivity of bilateral secondary auditory cortices, right posterior parietal cortex and left sensorimotor hand area was increased, the functional connectivity of right primary auditory cortex, right secondary somatosensory cortex, right sensorimotor mouth representation, bilateral thalamus, and anterior cingulate cortex was reduced. Negative functional connectivity between the cerebellar and lateral motor function network and positive functional connectivity between the cerebellar and primary visual network were reduced. Abnormal resting-state functional connectivity of sensorimotor representations of affected and unaffected body parts suggests a pathophysiological predisposition for abnormal sensorimotor and audiomotor integration in embouchure dystonia. Altered connectivity to the cerebellar network highlights the important role of the cerebellum in this disease. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Steroidogenic factor-1 (SF-1, NR5A1) and human disease
Ferraz-de-Souza, Bruno; Lin, Lin; Achermann, John C.
2011-01-01
Steroidogenic factor-1 (SF-1, Ad4BP, encoded by NR5A1) is a key regulator of adrenal and reproductive development and function. Based upon the features found in Nr5a1 null mice, initial attempts to identify SF-1 changes in humans focused on those rare individuals with primary adrenal failure, a 46,XY karyotype, complete gonadal dysgenesis and Müllerian structures. Although alterations affecting DNA-binding of SF-1 were found in two such cases, disruption of SF-1 is not commonly found in patients with adrenal failure. In contrast, it is emerging that variations in SF-1 can be found in association with a range of human reproductive phenotypes such as 46,XY disorders of sex development (DSD), hypospadias, anorchia, male factor infertility, or primary ovarian insufficiency in women. Overexpression or overactivity of SF-1 is also reported in some adrenal tumors or endometriosis. Therefore, the clinical spectrum of phenotypes associated with variations in SF-1 is expanding and the importance of this nuclear receptor in human endocrine disease is now firmly established. PMID:21078366
Sène, D; Huong-Boutin, D L T; Thiollet, M; Barete, S; Cacoub, P; Piette, J-C
2008-12-01
In black population, the skin-bleaching with cutaneous topical corticosteroids on a large body area is a widespread practice and is associated with numerous cutaneous complications. We report a 25-year-old Congolese woman who was admitted for weakness, arthralgias and abdominal pain. The association of a relative hyperpigmentation of the small joints of hands and feet with clinical features of hypercorticism led to suspect a chronic use of cutaneous topical steroids for skin-bleaching. On biological tests, plasma cortisol and corticotropin levels were undetectable and the short corticotropin (ACTH) stimulation test was negative, leading to the diagnosis of adrenal insufficiency complicating the chronic use of topical steroids. Clinical symptoms resolved with hydrocortisone therapy. One year later, the patient admitted a five-year continuous use of cutaneous topical steroids (betamethasone, 0.05%). Skin-bleaching through chronic use of cutaneous topical steroids, is a common practice in black women, and should be suspected in the presence of adrenal insufficiency with or without clinical features of hypercorticism, and conversely, skin-bleaching users should be tested for hypothalamo-pituitary-adrenal function.
[Canine hypoadrenocorticism - an update on pathogenesis, diagnosis and treatment].
Kalenyak, Katja; Heilmann, Romy M
2018-06-01
Canine hypoadrenocorticism (HoAC) results from a loss of functional adrenal cortex, the most common etiology of which is an immune-mediated destruction leading to an inadequate production of glucocorticoids and mineralocorticoids. The term "atypical" HoAC is used for a subgroup of dogs with either an isolated glucocorticoid deficiency or a combined glucocorticoid and mineralocorticoid deficiency but normal electrolytes. Dogs with HoAC can present with a large variety of clinical signs, ranging from shaking, weakness, and mild gastrointestinal signs to seizures, hypovolemic shock, and collapse. Routine clinicopathologic and diagnostic imaging findings are usually nonspecific and frequently mimic those of other common diseases. However, the absence of a stress leukogram, eosinophilia, hyponatremia, hyperkalemia, and azotemia and small adrenal glands on abdominal ultrasound are characteristic findings in dogs with HoAC. The ACTH stimulation test is currently the gold standard method for diagnosing HoAC. Other endocrine laboratory diagnostics, including the quantification of endogenous ACTH, basal and ACTH-stimulated aldosterone levels, cortisol:ACTH ratio, and aldosterone:renin ratio, may further aid in differentiating between primary, secondary, and "atypical" HoAC. Aggressive intravenous fluid therapy is the cornerstone of treatment in paients with an acute Addisonian crisis because it restores normovolemia and normal blood electrolytes. Maintenance therapy consists of glucocorticoid (e.g., prednisolone) and mineralocorticoid (e.g., des- oxycortone pivalate) supplementation and aims for stable electrolyte concentrations and a clinically well dog. The optimal dose of desoxy- cortone pivalate for a specific dog is determined based on blood so- dium and potassium concentrations by using a standardized protocol. Regular reevaluation of blood electrolytes is required for early identifi- cation of a mineralocorticoid deficiency in dogs with "atypical" HoAC. The long-term prognosis for dogs with HoAC is excellent provided that patients receive adequate treatment and there is good owner com- pliance. Schattauer GmbH.
Zu, Xianpeng; Zhang, Mingjian; Li, Wencai; Xie, Haisheng; Lin, Zhang; Yang, Niao; Liu, Xinru; Zhang, Weidong
2017-11-01
Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.
Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L
2015-11-01
Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.
Gleicher, Norbert; Kushnir, Vitaly A; Darmon, Sarah K; Wang, Qi; Zhang, Lin; Albertini, David F; Barad, David H
2017-03-01
How anti-Müllerian hormone (AMH) and testosterone (T) interrelate in infertile women is currently largely unknown. We, therefore, in a retrospective cohort study investigated how infertile women with high-AMH (AMH ≥75th quantile; n=144) and with normal-AMH (25th-75th quantile; n=313), stratified for low-T (total testosterone ≤19.0ng/dL), normal-T (19.0-29.0ng/dL) and high-T (>29.0ng/dL) phenotypically behaved. Patient age, follicle stimulating hormone (FSH), dehyroepiandrosterone (DHEA), DHEA sulphate (DHEAS), cortisol (C), adrenocorticotrophic hormone (ACTH), IVF outcomes, as well as inflammatory and immune panels were then compared between groups, with AMH and T as variables. We identified a previously unknown infertile PCOS-like phenotype, characterized by high-AMH but, atypically, low-T, with predisposition toward autoimmunity. It presents with incompatible high-AMH and low-T (<19.0ng/dL), is restricted to lean PCOS-like patients, presenting delayed for tertiary fertility services. Since also characterized by low DHEAS, low-T is likely of adrenal origina, and consequence of autoimmune adrenal insufficiency since also accompanied by low-C and evidence of autoimmunity. DHEA supplementation in such patients equalizes low- to normal-T and normalizes IVF cycle outcomes. Once recognized, this high-AMH/low-T phenotype is surprisingly common in tertiary fertility centers but, currently, goes unrecognized. Its likely adrenal autoimmune etiology offers interesting new directions for investigations of adrenals control over ovarian function via adrenal androgen production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adrenal steroidogenesis after B lymphocyte depletion therapy in new-onset Addison's disease.
Pearce, Simon H S; Mitchell, Anna L; Bennett, Stuart; King, Phil; Chandran, Sukesh; Nag, Sath; Chen, Shu; Smith, Bernard Rees; Isaacs, John D; Vaidya, Bijay
2012-10-01
A diagnosis of Addison's disease means lifelong dependence on daily glucocorticoid and mineralocorticoid therapy and is associated with increased morbidity and mortality as well as a risk of unexpected adrenal crisis. The objective of the study was to determine whether immunomodulatory therapy at an early stage of autoimmune Addison's disease could lead to preservation or improvement in adrenal steroidogenesis. This was an open-label, pilot study of B lymphocyte depletion therapy in new-onset idiopathic primary adrenal failure. Doses of iv rituximab (1 g) were given on d 1 and 15, after pretreatment with 125 mg iv methylprednisolone. Six patients (aged 17-47 yr; four females) were treated within 4 wk of the first diagnosis of idiopathic primary adrenal failure. Dynamic testing of adrenal function was performed every 3 months for at least 12 months. Serum cortisol levels declined rapidly and were less than 100 nmol/liter (3.6 μg/dl) in all patients by 3 months after B lymphocyte depletion. Serum cortisol and aldosterone concentrations remained low in five of the six patients throughout the follow-up period. However, a single patient had sustained improvement in both serum cortisol [peak 434 nmol/liter (15.7 μg/dl)] and aldosterone [peak 434 pmol/liter (15.7 ng/dl)] secretion. This patient was able to discontinue steroid medications 15 months after therapy and remains well, with improving serum cortisol levels 27 months after therapy. New-onset autoimmune Addison's disease should be considered as a potentially reversible condition in some patients. Future studies of immunomodulation in autoimmune Addison's disease may be warranted.
Addison's Disease in Evolution: An Illustrative Case and Literature Review.
Hinz, Laura E; Kline, Gregory A; Dias, Valerian C
2014-09-01
To present a case of symptomatic autoimmune adrenal insufficiency with initially normal serum cortisol and to caution about limitations of the current diagnostic algorithm for adrenal insufficiency, which does not reflect the pathophysiology of early disease. We describe the clinical presentation and relevant investigations of a patient ultimately found to have Addison's disease, which is followed by a focused review of the literature. A 41-year-old Caucasian woman with autoimmune hypothyroidism, premature ovarian failure, and microscopic colitis presented with nausea, salt craving, increased skin pigmentation, and postural hypotension. Initial bloodwork revealed a normal morning cortisol of level of 19.2 μg/dL (normal, 7.2 to 25 μg/dL) but an adrenocorticotropic hormone (ACTH) level 10 times normal, at 513.6 pg/mL (normal, <52.5 pg/mL). Her potassium was normal, but her aldosterone level was 4.12 ng/dL (normal, 12.3 to 62.5 ng/dL) and her renin activity was increased (23.0 mg/dL/hour; normal, <6.0 mg/dL/hour). Six weeks after initial presentation, she was found to have anti-adrenal antibodies. It was not until 10 weeks after her initial symptomatic presentation that her morning cortisol level was found to be subnormal and a formal diagnosis of adrenal insufficiency was made. The present case and literature review reveal that common diagnostic approaches will miss patients with (possibly symptomatic) early adrenal insufficiency. We suggest that serum ACTH level testing or tests of mineralocorticoid function be included in the initial step of investigation for suspected primary adrenal insufficiency.
Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael
2017-07-01
Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.
Rensen, Niki; Gemke, Reinoud Jbj; van Dalen, Elvira C; Rotteveel, Joost; Kaspers, Gertjan Jl
2017-11-06
Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate host defence against infection, which remain a cause of morbidity and death. Suppression commonly occurs in the first days after cessation of glucocorticoid therapy, but the exact duration is unclear. This review is the second update of a previously published Cochrane review. To examine the occurrence and duration of HPA axis suppression after (each cycle of) glucocorticoid therapy for childhood ALL. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 11), MEDLINE/PubMed (from 1945 to December 2016), and Embase/Ovid (from 1980 to December 2016). In addition, we searched reference lists of relevant articles, conference proceedings (the International Society for Paediatric Oncology and the American Society of Clinical Oncology from 2005 up to and including 2016, and the American Society of Pediatric Hematology/Oncology from 2014 up to and including 2016), and ongoing trial databases (the International Standard Registered Clinical/Social Study Number (ISRCTN) register via http://www.controlled-trials.com, the National Institutes of Health (NIH) register via www.clinicaltrials.gov, and the International Clinical Trials Registry Platform (ICTRP) of the World Health Organization (WHO) via apps.who.int/trialsearch) on 27 December 2016. All study designs, except case reports and patient series with fewer than 10 children, examining effects of glucocorticoid therapy for childhood ALL on HPA axis function. Two review authors independently performed study selection. One review author extracted data and assessed 'Risk of bias'; another review author checked this information. We identified 10 studies (total of 298 children; we identified two studies for this update) including two randomised controlled trials (RCTs) that assessed adrenal function. None of the included studies assessed the HPA axis at the level of the hypothalamus, the pituitary, or both. Owing to substantial differences between studies, we could not pool results. All studies had risk of bias issues. Included studies demonstrated that adrenal insufficiency occurs in nearly all children during the first days after cessation of glucocorticoid treatment for childhood ALL. Most children recovered within a few weeks, but a small number of children had ongoing adrenal insufficiency lasting up to 34 weeks.Included studies evaluated several risk factors for (prolonged) adrenal insufficiency. First, three studies including two RCTs investigated the difference between prednisone and dexamethasone in terms of occurrence and duration of adrenal insufficiency. The RCTs found no differences between prednisone and dexamethasone arms. In the other (observational) study, children who received prednisone recovered earlier than children who received dexamethasone. Second, treatment with fluconazole appeared to prolong the duration of adrenal insufficiency, which was evaluated in two studies. One of these studies reported that the effect was present only when children received fluconazole at a dose higher than 10 mg/kg/d. Finally, two studies evaluated the presence of infection, stress episodes, or both, as a risk factor for adrenal insufficiency. In one of these studies (an RCT), trial authors found no relationship between the presence of infection/stress and adrenal insufficiency. The other study found that increased infection was associated with prolonged duration of adrenal insufficiency. We concluded that adrenal insufficiency commonly occurs in the first days after cessation of glucocorticoid therapy for childhood ALL, but the exact duration is unclear. No data were available on the levels of the hypothalamus and the pituitary; therefore, we could draw no conclusions regarding these outcomes. Clinicians may consider prescribing glucocorticoid replacement therapy during periods of serious stress in the first weeks after cessation of glucocorticoid therapy for childhood ALL to reduce the risk of life-threatening complications. However, additional high-quality research is needed to inform evidence-based guidelines for glucocorticoid replacement therapy.Special attention should be paid to patients receiving fluconazole therapy, and perhaps similar antifungal drugs, as these treatments may prolong the duration of adrenal insufficiency, especially when administered at a dose higher than 10 mg/kg/d.Finally, it would be relevant to investigate further the relationship between present infection/stress and adrenal insufficiency in a larger, separate study specially designed for this purpose.
Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro
2006-01-01
To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.
Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A
2014-01-01
Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.
Prete, Alessandro; Paragliola, Rosa Maria; Bottiglieri, Filomena; Rota, Carlo Antonio; Pontecorvi, Alfredo; Salvatori, Roberto; Corsello, Salvatore Maria
2017-03-01
Successful treatment of Cushing syndrome causes transient or permanent adrenal insufficiency deriving from endogenous hypercortisolism-induced hypothalamus-pituitary-adrenal-axis suppression. We analyzed pre-treatment factors potentially affecting the duration of adrenal insufficiency. We conducted a retrospective analysis on patients successfully treated for Cushing disease (15 patients) who underwent transsphenoidal surgery, and nonmalignant primary adrenal Cushing syndrome (31 patients) who underwent unilateral adrenalectomy, divided into patients with overt primary adrenal Cushing syndrome (14 patients) and subclinical primary adrenal Cushing syndrome (17 patients). Epidemiological data, medical history, and hormonal parameters depending on the etiology of hypercortisolism were collected and compared to the duration of adrenal insufficiency. The median duration of follow-up after surgery for Cushing disease and primary adrenal Cushing syndrome was 70 and 48 months, respectively. In the Cushing disease group, the median duration of adrenal insufficiency after transsphenoidal surgery was 15 months: younger age at diagnosis and longer duration of signs and symptoms of hypercortisolism before diagnosis and surgery were associated with longer duration of adrenal insufficiency. The median duration of adrenal insufficiency was 6 months for subclinical primary adrenal Cushing syndrome and 18.5 months for overt primary adrenal Cushing syndrome. The biochemical severity of hypercortisolism, the grade of hypothalamus-pituitary-adrenal-axis suppression, and treatment with ketoconazole before surgery accounted for longer duration of adrenal insufficiency. In patients with Cushing disease, younger age and delayed diagnosis and treatment predict longer need for glucocorticoid replacement therapy after successful transsphenoidal surgery. In patients with primary adrenal Cushing syndrome, the severity of hypercortisolism plays a primary role in influencing the duration of adrenal insufficiency after unilateral adrenalectomy.
Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M
1994-12-01
We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.
Doleschall, Márton; Luczay, Andrea; Koncz, Klára; Hadzsiev, Kinga; Erhardt, Éva; Szilágyi, Ágnes; Doleschall, Zoltán; Németh, Krisztina; Török, Dóra; Prohászka, Zoltán; Gereben, Balázs; Fekete, György; Gláz, Edit; Igaz, Péter; Korbonits, Márta; Tóth, Miklós; Rácz, Károly; Patócs, Attila
2017-01-01
There is a difficulty in the molecular diagnosis of congenital adrenal hyperplasia (CAH) due to the c.955C>T (p.(Q319*), formerly Q318X, rs7755898) variant of the CYP21A2 gene. Therefore, a systematic assessment of the genetic and evolutionary relationships between c.955C>T, CYP21A2 haplotypes and the RCCX copy number variation (CNV) structures, which harbor CYP21A2, was performed. In total, 389 unrelated Hungarian individuals with European ancestry (164 healthy subjects, 125 patients with non-functioning adrenal incidentaloma and 100 patients with classical CAH) as well as 34 adrenocortical tumor specimens were studied using a set of experimental and bioinformatic methods. A unique, moderately frequent (2%) haplotypic RCCX CNV structure with three repeated segments, abbreviated to LBSASB, harboring a CYP21A2 with a c.955C>T variant in the 3′-segment, and a second CYP21A2 with a specific c.*12C>T (rs150697472) variant in the middle segment occurred in all c.955C>T carriers with normal steroid levels. The second CYP21A2 was free of CAH-causing mutations and produced mRNA in the adrenal gland, confirming its functionality and ability to rescue the carriers from CAH. Neither LBSASB nor c.*12C>T occurred in classical CAH patients. However, CAH-causing CYP21A2 haplotypes with c.955C>T could be derived from the 3′-segment of LBSASB after the loss of functional CYP21A2 from the middle segment. The c.*12C>T indicated a functional CYP21A2 and could distinguish between non-pathogenic and pathogenic genomic contexts of the c.955C>T variant in the studied European population. Therefore, c.*12C>T may be suitable as a marker to avoid this genetic confound and improve the diagnosis of CAH. PMID:28401898
Doleschall, Márton; Luczay, Andrea; Koncz, Klára; Hadzsiev, Kinga; Erhardt, Éva; Szilágyi, Ágnes; Doleschall, Zoltán; Németh, Krisztina; Török, Dóra; Prohászka, Zoltán; Gereben, Balázs; Fekete, György; Gláz, Edit; Igaz, Péter; Korbonits, Márta; Tóth, Miklós; Rácz, Károly; Patócs, Attila
2017-06-01
There is a difficulty in the molecular diagnosis of congenital adrenal hyperplasia (CAH) due to the c.955C>T (p.(Q319*), formerly Q318X, rs7755898) variant of the CYP21A2 gene. Therefore, a systematic assessment of the genetic and evolutionary relationships between c.955C>T, CYP21A2 haplotypes and the RCCX copy number variation (CNV) structures, which harbor CYP21A2, was performed. In total, 389 unrelated Hungarian individuals with European ancestry (164 healthy subjects, 125 patients with non-functioning adrenal incidentaloma and 100 patients with classical CAH) as well as 34 adrenocortical tumor specimens were studied using a set of experimental and bioinformatic methods. A unique, moderately frequent (2%) haplotypic RCCX CNV structure with three repeated segments, abbreviated to LBSASB, harboring a CYP21A2 with a c.955C>T variant in the 3'-segment, and a second CYP21A2 with a specific c.*12C>T (rs150697472) variant in the middle segment occurred in all c.955C>T carriers with normal steroid levels. The second CYP21A2 was free of CAH-causing mutations and produced mRNA in the adrenal gland, confirming its functionality and ability to rescue the carriers from CAH. Neither LBSASB nor c.*12C>T occurred in classical CAH patients. However, CAH-causing CYP21A2 haplotypes with c.955C>T could be derived from the 3'-segment of LBSASB after the loss of functional CYP21A2 from the middle segment. The c.*12C>T indicated a functional CYP21A2 and could distinguish between non-pathogenic and pathogenic genomic contexts of the c.955C>T variant in the studied European population. Therefore, c.*12C>T may be suitable as a marker to avoid this genetic confound and improve the diagnosis of CAH.
Flück, Christa E.; Pandey, Amit V.; Dick, Bernhard; Camats, Núria; Fernández-Cancio, Mónica; Clemente, María; Gussinyé, Miquel; Carrascosa, Antonio; Mullis, Primus E.; Audi, Laura
2011-01-01
Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed. PMID:21647419
Cushing's syndrome and the nodular adrenal gland.
Samuels, M H; Loriaux, D L
1994-09-01
This article examines Cushing's syndrome in four main categories as associated with nodular adrenal glands: adrenal adenoma, adrenal carcinoma, primary pigmented nodular adrenal dysplasia, and macronodular adrenal hyperplasia. A summary of clinical features of these four categories is presented.
Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan
2018-02-01
It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Castinetti, Frederic; Qi, Xiao-Ping; Walz, Martin K; Maia, Ana Luiza; Sansó, Gabriela; Peczkowska, Mariola; Hasse-Lazar, Kornelia; Links, Thera P; Dvorakova, Sarka; Toledo, Rodrigo A; Mian, Caterina; Bugalho, Maria Joao; Wohllk, Nelson; Kollyukh, Oleg; Canu, Letizia; Loli, Paola; Bergmann, Simona R; Biarnes Costa, Josefina; Makay, Ozer; Patocs, Attila; Pfeifer, Marija; Shah, Nalini S; Cuny, Thomas; Brauckhoff, Michael; Bausch, Birke; von Dobschuetz, Ernst; Letizia, Claudio; Barczynski, Marcin; Alevizaki, Maria K; Czetwertynska, Malgorzata; Ugurlu, M Umit; Valk, Gerlof; Plukker, John T M; Sartorato, Paola; Siqueira, Debora R; Barontini, Marta; Szperl, Malgorzata; Jarzab, Barbara; Verbeek, Hans H G; Zelinka, Tomas; Vlcek, Petr; Toledo, Sergio P A; Coutinho, Flavia L; Mannelli, Massimo; Recasens, Monica; Demarquet, Lea; Petramala, Luigi; Yaremchuk, Svetlana; Zabolotnyi, Dmitry; Schiavi, Francesca; Opocher, Giuseppe; Racz, Karoly; Januszewicz, Andrzej; Weryha, Georges; Henry, Jean-Francois; Brue, Thierry; Conte-Devolx, Bernard; Eng, Charis; Neumann, Hartmut P H
2014-05-01
The prevention of medullary thyroid cancer in patients with multiple endocrine neoplasia type 2 syndrome has demonstrated the ability of molecular diagnosis and prophylactic surgery to improve patient outcomes. However, the other major neoplasia associated with multiple endocrine neoplasia type 2, phaeochromocytoma, is not as well characterised in terms of occurrence and treatment outcomes. In this study, we aimed to systematically characterise the outcomes of management of phaeochromocytoma associated with multiple endocrine neoplasia type 2. This multinational observational retrospective population-based study compiled data on patients with multiple endocrine neoplasia type 2 from 30 academic medical centres across Europe, the Americas, and Asia. Patients were included if they were carriers of germline pathogenic mutations of the RET gene, or were first-degree relatives with histologically proven medullary thyroid cancer and phaeochromocytoma. We gathered clinical information about patients'RET genotype, type of treatment for phaeochromocytoma (ie, unilateral or bilateral operations as adrenalectomy or adrenal-sparing surgery, and as open or endoscopic operations), and postoperative outcomes (adrenal function, malignancy, and death). The type of surgery was decided by each investigator and the timing of surgery was patient driven. The primary aim of our analysis was to compare disease-free survival after either adrenal-sparing surgery or adrenalectomy. 1210 patients with multiple endocrine neoplasia type 2 were included in our database, 563 of whom had phaeochromocytoma. Treatment was adrenalectomy in 438 (79%) of 552 operated patients, and adrenal-sparing surgery in 114 (21%). Phaeochromocytoma recurrence occurred in four (3%) of 153 of the operated glands after adrenal-sparing surgery after 6-13 years, compared with 11 (2%) of 717 glands operated by adrenalectomy (p=0.57). Postoperative adrenal insufficiency or steroid dependency developed in 292 (86%) of 339 patients with bilateral phaeochromocytoma who underwent surgery. However, 47 (57%) of 82 patients with bilateral phaeochromocytoma who underwent adrenal-sparing surgery did not become steroid dependent. The treatment of multiple endocrine neoplasia type 2-related phaeochromocytoma continues to rely on adrenalectomies with their associated Addisonian-like complications and consequent lifelong dependency on steroids. Adrenal-sparing surgery, a highly successful treatment option in experienced centres, should be the surgical approach of choice to reduce these complications. Copyright © 2014 Elsevier Ltd. All rights reserved.
MANAGEMENT OF ENDOCRINE DISEASE: Outcome of adrenal sparing surgery in heritable pheochromocytoma.
Castinetti, F; Taieb, D; Henry, J F; Walz, M; Guerin, C; Brue, T; Conte-Devolx, B; Neumann, H P H; Sebag, F
2016-01-01
The management of hereditary pheochromocytoma has drastically evolved in the last 20 years. Bilateral pheochromocytoma does not increase mortality in MEN2 or von Hippel-Lindau (VHL) mutation carriers who are followed regularly, but these mutations induce major morbidities if total bilateral adrenalectomy is performed. Cortical sparing adrenal surgery may be proposed to avoid definitive adrenal insufficiency. The surgical goal is to leave sufficient cortical tissue to avoid glucocorticoid replacement therapy. This approach was achieved by the progressive experience of minimally invasive surgery via the transperitoneal or retroperitoneal route. Cortical sparing adrenal surgery exhibits <5% significant recurrence after 10 years of follow-up and normal glucocorticoid function in more than 50% of the cases. Therefore, cortical sparing adrenal surgery should be systematically considered in the management of all patients with MEN2 or VHL hereditary pheochromocytoma. Hereditary pheochromocytoma is a rare disease, and a randomized trial comparing cortical sparing vs classical adrenalectomy is probably not possible. This lack of data most likely explains why cortical sparing surgery has not been adopted in most expert centers that perform at least 20 procedures per year for the treatment of this disease. This review examined recent data to provide insight into the technique, its indications, and the results and subsequent follow-up in the management of patients with hereditary pheochromocytoma with a special emphasis on MEN2. © 2016 European Society of Endocrinology.
Perioperative corticosteroid management for patients with inflammatory bowel disease.
Hicks, Caitlin W; Wick, Elizabeth C; Salvatori, Roberto; Ha, Christina Y
2015-01-01
Guidelines on the appropriate use of perioperative steroids in patients with inflammatory bowel disease (IBD) are lacking. As a result, corticosteroid supplementation during and after colorectal surgery procedures has been shown to be highly variable. A clearer understanding of the indications for perioperative corticosteroid administration relative to preoperative corticosteroid dosing and duration of therapy is essential. In this review, we outline the basic tenets of the hypothalamic-pituitary-adrenal (HPA) axis and its normal response to stress, describe how corticosteroid use is thought to affect this system, and provide an overview of the currently available data on perioperative corticosteroid supplementation including the limited evidence pertaining to patients with inflammatory bowel disease. Based on currently existing data, we define "adrenal suppression," and propose a patient-based approach to perioperative corticosteroid management in the inflammatory bowel disease population based on an individual's historical use of corticosteroids, the type of surgery they are undergoing, and HPA axis testing when applicable. Patients without adrenal suppression (<5 mg prednisone per day) do not require extra corticosteroid supplementation in the perioperative period; patients with adrenal suppression (>20 mg prednisone per day) should be treated with additional perioperative corticosteroid coverage above their baseline home regimen; and patients with unclear HPA axis function (>5 and <20 mg prednisone per day) should undergo preoperative HPA axis testing to determine the best management practices. The proposed management algorithm attempts to balance the risks of adrenal insufficiency and immunosuppression.
