Science.gov

Sample records for adrenergic nerve endings

  1. Intracellular calcium buffering declines in aging adrenergic nerves.

    PubMed

    Tsai, H; Hewitt, C W; Buchholz, J N; Duckles, S P

    1997-01-01

    Stimulation-evoked norepinephrine release from rat tail artery adrenergic nerves increased with advancing age in the Fischer-344 rat when function of norepinephrine uptake mechanisms and prejunctional alpha-2 adrenoceptors were blocked. When calcium channels were bypassed with the ionophore, ionomycin (4 microM), norepinephrine release from aged nerves (20 months) was still elevated as compared to 6-month-old nerves. Norepinephrine release stimulated by high K+ was also higher in 20-month nerves. The intracellular calcium chelator, 1,2 bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetomethylester (BAPTA/AM), was used to determine whether age-related increases in norepinephrine release could be reversed with the addition of an artificial intracellular calcium buffer. Exposure to BAPTA/AM decreased stimulation-evoked norepinephrine release in both old and young tail arteries; however, the effect was significantly greater in older arteries. When mitochondrial calcium uptake was compromised using the uncoupler of mitochondrial oxidative phosphorylation, dinitrophenol, BAPTA caused a further decrease in stimulation-evoked norepinephrine release in 20-month tail arteries with much less effect in 6-month-old nerves. These results suggest that intracellular calcium buffering is less efficient in older nerves.

  2. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves

    SciTech Connect

    Trachte, G.J.

    1986-05-01

    The effect of the synthetic thromboxane/prostaglandin (PG) H2 agonist U46619 on the electrically stimulated rabbit isolated vas deferens was examined to test for thromboxane influences on adrenergic nerves. U46619 effects on force generation, (/sup 3/H) norepinephrine release and norepinephrine-induced contractions were assessed to determine the mechanism of action. U46619 maximally enhanced adrenergic force generation 135 +/- 24% at a concentration of 100 nM. U46619 potentiated maximal contractile effects of exogenously administered norepinephrine 16 +/- 4% and augmented (/sup 3/H)norepinephrine release from electrically stimulated preparations 142 +/- 44%. A competitive thromboxane/PGH2 receptor antagonist, SQ29548, significantly shifted the concentration-response curve for U46619 to the right in a concentration-dependent manner and blocked U46619-induced tritium release. Thus, U46619 appears to potentiate neurotransmitter release by interacting with thromboxane/PGH2 receptors. Because SQ29548 did not prevent the potentiation of norepinephrine contractions by U46619, the postjunctional effect may be independent of thromboxane/PGH2 receptors. We interpret these results to be indicative of both pre- and postjunctional sites of action of U46619. The physiological importance of these thromboxane effects is unknown currently.

  3. NERVE AS MODEL TEMPERATURE END ORGAN

    PubMed Central

    Bernhard, C. G.; Granit, Ragnar

    1946-01-01

    Rapid local cooling of mammalian nerve sets up a discharge which is preceded by a local temperature potential, the cooled region being electronegative relative to a normal portion of the nerve. Heating the nerve locally above its normal temperature similarly makes the heated region electronegative relative to a region at normal temperature, and again a discharge is set up from the heated region. These local temperature potentials, set up by the nerve itself, are held to serve as "generator potentials" and the mechanism found is regarded as the prototype for temperature end organs. PMID:19873460

  4. Adrenergic vasoconstriction in peripheral nerves of the rabbit

    SciTech Connect

    Selander, D.; Mansson, L.G.; Karlsson, L.; Svanvik, J.

    1985-01-01

    The blood flow in the sciatic nerve of the rabbit was estimated from the wash out of intraneurally injected /sup 133/Xe. To avoid diffusion of the tracer into the surrounding muscular tissue, the nerve was covered by a gas-tight plastic film. Using this technique, the basal blood flow in the sciatic nerve was estimated to 35 ml X min-1 X 100 g-1. It was found that intraarterial norepinephrine and electrical stimulation of the lumbar sympathetic chain strongly reduced the wash out of /sup 133/Xe, which only can be explained by a pronounced reduction of the blood flow in the nerve itself. The blood flow again increased within 4 min of stopping the infusion of norepinephrine or the sympathetic stimulation. The prolonged effect and higher neurotoxicity of local anesthetics containing adrenaline may be explained by an alpha receptor-mediated vasoconstriction of the microvessels of peripheral nerves.

  5. Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors.

    PubMed

    Miyashita, T; Williams, C L

    2006-03-01

    A significant number of animal and human studies demonstrate that memories for new experiences are encoded more effectively under environmental or laboratory conditions which elevate peripheral concentrations of the hormone epinephrine and in turn, induce emotional arousal. Although this phenomenon has been replicated across several learning paradigms, understanding of how this arousal related hormone affects memory processing remains obscure because epinephrine does not freely enter into the central circulation to produce any direct effects on the brain. This study examined whether epinephrine's actions on the CNS may be mediated by the initial activation of peripheral vagal fibers that project to the brain. The vagus was selected as a candidate for this role since it is densely embedded with beta-adrenergic receptors and the peripheral endings of this nerve innervate a broad spectrum of sensory organs that are directly affected by epinephrine release. Electrophysiological recordings of cervical vagal activity was measured over 110 min in urethane-anesthetized Sprague-Dawley rats given saline, epinephrine (0.3 mg/kg), the peripherally acting beta-adrenergic antagonist sotalol (2.0 mg/kg), or a combination of sotalol followed 15 min later by an injection of epinephrine. Epinephrine produced a significant increase in vagal nerve firing 10 min post-injection (p < .05) relative to controls and neural impulses recorded from the vagus remained significantly elevated for the remaining 55 min collection period. The excitatory actions of epinephrine were not observed in groups given an identical dose of the hormone after peripheral beta-adrenergic receptor blockade with sotalol. These findings demonstrate that neural discharge in vagal afferent fibers is increased by elevations in peripheral concentrations of epinephrine and the significance of these findings in understanding how epinephrine modulates brain limbic structures to encode and store new information into memory

  6. Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism.

    PubMed

    Miyamoto, Tadayoshi; Kawada, Toru; Yanagiya, Yusuke; Inagaki, Masashi; Takaki, Hiroshi; Sugimachi, Masaru; Sunagawa, Kenji

    2004-08-01

    Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.

  7. Dependence of deoxycorticosterone/salt hypertension in the rat on the activity of adrenergic cardiac nerves.

    PubMed

    Bell, C; McLachlan, E M

    1979-08-01

    1. Chronic hypertension was induced in Wistar rats with intact kidneys by subcutaneous implantation of 50 mg of deoxycorticosterone acetate (DOCA) in wax and addition of sodium chloride (9 g/l) to the drinking water. 2. The development of DOCA/salt hypertension, as monitored by tail-cuff plethysmography, was prevented by: (a) destruction of the peripheral adrenergic nerves with neonatal administration of guanethidine (80 mg/kg subcutaneously for the first 14 days postnatally); (b) bilateral stellate ganglionectomy; (c) oral administration of the beta-adrenoreceptor antagonists propranolol or atenolol (1 mg day-1 kg-1) during the period of DOCA/salt treatment. 3. The dose of DOCA used was sufficient to inhibit the atrial Uptake2 pathway completely: this process appears to participate in termination of action of neurally released noradrenaline in the heart. 4. It is suggested that this model of DOCA/salt hypertension is due to adrenergic enhancement of cardiac output in the presence of an increased sodium load. The enhancement may be partly due to deficient myocardial inactivation of noradrenaline.

  8. Angiotensin and thromboxane in the enhanced renal adrenergic nerve sensitivity of acute renal failure.

    PubMed Central

    Robinette, J B; Conger, J D

    1990-01-01

    The roles of intrarenal angiotensin (A) and thromboxane (TX) in the vascular hypersensitivity to renal nerve stimulation (RNS) and paradoxical vasoconstriction to renal perfusion pressure (RPP) reduction in the autoregulatory range in 1 wk norepinephrine (NE)-induced acute renal failure (ARF) in rats were investigated. Renal blood flow (RBF) responses were determined before and during intrarenal infusion of an AII and TXA2 antagonist. Saralasin or SQ29548 alone partially corrected the slopes of RBF to RNS and RPP reduction in NE-ARF rats (P less than 0.02). Saralasin + SQ29548 normalized the RBF response to RNS. While combined saralasin + SQ29548 eliminated the vasoconstriction to RPP reduction, similar to the effect of renal denervation, appropriate vasodilatation was not restored. Renal vein norepinephrine efflux during RNS was disproportionately increased in NE-ARF (P less than 0.001) and was suppressed by saralasin + SQ29548 infusion (P less than 0.005). It is concluded that the enhanced sensitivity to RNS and paradoxical vasoconstriction to RPP reduction in 1 wk NE-ARF kidneys are the result of intrarenal TX and AII acceleration of neurotransmitter release to adrenergic nerve activity. PMID:2243129

  9. Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity

    PubMed Central

    Black, Ira B.; Reis, Donald J.

    1971-01-01

    1. In adrenalectomized fasted rats transection of the spinal cord at C7-C8 or placement of bilateral electrolytic lesions in the lateral hypothalamus when performed in the morning interrupted the daily rhythm of hepatic tyrosine transaminase by elevating low (AM) enzyme activities to high (PM) levels; lesions placed in PM did not affect the late afternoon rise in enzyme activity. 2. Bilateral thalamic lesions had no affect on enzyme activity. 3. The activity of hepatic catechol-O-methyl transferase was unaffected by hypothalamic lesions. 4. The lesion-evoked rise of tyrosine transaminase activity was abolished by exogenously administered norepinephrine. 5. Cycloheximide blocked the rise of tyrosine transaminase activity caused by hypothalamic lesions. 6. The results suggest that rhythmic activity of sympathetic nerves governed by lateral hypothalamus contribute to regulation of the daily rhythm in tyrosine transaminase by regulating the release of norepinephrine peripherally; norepinephrine may block the daily rise of enzyme by interfering with protein synthesis, possibly of new enzyme, by competing with pyridoxal co-factor. 7. It is proposed that alternating activity of sympathetic-adrenergic and vagal-cholinergic nerves to liver, controlled by the C.N.S., contribute to rhythmic activity of hepatic tyrosine transaminase. ImagesFig. 2 PMID:4400586

  10. Morphology of nerve endings in vocal fold of human newborn.

    PubMed

    Gonçalves da Silva Leite, Janaina; Costa Cavalcante, Maria Luzete; Fechine-Jamacaru, Francisco Vagnaldo; de Lima Pompeu, Margarida Maria; Leite, José Alberto Dias; Nascimento Coelho, Dulce Maria; Rabelo de Freitas, Marcos

    2016-10-01

    Sensory receptors are distributed throughout the oral cavity, pharynx, and larynx. Laryngeal sensitivity is crucial for maintaining safe swallowing, thus avoiding silent aspiration. Morphologic description of different receptor types present in larynx vary because of the study of many different species, from mouse to humans. The most commonly sensory structures described in laryngeal mucosa are free nerve endings, taste buds, muscle spindles, glomerular and corpuscular receptors. This study aimed at describing the morphology and the distribution of nerve endings in premature newborn glottic region. Transversal serial frozen sections of the whole vocal folds of three newborns were analyzed using an immuno-histochemical process with a pan-neuronal marker anti-protein gene product 9.5 (PGP 9.5). Imaging was done using a confocal laser microscope. Nerve fiber density in vocal cord was calculated using panoramic images in software Morphometric Analysis System v1.0. Some sensory structures, i.e. glomerular endings and intraepithelial free nerve endings were found in the vocal cord mucosa. Muscle spindles, complex nerve endings (Meissner-like, spherical, rectangular and growing) spiral-wharves nerve structures were identified in larynx intrinsic muscles. Nervous total mean density in vocal cord was similar in the three newborns, although they had different gestational age. The mean nerve fiber density was higher in the posterior region than anterior region of vocal cord. The present results demonstrate the occurrence of different morphotypes of sensory corpuscles and nerve endings premature newborn glottic region and provide information on their sensory systems.

  11. Nerve growth factor facilitates redistribution of adrenergic and non-adrenergic non-cholinergic perivascular nerves injured by phenol in rat mesenteric resistance arteries.

    PubMed

    Yokomizo, Ayako; Takatori, Shingo; Hashikawa-Hobara, Narumi; Goda, Mitsuhiro; Kawasaki, Hiromu

    2016-01-05

    We previously reported that nerve growth factor (NGF) facilitated perivascular sympathetic neuropeptide Y (NPY)- and calcitonin gene-related peptide (CGRP)-containing nerves injured by the topical application of phenol in the rat mesenteric artery. We also demonstrated that mesenteric arterial nerves were distributed into tyrosine hydroxylase (TH)-, substance P (SP)-, and neuronal nitric oxide synthase (nNOS)-containing nerves, which had axo-axonal interactions. In the present study, we examined the effects of NGF on phenol-injured perivascular nerves, including TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves, in rat mesenteric arteries in more detail. Wistar rats underwent the in vivo topical application of 10% phenol to the superior mesenteric artery, proximal to the abdominal aorta, under pentobarbital-Na anesthesia. The distribution of perivascular nerves in the mesenteric arteries of the 2nd to 3rd-order branches isolated from 8-week-old Wistar rats was investigated immunohistochemically using antibodies against TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves. The topical phenol treatment markedly reduced the density of all nerves in these arteries. The administration of NGF at a dose of 20µg/kg/day with an osmotic pump for 7 days significantly increased the density of all perivascular nerves over that of sham control levels. These results suggest that NGF facilitates the reinnervation of all perivascular nerves injured by phenol in small resistance arteries.

  12. Far-Infrared Therapy Promotes Nerve Repair following End-to-End Neurorrhaphy in Rat Models of Sciatic Nerve Injury

    PubMed Central

    Chen, Tai-Yuan; Yang, Yi-Chin; Sha, Ya-Na; Chou, Jiun-Rou

    2015-01-01

    This study employed a rat model of sciatic nerve injury to investigate the effects of postoperative low-power far-infrared (FIR) radiation therapy on nerve repair following end-to-end neurorrhaphy. The rat models were divided into the following 3 groups: (1) nerve injury without FIR biostimulation (NI/sham group); (2) nerve injury with FIR biostimulation (NI/FIR group); and (3) noninjured controls (normal group). Walking-track analysis results showed that the NI/FIR group exhibited significantly higher sciatic functional indices at 8 weeks after surgery (P < 0.05) compared with the NI/sham group. The decreased expression of CD4 and CD8 in the NI/FIR group indicated that FIR irradiation modulated the inflammatory process during recovery. Compared with the NI/sham group, the NI/FIR group exhibited a significant reduction in muscle atrophy (P < 0.05). Furthermore, histomorphometric assessment indicated that the nerves regenerated more rapidly in the NI/FIR group than in the NI/sham group; furthermore, the NI/FIR group regenerated neural tissue over a larger area, as well as nerve fibers of greater diameter and with thicker myelin sheaths. Functional recovery, inflammatory response, muscular reinnervation, and histomorphometric assessment all indicated that FIR radiation therapy can accelerate nerve repair following end-to-end neurorrhaphy of the sciatic nerve. PMID:25722734

  13. Pharmacology and Nerve-endings (Walter Ernest Dixon Memorial Lecture): (Section of Therapeutics and Pharmacology).

    PubMed

    Dale, H

    1935-01-01

    A brief account is given of the scientific career of Walter Ernest Dixon, and of the importance of his work and his influence for the development of Pharmacology in England. It is suggested that the Memorial Lecture may appropriately deal with some matter of new interest, from one of the fields of research in which Dixon himself was active. Special mention is made of his work with Brodie on the physiology and pharmacology of the bronchioles and the pulmonary blood-vessels, as probably showing the beginning of Dixon's interest in the actions of the alkaloids and organic bases which reproduce the effects of autonomic nerves.An account is given of Dixon's early interest in the suggestion, first made by Elliott, that autonomic nerves transmit their effects by releasing, at their endings, specific substances, which reproduce their actions; and of his attempt to obtain experimental support for this conception. After the War it was established by the experiments of O. Loewi; and it is now generally recognized that parasympathetic effects are so transmitted by release of acetylcholine, sympathetic effects by that of a substance related to adrenaline.Very recent evidence indicates that acetylcholine, by virtue of its other ("nicotine-like") action, also acts as transmitter of activity at synapses in autonomic ganglia, and from motor nerve to voluntary muscle.The terms "cholinergic" and "adrenergic" have been introduced to describe nerve-fibres which transmit their actions by the release at their endings of acetylcholine, and of a substance related to adrenaline, respectively. It is shown that Langley and Anderson's evidence, long available, as to the kinds of peripheral efferent fibres which can replace one another in regeneration, can be summarized by the statement, that cholinergic can replace cholinergic fibres, and that adrenergic can replace adrenergic fibres; but that fibres of different chemical function cannot replace one another. The bearing of this new evidence on

  14. Measuring acute changes in adrenergic nerve activity of the heart in the living animal

    SciTech Connect

    Sisson, J.C.; Bolgos, G.; Johnson, J. )

    1991-04-01

    Changes in the function of the adrenergic neurons of the heart may be important indicators of the adaptations of an animal to physiologic stress and disease. Rates of loss of norepinephrine (NE) from the heart were considered to be proportional to NE secretion and to adrenergic function. In rat hearts, yohimbine induced almost identical increases in rates of loss of {sup 3}H-NE and of {sup 125}I-metaiodobenzylguanidine (MIBG), a functional analog of NE. Clonidine induced decreases in rates of loss of {sup 3}H-NE that were also mimicked by those of {sup 125}I-MIBG. In the dog heart, pharmacologically-induced increases and decreases in rates of loss of {sup 123}I-MIBG could be measured externally; these values were similar to those obtained for {sup 125}I-MIBG in the rat heart. Thus acute changes in the adrenergic neuron activity can be measured in the living heart. The method is applicable to man in determining the capacity of the adrenergic system to respond to provocative challenges.

  15. PLURIVESICULAR SECRETORY PROCESSES AND NERVE ENDINGS IN THE PINEAL GLAND OF THE RAT

    PubMed Central

    De Robertis, Eduardo; de Iraldi, Amanda Pellegrino

    1961-01-01

    The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell—the pinealocyte—is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals. PMID:13720811

  16. Using an end-to-side interposed sural nerve graft for facial nerve reinforcement after vestibular schwannoma resection. Technical note.

    PubMed

    Samii, Madjid; Koerbel, Andrei; Safavi-Abbasi, Sam; Di Rocco, Federico; Samii, Amir; Gharabaghi, Alireza

    2006-12-01

    Increasing rates of facial and cochlear nerve preservation after vestibular schwannoma surgery have been achieved in the last 30 years. However, the management of a partially or completely damaged facial nerve remains an important issue. In such a case, several immediate or delayed repair techniques have been used. On the basis of recent studies of successful end-to-side neurorrhaphy, the authors applied this technique in a patient with an anatomically preserved but partially injured facial nerve during vestibular schwannoma surgery. The authors interposed a sural nerve graft to reinforce the facial nerve whose partial anatomical continuity had been preserved. On follow-up examinations 18 months after surgery, satisfactory cosmetic results for facial nerve function were observed. The end-to-side interposed nerve graft appears to be a reasonable alternative in cases of partial facial nerve injury, and might be a future therapeutic option for other cranial nerve injuries.

  17. Phenotyping sensory nerve endings in vitro in the mouse

    PubMed Central

    Zimmermann, Katharina; Hein, Alexander; Hager, Ulrich; Kaczmarek, Jan Stefan; Turnquist, Brian P; Clapham, David E; Reeh, Peter W

    2014-01-01

    This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail. PMID:19180088

  18. Morphological assessment of early axonal regeneration in end-to-side nerve coaptation models.

    PubMed

    Oyamatsu, Hiroshi; Koga, Daisuke; Igarashi, Michihiro; Shibata, Minoru; Ushiki, Tatsuo

    2012-10-01

    Histological changes were observed in peripheral nerves following end-to-side nerve coaptation to determine the effects of perineurial opening and deliberate donor nerve injury during surgery. Twenty rats were randomised into four groups as follows: group 1, end-to-side nerve coaptation without perineurial opening; group 2, end-to-side nerve coaptation with simple perineurial opening; group 3, end-to-side nerve coaptation with partial crush injury after perineurial opening; group 4, end-to-side nerve coaptation with partial neurotomy after perineurial opening. Seven days after coaptation of the musculocutaneous (recipient) nerve to the ulnar (donor) nerve, the nerves were immunohistochemically analysed using antibodies against neurofilament-H (RT97) and phosphorylated GAP-43 (p-GAP-43). The former labels all axons, including regenerating axons and degenerated axonal debris, while the latter only labels regenerating axons. Results demonstrated no regenerating nerves in the recipient nerve of group 1. In group 2, because nerve herniation from the perineurial opening partially injured donor nerve fibres, some regenerating axons extended proximally and distally along the partially injured fibres in the donor nerve; some of these regenerating axons also extended into the recipient nerve via the perineurial opening. In groups 3 and 4, thin regenerating axons were more prominent in recipient and donor nerves compared with group 2. Statistical evaluation revealed increased efficacy of perineurial opening and deliberate donor nerve injury in end-to-side nerve coaptation, suggesting that partial nerve fibre herniation with partial axonotmesis or neurotomesis was important for effective axonal regeneration in end-to-side nerve coaptation.

  19. Synergistic motor nerve fiber transfer between different nerves through the use of end-to-side coaptation.

    PubMed

    Schmidhammer, R; Nógrádi, A; Szabó, A; Redl, H; Hausner, T; van der Nest, D G; Millesi, H

    2009-06-01

    End-to-end nerve repair is a widely used and successful experimental microsurgical technique via which a denervated nerve stump is supplied with reinnervating motor or sensory axons. On the other hand, questions are still raised as concerns the reliability and usefulness of the end-to-side coaptation technique. This study had the aim of the reinnervation of the denervated forearm flexor muscles in baboons through the use of an end-to-side coaptation technique and the synergistic action of the radial nerve. The median and ulnar nerves were transected, and the motor branch of the radial nerve supplying the extensor carpi radialis muscles (MBECR) was used as an axon donor for the denervated superficial forearm flexors. A nerve graft was connected to the axon donor nerve through end-to-side coaptation, while at the other end of the graft an end-to-end connection was established so as to reinnervate the motor branch of the forearm flexors. Electrophysiological investigations and functional tests indicated successful reinnervation of the forearm flexors and recovery of the flexor function. The axon counts in the nerve segments proximal (1038+/-172 S.E.M.) and distal (1050+/-116 S.E.M.) to the end-to-side coaptation site and in the nerve graft revealed that motor axon collaterals were given to the graft without the loss or appreciable misdirection of the axons in the MBECR nerve distal to the coaptation site. The nerve graft was found to contain varying, but satisfactory numbers of axons (269+/-59 S.E.M.) which induced morphological reinnervation of the end-plates in the flexor muscles. Accordingly, we have provided evidence that end-to-side coaptation can be a useful technique when no free donor nerve is available. This technique is able to induce limited, but still useful reinnervation for the flexor muscles, thereby producing a synergistic action of the flexor and extensor muscles which allows the hand to achieve a basic gripping function.

  20. End-to-side neurorrhaphy as a salvage procedure for irreparable nerve injuries. Technical note.

    PubMed

    Oğün, Tunç C; Ozdemir, Mustafa; Senaran, Hakan; Ustün, Mehmet E

    2003-07-01

    After a few reports on end-to-side nerve repair at the beginning of the last century, the technique was put aside until its recent reintroduction. The authors present their results in three patients with median nerve defects that were between 15 and 22 cm long and treated using end-to-side median-to-ulnar neurorrhaphy through an epineurial window. The follow-up times were between 32 and 38 months. Sensory evaluation involved superficial touch, pinprick, and two-point discrimination tests. Motor evaluation was completed by assessing the presence of opposition and by palpating the abductor pollicis brevis muscle. Sensory recovery was observed in all patients in the median nerve dermatome, and motor recovery was absent, except in Case 1. End-to-side nerve repair can be a viable alternative to nerve grafting in patients with long gaps between the ends of the injured nerve.

  1. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse.

    PubMed

    Tanabe, Mitsuo; Takasu, Keiko; Kasuya, Noriyo; Shimizu, Shinobu; Honda, Motoko; Ono, Hideki

    2005-03-01

    1. To gain further insight into the mechanisms underlying the antihyperalgesic and antiallodynic actions of gabapentin, a chronic pain model was prepared by partially ligating the sciatic nerve in mice. The mice then received systemic or local injections of gabapentin combined with either central noradrenaline (NA) depletion by 6-hydroxydopamine (6-OHDA) or alpha-adrenergic receptor blockade. 2. Intraperitoneally (i.p.) administered gabapentin produced antihyperalgesic and antiallodynic effects that were manifested by elevation of the withdrawal threshold to a thermal (plantar test) or mechanical (von Frey test) stimulus, respectively. 3. Similar effects were obtained in both the plantar and von Frey tests when gabapentin was injected intracerebroventricularly (i.c.v.) or intrathecally (i.t.), suggesting that it acts at both supraspinal and spinal loci. This novel supraspinal analgesic action of gabapentin was only obtained in ligated neuropathic mice, and gabapentin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. 4. In mice in which central NA levels were depleted by 6-OHDA, the antihyperalgesic and antiallodynic effects of i.p. and i.c.v. gabapentin were strongly suppressed. 5. The antihyperalgesic and antiallodynic effects of systemic gabapentin were reduced by both systemic and i.t. administration of yohimbine, an alpha2-adrenergic receptor antagonist. By contrast, prazosin (i.p. or i.t.), an alpha1-adrenergic receptor antagonist, did not alter the effects of gabapentin. 6. It was concluded that the antihyperalgesic and antiallodynic effects of gabapentin are mediated substantially by the descending noradrenergic system, resulting in the activation of spinal alpha2-adrenergic receptors.

  2. Distribution of sensory nerve endings around the human sinus tarsi: a cadaver study.

    PubMed

    Rein, Susanne; Manthey, Suzanne; Zwipp, Hans; Witt, Andreas

    2014-04-01

    The aim of this study was to analyse the pattern of sensory nerve endings and blood vessels around the sinus tarsi. The superficial and deep parts of the fat pads at the inferior extensor retinaculum (IER) as well as the subtalar joint capsule inside the sinus tarsi from 13 cadaver feet were dissected. The distribution of the sensory nerve endings and blood vessels were analysed in the resected specimens as the number per cm(2) after staining with haematoxylin-eosin, S100 protein, low-affinity neurotrophin receptor p75, and protein gene product 9.5 using the classification of Freeman and Wyke. Free nerve endings were the predominant sensory ending (P < 0.001). Ruffini and Golgi-like endings were rarely found and no Pacini corpuscles were seen. Significantly more free nerve endings (P < 0.001) and blood vessels (P = 0.01) were observed in the subtalar joint capsule than in the superficial part of the fat pad at the IER. The deep part of the fat pad at the IER had significantly more blood vessels than the superficial part of the fat pad at the IER (P = 0.012). Significantly more blood vessels than free nerve endings were seen in all three groups (P < 0.001). No significant differences in distribution were seen in terms of right or left side, except for free nerve endings in the superficial part of the fat pad at the IER (P = 0.003). A greater number of free nerve endings correlated with a greater number of blood vessels. The presence of sensory nerve endings between individual fat cells supports the hypothesis that the fat pad has a proprioceptive role monitoring changes and that it is a source of pain in sinus tarsi syndrome due to the abundance of free nerve endings.

  3. Comparison of Peripheral Nerve Regeneration with Side-to-side, End-to-side, and End-to-end Repairs: An Experimental Study

    PubMed Central

    Göransson, Harry; Taskinen, Hanna-Stiina; Paavilainen, Pasi; Vahlberg, Tero; Röyttä, Matias

    2016-01-01

    Background: The present study was conducted to find out a tool to enable improved functional recovery with proximal nerve injury. In this experimental study, nerve regeneration was compared between side-to-side (STS), end-to-side (ETS), and end-to-end repairs. Methods: The walk track analysis was used as an outcome of functional recovery. Nerve regeneration was studied with morphometry and histology 6 or 26 weeks postoperatively. Results: All 3 repair techniques showed regeneration of the nerve. From 12 weeks onward, the functional results of the 3 intervention groups were significantly better compared with the unrepaired control group. End-to-end repair was significantly better when compared with the STS and ETS groups. At 26 weeks, the functional and morphometric results and histologic findings did not differ between the STS and ETS groups. The functional results correlated with the morphometric findings in all groups. Conclusions: STS neurorrhaphy showed nerve regeneration, and the end results did not differ from clinically widely used ETS repair. Further studies are warranted to optimize the neurorrhaphy technique and examine possible applications of STS repair in peripheral nerve surgery. PMID:28293523

  4. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations.

    PubMed

    Vaughan, Sydney K; Kemp, Zachary; Hatzipetros, Theo; Vieira, Fernando; Valdez, Gregorio

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets the motor system. Although much is known about the effects of ALS on motor neurons and glial cells, little is known about its effect on proprioceptive sensory neurons. This study examines proprioceptive sensory neurons in mice harboring mutations associated with ALS, in SOD1(G93A) and TDP43(A315T) transgenic mice. In both transgenic lines, we found fewer proprioceptive sensory neurons containing fluorescently tagged cholera toxin in their soma five days after injecting this retrograde tracer into the tibialis anterior muscle. We asked whether this is due to neuronal loss or selective degeneration of peripheral nerve endings. We found no difference in the total number and size of proprioceptive sensory neuron soma between symptomatic SOD1(G93A) and control mice. However, analysis of proprioceptive nerve endings in muscles revealed early and significant alterations at Ia/II proprioceptive nerve endings in muscle spindles before the symptomatic phase of the disease. Although these changes occur alongside those at α-motor axons in SOD1(G93A) mice, Ia/II sensory nerve endings degenerate in the absence of obvious alterations in α-motor axons in TDP43(A315T) transgenic mice. We next asked whether proprioceptive nerve endings are similarly affected in the spinal cord and found that nerve endings terminating on α-motor neurons are affected during the symptomatic phase and after peripheral nerve endings begin to degenerate. Overall, we show that Ia/II proprioceptive sensory neurons are affected by ALS-causing mutations, with pathological changes starting at their peripheral nerve endings.

  5. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats

    PubMed Central

    Thang, Loc V.; Demel, Stacie L.; Crawford, Robert; Kaminski, Norbert E.; Swain, Greg M.; Van Rooijen, Nico

    2015-01-01

    We tested the hypothesis that vascular macrophage infiltration and O2− release impairs sympathetic nerve α2-adrenergic autoreceptor (α2AR) function in mesenteric arteries (MAs) of DOCA-salt hypertensive rats. Male rats were uninephrectomized or sham operated (sham). DOCA pellets were implanted subcutaneously in uninephrectomized rats who were provided high-salt drinking water or high-salt water with apocynin. Sham rats received tap water. Blood pressure was measured using radiotelemetry. Treatment of sham and DOCA-salt rats with liposome-encapsulated clodronate was used to deplete macrophages. After 3–5, 10–13, and 18–21 days of DOCA-salt treatment, MAs and peritoneal fluid were harvested from euthanized rats. Norepinephrine (NE) release from periarterial sympathetic nerves was measured in vitro using amperometry with microelectrodes. Macrophage infiltration into MAs as well as TNF-α and p22phox were measured using immunohistochemistry. Peritoneal macrophage activation was measured by flow cytometry. O2− was measured using dihydroethidium staining. Hypertension developed over 28 days, and apocynin reduced blood pressure on days 18–21. O2− and macrophage infiltration were greater in DOCA-salt MAs compared with sham MAs after day 10. Peritoneal macrophage activation occurred after day 10 in DOCA-salt rats. Macrophages expressing TNF-α and p22phox were localized near sympathetic nerves. Impaired α2AR function and increased NE release from sympathetic nerves occurred in MAs from DOCA-salt rats after day 18. Macrophage depletion reduced blood pressure and vascular O2− while restoring α2AR function in DOCA-salt rats. Macrophage infiltration into the vascular adventitia contributes to increased blood pressure in DOCA-salt rats by releasing O2−, which disrupts α2AR function, causing enhanced NE release from sympathetic nerves. PMID:26320034

  6. Adrenergically mediated intrapancreatic control of the glucagon response to glucopenia in the isolated rat pancreas.

    PubMed Central

    Hisatomi, A; Maruyama, H; Orci, L; Vasko, M; Unger, R H

    1985-01-01

    Alpha adrenergic blockade with phentolamine (10 microM) reduces the glucagon response to severe glucopenia (from 150 to 25 mg/dl) to 22% of the control values in the isolated perfused rat pancreas. Propranolol (10 microM) had no significant effect. Neither alpha nor beta adrenergic blockade reduced the magnitude of glucopenic suppression of insulin secretion, but phentolamine increased insulin levels before and during glucopenia. The pattern of somatostatin secretion in these experiments resembled that of insulin. Depletion of norepinephrine from sympathetic nerve endings by pretreatment with 6-hydroxydopamine lowered the pancreatic norepinephrine content to less than 20% of control values and reduced the glucagon response to glucopenia to 69% of the controls. Combined alpha and beta adrenergic blockade during less severe glucopenia (from 120 to 60 mg/dl) reduced the glucagon response to 21% of controls. However, slight glucopenia (from 100 to 80 mg/dl), which elicited only 11% increase in glucagon in the control experiments, was not altered significantly by combined alpha and beta adrenergic blockade. Morphologic studies of adrenergic nerve terminals labeled with [3H]norepinephrine revealed associations with alpha cells. It is concluded that in the isolated rat pancreas adrenergic mediation accounts for most of the glucagon but not insulin response to glucopenia. It is controlled within the pancreas itself, possibly through a direct enhancement by glucopenia of norepinephrine release from nerve endings. Images PMID:2857731

  7. Fine morphological characteristics and microtopography of the free nerve endings of the human digital skin.

    PubMed

    Cauna, N

    1980-12-01

    Blocks of osmium-fixed human digital skin, representing a total area of 5 sq mm, were cut serially parallel to the skin surface starting with the epidermis for electron microscopical studies. At intervals, single 1-mu sections were taken and used for recording the microtopography of the receptor organs at various levels. Graphic reconstructions of 28 nerve endings were made. It was found that the digital skin accommodated up to 80 dermal papillae and three to four sweat duct orifices per square millimeter. Each papilla contained one to three fenestrated capillary loops. More than 60% of all papillae contained free nerve endings, sometimes up to five in a single papilla. As a result, up to 100 free nerve endings were counted per square millimeter. Intraepidermal endings were also present, one to five per square millimeter. No endings of any kind were found within the boundary zones between the papillary ridges and in the immediate vicinity of the sweat ducts. The origin of a free ending was marked by the perikaryon of a modified Schwann cell, which constituted the terminal cell of the Schwann sheath. The perikaryon was situated at the base of the dermal papilla, while its distal process provided the cytoplasmic sheath to the axon terminals and their branches. Sometimes two endings merged into a single receptor organ. The terminal Schwann cell frequently served as a rallying point of endings. Three morphological kinds of free endings were observed: open endings, beaded endings, and plain endings. The intraepidermal endings were the derivatives of the plain endings. The free endings in the digital skin had essentially vertical distribution. Each ending covered a minute surface area of skin in a punctate pattern. This is in contrast to the mode of distribution of the free (penicillate) endings of the human hairy skin. Each penicillus covers a large horizontal skin area and overlaps that of their neighbors.

  8. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair

    PubMed Central

    2010-01-01

    Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat. PMID:20149260

  9. Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings.

    PubMed Central

    Silinsky, E M; Watanabe, M; Redman, R S; Qiu, R; Hirsh, J K; Hunt, J M; Solsona, C S; Alford, S; MacDonald, R C

    1995-01-01

    1. The requirement for extracellular Ca2+ in the process of evoked acetylcholine (ACh) release by nerve impulses was tested at endplates in frog skeletal muscle. Ca(2+)-containing lipid vesicles (Ca2+ liposomes) were used to elevate cytoplasmic Ca2+ concentrations under conditions in which Ca2+ entry from the extracellular fluid was prevented. 2. In an extracellular solution containing no added Ca2+ and 1 mM Mg2+ ('Ca(2+)-free' solution), Ca2+ liposomes promoted the synchronous release of ACh quanta, reflected electrophysiologically as endplate potentials (EPPs), in response to temporally isolated nerve impulses. 3. Motor nerve stimulation generated EPPs during superfusion with Ca2+ liposomes in Ca(2+)-free solutions containing the Ca2+ channel blocker Co2+ (1 mM), and the Ca2+ chelator EGTA (2 mM). As a physiological control for Ca2+ leakage from the liposomes to the extracellular fluid, the effect of Ca2+ liposomes on asynchronous evoked ACh release mediated by Ba2+ was examined. In contrast to the effects of 0.2-0.3 mM extracellular Ca2+, which generated EPPs but antagonized Ba(2+)-mediated asynchronous ACh release, Ca2+ liposomes generated EPPs but did not reduce asynchronous release mediated by Ba2+. The effects of Ca2+ liposomes were thus not due to leakage of Ca2+ from the liposome to the extracellular fluid. 4. Morphological studies using fluorescently labelled liposomes in conjunction with a confocal microscope demonstrate that lipid is transferred from the liposomes to nerve endings and liposomal contents are delivered to the nerve terminal cytoplasm. 5. The results suggest that when intracellular Ca2+ is elevated using liposomes as a vehicle, evoked ACh release can occur in the absence of Ca2+ entry via Ca2+ channels. Images Figure 5 Figure 6 PMID:7738845

  10. Free calcium concentration in brain nerve endings of spontaneously hypertensive rats

    SciTech Connect

    Orlov, S.N.; Pokudin, N.I.; Kravstov, G.M.; Postnov, Yu.V.; Okun', I.M.; Shukanova, N.A.; Rakovich, A.A.; Aksentsev, S.L.; Konev, S.V.

    1987-10-01

    The frequency of neurotransmitter release from the synaptic vesicles of nerve endings by exocytosis depends primarily on the free calcium concentration in the cytoplasm which is controlled by calcium transporting and calcium binding systems. In this paper, in an attempt to determine the state of these systems in primary hypertension and the effects of neurotransmitter release on the increased resistance in the peripheral circulatory system, the authors study the exchange, uptake, and concentration of calcium 45 cations by synaptosomes.

  11. Effect of potassium channel blockade and alpha 2-adrenoceptor activation on the release of nitric oxide from non-adrenergic non-cholinergic nerves.

    PubMed

    De Man, J G; Boeckxstaens, G E; Herman, A G; Pelckmans, P A

    1994-05-01

    1. Using a superfusion bioassay cascade, we studied the effect of K+ channel blockers and alpha 2-adrenoceptor agents on the release of a transferable factor, previously characterized as nitric oxide (NO) or a nitric oxide-related substance (NO-R), in response to non-adrenergic non-cholinergic (NANC) nerve stimulation in the canine ileocolonic junction (ICJ). 2. The non-selective K+ channel blockers, 4-aminopyridine (4-AP, 50 microM) and tetraethylammonium (TEA, 1 mM) and the more selective blocker of Ca(2+)-activated K+ channels, charybdotoxin (Leiurus quinquestriatus venom (LQV), 0.4 microgram ml-1), significantly enhanced the release of NO-R induced by low frequency stimulation (2-4 Hz). In the presence of 4-AP and TEA, the release of NO-R was nearly abolished by tetrodotoxin (2 microM), and by L-NG-nitroarginine (L-NOARG, 0.1 mM). Relaxations induced by direct injection of exogenous NO (5-50 pmol) or nitroglycerin (GTN, 10-30 pmol) onto the rabbit aortic detector ring were not affected. 3. The alpha 2-adrenoceptor agonist, UK-14,304 (0.3 microM) inhibited the release of NO-R induced by low (2-4 Hz), but not that induced by high (16 Hz), frequency stimulation. This inhibitory effect was completely reversed by the alpha 2-adrenoceptor antagonist, yohimbine (0.3 microM). Neither UK-14,304 nor yohimbine affected the relaxations induced by exogenous NO (5 pmol) or GTN (10 pmol) on the aortic detector ring.3+

  12. Calcium currents at motor nerve endings: absence of effects of adenosine receptor agonists in the frog.

    PubMed Central

    Silinsky, E M; Solsona, C S

    1992-01-01

    1. The effects of adenosine (50 microM) and 2-chloroadenosine (1-25 microM) were studied on Ca2+ currents in frog motor nerve endings. 2. Ca2+ currents associated with the synchronous, neurally evoked release of acetylcholine (ACh) were measured using either perineural or patch recording methods. Tetraethylammonium and/or 3,4-diaminopyridine were employed to block K+ currents. 3. Ca2+ currents were depressed by omega-conotoxin (1.5-2.5 microM), Cd2+ (100 microM-2 mM), Co2+ (500 microM-5 mM) or by a reduction of the extracellular calcium concentration. Such currents were also observed when Sr2+ was substituted for Ca2+. Both ACh release and Ca2+ currents at motor nerve endings have been reported to be insensitive to 1,4-dihydropyridine antagonists in this species. 4. Adenosine receptor agonists did not affect Ca2+ currents at concentrations that produced maximal inhibition of ACh release. 5. The effects of adenosine receptor agonists were examined on asynchronous K(+)-dependent ACh release under conditions in which the Ca2+ concentration gradient is likely to be reversed (Ca(2+)-free Ringer solution containing 1 mM EGTA). ACh release was measured by monitoring the frequency of occurrence of miniature endplate potentials (MEPPs). In Ca(2+)-free solutions containing 1 mM EGTA, high K+ depolarization caused a decrease in MEPP frequency, presumably because it elicits the efflux of Ca2+ from the nerve ending via membrane Ca2+ channels in a reverse Ca2+ gradient. 6. The Ca2+ channel blocker Co2+, which blocks the exit of Ca2+ from the nerve ending, increased the frequency of MEPPs in a concentration-dependent manner in a reverse Ca2+ gradient. 7. Adenosine or 2-chloroadenosine inhibited ACh release in a reverse Ca2+ gradient. 8. The results suggest that blockade of Ca2+ entry is not responsible for the inhibitory effects of adenosine at frog motor nerve endings. PMID:1338459

  13. Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings.

    PubMed

    Broad, R M; McDonald, T J; Brodin, E; Cook, M A

    1992-03-01

    A perifused preparation of guinea pig myenteric nerve varicosities (synaptosomes) was used to determine the characteristics of evoked tachykinin release and the inhibition of such release by adenosine analogues. Release of substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) was evoked by elevated extracellular [K+] in a reversible and repeatable manner. This release was completely abolished in the absence of extracellular Ca2+. Perifusion in the presence of 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective A1/A2 adenosine receptor agonist, decreased K(+)-evoked release of SP-LI and NKA-LI compared with that in the absence of the nucleoside. Similar decrements in peptide release were obtained with N6-cyclopentyl adenosine (CPA), a selective A1 agonist, and 2-[p-(2-carboxyethyl)]phenethylamino-5'-N-ethyl-carboxamidoadenosi ne (CGS 21680), a selective A2 agonist. Response to all nucleosides was graded. Potency order of adenosine analogues was CPA greater than NECA much greater than CGS 21680. Inhibition due to the nucleosides was diminished in the presence of the highly selective A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) while perifusion in the presence of DPCPX alone did not alter evoked release of either peptide. These findings provide direct measurements of inhibitory effects of adenine nucleosides on the release, from enteric nerve endings, of endogenous neuromediators SP and NKA. The findings also directly demonstrate the presence of functional adenosine receptors of the A1 subtype on enteric nerve endings coupled negatively to release of tachykinins. The presence of A2 receptors on enteric nerve endings is neither supported nor excluded.

  14. Dynamic longitudinal investigation of individual nerve endings in the skin of anesthetized mice using in vivo two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Yuryev, Mikhail; Khiroug, Leonard

    2012-04-01

    Visualization of individual cutaneous nerve endings has previously relied on laborious procedures of tissue excision, fixation, sectioning and staining for light or electron microscopy. We present a method for non-invasive, longitudinal two-photon microscopy of single nerve endings within the skin of anesthetized transgenic mice. Besides excellent signal-to-background ratio and nanometer-scale spatial resolution, this method offers time-lapse ``movies'' of pathophysiological changes in nerve fine structure over minutes, hours, days or weeks. Structure of keratinocytes and dermal matrix is visualized simultaneously with nerve endings, providing clear landmarks for longitudinal analysis. We further demonstrate feasibility of dissecting individual nerve fibers with infra-red laser and monitoring their degradation and regeneration. In summary, our excision-free optical biopsy technique is ideal for longitudinal microscopic analysis of animal skin and skin innervations in vivo and can be applied widely in preclinical models of chronic pain, allergies, skin cancers and a variety of dermatological disorders.

  15. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings.

    PubMed

    Banks, R W; Hulliger, M; Saed, H H; Stacey, M J

    2009-06-01

    The encapsulated sensory endings of mammalian skeletal muscles are all mechanoreceptors. At the most basic functional level they serve as length sensors (muscle spindle primary and secondary endings), tension sensors (tendon organs), and pressure or vibration sensors (lamellated corpuscles). At a higher functional level, the differing roles of individual muscles in, for example, postural adjustment and locomotion might be expected to be reflected in characteristic complements of the various end-organs, their sensory endings and afferent nerve fibres. This has previously been demonstrated with regard to the number of muscle-spindle capsules; however, information on the other types of end-organ, as well as the complements of primary and secondary endings of the spindles themselves, is sporadic and inconclusive regarding their comparative provision in different muscles. Our general conclusion that muscle-specific variability in the provision of encapsulated sensory endings does exist demonstrates the necessity for the acquisition of more data of this type if we are to understand the underlying adaptive relationships between motor control and the structure and function of skeletal muscle. The present quantitative and comparative analysis of encapsulated muscle afferents is based on teased, silver-impregnated preparations. We begin with a statistical analysis of the number and distribution of muscle-spindle afferents in hind-limb muscles of the cat, particularly tenuissimus. We show that: (i) taking account of the necessity for at least one primary ending to be present, muscles differ significantly in the mean number of additional afferents per spindle capsule; (ii) the frequency of occurrence of spindles with different sensory complements is consistent with a stochastic, rather than deterministic, developmental process; and (iii) notwithstanding the previous finding, there is a differential distribution of spindles intramuscularly such that the more complex ones tend

  16. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.

    PubMed

    Thomas, David M; Walker, Paul D; Benjamins, Joyce A; Geddes, Timothy J; Kuhn, Donald M

    2004-10-01

    Methamphetamine intoxication causes long-lasting damage to dopamine nerve endings in the striatum. The mechanisms underlying this neurotoxicity are not known but oxidative stress has been implicated. Microglia are the major antigen-presenting cells in brain and when activated, they secrete an array of factors that cause neuronal damage. Surprisingly, very little work has been directed at the study of microglial activation as part of the methamphetamine neurotoxic cascade. We report here that methamphetamine activates microglia in a dose-related manner and along a time course that is coincident with dopamine nerve ending damage. Prevention of methamphetamine toxicity by maintaining treated mice at low ambient temperature prevents drug-induced microglial activation. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which damages dopamine nerve endings and cell bodies, causes extensive microglial activation in striatum as well as in the substantia nigra. In contrast, methamphetamine causes neither microglial activation in the substantia nigra nor dopamine cell body damage. Dopamine transporter antagonists (cocaine, WIN 35,428 [(-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate], and nomifensine), selective D1 (SKF 82958 [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide]), D2 (quinpirole), or mixed D1/D2 receptor agonists (apomorphine) do not mimic the effect of methamphetamine on microglia. Hyperthermia, a prominent and dangerous clinical response to methamphetamine intoxication, was also ruled out as the cause of microglial activation. Together, these data suggest that microglial activation represents an early step in methamphetamine-induced neurotoxicity. Other neurochemical effects resulting from methamphetamine-induced overflow of DA into the synapse, but which are not neurotoxic, do not play a role in this response.