Steroidogenic Factor-1 and Human Disease
El-Khairi, Ranna; Achermann, John C.
2016-01-01
Steroidogenic factor-1 (SF-1) (Ad4BP, NR5A1) is a nuclear receptor that plays a key role in adrenal and reproductive development and function. Deletion of the gene encoding Sf-1 (Nr5a1) in mice results in severe developmental defects of the adrenal gland and gonad. Consequently, initial work on the potential effects of SF-1 disruption in humans focused on individuals with primary adrenal failure, a 46,XY karyotype, complete gonadal dysgenesis, and Müllerian structures. This is a rare phenotype, but has been reported on two occasions, because of alterations that affect key DNA-binding domains of SF-1. Attention then turned to a potential wider role of SF-1 in human adrenal and reproductive disorders. Although changes in SF-1 only very rarely cause isolated adrenal failure, it is emerging that variations in SF-1 are a surprisingly frequent cause of reproductive dysfunction in humans. In 46,XY disorders of sex development, a spectrum of phenotypes has been reported including severe and partial forms of gonadal (testicular) dysgenesis, hypospadias, anorchia with microphallus, and even male factor infertility. In 46,XX females, alterations in SF-1 are associated with primary ovarian insufficiency. Thus, SF-1 seems be a more significant factor in human reproductive health than was first envisioned, with implications for adults as well as children. PMID:23044873
Fargali, Samira; Garcia, Angelo L; Sadahiro, Masato; Jiang, Cheng; Janssen, William G; Lin, Wei-Jye; Cogliani, Valeria; Elste, Alice; Mortillo, Steven; Cero, Cheryl; Veitenheimer, Britta; Graiani, Gallia; Pasinetti, Giulio M; Mahata, Sushil K; Osborn, John W; Huntley, George W; Phillips, Greg R; Benson, Deanna L; Bartolomucci, Alessandro; Salton, Stephen R
2014-05-01
Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.
[Clinical management of adrenal incidentalomas: results of a survey].
Moreno-Fernández, Jesús; García-Manzanares, Alvaro; Sánchez-Covisa, Miguel Aguirre; García, E Inés Rosa Gómez
2009-12-01
Incidentalomas are clinically silent adrenal masses that are discovered incidentally during diagnostic testing for clinical conditions unrelated to suspicion of adrenal disease. Several decision algorithms are used in the management of adrenal masses. We evaluated the routine use of these algorithms through a clinical activity questionnaire. The questionnaire included data on the work center, initial hormonal and radiological study, imaging and hormonal tests performed to complete the study, surgical indications and clinical follow-up. Thirty-three endocrinologists (79%) attending the annual congress of the Castilla-La Mancha Society of Endocrinology, Nutrition and Diabetes completed the questionnaire. Forty-six percent considered tumoral size to be the most important factor suggesting malignancy in the initial evaluation of adrenal incidentalomas, the limit being 4 cm for 78% of the endocrinologists. Imaging study was completed by magnetic resonance imaging by 39%. All the physicians always performed screening for hypercortisolism and pheochromocytoma. Other assessments always conducted in all incidentalomas included hyperaldosteronism (76%), sex hormone-producing tumor (51%) and congenital adrenal hyperplasia (30%). Seventy-nine percent of respondents began to refer incidentalomas larger than 4 cm for surgical treatment, and 46% referred all tumors larger than 6 cm for surgical treatment. With regard to hormonal function, patients with pheochromocytoma, Cushing's syndrome, hyperaldosteronism with poorly controlled blood pressure or sex hormoneproducing tumors were more frequently referred for surgery. Seventy-six percent of endocrinologists performed clinical follow-up in adrenal incidentalomas larger than 4 cm, preferably through computerized tomography (81%), and repeated studies for hormonal hypercortisolism (97%), primary hyperaldosteronism (42%) and pheochromocytoma (76%) over a 4-5 year period (67%). Clinical practice varied among the endocrinologists surveyed, although a certain uniformity in relation to the main guidelines was observed. A tendency to request a greater number of diagnostic tests for initial hormone assessment and clinical follow-up was detected. Assessment, decision-making and medical monitoring in adrenal incidentalomas remain unclear and consequently further studies are required. Copyright 2009 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.
Cheng, Jie; Dong, Shuqi; Yi, Litao; Geng, Di; Liu, Qing
2018-06-01
Magnolol, the main constituent of Magnolia officinalis, has been shown to produce antidepressant-like effect in rodents. Growing evidence shows that neuroinflammation, oxidative stress and neuroendocrine contribute to the pathogenesis of major depression. Here, the aim of this present study was to determine whether magnolol affected these systems in mice exposed to chronic mild stress (CMS). The ameliorative effect of magnolol on depressive-like symptoms was investigated through behavioral tests, including the classical sucrose preference and forced swimming tests. The behavioral evaluation showed that magnolol reversed the depressive-like deficits both in sucrose preference test and forced swimming test. The elevation of prefrontal cortex pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was decreased by magnolol. Consistently, the microglia activation by CMS was also alleviated by magnolol. In addition, the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis induced by CMS was attenuated by magnolol. Moreover, the increased lipid peroxidation such as malonaldehyde (MDA) and decreased antioxidant defense enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) induced by CMS were also reversed by magnolol. These findings suggest that administration of magnolol could alleviate depressive-like behaviors in CMS mice that are mediated by suppressing neuroinflammation and oxidative stress in the prefrontal cortex. Copyright © 2018 Elsevier B.V. All rights reserved.
[Addison's disease : Primary adrenal insufficiency].
Pulzer, A; Burger-Stritt, S; Hahner, S
2016-05-01
Adrenal insufficiency, a rare disorder which is characterized by the inadequate production or absence of adrenal hormones, may be classified as primary adrenal insufficiency in case of direct affection of the adrenal glands or secondary adrenal insufficiency, which is mostly due to pituitary or hypothalamic disease. Primary adrenal insufficiency affects 11 of 100,000 individuals. Clinical symptoms are mainly nonspecific and include fatigue, weight loss, and hypotension. The diagnostic test of choice is dynamic testing with synthetic ACTH. Patients suffering from chronic adrenal insufficiency require lifelong hormone supplementation. Education in dose adaption during physical and mental stress or emergency situations is essential to prevent life-threatening adrenal crises. Patients with adrenal insufficiency should carry an emergency card and emergency kit with them.
Kiessling, Silke; Sollars, Patricia J.; Pickard, Gary E.
2014-01-01
The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link between the retina and descending autonomic circuits to peripheral organs such as the adrenal gland, thereby entraining those organs to the day/night cycle. However, there are at least three different routes or mechanisms by which retinal signals transmitted to the hypothalamus may be conveyed to peripheral organs: 1) via retinal input to SCN clock neurons; 2) via retinal input to non-clock neurons in the SCN; or 3) via retinal input to hypothalamic regions neighboring the SCN. It is very well documented that light-induced responses of the SCN clock (i.e., clock gene expression, neural activity, and behavioral phase shifts) occur primarily during the subjective night. Thus to determine the role of the SCN clock in transmitting photic signals to descending autonomic circuits, we compared the phase dependency of light-evoked responses in the SCN and a peripheral oscillator, the adrenal gland. We observed light-evoked clock gene expression in the mouse adrenal throughout the subjective day and subjective night. Light also induced adrenal corticosterone secretion during both the subjective day and subjective night. The irradiance threshold for light-evoked adrenal responses was greater during the subjective day compared to the subjective night. These results suggest that retinohypothalamic signals may be relayed to the adrenal clock during the subjective day by a retinal pathway or cellular mechanism that is independent of an effect of light on the SCN neural clock network and thus may be important for the temporal integration of physiology and metabolism. PMID:24658072
Burgess, Elizabeth A; Hunt, Kathleen E; Kraus, Scott D; Rolland, Rosalind M
2017-10-01
Until now, physiological stress assessment of large whales has predominantly focused on adrenal glucocorticoid (GC) measures. Elevated GC concentrations in feces (fGC) are known to reflect stressful disturbances, such as fishing gear entanglement and human-generated underwater noise, in North Atlantic right whales (Eubalaena glacialis). However, there can be considerable variation in GC production as a function of sex and life history stage, which may confound the interpretation of fGC levels. Additionally, GC antibodies used in immunoassays can cross-react with other fecal metabolites (i.e., non-target steroids), potentially influencing fGC data. Here, aldosterone concentrations (fALD; aldosterone and related metabolites) were measured in fecal samples from right whales (total n=315 samples), including samples from identified individuals of known life history (n=82 individual whales), to evaluate its utility as a complementary biomarker to fGC for identifying adrenal activation. Concentrations of fALD were positively correlated with fGCs in right whales (r=0.59, P<0.001), suggesting concurrent secretion of these hormones by the adrenal gland. However, fALD levels were less influenced by concentrations of reproductive steroids in feces, minimizing the potential confounder of assay cross-reactivity in samples with highly skewed hormone ratios. Across different life history states for right whales, fALD concentrations showed similar patterns to those reported for fGC, with higher levels in pregnant females (35.9±7.6ng/g) followed by reproductively mature males (9.5±0.9ng/g) (P<0.05), providing further evidence of elevated adrenal activation in these groups of whales. The addition of fALD measurement as a biomarker of adrenal activation may help distinguish between intrinsic and external causes of stress hormone elevations in large whales, as well as other free-living wildlife species, providing a more comprehensive approach for associating adrenal activation with specific natural and anthropogenic stressors. Copyright © 2017 Elsevier Inc. All rights reserved.
Hydrocortisone and ACTH levels in manned spaceflight
NASA Technical Reports Server (NTRS)
Leach, C. S.; Campbell, B. O.
1974-01-01
The plasma hydrocortisone, plasma ACTH, and urinary hydrocortisone values were recorded for each man of the crews of Apollo flights eight through fifteen, 30, 14, and 5 days before flight, immediately after spaceflight recovery, and on future days until the return of most variables to preflight values. The plasma and urinary preflight hydrocortisone values were significantly higher than the postflight values. This result is discussed in terms of three possible explanations: (1) the adrenal-cortical function is suppressed during spaceflight; (2) the activity in flight may amount to stressful exercise, which tests have shown can cause a decrease in plasma adrenocortical hormones; and (3) the in-flight work-rest cycles may be such as to affect the circadian periodicity of the pituitary-adrenal function.
State of the body in disorders of diurnal physiological rhythms and long-term hypokinesia
NASA Technical Reports Server (NTRS)
Razin, S. N.; Rychko, A. V.
1980-01-01
In order to study the effects of hypokinesia and circadian rhythm restructuring on the morphological and functional status of the hypothalamo-hypophysic-adrenal system, young male Wistar rats were placed in small cages for varying periods. The animals were decapitated and preparations were made from sections of the brain and adrenals and numerous destructive changes were noted in the investigated regions of the brain, indicating that the condition of these areas is directly affected by disruption of established rhythms in physiological processes.
Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia.
Louiset, Estelle; Duparc, Céline; Young, Jacques; Renouf, Sylvie; Tetsi Nomigni, Milène; Boutelet, Isabelle; Libé, Rossella; Bram, Zakariae; Groussin, Lionel; Caron, Philippe; Tabarin, Antoine; Grunenberger, Fabienne; Christin-Maitre, Sophie; Bertagna, Xavier; Kuhn, Jean-Marc; Anouar, Youssef; Bertherat, Jérôme; Lefebvre, Hervé
2013-11-28
Bilateral macronodular adrenal hyperplasia is a rare cause of primary adrenal Cushing's syndrome. In this form of hyperplasia, hypersecretion of cortisol suppresses the release of corticotropin by pituitary corticotrophs, which results in low plasma corticotropin levels. Thus, the disease has been termed corticotropin-independent macronodular adrenal hyperplasia. We examined the abnormal production of corticotropin in these hyperplastic adrenal glands. We obtained specimens of hyperplastic macronodular adrenal tissue from 30 patients with primary adrenal disease. The corticotropin precursor proopiomelanocortin and corticotropin expression were assessed by means of a polymerase-chain-reaction assay and immunohistochemical analysis. The production of corticotropin and cortisol was assessed in 11 specimens with the use of incubated explants and cell cultures coupled with hormone assays. Corticotropin levels were measured in adrenal and peripheral venous blood samples from 2 patients. The expression of proopiomelanocortin messenger RNA (mRNA) was detected in all samples of hyperplastic adrenal tissue. Corticotropin was detected in steroidogenic cells arranged in clusters that were disseminated throughout the adrenal specimens. Adrenal corticotropin levels were higher in adrenal venous blood samples than in peripheral venous samples, a finding that was consistent with local production of the peptide within the hyperplastic adrenals. The release of adrenal corticotropin was stimulated by ligands of aberrant membrane receptors but not by corticotropin-releasing hormone or dexamethasone. A semiquantitative score for corticotropin immunostaining in the samples correlated with basal plasma cortisol levels. Corticotropin-receptor antagonists significantly inhibited in vitro cortisol secretion. Cortisol secretion by the adrenals in patients with macronodular hyperplasia and Cushing's syndrome appears to be regulated by corticotropin, which is produced by a subpopulation of steroidogenic cells in the hyperplastic adrenals. Thus, the hypercortisolism associated with bilateral macronodular adrenal hyperplasia appears to be corticotropin-dependent. (Funded by the Agence Nationale de la Recherche and others.).
Adrenal Steroidogenesis after B Lymphocyte Depletion Therapy in New-Onset Addison's Disease
Mitchell, Anna L.; Bennett, Stuart; King, Phil; Chandran, Sukesh; Nag, Sath; Chen, Shu; Smith, Bernard Rees; Isaacs, John D.; Vaidya, Bijay
2012-01-01
Context: A diagnosis of Addison's disease means lifelong dependence on daily glucocorticoid and mineralocorticoid therapy and is associated with increased morbidity and mortality as well as a risk of unexpected adrenal crisis. Objective: The objective of the study was to determine whether immunomodulatory therapy at an early stage of autoimmune Addison's disease could lead to preservation or improvement in adrenal steroidogenesis. Design and Intervention: This was an open-label, pilot study of B lymphocyte depletion therapy in new-onset idiopathic primary adrenal failure. Doses of iv rituximab (1 g) were given on d 1 and 15, after pretreatment with 125 mg iv methylprednisolone. Patients and Main Outcome Measures: Six patients (aged 17–47 yr; four females) were treated within 4 wk of the first diagnosis of idiopathic primary adrenal failure. Dynamic testing of adrenal function was performed every 3 months for at least 12 months. Results: Serum cortisol levels declined rapidly and were less than 100 nmol/liter (3.6 μg/dl) in all patients by 3 months after B lymphocyte depletion. Serum cortisol and aldosterone concentrations remained low in five of the six patients throughout the follow-up period. However, a single patient had sustained improvement in both serum cortisol [peak 434 nmol/liter (15.7 μg/dl)] and aldosterone [peak 434 pmol/liter (15.7 ng/dl)] secretion. This patient was able to discontinue steroid medications 15 months after therapy and remains well, with improving serum cortisol levels 27 months after therapy. Conclusion: New-onset autoimmune Addison's disease should be considered as a potentially reversible condition in some patients. Future studies of immunomodulation in autoimmune Addison's disease may be warranted. PMID:22767640
Muir, Paul; Choe, Michelle S; Croxson, Michael S
2012-06-01
Anterior compartment syndrome (ACS) and rhabdomyolysis are rare complications of hypothyroid myopathy. We report the case of a young man with rapid onset of ACS who presented with simultaneous primary hypothyroidism and adrenal insufficiency associated with acute renal failure, hyponatremia, and hyperkalemia. A 22-year-old man presenting with a one-month history of tiredness, hyperpigmentation, and cramps in his calves was found to have severe bilateral foot drop. Investigations revealed severe primary hypothyroidism and adrenal insufficiency, renal failure, and evidence of rhabdomyolysis with myoglobinuria. Abnormal biochemical findings included serum sodium of 110 mM, serum potassium of 6.9 mM, and serum creatine kinase (CK) of >25,000 IU/L. Magnetic resonance imaging (MRI) of his legs showed changes of myonecrosis confined to anterior tibial muscles typical of ACS. After treatment with intravenous fluids, potassium-lowering therapies, thyroxine, and hydrocortisone, his renal and metabolic function returned to normal, but irreversible bilateral foot drop persisted. A young man with primary hypothyroidism, adrenal insufficiency, hyponatremia, and hyperkalemia presented with severe myopathy, such that muscle necrosis, apparently confined to the anterior tibial compartment on MRI, led to rhabdomyolysis, acute renal failure, and irreversible bilateral peroneal nerve damage. It is possible that other patients with primary hypothyroidism and marked elevations of CK without widespread myopathy or rhabdomyolysis may demonstrate evidence of differential muscle effects in the anterior compartment when assessed by MRI, but that this patient also had adrenal insufficiency raises the possibility that this was a contributing factor. Severe thyroid myopathy and rhabdomyolysis may be associated with anatomic susceptibility to ACS, particularly in the presence of concomitant adrenal insufficiency. MRI examination reveals a distinctive appearance of myonecrosis confined to the anterior compartment.
Pérez, Ana R; Lambertucci, Flavia; González, Florencia B; Roggero, Eduardo A; Bottasso, Oscar A; de Meis, Juliana; Ronco, Maria T; Villar, Silvina R
2017-10-01
Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6- Tnfrsf1a tm1Imx or TNF-R1 -/- ) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluation of quantitative parameters for distinguishing pheochromocytoma from other adrenal tumors.
Ohno, Youichi; Sone, Masakatsu; Taura, Daisuke; Yamasaki, Toshinari; Kojima, Katsutoshi; Honda-Kohmo, Kyoko; Fukuda, Yorihide; Matsuo, Koji; Fujii, Toshihito; Yasoda, Akihiro; Ogawa, Osamu; Inagaki, Nobuya
2018-03-01
Adrenal tumors are increasingly found incidentally during imaging examinations. It is important to distinguish pheochromocytomas from other adrenal tumors because of the risk of hypertensive crisis. Although catecholamines and their metabolites are generally used to diagnose pheochromocytoma, false-positive test results are common. An effective screening method to distinguish pheochromocytoma from adrenal incidentalomas is needed. We analyzed 297 consecutive patients with adrenal incidentalomas. Our findings included 162 non-functioning tumors, 47 aldosterone-producing adenomas, 26 metastases, 22 cases of subclinical Cushing's syndrome, 21 pheochromocytomas, 12 cases of Cushing's syndrome, and 7 adrenocortical cancers. We checked quantitative parameters such as age, blood, and urine catecholamines and their metabolites, neuron-specific enolase, size and computed tomography (CT) attenuation values. Among catecholamine-related parameters, the sum of urine metanephrine and normetanephrine (urineMNM) levels produced the highest area under the receiver operating characteristic curve regarding discrimination of pheochromocytoma from other lesions. Size and CT attenuation values also differed significantly. However, size was correlated with catecholamine levels. CT attenuation was not correlated with other factors. The optimal thresholds were 19 Hounsfield units (HU) for CT attenuation (sensitivity, 100%; specificity, 60%) and 0.43 mg/24 h for urineMNM (sensitivity, 89%; specificity, 96%). No pheochromocytomas were evident when CT attenuation values were under 19 HU. Even in adrenal tumors with CT attenuation values ≥ 19 HU, when urineMNM was < 0.43 mg/24 h, the frequency of pheochromocytoma was only 4.3%, when urineMNM was ≥ 0.43 mg/24 h, the frequency of pheochromocytoma was 93% and when urineMNM was > 0.77 mg/24 h the frequency of pheochromocytoma was 100%. CT attenuation value and urineMNM represented the most useful combination for diagnosis of pheochromocytoma.
Yan, Rongzi; Nguyen, Quang; Gonzaga, James; Johnson, Mai; Ritzmann, Ronald F; Taylor, Eve M
2003-04-01
AIT-082 (Neotrofin), a hypoxanthine derivative, has been shown to improve memory in both animals and humans. In animals, adrenal hormones modulate the efficacy of many memory-enhancing compounds, including piracetam and tacrine (Cognex). To investigate the role of adrenal hormones in the memory-enhancing action of AIT-082. Plasma levels of adrenal hormones (corticosterone and aldosterone) in mice were significantly reduced by surgical or chemical (aminoglutethimide) adrenalectomy or significantly elevated by oral administration of corticosterone. The effects of these hormone level manipulations on the memory-enhancing activity of AIT-082 and piracetam were evaluated using a cycloheximide-induced amnesia/passive avoidance model. As previously reported by others, the memory enhancing action of piracetam was abolished by adrenalectomy. In contrast, the memory enhancement by 60 mg/kg AIT-082 (IP) was unaffected. However, a sub-threshold dose of AIT-082 (0.1 mg/kg, IP) that did not improve memory in control animals did improve memory in adrenalectomized animals. These data suggested that, similar to piracetam and tacrine, the memory enhancing action of AIT-082 might be inhibited by high levels of adrenal hormones. As expected, corticosterone (30 and 100 mg/kg) inhibited the action of piracetam, however no dose up to 100 mg/kg corticosterone inhibited the activity of AIT-082. These data suggest that while AIT-082 function is not dependent on adrenal hormones, it is modulated by them. That memory enhancement by AIT-082 was not inhibited by high plasma corticosterone levels may have positive implications for its clinical utility, given that many Alzheimer's disease patients have elevated plasma cortisol levels.
Subspecialization in the human posterior medial cortex
Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.
2014-01-01
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801
Takayanagi, Toshimitsu; Matsuo, Koji; Egashira, Tomoko; Mizukami, Tomoko
2015-05-01
This study investigated whether providing extremely low birthweight (ELBW) infants with a large amount of hydrocortisone had a serious suppressive effect on the later function of the hypothalamus-pituitary-adrenal (HPA) axis. We evaluated the function of the HPA axis in 58 ELBW infants receiving 9.0 ± 7.2 mg/kg of intravenous and 68.1 ± 34.1 mg/kg of oral hydrocortisone using a human corticotropin-releasing hormone stimulation test. The mean age at investigation was 12.0 ± 5.2 months. The response was judged to be normal when the maximum to minimum ratio of the plasma adrenocorticotropic hormone (ACTH) concentration was >2, the peak value of the serum cortisol concentration was >552 nmol/L, or the increment was >193 nmol/L than baseline concentration. Of the 58 infants studied, 51 (88%) displayed a normal response to both the ACTH and cortisol secretion and seven infants (12%) who were judged to be poor responders exhibited a peak cortisol value of >386 nmol/L without any episode of adrenal insufficiency. Providing ELBW infants with a daily low dose of long-term hydrocortisone therapy should not lead to a serious suppressive effect on the later function of the HPA axis, regardless of the administration method. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, S.; Kimler, B.F.
1988-07-01
Ionizing radiation is a precise tool for altering formation of the developing cerebral cortex of the fetal rat. Whole body exposure of the pregnant rat on gestational day 13, 15 or 17 to 1.0 Gy of gamma radiation resulted in maximum thinning of the cortex on days 15 and 17. In the preweaning period, functional tests (negative geotaxis, reflex suspension, continuous corridor and gait) were most affected by irradiation gestational day 15, as was body weight. When a lower dose of radiation (0.75 Gy) was used on gestational day 15, the damage to the cortex was much less but behavioralmore » changes were still present. Frontal, parietal and occipital areas of the cortex were approximately equally affected. Using stepwise multiple regression analysis, the linkage of functional tests and cortical thickness was examined. Functional variables which were most commonly included as predictors of frontal and parietal cortex were negative geotaxis and continuous corridor. Occipital cortical layers were not predicted by behavioral variables. In predicting function using cortical variables, frontal cortex was better than parietal and occipital cortex was the poorest predictor.« less
Isolation of rat adrenocortical mitochondria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solinas, Paola; Department of Medicine, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; Fujioka, Hisashi
2012-10-12
Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electronmore » micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.« less
Roll, M F; Kneppo, C; Roth, H; Bettendorf, M; Waag, K-L; Holland-Cunz, S
2006-10-01
The study objective is to evaluate the results of our surgical technique for children with congenital adrenal hyperplasia and ambiguous genitalia at the University Hospital of Heidelberg, Department of Paediatric Surgery. The records of 19 patients with congenital adrenal hyperplasia treated between 1972 and 2004 were reviewed with respect to age at surgery, operative procedures and outcome. We describe the recession clitoroplasty technique currently used in our hospital and highlight the importance of short and long-term follow-up results with respect to appearance, position and size of the clitoris and quality of the vagina. One-stage recession clitoroplasty and vaginoplasty gives very satisfactory cosmetic and functional results, with few complications and a reduced need for secondary surgical interventions. The results of this study support the assumption that total correction can be achieved through a single-stage operation, performed in infancy.
[Serum cortisol level variations in thyroid diseases].
Seck-Gassama; Ndoye, O; Mbodj, M; Akala, A; Cisse, F; Niang, M; Ndoye, R
2000-01-01
This work studies the thyroid disorders impact on adrenals glands by measuring total cortisol. Radioimmunoassays of thyroid hormones and cortisol were performed in 108 subjects, aged 20-52 years, with thyroid diseases. Our results show low cortisol values (80.35 nmol/L) in 4.77% of hyperthyroids, high values in 3.57% of hyperthyroids (1348.18 nmol/L) and 12.5% of hypothyroids (969.05 nmol/L). In hyperthyroidism, thyroid hormone stimulates the secretion of 11 ceto metabolites biologically inactive, unable to slow pituitary activity, inducing an increased production of endogene cortisol. Excessive catabolism can lead to the exhausting of overstimulated adrenal glands, and therefore to a decreased cortisol. In hypothyroidism, high cortisol results of increase cortisol half life and decrease of metabolic clearance. Control mechanisms often allow normal cortisol values. These alterations in functional activity of adrenal glands, seen in nearly 10% of these subjects, sometimes command a specific attitude in diagnosis and therapy.
Regulation of aldosterone production by ion channels: From basal secretion to primary aldosteronism.
Yang, Tingting; He, Min; Hu, Changlong
2018-03-01
Aldosterone is produced by zona glomerulosa (ZG) cells of the adrenal cortex and plays a key role in balancing water and electrolytes levels. Autonomous overproduction of aldosterone leads to primary aldosteronism (PA), which is the most common form of secondary endocrine hypertension. Recently, significant progress has been made towards understanding the genetic basis of PA, where increasing clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas. In this review, we focused on potassium and calcium channels that regulate aldosterone secretion, and their roles in the pathology of PA. Because potassium and calcium channels are differentially expressed in ZG cells in different species of mammals, the limitations of published studies are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, Howard H.; Patek, Paul R.; Bernick, Sol
1962-03-01
Changes in morphology and responses of macrophages to a single intravenous injection of carbon or thorium dioxide (Thorotrast) were studied in rats. Localization of C particles is described in detail, although an identical response of macrophages to ThO 2 was observed. In lever, C particles were observed in Kupffer cells lining the sinusoids of the hepatic lobule 24 hr after injection. At 48 hr the concentration of C increased within the hepatic lobule. The increased uptake of C by individual Kupffer cells eventually led to conglomeration of these macrophages and apparent sinusoidal occlusion. Only a minimal amount of C particlesmore » was observed in the lungs at one month, but migration of Claden macrophages to lung from liver began one month after the injection and quickly ceased shortly afterward. There was a relative increase in the particles demonstrated in the spleen as the experiment progressed. Administration of the reticuloendothelial blocking agents resulted in morphological changes in the thyroid gland, anterior pituitary, and adrenals. Both C and ThO 2 produced a hyperplasia of the thyroid follicles. Concomitantly, there was a marked increase in the number of thyrotrophic cells of the anterior pituitary, suggesting thyrotropin production or release. There was also an increased infiltration of a sudanophilic positive substance into all the zones of the adrenal cortex. (H.H.D.)« less
García-Pascual, I J; Sánchez-Yagüe, J; Rodríguez Hernández, M C; Paniagua Gómez-Alvárez, R
1994-04-01
The present study proved that desmopressin (DDAVP) (1 microgram DDAVP/12 h/5 días) does not affect ovary, testis and adrenal development in immature Wistar rats (17 days old), because the DDAVP does not modify the weight of the aforementioned organs as compared with the control group. Nevertheless, the male adults Wistar rats (80 days old) showed lower serum testosterone concentrations than the control group, after injection of 4 micrograms/day (2 micrograms/12 h) or 8 micrograms/day (4 micrograms/12 h) of DDAVP during a 5 days period time. Moreover, paradoxical significant lower concentrations of serum testosterone were found in 4 micrograms DDAVP/day-treated rats than in 8 micrograms DDAVP/day-treated ones. The former also showed a decreased number of spermatozoa as compared with the latter and with the control group. The percentage of mobile spermatozoa was lower in rats treated with both concentrations of DDAVP as compared with the control group. Therefore, desmopressin does not delay gonadal and adrenal growth in immature rats, but, at low doses, it affects the testicular function and the mobility of the spermatozoa in male adult rats.