  17. Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E.

    PubMed

    Lawrence, Gary; Wang, Jiafu; Chion, C K N Kwo; Aoki, K Roger; Dolly, J Oliver

    2007-01-01

    The unique ability of a family of botulinum neurotoxins to block neuroexocytosis specifically-by selective interaction with peripheral cholinergic nerve endings, endocytotic uptake, translocation to the cytosol, and enzymic cleavage of essential proteins-underlies their increasing therapeutic applications. Although clinical use of type A is most widespread due to its prolonged inactivation of the synaptosomal-associated protein of 25 kDa, botulinum neurotoxin E cleaves this same target but at a different bond and exhibits faster onset of neuromuscular paralysis. Herein, insights were gained into the different dynamics of action of types A and E toxins, which could help in designing variants with new pharmacological profiles. Natural and recombinant type E dichain forms showed similar proteolytic and neuromuscular paralytic activities. The neuroparalysis induced by type E toxin was accelerated between 21 and 35 degrees C and attenuated by bafilomycin A1. Temperature elevation also revealed an unanticipated bipartite dose response indicative of two distinct internalization processes, one being independent of temperature and the other dependent. Although elevating the temperature also hastened intoxication by type A, a second uptake mechanism was not evident. Increasing the frequency of nerve stimulation raised the uptake of type E via both processes, but the enhanced trafficking through the temperature-dependent pathway was only seen at 35 degrees C. These novel observations reveal that two membrane retrieval mechanisms are operative at motor nerve terminals which type E toxin exploits to gain entry via an acidification-dependent step, whereas A uses only one.

  18. Ultrastructure of nerve endings and synaptic junctions in rabbit intrapulmonary neuroepithelial bodies: a single and serial section analysis.

    PubMed Central

    Lauweryns, J M; Van Lommel, A

    1987-01-01

    This study on the innervation of rabbit intrapulmonary neuroepithelial bodies (NEB) was undertaken to obtain more information about the detailed ultrastructure of morphologically afferent and efferent intracorpuscular NEB nerve endings, the extent to which they are in cytoplasmic continuity with one another, and the structure of the synaptic junctions they form with the NEB corpuscular cells. As in earlier studies, NEB exhibit intracorpuscular nerve endings containing predominantly either mitochondria (morphologically afferent) or synaptic vesicles (morphologically efferent). Both types of nerve endings form synaptic junctions with the NEB corpuscular cells, arranged so that a NEB corpuscular cell is the presynaptic element and the nerve ending the postsynaptic element. This arrangement implies that NEB can transmit nerve impulses to the central nervous system, thus arguing in favour of their hypothetical neuroreceptor function. Moreover, on serial sections, the morphologically afferent and efferent intracorpuscular nerve endings are often found in cytoplasmic continuity. Hence, transduction of stimuli in the NEB implies concomitant efferent modulation of the NEB corpuscular cells. In conclusion, intrapulmonary NEB apparently function as neuroreceptors that are locally modulated by axon reflexes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 (cont.) Fig. 6 (cont.) Fig. 6 PMID:3654362

  19. Temperature receptors in cutaneous nerve endings are thermostat molecules that induce thermoregulatory behaviors against thermal load.

    PubMed

    Kobayashi, Shigeo

    2015-01-01

    When skin temperature falls below a set-point, mammals experience "cold in the skin" and exhibit heat-seeking behaviors for error correction. Physiological thermostats should perform the behavioral thermoregulation, and it is important to identify the thermostats. A classical model of the sensory system states that thermoreceptors (e.g., thermoTRPs) in skin nerve endings are sensors that transform temperature into the firing rate codes that are sent to the brain, where the codes are decoded as "cold" by a labeled line theory. However, the view that the temperature code is transformed into "cold" (not temperature) is conflicting. Another model states that a thermostat exists in the brain based on the view that a skin thermo-receptor is a sensor. However, because animals have no knowledge of the principle of temperature measurement, the brain is unable to measure skin temperature with a thermometer calibrated based on a code table of each sensor in the skin. Thus, these old models cannot identify the thermostats. We have proposed a new model in which temperature receptors in a nerve ending are molecules of the thermostats. When skin temperature falls below a set-point, these molecules as a whole induce impulses as command signals sent to the brain, where these impulses activate their target neurons for "cold" and heat-seeking behaviors for error correction. Our study challenges the famous models that sensory receptor is a sensor and the brain is a code processor.

  20. [The action of 1-aminoadamantane. Comparative studies with isolated nerve endings and thrombocytes on the release of serotonin and dopamine].

    PubMed

    Haacke, U; Sturm, G; Süwer, V; Wesemann, W; Wildenhahn, G

    1977-07-01

    Nerve endings isolated from rat brain accumulate exogenous serotonin and dopamine. Both biogenic amines are released from nerve endings as well by means of electrical stimulation with rectangular pulses of alternating polarity as by incubation with 5 X 10(-4) to 5 X 10(-5) M solutions of the adamantane derivatives 1-aminoadamantane hydrochloride (D 1) and 1-amino-3,5-dimethyladamantane hydrochloride (memantine, D 145). The electrically stimulated liberation is small but is significantly increased after simultaneous incubation of the nerve endings with subthreshold concentrations of 1-aminoadamantanes (5X10(-6) to 5X10(-5) M). The reuptake of released serotonin is noncompetitively inhibited by 1-aminoadamantanes. Also in blood platelets frequently used as model cells of the nerve endings the serotonin uptake is inhibited by small concentrations of D 145, 10(-5) to 2X10(-4) M. High concentrations of D 145- greater than 2X10(-3) M, induce the "release-reaction", the simultaneous liberation of serotonin, ATP, and ADP. In the concentration range of 2X10(-4) to 2X10(-3) M D 145 only serotonin is set free.

  1. Fenfluramine releases serotonin from human brain nerve endings by a dual mechanism.

    PubMed

    Bonanno, G; Fassio, A; Severi, P; Ruelle, A; Raiteri, M

    1994-09-01

    Fenfluramine is the most widely used anorexigenic drug in humans. In animal experiments d-fenfluramine has been shown to act as a potent releaser of brain serotonin [5-hydroxytryptamine (5-HT)]. Here we have investigated the effects of d-fenfluramine on the release of [3H]5-HT from isolated nerve endings of human neocortex. The drug elicited release of unmetabolized [3H]5-HT, and this effect was concentration dependent. However, the mechanism of release seems to differ profoundly depending on the concentrations of d-fenfluramine used. At 5 microM, the release of [3H]5-HT was blocked by the 5-HT transporter inhibitor fluoxetine and was Ca2+ independent and insensitive to the human autoreceptor 5-HT1D agonist sumatriptan. The release of [3H]5-HT elicited by 0.5 microM d-fenfluramine was similarly blocked by fluoxetine, but it was strongly Ca2+ dependent and sensitive to sumatriptan. It is suggested that, at relatively high concentrations, d-fenfluramine largely diffuses into serotonergic terminals and causes release of 5-HT through the 5-HT carrier working in the inside-outside direction; at relatively low concentrations d-fenfluramine enters the terminals through the 5-HT transporter but elicits release of 5-HT by an exocytotic-like mechanism.

  2. Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs

    PubMed Central

    Reynders, Ana; Mantilleri, Annabelle; Malapert, Pascale; Rialle, Stéphanie; Nidelet, Sabine; Laffray, Sophie; Beurrier, Corinne; Bourinet, Emmanuel; Moqrich, Aziz

    2015-01-01

    Summary Cutaneous C-unmyelinated MRGPRD+ free nerve endings and C-LTMRs innervating hair follicles convey two opposite aspects of touch sensation: a sensation of pain and a sensation of pleasant touch. The molecular mechanisms underlying these diametrically opposite functions are unknown. Here, we used a mouse model that genetically marks C-LTMRs and MRGPRD+ neurons in combination with fluorescent cell surface labeling, flow cytometry, and RNA deep-sequencing technology (RNA-seq). Cluster analysis of RNA-seq profiles of the purified neuronal subsets revealed 486 and 549 genes differentially expressed in MRGPRD-expressing neurons and C-LTMRs, respectively. We validated 48 MRGPD- and 68 C-LTMRs-enriched genes using a triple-staining approach, and the Cav3.3 channel, found to be exclusively expressed in C-LTMRs, was validated using electrophysiology. Our study greatly expands the molecular characterization of C-LTMRs and suggests that this particular population of neurons shares some molecular features with Aβ and Aδ low-threshold mechanoreceptors. PMID:25683706

  3. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea.

    PubMed

    Parra, Andres; Gonzalez-Gonzalez, Omar; Gallar, Juana; Belmonte, Carlos

    2014-08-01

    Dry eye disease (DED) is a multifactorial disorder affecting the composition and volume of tears. DED causes ocular surface dryness, cooling, and hyperosmolality, leading ultimately to corneal epithelium damage and reduced visual performance. Ocular discomfort is the main clinical symptom in DED. However, the peripheral neural source of such unpleasant sensations is still unclear. We analyzed in excised, superfused mouse eyes, the effect of NaCl-induced hyperosmolality (325-1005 mOsm·kg(-1)) on corneal cold thermoreceptor and polymodal nociceptor nerve terminal impulse (NTI) activity. Osmolality elevations at basal corneal temperature (33.6°C) linearly increased the ongoing NTI frequency of cold thermoreceptors, at a mean rate of 0.34 imp·s(-1)/10 mOsm. This frequency increase became significant with osmolality values greater than 340 mOsm. Comparison of cold thermoreceptor activity increase induced by a dynamic temperature reduction of 1.8°C under iso- and hyperosmolal (360-mOsm) conditions provided evidence that more than 50% of the increased firing response was attributable to hyperosmolality. Comparatively, activation of corneal polymodal nociceptor endings by hyperosmolal solutions started with values of 600 mOsm and greater. Sensitization of polymodal nociceptors by continuous perfusion with an "inflammatory soup" (bradykinin, histamine, prostaglandin E2 [PGE2], serotonin, and adenosine triphosphate [ATP]) did not enhance their activation by hyperosmolal solutions. High osmolality also altered the firing pattern and shape of cold and polymodal NTIs, possibly reflecting disturbances in local membrane currents. Results strongly suggest that tear osmolality elevations in the range observed in DED predominantly excite cold thermoreceptors, supporting the hypothesis that dryness sensations experienced by these patients are due, at least in part, to an augmented activity of corneal cold thermoreceptors.

  4. CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings.

    PubMed

    Di Prisco, Silvia; Olivero, Guendalina; Merega, Elisa; Bonfiglio, Tommaso; Marchi, Mario; Pittaluga, Anna

    2016-12-01

    Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated. Rat hippocampal synaptosomes were preloaded with [(3)H]noradrenaline ([(3)H]NA) or [(3)H]D-aspartate ([(3)H]D-Asp) and acutely exposed to CXCL12, to NMDA or to both agonists. CXCL12, inactive on its own, facilitated the NMDA-evoked tritium release. The NMDA antagonist MK-801 abolished the NMDA/CXCL12-evoked tritium release of both radiolabelled tracers, while the CXCR4 antagonist AMD 3100 halved it, suggesting that rat hippocampal nerve endings possess presynaptic release-regulating CXCR4 receptors colocalized with NMDA receptors. Accordingly, Western blot analysis confirmed the presence of CXCR4 proteins in synaptosomal plasmamembranes. In both synaptosomal preparations, CXCL12-induced facilitation of NMDA-mediated release was dependent upon PLC-mediated src-induced events leading to mobilization of Ca(2+) from intraterminal IP3-sensitive stores Finally, the gp120-induced facilitation of NMDA-mediated release of [(3)H]NA and [(3)H]D-Asp was prevented by AMD 3100. We propose that CXCR4s are functionally coupled to NMDA receptors in rat hippocampal noradrenergic and glutamatergic terminals and account for the gp120-induced modulation of the NMDA-mediated central effects. The NMDA/CXCR4 cross-talk could have a role in the neuropsychiatric symptoms often observed in HIV-1 positive patients.

  5. Intraepidermal free nerve fiber endings in the hairless skin of the rat as revealed by the zinc iodide-osmium tetroxide technique.

    PubMed

    Müller, T

    2000-04-01

    The nerve fiber distribution in the epidermis of the hairless rat skin was studied light microscopically by means of zinc iodide-osmium tetroxide staining. Two different morphological types of free nerve fiber endings could be detected: clusters of relatively thick nerve fibers stretched up through the spinous layer up to the granular layer sending off terminal branches. In addition, many solitary thin varicose nerve fibers were seen within the epidermis. The observed discrepancies in nerve fiber diameters appeared to be larger than those reported for human intraepidermal nerve fibers in recent immunohistochemical studies. Moreover, dendritic cells, most probably representing Langerhans cells, could be selectively stained. These cells appeared to be in a close location to thin varicose nerve fibers. Both types of demonstrated free nerve endings have to be functionally connected with different sensoric functions. Possibly, a subpopulation of the thin nerve fibers might possess primarily a nociceptive task, whereas the thick ones have most probably to be regarded as mechanoreceptive. The nerve fibers innervating dendritic cells appear to be identical to the peptidergic ones which may regulate the antigen-presenting capacity of these cells. Due to its selectivity for intraepidermal nerve fibers, the used method might supplement immunohistochemical procedures in a helpful manner.

  6. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum.

    PubMed

    Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M

    2010-11-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum.

  7. Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA.

    PubMed

    Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Francescutti, Dina M; Sykes, Catherine E; Shah, Mrudang M; Thomas, David M; Kuhn, Donald M

    2013-04-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re-uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4-methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity.

  8. Mephedrone Does not Damage Dopamine Nerve Endings of the Striatum but Enhances the Neurotoxicity of Methamphetamine, Amphetamine and MDMA

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Francescutti, Dina M.; Sykes, Catherine E.; Shah, Mrudang M.; Thomas, David M.; Kuhn, Donald M.

    2012-01-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its reuptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20 or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (4 injections of 2.5 or 5.0 mg/kg at 2 hr intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and MDMA on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. Because mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. PMID:23205838

  9. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  10. Evidence that adrenaline is released from adrenergic neurones in the rectum of the fowl

    PubMed Central

    Komori, S.; Ohashi, H.; Okada, T.; Takewaki, T.

    1979-01-01

    1 The rectum isolated from the fowl was perfused with Tyrode solution via the caudal mesenteric artery. Noradrenaline and adrenaline were biologically or fluorimetrically assayed in perfusates collected before and during stimulation of Remak's nerve or of the periarterial nerves. 2 Perfusates collected during nerve stimulation relaxed the chick rectum and rat stomach strips which served as assay tissues. This effect was attributed to the action of noradrenaline or adrenaline released from adrenergic nerve endings which appeared in the perfusates. 3 Perfusates obtained during stimulation (30 Hz for 60 s) of Remak's nerve contained both noradrenaline and adrenaline when measured fluorimetrically. The mean output per stimulus train was 0.8 ± 0.2 ng/g wet wt. tissue for noradrenaline and 1.7 ± 0.2 ng/g wet wt. tissue for adrenaline (n = 7). Perfusates obtained during stimulation (30 Hz for 60 s) of the periarterial nerves contained noradrenaline in a concentration of 1.6 ± 0.3 ng/g wet wt. tissue per stimulus train, but almost no adrenaline (n = 7). 4 Neither stimulation of Remak's nerve nor the periarterial nerves liberated catecholamines when the rectum was perfused with Tyrode solution containing low Ca2+ (0.1 mM) and high Mg2+ (10 mM). 5 Infusion of high potassium solution (50 mM) increased markedly the output of noradrenaline and adrenaline. 6 Adrenaline as well as noradrenaline may function as the adrenergic neurotransmitter in the rectum of the fowl. PMID:760900

  11. β-Adrenergic Receptors Activate Exchange Protein Directly Activated by cAMP (Epac), Translocate Munc13-1, and Enhance the Rab3A-RIM1α Interaction to Potentiate Glutamate Release at Cerebrocortical Nerve Terminals*

    PubMed Central

    Ferrero, Jose J.; Alvarez, Ana M.; Ramírez-Franco, Jorge; Godino, María C.; Bartolomé-Martín, David; Aguado, Carolina; Torres, Magdalena; Luján, Rafael; Ciruela, Francisco; Sánchez-Prieto, José

    2013-01-01

    The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na+ channels with tetrodotoxin. We found that 8-pCPT-2′-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals. PMID:24036110

  12. [The time course of the evoked secretion of the mediator quanta in various regions of the frog motor nerve ending].

    PubMed

    Nikol'skiĭ, E E; Bukharaeva, E A; Samigullin, D V; Gaĭnulov, R Kh

    2000-09-01

    Apart from the fact that the gradient of the velocity of the AP propagation along the nerve terminal and the intensity of secretion do exist, the kinetics of a quanta transmitter release may also be revealed in different parts of the terminal. The velocity of the propagation and the minimum sympatric delay tend to diminish along with moving away from the myelinated part of axon, whereas the synchronicity of the quanta release rises. The distinctions in the time course of secretion in different parts of the terminal were amplified when the calcium ion concentration in the medium was enhanced. The observed peculiarities of the secretion kinetics in different regions of nerve ending seem to compensate for diminishing of the amplitude of multiquantal endplate current.

  13. An electron microscopic study on nerve endings on adrenomedullary adrenaline cells in golden hamsters: position, size and changes due to pinealectomy.

    PubMed

    Yamauchi, Takao; Kachi, Takashi

    2008-09-01

    Effects of sham-pinealectomy and pinealectomy on preganglionic nerve endings on adrenomedullary adrenaline cells were investigated electron microscopically. Adult male golden hamsters from the normal, sham-pinealectomy and pinealectomy groups maintained under 24 h light-dark cycle and constant temperature were used at 28 days after surgery. From conventional electron microscopic specimens, montage photographs made of the adrenaline cell region at a magnification of x 11,000 were used for qualitative and quantitative electron microscopic analyses in 14 animals in each experimental group. The preganglionic nerve endings were localized mainly in the following three sites: the basal lamina part, the follicular lumen-junctional intercellular part, and the adrenaline cell-invaginated part. In the latter two parts, nerve endings and fibers had no envelope frequently, and in the former two parts, nerve endings sometimes showed the invagination complex. The frequency of nerve endings was highest in the follicular lumen-intercellular part, next highest in the basal lamina part and lowest in the A cell-invaginated part. The frequency of nerve endings in the basal lamina part was lower in the pinealectomy group than in the sham-pinealectomy group (P < 0.021), and those in the other two parts showed opposite changes, more evidently in the A cell-invaginated part. Nerve ending profiles in the adrenaline cell-invaginated part--which displayed a more rounded shape--increased in size in the pinealectomy group (longer diameter: P < 0.04; shorter diameter: P < 0.05). In conclusion, preganglionic nerve endings in the adrenal medulla of the golden hamster show differential morphological changes following PX depending on the intracellular part of A cells.

  14. Effects of acute controlled changes in end-tidal carbon dioxide on the diameter of the optic nerve sheath: a transorbital ultrasonographic study in healthy volunteers.

    PubMed

    Dinsmore, M; Han, J S; Fisher, J A; Chan, V W S; Venkatraghavan, L

    2017-02-08

    Transorbital ultrasonographic measurement of the diameter of the optic nerve sheath is a non-invasive, bed-side examination for detecting raised intracranial pressure. However, the ability of the optic nerve sheath diameter to predict acute changes in intracranial pressures remains unknown. The aim of this study was to examine the dynamic changes of the optic nerve sheath diameter in response to mild fluctuations in cerebral blood volume induced by changes in end-tidal carbon dioxide. We studied 11 healthy volunteers. End-tidal carbon dioxide was controlled by a model-based prospective end-tidal targeting system (RespirAct™). The volunteers' end-tidal carbon dioxide was targeted and maintained for 10 min each at normocapnia (baseline); hypercapnia (6.5 kPa); normocapnia (baseline 1); hypocapnia (3.9 kPa) and on return to normocapnia (baseline 2). A single investigator repeatedly measured the optic nerve sheath diameter for 10 min at each level of carbon dioxide. With hypercapnia, there was a significant increase in optic nerve sheath diameter, with a mean (SD) increase from baseline 4.2 (0.7) mm to 4.8 (0.8) mm; p < 0.001. On return to normocapnia, the optic nerve sheath diameter rapidly reverted back to baseline values. This study confirms dynamic changes in the optic nerve sheath diameter with corresponding changes in carbon dioxide, and their reversibly with normocapnia.

  15. Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings

    PubMed Central

    Dopico, Alejandro M; Widmer, Hélène; Wang, Gang; Lemos, José R; Treistman, Steven N

    1999-01-01

    Large conductance, Ca2+-activated K+ (BK) channels were identified in freshly dissociated rat supraoptic neurones using patch clamp techniques. The single channel conductance of cell body BK channels, recorded from inside-out patches in symmetric 145 mM K+, was 246.1 pS, compared with 213 pS in nerve ending BK channels (P < 0.01). At low open probability (Po), the reciprocal of the slope in the ln(NPo)-voltage relationship (N, number of available channels in the patch) for cell body and nerve ending channels were similar: 11 vs. 14 mVper e-fold change in NPo, respectively. At 40 mV, the [Ca2+]i producing half-maximal activation was 273 nM, as opposed to > 1.53 μM for the neurohypophysial channel, indicating the higher Ca2+ sensitivity of the cell body isochannel. Cell body BK channels showed fast kinetics (open time constant, 8.5 ms; fast closed time constant, 1.6 and slow closed time constant, 12.7 ms), identifying them as ‘type I’ isochannels, as opposed to the slow gating (type II) of neurohypophysial BK channels. Cell body BK activity was reduced by 10 nM charybdotoxin (NPo, 37 % of control), or 10 nM iberiotoxin (NPo, 5 % of control), whereas neurohypophysial BK channels are insensitive to charybdotoxin at concentrations as high as 360 nM. Whilst blockade of nerve ending BK channels markedly slowed the repolarization of evoked single spikes, blockade of cell body channels was without effect on repolarization of evoked single spikes. Ethanol reversibly increased neurohypophysial BK channel activity (EC50, 22 mM; maximal effect, 100 mM). In contrast, ethanol (up to 100 mM) failed to increase cell body BK channel activity. In conclusion, we have characterized BK channels in supraoptic neuronal cell bodies, and demonstrated that they display different electrophysiological and pharmacological properties from their counterparts in the nerve endings. PMID:10432342

  16. Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon

    PubMed Central

    Chen, Chunsheng; Lyte, Mark; Stevens, Mark P.; Vulchanova, Lucy; Brown, David R.

    2008-01-01

    The sympathetic neurotransmitter norepinephrine has been found to increase mucosal adherence of enterohemorrhagic Escherichia coli O157:H7 in explants of murine cecum and porcine distal colon. In the present study, we tested the hypothesis that norepinephrine augments the initial, loose adherence of this important pathogen to the intestinal mucosa. In mucosal sheets of porcine cecum or proximal, spiral and distal colon mounted in Ussing chambers, norepinephrine (10 µM, contraluminal addition) increased mucosal adherence of wild-type E. coli O157:H7 strain 85–170; in the cecal mucosa, this effect occurred within 15 – 90 min after bacterial inoculation. In addition, norepinephrine transiently increased short-circuit current in cecal and colonic mucosal sheets, a measure of active anion transport. Norepinephrine was effective in promoting cecal adherence of a non-O157 E. coli strain as well as E. coli O157:H7 eae or espA mutant strains that are incapable of intimate mucosal attachment. Nerve fibers immunoreactive for the norepinephrine synthetic enzyme dopamine β-hydroxylase appeared in close proximity to the cecal epithelium, and the norepinephrine reuptake blocker cocaine, like norepinephrine and the selective α2-adrenoceptor agonist UK-14,304, increased E. coli O157:H7 adherence. These results suggest that norepinephrine, acting upon the large bowel mucosa, modulates early, non-intimate adherence of E. coli O157:H7 and probably other mucosa-associated bacteria. Sympathetic nerves innervating the cecocolonic mucosa may link acute stress exposure or psychostimulant abuse with an increased microbial colonization of the intestinal surface. This in turn may alter host susceptibility to enteric infections. PMID:16687138

  17. End-to-Side Neurorrhaphy as Schwann Cells Provider to Acellular Nerve Allograft and Its Suitable Application

    PubMed Central

    Yoshizawa, Hidekazu; Senda, Daiki; Natori, Yuhei; Tanaka, Rica; Mizuno, Hiroshi; Hayashi, Ayato

    2016-01-01

    Axonal regeneration relies on support from proliferating host Schwann cells (SCs), and previous studies on acellular nerve allografts (ANGs) suggest that axons can regenerate into ANGs within a limited distance. Numerous studies have demonstrated that the supplementation of ANGs with exogenous factors, such as cultured SCs, stem cells, and growth factors, promote nerve regeneration in ANGs. However, there are several problems associated with their utilization. In this study, we investigated whether end-to-side (ETS) neurorrhaphy, which is an axonal provider, could be useful as an SC provider to support axonal elongation in ANGs. We found that ETS neurorrhaphy effectively promoted SC migration into ANGs when an epineurium window combined with partial neurectomy was performed, and the effectiveness increased when it was applied bilaterally. When we transplanted ANGs containing migrated SCs via ETS neurorrhaphy (hybrid ANGs) to the nerve gap, hybrid ANGs increased the number of regenerated axons and facilitated rapid axonal elongation, particularly when ETS neurorrhaphy was applied to both edges of the graft. This approach may represent a novel application of ETS neurorrhaphy and lead to the development of hybrid ANGs, making ANGs more practical in a clinical setting. PMID:27907118

  18. TRPM8, a sensor for mild cooling in mammalian sensory nerve endings.

    PubMed

    Babes, Alexandru; Ciobanu, Alexandru Cristian; Neacsu, Cristian; Babes, Ramona-Madalina

    2011-01-01

    Temperature sensing is a crucial feature of the nervous system, enabling organisms to avoid physical danger and choose optimal environments for survival. TRPM8 (Transient Receptor Potential Melastatin type 8) belongs to a select group of ion channels which are gated by changes in temperature, are expressed in sensory nerves and/or skin cells and may be involved in temperature sensing. This channel is activated by a moderate decrease in temperature, with a threshold of approximately 25 °C in heterologous expression systems, and by a variety of natural and synthetic compounds, including menthol. While the physiological role of TRPM8 as a transducer of gentle cooling is widely accepted, its involvement in acute noxious cold sensing in healthy tissues is still under debate. Although accumulating evidence indicates that TRPM8 is involved in neuropathic cold allodynia, in some animal models of nerve injury peripheral and central activation of TRPM8 is followed by analgesia. A variety of inflammatory mediators, including bradykinin and prostaglandin E(2), modulate TRPM8 by inhibiting the channel and shifting its activation threshold to colder temperatures, most likely counteracting the analgesic action of TRPM8. While important progress has been made in unraveling the biophysical features of TRPM8, including the revelation of its voltage dependence, the precise mechanism involved in temperature sensing by this channel is still not completely understood. This article will review the current status of knowledge regarding the (patho)physiological role(s) of TRPM8, its modulation by inflammatory mediators, the signaling pathways involved in this regulation, and the biophysical properties of the channel.

  19. Accelerated Aging in Glaucoma: Immunohistochemical Assessment of Advanced Glycation End Products in the Human Retina and Optic Nerve Head

    PubMed Central

    Tezel, Gülgün; Luo, Cheng; Yang, Xiangjun

    2008-01-01

    PURPOSE This study aimed to determine the association between advanced glycation end products (AGEs) and glaucoma based on the known synergism between oxidative stress with AGEs and the evidence of oxidative stress during glaucomatous neurodegeneration. METHODS The extent and cellular localization of immunolabeling for AGEs and their receptor, RAGE, were determined in histologic sections of the retina and optic nerve head obtained from 38 donor eyes with glaucoma and 30 eyes from age-matched donors without glaucoma. RESULTS The extent of AGE and RAGE immunolabeling was greater in older than in younger donor eyes. However, compared with age-matched controls, an enhanced accumulation of AGEs and an up-regulation of RAGE were detectable in the glaucomatous retina and optic nerve head. Although some retinal ganglion cells (RGCs) and glia exhibited intracellular immunolabeling for AGEs, increased AGE immunolabeling in glaucomatous eyes was predominantly extracellular and included laminar cribriform plates in the optic nerve head. Some RAGE immunolabeling was detectable on RGCs; however, increased RAGE immunolabeling in glaucomatous eyes was predominant on glial cells, primarily Müller cells. CONCLUSIONS Given that the generation of AGEs is an age-dependent event, increased AGE accumulation in glaucomatous tissues supports that an accelerated aging process accompanies neurodegeneration in glaucomatous eyes. One of the potential consequences of AGE accumulation in glaucomatous eyes appears to be its contribution to increased rigidity of the lamina cribrosa. The presence of RAGE on RGCs and glia also makes them susceptible to AGE-mediated events through receptor-mediated signaling, which may promote cell death or dysfunction during glaucomatous neurodegeneration. PMID:17325164

  20. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings.

    PubMed

    Silver, Randi B; Poonwasi, Kumar S; Seyedi, Nahid; Wilson, Sandy J; Lovenberg, Timothy W; Levi, Roberto

    2002-01-08

    Activation of presynatic histamine H(3) receptors (H(3)R) down-regulates norepinephrine exocytosis from cardiac sympathetic nerve terminals, in both normal and ischemic conditions. Analogous to the effects of alpha(2)-adrenoceptors, which also act prejunctionally to inhibit norepinephrine release, H(3)R-mediated antiexocytotic effects could result from a decreased Ca(2+) influx into nerve endings. We tested this hypothesis in sympathetic nerve terminals isolated from guinea pig heart (cardiac synaptosomes) and in a model human neuronal cell line (SH-SY5Y), which we stably transfected with human H(3)R cDNA (SH-SY5Y-H(3)). We found that reducing Ca(2+) influx in response to membrane depolarization by inhibiting N-type Ca(2+) channels with omega-conotoxin (omega-CTX) greatly attenuated the exocytosis of [(3)H]norepinephrine from both SH-SY5Y and SH-SY5Y-H(3) cells, as well as the exocytosis of endogenous norepinephrine from cardiac synaptosomes. Similar to omega-CTX, activation of H(3)R with the selective H(3)R-agonist imetit also reduced both the rise in intracellular Ca(2+) concentration (Ca(i)) and norepinephrine exocytosis in response to membrane depolarization. The selective H(3)R antagonist thioperamide prevented this effect of imetit. In the parent SH-SY5Y cells lacking H(3)R, imetit affected neither the rise in Ca(i) nor [(3)H]norepinephrine exocytosis, demonstrating that the presence of H(3)R is a prerequisite for a decrease in Ca(i) in response to imetit and that H(3)R activation modulates norepinephrine exocytosis by limiting the magnitude of the increase in Ca(i). Inasmuch as excessive norepinephrine exocytosis is a leading cause of cardiac dysfunction and arrhythmias during acute myocardial ischemia, attenuation of norepinephrine release by H(3)R agonists may offer a novel therapeutic approach to this condition.

  1. Characterization of phenytoin, carbamazepine, vinpocetine and clorgyline simultaneous effects on sodium channels and catecholamine metabolism in rat striatal nerve endings.

    PubMed

    Sitges, María; Aldana, Blanca I; Chiu, Luz M; Nekrassov, Vladimir

    2009-03-01

    The effects of two classic antiepileptic drugs (carbamazepine and phenytoin), a potential antiepileptic (vinpocetine) and a monoamine-oxidase inhibitor (clorgyline) on the simultaneous changes (detected by HPLC) on Glu, Asp, dopamine and DOPAC inside and outside striatal isolated nerve endings were investigated. Under resting conditions phenytoin, carbamazepine and clorgyline increased dopamine release. Phenytoin and clorgyline increased internal dopamine and decreased DOPAC formation. Carbamazepine decreased internal dopamine and practically did not change DOPAC formation. Glu and Asp release was unchanged. Neurotransmitter release induced by the Na+ channel opener veratridine was reduced by all the antiepileptic drugs tested, except phenytoin which, like clorgyline, facilitated veratridine-induced dopamine release. We conclude that besides the antagonism exerted by carbamazepine, phenytoin and vinpocetine on excitatory neurotransmitters release triggered by Na+ channel activation, that might importantly contribute to their anticonvulsant action, they exert different actions on striatal dopamine distribution, that might explain their different side effect profiles.

  2. A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits.

    PubMed

    Takhtfooladi, Mohammad Ashrafzadeh; Sharifi, Davood

    2015-12-01

    This study aimed at evaluating the effects of red and blue light-emitting diodes (LED) and low-level laser (LLL) on the regeneration of the transected sciatic nerve after an end-to-end neurorrhaphy in rabbits. Forty healthy mature male New Zealand rabbits were randomly assigned into four experimental groups: control, LLL (680 nm), red LED (650 nm), and blue LED (450 nm). All animals underwent the right sciatic nerve neurotmesis injury under general anesthesia and end-to-end anastomosis. The phototherapy was initiated on the first postoperative day and lasted for 14 consecutive days at the same time of the day. On the 30th day post-surgery, the animals whose sciatic nerves were harvested for histopathological analysis were euthanized. The nerves were analyzed and quantified the following findings: Schwann cells, large myelinic axons, and neurons. In the LLL group, as compared to other groups, an increase in the number of all analyzed aspects was observed with significance level (P < 0.05). This finding suggests that postoperative LLL irradiation was able to accelerate and potentialize the peripheral nerve regeneration process in rabbits within 14 days of irradiation.

  3. Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes

    PubMed Central

    Duran-Jimenez, Beatriz; Dobler, Darin; Moffatt, Sarah; Rabbani, Naila; Streuli, Charles H.; Thornalley, Paul J.; Tomlinson, David R.; Gardiner, Natalie J.

    2009-01-01

    OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3–24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation Nε-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and Nε-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy. PMID:19720799

  4. Characteristics of the time course of evoked secretion of transmitter quanta in different parts of the motor nerve ending in the frog.

    PubMed

    Nikol'kii, E E; Bukharaeva, E A; Samigullin, D V; Gainulo, R Kh

    2002-01-01

    Experiments were performed on neuromuscular preparations from frogs, in which three extracellular microelectrodes were used to record nerve ending currents and single-quantum endplate currents simultaneously from the proximal, central, and distal parts of single synaptic contacts. The rate of propagation of excitation across terminals was measured. along with the minimum synaptic delay, the intensity. and the degree of synchronicity of the secretion of transmitter quanta in different parts of the nerve ending, and the relationships between these factors and the calcium ion concentration in the medium. These studies showed that along with gradients in the rate of conduction of excitation and the intensity of secretion in different parts of the ending. there were also differences in the kinetics of the release of transmitter quanta. As the distance from the end of the myelinated part of the axon increased, the rate of conduction of the nerve impulse and the duration of the synaptic delay decreased, while the synchronicity of the release of quanta increased. Increases in the calcium concentration in the medium produced greater increases in the synchronicity of transmitter quantum release in the distal parts of the synapse than in the proximal parts. Mathematical modeling of multiple-quantum endplate currents showed that the characteristics of the kinetics of the secretion process observed here in different parts of the nerve ending represent a factor which partially compensates for the decrease in the amplitude and extending of the duration of the leading front of the multiple-quantum endplate current which are associated with the low rate of conduction of excitation across the nerve ending. The contribution of this compensation increases as the intensity of secretion of transmitter quanta increases in the distal parts of the synaptic contact.

  5. The adrenergic-neurone blocking action of some coumaran compounds

    PubMed Central

    Fielden, R.; Roe, A. M.; Willey, G. L.

    1964-01-01

    Ethyldimethyl(7-methylcoumaran-3-yl)ammonium iodide (SK&F 90,109) and its guanidine analogue [N-(7-methylcoumaran-3-yl)guanidine nitrate] (SK&F 90,238) abolish the effects of adrenergic nerve stimulation in cats, as do xylocholine and bretylium. SK&F 90,109 has slight sympathomimetic actions; these are less marked than in SK&F 90,238. Large doses of SK&F 90,109 have an action, dependent on local noradrenaline stores, that delays the appearance of adrenergic-neurone blockade in conscious cats. Responses to adrenaline are, in general, enhanced by each drug, but SK&F 90,238 transiently antagonizes tachycardia induced by adrenaline and isoprenaline. Both drugs inhibit the release of noradrenaline from the spleen during splenic nerve stimulation, but the release of catechol amines from the adrenal glands, in response to electrical or chemical stimulation, is unimpaired. In contrast to the prolonged adrenergic-neurone blocking action, any inhibition of the effects of cholinergic nerve stimulation is transient. Large intravenous doses produce neuromuscular blockade. The compounds have a slight central depressant action. In contrast to reserpine and guanethidine the noradrenaline content of rat hearts is not appreciably lowered 24 hr after a single dose of either drug. Unlike xylocholine they are not local anaesthetics. Related compounds also block the effects of adrenergic-nerve stimulation. The possible modes of action of these drugs are discussed. PMID:14256809

  6. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2006-08-01

    Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.

  7. Adjunctive vagus nerve stimulation for treatment-resistant bipolar disorder: managing device failure or the end of battery life.

    PubMed

    Pardo, José V

    2016-03-07

    The vagus nerve stimulation (VNS) device is used not only to treat refractory seizure disorders but also mood disorders; the latter indication received CE Mark approval in 2001 and Food and Drug Administration approval in 2005. Original estimates for the end of battery life (EOBL) were approximately 6-10 years. Many neuropsychiatric patients have or will soon face EOBL. A patient with severe, life-threatening, treatment-resistant bipolar disorder underwent 9 years of stable remission following 20 months of adjunctive VNS. The device ceased operation at EOBL. Because of logistical issues, re-initiation of VNS was delayed over several months. The patient relapsed with depression, mania and mixed states, and regained remission 17 months after device replacement. This case dictates prudence in managing stable patients in remission with VNS. If the device malfunctions, urgent surgical replacement is warranted with subsequent rapid titration to previous parameters as tolerated. Several months' delay may trigger relapse and prove difficult to re-establish remission.

  8. Functional end-plate recovery in long-term botulinum toxin therapy of hemifacial spasm: a nerve conduction study.

    PubMed

    Butera, C; Guerriero, R; Amadio, S; Ungaro, D; Tesfaghebriel, H; Bianchi, F; Comi, G; Del Carro, U

    2013-02-01

    Botulinum toxin type-A is currently thought to be effective and safe for hemifacial spasm (HFS). The pre-synaptic block of acetylcholine release at the neuromuscular junction induces depression of orbicularis oculi muscle compound motor action potential (CMAP). The aim of our study was to evaluate at what extent end-plate functional recovery is possible even in botulinum toxin treatments lasting up to 15 years. We examined 81 outpatients with primary HFS (mean treatment duration = 7.2 ± 4.2 years) who underwent neurophysiologic study, once clinical effect of the previous treatment had vanished. The mean CMAP amplitude, mean rectified amplitude of response 1 (R1) of the blink reflex and area of response 2 (R2) of treated orbicularis oculi muscle were measured in comparison to the controlateral side. Mean amplitude of the above mentioned parameters was slightly lower (about 20%; p < 0.001) in the treated side at the end of the follow-up period (4.7 ± 1.7 months). The CMAP amplitude reduction weakly correlated with the interval from last treatment, while other neurophysiologic parameters did not change due to treatment duration or total toxin amount. Our study demonstrates that botulinum toxin affects compound motor action potential and blink-reflex responses for at least 4-5 months in HFS patients. The residual block is slight and does not increase with repeated injections after several years of treatment. Our study, beside confirming the long-term efficacy of botulinum toxin treatment for HFS, provides neurophysiologic evidence that therapeutic effect may be obtained without hindering the regenerative potential of the nerve-muscle complex.

  9. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise.

    PubMed

    Holwerda, Seth W; Restaino, Robert M; Fadel, Paul J

    2015-03-01

    Blood flow to active skeletal muscle increases markedly during dynamic exercise. However, despite the massive capacity of skeletal muscle vasculature to dilate, arterial blood pressure is well maintained. Sympathetic nerve activity is elevated with increased intensity of dynamic exercise, and is essential for redistribution of cardiac output to active skeletal muscle and maintenance of arterial blood pressure. In addition, aside from the sympathetic nervous system, evidence from human studies is now emerging that supports roles for non-adrenergic vasoconstrictor pathways that become active during exercise and contribute to vasoconstriction in active skeletal muscle. Neuropeptide Y and adenosine triphosphate are neurotransmitters that are co-released with norepinephrine from sympathetic nerve terminals capable of producing vasoconstriction. Likewise, plasma concentrations of arginine vasopressin, angiotensin II (Ang II) and endothelin-1 (ET-1) increase during dynamic exercise, particularly at higher intensities. Ang II and ET-1 have both been shown to be important vasoconstrictor pathways for restraint of blood flow in active skeletal muscle and the maintenance of arterial blood pressure during exercise. Indeed, although both adrenergic and non-adrenergic vasoconstriction can be attenuated in exercising muscle with greater intensity of exercise, with the higher volume of blood flow, the active skeletal muscle vasculature remains capable of contributing importantly to the maintenance of blood pressure. In this brief review we provide an update on skeletal muscle blood flow regulation during exercise with an emphasis on adrenergic and non-adrenergic vasoconstrictor pathways and their potential capacity to offset vasodilation and aid in the regulation of blood pressure.

  10. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis.

    PubMed

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-03-30

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.

  11. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis

    PubMed Central

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-01-01

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis. PMID:27025263

  12. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  13. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  14. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    SciTech Connect

    Jumblatt, J.E.; North, G.T.

    1988-04-01

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alpha 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.

  15. cap alpha. -2 adrenergic receptor: a radiohistochemical study

    SciTech Connect

    Unnerstall, J.R.

    1984-01-01

    ..cap alpha..-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant ..cap alpha..-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the ..cap alpha..-2 receptors, labeled with the agonist (/sup 3/H)para-aminoclonidine, verified the concept that ..cap alpha..-2 receptors are closely associated with adrenergic nerve terminals and that ..cap alpha..-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since ..cap alpha..-2 agonists can influence sympathetic outflow, ..cap alpha..-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic ..cap alpha..-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of (/sup 3/H)rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic ..cap alpha..-2 antagonist (/sup 3/H)RX781094 also binds to ..cap alpha..-2 receptors with high-affinity. Further, the distribution of (/sup 3/H)RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using (/sup 3/H)para-aminoclonidine.

  16. [Development of the adrenergic innervation of the atrioventricular valves of certain vertebrates].

    PubMed

    Strinskaia, L A; Leont'eva, G R; Avakian, O M; Govyrin, V A

    1980-01-01

    Adrenergic innervation of the atrioventricular valves in the carp Cyprinus carpo, frog Rana temporaria, tortoise Emys orbicularis, hens and albino rats has been investigated by histochemical glyoxylic technique. It was shown that the adrenergic innervation of cardiac valves becomes more intense and more complex during progressive evolution of cardio-vascular activity. Adrenergic nerves realize the connection between annullus fibrosus, valve, chordal tendineal and papillary muscles. Chromaffin cells of the valve serve as an additional store of catecholamines. A possibility cannot be excluded that these cells supply with biogenic amines the papillary muscles regulating their activity.

  17. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter.

    PubMed

    Anneken, John H; Angoa-Pérez, Mariana; Kuhn, Donald M

    2015-04-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of 'bath salts' and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. METH (a) enters DA nerve endings via the DAT, causes leakage of DA into the cytoplasm and then into the synapse via DAT-mediated reverse transport. Methylone (METHY) and mephedrone (MEPH; b), like METH, are substrates for the DAT but release

  18. Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia.

    PubMed

    Deuis, Jennifer R; Whately, Ella; Brust, Andreas; Inserra, Marco C; Asvadi, Naghmeh H; Lewis, Richard J; Alewood, Paul F; Cabot, Peter J; Vetter, Irina

    2015-10-21

    Selective activation of peripheral κ opioid receptors (KORs) may overcome the dose-limiting adverse effects of conventional opioid analgesics. We recently developed a vicinal disulfide-stabilized class of peptides with subnanomolar potency at the KOR. The aim of this study was to assess the analgesic effects of one of these peptides, named conorphin-1, in comparison with the prototypical KOR-selective small molecule agonist U-50488, in several rodent pain models. Surprisingly, neither conorphin-1 nor U-50488 were analgesic when delivered peripherally by intraplantar injection at local concentrations expected to fully activate the KOR at cutaneous nerve endings. While U-50488 was analgesic when delivered at high local concentrations, this effect could not be reversed by coadministration with the selective KOR antagonist ML190 or the nonselective opioid antagonist naloxone. Instead, U-50488 likely mediated its peripheral analgesic effect through nonselective inhibition of voltage-gated sodium channels, including peripheral sensory neuron isoforms NaV1.8 and NaV1.7. Our study suggests that targeting the KOR in peripheral sensory nerve endings innervating the skin is not an alternative analgesic approach.

  19. Improved gold chloride staining method for anatomical analysis of sensory nerve endings in the shoulder capsule and labrum as examples of loose and dense fibrous tissues.

    PubMed

    Witherspoon, J W; Smirnova, I V; McIff, T E

    2014-07-01

    Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns' protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns' modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable.

  20. Mephedrone, an abused psychoactive component of 'bath salts' and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum.

    PubMed

    Angoa-Pérez, Mariana; Kane, Michael J; Francescutti, Dina M; Sykes, Katherine E; Shah, Mrudang M; Mohammed, Abiy M; Thomas, David M; Kuhn, Donald M

    2012-03-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine with close structural analogy to substituted amphetamines and cathinone derivatives. Abuse of mephedrone has increased dramatically in recent years and has become a significant public health problem in the United States and Europe. Unfortunately, very little information is available on the pharmacological and neurochemical actions of mephedrone. In light of the proven abuse potential of mephedrone and considering its similarity to methamphetamine and methcathinone, it is particularly important to know if mephedrone shares with these agents an ability to cause damage to dopamine nerve endings of the striatum. Accordingly, we treated mice with a binge-like regimen of mephedrone (4 × 20 or 40 mg/kg) and examined the striatum for evidence of neurotoxicity 2 or 7 days after treatment. While mephedrone caused hyperthermia and locomotor stimulation, it did not lower striatal levels of dopamine, tyrosine hydroxylase or the dopamine transporter under any of the treatment conditions used presently. Furthermore, mephedrone did not cause microglial activation in striatum nor did it increase glial fibrillary acidic protein levels. Taken together, these surprising results suggest that mephedrone, despite its numerous mechanistic overlaps with methamphetamine and the cathinone derivatives, does not cause neurotoxicity to dopamine nerve endings of the striatum.