Bernini, G P; Brogi, G; Argenio, G F; Moretti, A; Salvetti, A
1998-05-01
To evaluate the influence of an hydrophilic statin, pravastatin, on adrenal and testicular steroidogenesis and spermatogenesis, eight male hypercholesterolemic patients were studied. All patients observed a hypocholesterolemic diet and received placebo for 4 weeks followed by pravastatin (20 mg/die) for 6 months. Before, during (4th-5th week) and at the end (23th-24th week) of active treatment, CRH (1 microgram i.v.), ACTH (Synacthen 250 micrograms i.v.) and human CG (HCG 3000 IU i.m.) tests were performed in addition to semen analysis. Pravastatin significantly reduced total cholesterol (20.3%), calculated LDL-cholesterol (24.6%) and apolipoprotein B (10.5%, increased apolipoprotein A1 (16.1%) and did not influence plasma HDL-cholesterol and triglycerides. Basal plasma cortisol, aldosterone, androstenedione, testosterone and oestradiol did not change under active treatment. Pravastatin administration affected neither adrenal hormone responses to CRH and ACTH or testicular response to HCG nor spermatogenesis in respect of motility, morphology and sperm count. In conclusion, long-term pravastatin treatment, at doses effective in improving lipid profile, did not influence testicular reproductive and endocrine function and did not interfere with basal and stimulated adrenal activity of male hypercholesterolemic patients.
Ewing's sarcoma arising from the adrenal gland in a young male: a case report.
Zahir, Muhammad Nauman; Ansari, Tayyaba Zehra; Moatter, Tariq; Memon, Wasim; Pervez, Shahid
2013-12-13
Ewing's sarcoma uncommonly arises from extraosseous soft tissue or parenchymal organs. Primary adrenal Ewing's Sarcoma, although very rare, is extremely aggressive and commonly fatal. A 17 year old Pakistani male was referred to the outpatient oncology clinic at our center with a three month history of concomitant pain, swelling and dragging sensation in the right hypochondrium. Abdominal examination revealed a large, firm mass in the right hypochondrium extending into the right lumbar region and epigastrium. His genital exam was unremarkable and there were no stigmata of hepatic or adrenal disease.Computed tomography scans revealed a large peripherally enhancing mass in the hepatorenal area, biopsy of which showed a neoplastic lesion composed of small round blue cells which exhibited abundance of glycogen and stained diffusely positive for CD99 (MIC2 antigen). Fluorescence in situ hybridization demonstrated gene rearrangement at chromosome 22q12 which confirmed the diagnosis of Ewing's sarcoma. Staging scans revealed pulmonary metastasis and hence he was commenced on systemic chemotherapy. This case report highlights the importance of keeping Ewing's sarcoma in mind when a young patient presents with a large non-functional adrenal mass.
Pajer, Kathleen A
2007-10-01
Negative emotions such as depression and hostility/anger are important risk factors for cardiovascular disease in adults, but are often neglected in treatment or prevention programs. Adolescence is a stage of life when negative emotions often first become problematic and is also a time when the pathogenesis of cardiovascular disease appears to accelerate. The literature on negative emotions and cardiovascular disease risk factors in adolescents is reviewed here. Research indicates that negative emotions are associated with cardiovascular disease risk factors in adolescence. Negative emotions are also associated with several types of hypothalamic-pituitary-adrenal axis dysregulation. Such dysregulation appears to have a facilitatory effect on cardiovascular disease development and progression in adults. Thus, it is possible that negative emotions in adolescents may be risk factors for the development of cardiovascular disease via dysregulation of the hypothalamic-pituitary-adrenal axis. Although this hypothesis has not been directly tested, some studies indirectly support the hypothesis. Negative emotions are associated with cardiovascular disease risk factors in adolescents; it is possible that hypothalamic-pituitary-adrenal axis dysregulation is an important mechanism. This hypothesis merits further research. If the hypothesis is valid, it has significant implications for early prevention of cardiovascular disease.
A Retroperitoneal Leiomyosarcoma Presenting as an Adrenal Incidentaloma in a Subject on Warfarin.
Khan, Ishrat N; Adlan, Mohamed A; Stechman, Michael J; Premawardhana, Lakdasa D
2015-01-01
Adrenal incidentalomas (AIs) are mostly benign and nonsecretory. Management algorithms lack sensitivity when assessing malignant potential, although functional status is easier to assess. We present a subject whose AI was a retroperitoneal leiomyosarcoma (RL). Case Presentation. A woman on warfarin with SLE and the antiphospholipid syndrome, presented with left loin pain. She was normotensive and clinically normal. Ultrasound scans demonstrated left kidney scarring, but CT scans revealed an AI. MRI scans later confirmed the AI without significant fat and no interval growth. Cortisol after 1 mg dexamethasone, urinary free cortisol and catecholamines, plasma aldosterone renin ratio, and 17-hydroxyprogesterone were within the reference range. Initially, adrenal haemorrhage was diagnosed because of warfarin therapy and the acute presentation. However, she underwent adrenalectomy because of interval growth of the AI. Histology confirmed an RL. The patient received adjuvant radiotherapy. Discussion. Our subject presented with an NSAI. However, we highlight the following: (a) the diagnosis of adrenal haemorrhage in this anticoagulated woman was revised because of interval growth; (b) the tumour, an RL, was relatively small at diagnosis; (c) this subject has survived well over 60 months despite an RL perhaps because of her acute presentation and early diagnosis of a small localised tumour.
Beckmann, Matthias; Johansen-Berg, Heidi; Rushworth, Matthew F S
2009-01-28
Whole-brain neuroimaging studies have demonstrated regional variations in function within human cingulate cortex. At the same time, regional variations in cingulate anatomical connections have been found in animal models. It has, however, been difficult to estimate the relationship between connectivity and function throughout the whole cingulate cortex within the human brain. In this study, magnetic resonance diffusion tractography was used to investigate cingulate probabilistic connectivity in the human brain with two approaches. First, an algorithm was used to search for regional variations in the probabilistic connectivity profiles of all cingulate cortex voxels with the whole of the rest of the brain. Nine subregions with distinctive connectivity profiles were identified. It was possible to characterize several distinct areas in the dorsal cingulate sulcal region. Several distinct regions were also found in subgenual and perigenual cortex. Second, the probabilities of connection between cingulate cortex and 11 predefined target regions of interest were calculated. Cingulate voxels with a high probability of connection with the different targets formed separate clusters within cingulate cortex. Distinct connectivity fingerprints characterized the likelihood of connections between the extracingulate target regions and the nine cingulate subregions. Last, a meta-analysis of 171 functional studies reporting cingulate activation was performed. Seven different cognitive conditions were selected and peak activation coordinates were plotted to create maps of functional localization within the cingulate cortex. Regional functional specialization was found to be related to regional differences in probabilistic anatomical connectivity.
Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Denburg, Natalie L.; Tranel, Daniel
2013-01-01
The False Tagging Theory (FTT) is a neuroanatomical model of belief and doubt processes that proposes a single, unique function for the prefrontal cortex. Here, we review evidence pertaining to the FTT, the implications of the FTT regarding fractionation of the prefrontal cortex, and the potential benefits of the FTT for new neuroanatomical conceptualizations of executive functions. The FTT provides a parsimonious account that may help overcome theoretical problems with prefrontal cortex mediated executive control such as the homunculus critique. Control in the FTT is examined via the “heuristics and biases” psychological framework for human judgment. The evidence indicates that prefrontal cortex mediated doubting is at the core of executive functioning and may explain some biases of intuitive judgments. PMID:23745103
Phaeochromocytoma in a 86-year-old patient presenting with reversible myocardial dysfunction.
Szwench, Elżbieta; P Czkowska, Mariola; Marczewski, Krzysztof; Klisiewicz, Anna; Micha Owska, Ilona; Ciuba, Iwona; Januszewicz, Magdalena; Prejbisz, Aleksander; Hoffman, Piotr; Januszewicz, Andrzej
2011-12-01
BACKGROUND. Phaeochromocytomas and paragangliomas are rare, mostly benign catecholamine-producing tumours of chromaffin cells of the adrenal medulla or of extra-adrenal paraganglia. Phaeochromocytoma may occur at any age, the greatest frequency being in the fourth and fifth decades. Only on extremely rare occasions does the tumour develop in the very old patients. METHODS. We are describing an 86-year-old patient with phaeochromocytoma, presenting with reversible myocardial dysfunction. RESULTS. This very old patient with phaeochromocytoma had hypertension characterized by labile blood pressure values and increased daytime blood pressure variability. This patient exhibited reversible myocardial dysfunction suggestive for "catecholaminergic cardiomyopathy", as the complication of phaeochromocytoma. After surgical removal of the tumour, recovery of left ventricular function was documented by echocardiography showing normalization of systolic function and improvement of diastolic function. CONCLUSION. Phaeochromocytomas are rare forms of secondary hypertension, but should be considered in the differential diagnosis, regardless of age, even in very old patients.
NASA Astrophysics Data System (ADS)
Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka
2013-07-01
This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P < 0.05) and higher increase of oxyhemoglobin in both left ( P < 0.05) and right ( P < 0.05) pre-frontal cortex at the final stage of 45-min leg immersion in the 42 °C condition with unaltered tissue oxygenation index among the three conditions ( P > 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P < 0.05) pre-frontal cortex. The findings of this study suggest, first, passive heat exposure increases oxygen delivery in the pre-frontal cortex to maintain pre-frontal cortex oxygenation; second, there is no evidence of passive heat exposure in cognitive functioning in this study; and third, the greater increases of oxyhemoglobin in the pre-frontal cortex during cognitive functioning at the hottest condition suggests a recruitment of available neural resources or greater effort to maintain the same performance at the same level as when they felt thermally comfortable.
Soudry, Ethan; Wang, Jane; Vaezeafshar, Reza; Katznelson, Laurence; Hwang, Peter H
2016-06-01
Although the safety of topical nasal steroids is well established for nasal spray forms, data regarding the safety of steroid irrigations is limited. We studied the effect of long-term budesonide nasal irrigations (>6 months) on hypothalamic-pituitary-adrenal axis (HPAA) function and intraocular pressure (IOP) in patients post-endoscopic sinus surgery. This was retrospective case series. Adrenal function was assessed by using the high-dose cosyntropin stimulation test. A total of 48 patients were assessed, with a mean duration of budesonide irrigations of 22 months. Stimulated cortisol levels were abnormally low in 11 patients (23%). None reported to have symptoms of adrenal suppression. Three of 4 patients who repeated the study being off budesonide for at least 1 month returned to near normal levels. Logistic regression analysis revealed that concomitant use of both nasal steroid sprays and pulmonary steroid inhalers was significantly associated with HPAA suppression (p = 0.024). Patients with low stimulated cortisol levels were able to continue budesonide irrigations under the supervision of an endocrinologist without frank clinical manifestations of adrenal insufficiency. IOP was within normal limits in all patients. Long-term use of budesonide nasal irrigations is generally safe, but asymptomatic HPAA suppression may occur in selected patients. Concomitant use of both nasal steroid sprays and pulmonary steroid inhalers while using daily budesonide nasal irrigations is associated with an increased risk. Rhinologists should be alerted to the potential risks of long-term use of budesonide nasal irrigations, and monitoring for HPAA suppression may be warranted in patients receiving long-term budesonide irrigation therapy. © 2016 ARS-AAOA, LLC.
Experiment K-7-19: Pineal Physiology After Spaceflight: Relation to Rat Gonadal Function
NASA Technical Reports Server (NTRS)
Holley, D. C.; Soliman, M. R. I.; Krasnov, I.; Asadi, H.
1994-01-01
The function of pineal exposed to microgravity and spaceflight is studied. It is found that the spaceflight resulted in a stress response as indicated by adrenal hypertrophy, that gonadal function was compromised, and that the pineal may be linked as part of the mechanisms of the response noted.
Nishimoto, Koshiro; Seki, Tsugio; Kurihara, Isao; Yokota, Kenichi; Omura, Masao; Nishikawa, Tetsuo; Shibata, Hirotaka; Kosaka, Takeo; Oya, Mototsugu; Suematsu, Makoto; Mukai, Kuniaki
2016-01-01
We previously reported that the human adrenal cortex remodels to form subcapsular aldosterone-producing cell clusters (APCCs). Some APCCs were recently found to carry aldosterone-producing adenoma (APA)-associated somatic mutations in ion channel/pump genes, which implied that APCCs produce aldosterone autonomously and are an origin of APA. However, there has been no report describing an APCC-to-APA transitional lesion. A histological examination revealed unilateral multiple adrenocortical micronodules in the adrenals of two patients with primary aldosteronism (PA). Based on immunohistochemistry for aldosterone synthase, some of the micronodules were identified as possible APCC-to-APA transitional lesions (pAATLs; a tentative term used in this manuscript), which consisted of a subcapsular APCC-like portion and an inner micro-APA-like (mAPA-like) portion without an apparent histological border. Genomic DNA samples prepared from pAATL histological sections were analyzed by next-generation sequencing for the known APA-associated mutations. The mAPA-like portions from two of the three large pAATLs examined harbored mutations (KCNJ5 [p.G151R] in pAATL 3 and ATP1A1 [p.L337M] in pAATL 7), whereas their corresponding APCC-like portions did not, suggesting their role in the formation of mAPA. Another lesion carried novel mutations in ATP1A1 (p.Ile322_Ile325del and p.Ile327Ser) in both the mAPA-like and APCC-like portions, thereby supporting these portions having a clonal origin. A novel aldosterone-producing pathology, pAATL that causes unilateral PA, was detected in the adrenals of two patients. Next-generation sequencing analyses of the large pAATLs suggested that the introduction of APA-associated mutations in the ion channel/pump genes may be involved in the development of mAPA from existing APCCs.
Wright, Sarah; Fokidis, H Bobby
2016-09-01
Perturbations in an organism's environment can induce significant shifts in hormone secretory patterns. In this context, the glucocorticoid (GC) steroids secreted by the adrenal cortex have received much attention from ecologists and behaviorists due to their role in the vertebrate stress response. Adrenal GCs, such as corticosterone (CORT), are highly responsive to instability in environmental and social conditions. However, little is understood about how adrenal dehydroepiandrosterone (DHEA) is influenced by changing conditions. We conducted field experiments to determine how circulating CORT and DHEA vary during restraint stress in the male northern cardinals (Cardinalis cardinalis). Specifically, we examined how four different changes in the physical (urbanization and food availability) and social (territorial conflict, distress of a mate) environment affect CORT and DHEA levels. The majority of cardinals responded to restraint stress by increasing and decreasing CORT and DHEA, respectively, however this depended on sampling context. Cardinals sampled from urban habitats had both lower initial and restraint stress CORT concentrations, but a comparable DHEA pattern to those sampled from a forest. Supplementing food to territorial males did not alter circulating initial DHEA or CORT concentrations nor did it change the response to restraint stress when compared to unsupplemented controls. Exposing cardinals to varying durations of song playback, which mimics a territorial intrusion, did not affect CORT levels, but did attenuate the DHEA response to restraint stress. Examining a larger dataset of males captured before, after or at the same time as their female mate, allowed us to address how the stress of a captured mate affected the male's CORT and DHEA response. Males showed elevated initial and restraint CORT and DHEA when their female mate was captured first. Taken together, these data demonstrate that both CORT and DHEA secretion patterns depends on environmental, and particularly current social conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Geiger, Ashley M; Pitts, Kenneth P; Feldkamp, Joachim; Kirschbaum, Clemens; Wolf, Jutta M
2015-11-01
Chronic adrenal insufficiency (CAI) is characterized by a lack of glucocorticoid and mineralocorticoid production due to destroyed adrenal cortex cells. However, elevated cortisol secretion is thought to be a central part in a well-orchestrated immune response to stress. This raises the question to what extent lack of cortisol in CAI affects stress-related changes in immune processes. To address this question, 28 CAI patients (20 females) and 18 healthy individuals (11 females) (age: 44.3 ± 8.4 years) were exposed to a psychosocial stress test (Trier Social Stress Test: TSST). Half the patients received a 0.03 mg/kg body weight injection of hydrocortisone (HC) post-TSST to mimic a healthy cortisol stress response. Catecholamines and immune cell composition were assessed in peripheral blood and free cortisol measured in saliva collected before and repeatedly after TSST. CAI patients showed norepinephrine (NE) stress responses similar to healthy participants, however, epinephrine (E) as well as cortisol levels were significantly lower. HC treatment post-TSST resulted in cortisol increases comparable to those observed in healthy participants (interaction effects--NE: F=1.05, p=.41; E: F=2.56, p=.045; cortisol: F=13.28, p<.001). Healthy individuals showed the expected pattern of stress-related early lymphocyte increase with subsequent decrease below baseline. The opposite pattern was observed in granulocytes. While exhibiting a similar initial increase, lymphocytes kept increasing over the following 2h in untreated patients. HC treatment buffered this effect (interaction effects--lymphocyte%: F=7.31, p<.001; granulocyte%: F=7.71, p<.001). Using CAI in humans as a model confirms cortisol's central involvement in post-stress lymphocyte migration from blood into immune-relevant body compartments. As such, future studies should investigate whether psychosocial stress exposure may put CAI patients at an increased health risk due to attenuated immune responses to pathogens. Copyright © 2015. Published by Elsevier Inc.
Geiger, Ashley M.; Pitts, Kenneth P.; Feldkamp, Joachim; Kirschbaum, Clemens; Wolf, Jutta M.
2017-01-01
Chronic adrenal insufficiency (CAI) is characterized by a lack of glucocorticoid and mineralocorticoid production due to destroyed adrenal cortex cells. However, elevated cortisol secretion is thought to be a central part in a well-orchestrated immune response to stress. This raises the question to what extent lack of cortisol in CAI affects stress-related changes in immune processes. To address this question, 28 CAI patients (20 females) and 18 healthy individuals (11 females) (age: 44.3 ± 8.4 years) were exposed to a psychosocial stress test (Trier Social Stress Test: TSST). Half the patients received a 0.03 mg/kg body weight injection of hydrocortisone (HC) post-TSST to mimic a healthy cortisol stress response. Catecholamines and immune cell composition were assessed in peripheral blood and free cortisol measured in saliva collected before and repeatedly after TSST. CAI patients showed norepinephrine (NE) stress responses similar to healthy participants, however, epinephrine (E) as well as cortisol levels were significantly lower. HC treatment post-TSST resulted in cortisol increases comparable to those observed in healthy participants (interaction effects – NE: F = 1.05, p = .41; E: F = 2.56, p = .045; cortisol: F = 13.28, p < .001). Healthy individuals showed the expected pattern of stress-related early lymphocyte increase with subsequent decrease below baseline. The opposite pattern was observed in granulocytes. While exhibiting a similar initial increase, lymphocytes kept increasing over the following 2 h in untreated patients. HC treatment buffered this effect (interaction effects – lymphocyte%: F = 7.31, p < .001; granulocyte%: F = 7.71, p < .001). Using CAI in humans as a model confirms cortisol’s central involvement in post-stress lymphocyte migration from blood into immune-relevant body compartments. As such, future studies should investigate whether psychosocial stress exposure may put CAI patients at an increased health risk due to attenuated immune responses to pathogens. PMID:26184081
Polycystic ovarian disease: the adrenal connection.
Marouliss, George B; Triantafillidis, Ioannis K
2006-01-01
Polycystic ovarian disease (PCOD) is characterized by hyperandrogenemia, ovulatory dysfunction and polycystic ovaries (PCO). The increased androgen production in PCOD comes primarily from the ovaries. However, in about 40% of patients there is excessive adrenal androgen production (DHEA, DHEA-Sulfate, Androstenedione, Testosterone and Dihydrotestosterone). The contribution of the adrenal in the PCOD is suggested by the presence of adrenal androgen excess in PCO, the presence of PCO in women with enzymatic adrenal hyperplasia as well as in women with adrenal tumors. However, the cause of adrenal androgen hypersecretion is not yet fully understood but it may include endogenous hypersecretion of the zona reticularis of unclear cause, hypersecretion of cortical-androgen-stimulating hormone (CASH), stress, hyperprolactinemia, adrenal enzymatic defects etc. This short review covers the aspects of adrenal androgen hypersecretion in PCOD.
Kroiss, Alexander; Putzer, Daniel; Frech, Andreas; Decristoforo, Clemens; Uprimny, Christian; Gasser, Rudolf Wolfgang; Shulkin, Barry Lynn; Url, Christoph; Widmann, Gerlig; Prommegger, Rupert; Sprinzl, Georg Mathias; Fraedrich, Gustav; Virgolini, Irene Johanna
2013-12-01
(18)F-Fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET offers high sensitivity and specificity in the imaging of nonmetastatic extra-adrenal paragangliomas (PGL) but lower sensitivity in metastatic or multifocal disease. These tumours are of neuroendocrine origin and can be detected by (68)Ga-DOTA-Tyr(3)-octreotide ((68)Ga-DOTA-TOC) PET. Therefore, we compared (68)Ga-DOTA-TOC and (18)F-DOPA as radiolabels for PET/CT imaging for the diagnosis and staging of extra-adrenal PGL. Combined cross-sectional imaging was the reference standard. A total of 5 men and 15 women (age range 22 to 73 years) with anatomical and/or histologically proven extra-adrenal PGL were included in this study. Of these patients, 5 had metastatic or multifocal lesions and 15 had single sites of disease. Comparative evaluation included morphological imaging with CT and functional imaging with (68)Ga-DOTA-TOC PET and (18)F-DOPA PET. The imaging results were analysed on a per-patient and a per-lesion basis. The maximum standardized uptake value (SUVmax) of each functional imaging modality in concordant tumour lesions was measured. Compared with anatomical imaging, (68)Ga-DOTA-TOC PET and (18)F-DOPA PET each had a per-patient and per-lesion detection rate of 100% in nonmetastatic extra-adrenal PGL. However, in metastatic or multifocal disease, the per-lesion detection rate of (68)Ga-DOTA-TOC was 100% and that of (18)F-DOPA PET was 56.0%. Overall, (68)Ga-DOTA-TOC PET identified 45 lesions; anatomical imaging identified 43 lesions, and (18)F-DOPA PET identified 32 lesions. The overall per-lesion detection rate of (68)Ga-DOTA-TOC PET was 100% (McNemar, P < 0.5), and that of (18)F-DOPA PET was 71.1% (McNemar, P < 0.001). The SUVmax (mean ± SD) of all 32 concordant lesions was 67.9 ± 61.5 for (68)Ga-DOTA-TOC PET and 11.8 ± 7.9 for (18)F-DOPA PET (Mann-Whitney U test, P < 0.0001). (68)Ga-DOTA-TOC PET may be superior to (18)F-DOPA PET and diagnostic CT in providing valuable information for pretherapeutic staging of extra-adrenal PGL, particularly in surgically inoperable tumours and metastatic or multifocal disease.
Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST
Alterations in hypothalamic–pituitary–adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria termin...
Lin, Shih-Hsien; Chen, Wei Tseng; Chen, Kao Chin; Lee, Sheng-Yu; Lee, I Hui; Chen, Po See; Yeh, Tzung Lieh; Lu, Ru-Band; Yang, Yen Kuang
2013-01-01
The efficacy of methadone maintenance therapy for heroin dependence is compromised by the low retention rate. Hypothalamus-pituitary-adrenal (HPA) axis function, which is associated with stress response, and novelty seeking (NS), a personality trait associated with low dopaminergic activity, may play roles in retention. We conducted a prospective study in which HPA axis function and NS were assessed by the dexamethasone suppression test and the Tridimensional Personality Questionnaire at baseline, respectively. The retention rate was assessed at the half- and 1-year points of methadone maintenance therapy. A low suppression rate of dexamethasone suppression test (D%) was associated with a high level of NS. A low D% was associated with half-year dropout, whereas a high level of NS was associated with 1-year dropout. Survival analysis confirmed that D% and NS were significant time-dependent covariates for retention. The findings showed that HPA axis function and NA were associated with retention at different time points.
McCormick, Cheryl M; Mathews, Iva Z
2010-06-30
Chronic exposure to stress is known to affect learning and memory in adults through the release of glucocorticoid hormones by the hypothalamic-pituitary-adrenal (HPA) axis. In adults, glucocorticoids alter synaptic structure and function in brain regions that express high levels of glucocorticoid receptors and that mediate goal-directed behaviour and learning and memory. In contrast to relatively transient effects of stress on cognitive function in adulthood, exposure to high levels of glucocorticoids in early life can produce enduring changes through substantial remodeling of the developing nervous system. Adolescence is another time of significant brain development and maturation of the HPA axis, thereby providing another opportunity for glucocorticoids to exert programming effects on neurocircuitry involved in learning and memory. These topics are reviewed, as is the emerging research evidence in rodent models highlighting that adolescence may be a period of increased vulnerability compared to adulthood in which exposure to high levels of glucocorticoids results in enduring changes in adult cognitive function. Copyright 2009 Elsevier Inc. All rights reserved.
Circadian genes, the stress axis, and alcoholism.
Sarkar, Dipak K
2012-01-01
The body's internal system to control the daily rhythm of the body's functions (i.e., the circadian system), the body's stress response, and the body's neurobiology are highly interconnected. Thus, the rhythm of the circadian system impacts alcohol use patterns; at the same time, alcohol drinking also can alter circadian functions. The sensitivity of the circadian system to alcohol may result from alcohol's effects on the expression of several of the clock genes that regulate circadian function. The stress response system involves the hypothalamus and pituitary gland in the brain and the adrenal glands, as well as the hormones they secrete, including corticotrophin-releasing hormone, adrenocorticotrophic hormone, and glucocorticoids. It is controlled by brain-signaling molecules, including endogenous opioids such as β-endorphin. Alcohol consumption influences the activity of this system and vice versa. Finally, interactions exist between the circadian system, the hypothalamic-pituitary-adrenal axis, and alcohol consumption. Thus, it seems that certain clock genes may control functions of the stress response system and that these interactions are affected by alcohol.
The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function.
Kealy, John; Commins, Sean
2011-04-01
The perirhinal cortex is located in a pivotal position to influence the flow of information into and out of the hippocampal formation. In this review, we examine the anatomical, physiological and functional properties of the rat perirhinal cortex. Firstly, we review the properties of the perirhinal cortex itself, we describe how it can be separated into two distinct subregions and consider how it differs from other neighbouring regions in terms of cell type, cellular organisation and its afferent and efferent projections. We review the forms of neurotransmission present in the perirhinal cortex and the morphological, electrophysiological and plastic properties of its neurons. Secondly, we review the perirhinal cortex in the context of its connections with other brain areas; focussing on the projections to cortical, subcortical and hippocampal/parahippocampal regions. Particular attention is paid the anatomical and electrophysiological properties of these projections. Thirdly, we review the main functions of the perirhinal cortex; its roles in perception, recognition memory, spatial and contextual memory and fear conditioning are explored. Finally, we discuss the idea of anatomical, electrophysiological and functional segregation within the perirhinal cortex itself and as part of a hippocampal-parahippocampal network and suggest that understanding this segregation is of critical importance in understanding the role and contributions made by the perirhinal cortex in general. Copyright © 2011 Elsevier Ltd. All rights reserved.
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Specialization and integration of functional thalamocortical connectivity in the human infant.
Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David
2015-05-19
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.
Specialization and integration of functional thalamocortical connectivity in the human infant
Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David
2015-01-01
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391
Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitman, D.C.
1988-01-01
The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less
Marín-Blasco, Ignacio; Muñoz-Abellán, Cristina; Andero, Raül; Nadal, Roser; Armario, Antonio
2018-04-01
Despite extensive research on the impact of emotional stressors on brain function using immediate-early genes (e.g., c-fos), there are still important questions that remain unanswered such as the reason for the progressive decline of c-fos expression in response to prolonged stress and the neuronal populations activated by different stressors. This study tackles these 2 questions by evaluating c-fos expression in response to 2 different emotional stressors applied sequentially, and performing a fluorescent double labeling of c-Fos protein and c-fos mRNA on stress-related brain areas. Results were complemented with the assessment of the hypothalamic-pituitary-adrenal axis activation. We showed that the progressive decline of c-fos expression could be related to 2 differing mechanisms involving either transcriptional repression or changes in stimulatory inputs. Moreover, the neuronal populations that respond to the different stressors appear to be predominantly separated in high-level processing areas (e.g., medial prefrontal cortex). However, in low-hierarchy areas (e.g., paraventricular nucleus of the hypothalamus) neuronal populations appear to respond unspecifically. The data suggest that the distinct physiological and behavioral consequences of emotional stressors, and their implication in the development of psychopathologies, are likely to be closely associated with neuronal populations specifically activated by each stressor.
Sheehan's Syndrome (Postpartum Hypopituitarism)
... gland controls: thyroid, adrenal, breast milk production and menstrual function hormones. These include: Difficulty breast-feeding or an inability to breast-feed No menstrual periods (amenorrhea) or infrequent menstruation (oligomenorrhea) Inability to ...
Lynch, Charles J; Uddin, Lucina Q; Supekar, Kaustubh; Khouzam, Amirah; Phillips, Jennifer; Menon, Vinod
2013-08-01
The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Balsters, J H; Cussans, E; Diedrichsen, J; Phillips, K A; Preuss, T M; Rilling, J K; Ramnani, N
2010-02-01
It has been suggested that interconnected brain areas evolve in tandem because evolutionary pressures act on complete functional systems rather than on individual brain areas. The cerebellar cortex has reciprocal connections with both the prefrontal cortex and motor cortex, forming independent loops with each. Specifically, in capuchin monkeys cerebellar cortical lobules Crus I and Crus II connect with prefrontal cortex, whereas the primary motor cortex connects with cerebellar lobules V, VI, VIIb, and VIIIa. Comparisons of extant primate species suggest that the prefrontal cortex has expanded more than cortical motor areas in human evolution. Given the enlargement of the prefrontal cortex relative to motor cortex in humans, our hypothesis would predict corresponding volumetric increases in the parts of the cerebellum connected to the prefrontal cortex, relative to cerebellar lobules connected to the motor cortex. We tested the hypothesis by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans. The fractions of cerebellar volume occupied by Crus I and Crus II were significantly larger in humans compared to chimpanzees and capuchins. Our results therefore support the hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other. The evolutionary expansion of these prefrontal-projecting cerebellar territories might contribute to the evolution of the higher cognitive functions of humans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Gargya, A; Chua, E; Hetherington, J; Sommer, K; Cooper, M
2016-03-01
Adrenal crisis is a life-threatening emergency that causes significant excess mortality in patients with adrenal insufficiency. Delayed recognition by medical staff of an impending adrenal crisis and failure to give timely hydrocortisone therapy within the emergency department continue to be commonly encountered, even in metropolitan teaching hospitals. Within the authors' institutions, several cases of poorly handled adrenal crises have occurred over the last 2 years. Anecdotal accounts from members of the Addison's support group suggest that these issues are common in Australia. This manuscript is a timely reminder for clinical staff on the critical importance of the recognition, treatment and prevention of adrenal crisis. The manuscript: (i) outlines a case and the clinical outcome of sub-optimally managed adrenal crisis, (ii) summarises the clinical features and acute management of adrenal crisis, (iii) provides recommendations on the prevention of adrenal crisis and (iv) provides guidance on the management of 'sick days' in patients with adrenal insufficiency. © 2016 Royal Australasian College of Physicians.
Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K
2008-05-01
Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The decreased pituitary-adrenal sensitivity to oxotremorine and restraint stress noted in M(1) knockout mice is consistent with M(1) being primarily a postsynaptic receptor. Conversely, the increased pituitary-adrenal sensitivity to these challenges noted in M(2) knockout mice is consistent with M(2) being primarily a presynaptic autoreceptor.
Bédard, Sophie; Sicotte, Benoit; St-Louis, Jean; Brochu, Michèle
2005-02-01
We previously reported that sodium restriction during pregnancy reduces plasma volume expansion and promotes intra-uterine growth restriction (IUGR) in rats while it activates the renin-angiotensin-aldosterone system (RAAS). In the present study, we proceeded to determine whether expression of the two angiotensin II (ANGII) receptor subtypes (AT(1) and AT(2)) change in relation to maternal water-electrolyte homeostasis and fetal growth. To this end, pregnant (gestation day 15) and non-pregnant Sprague-Dawley rats were randomly assigned to two groups fed either normal, or Na(+)-restricted diets for 7 days. At the end of the treatment period, plasma aldosterone and renin activity as well as plasma and urine electrolytes were measured. Determinations for AT(1) and AT(2) mRNA and protein were made by RNase protection assay and photoaffinity labelling, respectively, using a number of tissues implicated in volume regulation and fetal growth. In non-pregnant rats, Na(+) restriction decreases Na(+) excretion without altering plasma volume, plasma Na(+) concentration or the expression of AT(1) and AT(2) mRNA or protein in the tissues examined. In normally fed pregnant rats when compared to non-pregnant controls, AT(1) mRNA increases in the hypothalamus as well as pituitary and declines in uterine arteries, while AT(1) protein decreases in the kidney and AT(2) mRNA declines in the adrenal cortex. In pregnant rats, Na(+) restriction induces a decrease in plasma Na(+), an increase in plasma urea, as well as a decline in renal urea and creatinine clearance rates. Protein levels for both AT(1) and AT(2) in the pituitary and AT(2) mRNA in the adrenal cortex are lower in the Na(+)-restricted pregnant group when compared to normally fed pregnant animals. Na(+) restriction also induces a decrease in AT(1) protein in the placenta. In conclusion, these results suggest that pregnancy may increase sensitivity to Na(+) depletion by the tissue-specific modulation of ANGII receptors. Finally, these receptors may be implicated in the IUGR response to low Na(+).
Page, Michael M; Taranto, Mario; Ramsay, Duncan; van Schie, Greg; Glendenning, Paul; Gillett, Melissa J; Vasikaran, Samuel D
2018-01-01
Objective Primary aldosteronism is a curable cause of hypertension which can be treated surgically or medically depending on the findings of adrenal vein sampling studies. Adrenal vein sampling studies are technically demanding with a high failure rate in many centres. The use of intraprocedural cortisol measurement could improve the success rates of adrenal vein sampling but may be impracticable due to cost and effects on procedural duration. Design Retrospective review of the results of adrenal vein sampling procedures since commencement of point-of-care cortisol measurement using a novel single-use semi-quantitative measuring device for cortisol, the adrenal vein sampling Accuracy Kit. Success rate and complications of adrenal vein sampling procedures before and after use of the adrenal vein sampling Accuracy Kit. Routine use of the adrenal vein sampling Accuracy Kit device for intraprocedural measurement of cortisol commenced in 2016. Results Technical success rate of adrenal vein sampling increased from 63% of 99 procedures to 90% of 48 procedures ( P = 0.0007) after implementation of the adrenal vein sampling Accuracy Kit. Failure of right adrenal vein cannulation was the main reason for an unsuccessful study. Radiation dose decreased from 34.2 Gy.cm 2 (interquartile range, 15.8-85.9) to 15.7 Gy.cm 2 (6.9-47.3) ( P = 0.009). No complications were noted, and implementation costs were minimal. Conclusions Point-of-care cortisol measurement during adrenal vein sampling improved cannulation success rates and reduced radiation exposure. The use of the adrenal vein sampling Accuracy Kit is now standard practice at our centre.
Modifications in adrenal hormones response to ethanol by prior ethanol dependence.
Guaza, C; Borrell, S
1985-03-01
Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.
Krishnamoorthy, Arun; Mentz, Robert J; Hyland, Kristen A; McMillan, Edward B; Patel, Chetan B; Milano, Carmelo A; Hernandez, Adrian F
2013-01-01
Primary adrenal insufficiency or Addison's disease is a rare disorder often difficult to diagnose on presentation by the nature of its associated nonspecific symptoms, such as nausea or weakness. Cardiovascular complications of the condition are usually limited to hypovolemic hypotension; however, we highlight here a rare, dramatic case of a fulminant adrenal crisis in a young man primarily marked by acute biventricular systolic failure and cardiogenic shock. The patient was successfully treated with corticosteroid replacement and bridged with temporary mechanical circulatory support to eventual complete the recovery of native myocardial function.
Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan
2015-01-01
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.
[Neuroanatomy of Frontal Association Cortex].
Takada, Masahiko
2016-11-01
The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.
Nguyen, Tuong-Vi; McCracken, James T; Ducharme, Simon; Cropp, Brett F; Botteron, Kelly N; Evans, Alan C; Karama, Sherif
2013-06-26
Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4-22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4-13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development.
NASA Astrophysics Data System (ADS)
Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.
1996-06-01
Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.
Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar
2016-01-01
Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071
Omura, Kensuke; Ota, Hideki; Takahashi, Yuuki; Matsuura, Tomonori; Seiji, Kazumasa; Arai, Yoichi; Morimoto, Ryo; Satoh, Fumitoshi; Takase, Kei
2017-03-01
Adrenal venous sampling is the most reliable diagnostic procedure to determine surgical indications in primary aldosteronism. Because guidelines recommend multidetector computed tomography (CT) to evaluate the adrenal gland, some past reports used multidetector CT as a guide for adrenal venous sampling. However, the detailed anatomy of the right adrenal vein and its relationship with an accessory hepatic vein remains uncertain. The purpose of this study was to describe detailed anatomical variations of the right adrenal vein and to determine the concordance between CT and catheter venography in patients with primary aldosteronism. In total, 440 consecutive patients who underwent adrenal venous sampling were included. Four-phase dynamic CT was performed. Anatomical locations and variations of the right adrenal vein and its relationship with the accessory hepatic vein were compared with catheter venographic findings. Successful catheterization was achieved in 437 patients (99%). The right adrenal vein was visualized in the late arterial phase with CT in 420 patients (95%). The right adrenal vein formed a common trunk with the accessory hepatic vein in 87 patients (20%). CT identified the correct craniocaudal level of the orifice in 354 patients (84%). Anatomical variations, location, and angle of inflow of the right adrenal vein based on CT demonstrated high concordance with catheter venography. CT may provide useful information for preparation before adrenal venous sampling. © 2017 American Heart Association, Inc.
Cortisol Levels and Conduct Disorder in Adolescent Mothers
ERIC Educational Resources Information Center
Pajer, Kathleen; Gardner, William
2004-01-01
This study investigates the function of the hypothalamic-pituitary-adrenal (HPA) axis in adolescent antisocial girls. This question is important because disturbance of HPA functioning has been found in populations of violent adult males and antisocial adolescent males, suggesting that it may be a marker of a physiological disorder associated with…
... unlikely to cover the costs. What is the theory behind adrenal fatigue? Supporters of adrenal fatigue believe ... by producing hormones like cortisol. According to the theory of adrenal fatigue, when people are faced with ...
Aflalo, T. N.
2011-01-01
How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269
Altered resting-state functional connectivity in women with chronic fatigue syndrome.
Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul
2015-12-30
The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Swanson, Nancy L.; Li, Chen
2016-01-01
Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process. PMID:27773962
A Retroperitoneal Leiomyosarcoma Presenting as an Adrenal Incidentaloma in a Subject on Warfarin
Khan, Ishrat N.; Adlan, Mohamed A.; Stechman, Michael J.; Premawardhana, Lakdasa D.
2015-01-01
Adrenal incidentalomas (AIs) are mostly benign and nonsecretory. Management algorithms lack sensitivity when assessing malignant potential, although functional status is easier to assess. We present a subject whose AI was a retroperitoneal leiomyosarcoma (RL). Case Presentation. A woman on warfarin with SLE and the antiphospholipid syndrome, presented with left loin pain. She was normotensive and clinically normal. Ultrasound scans demonstrated left kidney scarring, but CT scans revealed an AI. MRI scans later confirmed the AI without significant fat and no interval growth. Cortisol after 1 mg dexamethasone, urinary free cortisol and catecholamines, plasma aldosterone renin ratio, and 17-hydroxyprogesterone were within the reference range. Initially, adrenal haemorrhage was diagnosed because of warfarin therapy and the acute presentation. However, she underwent adrenalectomy because of interval growth of the AI. Histology confirmed an RL. The patient received adjuvant radiotherapy. Discussion. Our subject presented with an NSAI. However, we highlight the following: (a) the diagnosis of adrenal haemorrhage in this anticoagulated woman was revised because of interval growth; (b) the tumour, an RL, was relatively small at diagnosis; (c) this subject has survived well over 60 months despite an RL perhaps because of her acute presentation and early diagnosis of a small localised tumour. PMID:26064705
A Brain System for Auditory Working Memory.
Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D
2016-04-20
The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.
Reduced Global Functional Connectivity of the Medial Prefrontal Cortex in Major Depressive Disorder
Murrough, James W.; Abdallah, Chadi G.; Anticevic, Alan; Collins, Katherine A.; Geha, Paul; Averill, Lynnette A.; Schwartz, Jaclyn; DeWilde, Kaitlin E.; Averill, Christopher; Yang, Genevieve Jia-wei; Wong, Edmund; Tang, Cheuk Y.; Krystal, John H.; Iosifescu, Dan V.; Charney, Dennis S.