  1. Mephedrone, an Abused Psychoactive Component of “Bath Salts” and Methamphetamine Congener, Does not Cause Neurotoxicity to Dopamine Nerve Endings of the Striatum

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Francescutti, Dina M.; Sykes, Katherine E.; Shah, Mrudang M.; Mohammed, Abiy M.; Thomas, David M.; Kuhn, Donald M.

    2012-01-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine with close structural analogy to substituted amphetamines and cathinone derivatives. Abuse of mephedrone has increased dramatically in recent years and has become a significant public health problem in the US and Europe. Unfortunately, very little information is available on the pharmacological and neurochemical actions of mephedrone. In light of the proven abuse potential of mephedrone and considering its similarity to methamphetamine and methcathinone, it is particularly important to know if mephedrone shares with these agents an ability to cause damage to dopamine nerve endings of the striatum. Accordingly, we treated mice with a binge-like regimen of mephedrone (4X 20 or 40 mg/kg) and examined the striatum for evidence of neurotoxicity 2 or 7 days after treatment. While mephedrone caused hyperthermia and locomotor stimulation, it did not lower striatal levels of dopamine, tyrosine hydroxylase or the dopamine transporter under any of the treatment conditions used presently. Furthermore, mephedrone did not cause microglial activation in striatum nor did it increase glial fibrillary acidic protein levels. Taken together, these surprising results suggest that mephedrone, despite its numerous mechanistic overlaps with methamphetamine and the cathinone derivatives, does not cause neurotoxicity to dopamine nerve endings of the striatum. PMID:22191803

  2. beta. -Adrenergic stimulation of brown adipocyte proliferation

    SciTech Connect

    Geloeen, A.; Collet, A.J.; Guay, G.; Bukowiecki, L.J. Laboratoire de Thermoregulation et Metabolisme Energetique, Lyon )

    1988-01-01

    The mechanisms of brown adipose tissue (BAT) growth were studied by quantitative photonic radioautography using tritiated thymidine to follow mitotic activity. To identify the nature of the adrenergic pathways mediating brown adipocyte proliferation and differentiation, the effects of cold exposure (4 days at 4{degree}C) on BAT growth were compared with those induced by treating rats at 25{degree}C with norepinephrine (a mixed agonist), isoproterenol (a {beta}-agonist), and phenylephrine (an {alpha}-agonist). Norepinephrine mimicked the effects of cold exposure, not only on the mitotic activity, but also on the distribution of the labeling among the various cellular types. Isoproterenol entirely reproduced the effects of norepinephrine both on the labeling index and on the cellular type labeling frequency. These results demonstrate that norepinephrine triggers a coordinated proliferation of brown adipocytes and endothelial cells in warm-exposed rats that is similar to that observed after cold exposure. They also suggest that cold exposure stimulates BAT growth by increasing the release of norepinephrine from sympathetic nerves and that the neurohormone activates mitoses in BAT precursor cells via {beta}-adrenergic pathways.

  3. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin

    PubMed Central

    Bewick, Guy S.; Banks, Robert W.

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  4. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2016-04-05

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given.

  5. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  6. Cardiovascular regulation by central adrenergic mechanisms and its alteration by hypotensive drugs.

    PubMed

    Haeusler, G

    1975-06-01

    Electrical stimulation of the posterior hypothalamus is followed by an immediate increase in sympathetic nerve activity and rise in blood pressure. Destruction of hypothalamic adrenergic structures by local unilateral injection of 6-hydroxydopamine into the posterior hypothalamus reduced the blood pressure rise in response to stimulation of the lesioned side. This and numerous other findings indicate an involvement of central adrenergic neurons in the mediation of an increase of sympathetic nerve activity caused by hypothalamic stimulation. However, central adrenergic neurons do not seem to be an integral part of the sympathoexcitatory pathways originating in the posterior hypothalamus but rather facilitate their activation: after almost complete norepinephrine depletion produced by combined treatment with reserpine and alpha-methl-p-tyrosine, hypothalamic stimulation was still followed by an increase in spontaneous sympathetic nerve activity. Stimulation of an alpha-adrenoceptive site, probably located in the lower brain stem, mimics an activation of the baroreceptor reflex. The hypotensive drug, clonidine, stimulates this alpha-adrenoceptive site. In low doses clonidine facilitates the activation of the reflex, and in high doses this drug induces a state which closely resembles a pronounced activation of the reflex. Experiments following depletion of norepinephrine suggest that the central part of the baroreceptor reflex arc does not contain adrenergic neurons. However, these findings are compatible with the view that some neurons within the reflex arc are supplied with alpha-adrenoceptors. For the present it cannot be stated with certainty whether these alpha-adrenoceptors possess an innervation by adrenergic neurons projecting onto the reflex arc. In favor of such an innervation are the obsevations that alpha-methyldopa has its site of action in the lower brain stem and that the integrity of central adrenergic neurons is essential for its hypotensive effect. It

  7. Secreted Herpes Simplex Virus-2 Glycoprotein G Modifies NGF-TrkA Signaling to Attract Free Nerve Endings to the Site of Infection

    PubMed Central

    Cabrera, Jorge Rubén; Viejo-Borbolla, Abel; Martinez-Martín, Nadia; Blanco, Soledad; Wandosell, Francisco; Alcamí, Antonio

    2015-01-01

    Herpes simplex virus type 1 (HSV-1) and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG) from HSV-2, known to modulate immune mediators (chemokines), also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2) increases nerve growth factor (NGF)-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (Trk)A-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems. PMID:25611061

  8. Ang II Enhances Noradrenaline Release from Sympathetic Nerve Endings Thus Contributing to the Up-Regulation of Metalloprotease-2 in Aortic Dissection Patients' Aorta Wall

    PubMed Central

    Hu, Zhipeng; Wang, Zhiwei; Wu, Hongbing; Yang, Zhimin; Jiang, Wanli; Li, Luocheng; Hu, Xiaoping

    2013-01-01

    Object To test the hypothesis that angiotensin II (Ang II) could enhance noradrenaline (NA) release from sympathetic nerve endings of the aorta thus contributing to the up-regulation of matrix metalloproteinase 2 (MMP-2) during the formation of aortic dissection (AD). Methods Ang II, NA, MMP-2, MMP-9 of the aorta sample obtained during operation from aortic dissection patients were detected by High Performance Liquid Chromatography and ELISA and compared with controls. Isotope labelling method was used to test the impact of exogenous Ang II and noradrenaline on the NA release and MMP-2, MMP-9 expression on Sprague Dawley (SD) rat aorta rings in vitro. Two kidneys, one clip, models were replicated for further check of that impact in SD rats in vivo. Results The concentration of Ang II, MMP-2, 9 was increased and NA concentration was decreased in aorta samples from AD patients. Exogenous Ang II enhanced while exogenous NA restrained NA release from aortic sympathetic endings. The Ang II stimulated NA release and the following MMP-2 up-regulation could be weakened by Losartan and chemical sympathectomy. Beta blocker did not influence NA release but down-regulated MMP-2. Long term in vivo experiments confirmed that Ang II could enhance NA release and up-regulate MMP-2. Conclusions AD is initiated by MMP-2 overexpression as a result of increased NA release from sympathetic nervous endings in response to Ang II. This indicates an interaction of RAS and SAS during the formation of AD. PMID:24194850

  9. Pediatric and adult malignant peripheral nerve sheath tumors: an analysis of data from the surveillance, epidemiology, and end results program.

    PubMed

    Amirian, E Susan; Goodman, J Clay; New, Pamela; Scheurer, Michael E

    2014-02-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are rare soft tissue sarcomas that arise predominantly from Schwann cells. Despite the fact that MPNSTs have high local recurrence rates and are generally associated with poor prognosis, little is known about prognostic factors or effective clinical management for this tumor type. The purpose of this study was to describe the distributions of patient and tumor characteristics and to identify predictors of cause-specific survival among MPNST cases reported to SEER between 1973 and 2008. Patient and tumor characteristics were compared between pediatric and adult MPNST cases. Cox regression and tree-based survival analysis were used to examine factors associated with MPNST-related mortality separately among adults and children. A total of 1,315 MPNST cases were isolated from the 1973-2008 SEER dataset. Among pediatric cases, sex, race, and radiation therapy predicted MPNST survival, whereas among adults, tumor site, tumor grade, number of primary tumors, and tumor size were significant predictors. As tumor size at diagnosis/resection may be the only somewhat "modifiable" prognostic factor, future studies should aim to identify biological and social attributes associated with tumor size at diagnosis, separately among individuals with and without NF-1, in order to help identify earlier opportunities for clinical intervention.

  10. Improved gold chloride staining method for anatomical analysis of sensory nerve endings in the shoulder capsule and labrum as examples of loose and dense fibrous tissues

    PubMed Central

    Witherspoon, J W; Smirnova, IV; McIff, TE

    2014-01-01

    Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns’ protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns’ modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable. PMID:24476562

  11. The β1 adrenergic effects of antibodies against the C-terminal end of the ribosomal P2β protein of Trypanosoma cruzi associate with a specific pattern of epitope recognition

    PubMed Central

    Bergami, P Lopez; Gómez, KA; Levy, GV; Grippo, V; Baldi, A; Levin, MJ

    2005-01-01

    BALB/c mice immunized with recombinant Trypanosoma cruzi ribosomal P2β protein (TcP2β) develop a strong and specific antibody response against its 13 residue-long C-terminal epitope (peptide R13: EEEDDDMGFGLFD) that has a concomitant β1-adrenergic stimulating activity. However, other animals that undergo similar immunizations seem tolerant to this epitope. To evaluate further the antibody response against the ribosomal P proteins, 25 BALB/c and 25 Swiss mice were immunized with TcP2β. From the 50 animals, 31 developed a positive anti-R13 response, whereas 19 were non-responsive. From the 31 anti-R13 positive mice, 25 had anti-R13 antibodies that recognized the discontinuous motif ExDDxGF, and their presence correlated with the recording of supraventricular tachycardia. The other six had anti-R13 antibodies but with a normal electrocardiographic recording. These anti-R13 antibodies recognized the motif DDxGF shared by mammals and T. cruzi and proved to be a true anti-P autoantibody because they were similar to those elicited in Swiss, but not in BALB/c mice, by immunization with the C-terminal portion of the mouse ribosomal P protein. Our results show that the recognition of the glutamic acid in position 3 of peptide R13 defines the ability of anti-R13 antibodies to react with the motif AESDE of the second extracellular loop of the β1-adrenergic receptor, setting the molecular basis for their pathogenic β1 adrenoceptor stimulating activity. PMID:16178868

  12. β-Adrenergic blockers.

    PubMed

    Frishman, William H; Saunders, Elijah

    2011-09-01

    KEY POINTS AND PRACTICAL RECOMMENDATIONS: •  β-Blockers are appropriate treatment for patients with hypertension and those who have concomitant ischemic heart disease, heart failure, obstructive cardiomyopathy, or certain arrhythmias. •  β-Blockers can be used in combination with other antihypertensive drugs to achieve maximal blood pressure control. Labetalol can be used in hypertensive emergencies and urgencies. •  β-Blockers may be useful in patients having hyperkinetic circulation (palpitations, tachycardia, hypertension, and anxiety), migraine headache, and essential tremor. •  β-Blockers are highly heterogeneous with respect to various pharmacologic effects: degree of intrinsic sympathomimetic activity, membrane-stabilizing activity, β(1) selectivity, α(1) -adrenergic-blocking effect, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific effects may be important in the selection of a drug for clinical use. •  β-Blocker usage to reduce perioperative ischemia and cardiovascular complications may not benefit as many patients as was once hoped and may actually cause harm in some individuals. Currently the best evidence supports β-blocker use in two patient groups: patients undergoing vascular surgery with known ischemic heart disease or multiple risk factors for it and for patients already receiving β-blockers for known cardiovascular conditions.

  13. Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat.

    PubMed

    Nasser, Yasmin; Ho, Winnie; Sharkey, Keith A

    2006-04-10

    Adrenergic receptors in the enteric nervous system (ENS) are important in control of the gastrointestinal tract. Here we describe the distribution of adrenergic receptors in the ENS of the ileum and colon of the guinea pig, rat, and mouse by using single- and double-labelling immunohistochemistry. In the myenteric plexus (MP) of the rat and mouse, alpha2a-adrenergic receptors (alpha2a-AR) were widely distributed on neurons and enteric glial cells. alpha2a-AR mainly colocalized with calretinin in the MP, whereas submucosal alpha2a-AR neurons colocalized with vasoactive intestinal polypeptide (VIP), neuropeptide Y, and calretinin in both species. In the guinea pig ileum, we observed widespread alpha2a-AR immunoreactivity on nerve fibers in the MP and on VIP neurons in the submucosal plexus (SMP). We observed extensive beta1-adrenergic receptor (beta1-AR) expression on neurons and nerve fibers in both the MP and the SMP of all species. Similarly, the beta2-adrenergic receptor (beta2-AR) was expressed on neurons and nerve fibers in the SMP of all species, as well as in the MP of the mouse. In the MP, beta1- and beta2-AR immunoreactivity was localized to several neuronal populations, including calretinin and nitrergic neurons. In the SMP of the guinea pig, beta1- and beta2-AR mainly colocalized with VIP, whereas, in the rat and mouse, beta1- and beta2-AR were distributed among the VIP and calretinin populations. Adrenergic receptors were widely localized on specific neuronal populations in all species studied. The role of glial alpha2a-AR is unknown. These results suggest that sympathetic innervation of the ENS is directed toward both enteric neurons and enteric glia.

  14. Effect of Positive End-Expiratory Pressure on the Sonographic Optic Nerve Sheath Diameter as a Surrogate for Intracranial Pressure during Robot-Assisted Laparoscopic Prostatectomy: A Randomized Controlled Trial

    PubMed Central

    Chin, Ji-Hyun; Kim, Wook-Jong; Lee, Joonho; Han, Yun A.; Lim, Jinwook; Hwang, Jai-Hyun; Cho, Seong-Sik

    2017-01-01

    Background Positive end-expiratory pressure (PEEP) can increase intracranial pressure. Pneumoperitoneum and the Trendelenburg position are associated with an increased intracranial pressure. We investigated whether PEEP ventilation could additionally influence the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during pneumoperitoneum combined with the Trendelenburg position in patients undergoing robot-assisted laparoscopic prostatectomy. Methods After anesthetic induction, 38 patients were randomly allocated to a low tidal volume ventilation (8 ml/kg) without PEEP group (zero end-expiratory pressure [ZEEP] group, n = 19) or low tidal volume ventilation with 8 cmH2O PEEP group (PEEP group, n = 19). The sonographic optic nerve sheath diameter was measured prior to skin incision, 5 min and 30 min after pneumoperitoneum and the Trendelenburg position, and at the end of surgery. The study endpoint was the difference in the sonographic optic nerve sheath diameter 5 min after pneumoperitoneum and the Trendelenburg position between the ZEEP and PEEP groups. Results Optic nerve sheath diameters 5 min after pneumoperitoneum and the Trendelenburg position did not significantly differ between the groups [least square mean (95% confidence interval); 4.8 (4.6–4.9) mm vs 4.8 (4.7–5.0) mm, P = 0.618]. Optic nerve sheath diameters 30 min after pneumoperitoneum and the Trendelenburg position also did not differ between the groups [least square mean (95% confidence interval); 4.5 (4.3–4.6) mm vs 4.5 (4.4–4.6) mm, P = 0.733]. Conclusions An 8 cmH2O PEEP application under low tidal volume ventilation does not induce an increase in the optic nerve sheath diameter during pneumoperitoneum combined with the steep Trendelenburg position, suggesting that there might be no detrimental effects of PEEP on the intracranial pressure during robot-assisted laparoscopic prostatectomy. Trial Registration ClinicalTrial.gov NCT02516566 PMID:28107408

  15. Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle

    PubMed Central

    Ajijola, Olujimi A.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; Benharash, Peyman; Hadaya, Joseph; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Increased cardiac sympathetic activation worsens dispersion of repolarization and is proarrhythmic. The functional differences between intrinsic nerve stimulation and adrenergic receptor activation remain incompletely understood. This study was undertaken to determine the functional differences between efferent cardiac sympathetic nerve stimulation and direct adrenergic receptor activation in porcine ventricles. Female Yorkshire pigs (n = 13) underwent surgical exposure of the heart and stellate ganglia. A 56-electrode sock was placed over the ventricles to record epicardial electrograms. Animals underwent bilateral sympathetic stimulation (BSS) (n = 8) or norepinephrine (NE) administration (n = 5). Activation recovery intervals (ARIs) were measured at each electrode before and during BSS or NE. The degree of ARI shortening during BSS or NE administration was used as a measure of functional nerve or adrenergic receptor density. During BSS, ARI shortening was nonuniform across the epicardium (F value 9.62, P = 0.003), with ARI shortening greatest in the mid-basal lateral right ventricle and least in the midposterior left ventricle (LV) (mean normalized values: 0.9 ± 0.08 vs. 0.56 ± 0.08; P = 0.03). NE administration resulted in greater ARI shortening in the LV apex than basal segments [0.91 ± 0.04 vs. 0.63 ± 0.05 (averaged basal segments); P = 0.003]. Dispersion of ARIs increased in 50% and 60% of the subjects undergoing BSS and NE, respectively, but decreased in the others. There is nonuniform response to cardiac sympathetic activation of both porcine ventricles, which is not fully explained by adrenergic receptor density. Different pools of adrenergic receptors may mediate the cardiac electrophysiological effects of efferent sympathetic nerve activity and circulating catecholamines. PMID:23241324

  16. Vinpocetine and α-tocopherol prevent the increase in DA and oxidative stress induced by 3-NPA in striatum isolated nerve endings.

    PubMed

    Herrera-Mundo, Nieves; Sitges, María

    2013-01-01

    Vinpocetine is a neuroprotective drug that exerts beneficial effects on neurological symptoms and cerebrovascular disease. 3-nitropropionic acid (3-NPA) is a toxin that irreversibly inhibits succinate dehydrogenase, the mitochondrial enzyme that acts in the electron transport chain at complex II. In previous studies in striatum-isolated nerve endings (synaptosomes), we found that vinpocetine decreased dopamine (DA) at expense of its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), and that 3-NPA increased DA, reactive oxygen species (ROS), DA-quinone products formation, and decreased DOPAC. Therefore, in this study, the possible effect of vinpocetine on 3-NPA-induced increase in DA, ROS, lipid peroxidation, and DA-quinone products formation in striatum synaptosomes were investigated, and compared with the effects of the antioxidant α-tocopherol. Results show that the increase in DA induced by 3-NPA was inhibited by both 25 μM vinpocetine and 50 μM α-tocopherol. Vinpocetine, as α-tocopherol, also inhibited 3-NPA-induced increase in ROS (as judged by DCF fluorescence), lipid peroxidation (as judged by TBA-RS formation), and DA-quinone products formation (as judged by the nitroblue tetrazolium reduction method). As in addition to the inhibition of complex II exerted by 3-NPA, 3-NPA increases DA-oxidation products that in turn can inhibit other sites of the respiratory chain, the drop in DA produced by vinpocetine and α-tocopherol may importantly contribute to their protective action from oxidative damage, particularly in DA-rich structures.

  17. HIV-1 envelope protein gp120 potentiates NMDA-evoked noradrenaline release by a direct action at rat hippocampal and cortical noradrenergic nerve endings.

    PubMed

    Pittaluga, A; Raiteri, M

    1994-11-01

    Exposure of rat or human neocortical or hippocampal tissue to glutamate receptor agonists elicits as Ca(2+)-dependent, exocytotic-like release of previously accumulated [3H]noradrenaline through activation of both N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors colocalized on the noradrenergic axon terminals. Here we show that the NMDA (100 microM)-evoked release of [3H]noradrenaline from superfused thin layers of isolated rat hippocampal or cortical nerve endings was potentiated when the human immunodeficiency virus type 1 coat protein gp120 was added to the superfusion medium concomitantly with NMDA. The effect of gp120 (10 pM to 3 nM) on the 100 microM NMDA-evoked release of [3H]noradrenaline was concentration-dependent; the maximal effect (approximately 140% potentiation) was reached at 100 pM of gp120. The protein was inactive on its own. The [3H]noradrenaline release evoked by NMDA (100 microM)+gp120 (100 pM) was prevented by classical NMDA receptor antagonists, as well as by 10 microM memantine. Neither the release evoked by NMDA nor that elicited by NMDA+gp120 was sensitive to the nitric oxide synthase inhibitor NG-nitro-L-arginine, suggesting no involvement of nitric oxide. The [3H]noradrenaline release elicited by 100 microM AMPA was unaffected by gp120. The protein potentiated the release evoked by 100 microM glutamate; the effect of 100 pM gp120 was quantitatively identical to that of 1 microM glycine, with no apparent additivity between gp120 and glycine. The antagonism by 1 microM 7-chloro-kynurenic acid of the NMDA-induced [3H]noradrenaline release was reversed by glycine or gp120.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings.

    PubMed

    Sitges, María; Chiu, Luz María; Nekrassov, Vladimir

    2006-07-01

    The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)'s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.

  19. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  20. Evidence that the human cutaneous venoarteriolar response is not mediated by adrenergic mechanisms

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Shibasaki, M.; Yen, T. C.

    2002-01-01

    The venoarteriolar response causes vasoconstriction to skin and muscle via local mechanisms secondary to venous congestion. The purpose of this project was to investigate whether this response occurs through alpha-adrenergic mechanisms. In supine individuals, forearm skin blood flow was monitored via laser-Doppler flowmetry over sites following local administration of terazosin (alpha(1)-antagonist), yohimbine (alpha(2)-antagonist), phentolamine (non-selective alpha-antagonist) and bretylium tosylate (inhibits neurotransmission of adrenergic nerves) via intradermal microdialysis or intradermal injection. In addition, skin blood flow was monitored over an area of forearm skin that was locally anaesthetized via application of EMLA (2.5 % lidocaine (lignocaine) and 2.5 % prilocaine) cream. Skin blood flow was also monitored over adjacent sites that received the vehicle for the specified drug. Each trial was performed on a minimum of seven subjects and on separate days. The venoarteriolar response was engaged by lowering the subject's arm from heart level such that the sites of skin blood flow measurement were 34 +/- 1 cm below the heart. The arm remained in this position for 2 min. Selective and non-selective alpha-adrenoceptor antagonism and presynaptic inhibition of adrenergic neurotransmission did not abolish the venoarteriolar response. However, local anaesthesia blocked the venoarteriolar response without altering alpha-adrenergic mediated vasoconstriction. These data suggest that the venoarteriolar response does not occur through adrenergic mechanisms as previously reported. Rather, the venoarteriolar response may due to myogenic mechanisms associated with changes in vascular pressure or is mediated by a non-adrenergic, but neurally mediated, local mechanism.

  1. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  2. Adrenergic signaling elements in the bladder wall of the adult rat.

    PubMed

    Persyn, Sara; Eastham, Jane; De Wachter, Stefan; Gillespie, James

    2016-12-01

    A growing body of work is describing the absence of a significant sympathetic innervation of the detrusor implying little sympathetic regulation of bladder contractility. However, low doses of adrenergic agonists are capable of relaxing the bladder smooth muscle. If these effects underpin a physiological response then the cellular nature and operation of this system are currently unknown. The present immunohistochemistry study was done to explore the existence of alternative adrenergic signaling elements in the rat bladder wall. Using antibodies to tyrosine hydroxylase (TH) and vesicular mono-amine transporter (vmat), few adrenergic nerves were found in the detrusor although TH immunoreactive (IR) nerves were apparent in the bladder neck. TH-IR and vmat-IR nerves were however abundant surrounding blood vessels. A population of vmat-IR cells was found within the network of interstitial cells that surround the detrusor muscle bundles. These vmat-IR cells were not or only weakly TH-IR. This suggests that these interstitial cells have the capacity to store and release catecholamines that may involve noradrenaline. Cells expressing the β1-adrenoceptor (β1AR-IR) were also detected within the interstitial cell network. Double staining with antibodies to β1AR and vmat suggests that the majority of vmat-IR interstitial cells show β1AR-IR indicative of an autocrine signaling system. In conclusion, a population of interstitial cells has the machinery to store, release and respond to catecholamines. Thus, there might exist a non-neuronal β-adrenergic system operating in the bladder wall possibly linked to one component of motor activity, micro-contractions, a system that may be involved in mechanisms underpinning bladder sensation.

  3. The ultrastructure of the anterior end of male Onchocerca volvulus: papillae, amphids, nerve ring and first indication of an excretory system in the adult filarial worm.

    PubMed

    Strote, G; Bonow, I; Attah, S

    1996-07-01

    A detailed morphological investigation of the anterior sensory organs, the nerve ring and a glomerulus-like structure in male Onchocerca volvulus was performed by means of electron microscopy. The 8 head papillae are arranged in the common 4 + 4 pattern of most filarial worms in circles around the mouth opening. The amphidial openings are found between the circles of inner and outer papillae on both sides of the mouth. Inside, several additional nerve axons are seen in the tissue of the anterior tip not related to one of the identified papillar structures. The inner and outer papillae exhibit a remarkably different fine structure, and are part of a complex system of at least 2 different receptor cell types at the anterior tip of the worm. The amphidial channel contains 8 modified cilia; accessory axons are associated with the cytoplasm of the sheath cell. The anterior nerve ring of male worms is located about 150 micrometers posterior from the outermost tip of the head region. It consists of several fibres coiled around the oesophagus. The comparison of the fine structure of the central nervous system did not show the expected morphological differences associated with the heterogeneous age distribution in the natural worm population. This was in contrast to previous findings with respect to tissues in different parts of the worm. The study also provides the first evidence that suggests the existence of an excretory organ in a filarial worm in the region of the anterior nerve ring. Paired glomerulus-like structures in the lateral chords and a canal formed by a projection of the basal zone of the cuticles were identified.

  4. Surgical management of painful peripheral nerves.

    PubMed

    Elliot, David

    2014-07-01

    This article deals with the classification, assessment, and management of painful nerves of the distal upper limb. The author's preferred surgical and rehabilitation techniques in managing these conditions are discussed in detail and include (1) relocation of end-neuromas to specific sites, (2) division and relocation of painful nerves in continuity (neuromas-in-continuity and scar-tethered nerves) involving small nerves to the same sites, and (3) fascial wrapping of painful nerves in continuity involving larger nerves such as the median and ulnar nerves. The results of these treatments are presented as justification for current use of these techniques.

  5. Vasoconstriction induced by ouabain in the canine coronary artery: contribution of adrenergic and nonadrenergic responses.

    PubMed

    Cooke, J P; Shepherd, J T; Vanhoutte, P M

    1988-07-01

    Ouabain, when applied to rings of the left circumflex coronary artery of the dog (which contains both alpha 1-adrenoceptors leading to contraction and beta 1-adrenoceptors leading to relaxation) caused an initial contraction which peaked within 15 minutes and a later secondary increase in tension which peaked within 60 minutes. These contractions were prevented by Ca2+ removal or by verapamil. Adrenergic denervation with 6-hydroxydopamine did not affect the initial contraction. Thus it is due to a nonadrenergic effect of the glycoside. Since the secondary increase in tension was prevented by adrenergic denervation and prazosin, it is likely to be due to norepinephrine released from adrenergic nerves acting on alpha-adrenoceptors. This interpretation was confirmed by the finding that ouabain, after a latent period of about 35 minutes, augmented the output of 3H-norepinephrine from helical strips of the artery previously incubated with tritiated transmitter. In rings contracted with prostaglandin F2 alpha, ouabain reduced beta-adrenergic relaxations caused by isoproterenol or exogenous norepinephrine, but not those caused by sodium nitroprusside. Thus, in this artery, ouabain depresses the responses of the beta-adrenoceptors to the norepinephrine which it releases, thereby permitting the neurotransmitter to cause contraction by activating postjunctional alpha 1-adrenoceptors.

  6. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Review Date 6/1/2015 ...

  7. Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise.

    PubMed

    Fernandes, Igor A; Mattos, João D; Campos, Monique O; Machado, Alessandro C; Rocha, Marcos P; Rocha, Natalia G; Vianna, Lauro C; Nobrega, Antonio C L

    2016-06-01

    Handgrip-induced increases in blood flow through the contralateral artery that supplies the cortical representation of the arm have been hypothesized as a consequence of neurovascular coupling and a resultant metabolic attenuation of sympathetic cerebral vasoconstriction. In contrast, sympathetic restraint, in theory, inhibits changes in perfusion of the cerebral ipsilateral blood vessels. To confirm whether sympathetic nerve activity modulates cerebral blood flow distribution during static handgrip (SHG) exercise, beat-to-beat contra- and ipsilateral internal carotid artery blood flow (ICA; Doppler) and mean arterial pressure (MAP; Finometer) were simultaneously assessed in nine healthy men (27 ± 5 yr), both at rest and during a 2-min SHG bout (30% maximal voluntary contraction), under two experimental conditions: 1) control and 2) α1-adrenergic receptor blockade. End-tidal carbon dioxide (rebreathing system) was clamped throughout the study. SHG induced increases in MAP (+31.4 ± 10.7 mmHg, P < 0.05) and contralateral ICA blood flow (+80.9 ± 62.5 ml/min, P < 0.05), while no changes were observed in the ipsilateral vessel (-9.8 ± 39.3 ml/min, P > 0.05). The reduction in ipsilateral ICA vascular conductance (VC) was greater compared with contralateral ICA (contralateral: -0.8 ± 0.8 vs. ipsilateral: -2.6 ± 1.3 ml·min(-1)·mmHg(-1), P < 0.05). Prazosin was effective to induce α1-blockade since phenylephrine-induced increases in MAP were greatly reduced (P < 0.05). Under α1-adrenergic receptor blockade, SHG evoked smaller MAP responses (+19.4 ± 9.2, P < 0.05) but similar increases in ICAs blood flow (contralateral: +58.4 ± 21.5 vs. ipsilateral: +54.3 ± 46.2 ml/min, P > 0.05) and decreases in VC (contralateral: -0.4 ± 0.7 vs. ipsilateral: -0.4 ± 1.0 ml·min(-1)·mmHg(-1), P > 0.05). These findings indicate a role of sympathetic nerve activity in the regulation of cerebral blood flow distribution during SHG.

  8. Common peroneal nerve dysfunction

    MedlinePlus

    Neuropathy - common peroneal nerve; Peroneal nerve injury; Peroneal nerve palsy ... type of peripheral neuropathy (damage to nerves outside the brain ... nerve injuries. Damage to the nerve disrupts the myelin sheath ...

  9. Vagus nerve stimulation in clinical practice.

    PubMed

    Farmer, Adam D; Albu-Soda, Ahmed; Aziz, Qasim

    2016-11-02

    The diverse array of end organ innervations of the vagus nerve, coupled with increased basic science evidence, has led to vagus nerve stimulation becoming a management option in a number of clinical disorders. This review discusses methods of electrically stimulating the vagus nerve and its current and potential clinical uses.

  10. α-Synuclein in cutaneous autonomic nerves

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Lafo, Jacob

    2013-01-01

    Objective: To develop a cutaneous biomarker for Parkinson disease (PD). Methods: Twenty patients with PD and 14 age- and sex-matched control subjects underwent examinations, autonomic testing, and skin biopsies at the distal leg, distal thigh, and proximal thigh. α-Synuclein deposition and the density of intraepidermal, sudomotor, and pilomotor nerve fibers were measured. α-Synuclein deposition was normalized to nerve fiber density (the α-synuclein ratio). Results were compared with examination scores and autonomic function testing. Results: Patients with PD had a distal sensory and autonomic neuropathy characterized by loss of intraepidermal and pilomotor fibers (p < 0.05 vs controls, all sites) and morphologic changes to sudomotor nerve fibers. Patients with PD had greater α-synuclein deposition and higher α-synuclein ratios compared with controls within pilomotor nerves and sudomotor nerves (p < 0.01, all sites) but not sensory nerves. Higher α-synuclein ratios correlated with Hoehn and Yahr scores (r = 0.58–0.71, p < 0.01), with sympathetic adrenergic function (r = −0.40 to −0.66, p < 0.01), and with parasympathetic function (r = −0.66 to −0.77, p > 0.01). Conclusions: We conclude that α-synuclein deposition is increased in cutaneous sympathetic adrenergic and sympathetic cholinergic fibers but not sensory fibers of patients with PD. Higher α-synuclein deposition is associated with greater autonomic dysfunction and more advanced PD. These data suggest that measures of α-synuclein deposition in cutaneous autonomic nerves may be a useful biomarker in patients with PD. PMID:24089386

  11. The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles).

    PubMed Central

    Halata, Z

    1977-01-01

    Two types of mechanoreceptor have been found in the articular capsule of the knee joint of the domestic cat--Ruffini corpuscles and Pacinian corpuscles. Ruffini corpuscles are situated in the stratum fibrosum and consist of 2 to 6 cylinders. Each cylinder is made up of an afferent axon (diameter 3-4 micrometer), its swellings and terminal processes, Schwann cells enveloping the nerve swellings and terminal processes, endoneural connective tissue and a perineural capsule. The perineural capsule is incomplete in Ruffini corpuscles. The Pacinian corpuscles are 20 to 40 micrometer wide and 150-250 micrometer long. They are situated in groups of up to five at the boundary between the stratum synoviale and the stratum fibrosum. The afferent axon is myelinated (diameter 3-5 micrometer). Its terminal portion is inside the inner bulb which is formed of modified Schwann cells. Each corpuscle is enveloped by a perineural capsule (4-8 layers). The ultrastructure of the Pacinian corpuscles is compared with the ultrastructure of the skin receptors in the cat. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:604339

  12. Early nerve ending rescue from oxidative damage and energy failure by L: -carnitine as post-treatment in two neurotoxic models in rat: recovery of antioxidant and reductive capacities.

    PubMed

    Elinos-Calderón, Diana; Robledo-Arratia, Yolanda; Pérez-De La Cruz, Verónica; Pedraza-Chaverrí, José; Ali, Syed F; Santamaría, Abel

    2009-08-01

    Cell rescue is a primary need during acute and chronic insults to the central nervous system. Functional preservation during the early stages of toxicity in a given degenerative event may represent a significant amelioration of detrimental processes linked to neuronal cell loss. Excitotoxicity and depleted cellular energy are toxic events leading to cell death in several neurodegenerative disorders. In this work, the effects of the well-known antioxidant and energy precursor, L: -carnitine (L: -CAR), were tested as a post-treatment in two neurotoxic models under in vitro and in vivo conditions. The experimental models tested included: (1) a typical excitotoxic and pro-oxidant inducer, quinolinic acid (QUIN); and (2) a mitochondrial energy inhibitor, 3-nitropropionic acid (3-NP). For in vitro studies, increasing concentrations of L: -CAR (10-1,000 microM) were added to the isolated brain synaptosomes at different times (1, 3 and 6 h) after the incubation with toxins (100 microM QUIN and 1 mM 3-NP), and 30 min later, lipid peroxidation (LP) and mitochondrial dysfunction (MD) were evaluated. For in vivo purposes, L: -CAR (100 mg/kg, i.p.) was given to rats either as a single administration 120 min after the intrastriatal infusion of QUIN (240 nmol/microl) or 3-NP (500 nmol/microl), or for 7 consecutive days (starting 120 min post-lesion). LP and MD were evaluated 4 h and 7 days post-lesions in isolated striatal synaptosomes. Our results show that, despite some variations depending on the toxic model tested, the time of exposure, or the biomarker evaluated, nerve ending protection can be mostly achieved by L: -CAR within the first hours after the toxic insults started, suggesting that targeting the ongoing oxidative damage and/or energy depletion during the first stages of neurotoxic events is essential to rescue nerve endings.

  13. Dissecting the Influence of Two Structural Substituents on the Differential Neurotoxic Effects of Acute Methamphetamine and Mephedrone Treatment on Dopamine Nerve Endings with the Use of 4-Methylmethamphetamine and Methcathinone.

    PubMed

    Anneken, John H; Angoa-Pérez, Mariana; Sati, Girish C; Crich, David; Kuhn, Donald M

    2017-03-01

    Mephedrone (MEPH) is a β-ketoamphetamine stimulant drug of abuse that is often a constituent of illicit bath salts formulations. Although MEPH bears remarkable similarities to methamphetamine (METH) in terms of chemical structure, as well as its neurochemical and behavioral effects, it has been shown to have a reduced neurotoxic profile compared with METH. The addition of a β-keto moiety and a 4-methyl ring substituent to METH yields MEPH, and a loss of direct neurotoxic potential. In the present study, two analogs of METH, methcathinone (MeCa) and 4-methylmethamphetamine (4MM), were assessed for their effects on mouse dopamine (DA) nerve endings to determine the relative contribution of each individual moiety to the loss of direct neurotoxicity in MEPH. Both MeCa and 4MM caused significant alterations in core body temperature as well as locomotor activity and stereotypy, but 4MM was found to elicit minimal dopaminergic toxicity only at the highest dose. By contrast, MeCa caused significant reductions in all markers of DA nerve-ending damage over a range of doses. These results lead to the conclusion that ring substitution at the 4-position profoundly reduces the neurotoxicity of METH, whereas the β-keto group has much less influence on this property. Although the mechanism(s) by which the 4-methyl substituent reduces METH-induced neurotoxicity remains unclear, it is speculated that this effect is mediated by a loss of DA-releasing action in MEPH and 4MM at the synaptic vesicle monoamine transporter, an effect that is thought to be critical for METH-induced neurotoxicity.

  14. The effect of activation of central adrenergic receptors by clonidine on the excitability of the solitary tract neurons in cats.

    PubMed

    Lipski, J; Solnicka, E

    1976-01-01

    The effect of i.v. administered clonidine (10-15 mug/kg) on the evoked potential recorded in the dosal part of medulla oblongata, during carotid sinus nerve stimulation, was studied in chloralose-urethane anaesthetized cats. Clonidine influenced the amplitude and configuration of the evoked potential and the changes were parallel to the blood pressure depressor response. However, the blood pressure drops, evoked by i.v. infusion of papaverine, did not influence the potential. It is concluded that the synaptic transmission from the carotid sinus nerve to the second order neurons in the solatary tract area can be modulated by the clonidine-induced activation of central adrenergic receptors.

  15. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells

    PubMed Central

    2014-01-01

    Background Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions. Methods Human retinal endothelial cells were cultured in CSC complete medium in normal (5 mM) or high (25 mM) glucose to mimic a diabetic condition. Reverse transcription PCR and Western Blotting were performed to examine the expression of β1, β2 and β3-adrenergic receptors. For detections, immunocytochemistry was used. Bisulfite sequencing method was used for promoter methylation analysis. Apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used to measure reactive oxygen species (ROS) production in the cells. Results β1 and β3-adrenergic receptors were expressed in retinal endothelial cells while β2-adrenergic receptor was not detectable both at protein and mRNA levels. Hyperglycemia had no significant effect on β1 and β2-adrenergic receptors methylation and expression however β3-adrenergic receptors showed a significantly higher expression (p < 0.05) and methylation (p < 0.01) in high and low glucose concentration respectively. Apoptosis and oxidative stress were inversely correlated with β3-adrenergic receptors methylation with no significant effect on β1 and β2-adrenergic receptors. β2-adrenergic receptor was hypermethylated with halted expression. Conclusion Our study demonstrates that β1 and β3-adrenergic receptors expressed in human retinal endothelial cells. Oxidative stress and apoptosis are inversely proportional to the extent of promoter methylation

  16. Cardiac autonomic nerve distribution and arrhythmia☆

    PubMed Central

    Liu, Quan; Chen, Dongmei; Wang, Yonggang; Zhao, Xin; Zheng, Yang

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in

  17. Nerve distribution of canine pulmonary arteries and potential clinical implications

    PubMed Central

    Zhang, Yun; Chen, Weijie; Xu, Yanping; Liu, Hang; Chen, Yunlin; Yang, Hanxuan; Yin, Yuehui

    2016-01-01

    Sympathetic activation plays an important pathophysiological role in the progression of pulmonary artery hypertension. Although adrenergic vasomotor fibers are present in the adventitia of pulmonary arteries, the anatomy of the peri-arterial pulmonary nerves is still poorly understood. The aim of the current study was to determine the sympathetic nerve distribution in canine pulmonary arteries. A total of 2160 sympathetic nerves were identified in six Chinese Kunming canines. Nerve counts were greatest in the proximal segment, with a slight decrease in the distal segment; the middle segment showed the least number of nerves. In the left and right pulmonary arteries, 77.61% and 78.97% of the nerves were located within a 1-3-mm range, respectively. The number of nerves in the posterior region of the bifurcation and pulmonary trunk outnumbered those in the anterior region. Furthermore, 65.33% of the nerves were located in the first 2-mm range of the posterior region of bifurcation, and 89.62% of the nerves were located within the 1-3-mm range of the posterior region of the pulmonary trunk. In conclusion, a great abundance of sympathetic nerves occurred in the proximal and distal segments of the bilateral pulmonary arteries. There is a clear predominance of sympathetic nerve distribution in the posterior region of the bifurcation and pulmonary trunk. This anatomic distribution may have implications for the future development of percutaneous pulmonary artery denervation. PMID:27158332

  18. Modulation of the release of ( sup 3 H)norepinephrine from the base and body of the rat urinary bladder by endogenous adrenergic and cholinergic mechanisms

    SciTech Connect

    Somogyi, G.T.; de Groat, W.C. )

    1990-10-01

    Modulation of (3H)NE release was studied in rat urinary bladder strips prelabeled with (3H)NE. (3H)NE uptake occurred in strips from the bladder base and body, but was very prominent in the base where the noradrenergic innervation is most dense. Electrical field stimulation markedly increased (3H)NE outflow from the superfused tissue. The quantity of (3H)NE release was approximately equal during three consecutive periods of stimulation. Activation of presynaptic muscarinic receptors by 1.0 microM oxotremorine reduced (3H)NE release to 46% of the control. Atropine (1 microM) blocked the effect of oxotremorine and increased the release to 147% of predrug control levels. Activation of presynaptic alpha-2 adrenoceptors by 1 microM clonidine reduced (3H)NE release to 55% of control. Yohimbine blocked the action of clonidine and increased the release to 148% of control. The release of (3H)NE from the bladder base and body was increased by both 1 microM atropine (to 167% and 174% of control, respectively) and 1 microM yohimbine (to 286% and 425% of control, respectively). Atropine and yohimbine administered in combination had similar facilitatory effects as when administered alone. We conclude that the release of (3H)NE from adrenergic nerve endings in electrically stimulated bladder strips is modulated via endogenous transmitters acting on both muscarinic and alpha-2 adrenergic presynaptic receptors and that the latter provide the most prominent control.

  19. Cadaveric nerve allotransplantation in the treatment of persistent thoracic neuralgia.

    PubMed

    Barbour, John R; Yee, Andrew; Moore, Amy M; Trulock, Elbert P; Buchowski, Jacob M; Mackinnon, Susan E

    2015-04-01

    When relief from neuralgia cannot be achieved with traditional methods, neurectomy may be considered to abate the stimulus, and primary opposition of the terminal nerve ending is recommended to prevent neuroma. Nerve repair with autograft is limited by autologous nerves available for large nerve defects. Cadaveric allografts provide an unlimited graft source without donor-site morbidities, but are rapidly rejected unless appropriate immunosuppression is achieved. An optimal treatment method for nerve allograft transplantation would minimize rejection while simultaneously permitting nerve regeneration. This report details a novel experience of nerve allograft transplantation using cadaveric nerve grafts to desensitize persistent postoperative thoracic neuralgia.

  20. Regulation and function of the alpha/sub 2/ adrenergic autoreceptor in the central nervous system

    SciTech Connect

    Spengler, R.N.

    1987-01-01

    The purpose of this investigation was to determine whether changes observed in the number of alpha/sub 2/ adrenergic receptors in the brain as measured by radioligand binding experiments reflect changes in the function of alpha/sub 2/ autoregulatory receptors which are located on noradrenergic nerve terminals. Inhibition by clonidine of field stimulated /sup 3/H-norepinephrine (/sup 3/H-NE) release from rat hippocampal slices before and after several drug treatments was analyzed to investigate changes in alpha/sub 2/ adrenergic receptor function. Clonidine in a concentration-dependent manner inhibited /sup 3/H-NE release. The effect of clonidine was blocked by the specific alpha/sub 2/ adrenergic receptor antagonist, idazoxan. The cumulative administration of clonidine generated a smooth and well-fitted log-concentration-effect curve. Results are presented which demonstrate that this technique can be employed to investigate the role of changes in the function of the alpha/sub 2/ autoregulatory receptor. The present investigation also examined representatives of four drug classes which have been shown to alter the specific binding of /sup 3/H-clonidine to neural membranes to determine whether changes in the alpha/sub 2/ autoregulatory receptor function also occur.

  1. Effects of S14001 on adrenergic neuroeffector interaction in isolated canine saphenous veins.

    PubMed

    Hoshino, Y; Verbeuren, T J; Hughes, H; Vanhoutte, P M

    1992-09-01

    1. The effects of (S) fluoro-6 (morpholinyl-2 methoxy)-8-tetrahydro-1,2,3,4 quinoleine (S14001) on adrenergic neurotransmission in isolated canine saphenous veins were investigated in experiments which measured the accumulation, overflow and metabolism of 3H-norepinephrine. 2. S14001 inhibited the accumulation of total tritium (3H-norepinephrine and 3H-metabolites of norepinephrine) in a concentration-dependent manner. 3. Under basal conditions, S14001 increased tension and basal effiux of total tritium; the latter consisted predominantly of 3H-DOPEG. The increases in these parameters were not inhibited by desmethylimipramine (DMI). 4. During electrical stimulation, S14001 increased the contraction and overflow of total tritium; the latter consisted predominantly of 3H-DOPEG. The increases in these parameters were inhibited by DMI. 5. These experiments suggest that S14001 has dual effects on adrenergic neurotransmission in the canine saphenous vein: (a) an inhibitory action on the neuronal accumulation; and (b) a pharmacological displacement of the transmitter from adrenergic nerve terminals.

  2. Alpha-1 adrenergic receptor: Binding and phosphoinositide breakdown in human myometrium

    SciTech Connect

    Breuiller-Fouche, M.; Doualla-Bell Kotto Maka, F.; Geny, B.; Ferre, F. )

    1991-07-01

    Alpha-1 adrenergic receptors were examined in both inner and outer layers of human pregnant myometrium using radioligand binding of (3H)prazosin. (3H)prazosin bound rapidly and reversibly to a single class of high affinity binding sites in myometrial membrane preparations. Scatchard analysis gave similar values of equilibrium dissociation constants in both myometrial layers. In contrast, more alpha-1 adrenergic receptors were detected in the outer layer than in the inner layer. Antagonist inhibited (3H)prazosin binding with an order of potency of prazosin greater than phentolamine greater than idazoxan. Competition experiments have also revealed that a stable guanine nucleotide decreases the apparent affinity of norepinephrine for myometrial (3H)prazosin binding sites. The functional status of these alpha-1 adrenergic receptors was also assessed by measuring the norepinephrine-induced accumulation of inositol phosphates in myometrial tissue. Norepinephrine produced a concentration-dependent accumulation of inositol phosphates in both myometrial layers. However, norepinephrine-induced increases in inositol 1,4,5-triphosphate were only observed in the outer layer. These results indicate that alpha-1 adrenergic receptors in human myometrium at the end of pregnancy are linked to phosphoinositide hydrolysis and that this response occurs mainly in the outer layer.

  3. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury

    PubMed Central

    He, Qian-ru; Cong, Meng; Chen, Qing-zhong; Sheng, Ya-feng; Li, Jian; Zhang, Qi; Ding, Fei; Gong, Yan-pei

    2016-01-01

    The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration. PMID:28197202

  4. Nerve Blocks

    MedlinePlus

    ... Sometimes the needle has to be inserted fairly deep to reach the nerve causing your problem. This ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  5. Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic mechanisms.

    PubMed

    Seebacher, F; Franklin, C E

    2001-12-01

    During thermoregulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3 %) at the commencement of heating, and decreased to 30.7 % at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.

  6. alpha- and beta-adrenergic receptor mechanisms in spontaneous contractile activity of rat ileal longitudinal smooth muscle.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Balsiger, Bruno M

    2005-02-01

    Gastrointestinal motility is influenced by adrenergic modulation. Our aim was to identify specific subtypes of adrenergic receptors involved in inhibitory mechanisms that modulate gut smooth muscle contractile activity. Muscle strips of rat ileal longitudinal muscle were evaluated for spontaneous contractile activity and for equimolar dose-responses (10(-7) to 3 x 10(-5) M) to the adrenergic agents norepinephrine (nonselective agonist), phenylephrine (alpha(1)-agonist), clonidine (alpha(2)-agonist), prenalterol (beta(1)-agonist), ritodrine (beta(2)-agonist), and ZD7114 (beta(3)-agonist) in the presence and absence of tetrodotoxin (nonselective nerve blocker). Norepinephrine (3 x 10(-5) M) inhibited 65 +/- 6% (mean +/- SEM) of spontaneous contractile activity. The same molar dose of ritodrine, phenylephrine, or ZD7114 resulted in less inhibition (46 +/- 7%, 31 +/- 5%, and 39 +/- 3%, respectively; P < 0.05). The calculated molar concentration of ZD7114 needed to induce 50% inhibition was similar to that of norepinephrine, whereas higher concentrations of phenylephrine or ritodrine were required. Clonidine and prenalterol had no effect on contractile activity. Blockade of intramural neural transmission by tetrodotoxin affected the responses to ritodrine and phenylephrine (but not to norepinephrine or ZD7114), suggesting that these agents exert part of their effects via neurally mediated enteric pathways. Our results suggest that adrenergic modulation of contractile activity in the rat ileum is mediated primarily by muscular beta(3)-, beta(2)-, and alpha(1)-receptor mechanisms; the latter two also involve neural pathways.

  7. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement

    PubMed Central

    Sato, T.; Miyazawa, K.; Suzuki, Y.; Mizutani, Y.; Uchibori, S.; Asaoka, R.; Arai, M.; Togari, A.; Goto, S.

    2014-01-01

    Recently, involvement of the sympathetic nervous system in bone metabolism has attracted attention. β2-Adrenergic receptor (β2-AR) is presented on osteoblastic and osteoclastic cells. We previously demonstrated that β-AR blockers at low dose improve osteoporosis with hyperactivity of the sympathetic nervous system via β2-AR blocking, while they may have a somewhat inhibitory effect on osteoblastic activity at high doses. In this study, the effects of butoxamine (BUT), a specific β2-AR antagonist, on tooth movement were examined in spontaneously hypertensive rats (SHR) showing osteoporosis with hyperactivity of the sympathetic nervous system. We administered BUT (1 mg/kg) orally, and closed-coil springs were inserted into the upper-left first molar. After sacrifice, we calculated the amount of tooth movement and analyzed the trabecular microarchitecture and histomorphometry. The distance in the SHR control was greater than that in the Wistar-Kyoto rat group, but no significant difference was found in the SHR treated with BUT compared with the Wistar-Kyoto rat control. Analysis of bone volume per tissue volume, trabecular number, and osteoclast surface per bone surface in the alveolar bone showed clear bone loss by an increase of bone resorption in SHR. In addition, BUT treatment resulted in a recovery of alveolar bone loss. Furthermore, TH-immunoreactive nerves in the periodontal ligament were increased by tooth movement, and BUT administration decreased TH-immunoreactive nerves. These results suggest that BUT prevents alveolar bone loss and orthodontic tooth movement via β2-AR blocking. PMID:24868013

  8. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement.

    PubMed

    Sato, T; Miyazawa, K; Suzuki, Y; Mizutani, Y; Uchibori, S; Asaoka, R; Arai, M; Togari, A; Goto, S

    2014-08-01

    Recently, involvement of the sympathetic nervous system in bone metabolism has attracted attention. β2-Adrenergic receptor (β2-AR) is presented on osteoblastic and osteoclastic cells. We previously demonstrated that β-AR blockers at low dose improve osteoporosis with hyperactivity of the sympathetic nervous system via β2-AR blocking, while they may have a somewhat inhibitory effect on osteoblastic activity at high doses. In this study, the effects of butoxamine (BUT), a specific β2-AR antagonist, on tooth movement were examined in spontaneously hypertensive rats (SHR) showing osteoporosis with hyperactivity of the sympathetic nervous system. We administered BUT (1 mg/kg) orally, and closed-coil springs were inserted into the upper-left first molar. After sacrifice, we calculated the amount of tooth movement and analyzed the trabecular microarchitecture and histomorphometry. The distance in the SHR control was greater than that in the Wistar-Kyoto rat group, but no significant difference was found in the SHR treated with BUT compared with the Wistar-Kyoto rat control. Analysis of bone volume per tissue volume, trabecular number, and osteoclast surface per bone surface in the alveolar bone showed clear bone loss by an increase of bone resorption in SHR. In addition, BUT treatment resulted in a recovery of alveolar bone loss. Furthermore, TH-immunoreactive nerves in the periodontal ligament were increased by tooth movement, and BUT administration decreased TH-immunoreactive nerves. These results suggest that BUT prevents alveolar bone loss and orthodontic tooth movement via β2-AR blocking.

  9. Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') administration

    PubMed Central

    Colado, M I; O'Shea, E; Granados, R; Esteban, B; Martín, A B; Green, A R

    1999-01-01

    We investigated whether dopamine plays a role in the neurodegeneration of 5-hydroxytryptamine (5-HT) nerve endings occurring in Dark Agouti rat brain after 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') administration. Haloperidol (2 mg kg−1 i.p.) injected 5 min prior and 55 min post MDMA (15 mg kg−1 i.p.) abolished the acute MDMA-induced hyperthermia and attenuated the neurotoxic loss of 5-HT 7 days later. When the rectal temperature of MDMA+haloperidol treated rats was kept elevated, this protective effect was marginal. MDMA (15 mg kg−1) increased the dopamine concentration in the dialysate from a striatal microdialysis probe by 800%. L-DOPA (25 mg kg−1 i.p., plus benserazide, 6.25 mg kg−1 i.p.) injected 2 h after MDMA (15 mg kg−1) enhanced the increase in dopamine in the dialysate, but subsequent neurodegeneration was unaltered. L-DOPA (25 mg kg−1) injected before a sub-toxic dose of MDMA (5 mg kg−1) failed to induce neurodegeneration. The MDMA-induced increase in free radical formation in the hippocampus (indicated by increased 2,3- and 2,5-dihydroxybenzoic acid in a microdialysis probe perfused with salicylic acid) was unaltered by L-DOPA. The neuroprotective drug clomethiazole (50 mg kg−1 i.p.) did not influence the MDMA-induced increase in extracellular dopamine. These data suggest that previous observations on the protective effect of haloperidol and potentiating effect of L-DOPA on MDMA-induced neurodegeneration may have resulted from effects on MDMA-induced hyperthermia. The increased extracellular dopamine concentration following MDMA may result from effects of MDMA on dopamine re-uptake, monoamine oxidase and 5-HT release rather than an ‘amphetamine-like' action on dopamine release, thus explaining why the drug does not induce degeneration of dopamine nerve endings. PMID:10193771

  10. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  11. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    around the nerve ends performed following application of 0.1% Rose Bengal dye in saline to wrap and epineurium with illumination at 532 nm. The HAM...results obtained with the three fixation methods under study (a) epineurial suture, (b) fibrin glue and (c) photochemical tissue bonding (PTB) with a...wrap material. All methods induced bonding between the nerve segments with bond strength in the order of suture>PTB> fibrin glue. Conventional

  12. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    harvested from donor rats immediately post-euthanasia (Task 1g) and bonding of the wrap around the nerve ends performed following application of 0.1...a) epineurial suture, (b) fibrin glue and (c) photochemical tissue bonding (PTB) with a wrap material. All methods induced bonding between the nerve...segments with bond strength in the order of suture>PTB> fibrin glue. Conventional epineurial suturing using six 10.0 nylon sutures resulted in the

  13. Alpha-adrenergic receptor blockade by phentolamine increases the efficacy of vasodilators in penile corpus cavernosum.

    PubMed

    Kim, N N; Goldstein, I; Moreland, R B; Traish, A M

    2000-03-01

    Penile trabecular smooth muscle tone, a major determinant of erectile function, is highly regulated by numerous inter- and intracellular pathways. The interaction between pathways mediating contraction and relaxation has not been studied in detail. To this end, we investigated the functional effects of alpha adrenergic receptor blockade with phentolamine and its interaction with vasodilators (sildenafil, vasoactive intestinal polypeptide (VIP) and PGE1) that elevate cyclic nucleotides on penile cavernosal smooth muscle contractility. In organ bath preparations of cavernosal tissue strips contracted with phenylephrine, phentolamine significantly enhanced relaxation induced by sildenafil, VIP and PGE1. Sildenafil, VIP or PGE1 also significantly enhanced relaxation induced by phentolamine in cavernosal tissue strips contracted with phenylephrine. To study the effects of alpha adrenergic receptor blockade and modification of cyclic nucleotide metabolism during active neurogenic input, cavernosal tissue strips in organ bath preparations were contracted with the non-adrenergic agonist endothelin-1 and subjected to electrical field stimulation (EFS) in the absence or presence of phentolamine and/or sildenafil. EFS (5-40Hz) typically caused biphasic relaxation and contraction responses. Phentolamine alone enhanced relaxation and reduced or prevented contraction to EFS. Sildenafil enhanced relaxation to EFS at lower frequencies (< or = 5 Hz). The combination of phentolamine and sildenafil enhanced EFS-induced relaxation at all frequencies tested. EFS, in the presence of 10 nM phentolamine and 30 nM sildenafil, produced enhanced relaxation responses which were quantitatively similar to those obtained in the presence of 50 nM sildenafil alone. Thus, blockade of alpha-adrenergic receptors with phentolamine increases the efficacy of cyclic nucleotide-dependent vasodilators. Furthermore, phentolamine potentiates relaxation and attenuates contraction in response to endogenous

  14. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  15. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  16. Ulnar nerve dysfunction

    MedlinePlus

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... compressed in the elbow, a problem called cubital tunnel syndrome may result. When damage destroys the nerve ...

  17. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  18. [Lumbosacral nerve bowstring disease].

    PubMed

    Shi, J G; Xu, X M; Sun, J C; Wang, Y; Guo, Y F; Yang, H S; Kong, Q J; Yang, Y; Shi, G D; Yuan, W; Jia, L S

    2017-03-21

    Objective: To define a novel disease-lumbosacral nerve bowstring disease, and propose the diagnostic criteria, while capsule surgery was performed and evaluated in the preliminary study. Methods: From June 2016 to December 2016, a total of 30 patients (22 male and 8 female; mean age of 55.1±9.7 years) with lumbosacral nerve bowstring disease were included in Department of Spine Surgery, Changzheng Hospital, the Second Military Medical University.Lumbosacral nerve bowstring disease was defined as axial hypertension of nerve root and spinal cord caused by congenital anomalies, which could be accompanied by other lesions as lumbar disc herniation, spinal cord stenosis or spondylolisthesis, or aggravated by iatrogenic lesions, resulting in neurological symptoms.This phenomenon is similar to a stretched string, the higher tension on each end the louder sound.Meanwhile, the shape of lumbosacral spine looks like a bow, thus, the disease is nominated as lumbosacral nerve bowstring disease.All the patients underwent capsule surgery and filled out Owestry disability index (ODI) and Tempa scale for kinesiophobia (TSK) before and after surgery. Results: The mean surgery time was (155±36) min, (4.3±0.4) segments were performed surgery.The pre-operative VAS, TSK and ODI scores were (7.6±0.8), (52.0±10.3) and (68.4±12.7), respectively.The post-operative VAS, TSK and ODI scores were (3.3±0.4), ( 24.6±5.2) and (32.1±7.4)(P<0.05, respectively), respectively. Conclusion: The definition and diagnostic criteria of lumbosacral nerve bowstring disease was proposed.Capsule surgery was an effective strategy with most patients acquired excellent outcomes as symptoms relieved and quality of life improved.

  19. Scintigraphic assessment of regional cardiac adrenergic innervation

    SciTech Connect

    Dae, M.W.; O'Connell, J.W.; Botvinick, E.H.; Ahearn, T.; Yee, E.; Huberty, J.P.; Mori, H.; Chin, M.C.; Hattner, R.S.; Herre, J.M.

    1989-03-01

    To assess the feasibility of noninvasively imaging the regional distribution of myocardial sympathetic innervation, we evaluated the distribution of sympathetic nerve endings, using 123I metaiodobenzylguanidine (MIBG), and compared this with the distribution of myocardial perfusion, using 201Tl. Twenty dogs were studied: 11 after regional denervation, and nine as controls. Regional denervation was done by left stellate ganglion removal, right stellate ganglion removal, and application of phenol to the epicardial surface. Computer-processed functional maps displayed the relative distribution of MIBG and thallium in multiple projections in vivo and excised heart slices in all animals. In six animals, dual isotope emission computed tomograms were acquired in vivo. Tissue samples taken from innervated and denervated regions of the MIBG images were analyzed for norepinephrine content to validate image findings. Normal controls showed homogeneous and parallel distributions of MIBG and thallium in the major left ventricular mass. In the left stellectomized hearts, MIBG was reduced relative to thallium in the posterior left ventricle; whereas in right stellectomized hearts, reduced MIBG was in the anterior left ventricle. Phenol-painted hearts showed a broad area of decreased MIBG extending beyond the area of phenol application. In both stellectomized and phenol-painted hearts, thallium distribution remained homogeneous and normal. Norepinephrine content was greater in regions showing normal MIBG (550 +/- 223 ng/g) compared with regions showing reduced MIBG (39 +/- 44 ng/g) (p less than 0.001), confirming regional denervation. Combined MIBG-thallium functional maps display the regional distribution of sympathetic innervation.

  20. Sex differences in alpha-adrenergic support of blood pressure.

    PubMed

    Schmitt, Judith A M; Joyner, Michael J; Charkoudian, Nisha; Wallin, B Gunnar; Hart, Emma C

    2010-08-01

    We tested whether the inter-individual variability in alpha-adrenergic support of blood pressure plays a critical role in the sex differences in tonic support of blood pressure by the autonomic nervous system. Blockade of the alpha-adrenergic receptors was achieved via phentolamine and showed a smaller (P < 0.05) decrease in blood pressure in women compared to men, implying that alpha-adrenergic support of blood pressure is less in women than in men.

  1. Functional gait evaluation of collagen chitosan nerve guides for sciatic nerve repair.

    PubMed

    Patel, Minal; Vandevord, Pamela J; Matthew, Howard W; Desilva, Stephen; Wu, Bin; Wooley, Paul H

    2008-12-01

    The objective of this work was to use a functional gait analysis technique to evaluate sciatic nerve repair through tissue-engineered nerve guides in a rodent animal model. The nerve guides were fabricated by blending collagen with chitosan material and evaluated over a 12-week period for motor and sensory nerve recovery assessed by gait analysis and behavioral testing. Gastrocnemius muscle weight measurements were obtained at the end of each experimental time point and correlated to motor nerve recovery. Functional gait analysis studied both the stance and swing phase angle formations during a normal gait cycle. During the stance phase, functional results revealed that blended nerve guides promoted increased motor nerve recovery than unblended chitosan nerve guides. Similar results were obtained from behavioral tests, indicating that blended nerve guides created increased sensitivity to applied stimulus compared to unblended nerve guides. Muscle strength also correlated with functional recovery and was significantly higher when compared to the unblended nerve guides. From this study, we conclude that collagen-blended chitosan nerve guides enhanced motor and sensory nerve recovery assayed through gait and behavioral testing compared to unblended nerve guides.

  2. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  3. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  4. Radiolabeled meta-iodobenzylguanidine and the adrenergic neurons of salivary glands

    SciTech Connect

    Sisson, J.C.; Wieland, D.M.; Jaques, S. Jr.; Sherman, P.; Fisher, S.; Mallette, S.; Meyers, L.; Mangner, T.J.

    1987-01-01

    The handling of radiolabeled meta-iodobenzylguanidine (MIBG) by salivary glands was evaluated. In the submaxillary glands of rats, the uptake of 125I-MIBG was decreased after 1) nerve injury induced by 6-hydroxydopamine, 2) inhibition of the uptake-1 pathway by desmethylimipramine, and 3) surgical denervation. However, the reduction in 125I-MIGB uptake was less than that of 3H-norepinephrine (3H-NE) and of the endogenous content of NE in the glands. Yet, the sympathomimetic phenylpropanolamine displaced about the same fraction of 125I-MIBG as 3H-NE. These results suggest that 40% or more of 125I-MIBG resides in extraneuronal sites but that at least 30% and possibly more lies in the adrenergic nerve terminals. Fasting and feeding rats produced changes in the rates of disappearance of 125I-MIBG and 3H-NE from the submaxillary gland that were different, and the rates of loss of 125I-MIBG cannot be used as an index of adrenergic nerve activity. In man, the concentrations of 123I-MIBG in the salivary glands, particularly the parotid gland, are readily visible and measureable. Imipramine reduced the uptake of 123I-MIBG into parotid glands little or not at all; some of the 123I-MIBG may enter neurons via an imipramine-insensitive pathway, but a substantial fraction probably arrives in intraneuronal locations. Thus, phenylpropanolamine displaced over 50% of the parotid pool of 123I-MIBG. However, in only the most severe case of generalized autonomic neuropathy was the uptake of 123I-MIBG reduced.

  5. Present state of alpha- and beta-adrenergic drugs I. The adrenergic receptor.

    PubMed

    Ahlquist, R P

    1976-11-01

    The cardiovascular alpha adrenergic receptors evoke vasoconstriction, the cardiovascular beta receptors evoke vasodilation and cardiac stimulation. All blood vessels have both alpha and beta receptors. In some areas, for example skin and kidney, the alpha receptors predominate. In some vascular beds, for example the nutrient vessels in skeletal muscle, beta receptors predominate. In other beds, such as coronary, visceral, and connective tissue both receptors are active. The cardiovascular effects of adrenergic agonists depend on which receptor they act on. Phenylephrine is specific for alpha receptors. Isoproterenol is specific for beta receptors. Epinephrine and norepinephrine act on both. The real value of knowing the receptor specificity of each agonist is that side effects can more easily be predicted. For example, adrenergic cardiac stimulants are antiasthmatics. Therefore, adrenergic antiasthmatics can produce excessive cardiac stimulation. For the future, agonists that are not only receptor-specific but also tissue-specific will be developed. The first of these in the United States is terbutaline. The rest of the world has in addition a similar drug, salbutamol. No one knows if this drug will be approved for use by American physicians.

  6. Microsurgical anatomy of the ocular motor nerves.

    PubMed

    Zhang, Yi; Liu, Hao; Liu, En-Zhong; Lin, You-Zhi; Zhao, Shi-Guang; Jing, Guo-Hua

    2010-08-01

    This study was designed to provide anatomic data to help surgeons avoid damage to the ocular motor nerves during intraorbital operations. The microsurgical anatomy of the ocular motor nerves was studied in 50 adult cadaveric heads (100 orbits). Dissections were performed with a microscope. The nerves were exposed and the neural and muscular relationships of each portion of the nerve were examined and measured. The superior division of the oculomotor nerve coursed between the optic nerve and the superior rectus muscle after it left the annular tendon, and its branches entered into the superior rectus muscle and levator muscle. A mean of five fibers (range 3-7) innervated the superior rectus muscle, and a mean of one fiber (range 1-2) followed a medial direction (84%) or went straight through the superior rectus muscle (16%). The inferior division of the oculomotor nerve branched into the medial rectus, inferior rectus and inferior oblique muscles. The trochlear nerve ended on the orbital side of the posterior one-third of the superior oblique muscle in 76 specimens. The abducens nerve ended on the posterior one-third of the lateral rectus muscle in 86 specimens. If the belly of the lateral rectus muscle was divided into three superior-inferior parts, the nerve commonly entered into the middle one-third in 74 specimens. Based on the observed data, microanatomical relationships of the orbital contents were revised.

  7. [Anatomical variants of the medial calcaneal nerve and the Baxter nerve in the tarsal tunnel].

    PubMed

    Martín-Oliva, X; Elgueta-Grillo, J; Veliz-Ayta, P; Orosco-Villaseñor, S; Elgueta-Grillo, M; Viladot-Perice, R

    2013-01-01

    The tarsal tunnel is composed of the posterior border of the medial malleoulus, the posterior aspect of the talus and the medial aspect of the calcaneus. The medial calcaneal nerve emerges from the posterior aspect of the posterior tibial nerve in 75% of cases and from the lateral plantar nerve in the remaining 25%. Finally, the medial calcaneal nerve ends as a single terminal branch in 79% of cases and in numerous terminal branches in the remaining 21%. To describe the anatomical variants of the posterior tibial nerve and its terminal branches. To describe the steps for tarsal tunnel release. To describe Baxter nerve release. The anatomical variants of the posterior tibial nerve and its terminal branches within the tarsal tunnel were studied. Then the Lam technique was performed; it consists of: 1) opening of the laciniate ligament, 2) opening of the fascia over the abductor hallucis muscle, 3) exoneurolysis of the posterior tibial nerve and its terminal branches, identifying the emergence and pathway of the medial calcaneal branch, the lateral plantar nerve and its Baxter nerve branch and the medial plantar nerve. Baxter nerve was found in 100% of cases. In 100% of cases in our series the nerve going to the abductor digiti minimi muscle of the foot was found; 87.5% of cases had two terminal branches. The dissections proved that a crucial step was the release of the distal tarsal tunnel.

  8. [Mivazerol and other benzylimidazoles with alpha-2 adrenergic properties].

    PubMed

    Cossement, E; Geerts, J P; Michel, P; Motte, G; Noyer, M

    1994-01-01

    4-Benzyl-imidazole compounds derived from Salbutanol are evaluated for potential adrenergic activities. The prevalent property of a series of new bioisosteres of catecholamines either of the saligenol-(ucb LO61) or benzamide-(Mivazerol) type is a selective alpha-adrenergic agonism, at the presynaptic level. The present study stresses the structural features responsible for the alpha-2-agonistic property.

  9. Adrenergic urticaria: review of the literature and proposed mechanism.

    PubMed

    Hogan, Sara R; Mandrell, Joshua; Eilers, David

    2014-04-01

    Adrenergic urticaria is a rare type of stress-induced physical urticaria characterized by transient outbreaks of red papules surrounded by halos of hypopigmented, vasoconstricted skin. First described in 1985, there are 10 reported cases of adrenergic urticaria in the English-language medical literature. Episodes are caused by various triggers, including emotional upset, coffee, and chocolate, during which serum catecholamines and IgE are elevated, whereas histamine and serotonin levels remain within normal limits. The precise mechanisms leading to the pathogenesis of adrenergic urticaria have yet to be elucidated. Diagnosis can be made by intradermal injection of epinephrine or norepinephrine, which reproduces the characteristic rash, or by clinical observation. Trigger avoidance and oral propranolol are currently the best known treatments for adrenergic urticaria. Nonspecific therapies, including tranquilizers and antihistamines, may also ease symptoms. This article explores the pathophysiology of adrenergic urticaria and proposes a mechanism by which propranolol treats the condition.

  10. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  11. Contrasting effects of presynaptic alpha2-adrenergic autoinhibition and pharmacologic augmentation of presynaptic inhibition on sympathetic heart rate control.

    PubMed

    Miyamoto, Tadayoshi; Kawada, Toru; Yanagiya, Yusuke; Akiyama, Tsuyoshi; Kamiya, Atsunori; Mizuno, Masaki; Takaki, Hiroshi; Sunagawa, Kenji; Sugimachi, Masaru

    2008-11-01

    Presynaptic alpha2-adrenergic receptors are known to exert feedback inhibition on norepinephrine release from the sympathetic nerve terminals. To elucidate the dynamic characteristics of the inhibition, we stimulated the right cardiac sympathetic nerve according to a binary white noise signal while measuring heart rate (HR) in anesthetized rabbits (n = 6). We estimated the transfer function from cardiac sympathetic nerve stimulation to HR and the corresponding step response of HR, with and without the blockade of presynaptic inhibition by yohimbine (1 mg/kg followed by 0.1 mg.kg(-1).h(-1) iv). We also examined the effect of the alpha2-adrenergic receptor agonist clonidine (0.3 and 1.5 mg.kg(-1).h(-1) iv) in different rabbits (n = 5). Yohimbine increased the maximum step response (from 7.2 +/- 0.8 to 12.2 +/- 1.7 beats/min, means +/- SE, P < 0.05) without significantly affecting the initial slope (0.93 +/- 0.23 vs. 0.94 +/- 0.22 beats.min(-1).s(-1)). Higher dose but not lower dose clonidine significantly decreased the maximum step response (from 6.3 +/- 0.8 to 6.8 +/- 1.0 and 2.8 +/- 0.5 beats/min, P < 0.05) and also reduced the initial slope (from 0.56 +/- 0.07 to 0.51 +/- 0.04 and 0.22 +/- 0.06 beats.min(-1).s(-1), P < 0.05). Our findings indicate that presynaptic alpha2-adrenergic autoinhibition limits the maximum response without significantly compromising the rapidity of effector response. In contrast, pharmacologic augmentation of the presynaptic inhibition not only attenuates the maximum response but also results in a sluggish effector response.

  12. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries.

    PubMed

    Nausch, Lydia W M; Bonev, Adrian D; Heppner, Thomas J; Tallini, Yvonne; Kotlikoff, Michael I; Nelson, Mark T

    2012-02-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.

  13. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  14. Adrenergic regulation of innate immunity: a review

    PubMed Central

    Scanzano, Angela; Cosentino, Marco

    2015-01-01

    The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system. The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents. The cells of immune system express adrenoceptors (AR), which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC), β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease. In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential. PMID:26321956

  15. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    SciTech Connect

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-03-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca/sup + +/ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10/sup -5/ M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (/sup 3/H)inositol, and basal (/sup 3/H) inositol phosphate (IP/sub 1/) accumulation was measured in the presence of Li/sup +/. Epinephrine > norepinephrine (NE) were the most active stimulants of IP/sub 1/ production. The ..cap alpha../sub 1/ adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP/sub 1/ production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP/sub 1/ below basal levels and when added together diminished IP/sub 1/ accumulation even further. The role of adrenergic stimulation in the production of c-AMP.

  16. Role of selective alpha and beta adrenergic receptor mechanisms in rat jejunal longitudinal muscle contractility.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Haefliger, Simon; Balsiger, Bruno M

    2008-06-01

    Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.

  17. Oral phentolamine: an alpha-1, alpha-2 adrenergic antagonist for the treatment of erectile dysfunction.

    PubMed

    Goldstein, I

    2000-03-01

    Phentolamine mesylate is an alpha-1 and alpha-2 selective adrenergic receptor antagonist which has undergone clinical trials for erectile dysfunction treatment. Biochemical and physiological studies in human erectile tissue have revealed a high affinity of phentolamine for alpha-1 and alpha-2 adrenergic receptors. Based on pharmacokinetic studies, it is suggested that 30-40 min following oral ingestion of 40 or 80 mg of phentolamine (Vasomax), the mean plasma phentolamine concentrations are sufficient to occupy the alpha-1 and -2 adrenergic receptors in erectile tissue and thereby result in inhibition of adrenergic-mediated physiologic activity. In large multi-center, placebo-controlled pivotal phase III clinical trials, the mean change in the erectile function domain of the International Index of Erectile Function scores (Questions 1-5 and 15) from screening to the end of treatment was significantly higher following use of active drug (40 mg and 80 mg) compared to placebo. Three to four times as many patients receiving phentolamine reported being satisfied or very satisfied compared with those receiving placebo. At doses of 40 mg and 80 mg respectively, 55% and 59% of men were able to achieve vaginal penetration with 51% and 53% achieving penetration on 75% of attempts. The correction of erectile dysfunction or improvement to a less severe category of dysfunction was experienced by 53% of men with the 80 mg dose and 40% with the 40 mg dose of phentolamine. All trends of response were the same regardless of any concomitant medication. There were no severe adverse events. At 40 mg, 7.7% experienced rhinitis and fewer than 3.1% experienced any other side effect of treatment. Phentolamine is safe, well tolerated and efficacious for the treatment of erectile dysfunction.

  18. Interaction of desipramine and amitriptyline with adrenergic mechanisms in the human iris in vivo.

    PubMed

    Szabadi, E; Gaszner, P; Bradshaw, C M

    1981-01-01

    Mydriatic responses of the pupil were evoked by locally instilled noradrenaline and methoxamine in eight healthy volunteers. The effects of three single oral doses (25 mg, 50 mg and 100 mg) of amitriptyline and desipramine were compared on the mydriatic responses. Both antidepressants potentiated the mydriasis evoked by noradrenaline; desipramine appeared to be approximately four times more potent than amitriptyline. Both antidepressants antagonised the mydriasis evoked by noradrenaline; desipramine appeared to be approximately four times more potent than amitriptyline. Both antidepressants antagonised the mydriasis evoked by methoxamine, amitriptyline being approximately twice as potent as desipramine. It is suggested that the potentiation of the response to noradrenaline may reflect the blockade of the uptake of noradrenaline into adrenergic nerve terminals, whereas the antagonism of the response to methoxamine may reflect the blockade of postsynaptic alpha-adrenoceptors by the antidepressants. It is argued that the interaction of the antidepressants with adrenergic mechanisms could explain why amitriptyline, a potent anticholinergic agent, causes no significant change in resting pupil diameter, while desipramine, a relatively weaker anticholinergic agent, produces a significant mydriasis.

  19. Developmental changes in the role of a pertussis toxin sensitive guanine nucleotide binding protein in the rat cardiac alpha sub 1 -adrenergic system

    SciTech Connect

    Han, H.M.

    1989-01-01

    During development, the cardiac alpha{sub 1}-adrenergic chronotropic response changes from positive in the neonate to negative in the adult. This thesis examined the possibility of a developmental change in coupling of a PT-sensitive G-protein to the alpha{sub 1}-adrenergic receptor. Radioligand binding experiments performed with the iodinated alpha{sub 1}-selective radioligand ({sup 125}I)-I-2-({beta}-(4-hydroxphenyl)ethylaminomethyl)tetralone (({sup 125}I)-IBE 2254) demonstrated that the alpha{sub 1}-adrenergic receptor is coupled to a G-protein in both neonatal and adult rat hearts. However, in the neonate the alpha{sub 1}-adrenergic receptor is coupled to a PT-insensitive G-protein, whereas in the adult the alpha{sub 1}-adrenergic receptor is coupled to both a PT-insensitive and a PT-sensitive G-protein. Consistent with the results from binding experiments, PT did not have any effect on the alpha{sub 1}-mediated positive chronotropic response in the neonate, whereas in the adult the alpha{sub 1}-mediated negative chronotropic response was completely converted to a positive one after PT-treatment. This thesis also examined the possibility of an alteration in coupling of the alpha{sub 1}-adrenergic receptor to its effector under certain circumstances such as high potassium (K{sup +}) depolarization in nerve-muscle (NM) co-cultures, a system which has been previously shown to be a convenient in vitro model to study the mature inhibitory alpha{sub 1}-response.

  20. Extracranial spinal accessory nerve injury.

    PubMed

    Donner, T R; Kline, D G

    1993-06-01

    Eighty-three consecutive patients with extracranial accessory nerve injury seen over a 12-year period are reviewed. The most common etiology was iatrogenic injury to the nerve at the time of previous surgery. Such operations were usually minor in nature and often related to lymph node or benign tumor removal. Examination usually distinguished winging due to trapezius weakness from that of serratus anterior palsy. Trapezius weakness was seen in all cases. Sternocleidomastoid weakness was unusual. Patients with accessory palsy were evaluated by both clinical and electromyographic studies. Patients who exhibited no clinical or electrical evidence of regeneration were operated on (44 cases). Based on intraoperative nerve action potential studies, 8 lesions in continuity had neurolysis alone. Resection with repair either by end-to-end suture or by grafts was necessary in 31 cases. One case had suture removed from nerve, two had nerve placed into target muscle, and two had more proximal neurotization. Function was usually improved in both operative and nonoperative patients. Related anatomy is discussed.

  1. Adrenergic beta-1 receptor genetic variation predicts longitudinal rate of GFR decline in hypertensive nephrosclerosis

    PubMed Central

    Fung, Maple M.; Chen, Yuqing; Lipkowitz, Michael S.; Salem, Rany M.; Bhatnagar, Vibha; Mahata, Manjula; Nievergelt, Caroline M.; Rao, Fangwen; Mahata, Sushil K.; Schork, Nicholas J.; Brophy, Victoria H.; O’Connor, Daniel T.

    2009-01-01

    Background. End-stage renal disease (ESRD) due to hypertension is common and displays familial aggregation in African Americans, suggesting genetic risk factors, including adrenergic activity alterations which are noted in both hypertension and ESRD. Methods. We analysed 554 hypertensive nephrosclerosis participants (without clinically significant proteinuria) from the longitudinal National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) African American Study of Kidney Disease and Hypertension (AASK) cohort to determine whether decline in glomerular filtration rate (GFR) over ∼3.8 years was predicted by common genetic variation within the adrenergic beta-1 (ADRB1) receptor at non-synonymous positions Ser49Gly and Arg389Gly. Results. The polymorphism at Ser49Gly (though not Arg389Gly, in only partial linkage disequilibrium at r2 = 0.18) predicted the chronic rate of GFR decline, with minimal decline in Gly49/Gly49 (minor allele) homozygotes compared to Ser49 carriers; concordant results were observed for haplotypes and diploid haplotype pairs at the locus. An independent replication study in 1244 subjects from the San Diego Veterans Affairs Hypertension Cohort confirmed that Gly49/Gly49 homozygotes displayed the least rapid decline of eGFR over ∼3.6 years. Conclusion. We conclude that GFR decline rate in hypertensive renal disease is controlled in part by genetic variation within the adrenergic pathway, particularly at ADRB1. The results suggest novel strategies to approach the role of the adrenergic system in the risk and treatment of progressive renal disease. PMID:19745105

  2. The insula modulates arousal-induced reluctance to try novel tastes through adrenergic transmission in the rat.

    PubMed

    Rojas, Sebastián; Diaz-Galarce, Raúl; Jerez-Baraona, Juan Manuel; Quintana-Donoso, Daisy; Moraga-Amaro, Rodrigo; Stehberg, Jimmy

    2015-01-01

    Reluctance to try novel tastes (neophobia) can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA) compared to a low arousal context (LA). The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1%) was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine (NE) were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular NE blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system.

  3. Facial reanimation after facial nerve injury using hypoglossal to facial nerve anastomosis: the gruppo otologico experience.

    PubMed

    Tanbouzi Husseini, Sami; Kumar, David Victor; De Donato, Giuseppe; Almutair, Tamama; Sanna, Mario

    2013-12-01

    To evaluate the results of facial nerve reanimation after facial nerve injury by means of hypoglossal to facial nerve anastomosis. Retrospective case review. Private neuro-otologic and cranial base quaternary referral center. Sixty patients underwent hypoglossal to facial nerve anastomosis for facial nerve reanimation between April 1987 and December 2010. Only forty patients completed a minimal follow up of 24 months at the time of evaluation and were included in the study population. Facial nerve paralysis was present for a mean duration of 11.3 months (range 2-42 months) and all the patients had a HB grade VI prior their surgery. Final facial nerve motor function. The most common cause of facial paralysis was vestibular Schwannoma surgery. All the patients achieved a postoperative HB grade III or IV after a mean follow-up time of 20 months. The facial movements were detected after a period that ranged from ranged from 5 to 9 months. Only 4 patients suffered from difficulties during eating and drinking and three of them had associated lower cranial nerve deficit. Despite the various techniques in facial reanimation following total facial nerve paralysis, the end to end of hypoglossal to facial nerve anastomosis remains one of the best treatments in cases of viable distal facial stump and nonatrophic musculature.

  4. Nerve conduction velocity

    MedlinePlus

    ... polyneuropathy Tibial nerve dysfunction Ulnar nerve dysfunction Any peripheral neuropathy can cause abnormal results. Damage to the spinal ... Herniated disk Lambert-Eaton syndrome Mononeuropathy Multiple ... azotemia Primary amyloidosis Radial nerve dysfunction Sciatica ...

  5. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  6. Adrenergic Polymorphism and the Human Stress Response

    PubMed Central

    Rao, Fangwen; Zhang, Lian; Wessel, Jennifer; Zhang, Kuixing; Wen, Gen; Kennedy, Brian P.; Rana, Brinda K.; Das, Madhusudan; Rodriguez-Flores, Juan L.; Smith, Douglas W.; Cadman, Peter E.; Salem, Rany M.; Mahata, Sushil K.; Schork, Nicholas J.; Taupenot, Laurent; Ziegler, Michael G.; O’Connor, Daniel T.

    2009-01-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus, and then tested variants for contributions to sympathetic function and blood pressure. We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy-two twin pairs were evaluated for sympathetic traits, including catecholamine production and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty-nine single nucleotide polymorphisms (SNPs) and one tetranucleotide repeat were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned four common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable, as were stress-induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion, as well as blood pressure response to stress. TH promoter haplotype #2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. In hypertension, a case–control study (1266 subjects, 53% women) established the effect of C-824T in determination of blood pressure. We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate-limiting step, TH. The results suggest novel pathophysiological links between a key

  7. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  8. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  9. Exercise Testing, Training, and Beta-Adrenergic Blockade.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.

    1988-01-01

    This article summarizes the current knowledge on the effects of beta-adrenergic blocking drugs, used widely for treatment of cardiovascular diseases, on exercise performance, training benefits, and exercise prescription. (IAH)

  10. MELANOPHORE BANDS AND AREAS DUE TO NERVE CUTTING, IN RELATION TO THE PROTRACTED ACTIVITY OF NERVES

    PubMed Central

    Parker, G. H.

    1941-01-01

    1. When appropriate chromatic nerves are cut caudal bands, cephalic areas, and the pelvic fins of the catfish Ameiurus darken. In pale fishes all these areas will sooner or later blanch. By recutting their nerves all such blanched areas will darken again. 2. These observations show that the darkening of caudal bands, areas, and fins on cutting their nerves is not due to paralysis (Brücke), to the obstruction of central influences such as inhibition (Zoond and Eyre), nor to vasomotor disturbances (Hogben), but to activities emanating from the cut itself. 3. The chief agents concerned with the color changes in Ameiurus are three: intermedin from the pituitary gland, acetylcholine from the dispersing nerves (cholinergic fibers), and adrenalin from the concentrating nerves (adrenergic fibers). The first two darken the fish; the third blanches it. In darkening the dispersing nerves appear to initiate the process and to be followed and substantially supplemented by intermedin. 4. Caudal bands blanch by lateral invasion, cephalic areas by lateral invasion and internal disintegration, and pelvic fins by a uniform process of general loss of tint equivalent to internal disintegration. 5. Adrenalin may be carried in such an oil as olive oil and may therefore act as a lipohumor; it is soluble in water and hence may act as a hydrohumor. In lateral invasion (caudal bands, cephalic areas) it probably acts as a lipohumor and in internal disintegration (cephalic areas, pelvic fins) it probably plays the part of a hydrohumor. 6. The duration of the activity of dispersing nerves after they had been cut was tested by means of the oscillograph, by anesthetizing blocks, and by cold-blocks. The nerves of Ameiurus proved to be unsatisfactory for oscillograph tests. An anesthetizing block, magnesium sulfate, is only partly satisfactory. A cold-block, 0°C., is successful to a limited degree. 7. By means of a cold-block it can be shown that dispersing autonomic nerve fibers in Ameiurus can

  11. Adrenergic receptor control mechanism for growth hormone secretion.

    PubMed

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  12. Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium

    PubMed Central

    2012-01-01

    Introduction Pronounced extracellular acidosis reduces both cardiac contractility and the β-adrenergic response. In the past, this was shown in some studies using animal models. However, few data exist regarding how the human end-stage failing myocardium, in which compensatory mechanisms are exhausted, reacts to acute mild metabolic acidosis. The aim of this study was to investigate the effect of mild metabolic acidosis on contractility and the β-adrenergic response of isolated trabeculae from human end-stage failing hearts. Methods Intact isometrically twitching trabeculae isolated from patients with end-stage heart failure were exposed to mild metabolic acidosis (pH 7.20). Trabeculae were stimulated at increasing frequencies and finally exposed to increasing concentrations of isoproterenol (0 to 1 × 10-6 M). Results A mild metabolic acidosis caused a depression in twitch-force amplitude of 26% (12.1 ± 1.9 to 9.0 ± 1.5 mN/mm2; n = 12; P < 0.01) as compared with pH 7.40. Force-frequency relation measurements yielded no further significant differences of twitch force. At the maximal isoproterenol concentration, the force amplitude was comparable in each of the two groups (pH 7.40 versus pH 7.20). However, the half-maximal effective concentration (EC50) was significantly increased in the acidosis group, with an EC50 of 5.834 × 10-8 M (confidence interval (CI), 3.48 × 10-8 to 9.779 × 10-8; n = 9), compared with the control group, which had an EC50 of 1.056 × 10-8 M (CI, 2.626 × 10-9 to 4.243 × 10-8; n = 10; P < 0.05), indicating an impaired β-adrenergic force response. Conclusions Our data show that mild metabolic acidosis reduces cardiac contractility and significantly impairs the β-adrenergic force response in human failing myocardium. Thus, our results could contribute to the still-controversial discussion about the therapy regimen of acidosis in patients with critical heart failure. PMID:22889236

  13. Optical Biopsy of Peripheral Nerve Using Confocal Laser Endomicroscopy: A New Tool for Nerve Surgeons?

    PubMed Central

    Liao, Joseph C; Curtin, Catherine M

    2015-01-01

    Peripheral nerve injuries remain a challenge for reconstructive surgeons with many patients obtaining suboptimal results. Understanding the level of injury is imperative for successful repair. Current methods for distinguishing healthy from damaged nerve are time consuming and possess limited efficacy. Confocal laser endomicroscopy (CLE) is an emerging optical biopsy technology that enables dynamic, high resolution, sub-surface imaging of live tissue. Porcine sciatic nerve was either left undamaged or briefly clamped to simulate injury. Diluted fluorescein was applied topically to the nerve. CLE imaging was performed by direct contact of the probe with nerve tissue. Images representative of both damaged and undamaged nerve fibers were collected and compared to routine H&E histology. Optical biopsy of undamaged nerve revealed bands of longitudinal nerve fibers, distinct from surrounding adipose and connective tissue. When damaged, these bands appear truncated and terminate in blebs of opacity. H&E staining revealed similar features in damaged nerve fibers. These results prompt development of a protocol for imaging peripheral nerves intraoperatively. To this end, improving surgeons' ability to understand the level of injury through real-time imaging will allow for faster and more informed operative decisions than the current standard permits. PMID:26430636

  14. Effects of intranasal cocaine on sympathetic nerve discharge in humans.

    PubMed Central

    Jacobsen, T N; Grayburn, P A; Snyder, R W; Hansen, J; Chavoshan, B; Landau, C; Lange, R A; Hillis, L D; Victor, R G

    1997-01-01

    Cocaine-induced cardiovascular emergencies are mediated by excessive adrenergic stimulation. Animal studies suggest that cocaine not only blocks norepinephrine reuptake peripherally but also inhibits the baroreceptors, thereby reflexively increasing sympathetic nerve discharge. However, the effect of cocaine on sympathetic nerve discharge in humans is unknown. In 12 healthy volunteers, we recorded blood pressure and sympathetic nerve discharge to the skeletal muscle vasculature using intraneural microelectrodes (peroneal nerve) during intranasal cocaine (2 mg/kg, n = 8) or lidocaine (2%, n = 4), an internal local anesthetic control, or intravenous phenylephrine (0.5-2.0 microg/kg, n = 4), an internal sympathomimetic control. Experiments were repeated while minimizing the cocaine-induced rise in blood pressure with intravenous nitroprusside to negate sinoaortic baroreceptor stimulation. After lidocaine, blood pressure and sympathetic nerve discharge were unchanged. After cocaine, blood pressure increased abruptly and remained elevated for 60 min while sympathetic nerve discharge initially was unchanged and then decreased progressively over 60 min to a nadir that was only 2+/-1% of baseline (P < 0.05); however, plasma venous norepinephrine concentrations (n = 5) were unchanged up to 60 min after cocaine. Sympathetic nerve discharge fell more rapidly but to the same nadir when blood pressure was increased similarly with phenylephrine. When the cocaine-induced increase in blood pressure was minimized (nitroprusside), sympathetic nerve discharge did not decrease but rather increased by 2.9 times over baseline (P < 0.05). Baroreflex gain was comparable before and after cocaine. We conclude that in conscious humans the primary effect of intranasal cocaine is to increase sympathetic nerve discharge to the skeletal muscle bed. Furthermore, sinoaortic baroreflexes play a pivotal role in modulating the cocaine-induced sympathetic excitation. The interplay between these

  15. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  16. Hypoxia sensing through β-adrenergic receptors

    PubMed Central

    Cheong, Hoi I.; Asosingh, Kewal; Stephens, Olivia R.; Queisser, Kimberly A.; Xu, Weiling; Willard, Belinda; Hu, Bo; Dermawan, Josephine Kam Tai; Stark, George R.; Naga Prasad, Sathyamangla V.; Erzurum, Serpil C.