2016-01-01
Background Major depressive disorder is a disabling neuropsychiatric condition that is associated with disrupted functional connectivity across brain networks. The precise nature of altered connectivity, however, remains incompletely understood. The current study was designed to examine the coherence of large-scale connectivity in depression using a recently developed technique termed global brain connectivity. Methods A total of 82 subjects, including medication-free patients with major depression (n=57) and healthy volunteers (n=25) underwent functional magnetic resonance imaging with resting data acquisition for functional connectivity analysis. Global brain connectivity was computed as the mean of each voxel’s time series correlation with every other voxel and compared between study groups. Relationships between global connectivity and depressive symptom severity measured using the Montgomery-Åsberg Depression Rating Scale were examined by means of linear correlation. Results Relative to the healthy group, patients with depression evidenced reduced global connectivity bilaterally within multiple regions of medial and lateral prefrontal cortex. The largest between-group difference was observed within the right subgenual anterior cingulate cortex, extending into ventromedial prefrontal cortex bilaterally (Hedges’ g = −1.48, p<0.000001). Within the depressed group, patients with the lowest connectivity evidenced the highest symptom severity within ventromedial prefrontal cortex (r = −0.47, p=0.0005). Conclusions Patients with major depressive evidenced abnormal large-scale functional coherence in the brain that was centered within the subgenual cingulate cortex, and medial prefrontal cortex more broadly. These data extend prior studies of connectivity in depression and demonstrate that functional disconnection of the medial prefrontal cortex is a key pathological feature of the disorder. PMID:27144347
Diurnal cortisol rhythms among Latino immigrants in Oregon, USA
2012-01-01
One of the most commonly used stress biomarkers is cortisol, a glucocorticoid hormone released by the adrenal glands that is central to the physiological stress response. Free cortisol can be measured in saliva and has been the biomarker of choice in stress studies measuring the function of the hypothalamic-pituitary-adrenal axis. Chronic psychosocial stress can lead to dysregulation of hypothalamic-pituitary-adrenal axis function and results in an abnormal diurnal cortisol profile. Little is known about objectively measured stress and health in Latino populations in the United States, yet this is likely an important factor in understanding health disparities that exist between Latinos and whites. The present study was designed to measure cortisol profiles among Latino immigrant farmworkers in Oregon (USA), and to compare quantitative and qualitative measures of stress in this population. Our results indicate that there were no sex differences in average cortisol AUCg (area under the curve with respect to the ground) over two days (AvgAUCg; males = 1.38, females = 1.60; P = 0.415). AUCg1 (Day 1 AUCg) and AvgAUCg were significantly negatively associated with age in men (P<0.05). AUCg1 was negatively associated with weight (P<0.05), waist circumference (P<0.01) and waist-to-stature ratio (P<0.05) in women, which is opposite of the expected relationship between cortisol and waist-to-stature ratio, possibly indicating hypothalamic-pituitary-adrenal axis dysregulation. Among men, more time in the United States and immigration to the United States at older ages predicted greater AvgAUCg. Among women, higher lifestyle incongruity was significantly related to greater AvgAUCg. Although preliminary, these results suggest that chronic psychosocial stress plays an important role in health risk in this population. PMID:22738123
Falconer, I R; Jacks, F
1975-01-01
1. Previous work has shown that after stressful stimuli, sheep initially secrete increased amounts of thyroid hormone, at a time when adrenal secretion is also elevated. 2. This study was designed to evaluate (a) any short-term activation or inhibition of thyroid secretion by exogenous cortisol or ACTH administered in quantities comparable to those secreted after stress in sheep and (b) any short-term effect that exogenous thyroxine or triiodothyronine may have on the concentration of plasma cortisol in the sheep. 3. Thyroid activity was measured by determination of plasma protein bound 125I (PB125I) and total 125I in thyroid vein and mixed venous (jugular) blood. Plasma cortisol and thyroxine concentrations were measured by a competitive protein-binding assay at intervals for up to 5 hr after commencement of the experiment. 4. No evidence of an activation of thyroid secretion was found during cortisol or ACTH infusion, as monitored by thyroid vein PB125I. Similarly there was no evidence of any inhibition of thyroid function, as measured by continued secretion of thyroid hormones into thyroid vein blood. 5. No effect on plasma cortisol concentration due to thyroid hormone treatment was observed. 6. It was concluded that (a) elevated circulating corticosteroids in physiological concentrations have no short-term effects on thyroid activity in the sheep and (b) the short-term alterations in thyroid and adrenal cortical secretion observed during stress in the sheep could not be attributed to direct interaction of elevated thyroid hormone concentrations with adrenal cortical secretion. PMID:170400
Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity
Buckner, Randy L.
2009-01-01
Multiple, segregated fronto-cerebellar circuits have been characterized in nonhuman primates using transneuronal tracing techniques including those that target prefrontal areas. Here, we used functional connectivity MRI (fcMRI) in humans (n = 40) to identify 4 topographically distinct fronto-cerebellar circuits that target 1) motor cortex, 2) dorsolateral prefrontal cortex, 3) medial prefrontal cortex, and 4) anterior prefrontal cortex. All 4 circuits were replicated and dissociated in an independent data set (n = 40). Direct comparison of right- and left-seeded frontal regions revealed contralateral lateralization in the cerebellum for each of the segregated circuits. The presence of circuits that involve prefrontal regions confirms that the cerebellum participates in networks important to cognition including a specific fronto-cerebellar circuit that interacts with the default network. Overall, the extent of the cerebellum associated with prefrontal cortex included a large portion of the posterior hemispheres consistent with a prominent role of the cerebellum in nonmotor functions. We conclude by providing a provisional map of the topography of the cerebellum based on functional correlations with the frontal cortex. PMID:19592571
The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.
Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua
2016-01-01
Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex.
The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players
Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua
2016-01-01
Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex. PMID:27909422
Zhu, Xueling; Wang, Xiang; Xiao, Jin; Liao, Jian; Zhong, Mingtian; Wang, Wei; Yao, Shuqiao
2012-04-01
Imaging studies have shown that major depressive disorder (MDD) is associated with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and MDD-related pathopsychological characteristics, such as depressive rumination and overgeneral autobiographical memory (OGM) phenomena, still remain unclear. Using independent component analysis, we analyzed resting-state functional magnetic resonance imaging data obtained from 35 first-episode, treatment-naive young adults with MDD and from 35 matched healthy control subjects. Patients with MDD exhibited higher levels of rumination and OGM than did the control subjects. We observed increased functional connectivity in the anterior medial cortex regions (especially the medial prefrontal cortex and anterior cingulate cortex) and decreased functional connectivity in the posterior medial cortex regions (especially the posterior cingulate cortex/precuneus) in MDD patients compared with control subjects. In the depressed group, the increased functional connectivity in the anterior medial cortex correlated positively with rumination score, while the decreased functional connectivity in the posterior medial cortex correlated negatively with OGM score. We report dissociation between anterior and posterior functional connectivity in resting-state DMNs of first-episode, treatment-naive young adults with MDD. Increased functional connectivity in anterior medial regions of the resting-state DMN was associated with rumination, whereas decreased functional connectivity in posterior medial regions was associated with OGM. These results provide new evidence for the importance of the DMN in the pathophysiology of MDD and suggest that abnormal DMN activity may be an MDD trait. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Posttraumatic stress disorder (PTSD) and the dermatology patient.
Gupta, Madhulika A; Jarosz, Patricia; Gupta, Aditya K
Dermatologic symptoms can be associated with posttraumatic stress disorder (PTSD) in several situations: (1) as features of some core PTSD symptoms, such as intrusion symptoms manifesting as cutaneous sensory flashbacks, as autonomic arousal manifesting as night sweats and idiopathic urticaria, and as dissociation manifesting as numbness and dermatitis artefacta; (2) the cutaneous psychosomatic effects of emotional and physical neglect and sexual abuse (eg, infantile eczema, cutaneous self-injury, and body-focused repetitive behaviors such as trichotillomania and skin picking disorder) and eating disorders, which can have dermatologic effects; (3) the direct effect of physical or sexual abuse or catastrophic life events (eg, earthquakes) on the skin; and (4) as a result of significant alterations in hypothalamic-pituitary-adrenal and sympatho-adrenal medullary axes, which can affect neuroendocrine and immune functions, and can lead to exacerbations of stress-reactive inflammatory dermatoses such as psoriasis, chronic urticaria, and atopic dermatitis. Elevated levels of inflammatory biomarkers and impaired epidermal barrier function have been reported in situations involving sustained psychologic stress and sleep deprivation. Some PTSD patients show hypothalamic-pituitary-adrenal axis hyporesponsiveness and higher circulating T lymphocytes, which can exacerbate immune-mediated dermatologic disorders. PTSD should be considered an underlying factor in the chronic, recurrent, or treatment-resistant stress-reactive dermatoses and in patients with self-induced dermatoses. Copyright © 2017 Elsevier Inc. All rights reserved.
... or milk production), sex hormones (control the menstrual cycle and other sexual functions), thyroid gland hormones (control the thyroid gland), adrenal gland hormones, and vasopressin (a hormone involved in water and electrolyte balance). Symptoms of pituitary adenoma and ...
Recovery of adrenal function in a patient with confirmed Addison's disease.
Baxter, M; Gorick, S; Swords, F M
2013-01-01
Addison's disease is a condition characterised by immune-mediated destruction of the adrenal glands leading to a requirement of lifelong replacement therapy with mineralocorticoid and glucocorticoid. We present a case of a 53-year-old man who presented at the age of 37 years with nausea, fatigue and dizziness. He was found to have postural hypotension and buccal pigmentation. His presenting cortisol level was 43 nmol/l with no response to Synacthen testing. He made an excellent response to conventional replacement therapy with hydrocortisone and fludrocortisone and then remained well for 16 years. On registering with a new endocrinologist, his hydrocortisone dose was revised downwards and pre- and post-dose serum cortisol levels were assessed. His pre-dose cortisol was surprisingly elevated, and so his dose was further reduced. Subsequent Synacthen testing was normal and has remained so for further 12 months. He is now asymptomatic without glucocorticoid therapy, although he continues on fludrocortisone 50 μg daily. His adrenal antibodies are positive, although his ACTH and renin levels remain elevated after treatment. Addison's disease is generally deemed to lead to irreversible cell-mediated immune destruction of the adrenal glands. For this reason, patients receive detailed counselling and education on the need for lifelong replacement therapy. To our knowledge, this is the third reported case of spontaneous recovery of the adrenal axis in Addison's disease. Recovery may therefore be more common than previously appreciated, which may have major implications for the treatment and monitoring of this condition, and for the education given to patients at diagnosis. Partial recovery from Addison's disease is possible although uncommon.Patients with long-term endocrine conditions on replacement therapy still benefit from regular clinical and biochemical assessment, to revisit optimal management.As further reports of adrenal axis recovery emerge, this may influence the counselling given to patients with Addison's disease in the future.
Recovery of adrenal function in a patient with confirmed Addison's disease
Baxter, M; Gorick, S; Swords, F M
2013-01-01
Summary Addison's disease is a condition characterised by immune-mediated destruction of the adrenal glands leading to a requirement of lifelong replacement therapy with mineralocorticoid and glucocorticoid. We present a case of a 53-year-old man who presented at the age of 37 years with nausea, fatigue and dizziness. He was found to have postural hypotension and buccal pigmentation. His presenting cortisol level was 43 nmol/l with no response to Synacthen testing. He made an excellent response to conventional replacement therapy with hydrocortisone and fludrocortisone and then remained well for 16 years. On registering with a new endocrinologist, his hydrocortisone dose was revised downwards and pre- and post-dose serum cortisol levels were assessed. His pre-dose cortisol was surprisingly elevated, and so his dose was further reduced. Subsequent Synacthen testing was normal and has remained so for further 12 months. He is now asymptomatic without glucocorticoid therapy, although he continues on fludrocortisone 50 μg daily. His adrenal antibodies are positive, although his ACTH and renin levels remain elevated after treatment. Addison's disease is generally deemed to lead to irreversible cell-mediated immune destruction of the adrenal glands. For this reason, patients receive detailed counselling and education on the need for lifelong replacement therapy. To our knowledge, this is the third reported case of spontaneous recovery of the adrenal axis in Addison's disease. Recovery may therefore be more common than previously appreciated, which may have major implications for the treatment and monitoring of this condition, and for the education given to patients at diagnosis. Learning points Partial recovery from Addison's disease is possible although uncommon.Patients with long-term endocrine conditions on replacement therapy still benefit from regular clinical and biochemical assessment, to revisit optimal management.As further reports of adrenal axis recovery emerge, this may influence the counselling given to patients with Addison's disease in the future. PMID:24683477
Lee, Peter A; Houk, Christopher P; Husmann, Douglas A
2010-10-01
We assess the outcome in 46,XX men with congenital adrenal hyperplasia who were born with Prader 4 or 5 genitalia and assigned male gender at birth. After receiving institutional review board approval and subject consent we reviewed the medical records of 12 men 35 to 69 years old with 46,XX congenital adrenal hyperplasia, of whom 6 completed social and gender issue questionnaires. All subjects were assigned male gender at birth, were diagnosed with virilizing congenital adrenal hyperplasia at age greater than 3 years and indicated a male gender identity with sexual orientation to females. Ten of the 12 subjects had always lived as male and 2 who were reassigned to female gender in childhood subsequently self-reassigned as male. Nine of the 12 men had long-term female partners, including 7 married 12 years or more. The 3 subjects without a long-term female partner included 1 priest, 1 who was reassigned female gender, married, divorced and self-reassigned as male, and 1 with a girlfriend and sexual activity. All except the priest and the subject who was previously married when female indicated a strong libido and frequent orgasmic sexual activity. Responses to self-esteem, masculinity, body image, social adjustment and symptom questionnaires suggested adjustments related to the extent of familial and social support. Outcome data on severely masculinized 46,XX patients with congenital adrenal hyperplasia who were assigned male gender at birth indicate male gender identity in adulthood with satisfactory male sexual function in those retaining male genitalia. In men who completed questionnaires results were poorer in those lacking familial/social support. Male gender of rearing may be a viable option for parents whose children are born with congenital adrenal hyperplasia, a 46,XX karyotype and male genitalia, although positive parental and other support, and counseling are needed for adjustment. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.