    2016-01-01

    Life-sustaining responses to low oxygen, or hypoxia, depend on signal transduction by HIFs, but the underlying mechanisms by which cells sense hypoxia are not completely understood. Based on prior studies suggesting a link between the β-adrenergic receptor (β-AR) and hypoxia responses, we hypothesized that the β-AR mediates hypoxia sensing and is necessary for HIF-1α accumulation. Beta blocker treatment of mice suppressed hypoxia induction of renal HIF-1α accumulation, erythropoietin production, and erythropoiesis in vivo. Likewise, beta blocker treatment of primary human endothelial cells in vitro decreased hypoxia-mediated HIF-1α accumulation and binding to target genes and the downstream hypoxia-inducible gene expression. In mechanistic studies, cAMP-activated PKA and/or GPCR kinases (GRK), which both participate in β-AR signal transduction, were investigated. Direct activation of cAMP/PKA pathways did not induce HIF-1α accumulation, and inhibition of PKA did not blunt HIF-1α induction by hypoxia. In contrast, pharmacological inhibition of GRK, or expression of a GRK phosphorylation–deficient β-AR mutant in cells, blocked hypoxia-mediated HIF-1α accumulation. Mass spectrometry–based quantitative analyses revealed a hypoxia-mediated β-AR phosphorylation barcode that was different from the classical agonist phosphorylation barcode. These findings indicate that the β-AR is fundamental to the molecular and physiological responses to hypoxia. PMID:28018974

  17. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    SciTech Connect

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr. )

    1987-11-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of ({sup 3}H)prazosin, ({sup 3}H)rauwolscine, and ({sup 125}I)iodocyanopindolol were used to quantitate {alpha}{sub 1}-, {alpha}{sub 2}-, and {beta}-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B{sub max}, per milligram membrane protein) for {alpha}{sub 1}-, and {alpha}{sub 2}-, and {beta}-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K{sub D}) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine.

  18. α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation.

    PubMed

    Kiviniemi, Antti M; Frances, Maria F; Tiinanen, Suvi; Craen, Rosemary; Rachinsky, Maxim; Petrella, Robert J; Seppänen, Tapio; Huikuri, Heikki V; Tulppo, Mikko P; Shoemaker, J Kevin

    2011-08-01

    The present study was designed to address the contribution of α-adrenergic modulation to the genesis of low-frequency (LF; 0.04-0.15 Hz) oscillations in R-R interval (RRi), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) during different sympathetic stimuli. Blood pressure and RRi were measured continuously in 12 healthy subjects during 5 min periods each of lower body negative pressure (LBNP; -40 mmHg), static handgrip exercise (HG; 20% of maximal force) and postexercise forearm circulatory occlusion (PECO) with and without α-adrenergic blockade by phentolamine. Muscle sympathetic nerve activity was recorded in five subjects during LBNP and in six subjects during HG and PECO. Low-frequency powers and median frequencies of BP, RRi and MSNA were calculated from power spectra. Low-frequency power during LBNP was lower with phentolamine versus without for both BP and RRi oscillations (1.6 ± 0.6 versus 1.2 ± 0.7 ln mmHg(2), P = 0.049; and 6.9 ± 0.8 versus 5.4 ± 0.9 ln ms(2), P = 0.001, respectively). In contrast, the LBNP with phentolamine increased the power of high-frequency oscillations (0.15-0.4 Hz) in BP and MSNA (P < 0.01 for both), which was not observed during saline infusion. Phentolamine also blunted the increases in the LBNP-induced increase in frequency of LF oscillations in BP and RRi. Phentolamine decreased the LF power of RRi during HG (P = 0.015) but induced no other changes in LF powers or frequencies during HG. Phentolamine resulted in decreased frequency of LF oscillations in RRi (P = 0.004) during PECO, and a similar tendency was observed in BP and MSNA. The power of LF oscillation in MSNA did not change during any intervention. We conclude that α-adrenergic modulation contributes to LF oscillations in BP and RRi during baroreceptor unloading (LBNP) but not during static exercise. Also, α-adrenergic modulation partly explains the shift to a higher frequency of LF oscillations during baroreceptor unloading and muscle

  19. Adrenergic and purinergic components in bisected vas deferens from spontaneously hypertensive rats

    PubMed Central

    Guitart, Mònica; Giraldo, Jesús; Goñalons, Eduard; Vila, Elisabet; Badia, Albert

    1999-01-01

    Purinergic and adrenergic components of the contractile response to electrical field stimulation (EFS) have been investigated in epididymal and prostatic portions of Wystar Kyoto (WKY) and spontaneously hypertensive rat (SHR) vas deferens. In both halves of SHR and WKY vas deferens, EFS (40 V, 0.5 ms for 30 s, 0.5–32 Hz) evoked frequency-related contractions. The neurogenic responses were biphasic, consisting of a rapid non-adrenergic response, dominant in the prostatic portion, followed by a slow tonic adrenergic component, dominant in the epididymal half. Phasic and tonic components of the frequency-response curves evoked by EFS were significantly higher in the epididymal but not in the prostatic portion of vas deferens from SHR compared to WKY rats. The α1-adrenoceptor antagonist prazosin (0.1 μM) was more effective against both components of the contractile response in the epididymal end of SHR than in WKY rats. Inhibition by α,β-methylene adenosine 5′-triphosphate (α,β-meATP 3 and 30 μM) was higher in both components of the contractile responses in WKY preparations than in SHR. Combined α1-adrenoceptor and P2x-purinoceptor antagonism virtually abolished the EFS-evoked contractile response in both strains. The degree of inhibition by prazosin (0.1 μM) after P2x-purinoceptor blockade was higher in SHR than in WKY rats. These results demonstrate a modification in the purinergic and noradrenergic contribution to neurogenic responses in SHR and WKY animals besides a co-participation of ATP and noradrenaline in both contractile components of the response to EFS. PMID:10556921

  20. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    ERIC Educational Resources Information Center

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  1. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    PubMed

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics.

  2. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  3. beta-Adrenergic receptor modulation of wound repair.

    PubMed

    Pullar, Christine E; Manabat-Hidalgo, Catherine G; Bolaji, Ranti S; Isseroff, R Rivkah

    2008-08-01

    Adrenergic receptors and their downstream effector molecules are expressed in all cell types in the skin, and it is only recently that functionality of the catecholamine agonist activated signaling in the cutaneous repair process has been revealed. In addition to responding to systemic elevations in catecholamines (as in stress situations) or to pharmacologically administered adrenergic agonists, epidermal keratinocytes themselves can synthesize catecholamine ligands. They also respond to these systemic or self-generated agonists via receptor mediated signaling, resulting in altered migration, and changes in wound re-epithelialization. Endothelial cells, inflammatory cells, dermal fibroblasts, and mesenchymal stem cells, all cells that contribute to the wound repair process, express multiple subtypes of adrenergic receptors and exhibit responses that can be either contribute or impair healing-and occasionally, depending on the species and assay conditions, results can be conflicting. There is still much to be uncovered regarding how this self-contained autocrine and paracrine signaling system contributes to cutaneous wound repair.

  4. Genetic manipulation of beta-adrenergic signalling in heart failure.

    PubMed

    Davidson, M J; Koch, W J

    2001-09-01

    Heart failure (HF) represents one of the leading causes for hospitalization in developed nations. Despite advances in the management of coronary artery disease, no significant improvements in prognosis have been achieved for HF over the last several decades. Heart failure itself represents a final common endpoint for several disease entities, including hypertension, coronary artery disease, and cardiomyopathy. However, certain biochemical features remain common to the failing myocardium. Foremost amongst these are alterations in the beta-adrenergic receptor signalling cascade. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies for the management of HF via enhancement of beta-adrenergic signalling. In this review, we will discuss the biochemical changes that accompany HF as well as corresponding therapeutic strategies. We will then review the evidence from transgenic mouse work supporting the use of adrenergic receptor augmentation in the failing heart and more recent in vivo applications of gene therapy directed at reversing or preventing HF.

  5. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-05-01

    The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.

  6. The effect of adrenergic, cholinergic and peptidergic salivary stimulants on gastric mucosal integrity in the rat.

    PubMed Central

    Soper, B D; Tepperman, B L

    1986-01-01

    Sialoadenectomized and sham-operated rats were given salivary secretory stimulants 30 min prior to intragastric instillation of a bile salt solution (5 mM-sodium taurocholate in 100 mM-HCl). Administration of the alpha-agonist phenylephrine (0.15-15 mg/kg) resulted in a dose-dependent reduction in the loss of H+ and the intraluminal appearance of Na+ and K+ associated with bile-salt-induced damage to the stomach in the sham-sialoadenectomized rat. The effect was not apparent if the salivary glands had been previously excised. Adrenaline (0.8-4.0 mg/kg) and noradrenaline (0.8-4.0 mg/kg) were less effective in reducing the degree of mucosal damage in sham-sialoadenectomized rats and were not effective in sialoadenectomized rats. Administration of secretory stimulant doses of isoprenaline (5 mg/kg), pilocarpine (2 mg/kg) and substance P (25 mg/kg) either had no significant effect or exacerbated the net transmucosal fluxes of H+, Na+ and K+ associated with bile salt damage to the gastric mucosa. The protective action of phenylephrine in sham-sialoadenectomized rats was reversed by prior treatment with the alpha-antagonist, phentolamine (2 mg/kg). The effect of phentolamine was dose dependent. Vagotomy abolished the protective influence of phenylephrine in sham-sialoadenectomized rats but did not influence the response to other salivary secretory stimulants consistently. These data suggest that stimulation of alpha-adrenergic receptors in rat salivary tissue is associated with an amelioration of the increase in gastric mucosal permeability to H+, Na+ and K+ in response to an intraluminal bile salt solution. The apparent protective influence of alpha-adrenergic receptor activation in sham-sialoadenectomized rats is mediated in part by the vagus nerve. PMID:2886655

  7. Adrenergic denervation hypersensitivity in ileal circular smooth muscle after small bowel transplantation in rats.

    PubMed

    Shibata, C; Balsiger, B M; Anding, W J; Sarr, M G

    1997-11-01

    Effects of small bowel transplantation (SBT) on ileal motility are unknown. The aim of the present study was to investigate changes in spontaneous contractile activity and sensitivity to cholinergic and adrenergic agents in the ileal circular muscle after SBT in rats. Orthotopic SBT was performed in syngeneic rats to avoid immune phenomena. Distal ileal circular muscle strips from rats one week (N = 10) and eight weeks (N = 10) after SBT were stretched to optimal length (Lo), and basal spontaneous activity at Lo was measured. Dose-response experiments to the cholinergic agonist bethanechol (Be, 10(-8)-10(-4) M) were performed in the presence of tetrodotoxin (TTX, 10(-6) M) and to the adrenergic agonist norepinephrine (NE, 10(-8)-10(-4) M) with or without TTX. ED50 (negative log of drug-concentration that induced 50% effect) was calculated. We also studied rats with selective jejunoileal ischemia/ reperfusion, intestinal transection/reanastomosis, naive controls, and sham operated controls (N > or = 8/group). Spontaneous basal activity did not differ among groups. Sensitivity to Be was not different in rats after SBT or in other groups compared to control tissue. After SBT, hypersensitivity to NE was shown by a significant increase of ED50 at one and eight weeks after SBT (5.1 +/- 0.3 vs 6.2 +/- 0.4 and 6.2 +/- 0.2, respectively; P < 0.05) regardless of the presence of TTX. No hypersensitivity was observed after ischemia-reperfusion intestinal transection-reanastomosis, or sham operation. It is concluded that ileal hypersensitivity to NE was related to the extrinsic denervation obligated by the transplantation procedure, possibly mediated through an increase in number of receptors on smooth muscle, not on the enteric nerves.

  8. Impaired alpha1-adrenergic responses in aged rat hearts.

    PubMed

    Montagne, Olivier; Le Corvoisier, Philippe; Guenoun, Thierry; Laplace, Monique; Crozatier, Bertrand

    2005-06-01

    To determine age-related changes in the cardiac effect of alpha1-adrenergic stimulation, both cardiomyocyte Ca2+-transient and cardiac protein kinase C (PKC) activity were measured in 3-month- (3MO) and 24-month- (24MO) old Wistar rats. Ca2+ transients obtained under 1 Hz pacing by microfluorimetry of cardiomyocyte loaded with indo-1 (405/480 nm fluorescence ratio) were compared in control conditions (Kreb's solution alone) and after alpha1-adrenergic stimulation (phenylephrine or cirazoline, an alpha1-specific agonist). PKC activity and PKC translocation index (particulate/total activity) were also assayed before and after alpha1-adrenergic stimulation. In 3MO, cirazoline induced a significant increase in Ca2+ transient for a 10(-9) M concentration which returned to control values for larger concentrations. In contrast, in 24MO, we observed a constant negative effect of cirazoline on the Ca2+ transient with a significant decrease at 10(-6) M compared with both baseline and Kreb's solution. Preliminary experiments showed that, in a dose-response curve to phenylephrine, the response of Ca2+ transient was maximal at 10(-7) M. This concentration induced a significant increase in Ca2+ transient in 3MO and a significant decrease in 24MO. The same concentration was chosen to perform PKC activity measurements under alpha1-adrenergic stimulation. In the basal state, PKC particulate activity was higher in 24MO than that in 3MO but was not different in cytosolic fractions; so that the translocation index was higher in 24MO (P < 0.01). After phenylephrine, a translocation of PKC toward the particulate fraction was observed in 3MO but not in 24MO. In conclusion, cardiac alpha1-adrenoceptor response was found to be impaired in aged hearts. The negative effect of alpha1-adrenergic stimulation on Ca2+ transient in cardiomyocytes obtained from old rats can be related to an absence of alpha1-adrenergic-induced PKC translocation.

  9. Dexmedetomidine for Refractory Adrenergic Crisis in Familial Dysautonomia

    PubMed Central

    Dillon, Ryan C.; Palma, Jose-Alberto; Spalink, Christy L.; Altshuler, Diana; Norcliffe-Kaufmann, Lucy; Fridman, David; Papadopoulos, John; Kaufmann, Horacio

    2016-01-01

    Objective Adrenergic crises are a cardinal feature of familial dysautonomia (FD). Traditionally, adrenergic crisis have been treated with the sympatholytic agent clonidine or with benzodiazepines, which can cause excessive sedation and respiratory depression. Dexmedetomidine is an α2A-adrenergic agonist with greater selectivity and shorter half-life than clonidine. We aimed to evaluate the preliminary effectiveness and safety of intravenous dexmedetomidine in the treatment of refractory adrenergic crisis in patients with FD. Methods Retrospective chart review of patients with genetically confirmed FD who received intravenous dexmedetomidine for refractory adrenergic crises. The primary outcome was preliminary effectiveness of dexmedetomidine defined as change in blood pressure (BP) and heart rate (HR) 1-hour after the initiation of dexmedetomidine. Secondary outcomes included incidence of adverse events related to dexmedetomidine, hospital and intensive care unit (ICU) length of stay, and hemodynamic parameters 12-hours after dexmedetomidine cessation. Results Nine patients over 14 admissions were included in the final analysis. At 1-hour after the initiation of dexmedetomidine, systolic BP decreased from 160±7 to 122±7 mmHg (p=0.0005), diastolic BP decreased from 103±6 to 65±8 (p=0.0003), and HR decreased from 112±4 to 100±5 bpm (p=0.0047). The median total adverse events during dexmedetomidine infusion was 1 per admission. Median hospital length of stay was 9 days (IQR, 3 – 11 days) and median ICU length of stay was 7 days (IQR, 3 – 11 days). Conclusions Intravenous dexmedetomidine is safe in patients with FD and appears to be effective to treat refractory adrenergic crisis. Dexmedetomidine may be considered in FD patients who do not respond to conventional clonidine and benzodiazepine pharmacotherapy. PMID:27752785

  10. Adrenergic receptors on cerebral microvessels in control and Parkinsonian subjects

    SciTech Connect

    Cash, R.; Lasbennes, F.; Sercombe, R.; Seylaz, J.; Agid, Y.

    1985-08-12

    The binding of adrenergic ligands (/sup 3/H-prazosin, /sup 3/H-clonidine, /sup 3/H-dihydroalprenolol) was studied on a preparation of cerebral microvessels in the prefrontal cortex and putamen of control and Parkinsonian subjects. The adrenergic receptor density in microvessels of control patients was less than 0.5% and 3.3% respectively of the total binding. A significant decrease in the number of alpha-1 binding sites was observed on microvessels in the putamen of patients with Parkinson's disease. 22 references, 2 tables.

  11. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs

  12. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  13. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  14. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  15. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  16. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  17. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    SciTech Connect

    Hill, D.A.

    1989-01-01

    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta{sub 2}-adrenergic receptors (AR's) on peripheral blood lymphocytes, via (I{sup 125})iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay.

  18. Optic Nerve Pit

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  19. Multicenter Clinical Trial of Keratin Biomaterials for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2013-10-01

    purity (size exclusion chromatography for molecular weight, amino acids analysis, ELISA for protein identification, and gel rheology ) and 2) a cell...distribution study. Labeled keratin gel will be placed inside nerve conduits. The ends of the conduits will be closed, and the conduits will be implanted in...Marra KG. Keratin gel filler for peripheral nerve repair in a rodent sciatic nerve injury model. Plast Reconstr Surg 2012;129:67-78. Pace LA

  20. Electrophysiology of corneal cold receptor nerve terminals.

    PubMed

    Carr, Richard W; Brock, James A

    2002-01-01

    The mechanisms of sensory transduction in the fine nerve terminals of free nerve endings supplied by Adelta and C sensory axons are largely a matter of speculation. This is because the nerve terminals are small and inaccessible, particularly in intact tissues like skin. However, some of the difficulties associated with investigating the physiology of fine nerve terminals have recently been overcome using an in vitro preparation of the guinea-pig cornea that allows nerve terminal impulses (NTIs) to be recorded extracellularly from single polymodal and cold receptor nerve terminals. For cold receptors, the rate of spontaneously occurring NTIs is increased during cooling and decreased during heating. In addition, heating and cooling differentially modulate the shape of the recorded NTI. At the same temperature, NTIs are larger in amplitude and faster in time course during heating than those during cooling. The differential effect of heating and cooling on NTI shape is not considered to result simply from the temperature dependence of voltage-activated conductance kinetics or activity dependent changes in membrane excitability. Instead, changes in NTI shape may reflect changes in nerve terminal membrane potential that underlie the process of thermal transduction.

  1. Muscle plasticity and β₂-adrenergic receptors: adaptive responses of β₂-adrenergic receptor expression to muscle hypertrophy and atrophy.

    PubMed

    Sato, Shogo; Shirato, Ken; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2011-01-01

    We discuss the functional roles of β₂-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β₂-adrenergic receptor expression to anabolic and catabolic conditions. β₂-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β₂-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β₂-adrenergic receptors negates their beneficial effects. Although the preventive effects of β₂-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β₂-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β₂-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β₂-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  2. Adrenergic and cromolyn sodium modulation of ECL cell histamine secretion.

    PubMed

    Lawton, G P; Tang, L H; Miu, K; Gilligan, C J; Absood, A; Modlin, I M

    1995-01-01

    The histamine secreting enterochromaffin-like (ECL) cell is now recognized as the principal regulator of gastric acid secretion. Histamine is not only a primary modulator of acid secretion, but may be of relevance in gastritis and as a mitogen in gastric neoplasia. Study of the ECL cell has been limited since no pure preparation was available. We therefore developed a pure isolated ECL cell preparation with a purity of 90-95% as determined by total histamine content and chromogranin immunofluorescence. Trypan blue exclusion demonstrated > 95% viability. While gastrin and acetylcholine are known modulators of acid secretion, the role of adrenergic neurotransmitters has not been clearly delineated. The purpose of this study was to examine adrenergic modulation of ECL cell histamine release. To further define the inhibitory mechanisms of histamine secretion, we evaluated the mast cell histamine inhibitor sodium cromoglycate. Histamine secretion was determined by radioimmunoassay. Basal secretion was 0.6 +/- 0.2 nmol/10(3) cells. Gastrin stimulated histamine secretion with an EC50 of 3 x 10(-10) M. Octopamine (alpha-adrenergic agonist) (10(-11)-10(-4) M) failed to stimulate histamine secretion. Isoproterenol (beta-adrenergic agonist) stimulated histamine secretion (EC50, 6 x 10(-8) M) and was inhibited by propranolol (IC50 5 x 10(-10) M).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors.

    PubMed

    Choi, Yong Kee; Wong, Erik H F; Henry, Brian; Shahid, Mohammed; Tarazi, Frank I

    2010-04-01

    Adrenergic (alpha1 and alpha2) and cholinergic muscarinic (M1-M5) receptor binding in rat forebrain was quantified after 4 wk of twice-daily subcutaneous administration of asenapine or vehicle. Asenapine (0.03, 0.1, and 0.3 mg/kg) produced increases in [3H]prazosin binding to alpha1-adrenergic receptors in the medial prefrontal cortex (mPFC: 30%, 39%, 57%) and dorsolateral frontal cortex (DFC: 27%, 37%, 53%) and increased [3H]RX821002 binding to alpha2-adrenergic receptors in mPFC (36%, 43%, 50%) and DFC (41%, 44%, 52%). Despite showing no appreciable affinity for muscarinic receptors, asenapine produced regionally selective increases in binding of [3H]QNB to M1-M5 receptors in mPFC (26%, 31%, 43%), DFC (27%, 34%, 41%), and hippocampal CA1 (40%, 44%, 42%) and CA3 (25%, 52%, 48%) regions. These regionally selective effects of asenapine on adrenergic and cholinergic muscarinic receptor subtypes may contribute to its beneficial clinical effects in the treatment of schizophrenia and bipolar disorder.

  4. Use of ß-adrenergic agonists in hybrid catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ractopamine hydrochloride (RH) is a potent ß-adrenergic agonist that has been used in some species of fish to improve growth performance and dress out characteristics. While this metabolic modifier has been shown to have positive effects on growth of fish, little research has focused on the mechani...

  5. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  6. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    PubMed Central

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Young, Ton-Ho; Salter, Donald M.; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4) injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury. PMID:26798417

  7. Optic Nerve Elongation

    PubMed Central

    Alvi, Aijaz; Janecka, Ivo P.; Kapadia, Silloo; Johnson, Bruce L.; McVay, William

    1996-01-01

    The length of the optic nerves is a reflection of normal postnatal cranio-orbital development. Unilateral elongation of an optic nerve has been observed in two patients with orbital and skull base neoplasms. In the first case as compared to the patient's opposite, normal optic nerve, an elongated length of the involved optic nerve of 45 mm was present. The involved optic nerve in the second patient was 10 mm longer than the normal opposite optic nerve. The visual and extraocular function was preserved in the second patient. The first patient had only light perception in the affected eye. In this paper, the embryology, anatomy, and physiology of the optic nerve and its mechanisms of stretch and repair are discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:17170975

  8. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  9. Biodegradable magnesium wire promotes regeneration of compressed sciatic nerves

    PubMed Central

    Li, Bo-han; Yang, Ke; Wang, Xiao

    2016-01-01

    Magnesium (Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire (3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A mRNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves. PMID:28197200

  10. Biodegradable magnesium wire promotes regeneration of compressed sciatic nerves.

    PubMed

    Li, Bo-Han; Yang, Ke; Wang, Xiao

    2016-12-01

    Magnesium (Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire (3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A mRNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.

  11. Discriminative stimulus properties of clenbuterol: evidence for beta adrenergic involvement.

    PubMed

    McElroy, J F; O'Donnell, J M

    1988-04-01

    Thirty rats were trained to discriminate the centrally acting beta adrenergic agonist clenbuterol (0.1 mg/kg) from saline using a water-reinforced (fixed-ratio 10 schedule) two-lever operant task. Discrimination acquisition required a mean +/- S.E.M. of 42 +/- 7 training sessions (median of 26 training sessions). The clenbuterol stimulus was dose-dependent (ED50 = 0.03 mg/kg) and stereoselective, and had a rapid onset (5 min) and a duration of approximately 1 hr. The beta adrenergic antagonist propranolol fully antagonized the clenbuterol discriminative stimulus (IC50 = 0.18 mg/kg). Other beta adrenergic agonists such as SOM 1122 (ED50 = 0.01 mg/kg), zinterol (ED50 = 0.03 mg/kg), salbutamol (ED50 = 0.23 mg/kg) and prenalterol (ED50 = 1.91 mg/kg) substituted for clenbuterol. The monoamine uptake inhibitor despiramine (ED50 = 2.25 mg/kg), the psychomotor stimulants amphetamine (ED50 = 0.33 mg/kg) and pentylenetetrazol (ED50 = 0.31 mg/kg), and the dopamine receptor antagonists haloperidol (ED50 = 0.08 mg/kg) and chlorpromazine (ED50 = 2.32 mg/kg) similarly substituted for clenbuterol. However, chlordiazepoxide, pentobarbital, fentanyl, cocaine and fenfluramine produced little or no clenbuterol lever selection up to doses that decreased response rate markedly. The ability of SOM 1122, zinterol, salbutamol, despiramine, amphetamine, pentylenetetrazol and haloperiol to substitute for the clenbuterol stimulus was antagonized by prior treatment with propranolol. Taken together, these results suggest that the discriminative stimulus properties of clenbuterol are mediated, at least in part, through an interaction with beta adrenergic receptors. The same drugs also were assayed for in vitro inhibition of [125I]iodopindolol binding to beta adrenergic receptor preparations of rat cerebral cortex and cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Adrenergic control of lipolysis in women compared with men.

    PubMed

    Schmidt, Stacy L; Bessesen, Daniel H; Stotz, Sarah; Peelor, Frederick F; Miller, Benjamin F; Horton, Tracy J

    2014-11-01

    Data suggest women are more sensitive to the lipolytic action of epinephrine compared with men while maintaining similar glucoregulatory effects (Horton et al. J Appl Physiol 107: 200-210, 2009). This study aimed to determine the specific adrenergic receptor(s) that may mediate these sex differences. Lean women (n = 14) and men (n = 16) were studied on 4 nonconsecutive days during the following treatment infusions: saline (S: control), epinephrine [E: mixed β-adrenergic (lipolytic) and α2-adrenergic (antilipolytic) stimulation], epinephrine + phentolamine (E + P: mixed β-adrenergic stimulation only), and terbutaline (T: selective β2-adrenergic stimulation). Tracer infusions of glycerol, palmitate, and glucose were administered to determine systemic lipolysis, free fatty acid (FFA) release, and glucose turnover, respectively. Following basal measurements, substrate and hormone concentrations were measured in all subjects over 90 min of treatment and tracer infusion. Women had greater increases in glycerol and FFA concentrations with all three hormone infusions compared with men (P < 0.01). Glycerol and palmitate rate of appearance (Ra) and rate of disappearance (Rd) per kilogram body weight were greater with E infusion in women compared with men (P < 0.05), whereas no sex differences were observed with other treatments. Glucose concentration and kinetics were not different between sexes with any infusion. In conclusion, these data support the hypothesis that the greater rate of lipolysis in women with infusion of E was likely due to lesser α2 antilipolytic activation. These findings may help explain why women have greater lipolysis and fat oxidation during exercise, a time when epinephrine concentration is elevated.

  13. Peripheral nerve regeneration following transection injury to rat sciatic nerve by local application of adrenocorticotropic hormone.

    PubMed

    Mohammadi, Rahim; Yadegarazadi, Mohammad-Javad; Amini, Keyvan

    2014-09-01

    The objective of this study was to assess local effect of adrenocorticotropic hormone (ACTH) on the functional recovery of the sciatic nerve in a transection model. Sixty male healthy white Wistar rats were randomized into four experimental groups of 15 animals each: In the sham-operated group (SHAM), the sciatic nerve was exposed and manipulated. In the transected group (TC), the left sciatic nerve was transected and the cut nerve ends were fixed in the adjacent muscle. In the silicone graft group (SIL) a 10-mm defect was made and bridged using a silicone tube. The graft was filled with phosphated-buffer saline alone. In the treatment group a silicone tube (SIL/ACTH) was filled with 10 μL ACTH (0.1 mg/mL). Each group was subdivided into three subgroups of five animals each and regenerated nerve fibres were studied at 4, 8 and 12 weeks post operation. Behavioral testing, functional, gastrocnemius muscle mass and morphometric indices showed earlier regeneration of axons in SIL/ACTH than in SIL group (p < 0.05). Immunohistochemistry clearly showed more positive location of reactions to S-100 in SIL/ACTH than in SIL group. ACTH improved functional recovery and morphometric indices of sciatic nerve. This finding supports role of ACTH after peripheral nerve repair and may have clinical implications for the surgical management of patients after nerve transection.

  14. Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s).

    PubMed

    Matsuda, Nilce Mitiko; Miller, Steven M

    2010-06-01

    Relaxation of gastrointestinal smooth muscle caused by release of non-adrenergic non-cholinergic (NANC) transmitters from enteric nerves occurs in several physiologic digestive reflexes. Likely candidate NANC inhibitory agents include nitric oxide (NO), adenosine triphosphate (ATP), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), carbon monoxide (CO), protease-activated receptors (PARs), hydrogen sulfide (H2S), neurotensin (NT) and beta-nicotinamide adenine dinucleotide (beta-NAD). Multiple NANC transmitters work in concert, are pharmacologically coupled and are closely coordinated. Individual contribution varies regionally in the gastrointestinal tract and between species. NANC inhibition of gastrointestinal smooth muscle involves several intracellular mechanisms, including increase of cyclic guanosine monophosphate (cGMP), increase of cyclic adenosine monophosphate (cAMP) and hyperpolarization of the cell membrane via direct or indirect activation of potassium ion (K+) channels.

  15. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  16. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    SciTech Connect

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  17. Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man.

    PubMed

    Danielson, Patrik; Alfredson, Håkan; Forsgren, Sture

    2007-04-01

    Changes in the patterns of production and in the effects of signal substances may be involved in the development of tendinosis, a chronic condition of pain in human tendons. There is no previous information concerning the patterns of sympathetic innervation in the human patellar tendon. In this study, biopsies of normal and tendinosis patellar tendons were investigated with immunohistochemical methods, including the use of antibodies against tyrosine hydroxylase (TH) and neuropeptide Y, and against alpha1-, alpha2A-, and beta1-adrenoreceptors. It was noticed that most of the sympathetic innervation was detected in the walls of the blood vessels entering the tendon through the paratendinous tissue, and that the tendon tissue proper of the normal and tendinosis tendons was very scarcely innervated. Immunoreactions for adrenergic receptors were noticed in nerve fascicles containing both sensory and sympathetic nerve fibers. High levels of these receptors were also detected in the blood vessel walls; alpha1-adrenoreceptor immunoreactions being clearly more pronounced in the tendinosis tendons than in the tendons of controls. Interestingly, immunoreactions for adrenergic receptors and TH were noted for the tendon cells (tenocytes), especially in tendinosis tendons. The findings give a morphological correlate for the occurrence of sympathetically mediated effects in the patellar tendon and autocrine/paracrine catecholamine mechanisms for the tenocytes, particularly, in tendinosis. The observation of adrenergic receptors on tenocytes is interesting, as stimulation of these receptors can lead to cell proliferation, degeneration, and apoptosis, events which are all known to occur in tendinosis. Furthermore, the results imply that a possible source of catecholamine production might be the tenocytes themselves

  18. Frequency dependent changes in mechanosensitivity of rat knee joint afferents after antidromic saphenous nerve stimulation.

    PubMed

    Just, S; Heppelmann, B

    2002-01-01

    The aim of the present study was to examine the effect of electrical saphenous nerve stimulation (14 V, 1-10 Hz) on the mechanosensitivity of rat knee joint afferents. The responses to passive joint rotations at defined torque were recorded from slowly conducting knee joint afferent nerve fibres (0.6-20.0 m/s). After repeated nerve stimulation with 1 Hz, the mechanosensitivity of about 79% of the units was significantly affected. The effects were most prominent at a torque close to the mechanical threshold. In about 46% of the examined nerve fibres a significant increase was obtained, whereas about 33% reduced their mechanosensitivity. The sensitisation was prevented by an application of 5 microM phentolamine, an alpha-adrenergic receptor blocker, together with a neuropeptide Y receptor blocker. An inhibition of N-type Ca(2+) channels by an application of 1 microM omega-conotoxin GVIA caused comparable changes of the mechanosensitivity during the electrical stimulation. Electrical nerve stimulation with higher frequencies resulted in a further reduction of the mean response to joint rotations. After stimulation with 10 Hz, there was a nearly complete loss of mechanosensitivity.In conclusion, antidromic electrical nerve stimulation leads to a frequency dependent transient decrease of the mechanosensitivity. A sensitisation was only obtained at 1 Hz, but this effect may be based on the influence of sympathetic nerve fibres.

  19. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    SciTech Connect

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B. )

    1990-07-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

  20. Ultraviolet radiation augments epidermal beta-adrenergic adenylate cyclase response

    SciTech Connect

    Iizuka, H.; Kajita, S.; Ohkawara, A.

    1985-05-01

    Pig skin was irradiated in vivo with fluorescent sunlamp tubes (peak emission at 305 nm). A significant increase in epidermal beta-adrenergic adenylate cyclase response was observed as early as 12 h following 1-2 minimum erythema doses (MEDs) UVB exposure, which lasted at least 48 h. The augmentation of adenylate cyclase response was relatively specific to the beta-adrenergic system and there was no significant difference in either adenosine- or histamine-adenylate cyclase response of epidermis. The increased beta-adrenergic adenylate cyclase response was less marked at higher doses of UVB exposure (5 MEDs); in the latter condition, a significant reduction in adenosine- or histamine-adenylate cyclase response was observed. There was no significant difference in either low- or high-Km cyclic AMP phosphodiesterase activity between control and UVB-treated skin at 1-2 MEDs. These data indicate that the epidermal adenylate cyclase responses are affected in vivo by UVB irradiation, which might be a significant regulatory mechanism of epidermal cyclic AMP systems.

  1. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  2. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action.

    PubMed Central

    García-Sáinz, J A; Hernández-Sotomayor, S M

    1985-01-01

    We have previously suggested that the effects of alpha 1-adrenergic agents on hepatocyte metabolism involve two mechanisms: (i) a calcium-independent insulin-sensitive process that is modulated by glucocorticoids and (ii) a calcium-dependent insulin-insensitive process that is modulated by thyroid hormones. We have studied the effect of epinephrine (plus propranolol) on gluconeogenesis from lactate and dihydroxyacetone. It was observed that the adrenergic stimulation of gluconeogenesis from lactate seemed to occur through both mechanisms, whereas when the substrate was dihydroxyacetone the action took place exclusively through the calcium-independent insulin-sensitive process. This effect was absent in hepatocytes from adrenalectomized rats, suggesting that it is modulated by glucocorticoids. PMID:2995981

  3. The adrenergic regulation of the cardiovascular system in the South American rattlesnake, Crotalus durissus.

    PubMed

    Galli, Gina L J; Skovgaard, Nini; Abe, Augusto S; Taylor, Edwin W; Wang, Tobias

    2007-11-01

    The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (G(sys)) more than doubled), while injection of propranolol caused a systemic vasoconstriction, pointing to a potent alpha-adrenergic, and a weaker beta-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused a small but non-significant pulmonary vasodilatation and there was tendency of reducing this dilatation after either phentolamine or propranolol. Injection of phentolamine increased pulmonary conductance (G(pul)), while injection of propranolol produced a small pulmonary constriction, indicating that alpha-adrenergic and beta-adrenergic receptors contribute to a basal regulation of the pulmonary vasculature. Our results suggest adrenergic regulation of the systemic vasculature, rather than the pulmonary, may be an important factor in the development of intracardiac shunts.

  4. Peripheral nerve surgery.

    PubMed

    McQuarrie, I G

    1985-05-01

    In treating the three main surgical problems of peripheral nerves--nerve sheath tumors, entrapment neuropathies, and acute nerve injuries--the overriding consideration is the preservation and restoration of neurologic function. Because of this, certain other principles may need to be compromised. These include achieving a gross total excision of benign tumors, employing conservative therapy as long as a disease process is not clearly progressing, and delaying repair of a nerve transection until the skin wound has healed. Only three pathophysiologic processes need be considered: neurapraxia (focal segmental dymyelination), axonotmesis (wallerian degeneration caused by a lesion that does not disrupt fascicles of nerve fibers), and neurotmesis (wallerian degeneration caused by a lesion that interrupts fascicles). With nerve sheath tumors and entrapment neuropathies, the goal is minimize the extent to which neurapraxia progresses to axonotmesis. The compressive force is relieved without carrying out internal neurolysis, a procedure that is poorly tolerated, presumably because a degree of nerve ischemia exists with any long-standing compression. When the nerve has sustained blunt trauma (through acute compression, percussion, or traction), the result can be a total loss of function and an extensive neuroma-in-continuity (scarring within the nerve). However, the neural pathophysiology may amount to nothing more than axonotmesis. Although this lesion, in time, leads to full and spontaneous recovery, it must be differentiated from the neuroma-in-continuity that contains disrupted fascicles requiring surgery. Finally, with open nerve transection, the priority is to match the fascicles of the proximal stump with those of the distal stump, a goal that is best achieved if primary neurorrhaphy is carried out.

  5. Angiotensin II potentiates α-adrenergic vasoconstriction in the elderly.

    PubMed

    Barrett-O'Keefe, Zachary; Witman, Melissa A H; McDaniel, John; Fjeldstad, Anette S; Trinity, Joel D; Ives, Stephen J; Conklin, Jamie D; Reese, Van; Runnels, Sean; Morgan, David E; Sander, Mikael; Richardson, Russell S; Wray, D Walter

    2013-03-01

    Aging is characterized by increased sympatho-excitation, expressed through both the α-adrenergic and RAAS (renin-angiotensin-aldosterone) pathways. Although the independent contribution of these two pathways to elevated vasoconstriction with age may be substantial, significant cross-talk exists that could produce potentiating effects. To examine this interaction, 14 subjects (n=8 young, n=6 old) underwent brachial artery catheterization for administration of AngII (angiotensin II; 0.8-25.6 ng/dl per min), NE [noradrenaline (norepinephrine); 2.5-80 ng/dl per min] and AngII with concomitant α-adrenergic antagonism [PHEN (phentolamine); 10 μg/dl per min]. Ultrasound Doppler was utilized to determine blood flow, and therefore vasoconstriction, in both infused and contralateral (control) limbs. Arterial blood pressure was measured directly, and sympathetic nervous system activity was assessed via microneurography and plasma NE analysis. AngII sensitivity was significantly greater in the old, indicated by both greater maximal vasoconstriction (-59±4% in old against -48±3% in young) and a decreased EC50 (half-maximal effective concentration) (1.4±0.2 ng/dl per min in old against 2.6±0.7 μg/dl per min in young), whereas the maximal NE-mediated vasoconstriction was similar between these groups (-58±9% in old and -62±5% in young). AngII also increased venous NE in the old group, but was unchanged in the young group. In the presence of α-adrenergic blockade (PHEN), maximal AngII-mediated vasoconstriction in the old was restored to that of the young (-43±8% in old and -39±6% in young). These findings indicate that, with healthy aging, the increased AngII-mediated vasoconstriction may be attributed, in part, to potentiation of the α-adrenergic pathway, and suggest that cross-talk between the RAAS and adrenergic systems may be an important consideration in therapeutic strategies targeting these two pathways.

  6. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure.

  7. Progression of Chronic Kidney Disease: Adrenergic Genetic Influence on Glomerular Filtration Rate Decline in Hypertensive Nephrosclerosis

    PubMed Central

    Chen, Yuqing; Lipkowitz, Michael S.; Salem, Rany M.; Fung, Maple M.; Bhatnagar, Vibha; Mahata, Manjula; Nievergelt, Caroline M.; Rao, Fangwen; Mahata, Sushil K.; Schork, Nicholas J.; Hicks, Pamela J.; Bowden, Donald W.; Freedman, Barry I.; Brophy, Victoria H.; O'Connor, Daniel T.

    2010-01-01

    Background African-Americans are likely to develop hypertension and hypertensive nephrosclerosis. This grave prognosis, coupled with familial aggregation of end-stage renal disease (ESRD) in Blacks, prompts a search for genetic risk factors for ESRD. Recent evidence implicates a crucial role for the sympathetic nervous system in progressive renal disease. Methods We used the African-American Study of Kidney Disease to probe whether β2-adrenergic receptor (ADRB2) predicts glomerular filtration rate (GFR) decline rate. A total of 580 participants were included. Baseline GFR was 51.2 ± 0.5 ml/min/1.73 m2. Subjects were randomized in a 2 × 3 block design: to intensively lowered (MAP ≤92 mm Hg) versus ‘usual’ (MAP = 102–107 mm Hg) blood pressure goal groups, and also divided by three randomized antihypertensive drugs (ramipril, metoprolol, or amlodipine). We scored 4 SNPs at the ADRB2 locus. Results Haplotypes at ADRB2 predicted chronic GFR decline rate, GFR declined more slowely in individuals with haplotype-1 (−804G→173T→16Gly→27GIn), and faster in those who carried haplotype-3 (−804G→173T→16Arg→27Gln). ADRB2 genotype interacted with antihypertensive drug class to influence GFR slope (p = 0.001–0.037). We extended our findings to an independent case/control sample of Black hypertensive ESRD, in which we found that variant Gly16Arg that tagged the GFR slope-determining ADRB2 haplotype also conferred risk for the ESRD trait in Blacks. Conclusions The GFR decline/progression rate in hypertensive renal disease is controlled in part by genetic variation within the adrenergic pathway. PMID:20484896

  8. Intraparotid Neurofibroma of the Facial Nerve: A Case Report

    PubMed Central

    Nofal, Ahmed-Abdel-Fattah; El-Anwar, Mohammad-Waheed

    2016-01-01

    Introduction: Intraparotid neurofibromas of the facial nerve are extremely rare and mostly associated with neurofibromatosis type 1 (NF1). Case Report: This is a case of a healthy 40-year-old man, which underwent surgery for a preoperatively diagnosed benign parotid gland lesion. After identification of the facial nerve main trunk, a single large mass (6 x 3 cm) incorporating the upper nerve division was observed. The nerve portion involved in the mass could not be dissected and was inevitably sacrificed with immediate neuroraphy of the upper division of the facial nerve with 6/0 prolene. The final histopathology revealed the presence of a neurofibroma. Complete left side facial nerve paralysis was observed immediately postoperatively but the function of the lower half was returned within 4 months and the upper half was returned after 1 year. Currently, after 3 years of follow up, there are no signs of recurrence and normal facial nerve function is observed. Conclusion: Neurofibroma should be considered as the diagnosis in a patient demonstrating a parotid mass. In cases where it is diagnosed intraoperatively, excision of part of the nerve with the mass will be inevitable though it can be successfully repaired by end to end anastomosis. PMID:27602341

  9. Role of postsynaptic alpha-adrenergic receptors in the beta-adrenergic stimulation of melatonin production in the Syrian hamster pineal gland in organ culture.

    PubMed

    Santana, C; Guerrero, J M; Reiter, R J; Menendez-Pelaez, A

    1989-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal melatonin production was investigated in the Syrian hamster. The studies were conducted using organ cultured pineal glands collected from both anatomically intact and superior cervical ganglionectomized hamsters. Results obtained indicate that phenylephrine, an alpha-adrenergic agonist, by itself has no effect in promoting melatonin production; however, it potentiates the stimulatory effects of isoproterenol, a beta-adrenergic agonist, on pineal melatonin production in nonoperated hamsters. Similar observations were obtained with pineal glands whose presynaptic terminals were removed by prior superior cervical ganglionectomy. However, a longer incubation time was required (4-6 hours vs. 2 hours) with pineal glands taken from ganglionectomized animals. Apparently, beta-adrenergic activation is an absolute requirement to stimulate pineal melatonin production, and an alpha-adrenergic receptor mechanism potentiates beta-adrenergic activation. In addition, the findings obtained with denervated pineal glands suggest that the regulation of pineal melatonin production by both alpha- and beta-adrenergic mechanisms is through receptors located on postsynaptic structures.

  10. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells.

    PubMed

    Huan, Hong-Bo; Wen, Xu-Dong; Chen, Xue-Jiao; Wu, Lin; Wu, Li-Li; Zhang, Liang; Yang, Da-Peng; Zhang, Xia; Bie, Ping; Qian, Cheng; Xia, Feng

    2017-01-01

    The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH(+)) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcinogenesis were observed. The suppression of the SNS reduced IL-6 and TGF-β expression, which suppressed hepatocarcinogenesis, and KCs play a key role in this process. After the ablation of KCs, IL-6 and TGF-β expression and the development of HCC were inhibited. This study demonstrates that sympathetic innervation is crucial for hepatocarcinogenesis and that the SNS promotes hepatocarcinogenesis by activating α1-ARs of KCs to boost the activation of KCs and to maintain the inflammatory microenvironment. These results indicate that sympathetic denervation or α1-ARs blockage may represent novel treatment approaches for HCC.

  11. β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis

    PubMed Central

    Jiao, Kai; Niu, Li-Na; Li, Qi-hong; Ren, Gao-tong; Zhao, Chang-ming; Liu, Yun-dong; Tay, Franklin R.; Wang, Mei-qing

    2015-01-01

    The present study tested whether activation of the sympathetic tone by aberrant joint loading elicits abnormal subchondral bone remodeling in temporomandibular joint (TMJ) osteoarthritis. Abnormal dental occlusion was created in experimental rats, which were then intraperitoneally injected by saline, propranolol or isoproterenol. The norepinephrine contents, distribution of sympathetic nerve fibers, expression of β-adrenergic receptors (β-ARs) and remodeling parameters in the condylar subchondral bone were investigated. Mesenchymal stem cells (MSCs) from condylar subchondral bones were harvested for comparison of their β-ARs, pro-osteoclastic gene expressions and pro-osteoclastic function. Increases in norepinephrine level, sympathetic nerve fiber distribution and β2-AR expression were observed in the condylar subchondral bone of experimental rats, together with subchondral bone loss and increased osteoclast activity. β-antagonist (propranolol) suppressed subchondral bone loss and osteoclast hyperfunction while β-agonist (isoproterenol) exacerbated those responses. MSCs from experimental condylar subchondral bone expressed higher levels of β2-AR and RANKL; norepinephrine stimulation further increased their RANKL expression and pro-osteoclastic function. These effects were blocked by inhibition of β2-AR or the PKA pathway. RANKL expression by MSCs decreased after propranolol administration and increased after isoproterenol administration. It is concluded that β2-AR signal-mediated subchondral bone loss in TMJ osteoarthritisis associated with increased RANKL secretion by MSCs. PMID:26219508

  12. Pathophysiology of nerve regeneration and nerve reconstruction in burned patients.

    PubMed

    Coert, J Henk

    2010-08-01

    In extensive burns peripheral nerves can be involved. The injury to the nerve can be direct by thermal or electrical burns, but nerves can also be indirectly affected by the systemic reaction that follows the burn. Mediators will be released causing a neuropathy to nerves remote from the involved area. Involved mediators and possible therapeutic options will be discussed. In burned patients nerves can be reconstructed using autologous nerve grafts or nerve conduits. A key factor is an adequate wound debridement and a well-vascularized bed to optimize the outgrowth of the axons. Early free tissue transfers have shown promising results.

  13. Glossopharyngeal Nerve Schwannoma

    PubMed Central

    Puzzilli, F.; Mastronardi, L.; Agrillo, U.; Nardi, P.

    1999-01-01

    Complete resection with conservation of cranial nerves is the primary goal of contemporary surgery for lower cranial nerve tumors. We describe the case of a patient with a schwannoma of the left glossopharyngeal nerve, operated on in our Neurosurgical Unit. The far lateral approach combined with laminectomy of the posterior arch of C1 was done in two steps. The procedure allowed total tumor resection and was found to be better than classic unilateral suboccipital or combined supra- and infratentorial approaches. The advantages and disadvantages of the far lateral transcondylar approach, compared to the other more common approaches, are discussed. ImagesFigure 1Figure 2 PMID:17171083

  14. The optimal distance between two electrode tips during recording of compound nerve action potentials in the rat median nerve.

    PubMed

    Li, Yongping; Lao, Jie; Zhao, Xin; Tian, Dong; Zhu, Yi; Wei, Xiaochun

    2014-01-15

    The distance between the two electrode tips can greatly influence the parameters used for recording compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spacings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance between two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential.

  15. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  16. Optic Nerve Imaging

    MedlinePlus

    ... machines can help monitor and detect loss of optic nerve fibers. The Heidelberg Retina Tomograph (HRT) is a special ... keeping organized, you can establish a routine that works for you. Read more » Are You at Risk ...

  17. Axillary nerve dysfunction

    MedlinePlus

    ... Causes Axillary nerve dysfunction is a form of peripheral neuropathy . It occurs when there is damage to the ... Multiple mononeuropathy Muscle function loss Numbness and tingling Peripheral neuropathy Systemic Review Date 2/3/2015 Updated by: ...

  18. Tibial nerve dysfunction

    MedlinePlus

    ... Tibial nerve dysfunction is an unusual form of peripheral neuropathy . It occurs when there is damage to the ... PA: Elsevier Saunders; 2012:chap 76. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  19. Vagus Nerve Stimulation.

    PubMed

    Howland, Robert H

    2014-06-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality.

  20. Ulnar nerve damage (image)

    MedlinePlus

    ... is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where it crosses the elbow, so prolonged pressure on the elbow or entrapment ...

  1. Optic Nerve Disorders

    MedlinePlus

    ... of optic nerve disorders, including: Glaucoma is a group of diseases that are the leading cause of blindness in the United States. Glaucoma usually happens when the fluid pressure inside the eyes slowly rises and damages the ...

  2. Nerve Damage (Diabetic Neuropathies)

    MedlinePlus

    ... may include numbness or insensitivity to pain or temperature a tingling, burning, or prickling sensation sharp pains ... from working properly, the body cannot regulate its temperature as it should. Nerve damage can also cause ...

  3. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  4. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  5. Diabetic Nerve Problems

    MedlinePlus

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  6. Adrenergic Response to Maximum Exercise of Trained Road Cyclists

    PubMed Central

    Janikowska, Grażyna; Kochańska - Dziurowicz, Aleksandra; Żebrowska, Aleksandra; Bijak, Aleksandra; Kimsa, Magdalena

    2014-01-01

    The aim of this study was to evaluate adrenergic responses in the peripheral blood of trained road cyclists at rest, at maximal intensity of incremental bicycle exercise test, and during 15 minutes of recovery, as well as the relationship between them. Competitive male road cyclists, in the pre-competitive phase of a season, mean age 21.7 ± 6.4 years, and BMI 20.7 ± 0.8 kg·m−2, performed an incremental test on a bicycle ergometer with unloaded cycling for 5 min, then increased the load to 40 W every 3 min, up to maximal exercise intensity. The plasma catecholamine concentrations (epinephrine, norepinephrine) and oxygen uptake were estimated. The expression of 132 genes related to the adrenergic system in leukocytes was measured. A statistically significant increase in plasma epinephrine concentration (p < 0.01) was observed in response to exercise. The mean of maximal oxygen uptake was 65.7 ± 5.5 ml·kg−1·min−1. The RGS2 gene expression was highest regardless of the test phase for all athletes. The effort had a statistically significant influence on ADRB2 and RAB2A expression. In addition, the RAB2A, ADM and HSPB1 expression level increased during recovery. We can conclude that plasma epinephrine concentration and genes related to the adrenergic system such as ADM, ADRB2, CCL3, GPRASP1, HSPB1, RAB2A, RGS2 and ROCK1 seem to have an influence on the response to high-intensity exercise in trained cyclists. PMID:25031678

  7. Facial Nerve Trauma: Evaluation and Considerations in Management

    PubMed Central

    Gordin, Eli; Lee, Thomas S.; Ducic, Yadranko; Arnaoutakis, Demetri

    2014-01-01

    The management of facial paralysis continues to evolve. Understanding the facial nerve anatomy and the different methods of evaluating the degree of facial nerve injury are crucial for successful management. When the facial nerve is transected, direct coaptation leads to the best outcome, followed by interpositional nerve grafting. In cases where motor end plates are still intact but a primary repair or graft is not feasible, a nerve transfer should be employed. When complete muscle atrophy has occurred, regional muscle transfer or free flap reconstruction is an option. When dynamic reanimation cannot be undertaken, static procedures offer some benefit. Adjunctive tools such as botulinum toxin injection and biofeedback can be helpful. Several new treatment modalities lie on the horizon which hold potential to alter the current treatment algorithm. PMID:25709748

  8. Nerves and Tissue Repair.

    DTIC Science & Technology

    1992-05-21

    complete dependence on nerves. Organ culture of sciatic nerves, combined with an assay for axolotl transferrin developed earlier, allows quantitative study...axonal release of various unknown proteins. Combining this approach with the ELISA for quantitative measurement of axolotl transferrin developed with...light microscope autoradiographic analysis following binding of radiolabelled Tf. Studies of Tf synthesis will employ cDNA probes for axolotl Tf mRNA

  9. Traumatic facial nerve injury.

    PubMed

    Lee, Linda N; Lyford-Pike, Sofia; Boahene, Kofi Derek O

    2013-10-01

    Facial nerve trauma can be a devastating injury resulting in functional deficits and psychological distress. Deciding on the optimal course of treatment for patients with traumatic facial nerve injuries can be challenging, as there are many critical factors to be considered for each patient. Choosing from the great array of therapeutic options available can become overwhelming to both patients and physicians, and in this article, the authors present a systematic approach to help organize the physician's thought process.

  10. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  11. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    SciTech Connect

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  12. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  13. Mapping Neuronal Activation and the Influence of Adrenergic Signaling during Contextual Memory Retrieval

    ERIC Educational Resources Information Center

    Zhang, Wei-Ping; Guzowski, John F.; Thomas, Steven A.

    2005-01-01

    We recently described a critical role for adrenergic signaling in the hippocampus during contextual and spatial memory retrieval. To determine which neurons are activated by contextual memory retrieval and its sequelae in the presence and absence of adrenergic signaling, transcriptional imaging for the immediate-early gene "Arc" was used in…

  14. A Case of Adrenergic Urticaria Associated with Vitiligo

    PubMed Central

    Lang, Caroline; Kaya, Gürkan

    2016-01-01

    Adrenergic urticaria is a rare form of urticaria, induced by a stress-induced concomitant release of epinephrine and norepinephrine. Here we describe the case of a 60-year-old female patient presenting with disseminated erythematous papules surrounded by a white halo and vitiligo lesions on the hands, arms, and feet. Histological examination of one of the erythematous papules showed a dermal inflammatory infiltrate composed of lymphocytes and eosinophils of perivascular and interstitial localization. After 2 weeks of treatment with antihistamines, the lesions disappeared completely. PMID:28232908

  15. Increased alpha-adrenergic responsiveness in idiopathic Raynaud's disease.

    PubMed

    Freedman, R R; Sabharal, S C; Desai, N; Wenig, P; Mayes, M

    1989-01-01

    In our study of 28 patients with idiopathic Raynaud's disease, the patients had significantly greater digital blood flow responses to intraarterial phenylephrine and clonidine than did normal control subjects. There were no group differences in finger blood flow responses to body heating, reflex cooling, digital ischemia, or to intraarterial tyramine or isoproterenol. There were also no group differences in blood pressure or heart rate during any procedure. These results suggest that patients with idiopathic Raynaud's disease have increased peripheral vascular alpha-adrenergic receptor sensitivity and/or density compared with normal persons.

  16. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  17. Optic nerve aspergillosis.

    PubMed

    Yuan, Lisi; Prayson, Richard A

    2015-07-01

    We report a 55-year-old woman with optic nerve Aspergillosis. Aspergillus is an ubiquitous airborne saprophytic fungus. Inhaled Aspergillus conidia are normally eliminated in the immunocompetent host by innate immune mechanisms; however, in immunosuppressed patients, they can cause disease. The woman had a past medical history of hypertension and migraines. She presented 1 year prior to death with a new onset headache behind the left eye and later developed blurred vision and scotoma. A left temporal artery biopsy was negative for giant cell arteritis. One month prior to the current admission, she had an MRI showing optic nerve thickening with no other findings. Because of the visual loss and a positive antinuclear antibody test, she was given a trial of high dose steroids and while it significantly improved her headache, her vision did not improve. At autopsy, the left optic nerve at the level of the cavernous sinus and extending into the optic chiasm was enlarged in diameter and there was a 1.3 cm firm nodule surrounding the left optic nerve. Histologically, an abscess surrounded and involved the left optic nerve. Acute angle branching, angioinvasive fungal hyphae were identified on Grocott's methenamine silver stained sections, consistent with Aspergillus spp. No gross or microscopic evidence of systemic vasculitis or infection was identified in the body. The literature on optic nerve Aspergillosis is reviewed.

  18. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Waters, Wendy W.; Ziegler, Michael G.; deBlock, Heidi F.; Mills, Paul J.; Robertson, David; Huang, Paul L.

    2004-01-01

    Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.

  19. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight.

    PubMed

    Meck, Janice V; Waters, Wendy W; Ziegler, Michael G; deBlock, Heidi F; Mills, Paul J; Robertson, David; Huang, Paul L

    2004-04-01

    Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.

  20. [New treatment for peripheral nerve defects: nerve elongation].

    PubMed

    Kou, Y H; Jiang, B G

    2016-10-18

    Peripheral nerve defects are still a major challenge in clinical practice, and the most commonly used method of treatment for peripheral nerve defects is nerve transplantation, which has certain limitations and shortcomings, so new repair methods and techniques are needed. The peripheral nerve is elongated in limb lengthening surgery without injury, from which we got inspirations and proposed a new method to repair peripheral nerve defects: peripheral nerve elongation. The peripheral nerve could beelongated by a certain percent, but the physiological change and the maximum elongation range were still unknown. This study discussed the endurance, the physiological and pathological change of peripheral nerve elongation in detail, and got a lot of useful data. First, we developed peripheral nerve extender which could match the slow and even extension of peripheral nerve. Then, our animal experiment result confirmed that the peripheral nerve had better endurance for chronic elongation than that of acute elongation and cleared the extensibility of peripheral nerve and the range of repair for peripheral nerve defects. Our result also revealed the histological basis and changed the rule for pathological physiology of peripheral nerve elongation: the most important structure foundation of peripheral nerve elongation was Fontana band, which was the coiling of nerve fibers under the epineurium, so peripheral nerve could be stretched for 8.5%-10.0% without injury because of the Fontana band. We confirmed that peripheral nerve extending technology could have the same repair effect as traditional nerve transplantation through animal experiments. Finally, we compared the clinical outcomes between nerve elongation and performance of the conventional method in the repair of short-distance transection injuries in human elbows, and the post-operative follow-up results demonstrated that early neurological function recovery was better in the nerve elongation group than in the

  1. Central projections of auditory nerve fibers in the barn owl.

    PubMed

    Carr, C E; Boudreau, R E

    1991-12-08

    The central projections of the auditory nerve were examined in the barn owl. Each auditory nerve fiber enters the brain and divides to terminate in both the cochlear nucleus angularis and the cochlear nucleus magnocellularis. This division parallels a functional division into intensity and time coding in the auditory system. The lateral branch of the auditory nerve innervates the nucleus angularis and gives rise to a major and a minor terminal field. The terminals range in size and shape from small boutons to large irregular boutons with thorn-like appendages. The medial branch of the auditory nerve conveys phase information to the cells of the nucleus magnocellularis via large axosomatic endings or end bulbs of Held. Each medial branch divides to form 3-6 end bulbs along the rostrocaudal orientation of a single tonotopic band, and each magnocellular neuron receives 1-4 end bulbs. The end bulb envelops the postsynaptic cell body and forms large numbers of synapses. The auditory nerve profiles contain round clear vesicles and form punctate asymmetric synapses on both somatic spines and the cell body.

  2. The β3-adrenergic receptor is dispensable for browning of adipose tissues.

    PubMed

    de Jong, Jasper M A; Wouters, René T F; Boulet, Nathalie; Cannon, Barbara; Nedergaard, Jan; Petrovic, Natasa

    2017-02-21

    Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β3-adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β3-adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β3-adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β3-adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression (Ucp1, Pgc1a, Dio2 and Cidea) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β3-adrenergic receptor. Experiments with the β3-adrenergic receptor agonist CL-316,243 verified the functional absence of β3-adrenergic signaling in these knockout mice. The β3-adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus, our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β3-adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. This should be taken into account in the increasing number of studies on the induction of browning and their extrapolation to human physiology.

  3. Adrenergic deficiency leads to impaired electrical conduction and increased arrhythmic potential in the embryonic mouse heart.

    PubMed

    Baker, Candice; Taylor, David G; Osuala, Kingsley; Natarajan, Anupama; Molnar, Peter J; Hickman, James; Alam, Sabikha; Moscato, Brittany; Weinshenker, David; Ebert, Steven N

    2012-07-06

    To determine if adrenergic hormones play a critical role in the functional development of the cardiac pacemaking and conduction system, we employed a mouse model where adrenergic hormone production was blocked due to targeted disruption of the dopamine β-hydroxylase (Dbh) gene. Immunofluorescent histochemical evaluation of the major gap junction protein, connexin 43, revealed that its expression was substantially decreased in adrenergic-deficient (Dbh-/-) relative to adrenergic-competent (Dbh+/+ and Dbh+/-) mouse hearts at embryonic day 10.5 (E10.5), whereas pacemaker and structural protein staining appeared similar. To evaluate cardiac electrical conduction in these hearts, we cultured them on microelectrode arrays (8×8, 200 μm apart). Our results show a significant slowing of atrioventricular conduction in adrenergic-deficient hearts compared to controls (31.4±6.4 vs. 15.4±1.7 ms, respectively, p<0.05). To determine if the absence of adrenergic hormones affected heart rate and rhythm, mouse hearts from adrenergic-competent and deficient embryos were cultured ex vivo at E10.5, and heart rates were measured before and after challenge with the β-adrenergic receptor agonist, isoproterenol (0.5 μM). On average, all hearts showed increased heart rate responses following isoproterenol challenge, but a significant (p<0.05) 225% increase in the arrhythmic index (AI) was observed only in adrenergic-deficient hearts. These results show that adrenergic hormones may influence heart development by stimulating connexin 43 expression, facilitating atrioventricular conduction, and helping to maintain cardiac rhythm during a critical phase of embryonic development.

  4. Adult motor axons preferentially reinnervate predegenerated muscle nerve.

    PubMed

    Abdullah, M; O'Daly, A; Vyas, A; Rohde, C; Brushart, T M

    2013-11-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of pathway and end organ in the genesis of PMR in adult rats. Fresh and 2-week predegenerated femoral nerve grafts were transferred in correct or reversed alignment to replace the femoral nerves of previously unoperated Lewis rats. After 8 weeks of regeneration the motoneurons projecting through the grafts to recipient femoral cutaneous and muscle branches and their adjacent end organs were identified by retrograde labeling. Motoneuron counts were subjected to Poisson regression analysis to determine the relative roles of pathway and end organ identity in generating PMR. Transfer of fresh grafts did not result in PMR, whereas substantial PMR was observed when predegenerated grafts were used. Similarly, the pathway through which motoneurons reached the muscle had a significant impact on PMR when grafts were predegenerated, but not when they were fresh. Comparison of the relative roles of pathway and end organ in generating PMR revealed that neither could be shown to be more important than the other. These experiments demonstrate unequivocally that adult muscle nerve and cutaneous nerve differ in qualities that can be detected by regenerating adult motoneurons and that can modify their subsequent behavior. They also reveal that two weeks of Wallerian degeneration modify the environment in the graft from one that provides no modality-specific cues for motor neurons to one that actively promotes PMR.

  5. Mechanical Loading for Peripheral Nerve Stabilization and Regeneration

    DTIC Science & Technology

    2013-04-01

    sectioning of tissue for analysis in Milestone 1.4 1.4. Comparison of nerve outgrowth, cytoskeletal stability, organelle accumulation, and myelination ...stability, organelle accumulation, and myelination between 10 mm (no device), 10 mm (device), and 15 mm (device) groups at all four time points. The...mitochondrial or Calcitonin gene related peptide (CGRP) staining in stump ending. d. Comparison of myelination : nerve fiber diameter and myelin diameter

  6. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis).

    PubMed

    Wu, Shun-Fan; Yao, Yao; Huang, Jia; Ye, Gong-Yin

    2012-08-01

    Octopamine, the invertebrate counterpart of adrenaline and noradrenaline, plays a key role in regulation of many physiological and behavioral processes in insects. It modulates these functions through binding to specific octopamine receptors, which are typical rhodopsin-like G-protein coupled receptors. A cDNA encoding a seven-transmembrane receptor was cloned from the nerve cord of the rice stem borer, Chilo suppressalis, viz. CsOA2B2, which shares high sequence similarity to CG6989, a Drosophila β-adrenergic-like octopamine receptor (DmOctβ2R). We generated an HEK-293 cell line that stably expresses CsOA2B2 in order to examine the functional and pharmacological properties of this receptor. Activation of CsOA2B2 by octopamine increased the production of cAMP in a dose-dependent manner (EC(50)=2.33 nmol l(-1)), with a maximum response at 100 nmol l(-1). Tyramine also activated the receptor but with much less potency than octopamine. Dopamine and serotonin had marginal effects on cAMP production. Using a series of known agonists and antagonists for octopamine receptors, we observed a rather unique pharmacological profile for CsOA2B2 through measurements of cAMP. The rank order of potency of the agonists was naphazoline > clonidine. The activated effect of octopamine is abolished by co-incubation with phentolamine, mianserin or chlorpromazine. Using in vivo pharmacology, CsOA2B2 antagonists mianserin and phentolamine impaired the motor ability of individual rice stem borers. The results of the present study are important for a better functional understanding of this receptor as well as for practical applications in the development of environmentally sustainable pesticides.

  7. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

    PubMed

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M; Downes, Sandra; Terenghi, Giorgio; Reid, Adam J

    2015-03-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair.

  8. Bioisosteric phentolamine analogs as potent alpha-adrenergic antagonists.

    PubMed

    Hong, Seoung-Soo; Bavadekar, Supriya A; Lee, Sang-Il; Patil, Popat N; Lalchandani, S G; Feller, Dennis R; Miller, Duane D

    2005-11-01

    The synthesis and biological evaluation of a new series of bioisosteric phentolamine analogs are described. Replacement of the carbon next to the imidazoline ring of phentolamine with a nitrogen atom provides compounds (2, 3) that are about 1.6 times and 4.1 times more potent functionally than phentolamine on rat alpha1-adrenergic receptors, respectively. In receptor binding assays, the affinities of phentolamine and its bioisosteric analogs were determined on the human embryonic kidney (HEK) and Chinese Hamster ovary (CHO) cell lines expressing the human alpha1- and alpha2-AR subtypes, respectively. Analogs 2 and 3, both, displayed higher binding affinities at the alpha2- versus the alpha1-ARs, affinities being the least at the alpha1B-AR. Binding affinities of the methoxy ether analog 2 were greater than those of the phenolic analog 3 at all six alpha-AR subtypes. One of the nitrogen atoms in the imidazoline ring of phentolamine was replaced with an oxygen atom to give compounds 4 and 5, resulting in a 2-substituted oxazoline ring. The low functional antagonist activity on rat aorta, and binding potencies of these two compounds on human alpha1A- and alpha2A-AR subtypes indicate that a basic functional group is important for optimum binding to the alpha1- and alpha2A-adrenergic receptors.

  9. The Principles of Ligand Specificity on beta-2-adrenergic receptor

    PubMed Central

    Chan, H. C. Stephen; Filipek, Slawomir; Yuan, Shuguang

    2016-01-01

    G protein-coupled receptors are recognized as one of the largest families of membrane proteins. Despite sharing a characteristic seven-transmembrane topology, G protein-coupled receptors regulate a wide range of cellular signaling pathways in response to various physical and chemical stimuli, and prevail as an important target for drug discovery. Notably, the recent progress in crystallographic methods led to a breakthrough in elucidating the structures of membrane proteins. The structures of β2-adrenergic receptor bound with a variety of ligands provide atomic details of the binding modes of agonists, antagonists and inverse agonists. In this study, we selected four representative molecules from each functional class of ligands and investigated their impacts on β2-adrenergic receptor through a total of 12 × 100 ns molecular dynamics simulations. From the obtained trajectories, we generated molecular fingerprints exemplifying propensities of protein-ligand interactions. For each functional class of compounds, we characterized and compared the fluctuation of the protein backbone, the volumes in the intracellular pockets, the water densities in the receptors, the domain interaction networks as well as the movements of transmembrane helices. We discovered that each class of ligands exhibits a distinct mode of interactions with mainly TM5 and TM6, altering the shape and eventually the state of the receptor. Our findings provide insightful prospective into GPCR targeted structure-based drug discoveries. PMID:27703221

  10. Structural analysis of beta-adrenergic and muscarinic cholinergic receptors

    SciTech Connect

    Kerlavage, A.R.; Fraser, C.M.; Venter, J.C.

    1987-05-01

    The authors have recently cloned the gene encoding the human brain beta-adrenergic receptor. Beta-adrenergic and muscarinic cholinergic receptors have also been cloned from other tissues. In order to correlate the primary structures of these receptors with their function, they have undertaken detailed mapping of their functionally important sites. Purified guinea pig lung beta receptor was radioiodinated and digested with trypsin. The resultant peptides were resolved by reverse phase HPLC into nine peaks containing /sup 125/I, corresponding exactly with the predicted number of tyrosine containing peptides in the beta receptor. Hamster lung beta receptor was labeled with (/sup 125/I)-iodocyanopindolol diazarine ((/sup 125/I)CYPD) and partially purified by SDS-PAGE. The (/sup 125/I)CYPD-labeled receptor was extracted from the gel, digested with either trypsin or CNBr and the digests were resolved by reverse phase HPLC. The tryptic digest contained one (/sup 125/I)CYPD-labeled peak and the CNBr digest contained two. Rat brain muscarinic receptor was specifically labeled with (/sup 3/H)-propylbenzilyl-choline mustard ((/sup 3/H)PrBCM) and partially purified by SDS-PABE. The (/sup 3/H)PrBCM-labeled receptor was extracted from the gel and digested with CNBr. The resultant HPLC profile revealed a single (/sup 3/H)PrBCM-labeled peak. These data yield information on the location of functional sites within the primary sequences of these receptors.

  11. Beta-Adrenergic Receptor Blockers in Hypertension: Alive and Well.

    PubMed

    Frishman, William H

    2016-10-27

    βeta-Adrenergic receptor blockers (β-blockers) are an appropriate treatment for patients having systemic hypertension (HTN) who have concomitant ischemic heart disease (IHD), heart failure, obstructive cardiomyopathy, aortic dissection or certain cardiac arrhythmias. β-blockers can be used in combination with other antiHTN drugs to achieve maximal blood pressure control. Labetalol can be used in HTN emergencies and urgencies. β-blockers may be useful in HTN patients having a hyperkinetic circulation (palpitations, tachycardia, HTN, and anxiety), migraine headache, and essential tremor. β-blockers are highly heterogeneous with respect to various pharmacologic properties: degree of intrinsic sympathomimetic activity , membrane stabilizing activity , β1 selectivity, α1-adrenergic blocking effects, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific properties may be important in the selection of a drug for clinical use. β-blocker usage to reduce perioperative myocardial ischemia and cardiovascular (CV) complications may not benefit as many patients as was once hoped, and may actually cause harm in some individuals. Currently the best evidence supports perioperative β-blocker use in two patient groups: patients undergoing vascular surgery with known IHD or multiple risk factors for it, and for those patients already receiving β-blockers for known CV conditions.

  12. Adrenergic mechanisms in oxygen chemoreception in the cat aortic body.

    PubMed

    Mulligan, E; Lahiri, S; Mokashi, A; Matsumoto, S; McGregor, K H

    1986-03-01

    Sixteen cats were studied to test the hypothesis that oxygen chemoreception in the cat aortic body is dependent on the beta-adrenergic mechanism. The chemoreceptor activity was measured from a few aortic chemoreceptor afferents in each cat, anesthetized with alpha-chloralose (60 mg X kg-1). Three types of experiments were conducted. Aortic chemoreceptor responses to steady-state hypoxia (PaO2 range, 100-30 Torr) were measured (a) before and during intravenous infusion of the beta-receptor agonist, isoproterenol (0.5 micrograms X kg-1) in nine spontaneously breathing cats, and (b) before and after intravenous injection of the beta-receptor antagonist, propranolol (1 mg X kg-1) in seven cats which were paralyzed and artificially ventilated. In the third category (c) the stimulatory effect of hypotension on aortic chemoreceptor activity was measured in six of the seven cats in group (b) before and after propranolol injection. Isoproterenol infusion only moderately stimulated aortic chemoreceptor activity. This stimulation was blocked by propranolol. However, propranolol did not attenuate aortic chemoreceptor responses to hypoxia or to hypotension. We conclude that the beta-receptor adrenergic mechanism does not mediate oxygen chemoreception in the cat aortic body.

  13. Distribution of beta-adrenergic receptors on human lymphocyte subpopulations.

    PubMed Central

    Pochet, R; Delespesse, G; Gausset, P W; Collet, H

    1979-01-01

    A technique is described allowing the quantification and the characterization of specific beta-adrenergic receptors in intact living human lymphocytes. 125I-Iodohydroxybenzylpindolol, a potent beta-adrenergic antagonist was used to label specific binding sites on unfractionated lymphoid cells and on purified subpopulations of T (F1 and F2) and B cells. F1 and F2 were obtained by filtration through nylon wool column as previously described (Delespesse et al., 1976), they differ in their response to mitogens, and in their interactions with adherent cells and B cells. 125I-HYP binding to unfractionated lymphocytes was a saturable, stereospecific and rapid process with a dissociation constant of 2.5 10(-10) M and a binding capacity of 400--600 sites/cell. Bindings on unfractionated lymphocytes, purified B cells and T cells of the F2 fraction were similar. No detectable binding was noted on T cells from the F1 fraction. Enriched T cells obtained by a rosetting technique displayed 200 receptors/cell. PMID:43789

  14. Enzyme induction and β-adrenergic receptor blocking drugs

    PubMed Central

    Branch, R. A.; Herman, R. J.

    1984-01-01

    1 All β-adrenergic receptor blockers that require metabolism prior to elimination are potentially subject to drug interactions due to enzyme induction. However, data is only available in man for propranolol, metoprolol and alprenolol. 2 Cross-sectional population studies suggest that environmental factors, such as smoking in the young, are able to influence the oral clearance of propranolol. 3 Long-term studies comparing within-subject clearances of metoprolol, alprenolol and propranolol before and after rifampicin and pentobarbitone, indicate that oral clearance is increased by 50%-500%. 4 Inducing agents can influence intrinsic clearance, liver blood flow, and protein binding in addition to drug metabolising ability, indicating that changes in pharmacokinetic disposition may be complex. 5 Enzyme induction exhibits both dose and time dependency relationships. 6 The maximal extent of enzyme induction is similar between subjects. The range of intersubject variation in drug metabolism is similar before and after induction. 7 The reduction in steady-state β-adrenergic receptor drug concentration following enzyme induction is sufficiently large that an altered pharmacodynamic response would be expected if no dosage modification is made. PMID:6146342

  15. Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin

    SciTech Connect

    Shepherd, R.E.; Lang, C.H.; McDonough, K.H.

    1987-02-01

    A dose-dependent impairment of intrinsic myocardial performance has been observed following in vivo administration of endotoxin. The present study reports a dose-dependent increase in plasma catecholamines following endotoxin (ET) that may impair ..beta..-adrenergic responsiveness. Hearts were removed from pentobarbital-anesthetized rats 4 h after a bolus injection of saline or ET and were studied as isolated cell preparations following collagenase digestion. Responsiveness of isoproterenol-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in myocytes prepared from hearts of animals injected with 10 and 100 ..mu..g ET was decreased when compared with control rats and was significantly blunted in myocytes prepared from animals receiving 1000 ..mu..g ET. Similar sensitivities of the cAMP system existed, as judged by similar half-maximum effective concentration values. cAMP accumulation in the presence of 1 ..mu..M forskolin was depressed in myocytes from the 1000-..mu..g ET animals; ..beta..-adrenergic receptor density was decreased 25% in myocytes from high-dose ET animals when compared with control animals. This was accompanied by a nonsignificant reduction in the affinity of binding sites for (+/-)(/sup 3/H)CGP 12177. The blunted myocyte hormonal responsiveness following ET challenge appears to be related to the decreased activity of the adenylate cyclase that may be attributed to alterations in both receptor density and in the adenylate cyclase itself.

  16. Agonist photoaffinity label for the. beta. -adrenergic receptor

    SciTech Connect

    Resek, J.F.; Ruoho, A.E.

    1987-05-01

    An iodinated photosensitive derivative of norepinephrine, N-(p-azido-m-iodophenethylamidoisobutyryl)norepinephrine (NAIN), has been synthesized and characterized. Carrier-free radioiodinated NAIN ((/sup 125/I)-NAIN) was used at 1-2 x 10/sup -9/ M to photoaffinity label the ..beta..-adrenergic receptor in guinea pig lung membranes. SDS-PAGE analysis of (-)-alprenolol (10/sup -5/M) protectable (/sup 125/I)-NAIN labeling showed the same molecular weight polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel, (/sup 125/I)-IABP. Specific labeling of the ..beta..-adrenergic receptor with (/sup 125/I)-NAIN was dependent on the presence of MgCl/sub 2/ and the absence of guanyl nucleotide. GTP..gamma..S (10/sup -4/ M) abolished specific receptor labeling by (/sup 125/I)-NAIN. N-ethylmaleimide (2 mm) in the presence of (/sup 125/I)-NAIN protected against the guanyl nucleotide effect. These data are consistent with photolabeling by (/sup 125/I)-NAIN while the agonist, receptor, and GTP binding protein are in a high affinity complex.

  17. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  18. End-to-End Commitment

    NASA Technical Reports Server (NTRS)

    Newcomb, John

    2004-01-01

    The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength.

  19. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man.

    PubMed

    Fairfax, Seth T; Holwerda, Seth W; Credeur, Daniel P; Zuidema, Mozow Y; Medley, John H; Dyke, Peter C; Wray, D Walter; Davis, Michael J; Fadel, Paul J

    2013-07-15

    Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P = 0.016) and then robustly decreased to a nadir of -5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (-2.1 ± 0.7% and -0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors.

  20. Collateral development and spinal motor reorganization after nerve injury and repair

    PubMed Central

    Yu, Youlai; Zhang, Peixun; Han, Na; Kou, Yuhui; Yin, Xiaofeng; Jiang, Baoguo

    2016-01-01

    Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers

  1. Collateral development and spinal motor reorganization after nerve injury and repair.

    PubMed

    Yu, Youlai; Zhang, Peixun; Han, Na; Kou, Yuhui; Yin, Xiaofeng; Jiang, Baoguo

    2016-01-01

    Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers

  2. NERVE GROWTH FACTOR MAINTAINS POTASSIUM CONDUCTANCE AFTER NERVE INJURY IN ADULT CUTANEOUS AFFERENT DORSAL ROOT GANGLION NEURONS

    PubMed Central

    EVERILL, B.; KOCSIS, J. D.

    2008-01-01

    Whole-cell patch-clamp techniques were used to study the effects of nerve growth factor on voltage-dependent potassium conductance in normal and axotomized identified large cutaneous afferent dorsal root ganglion neurons (48–50 μm diameter) many of which probably give rise to myelinated Aβ fibers. K-currents were isolated by blocking Na- and Ca-currents with appropriate ion replacement and channel blockers. Separation of current components was achieved on the basis of response to variation in conditioning voltage. Cutaneous afferents were labeled by the retrograde marker hydroxy-stilbamide (FluoroGold) which was injected into the skin of the foot. The sciatic nerve was either ligated or crushed with fine forceps five to seven days later. Neurons were dissociated 14–17 days after injury. The cut ends of the sciatic nerves were positioned into polyethylene tubes, which were connected to mini-osmotic pumps filled with either nerve growth factor or sterile saline. Control neurons displayed a prominent sustained K-current and the transient potassium currents “A” and “D”. Nerve ligation, which blocks target reconnection resulted in near 50% reduction of total outward current; isolated sustained K-current and transient A-current were reduced by a comparable amount. Nerve crush, which allows regeneration to peripheral targets and exposure of the regenerating nerve to the distal nerve segment, resulted in a small reduction in sustained K-current but no reduction in transient A-current compared to controls. Levels of transient A-current and sustained K-current were maintained at control levels after nerve growth factor treatment. These results indicate that the large reduction in transient A-current, and in sustained K-current, observed in cutaneous afferent cell bodies after nerve ligation is prevented by application of nerve growth factor. PMID:11008179

  3. Barriers of the peripheral nerve

    PubMed Central

    Peltonen, Sirkku; Alanne, Maria; Peltonen, Juha

    2013-01-01

    This review introduces the traditionally defined anatomic compartments of the peripheral nerves based on light and electron microscopic topography and then explores the cellular and the most recent molecular basis of the different barrier functions operative in peripheral nerves. We also elucidate where, and how, the homeostasis of the normal human peripheral nerve is controlled in situ and how claudin-containing tight junctions contribute to the barriers of peripheral nerve. Also, the human timeline of the development of the barriers of the peripheral nerve is depicted. Finally, potential future therapeutic modalities interfering with the barriers of the peripheral nerve are discussed. PMID:24665400

  4. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  5. Interaction of perivascular adipose tissue and sympathetic nerves in arteries from normotensive and hypertensive rats.

    PubMed

    Török, J; Zemančíková, A; Kocianová, Z

    2016-10-24

    The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.

  6. An animal model of peripheral nerve regeneration after the application of a collagen-polyvinyl alcohol scaffold and mesenchymal stem cells.

    PubMed

    Marinescu, Silviu Adrian; Zărnescu, Otilia; Mihai, Ioana Ruxandra; Giuglea, Carmen; Sinescu, Ruxandra Diana

    2014-01-01

    Extensive nerve injuries often leading to nerve gaps can benefit, besides the gold standard represented by autologous nerve grafts, by the inciting field of tissue engineering. To enhance the role of biomaterials in nerve regeneration, the nerve conduits are associated with Schwann or Schwann-like cells. In this study, we evaluated rat sciatic nerve regeneration, by using a biodegradable nerve guide composed of Collagen (COL) and Polyvinyl Alcohol (PVA), associated with mesenchymal stem cells (MSC). After the exposure of the rat sciatic nerve, a nerve gap was created by excising 1 cm of the nerve. Three experimental groups were used for nerve gap bridging: autografts, nerve conduits filled with medium culture and nerve conduits filled with MSC. The methods of sensory and motor assessment consisted of the functional evaluation of sciatic nerve recovery - toe-spread, pinprick tests and gastrocnemius muscle index (GMI). The histological and immunocytochemical analysis of the probes that were harvested from the repair site was performed at 12 weeks. Successful nerve regeneration was noted in all three groups at the end of the 12th week. The functional and immunocytochemical results suggested that COL-PVA tubes supported with mesenchymal stem cells could be considered similar to autologous nerve grafts in peripheral nerve regeneration, without the drawbacks of the last ones. The functional results were better for the autografts and the ultrastructural data were better for the nerve conduits, but there were not noticed any statistical differences.

  7. Genes and nerves.

    PubMed

    Dieu, Tam; Johnstone, Bruce R; Newgreen, Don F

    2005-04-01

    The unpredictability of a brachial plexus graft, a median nerve repair, or a facial-nerve reconstruction is well known. No matter how precise the technical skills, a perfect recovery from a peripheral-nerve lesion is elusive. To resolve this problem, understanding of the normal development of the peripheral nervous system is needed. Presently, the development of the innervation in the upper limb is complex and not fully understood. However, many of the genes involved in this process are now known, and the link between anatomy and genetics is becoming clearer. This short review aims to acquaint the clinical surgeon with some of the main genes. The principal steps in the establishment of neural circuits will be summarized, in particular, the specification and development of neurons and glia, the pathfinding of cells and axons towards their target, and the downstream molecules that control the circuitry of these neurons.

  8. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media.

    PubMed

    Mohammad, J A; Warnke, P H; Pan, Y C; Shenaq, S

    2000-01-01

    The authors emphasize the possible pharmacological enhancement of axonal regeneration using a specific growth factor/ extracellular media incorporated in a biodegradable nonneural nerve conduit material. They investigated the early effects on nerve regeneration of continuous local delivery of nerve growth factor (NGF) and the local incorporation of hyaluronic acid (HA) inside a newly manufactured nerve conduit material from fresh human amnionic membrane. Human amnionic membrane contains important biochemical factors that play a major neurotrophic role in the nerve regeneration process. The process of manufacturing a nerve conduit from fresh human amnionic membrane is described. This nerve conduit system was used in rabbits to bridge a 25-mm nerve gap over 3 months. NGF was released locally, over 28 days, at the distal end of the tube via a system of slow release, and HA was incorporated inside the lumen of the tube at the time of surgery. NGF/HA treatment promoted axonal regeneration across the amnionic tube nerve conduit (8,962 +/- 383 myelinated axons) 45% better than the nontreated amnionic tube group (6,180 +/- 353 myelinated axons). The authors demonstrate that NGF/HA media enhances additional axonal regeneration in the amnionic tube nerve conduit. This result is secondary to the effect of the amnion promoting biochemical factors, in combination with the NGF/HA effect on facilitating early events in the nerve regeneration process.

  9. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure

    PubMed Central

    Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M.; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S.; Sacconi, Leonardo

    2016-01-01

    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca2+ release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca2+ transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca2+ sparks, reduces Ca2+ transient variability, and hastens the decay of Ca2+ transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca2+ rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca2+ rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity. PMID:27598150

  10. MOOD STATES, SYMPATHETIC ACTIVITY, AND IN VIVO β-ADRENERGIC RECEPTOR FUNCTION IN A NORMAL POPULATION

    PubMed Central

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G.; Mills, Paul J.; Dimsdale, Joel E.

    2009-01-01

    The purpose of this study was to examine the relationship between mood states and β-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or β-adrenergic receptor function. Sixty-two participants aged 25–50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). β-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased β-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of β-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or β-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) β-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index. PMID:17583588

  11. Phospholipase D1 is involved in α1-adrenergic contraction of murine vascular smooth muscle.

    PubMed

    Wegener, Jörg W; Loga, Florian; Stegner, David; Nieswandt, Bernhard; Hofmann, Franz

    2014-03-01

    α1-Adrenergic stimulation increases blood vessel tone in mammals. This process involves a number of intracellular signaling pathways that include signaling via phospholipase C, diacylglycerol (DAG), and protein kinase C. So far, it is not certain whether signaling via phospholipase D (PLD) and PLD-derived DAG is involved in this process. We asked whether PLD participates in the α1-adrenergic-mediated signaling in vascular smooth muscle. α1-Adrenergic-induced contraction was assessed by myography of isolated aortic rings and by pressure recordings using the hindlimb perfusion model in mice. The effects of the PLD inhibitor 1-butanol (IC50 0.15 vol%) and the inactive congener 2-butanol were comparatively studied. Inhibition of PLD by 1-butanol reduced specifically the α1-adrenergic-induced contraction and the α1-adrenergic-induced pressure increase by 10 and 40% of the maximum, respectively. 1-Butanol did not influence the aortic contractions induced by high extracellular potassium, by the thromboxane analog U46619, or by a phorbol ester. The effects of 1-butanol were absent in mice that lack PLD1 (Pld1(-/-) mice) or that selectively lack the CaV1.2 channel in smooth muscle (sm-CaV1.2(-/-) mice) but still present in the heterozygous control mice. α1-Adrenergic contraction of vascular smooth muscle involves activation of PLD1, which controls a portion of the α1-adrenergic-induced CaV1.2 channel activity.

  12. Differential sensitivity to detergents of actin cytoskeleton from nerve endings.

    PubMed

    Cubí, Roger; Matas, Lluís A; Pou, Marta; Aguilera, José; Gil, Carles

    2013-11-01

    Detergent-resistant membranes (DRM), an experimental model used to study lipid rafts, are typically extracted from cells by means of detergent treatment and subsequent ultracentrifugation in density gradients, Triton X-100 being the detergent of choice in most of the works. Since lipid rafts are membrane microdomains rich in cholesterol, depletion of this component causes solubilization of DRM with detergent. In previous works from our group, the lack of effect of cholesterol depletion on DRM solubilization with Triton X-100 was detected in isolated rat brain synaptosomes. In consequence, the aim of the present work is to explore reasons for this observation, analyzing the possible role of the actin cytoskeleton, as well as the use of an alternative detergent, Brij 98, to overcome the insensitivity to Triton X-100 of cholesterol-depleted DRM. Brij 98 yields Brij-DRM that are highly dependent on cholesterol, since marker proteins (Flotillin-1 and Thy-1), as well as actin, appear solubilized after MCD treatment. Pretreatment with Latrunculin A results in a significant increase in Flotillin-1, Thy-1 and actin solubilization by Triton X-100 after cholesterol depletion. Studies with transmission electron microscopy show that combined treatment with MCD and Latrunculin A leads to a significant increase in solubilization of DRM with Triton X-100. Thus, Triton-DRM resistance to cholesterol depletion can be explained, at least partially, thanks to the scaffolding action of the actin cytoskeleton, without discarding differential effects of Brij 98 and Triton X-100 on specific membrane components. In conclusion, the detergent of choice is important when events that depend on the actin cytoskeleton are going to be studied.

  13. Nerve Transfers in Tetraplegia.

    PubMed

    Fox, Ida K

    2016-05-01

    Hand and upper extremity function is instrumental to basic activities of daily living and level of independence in cervical spinal cord injury (SCI). Nerve transfer surgery is a novel and alternate approach for restoring function in SCI. This article discusses the biologic basis of nerve transfers in SCI, patient evaluation, management, and surgical approaches. Although the application of this technique is not new; recent case reports and case series in the literature have increased interest in this field. The challenges are to improve function, achieve maximal gains in function, avoid complications, and to primum non nocere.

  14. Phospholemman and beta-adrenergic stimulation in the heart.

    PubMed

    Wang, JuFang; Gao, Erhe; Song, Jianliang; Zhang, Xue-Qian; Li, Jifen; Koch, Walter J; Tucker, Amy L; Philipson, Kenneth D; Chan, Tung O; Feldman, Arthur M; Cheung, Joseph Y

    2010-03-01

    Phosphorylation at serine 68 of phospholemman (PLM) in response to beta-adrenergic stimulation results in simultaneous inhibition of cardiac Na(+)/Ca(2+) exchanger NCX1 and relief of inhibition of Na(+)-K(+)-ATPase. The role of PLM in mediating beta-adrenergic effects on in vivo cardiac function was investigated with congenic PLM-knockout (KO) mice. Echocardiography showed similar ejection fraction between wild-type (WT) and PLM-KO hearts. Cardiac catheterization demonstrated higher baseline contractility (+dP/dt) but similar relaxation (-dP/dt) in PLM-KO mice. In response to isoproterenol (Iso), maximal +dP/dt was similar but maximal -dP/dt was reduced in PLM-KO mice. Dose-response curves to Iso (0.5-25 ng) for WT and PLM-KO hearts were superimposable. Maximal +dP/dt was reached 1-2 min after Iso addition and declined with time in WT but not PLM-KO hearts. In isolated myocytes paced at 2 Hz. contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes and [Na(+)](i) reached maximum 2-4 min after Iso addition, followed by decline in WT but not PLM-KO myocytes. Reducing pacing frequency to 0.5 Hz resulted in much smaller increases in [Na(+)](i) and no decline in contraction and [Ca(2+)](i) transient amplitudes with time in Iso-stimulated WT and PLM-KO myocytes. Although baseline Na(+)-K(+)-ATPase current was 41% higher in PLM-KO myocytes because of increased alpha(1)- but not alpha(2)-subunit activity, resting [Na(+)](i) was similar between quiescent WT and PLM-KO myocytes. Iso increased alpha(1)-subunit current (I(alpha1)) by 73% in WT but had no effect in PLM-KO myocytes. Iso did not affect alpha(2)-subunit current (I(alpha2)) in WT and PLM-KO myocytes. In both WT and NCX1-KO hearts, PLM coimmunoprecipitated with Na(+)-K(+)-ATPase alpha(1)- and alpha(2)-subunits, indicating that association of PLM with Na(+)-K(+)-ATPase did not require NCX1. We conclude that under stressful conditions in which [Na(+)](i) was high, beta-adrenergic agonist

  15. Size-related differences in the branching pattern of the motor nerve terminals in triangularis sterni muscle of the mouse.

    PubMed

    Tomasi, J; Fenol, R; Santafe, M; Mayayo, E

    1989-01-01

    A light microscopy morphometric study was performed in singly innervated synaptic areas of the triangularis sterni muscle of the normal adult Swiss mouse. Investigating mechanisms of the motor nerve growth control, we tested the hypothesis that significant differences in the nerve terminal branching pattern can be detected between different populations of nerve endings classified according to their arborization complexity or size. The main observations of this morphometric study are first, that the mean segment length of the terminal arborization between branch points behaves as an independent variable from the remaining parameters; the mean value of this parameter did not change in nerve endings of differing size and complexity. Secondly, the increase in size of the nerve endings is accompanied by a significant reduction in the mean length of the distal free-end segments. Results are discussed in the context of the possible regulatory mechanisms governing nerve terminal growth and remodelling.

  16. Overview of the Cranial Nerves

    MedlinePlus

    ... and toxins. Some cranial nerve disorders interfere with eye movement. Eye movement is controlled by 3 pairs of muscles. These ... be able to move their eyes normally. How eye movement is affected depends on which nerve is affected. ...

  17. Nerve Injuries of the Upper Extremity

    MedlinePlus

    ... of individual nerve fibers and surrounding outer sheath (“insulation”) Figure 2: Nerve repair with realignment of bundles © ... of individual nerve fibers and surrounding outer sheath insulation Figure 2 - Nerve repair with realignment of bundles ...

  18. [Involvement of adrenergic mechanisms in developing the nervous syndrome of high pressure and nitrogen narcosis].

    PubMed

    Sledkov, A I; Bernarskii, K V; Shilina, M N

    1996-01-01

    Involvement of the adrenergic mediator system in central mechanisms of hyperbaric nitrogen narcosis or the high pressure nervous syndrome (NSHP) produced by nitrogen or heliox gas mixtures under increased pressure was studied in mice and rabbit experiments with the use of pharmacological substances-analyzers. Accumulated data are indicative of lack of a significant role of the adrenergic system in the NSHP genesis and a protective effect of activation of the central but not peripheric adrenergic mediation in development of the behavioural and electrophysiological symptomatics of nitrogen narcosis. Mechanisms of NSHP and nitrogen narcosis and possible principles of pharmacological correction are under discussion.

  19. Transplantation of embryonic spinal cord neurons to the injured distal nerve promotes axonal regeneration after delayed nerve repair.

    PubMed

    Zhang, Wenming; Fang, Xinyu; Zhang, Chaofan; Li, Wen; Wong, Wai Man; Xu, Yejun; Wu, Wutian; Lin, Jianhua

    2017-03-01

    Peripheral nerve injury (PNI) usually results in poor functional recovery. Nerve repair is the common clinical treatment for PNI but is always obstructed by the chronic degeneration of the distal stump and muscle. Cell transplantation can alleviate the muscle atrophy after PNI, but the subsequent recovery of the locomotive function is seldom described. In this study, we combined cell transplantation and nerve repair to investigate whether the transplantation of embryonic spinal cord cells could benefit the delayed nerve repair. The experiment consisted of 3 stages: transection of the tibial nerve to induce 'pre-degeneration', a second surgery performed 2 weeks later for transplantation of E14 embryonic spinal cord cells or vehicle (culture medium) at the distal end of the injured nerve, and, 3 months later, the removal of the grafted cells and the cross-suturing of the residual distal end to the proximal end of a freshly cut ipsilateral common peroneal (CP) nerve. Cell survival and fate after the transplantation were investigated, and the functional recovery after the cross-suturing was compared between the groups. The grafted cells could survive and generate motor neurons, extending axons that were subsequently myelinated and forming synapses with the muscle. After the cross-suturing, the axonal regeneration from the proximal stump of the injured CP nerve and the functional recovery of the denervated gastrocnemius muscle were significantly promoted in the group receiving the cells. Our study presents a new perspective indicating that the transplantation of embryonic spinal cord neurons may be a valuable therapeutic strategy for PNI.

  20. Decellularisation and histological characterisation of porcine peripheral nerves

    PubMed Central

    Zilic, Leyla

    2016-01-01

    ABSTRACT Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three‐dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041–2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:26926914

  1. Optic nerve hypoplasia in children.

    PubMed Central

    Zeki, S. M.; Dutton, G. N.

    1990-01-01

    Optic nerve hypoplasia (ONH) is characterised by a diminished number of optic nerve fibres in the optic nerve(s) and until recently was thought to be rare. It may be associated with a wide range of other congenital abnormalities. Its pathology, clinical features, and the conditions associated with it are reviewed. Neuroendocrine disorders should be actively sought in any infant or child with bilateral ONH. Early recognition of the disorder may in some cases be life saving. Images PMID:2191713

  2. Evidence for adrenergic control of transcellular calcium distribution in liver.

    PubMed Central

    Hill, C E; Dawson, A P; Pryor, J S

    1985-01-01

    Free Ca2+ concentration and 45Ca flux were measured in the perfusate and bile of the perfused rat liver. With a perfusate Ca2+ concentration of 1 mM, the bile concentration was 0.35 mM. The ratio of 45Ca in bile to that in blood increased from 0.3 to 0.6 over 90 min of perfusion. Both verapamil and adrenaline (via alpha-adrenergic receptors) increased the 45Ca bile/perfusate ratio to 0.8. Adrenaline infusion increased the bile Ca2+ concentration to 0.8 mM. This decreased to 0.35 mM after the infusion was stopped. PMID:4062875

  3. Refractory case of adrenergic urticaria successfully treated with clotiazepam.

    PubMed

    Kawakami, Yukari; Gokita, Mari; Fukunaga, Atsushi; Nishigori, Chikako

    2015-06-01

    Adrenergic urticaria (AU) is a rare type of stress-induced physical urticaria characterized by widespread pruritic urticarial papules. Diagnosis can be made by i.d. injection of adrenaline or noradrenaline, which produces the characteristic rash. Although the lesions of AU typically respond to beta-blockers such as propranolol, the therapeutic options for AU are limited. Here, we report a case of AU that was resistant to beta-blockers and successfully treated with clotiazepam. The clinical picture of AU resembles that of cholinergic urticaria (CU), however, positive noradrenaline test and negative acetylcholine skin test were useful for the differential diagnosis of AU and CU. Although his symptoms were resistant to several therapeutic methods including olopatadine (H1 antagonist), lafutidine (H2 antagonist) and propranolol, the severity and frequency of his attacks and his subjective symptoms were reduced by oral clotiazepam, an anxiolytic benzodiazepine. Dermatologists should be aware that anxiolytic benzodiazepines may be a therapeutic option in AU.

  4. β-Adrenergic Receptor and Insulin Resistance in the Heart.

    PubMed

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.

  5. β-Adrenergic Receptor and Insulin Resistance in the Heart

    PubMed Central

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Over-stimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR over-stimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs over-stimulation leads to induction of insulin resistance in the heart. PMID:28035081

  6. Localized β-adrenergic receptor blockade does not affect sweating during exercise.

    PubMed

    Buono, Michael J; Tabor, Brian; White, Ailish

    2011-05-01

    The purpose of the current study was to determine the effect of a locally administered nonselective β-adrenergic antagonist on sweat gland function during exercise. Systemically administered propranolol has been reported to increase, decrease, or not alter sweat production during exercise. To eliminate the confounding systemic effects associated with orally administered propranolol, we used iontophoresis to deliver it to the eccrine sweat glands within a localized area on one forearm prior to exercise. This allowed for determination of the direct effect of β-adrenergic receptor blockade on sweating during exercise. Subjects (n = 14) reported to the laboratory (23 ± 1°C, 35 ± 3% relative humidity) after having refrained from exercise for ≥12 h. Propranolol (1% solution) was administered to a 5-cm(2) area of the flexor surface of one forearm via iontophoresis (1.5 mA) for 5 min. A saline solution was administered to the opposing arm via iontophoresis. Each subject then exercised on a motor-driven treadmill at 75% of their age-predicted maximal heart rate for 20 min, while sweat rate was measured simultaneously in both forearms. Immediately after cessation of exercise, the number of active sweat glands was measured by application of iodine-impregnated paper to each forearm. The sweat rate for the control and propranolol-treated forearm was 0.62 ± 41 and 0.60 ± 0.44 (SD) mg·cm(-2)·min(-1), respectively (P = 0.86). The density of active sweat glands for the control and propranolol-treated forearm was 130 ± 6 and 134 ± 5 (SD) glands/cm(2), respectively, (P = 0.33). End-exercise skin temperature was 32.9 ± 0.2 and 33.1 ± 0.3°C for the control and propranolol-treated forearm, respectively (P = 0.51). Results of the current study show that when propranolol is administered locally, thus eliminating the potential confounding systemic effects of the drug, it does not directly affect sweating during the initial stages of high-intensity exercise in young, healthy

  7. Femoral nerve dysfunction

    MedlinePlus

    ... Read More Abscess Diabetes Mononeuropathy Multiple mononeuropathy Myelin Peripheral neuropathy Polyarteritis nodosa Systemic Tumor Review Date 1/5/ ... Related MedlinePlus Health Topics Leg Injuries and Disorders Peripheral Nerve Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  8. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  9. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  10. [Surgical approach to the axillary nerve via an anterior trans-coracoid route].

    PubMed

    Chabernaud, D; Baulot, E; Turlin, F; Perez, A; Grammont, P M

    1996-09-01

    The surgical approach to the circumflex nerve is difficult. Based on an illustrative clinical example, the authors describe a method using a coracoid osteotomy that permits a simplified approach to the circumflex nerve. This trick permits en bloc retraction of the superficial plane of the brachial plexus without sectioning of the muscle and without excessive traction on the musculocutaneous nerve. The stable fixation of the coracoid at the end of the procedure permits early and effective rehabilitation.

  11. Dissociation between sympathetic nerve traffic and sympathetically mediated vascular tone in normotensive human obesity.

    PubMed

    Agapitov, Alexei Vasilievich; Correia, Marcelo Lima de Gusmão; Sinkey, Christine Ann; Haynes, William Geoffrey

    2008-10-01

    Obesity increases the risk of hypertension and its cardiovascular complications. This has been partly attributed to increased sympathetic nerve activity, as assessed by microneurography and catecholamine assays. However, increased vasoconstriction in response to obesity-induced sympathoactivation has not been unequivocally demonstrated in obese subjects without hypertension. We evaluated sympathetic alpha-adrenergic vascular tone in the forearm by brachial arterial infusion of the alpha-adrenoreceptor antagonist phentolamine (120 microg/min) in normotensive obese (daytime ambulatory arterial pressure: 123+/-1/77+/-1 mm Hg; body mass index: 35+/-1 kg/m(2)) and lean (daytime ambulatory arterial pressure: 123+/-2/77+/-2 mm Hg; body mass index: 22+/-1 kg/m(2)) subjects (n=25 per group) matched by blood pressure, age, and gender. Microneurographic sympathetic nerve activity to skeletal muscle was significantly higher in obese subjects (30+/-3 versus 22+/-1 bursts per minute; P=0.02). Surprisingly, complete alpha-adrenergic receptor blockade by phentolamine (at concentrations sufficient to completely inhibit norepinephrine and phenylephrine-induced vasoconstriction) caused equivalent vasodilatation in obese (-57+/-2%) and lean subjects (-57+/-3%; P=0.9). In conclusion, sympathetic vascular tone in the forearm circulation is not increased in obese normotensive subjects despite increased sympathetic outflow. Vasodilator factors or mechanisms occurring in obese normotensive subjects could oppose the vasoconstrictor actions of increased sympathoactivation. Our findings may help to explain why some obese subjects are protected from the development of hypertension.

  12. Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent in the cornea

    PubMed Central

    Gao, Nan; Lee, Patrick; Yu, Fu-Shin

    2016-01-01

    The corneal epithelium consists of stratified epithelial cells, sparsely interspersed with dendritic cells (DCs) and a dense layer of sensory axons. We sought to assess the structural and functional correlation of DCs and sensory nerves. Two morphologically different DCs, dendriform and round-shaped, were detected in the corneal epithelium. The dendriform DCs were located at the sub-basal space where the nerve plexus resides, with DC dendrites crossing several nerve endings. The round-shaped DCs were closely associated with nerve fiber branching points, penetrating the basement membrane and reaching into the stroma. Phenotypically, the round-shaped DCs were CD86 positive. Trigeminal denervation resulted in epithelial defects with or without total tarsorrhaphy, decreased tear secretion, and the loss of dendriform DCs at the ocular surface. Local DC depletion resulted in a significant decrease in corneal sensitivity, an increase in epithelial defects, and a reduced density of nerve endings at the center of the cornea. Post-wound nerve regeneration was also delayed in the DC-depleted corneas. Taken together, our data show that DCs and sensory nerves are located in close proximity. DCs may play a role in epithelium innervation by accompanying the sensory nerve fibers in crossing the basement membrane and branching into nerve endings. PMID:27805041

  13. Altered protein phosphorylation in sciatic nerve from rats with streptozocin-induced diabetes

    SciTech Connect

    Schrama, L.H.; Berti-Mattera, L.N.; Eichberg, J.

    1987-11-01

    The effect of experimental diabetes on the phosphorylation of proteins in the rat sciatic nerve was studied. Nerves from animals made diabetic with streptozocin were incubated in vitro with (/sup 32/P)orthophosphate and divided into segments from the proximal to the distal end, and proteins from each segment were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The principal labeled species were the major myelin proteins, P0, and the basic proteins. After 6 wk of diabetes, the incorporation of isotope into these proteins rose as a function of distance along the nerve in a proximal to distal direction and was significantly higher at the distal end compared with incorporation into nerves from age-matched controls. The overall level of isotope uptake was similar in nerves from diabetic animals and weight-matched controls. The distribution of /sup 32/P among proteins also differed in diabetic nerve compared with both control groups in that P0 and the small basic protein accounted for a greater proportion of total label incorporated along the entire length of nerve. In contrast to intact nerve, there was no significant difference in protein phosphorylation when homogenates from normal and diabetic nerve were incubated with (/sup 32/P)-gamma-ATP. The results suggest that abnormal protein phosphorylation, particularly of myelin proteins, is a feature of experimental diabetic neuropathy and that the changes are most pronounced in the distal portion of the nerve.

  14. THE EFFECTS OF ADRENERGIC AND ADRENOLYTIC AGENTS ON THE APPEARANCE OF CARDIAC ARRHYTHMIAS DURING EXPERIMENTAL HYPOTHERMIA,

    DTIC Science & Technology

    The object of this study was to compare the influence of the adrenergic drugs epinephrine and norepinephrine and the adrenolytic drug phentolamine on...fibrillation. Phentolamine was without significant effect on heart rate, blood pressure, and terminal temperature.

  15. Interactions between adrenergic systems, anaesthetic and TRH analogue induced analeptic effects on VBT transmission.

    PubMed

    Clarke, K A; Djouhri, L

    1991-09-01

    Previous behavioural and electrophysiological studies have indicated an antinarcotic action of thyrotropin-releasing hormone (TRH) and its analogues in antagonizing the action of CNS depressant drugs, including baclofen and a variety of anesthetics. While beta-adrenergic receptors are implicated in the level of anaesthesia/arousal, whether the analeptic action of TRH involves adrenergic systems for its expression is uncertain. The object of the present experiments, therefore, was to examine interactions between adrenergic systems and the anti-anaesthetic effects of TRH analogue CG3703. It was found that pretreatment with the beta-block (+/-)propranolol did not abolish or reduce the ability of CG3703 to antagonize urethane-induced depression of VBT transmission. These results suggest therefore, that beta-adrenergic systems are unlikely to be involved in the anti-anaesthetic effect of the tripeptide.

  16. Alpha 2 adrenergic receptors in hyperplastic human prostate: identification and characterization using (/sup 3/H) rauwolscine

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1986-05-01

    (/sup 3/H)Rauwolscine ((/sup 3/H)Ra), a selective ligand for the alpha 2 adrenergic receptor, was used to identify and characterize alpha 2 adrenergic receptors in prostate glands of men with benign prostatic hyperplasia. Specific binding of (/sup 3/H)Ra to prostatic tissue homogenates was rapid and readily reversible by addition of excess unlabelled phentolamine. Scatchard analysis of saturation experiments demonstrates a single, saturable class of high affinity binding sites (Bmax = 0.31 +/- 0.04 fmol./microgram. DNA, Kd = 0.9 +/- 0.11 nM.). The relative potency of alpha adrenergic drugs (clonidine, alpha-methylnorepinephrine and prazosin) in competing for (/sup 3/H)Ra binding sites was consistent with the order predicted for an alpha 2 subtype. The role of alpha 2 adrenergic receptors in normal prostatic function and in men with bladder outlet obstruction secondary to BPH requires further investigation.

  17. Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition?

    PubMed Central

    Vamecq, Joseph; Mention-Mulliez, Karine; Leclerc, Francis; Dobbelaere, Dries

    2015-01-01

    Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions. PMID:26426025

  18. [Microcirculatory bed of the injured sciatic nerve (experimental study)].

    PubMed

    Chaĭkovskiĭ, Iu B

    1982-10-01

    A morphometric, histochemical and electron microscopic investigation of the sciatic nerve hemomicrocirculatory bed was performed (on 45 dogs) after its small part had been resected and the cut end had been sutured microsurgically. During 2--4 weeks after the operation the microvessel reactions depend mainly on the trauma and the resulted processes of aseptic inflammation, the neural fibre degeneration and vascular denervation. Within the interval of 2--4 weeks up to 6-12 months after the nerve cutting, transformations in the hemomicrocirculatory bed play an important role in the energy and plastic ensurance of the regenerative neuroma elements and the adjoining parts of the nerve. Specific reactions of the peripheral nerve microvessels at their restoration should be taken into account when estimating time of surgical operations for neural trunks and elaborating some new neurosurgical approaches.

  19. The effect of CA1 α2 adrenergic receptors on memory retention deficit induced by total sleep deprivation and the reversal of circadian rhythm in a rat model.

    PubMed

    Norozpour, Yaser; Nasehi, Mohammad; Sabouri-Khanghah, Vahid; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza

    2016-09-01

    The α2 adrenergic receptors which abundantly express in the CA1 region of the hippocampus play an important role in the regulation of sleep and memory retention processes. Based on the available evidence, the aim of our study was to investigate consequences of the activation and deactivation of CA1 α2 adrenergic receptors (by clonidine and yohimbine, respectively) on the impairment of memory retention induced by total sleep deprivation (TSD) and the reversal of circadian rhythm (RCR) in a rat model. To this end, the water box apparatus and passive avoidance task were in turn used to induce sleep deprivation and assess memory retention. Our findings suggested that TSD (for 24 and 36, but not 12h) and RCR (12h/day for 3 consecutive days) impair memory function. The post-training intra-CA1 administration of yohimbine (α2 adrenergic receptor antagonist) on its own, at the dose of 0.1μg/rat, decreased the step-through latency and locomotor activity in the TSD- sham treated but not undisturbed sleep rats. Unlike yohimbine, clonidine (α2 adrenergic receptor agonist), in all applied doses (0.001, 0.01 and 0.1μg/rat), failed to induce such an effect. While the subthreshold dose of yohimbine (0.001μg/rat) abrogated the impairment of memory retention induced by the 24-h TSD, it could potentiate the impairment of memory retention induced by 36-h TSD, suggesting the modulatory effect of yohimbine. Moreover, the subthreshold dose of clonidine (0.1μg/rat) restored the memory retention deficit in TSD rats (24 and 36h). On the other hand, the subthreshold dose of clonidine (0.1μg/rat), but not yohimbine (0.001μg/rat) restored the memory retention deficit in RCR rats. Such interventions however did not alter the locomotor activity. The above observations proposed that CA1 α2 adrenergic receptors play a potential role in memory retention deficits induced by TSD and RCR.

  20. [Modifying effect of incorporated 137Cs on the mechanism of adrenergic control of myocardial contraction].

    PubMed

    Lobanok, L M; Bulanova, K Ia; Gerasimovich, N V; Sineleva, M V; Miliutin, A A

    1994-01-01

    Incorporated 137Cs (absorbed dose of 0.26 Gy) causes decrease of myocardial's contractile function and inotropic response to beta-adrenagonists effect, isoproterenol-stimulated adenylate cyclase activity and beta-adrenoreceptors affinity. Adrenergic effects, mediated by alpha-adrenergic structures on heart contractile function, on the contrary, become stronger, that is due to the increase of the receptors' density on sarcolemma surface.

  1. The effect of adrenergic agonists and antagonists on cysteine-proteinase inhibitor (cystatin) in rat saliva.

    PubMed

    Bedi, G S

    1991-01-01

    The effect of a number of adrenergic agonists and antagonists on the induction of rat salivary cystatin was investigated. A highly sensitive and specific radioimmunoassay was used to determine cystatin in rat whole saliva. Treatment for 10 consecutive days with a non-specific beta-adrenergic agonist isoproterenol, or the beta 1-adrenergic agonists dobutamine or methoxyphenamine, resulted in the induction of the salivary cystatin. Induction was also found in rats treated for 10 days with arterenol. Only trace quantities of cystatin could be detected in saliva of rats treated with the beta 2-adrenergic agonists terbutaline or salbutamol. When isoproterenol was injected concomitantly with the mixed beta-antagonist propranolol or the beta 1-adrenergic antagonists metaprolol, proctocol or atenolol the production of cystatin was totally suppressed. However, the beta 2-antagonist, ICI 118551, produced only a partial reduction in salivary cystatin induction elicited by isoproterenol. The findings suggest that the induction of salivary cystatin is regulated, in part, by beta 1-adrenergic receptor stimulation.

  2. Photoaffinity labeling the. beta. -adrenergic receptor with an iodoazido derivative of norepinephrine

    SciTech Connect

    Resek, J.F.

    1989-01-01

    The {beta}-adrenergic receptor is an integral membrane protein coupled to adenylate cyclase by the guanine nucleotide binding protein, Gs. Agonist binding to the receptor results in coupling the receptor to Gs, increased adenylate cyclase activity, and receptor desensitization. In contrast, antagonists bind but do not activate the receptor or result in desensitization. To study the structure and regulation of the {beta}-adrenergic receptor in the membrane, it is useful to develop ligands which covalently label the binding site. In this thesis the synthesis and characterization of the first agonist photolabel for the {beta}-adrenergic receptor is presented. The agonist photoaffinity label, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), was synthesized in non-radioactive and radioactive carrier-free forms with {sup 125}I (2,200 Ci/mmole). NAIN was chemically characterized by TLC mobility, melting point, NMR, IR, and Mass Spectroscopy. NAIN was shown to be competitive with the {beta}-adrenergic ligand ({sup 125}I)-ICYP in several membranes containing {beta}-adrenergic receptors. Binding data indicated that NAIN coupled the receptor to Gs and had an affinity for the receptor which was similar to isoproterenol. NAIN stimulated adenylate cyclase activity in guinea pig lung and S49 WT mouse lymphoma cell membranes with a K{sub act} and V max similar to isoproterenol while in frog erythrocyte ghosts, NAIN produced 77% of the maximally stimulated adenylate cyclase activity of isoproterenol. These data show that NAIN is an agonist for the {beta}-adrenergic receptor.

  3. Characterization of beta-adrenergic receptors through the replicative life span of IMR-90 cells

    SciTech Connect

    Scarpace, P.J.

    1987-01-01

    Beta-adrenergic receptor number and receptor affinity for isoproterenol were assessed at various in vitro ages of the human diploid fibroblast cell line IMR-90. From population doubling level (PDL) 33 to 44, there was a positive correlation between beta-adrenergic receptor density and PDL. Beta-adrenergic receptors, assessed by Scatchard analysis of (/sup 125/I)-iodocyanopindolol (ICYP) binding, increased from 15 fmol/mg protein at PDL 33 to 36 fmol/mg protein at PDL 44. In contrast, from PDL 44 to 59, there was a negative correlation between beta-adrenergic receptor density and PDL. Receptor density declined to 12 fmol/mg protein at PDL 59. When the density of beta-adrenergic receptors was expressed as receptor per cell, the findings were similar. Receptor agonist affinity for isoproterenol was determined from Hill plots of (/sup 125/I)-ICYP competition with isoproterenol. There was no change in the dissociation constant for isoproterenol with in vitro age. In humans, serum norepinephrine concentrations increase with age. This increase in serum norepinephrine may be partially responsible for the decreased beta-adrenergic receptor-agonist affinity observed with age in human lymphocytes and rat heart and lung. The present findings are consistent with the hypothesis that the decreases in receptor agonist affinity in rat and man with age are secondary to increases in catecholamine concentrations.

  4. Modulation of. beta. -adrenergic response in rat brain astrocytes by serum and hormones

    SciTech Connect

    Wu, D.K.; Morrison, R.S.; de Vellis, J.

    1985-01-01

    Purified astrocyte cultures from neonatal rat cerebrum respond to isoproterenol, a ..beta..-adrenergic agonist, with a transient rise in cAMP production. This astroglial property was regulated by serum, a chemically defined medium (serum-free medium plus hydrocortisone, putrescine, prostaglandin F/sub 2/, insulin, and fibroblast growth factor) and epidermal growth factor. Compared to astrocytes grown in serum-supplemented medium, astrocytes grown in the chemically defined medium were nonresponsive to isoproterenol stimulation, and this difference did not appear to be due to selection of a subpopulation of cells by either medium. The data suggest that a decreased ..beta..-adrenergic receptor number and an increased degradation of cAMP may account for the reduced response to ..beta..-adrenergic stimulation. The nonresponsive state of astrocytes in the defined medium was reversible when the medium was replaced with serum-supplemented medium. An active substance(s) in serum was responsible for restoring the responsiveness of astrocytes. Each of the five components of the defined medium had little effect by itself; however, together they acted synergistically to desensitize astrocytes to ..beta..-adrenergic stimulation. On the other hand, epidermal growth factor, a potent mitogen for astrocytes, was very competent by itself in reducing the cAMP response of astrocytes to ..beta..-adrenergic stimulation. Thus purified astrocytes grown in the chemically defined medium appear to be a good model for the study of hormonal interactions and of serum factors which may modulate the ..beta..-adrenergic response.

  5. Beta-adrenergic receptors of lymphocytes in children with allergic respiratory diseases

    SciTech Connect

    Bittera, I.; Gyurkovits, K.; Falkay, G.; Eck, E.; Koltai, M.

    1988-01-01

    The beta-adrenergic receptor binding sites on peripheral lymphocytes in children with bronchial asthma (n = 16) and seasonal allergic rhinitis (n = 8) were examined in comparison with normal controls (n = 18) by means of /sup 124/I-cyanopindolol. The number of beta-adrenergic receptors was significantly lower in the asthmatic group (858 +/- 460/lymphocyte) than in the controls (1564 +/- 983/lymphocyte). The value (1891 +/- 1502/lymphocyte in children with allergic rhinitis was slightly higher than that in healthy controls. Of the 24 patients suffering from allergic diseases of the lower or upper airways, the bronchial histamine provocation test was performed in 21; 16 gave positive results, while 5 were negative. No difference in beta-adrenergic receptor count was found between the histamine-positive and negative patients. Neither was there any correlation between the number of beta-adrenergic receptors and the high (16/24) and low (8/24) serum IgE concentrations found in allergic patients. The significant decrease in beta-adrenergic receptor count in asthmatic children lends support to Szentivanyi's concept. Further qualitative and quantitative analysis of lymphocyte beta-adrenergic receptors may provide an individual approach to the treatment of bronchial asthma with beta-sympathomimetic drugs.

  6. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    SciTech Connect

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.

  7. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver

    SciTech Connect

    Katz, M.S.; Boland, S.R.; Schmidt, S.J.

    1985-06-01

    beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-(/sup 125/I)iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase.

  8. Elevated level of. beta. -adrenergic receptors in hepatocytes from regenerating rat liver

    SciTech Connect

    Sandnes, D.; Sand, T.E.; Sager, G.; Broenstad, G.O.; Refsnes, M.R.; Gladhaug, I.P.; Jacobsen, S.; Christoffersen, T.

    1986-01-01

    Hepatocytes from regenerating rat liver show an enhanced epinephrine-sensitive adenylate cyclase activity and cAMP response, which may be involved in triggering of the cell proliferation. We have determined adrenergic receptors and adenylate cyclase activity in hepatocytes isolated at various time points after partial hepatectomy. The number of ..beta..-adrenergic receptors, measured by binding of (/sup 125/I)iodocyanopindolol ((/sup 125/I)CYP) to a particulate fraction prepared from isolated hepatocytes, increased rapidly after partial hepatectomy as compared with sham-operated or untreated controls. The maximal increase, which was observed at 48 h, was between 5- and 6-fold (from approx.1800 to approx.10,500 sites per cell). Thereafter, the number of ..beta..- adrenergic receptors decreased gradually. Competition experiments indicated ..beta../sub 2/-type receptors. Parallelism was found between the change in the number of ..beta../sub 2/-adrenergic receptors and the isoproterenol-responsive adenylate cyclase activity. The number of ..cap alpha../sub 1/-adrenergic receptors, determined by binding of (/sup 3/H)prazosin, was transiently lowered by about 35% at 18-24 h. with no significant change in K/sub d/. Although the results of this study do not exclude the possibility of post-receptor events, they suggest that the increased number of..beta../sub 2/-adrenergic receptors is a major factor responsible for the enhanced catecholamine-responsive adenylate cyclase activity in regenerating liver.

  9. Effect of β-adrenergic antagonists on in-hospital mortality after ischemic stroke

    PubMed Central

    Phelan, Christopher; Alaigh, Vivek; Fortunato, Gil; Staff, Ilene; Sansing, Lauren

    2015-01-01

    Background Ischemic stroke accounts for 85–90% of all strokes and currently has very limited therapeutic options. Recent studies of β-adrenergic antagonists suggest they may have neuroprotective effects that lead to improved functional outcomes in rodent models of ischemic stroke, however there is limited data in patients. We aimed to determine whether there was an improvement in mortality rates among patients who were taking β-blockers during the acute phase of their ischemic stroke. Methods A retrospective analysis of a prospectively collected database of ischemic stroke patients was performed. Patients who were on β-adrenergic antagonists both at home and during the first three days of hospitalization were compared to patients who were not on β-adrenergic antagonists to determine the association with patient mortality rates. Results The study included a patient population of 2804 patients. In univariate analysis, use of β-adrenergic antagonists was associated with older age, atrial fibrillation, hypertension and more severe initial stroke presentation. Despite this, multivariable analysis revealed a reduction in in-hospital mortality among patients who were treated with β-adrenergic antagonists (odds ratio 0.657; 95% confidence interval 0.655–0.658). Conclusions The continuation of home β-adrenergic antagonist medication during the first three days of hospitalization after an ischemic stroke is associated with a decrease in patient mortality. This supports the work done in rodent models suggesting neuroprotective effects of β-blockers after ischemic stroke. PMID:26163891

  10. Postnatal treatment of rats with adrenergic receptor agonists or antagonists influences differentiation of sexual behavior.

    PubMed

    Jarzab, B; Sickmöller, P M; Geerlings, H; Döhler, K D

    1987-12-01

    The aim of the study was to investigate the possible role of the adrenergic system in development and differentiation of neural centers controlling sexual behavior in adulthood. For this purpose normal and androgenized female rats were treated with the alpha 1-receptor antagonist prazosin, the alpha 2-receptor agonist clonidine, or the alpha 2-receptor antagonist yohimbine-HCl throughout the first week of life. In adulthood all animals were ovariectomized and, after appropriate hormone-priming, they were tested for the capacity to display female and male sexual behavior patterns. Alteration of adrenergic transmission during the critical postnatal period for sexual differentiation of neural centers resulted in significant changes in the capacity to express female lordosis behavior in adulthood. In nonandrogenized animals clonidine significantly reduced the capacity for lordosis behavior. In androgenized animals clonidine had the opposite effect; it attenuated the inhibitory effect of testosterone propionate (TP) on differentiation of lordosis behavior. Prazosin, which was without effect in nonandrogenized animals, also attenuated the inhibitory effect of TP on differentiation of lordosis behavior. Yohimbine was without effect in androgenized and nonandrogenized animals. There was no influence of any of the adrenergic drugs on differentiation of male sexual behavior. In conclusion, differentiation of lordosis behavior seems to be mediated or modulated via adrenergic transmission. The defeminizing effect of testosterone postnatally on the differentiation of lordosis behavior seems to be expressed via alpha 1-adrenergic transmission, and diminished adrenergic activity during the postnatal period seems to protect the developing brain against this effect of testosterone.

  11. Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration.

    PubMed

    Chen, Zhiguo; Pradhan, Sanjay; Liu, Chiachi; Le, Lu Q

    2012-10-01

    Peripheral nerves have the potential to regenerate axons and reinnervate end organs. Chronic denervation and disturbed nerve regeneration are thought to contribute to peripheral neuropathy, pain, and pruritus in the skin. The capacity of denervated distal nerves to support axonal regeneration requires proliferation by Schwann cells, which guide regenerating axons to their denervated targets. However, adult peripheral nerve Schwann cells do not retain a growth-permissive phenotype, as is required to produce new glia. Therefore, it is believed that following injury, mature Schwann cells dedifferentiate to a progenitor/stem cell phenotype to promote axonal regrowth. In this study, we show that skin-derived precursors (SKPs), a recently identified neural crest-related stem cell population in the dermis of skin, are an alternative source of progenitors for cutaneous nerve regeneration. Using in vivo and in vitro three-dimensional cutaneous nerve regeneration models, we show that the SKPs are neurotropic toward injured nerves and that they have a full capacity to differentiate into Schwann cells and promote axon regeneration. The identification of SKPs as a physiologic source of progenitors for cutaneous nerve regeneration in the skin, where SKPs physiologically reside, has important implications for understanding early cellular events in peripheral nerve regeneration. It also provides fertile ground for the elucidation of intrinsic and extrinsic factors within the nerve microenvironment that likely play essential roles in cutaneous nerve homeostasis.

  12. Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration

    PubMed Central

    Chen, Zhiguo; Pradhan, Sanjay; Liu, Chiachi; Le, Lu Q.

    2012-01-01

    Peripheral nerves have the potential to regenerate axons and reinnervate end organs. Chronic denervation and disturbed nerve regeneration are thought to contribute to peripheral neuropathy, pain and pruritus in the skin. The capacity of denervated distal nerves to support axonal regeneration requires proliferation by Schwann cells, which guide regenerating axons to their denervated targets. However, adult peripheral nerve Schwann cells do not retain a growth-permissive phenotype, as is required to produce new glia. Therefore, it is believed that following injury, mature Schwann cells de-differentiate to a progenitor/stem cell phenotype to promote axonal re-growth. In this study, we show that Skin-derived precursors (SKPs), a recently identified neural-crest related stem cell population in the dermis of skin, are an alternative source of progenitors for cutaneous nerve regeneration. Using in vivo and in vitro 3-D cutaneous nerve regeneration models, we show that the SKPs are neurotropic toward injured nerves and that they have a full capacity to differentiate into Schwann cells and promote axon regeneration. The identification of SKPs as a physiologic source of progenitors for cutaneous nerve regeneration in the skin, where SKPs physiologically reside, has important implications for understanding early cellular events in peripheral nerve regeneration. It also provides fertile ground for the elucidation of intrinsic and extrinsic factors within the nerve microenvironment that likely play essential roles in cutaneous nerve homeostasis. PMID:22851518

  13. NEURON SPECIFIC α-ADRENERGIC RECEPTOR EXPRESSION IN HUMAN CEREBELLUM: IMPLICATIONS FOR EMERGING CEREBELLAR ROLES IN NEUROLOGIC DISEASE

    PubMed Central

    SCHAMBRA, U. B.; MACKENSEN, G. B.; STAFFORD-SMITH, M.; HAINES, D. E.; SCHWINN, D. A.

    2008-01-01

    Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of α1 adrenergic receptor subtype mRNA (α1a, α1b, α1d), and α2 adrenergic receptor subtype mRNA (α2a, α2b, α2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific α1 adrenergic receptor and α2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six α adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except α2a adrenergic receptor mRNA. All Purkinje cells label strongly for α2a and α2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express α1a and α2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express α1b and α2c adrenergic receptor subtypes. Basket cells show a strong signal for α1a, moderate signal for α2a and light label for α2b adrenergic receptor mRNA. In stellate cells, besides a strong label of α2a adrenergic receptor mRNA in all and moderate label of α2b message in select stellate cells, the inner stellate cells are also moderately positive for α1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of α2a and α2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic

  14. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  15. Treatment of Foot and Ankle Neuroma Pain With Processed Nerve Allografts

    PubMed Central

    Souza, Jason M.; Purnell, Chad A.; Cheesborough, Jennifer E.; Kelikian, Armen S.; Dumanian, Gregory A.

    2016-01-01

    Background: Localized nerve pain in the foot and ankle can be a chronic source of disability after trauma and has been identified as the most common complication following operative interventions in the foot and ankle. The superficial location of the injured nerves and lack of suitable tissue for nerve implantation make this pain refractory to conventional methods of neuroma management. We describe a novel strategy for management using processed nerve allografts to bridge nerve gaps created by resection of both end neuromas and neuromas-in-continuity. Methods: A retrospective review of a prospectively maintained database was performed of all patients who received a processed nerve allograft for treatment of painful neuromas in the foot and ankle between May 2010 and June 2015. Patient demographic and operative information was obtained, as well as preoperative and postoperative pain assessments using a conventional ordinal scale and PROMIS (Patient Reported Outcomes Measurement Information System) Pain Behavior and Pain Interference assessments. Twenty-two patients were identified, with postoperative pain assessments occurring at a mean of 15.5 months after surgery. Results: Neuromas of the sural and superficial peroneal nerves were the most common diagnoses, with 3-cm nerve allografts being used as the interposition graft in the majority of cases. Eight patients had end neuromas and 18 patients had neuromas in continuity. Analysis of paired data demonstrated a mean ordinal pain score decrease of 2.6, with 24 and 31 percentage-point decreases in PROMIS Pain Behavior and Pain Interference measures, respectively. All changes were significant (P < .002). Conclusion: The painful sequelae of superficial nerve injuries in the foot and ankle was significantly improved with complete excision of the involved nerve segment followed by bridging of the resulting nerve gap with a processed nerve allograft. This approach limits surgery to the site of injury and reconstitutes the

  16. Sciatic nerve repair with tissue engineered nerve: Olfactory ensheathing cells seeded poly(lactic-co-glygolic acid) conduit in an animal model

    PubMed Central

    Tan, C W; Ng, M H; Ohnmar, H; Lokanathan, Y; Nur-Hidayah, H; Roohi, S A; Ruszymah, BHI; Nor-Hazla, M H; Shalimar, A; Naicker, A S

    2013-01-01

    Background and Aim: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect. Materials and Methods: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study. Results: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix. Conclusion: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model. PMID:24379458

  17. Mutual attraction between emigrant cells from transected denervated nerve.

    PubMed Central

    Abernethy, D A; Thomas, P K; Rud, A; King, R H

    1994-01-01

    It is known that regenerating axons emerging from the proximal stump of a transected nerve are attracted towards the distal stump. It is not certain whether this neurotropic effect is on the axons themselves or whether it is on supporting cells such as Schwann cells that the axons then follow. In order to investigate this question in rats, segments of the sciatic nerve were either isolated or removed and reinserted as grafts, and then sutured into the opposing ends of double-Y silicone tubes. In these tubes, a central conduit was formed by connecting the centrally facing limb of each Y tube. The nerve segments were sutured into one of the limbs at either end. The third limbs of the Y tubes formed side arms, one of which was left open; a plug of mobilised fatty connective tissue was sutured into the other. A gap of 6 mm was left between the cut ends and the fat pads (or openings from the side arms). After 2-3 wk a significantly greater outgrowth (P < 0.001) was found to link the nerve segments than to invade the side arms. The major cell component in the outgrowth was Schwann cells, supported by fibroblasts and capillaries and surrounded by a lamellated layer of flattened fibroblasts. The growth into the side arms had a looser cellular architecture and contained considerably fewer Schwann cells. The results strongly suggest the existence of mutual attraction between emigrant Schwann cells, or possibly endoneurial fibroblasts, from the 2 cut ends of transected nerves. This conclusion has implications for the guidance of axons across gaps in nerves. It does not exclude an additional neurotropic effect from the distal stump on axons. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8014117

  18. Effect of Collateral Sprouting on Donor Nerve Function After Nerve Coaptation: A Study of the Brachial Plexus

    PubMed Central

    Reichert, Paweł; Kiełbowicz, Zdzisław; Dzięgiel, Piotr; Puła, Bartosz; Wrzosek, Marcin; Bocheńska, Aneta; Gosk, Jerzy

    2016-01-01

    Background The aim of the present study was to evaluate the donor nerve from the C7 spinal nerve of the rabbit brachial plexus after a coaptation procedure. Assessment was performed of avulsion of the C5 and C6 spinal nerves treated by coaptation of these nerves to the C7 spinal nerve. Material/Methods After nerve injury, fourteen rabbits were treated by end-to-side coaptation (ETS), and fourteen animals were treated by side-to-side coaptation (STS) on the right brachial plexus. Electrophysiological and histomorphometric analyses and the skin pinch test were used to evaluate the outcomes. Results There was no statistically significant difference in the G-ratio proximal and distal to the coaptation in the ETS group, but the differences in the axon, myelin sheath and fiber diameters were statistically significant. The comparison of the ETS and STS groups distal to the coaptation with the controls demonstrated statistically significant differences in the fiber, axon, and myelin sheath diameters. With respect to the G-ratio, the ETS group exhibited no significant differences relative to the control, whereas the G-ratio in the STS group and the controls differed significantly. In the electrophysiological study, the ETS and STS groups exhibited major changes in the biceps and subscapularis muscles. Conclusions The coaptation procedure affects the histological structure of the nerve donor, but it does not translate into changes in nerve conduction or the sensory function of the limb. The donor nerve lesion in the ETS group is transient and has minimal clinical relevance. PMID:26848925

  19. Iontophoretic beta-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.

    PubMed

    Shamsuddin, A K M; Reddy, M M; Quinton, P M

    2008-08-01

    With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished beta-adrenergic but not cholinergic sweating in CF. Therefore, the beta-adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating beta-adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in beta-adrenergic and cholinergic sweating. We also tested the efficacy of different beta-adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca(2+)-dependent Cl(-) conductance as well as K(+) conductances. In contrast, the beta-adrenergic secretory response is mediated exclusively by activation of a cAMP-dependent CFTR Cl(-) conductance without a concurrent activation of a K(+) conductance. Thus, the electrochemical driving forces generated by beta-adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller beta-adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the beta-adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent beta-adrenergic sweat responses, levels of intracellular cAMP above that achievable with a beta-adrenergic agonist alone are

  20. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Forte, Taylor E.; Wang, Roy; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    Visual Impairment Intracranial Pressure (VIIP) syndrome is a major concern in current space medicine research. While the exact pathology of VIIP is not yet known, it is hypothesized that the microgravity-induced cephalad fluid shift increases intracranial pressure (ICP) and drives remodeling of the optic nerve sheath. To investigate this possibility, we are culturing optic nerve sheath dura mater samples under different pressures and investigating changes in tissue composition. To interpret results from this work, it is essential to first understand the biomechanical response of the optic nerve sheath dura mater to loading. Here, we investigated the effects of mechanical loading on the porcine optic nerve sheath.Porcine optic nerves (number: 6) were obtained immediately after death from a local abattoir. The optic nerve sheath (dura mater) was isolated from the optic nerve proper, leaving a hollow cylinder of connective tissue that was used for biomechanical characterization. We developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the dura mater during inflation and under fixed axial loading. To determine the effects of variations in ICP, the sample was inflated (0-60 millimeters Hg) and circumferential distension was simultaneously recorded. These tests were performed under variable axial loads (0.6 grams - 5.6 grams at increments of 1 gram) by attaching different weights to one end of the dura mater. Results and Conclusions: The samples demonstrated nonlinear behavior, similar to other soft connective tissue (Figure 1). Large increases in diameter were observed at lower transmural pressures (approximately 0 to 5 millimeters Hg), whereas only small diameter changes were observed at higher pressures. Particularly interesting was the existence of a cross-over point at a pressure of approximately 11 millimeters Hg. At this pressure, the same diameter is obtained for all axial loads applied

  1. Somatostatinergic nerves in the cervical spinal cord of the monkey.

    PubMed

    Burnweit, C; Forssmann, W G

    1979-08-03

    Somatostatinergic nerves in the spinal cord of the monkey were investigated utilizing immunohistochemistry with various antibodies against synthetic somatostatin. In contrast to earlier investigations, it is shown that somatostatinergic nerve endings occur in most of the areas of the grey matter of the spinal cord. The somatostatinergic axons are, however, characteristically distributed in three main regions: (1) Densely-packed endings are seen in lamina II of the substantia gelatinosa, forming a crescent-shaped pattern in the columna dorsalis. Somatostatin immunoreactivity is also seen in lamina I and in the Lissauer tract. (2) A fine network of fibers is observed around the central canal; the endings are concentrated on special cell bodies. Some single perikarya are also stained in this region. (3) A loose network of single fibers is found ending on perikarya of the columna lateralis or ventralis. The perikarya of the nerve axons, with the exception of those terminating in the columna dorsalis, have as yet not been identified. In order to better understand the somatostatinergic system of the spinal cord, these newly-detected somatostatinergic nerves must be studied and their exact pathways analyzed.

  2. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  3. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  4. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment

    SciTech Connect

    Garcia-Sevilla, J.A.; Zis, A.P.; Hollingsworth, P.J.; Greden, J.F.; Smith, C.B.

    1981-12-01

    The specific binding of tritiated (3H)-clonidine, an alpha 2-adrenergic receptor agonist, to platelet membranes was measured in normal subjects and in patients with major depressive disorder. The number of platelet alpha 2-adrenergic receptors from the depressed group was significantly higher than that found in platelets obtained from the control population. Treatment with tricyclic antidepressant drugs led to significant decreases in the number of platelet alpha 2-adrenergic receptors. These results support the hypothesis that the depressive syndrome is related to an alpha 2-adrenergic receptor supersensitivity and that the clinical effectiveness of tricyclic antidepressant drugs is associated with a decrease in the number of these receptors.

  5. Neuromuscular Ultrasound of Cranial Nerves

    PubMed Central

    Tawfik, Eman A.; Cartwright, Michael S.

    2015-01-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed. PMID:25851889

  6. Does Pulsed Magnetic Field Therapy Influence Nerve Regeneration in the Median Nerve Model of the Rat?

    PubMed Central

    Beck-Broichsitter, Benedicta E.; Lamia, Androniki; Fregnan, Federica; Smeets, Ralf; Becker, Stephan T.; Sinis, Nektarios

    2014-01-01

    The aim of this study was to evaluate the impact of pulsed magnetic field therapy on peripheral nerve regeneration after median nerve injury and primary coaptation in the rat. Both median nerves were surgically exposed and denervated in 24 female Wistar rats. A microsurgical coaptation was performed on the right side, whereas on the left side a spontaneous healing was prevented. The study group underwent a daily pulsed magnetic field therapy; the other group served as a control group. The grasping force was recorded 2 weeks after the surgical intervention for a period of 12 weeks. The right median nerve was excised and histologically examined. The histomorphometric data and the functional assessments were analyzed by t-test statistics and one-way ANOVA. One-way ANOVA indicated a statistically significant influence of group affiliation and grasping force (P = 0.0078). Grasping strength was higher on a significant level in the experimental group compared to the control group permanently from the 9th week to the end of the study. T-test statistics revealed a significantly higher weight of the flexor digitorum sublimis muscle (P = 0.0385) in the experimental group. The histological evaluation did not reveal any statistically significant differences concerning the histomorphometric parameters. Our results suggest that the pulsed magnetic field therapy has a positive influence on the functional aspects of neural regeneration. More studies are needed to precisely evaluate and optimize the intensity and duration of the application. PMID:25143937

  7. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury.

    PubMed

    Zhao, Qun; Li, Zhi-Yue; Zhang, Ze-Peng; Mo, Zhou-Yun; Chen, Shi-Jie; Xiang, Si-Yu; Zhang, Qing-Shan; Xue, Min

    2015-09-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  8. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  9. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  10. A Radiological Study on the Topographical Relationships between the Vestibular, Cochlear and Facial Nerves

    PubMed Central

    Unel, Sacide; Yilmaz, Mehmet; Albayram, Sait; Kiris, Adem; Isik, Zehra; Ceyhan, Elvan; Isildak, Huseyin; Savas, Yildiray; Keser, Zafer

    2012-01-01

    Objective: The purpose of our study was to investigate the topographical relationship between these nerves along their course from the brainstem through the internal acoustic canal IAC in the living human brain using MR imaging. Materials and Methods: We performed three-dimensional gradient echo balanced Fast Field Echo (3D bFFE) sequence oblique parasagittal MR imaging in 73 healthy subjects. The IACs were analyzed from the brainstem end of the IAC to the fundus in contiguous sections. At five levels, the topographical relationships between the facial and vestibulocochlear nerves (VCN) were recorded. In the lateral portions of the IACs where they separated from each other, the relative sizes of the individual nerves were examined. Results: In general, the facial nerve (FN), which is a round structure, is located anteriorly and superiorly to the vestibulocochlear nerve throughout its course. The vestibulocochlear nerve is usually rectangular; however, it was found to be round and at times triangular in shape near the brainstem, before it became crescent-shaped at the porus in 89% of the cases. The superior vestibular nerve kept its posterosuperior position in the canal, and the inferior vestibular nerve (IVN) and the cochlear nerve (CN) travelled inferior to it. The superior and inferior vestibular nerves were divided by the falciform crest in 53% of the cases. The inferior vestibular nerve was the smallest nerve in 52% of the cases, and the cochlear nerve was the largest in 36% of the cases. Conclusion: To the best of our knowledge, this study is the largest in vivo MR study, and most of our findings differ from previous cadaver studies. Determination of these topographical relationships may facilitate our understanding of the complicated physiological relationships between the 7th and 8th nerve complexes during surgery in this region. PMID:25610197

  11. Physiology and pharmacology of the cardiovascular adrenergic system.

    PubMed

    Lymperopoulos, Anastasios

    2013-09-04

    Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.

  12. Optodynamic simulation of β-adrenergic receptor signalling

    PubMed Central

    Siuda, Edward R.; McCall, Jordan G.; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J.; Anderson, Sonya L.; Planer, William J.; Rogers, John A.; Bruchas, Michael R.

    2015-01-01

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. PMID:26412387

  13. Indenopyrazole oxime ethers: synthesis and β1-adrenergic blocking activity.

    PubMed

    Angelone, Tommaso; Caruso, Anna; Rochais, Christophe; Caputo, Angela Maria; Cerra, Maria Carmela; Dallemagne, Patrick; Filice, Elisabetta; Genest, David; Pasqua, Teresa; Puoci, Francesco; Saturnino, Carmela; Sinicropi, Maria Stefania; El-Kashef, Hussein

    2015-03-06

    This paper reports the synthesis and cardiac activity of new β-blockers derived from (Z/E)-indeno[1,2-c]pyrazol-4(1H)-one oximes (5a,b). The latter compounds were allowed to react with epichlorohydrin, followed by reacting the oxiranyl derivatives formed (6a,b) with some aliphatic amines to give the target compounds (Z/E)-1-phenyl-1H-indeno[1,2-c]pyrazol-4-one O-((2-hydroxy-3-(substituted amino)propyl)oxime (7a-c) and (Z/E)-1-methyl-1H-indeno[1,2-c]pyrazol-4-one O-((2-hydroxy-3-(substituted amino)propyl)oxime (8a-c). These final products 7a-c and 8a-c were evaluated for their ability to modulate the cardiac performance of a prototype mammalian heart. The results showed that, out of these molecules tested, 7b elicits a more potent depressant effect on contractility and relaxation, and competitively antagonizes β1-adrenergic receptors.

  14. Beta-adrenergic blockade and atrio--ventricular conduction impairment.

    PubMed

    Giudicelli, J F; Lhoste, F; Boissier, J R

    1975-04-01

    Atrio--ventricular conduction and its modifications induced by six Beta-adrenergic blocking agents have been investigated in the dog. Premature atrial stimuli (St2) were applied at variable intervals following regular stimuli (St1) ensuring atrial pacing; atrial (AERP), nodoventricular (NERP) and global (GERP) effective refractory periods as well as global functional refractory period (GFRP) were determined before and after administration of each of the six drugs. When Beta-blockade was produced with d,1-propranolol which hwas membrane stabilizing effects (MSE) but no intrinsic sympathomimetic activity (ISA) or with sotalol, which has neither MSE nor ISA, all parameters were significantly increased. When Beta-blockade was achieved with pindolol or practolol, which have only a poor Beta-adrenolytic potency and no ISA. Alprenolol showed intermediate effects. Thus, it appears that Beta-blockade and not MSE, is responsible for the onset of A-V conduction impairment but that ISA, probably through a metabolic mechanism, affords protection against this impairment. On the other hand, measurement of ventricular effective refractory period (VERP) has shown that at the Purkinje-free junction, it is MSE which is mainly involved in conduction impairment.

  15. Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors

    PubMed Central

    González, Angel; Perez-Acle, Tomas; Pardo, Leonardo; Deupi, Xavier

    2011-01-01

    The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process. PMID:21915263

  16. Mechanism of increased alpha adrenergic vasoconstriction in human essential hypertension.

    PubMed Central

    Egan, B; Panis, R; Hinderliter, A; Schork, N; Julius, S

    1987-01-01

    Multiple components of vascular alpha adrenergic responsiveness were investigated in twenty-four men with mild hypertension and eighteen age- and weight-matched normotensive controls. Arterial plasma norepinephrine (paNE), an index of sympathetic drive, was increased in hypertensives compared to normotensives (mean +/- SE), 199 +/- 24 vs. 134 +/- 11 pg/ml, P less than 0.02. The effective concentration of intra-arterial (iaNE) increasing forearm vascular resistance (FAVR) 30% (NE-EC30, an index of vascular alpha-receptor sensitivity) was similar in normotensives and hypertensives, 9 +/- 1 vs. 13 +/- 3 ng/100 ml per min, respectively, P greater than 0.3. The phentolamine induced reduction in FAVR, an index of vascular alpha-tone, was greater in hypertensives, -21.3 +/- 1.8 vs. normotensives, -14.9 +/- 1.2 U, P less than 0.02. We interpret these data as evidence for normal vascular alpha-receptor sensitivity to norepinephrine in mild hypertensives. Consequently, the increased sympathetic drive in mild hypertensives explains the elevated vascular alpha-tone. Although vascular alpha-receptor sensitivity to iaNE was normal, the FAVR responses at high doses (reactivity) were greater in hypertensives to regional infusion of both NE and angiotensin II. This "nonspecific" enhancement of vascular reactivity is probably explained by structural vascular changes in hypertensives. PMID:3040806

  17. Physiology and pharmacology of the cardiovascular adrenergic system

    PubMed Central

    Lymperopoulos, Anastasios

    2013-01-01

    Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to “push” the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart. PMID:24027534

  18. Parasympathetic non-adrenergic, non-cholinergic mechanisms in reflex secretion of parotid acinar granules in conscious rats.

    PubMed Central

    Ekström, J; Helander, H F; Tobin, G

    1993-01-01

    1. Female adult rats were subjected to sympathetic denervation of the parotid glands by bilateral removal of the superior cervical ganglion 10-12 days before acute experiments. The sympathectomy was in some of the experimental groups combined with either bilateral adrenal medullectomy, treatment with the sensory neurotoxin capsaicin or parasympathetic denervation of the gland by cutting the auriculotemporal nerve. 2. Food but not water was withheld for 29-32 h before acute experiments. All animals were given an intraperitoneal injection of phentolamine (2 mg kg-1) and propranolol (1 mg kg-1) and, when appropriate, also atropine (1 mg kg-1). Then the experimental animals were fed their ordinary food of hard chow for 60-90 min. Thereafter, these animals and their non-fed controls were killed, and the parotid glands were removed and used for either morphometric assessment or measurement of amylase activity. 3. In the atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar secretory granules by 50% and the total activity of amylase by 55%; the corresponding figures were, when sympathectomy was combined with adrenal medullectomy, 51 and 63%. Also, in atropinized animals subjected to sympathectomy and capsaicin pretreatment, eating reduced the numerical density of acinar granules and the total amylase activity, in this case by 45 and 35%, respectively. 4. In the atropinized rats subjected to sympathectomy and parasympathectomy, eating caused no change in the numerical density of acinar granules but reduced the total amylase activity by 35%. 5. In the non-atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar granules by 22%, while there was no change in the total amylase activity. 6. In conclusion, eating evoked a reflex activation of the sympathectomized parotid gland that engaged non-adrenergic non-cholinergic receptors of the acinar cells. The present results give weight to a

  19. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex

    SciTech Connect

    Goldman-Rakic, P.S.; Lidow, M.S.; Gallager, D.W. )

    1990-07-01

    Quantitative in vitro autoradiography was used to determine and compare the areal and laminar distribution of the major dopaminergic, adrenergic, and serotonergic neurotransmitter receptors in 4 cytoarchitectonic regions of the prefrontal cortex in adult rhesus monkeys. The selective ligands, 3H-SCH-23390, 3H-raclopride, 3H-prazosin, and 3H-clonidine were used to label the D1 and D2 dopamine receptor subtypes and the alpha 1- and alpha 2-adrenergic receptors, respectively, while 125I-iodopindolol was used to detect beta-adrenergic receptors. The radioligands, 3H-5-hydroxytryptamine and 3H-ketanserin labeled, respectively, the 5-HT1 and 5-HT2 receptors. Densitometry was performed on all cortical layers and sublayers for each of the 7 ligands to allow quantitative as well as qualitative comparison among them in each cytoarchitectonic area. Although each monoamine receptor was distributed in a distinctive laminar-specific pattern that was remarkably similar from area to area, there was considerable overlap among the dopaminergic, adrenergic, and serotoninergic receptors, while subtypes of the same receptor class tended to have complementary laminar profiles and different concentrations. Thus, the D1 dopamine, the alpha 1- and alpha 2-adrenergic, and the 5-HT1 receptors were present in highest relative concentration in superficial layers I, II, and IIIa (the S group). In contrast, the beta 1- and beta 2-adrenergic subtypes and the 5-HT2 receptor had their highest concentrations in the intermediate layers, IIIb and IV (the I group), while the D2 receptor was distinguished by relatively high concentrations in the deep layer V compared to all other layers (the D class). Thus, clear laminar differences were observed in the D1 vs D2 dopaminergic, the alpha- vs beta-adrenergic, and the 5-HT1 vs 5-HT2 serotoninergic receptor subtypes in all 4 areas examined.

  20. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.

    PubMed

    Sanae, F; Miyamoto, K; Koshiura, R

    1989-11-15

    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  1. Clinicopathologic correlation of retinal to choroidal venous collaterals of the optic nerve head.

    PubMed

    Schatz, H; Green, W R; Talamo, J H; Hoyt, W F; Johnson, R N; McDonald, H R

    1991-08-01

    An optic nerve meningioma developed in an elderly woman and was followed for 13 years until her death. The optic nerve was initially normal. Over time it became swollen and then atrophic and developed retinal venous to choroidal venous collaterals. Five hundred serial sections were prepared through the optic nerve and for approximately 1.5 mm superiorly and inferiorly to the optic nerve to trace the course of the collaterals that were seen ophthalmoscopically and angiographically in the optic nerve head. This clinicopathologic study shows clearly that the abnormal channels are, in fact, retinal venous to choroidal venous collaterals (bypass channels). Four collaterals extended around the end of Bruch's membrane at the optic nerve head. Two more collaterals extended through the retinal pigment epithelium to become continuous with a subretinal pigment epithelial neovascular membrane, the vessels of which connected with the choroidal vessels through a defect in Bruch's membrane.

  2. Nerve blocks for chronic pain.

    PubMed

    Hayek, Salim M; Shah, Atit

    2014-10-01

    Nerve blocks are often performed as therapeutic or palliative interventions for pain relief. However, they are often performed for diagnostic or prognostic purposes. When considering nerve blocks for chronic pain, clinicians must always consider the indications, risks, benefits, and proper technique. Nerve blocks encompass a wide variety of interventional procedures. The most common nerve blocks for chronic pain and that may be applicable to the neurosurgical patient population are reviewed in this article. This article is an introduction and brief synopsis of the different available blocks that can be offered to a patient.

  3. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  4. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  5. Stable long-term recordings from cat peripheral nerves.

    PubMed

    Stein, R B; Nichols, T R; Jhamandas, J; Davis, L; Charles, D

    1977-06-03

    A procedure has been developed for the stable long-term recording of nerve signals in unanesthetized mammals, which should have wide application in basic research on the nervous system and also in clinical areas such as the derivation of control signals for powered prostheses. Methods are fully described for constructing devices consisting of (1) Silastic nerve cuffs containing three or more electrodes, (2) coiled leads insulated with Silastic which extend from the cuffs to an integrated circuit socket, (3) a vitreous carbon transcutaneous connector which surrounds the integrated circuit socket and makes a good interface with the skin. Neural activity has been recorded from mammalian nerves for many months during normal behaviour. The peak-to-peak amplitude and latency of the recorded compound action potentials remain stable and may continue at a constant level more or less indefinitely. A tripolar recording configuration between a central lead and the two end leads, which are connected together, permits good rejection of EMG signals from surrounding muscles. The amplitude of single unit potentials increases as the square of the conduction velocity of the nerve fibre. Thus, the largest nerve fibres will dominate the signals recorded during behaviour. The reasons for premature termination of a few experiments are given together with methods for overcoming these problems. For example, platinum-iridium electrodes remain relatively stable, whereas silver wires tend to fracture after being in an animal for several months. This and other relationships are discussed which permit an optimal design of nerve cuffs for a given recording situation.

  6. Laparoscopic injury of the obturator nerve during fertility-sparing procedure for cervical cancer

    PubMed Central

    2012-01-01

    Background Intraoperative injury of the obturator nerve has rarely been reported in patients with gynecological malignancies undergoing extensive radical surgeries. Irreversible damage of this nerve causes thigh paresthesia and claudication. Intraoperative repair may be done by end-to-end anastomosis or grafting when achieving tension-free anastomosis is not possible. Case presentation A 28-year-old woman with stage IB cervical cancer underwent fertility–sparing surgery, including conization and bilateral pelvic lymphadenectomy. The left obturator nerve was damaged intraoperatively during pelvic dissection. Conclusion Immediate laparoscopic repair was successful and there was no functional deficit in the left thigh for six months postoperatively. PMID:22931409

  7. Accessory nerve palsy.

    PubMed

    Olarte, M; Adams, D

    1977-11-01

    After apparently uncomplicated excision of benign lesions in the posterior cervical triangle, two patients had shoulder pain. In one, neck pain and trapezius weakness were not prominent until one month after surgery. Inability to elevate the arm above the horizontal without externally rotating it, and prominent scapular displacement on arm abduction, but not on forward pushing movements, highlighted the trapezius dysfunction and differentiated it from serratus anterior weakness. Spinal accessory nerve lesions should be considered when minor surgical procedures, lymphadenitis, minor trauma, or tumours involved the posterior triangle of the neck.

  8. The development of catecholaminergic nerves in the spinal cord of rat. II. Regional development.

    PubMed

    Commissiong, J W

    1983-12-01

    The development of noradrenergic and dopaminergic nerves in 5 regions of the developing spinal cord of rat, from fetal day (FD) 16, to the young adult stage was studied. The normal synthetic capacity of adrenergic nerves in the ventral horn of the cervical and lumbar regions developed at the same time, and at the same rate, despite their spatial separation, and before similar development of the noradrenergic nerves in the dorsal horn and zona intermedia. In the ventral horn, the synthesis of NE from injected L-DOPA, as well as the release and metabolism of NE are well-established at 12 h (ND 0.5) after birth. In the dorsal horn these developments occur later at ND 4. Except in the dorsal horn of the cervical region, there was no easily observable, consistent pattern in the development of regional spinal dopaminergic innervation. The capacity of the developing cord to synthesize dopamine (DA) from injected DOPA is significantly developed at FD 16 (the earliest time studied), and peaked in all regions as early as ND 4. Control experiments indicate that 100%, and only 10% respectively of NE and DA synthetized from injected DOPA, occurred in descending monoaminergic fibers. Norepinephrine is synthesized exclusively in noradrenergic nerves. Cells appear transiently in the developing cord at FD 18, that are capable of synthesizing catecholamines (probably mainly DA) from injected DOPA. During postnatal development of the cord, and to a less extent in the adult, the network of catecholaminergic nerves actually present, is more extensive than that normally revealed during routine fluorescence microscopy. The results are discussed in the context of current attempts to understand the functional importance of catecholaminergic nerves in the mammalian spinal cord, and elsewhere in the CNS.

  9. Accuracy of regenerating motor neurons: influence of diffusion in denervated nerve.

    PubMed

    Madison, R D; Robinson, G A

    2014-07-25

    Following injury to a peripheral nerve the denervated distal nerve segment undergoes remarkable changes including loss of the blood-nerve barrier, Schwann cell proliferation, macrophage invasion, and the production of many cytokines and neurotrophic factors. The aggregate consequence of such changes is that the denervated nerve becomes a permissive and even preferred target for regenerating axons from the proximal nerve segment. The possible role that an original end-organ target (e.g. muscle) may play in this phenomenon during the regeneration period is largely unexplored. We used the rat femoral nerve as an in vivo model to begin to address this question. We also examined the effects of disrupting communication with muscle in terms of accuracy of regenerating motor neurons as judged by their ability to correctly project to their original terminal nerve branch. Our results demonstrate that the accuracy of regenerating motor neurons is dependent upon the denervated nerve segment remaining in uninterrupted continuity with muscle. We hypothesized that this influence of muscle on the denervated nerve might be via diffusion-driven movement of biomolecules or the active axonal transport that continues in severed axons for several days in the rat, so we devised experiments to separate these two possibilities. Our data show that disrupting ongoing diffusion-driven movement in a denervated nerve significantly reduces the accuracy of regenerating motor neurons.

  10. Exercise intensity-dependent contribution of beta-adrenergic receptor-mediated vasodilatation in hypoxic humans.

    PubMed

    Wilkins, Brad W; Pike, Tasha L; Martin, Elizabeth A; Curry, Timothy B; Ceridon, Maile L; Joyner, Michael J

    2008-02-15

    We previously reported that hypoxia-mediated reductions in alpha-adrenoceptor sensitivity do not explain the augmented vasodilatation during hypoxic exercise, suggesting an enhanced vasodilator signal. We hypothesized that beta-adrenoceptor activation contributes to augmented hypoxic exercise vasodilatation. Fourteen subjects (age: 29 +/- 2 years) breathed hypoxic gas to titrate arterial O(2) saturation (pulse oximetry) to 80%, while remaining normocapnic via a rebreath system. Brachial artery and antecubital vein catheters were placed in the exercising arm. Under normoxic and hypoxic conditions, baseline and incremental forearm exercise (10% and 20% of maximum) was performed during control (saline), alpha-adrenoceptor inhibition (phentolamine), and combined alpha- and beta-adrenoceptor inhibition (phentolomine/propranolol). Forearm blood flow (FBF), heart rate, blood pressure, minute ventilation, and end-tidal CO(2) were determined. Hypoxia increased heart rate (P < 0.05) and minute ventilation (P < 0.05) at rest and exercise under all drug infusions, whereas mean arterial pressure was unchanged. Arterial adrenaline (P < 0.05) and venous noradrenaline (P < 0.05) were higher with hypoxia during all drug infusions. The change (Delta) in FBF during 10% hypoxic exercise was greater with phentolamine (Delta306 +/- 43 ml min(-1)) vs. saline (Delta169 +/- 30 ml min(-1)) or combined phentolamine/propranolol (Delta213 +/- 25 ml min(-1); P < 0.05 for both). During 20% hypoxic exercise, DeltaFBF was greater with phentalomine (Delta466 +/- 57 ml min(-1); P < 0.05) vs. saline (Delta346 +/- 40 ml min(-1)) but was similar to combined phentolamine/propranolol (Delta450 +/- 43 ml min(-1)). Thus, in the absence of overlying vasoconstriction, the contribution of beta-adrenergic mechanisms to the augmented hypoxic vasodilatation is dependent on exercise intensity.

  11. Changes in nerve- and endothelium-mediated contractile tone of the corpus cavernosum in a mouse model of pre-mature ageing.

    PubMed

    Lafuente-Sanchis, A; Triguero, D; Garcia-Pascual, A

    2014-07-01

    Erectile dysfunction (ED) is very prevalent in the older population, although the ageing-related mechanisms involved in the development of ED are poorly understood. We propose that age-induced differences in nerve- and endothelium-mediated smooth muscle contractility in the corpus cavernosum (CC) could be found between a senescent-accelerated mouse prone (SAMP8) and senescent-accelerated mouse resistant (SAMR1) strains. We analysed the changes in muscle tension induced by electrical field stimulation (EFS) or agonist addition 'in vitro', assessing nerve density (adrenergic, cholinergic and nitrergic), the expression of endothelial nitric oxide synthase (eNOS), cGMP accumulation and the distribution of interstitial cells (ICs) by immunofluorescence. We observed no change in both the nerve-dependent adrenergic excitatory contractility at physiological levels of stimulation and in the nitrergic inhibitory response in SAMP8 animals. Unlike cholinergic innervation, the density of adrenergic and nitrergic nerves increased in SAMP8 mice. In contrast, smooth muscle sensitivity to exogenous noradrenaline (NA) was slightly reduced, whereas cGMP accumulation in response to EFS and DEA/NO, and relaxations to DEA/NO and sildenafil, were not modified. No changes in the expression of eNOS and in the distribution of vimentin-positive ICs were detected in the aged animals. The ACh induced atropine-sensitive biphasic endothelium-dependent responses involved relaxation at low concentrations that turned into contractions at the highest doses. CC relaxation was mainly because of the production of NO together with some relaxant prostanoid, which did not change in SAMP8 animals. In contrast, the contractile component was considerably higher in the aged animals and it was completely inhibited by indomethacin. In conclusion, a clear imbalance towards enhanced production of contractile prostanoids from the endothelium may contribute to ED in the elderly. On the basis of these data, we

  12. Effect of Axonal Trauma on Nerve Regeneration in Side-to-side Neurorrhaphy: An Experimental Study

    PubMed Central

    Göransson, Harry; Taskinen, Hanna-Stiina; Paavilainen, Pasi; Vahlberg, Tero; Röyttä, Matias

    2016-01-01

    Background: Side-to-side (STS) neurorrhaphy can be performed distally to ensure timely end-organ innervation. It leaves the distal end of the injured nerve intact for further reconstruction. Despite encouraging clinical results, only few experimental studies have been published to enhance the regeneration results of the procedure. We examined the influence of different size epineural windows and degree of axonal injury of STS repair on nerve regeneration and donor nerve morbidity. Methods: Three clinically relevant repair techniques of the transected common peroneal nerve (CPN) were compared. Group A: 10-mm long epineural STS windows; group B: 2-mm long windows and partial axotomy to the donor tibial nerve; and group C: 2-mm long windows with axotomies to both nerves. Regeneration was followed by the walk track analysis, nerve morphometry, histology, and wet muscle mass calculations. Results: The results of the walk track analysis were significantly better in groups B and C compared with group A. The nerve fiber count, total fiber area, fiber density, and percentage of the fiber area values of CPN of the group C were significantly higher when compared with group A. The wet mass ratio of the CPN-innervated anterior tibial muscle was significantly higher in group C compared with group A. The wet mass ratio of the tibial nerve–innervated gastrocnemial muscle was higher in group A compared with the other groups. Conclusions: All three variations of the STS repair technique showed nerve regeneration. Deliberate donor nerve axotomy enhanced nerve regeneration. A larger epineural window did not compensate the effect of axonal trauma on nerve regeneration. PMID:28293524

  13. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    SciTech Connect

    El-Refai, M.; Chan, T.

    1986-05-01

    Adrenalectomy caused a large increase in the number of ..beta..-adrenergic binding sites on liver plasma membranes as measured by /sup 125/I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for /sup 3/H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in ..beta..-adrenergic mediated action was much less than what may be expected as a result of the increase in the ..beta..-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 ..mu..M) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory ..cap alpha../sub 2/-adrenergic receptors in adrenalectomy is responsible for the muted ..beta..-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 ..mu..M), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The ..cap alpha..-adrenergic antagonists had no significant effect on the ..beta..-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the ..beta..-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of ..cap alpha..-adrenergic receptors.

  14. Identification of alpha1-adrenergic receptors and their involvement in phosphoinositide hydrolysis in the frog heart.

    PubMed

    Lazou, Antigone; Gaitanaki, Catherine; Vaxevanellis, Spiros; Pehtelidou, Anastasia

    2002-07-01

    The aim of this study was to characterize alpha(1)-adrenergic receptors in frog heart and to examine their related signal transduction pathway. alpha(1)-Adrenergic binding sites were studied in purified heart membranes using the specific alpha(1)-adrenergic antagonist [(3)H]prazosin. Analysis of the binding data indicated one class of binding sites displaying a K(d) of 4.19 +/- 0.56 nM and a B(max) of 14.66 +/- 1.61 fmol/mg original wet weight. Adrenaline, noradrenaline, or phenylephrine, in the presence of propranolol, competed with [(3)H]prazosin binding with a similar potency and a K(i) value of about 10 microM. The kinetics of adrenaline binding was closely related to its biological effect. Adrenaline concentration dependently increased the production of inositol phosphates in the heart in the presence or absence of propranolol. Maximal stimulation was about 8.5-fold, and the half-maximum effective concentration was 30 and 21 microM in the absence and presence of propranolol, respectively. These data clearly show that alpha(1)-adrenergic receptors are coupled to the phosphoinositide hydrolysis in frog heart. To our knowledge, this is the first direct evidence supporting the presence of functional alpha(1)-adrenergic receptors in the frog heart.

  15. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    SciTech Connect

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J. )

    1988-01-01

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol ({beta}-blocker) and phentolamine ({alpha}-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection.

  16. Alpha 1 adrenergic receptors in canine lower genitourinary tissues: insight into development and function

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1987-10-01

    Radioligand receptor binding methods were used to characterize the alpha 1-adrenergic receptor in the bladder body, bladder base, prostate and urethra of the male dog. Saturation experiments were performed in tissue homogenates using (/sup 125/iodine)-Heat, an alpha 1-adrenergic antagonist of high specific activity (2,200 Ci. per mmol.). The equilibrium dissociation constant Kd for (/sup 125/iodine)-Heat binding in the bladder body (0.56 pM.), bladder base (0.81 +/- 0.11 pM.), prostate (0.86 +/- 0.19 pM.) and urethra (0.55 pM.) was similar, suggesting homogeneity of alpha 1-adrenergic binding sites in lower genitourinary tissues. The receptor density in the bladder body, bladder base, prostate and urethra, expressed as fmol. per mg. wet weight, was 0.22 +/- 0.02, 0.82 +/- 0.09, 0.55 +/- 0.06 and 0.27 +/- 0.06, respectively (mean +/- standard error of mean). Competitive binding experiments with (/sup 125/iodine)-Heat and unlabeled prazosin and clonidine confirmed the selectivity of Heat for alpha 1-adrenergic binding sites. Anatomical dissections have revealed that a major component of the smooth muscle of the bladder base and prostate originates from the ureter, whereas a major component of the smooth muscle of the urethra originates from the bladder. The measured alpha 1-adrenergic receptor densities support these developmental theories.

  17. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder.

    PubMed

    Zhang, Xiaobin; Norton, Joanna; Carrière, Isabelle; Ritchie, Karen; Chaudieu, Isabelle; Ryan, Joanne; Ancelin, Marie-Laure

    2017-02-15

    Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder.

  18. Targeting of Beta Adrenergic Receptors Results in Therapeutic Efficacy against Models of Hemangioendothelioma and Angiosarcoma

    PubMed Central

    Stiles, Jessica M.; Amaya, Clarissa; Rains, Steven; Diaz, Dolores; Pham, Robert; Battiste, James; Modiano, Jaime F.; Kokta, Victor; Boucheron, Laura E.; Mitchell, Dianne C.; Bryan, Brad A.

    2013-01-01

    Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans. PMID:23555867

  19. β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation

    PubMed Central

    Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.

    2013-01-01

    Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208

  20. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder

    PubMed Central

    Zhang, Xiaobin; Norton, Joanna; Carrière, Isabelle; Ritchie, Karen; Chaudieu, Isabelle; Ryan, Joanne; Ancelin, Marie-Laure

    2017-01-01

    Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder. PMID:28198454

  1. Social crowding stress diminishes the pituitary-adrenocortical and hypothalamic histamine response to adrenergic stimulation.

    PubMed

    Bugajski, J; Gadek-Michalska, A; Borycz, J

    1993-12-01

    Social stress of crowding almost totally reduced the rise in serum corticosterone elicited by intracerebroventricular administration of isoprenaline, a beta-adrenergic receptor agonist, after 3 and 7 day of crowding and substantially diminished that response after 14 and 21 days. Crowding stress totally abolished the increase in hypothalamic histamine induced by isoprenaline in control rats. Crowding also significantly diminished the increase in serum corticosterone evoked by clonidine, an alpha 2-adrenergic agonist, and abolished the clonidine-induced elevation in hypothalamic histamine levels. The stimulatory effect of phenylephrine, an alpha 1-adrenergic agonist, on corticosterone secretion was only moderately diminished in crowded rats. Neither phenylephrine nor crowding stress changed significantly the hypothalamic histamine levels. These results indicate that social stress of crowding considerably impairs the hypothalamic-pituitary-adrenocortical responsiveness to central beta- and alpha 2-adrenergic receptor stimulation. Crowding also abolishes the rise in hypothalamic histamine induced by beta- and alpha 2-adrenergic agonist, suggesting a role of hypothalamic histamine in the HPA adaptation to the social stress of crowding.

  2. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  3. The adrenergic system in pulmonary arterial hypertension: bench to bedside (2013 Grover Conference series).

    PubMed

    Bristow, Michael R; Quaife, Robert A

    2015-09-01

    In heart failure with reduced left ventricular ejection fraction (HFrEF), adrenergic activation is a key compensatory mechanism that is a major contributor to progressive ventricular remodeling and worsening of heart failure. Targeting the increased adrenergic activation with β-adrenergic receptor blocking agents has led to the development of arguably the single most effective drug therapy for HFrEF. The pressure-overloaded and ultimately remodeled/failing right ventricle (RV) in pulmonary arterial hypertension (PAH) is also adrenergically activated, which raises the issue of whether an antiadrenergic strategy could be effectively employed in this setting. Anecdotal experience suggests that it will be challenging to administer an antiadrenergic treatment such as a β-blocking agent to patients with established moderate-severe PAH. However, the same types of data and commentary were prevalent early in the development of β-blockade for HFrEF treatment. In addition, in HFrEF approaches have been developed for delivering β-blocker therapy to patients who have extremely advanced heart failure, and these general principles could be applied to RV failure in PAH. This review examines the role played by adrenergic activation in the RV faced with PAH, contrasts PAH-RV remodeling with left ventricle remodeling in settings of sustained increases in afterload, and suggests a possible approach for safely delivering an antiadrenergic treatment to patients with RV dysfunction due to moderate-severe PAH.

  4. Neuronal adrenergic and muscular cholinergic contractile hypersensitivity in canine jejunum after extrinsic denervation.

    PubMed

    Balsiger, Bruno M; He, Chong-Liang; Zyromski, Nicholas J; Sarr, Michael G

    2003-01-01

    Extrinsic denervation may be responsible for motor dysfunction after small bowel transplantation. The aim of this study was to examine the role of extrinsic innervation of canine jejunum on contractile activity. An in vitro dose response of cholinergic and adrenergic agonists was evaluated in canine jejunal strips of circular muscle at 0, 2, and 8 weeks in a control group and after jejunoileal extrinsic denervation (EX DEN). Neurons in circular muscle were quantitated by means of immunohistochemical techniques. Adrenergic and cholinergic responses did not differ at any time in the control group. However, at 2 and 8 weeks, extrinsic denervation caused an increased sensitivity to the procontractile effects of the cholinergic agonist bethanechol at the level of the smooth muscle cells, and increased sensitivity to the inhibitory effects of the adrenergic agent norepinephrine mediated at the level of the enteric nervous system. Immunohistochemical analysis showed a reduction in all neurons and a complete lack of adrenergic fibers in the EX DEN group after 2 and 8 weeks. Extrinsic denervation induces enteric neuronal cholinergic and adrenergic smooth muscle hypersensitivity in canine jejunal circular muscle.

  5. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1

    SciTech Connect

    Yin Naida; Jin Xia; He Jiangyan; Yin Zhan

    2009-07-01

    Teleost vitellogenins (VTGs) are large multidomain apolipoproteins, traditionally considered to be estrogen-responsive precursors of the major egg yolk proteins, expressed and synthesized mainly in hepatic tissue. The inducibility of VTGs has made them one of the most frequently used in vivo and in vitro biomarkers of exposure to estrogen-active substances. A significant level of zebrafish vtgAo1, a major estrogen responsive form, has been unexpectedly found in heart tissue in our present studies. Our studies on zebrafish cardiomyopathy, caused by adrenergic agonist treatment, suggest a similar protective function of the cardiac expressed vtgAo1. We hypothesize that its function is to unload surplus intracellular lipids in cardiomyocytes for 'reverse triglyceride transportation' similar to that found in lipid transport proteins in mammals. Our results also demonstrated that zebrafish vtgAo1 mRNA expression in heart can be suppressed by both {alpha}-adrenergic agonist, phenylephrine (PE) and {beta}-adrenergic agonist, isoproterenol (ISO). Furthermore, the strong stimulation of zebrafish vtgAo1 expression in plasma induced by the {beta}-adrenergic antagonist, MOXIsylyl, was detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Such stimulation cannot be suppressed by taMOXIfen, an antagonist to estrogen receptors. Thus, our present data indicate that the production of teleost VTG in vivo can be regulated not only by estrogenic agents, but by adrenergic signals as well.

  6. Long thoracic nerve injury.

    PubMed

    Wiater, J M; Flatow, E L

    1999-11-01

    Injury to the long thoracic nerve causing paralysis or weakness of the serratus anterior muscle can be disabling. Patients with serratus palsy may present with pain, weakness, limitation of shoulder elevation, and scapular winging with medial translation of the scapula, rotation of the inferior angle toward the midline, and prominence of the vertebral border. Long thoracic nerve dysfunction may result from trauma or may occur without injury. Fortunately, most patients experience a return of serratus anterior function with conservative treatment, but recovery may take as many as 2 years. Bracing often is tolerated poorly. Patients with severe symptoms in whom 12 months of conservative treatment has failed may benefit from surgical reconstruction. Although many surgical procedures have been described, the current preferred treatment is transfer of the sternal head of the pectoralis major tendon to the inferior angle of the scapula reinforced with fascia or tendon autograft. Many series have shown good to excellent results, with consistent improvement in function, elimination of winging, and reduction of pain.

  7. End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats.

    PubMed

    Viterbo, F; Trindade, J C; Hoshino, K; Mazzoni Neto, A

    1994-12-01

    Terminolateral neurorrhaphies were used up to the beginning of this century. After that, they were no longer reported. We tested the efficacy of a new type of end-to-side neurorrhaphy. A group of 20 rats had the peroneal nerve sectioned, and the distal ending was sutured to the lateral face of the tibial nerve after removing a small epineural window. All experiments were made on the right side, the left one remaining untouched in half the animals of each group. The other half was denervated by sectioning and inverting the endings of the peroneal nerves. In this way, tibial cranial muscles were either normal or denervated on the left side and reinnervated through end-to-side neurorrhaphies on the right side. After 7.8 months, the animals were subjected to electrophysiologic tests, sacrificed, and the nerves and muscles were taken for histologic examination. A response of the tibial cranial muscle was obtained in 90 percent of the animals. The distal ending of the peroneal nerve showed an average of 861 nerve fibers. The average areas of the reinnervated tibial cranial muscles were (microns 2) 1617.81 for M2n (when the contralateral side was normal) and 1579.19 for M2d (when the contralateral was denervated). We conclude that the terminolateral neurorrhaphy is functional, conducting electrical stimuli and allowing the passage of axons from the lateral surface of a healthy nerve, to reconstitute the distal segment of a sectioned nerve. The absence of an incision on the axons of the donor nerve was no impediment to axonal regeneration or to the passage of electrical stimuli. The results demonstrate the possibility of using end-to-side and terminolateral neurorrhaphies for reconstituting neural lesions when only a distal end is available; the reinnervation can be obtained from the lateral face of a healthy nerve.

  8. Facial nerve palsy due to birth trauma

    MedlinePlus

    Seventh cranial nerve palsy due to birth trauma; Facial palsy - birth trauma; Facial palsy - neonate; Facial palsy - infant ... infant's facial nerve is also called the seventh cranial nerve. It can be damaged just before or at ...

  9. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  10. Neuromas of the calcaneal nerves.

    PubMed

    Kim, J; Dellon, A L

    2001-11-01

    A neuroma of a calcaneal nerve has never been reported. A series of 15 patients with heel pain due to a neuroma of a calcaneal nerve are reviewed. These patients previously had either a plantar fasciotomy (n = 4), calcaneal spur removal (n = 2), ankle fusion (n = 2), or tarsal tunnel decompression (n = 7). Neuromas occurred on calcaneal branches that arose from either the posterior tibial nerve (n = 1), lateral plantar nerve (n = 1), the medial plantar nerve (n = 9), or more than one of these nerves (n = 4). Operative approach was through an extended tarsal tunnel incision to permit identification of all calcaneal nerves. The neuroma was resected and implanted into the flexor hallucis longus muscle. Excellent relief of pain occurred in 60%, and good relief in 33%. One patient (17%) had no improvement and required resection of the lateral plantar nerve. Awareness that the heel may be innervated by multiple calcaneal branches suggests that surgery for heel pain of neural origin employ a surgical approach that permits identification of all possible calcaneal branches.

  11. The Adrenergic Nervous System in Heart Failure: Pathophysiology and Therapy

    PubMed Central

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Koch, Walter J.

    2013-01-01

    Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to “push” the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart. PMID:23989716

  12. [Beta]-Adrenergic Receptors in the Insular Cortex are Differentially Involved in Aversive vs. Incidental Context Memory Formation

    ERIC Educational Resources Information Center

    Miranda, Maria Isabel; Sabath, Elizabeth; Nunez-Jaramillo, Luis; Puron-Sierra, Liliana

    2011-01-01

    The goal of this research was to determine the effects of [beta]-adrenergic antagonism in the IC before or after inhibitory avoidance (IA) training or context pre-exposure in a latent inhibition protocol. Pretraining intra-IC infusion of the [beta]-adrenergic antagonist propranolol disrupted subsequent IA retention and impaired latent inhibition…

  13. Nerve glue for upper extremity reconstruction.

    PubMed

    Tse, Raymond; Ko, Jason H

    2012-11-01

    Nerve glue is an attractive alternative to sutures to improve the results of nerve repair. Improved axon alignment, reduced scar and inflammation, greater and faster reinnervation, and better functional results have been reported with the use of nerve glue. The different types of nerve glue and the evidence to support or oppose their use are reviewed. Although the ideal nerve glue has yet to be developed, fibrin sealants can be used as nerve glue in select clinical situations. Technology to allow suture-free nerve repair is one development that can potentially improve functional nerve recovery and the outcomes of upper extremity reconstruction.

  14. Facial nerve rerouting in skull base surgery.

    PubMed

    Parhizkar, Nooshin; Hiltzik, David H; Selesnick, Samuel H

    2005-08-01

    Facial nerve rerouting techniques were developed to facilitate re-section of extensive tumors occupying the skull base. Facial nerve rerouting has its own limitations and risks, requiring microsurgical expertise, additional surgical time, and often some degree of facial nerve paresis. This article presents different degrees of anterior and posterior facial nerve rerouting, techniques of facial nerve rerouting, and a comprehensive review of outcomes. It then reviews anatomic and functional preservation of the facial nerve in acoustic neuroma resection, technical aspects of facial nerve dissection, intracranial facial nerve repair options, and outcomes for successful acoustic neuroma surgery.

  15. Effect of age on upregulation of the cardiac adrenergic beta receptors

    SciTech Connect

    Tumer, N.; Houck, W.T.; Roberts, J.

    1990-03-01

    Radioligand binding studies were performed to determine whether upregulation of postjunctional beta receptors occurs in sympathectomized hearts of aged animals. Fischer 344 rats 6, 12, and 24 months of age (n = 10) were used in these experiments. To produce sympathectomy, rats were injected with 6-hydroxydopamine hydrobromide (6-OHDA; 2 x 50 mg/kg iv) on days 1 and 8; the animals were decapitated on day 15. The depletion of norepinephrine in the heart was about 86% in each age group. 125I-Iodopindolol (IPIN), a beta adrenergic receptor antagonist, was employed to determine the affinity and total number of beta adrenergic receptors in the ventricles of the rat heart. The maximal number of binding sites (Bmax) was significantly elevated by 37%, 48%, and 50% in hearts from sympathectomized 6-, 12-, and 24-month-old rats, respectively. These results indicate that beta receptor mechanisms in older hearts can respond to procedures that cause upregulation of the beta adrenergic receptors.

  16. The role of adrenergic receptors in the motility of duodenum and choledochoduodenal junction in the pig.

    PubMed

    Blichowski, A; Andrzejewski, W; Gaszyński, W; Kozulski, W

    1977-01-01

    The role of adenergic receptors in the motility of duodenum and choledochoduodenal junction in the pig. Acta Physiol. Pol., 1977, 28 (6): 521-528. The choldeochoduodenal junction in the Vietnamese pig is functionally and anatomically a part of duodenal wall. In view of this, investigations were carried out for establishing the role of adrenergic receptors in the development of motor function of this part of the intestinal tract. The experiments were performed on domestic Vietnamese pigs (Sus scrofa domestica) and they showed that after stimulation of alpha and beta adrenergic receptors the motor activity of the duodenal muscular coat and the choledochoduodenal junction is inhibited. The obtained results suggest similar reactions of the adrenergic receptors in both examined parts of the intestinal tract in the pig.

  17. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    SciTech Connect

    Rehnmark, S.; Nedergaard, J. )

    1989-02-01

    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  18. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    SciTech Connect

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  19. Ending a Pregnancy

    MedlinePlus

    ... Share Ending a Pregnancy Ending a PregnancyWhat is abortion?Abortion means ending a pregnancy early. In some cases, ... This is called a miscarriage, or a spontaneous abortion. In other cases, a woman chooses to end ...

  20. Loss of bone marrow adrenergic beta 1 and 2 receptors modifies transcriptional networks, reduces circulating inflammatory factors, and regulates blood pressure.

    PubMed

    Ahmari, Niousha; Schmidt, Jordan T; Krane, Gregory A; Malphurs, Wendi; Cunningham, Bruce E; Owen, Jennifer L; Martyniuk, Christopher J; Zubcevic, Jasenka

    2016-07-01

    Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP.

  1. Regulation of noradrenaline release from rat occipital cortex tissue chops by alpha 2-adrenergic agonists.

    PubMed

    Ong, M L; Ball, S G; Vaughan, P F

    1991-04-01

    Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.

  2. Flow-injection chemiluminescence method to detect a β2 adrenergic agonist.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Shang, Jian; Wang, Zhongcheng; Yu, Hua; Du, Wei; Fu, Qiang

    2015-02-01

    A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide-luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide-luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from 'Y2 ' to the flow cell. The linear ranges and limit of detection were 10-100 and 5 ng/mL for isoprenaline hydrochloride, 20-100 and 5 ng/mL for salbutamol sulfate, 8-200 and 1 ng/mL for terbutaline sulfate, 20-100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8-98.5%. The possible CL reaction mechanism of potassium ferricyanide-luminol-β2 adrenergic agonist was discussed from the UV/vis spectra.

  3. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    SciTech Connect

    Jones, S.B.; Toews, M.L.; Turner, J.T.; Bylund, D.B.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-time for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.

  4. Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium.

    PubMed

    Benschop, R J; Oostveen, F G; Heijnen, C J; Ballieux, R E

    1993-12-01

    Physical exercise, mental stress, or infusion of beta-adrenergic agonists result in an increase in the number of natural killer (NK) cells in the peripheral circulation. In view of the specific migration pattern of NK cells in vivo, it has been suggested that these cells may be released from the marginating pool in blood vessels. In the present report, the in vitro effect of catecholamines on the adhesion of NK cells to unstimulated human endothelial cells (EC) was characterized. Peripheral blood mononuclear cells were allowed to adhere to monolayers of EC, after which the adherent lymphocyte fraction was analyzed phenotypically by flow cytometry. NK cells were found to adhere preferentially to EC, a process that was reversed by the addition of various adrenergic agonists. Catecholamines selectively affected adhesion of NK cells and had no effect on T cell adhesion to EC, as was determined by the use of purified cell populations. Detachment of NK cells from EC could be achieved by short incubations (5 min) with epinephrine (EPI) and was concentration-dependent, with an ED50 of 2 x 10(-10)M. Using a panel of alpha- and beta-adrenergic agonists and antagonists, we show that the detachment of NK cells is mediated via beta 2-adrenergic receptors. In line with the lower affinity for beta 2-adrenergic receptors, norepinephrine was less effective than EPI in inducing detachment of NK cells from EC. Direct activation of adenylate-cyclase with forskolin gave similar results as observed with EPI, indicating that signaling through cAMP is necessary to induce detachment of NK cells from EC. The results of the present study lend support to the hypothesis that catecholamines, via beta 2-adrenergic receptors, can induce recruitment of NK cells from the marginating pool to the circulating pool, by changing the adhesive interactions between NK cells and EC.

  5. Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response.

    PubMed

    Emrick, Michelle A; Sadilek, Martin; Konoki, Keiichi; Catterall, William A

    2010-10-26

    Ca(V)1 channels initiate excitation-contraction coupling in skeletal and cardiac muscle. During the fight-or-flight response, epinephrine released by the adrenal medulla and norepinephrine released from sympathetic nerves increase muscle contractility by activation of the β-adrenergic receptor/cAMP-dependent protein kinase pathway and up-regulation of Ca(V)1 channels in skeletal and cardiac muscle. Although the physiological mechanism of this pathway is well defined, the molecular mechanism and the sites of protein phosphorylation required for Ca(V)1 channel regulation are unknown. To identify the regulatory sites of phosphorylation under physiologically relevant conditions, Ca(V)1.1 channels were purified from skeletal muscle and sites of phosphorylation on the α1 subunit were identified by mass spectrometry. Two phosphorylation sites were identified in the proximal C-terminal domain, serine 1575 (S1575) and threonine 1579 (T1579), which are conserved in cardiac Ca(V)1.2 channels (S1700 and T1704, respectively). In vitro phosphorylation revealed that Ca(V)1.1-S1575 is a substrate for both cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II, whereas Ca(V)1.1-T1579 is a substrate for casein kinase 2. Treatment of rabbits with isoproterenol to activate β-adrenergic receptors increased phosphorylation of S1575 in skeletal muscle Ca(V)1.1 channels in vivo, and treatment with propranolol to inhibit β-adrenergic receptors reduced phosphorylation. As S1575 and T1579 in Ca(V)1.1 channels and their homologs in Ca(V)1.2 channels are located at a key regulatory interface between the distal and proximal C-terminal domains, it is likely that phosphorylation of these sites in skeletal and cardiac muscle is directly involved in calcium channel regulation in response to the sympathetic nervous system in the fight-or-flight response.

  6. Contribution of both Ca2+ entry and Ca2+ sensitization to the alpha1-adrenergic vasoconstriction of rat penile small arteries.

    PubMed

    Villalba, Nuria; Stankevicius, Edgaras; Garcia-Sacristán, Albino; Simonsen, Ulf; Prieto, Dolores

    2007-02-01

    Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries

  7. Lumbosacral nerve root avulsion.

    PubMed

    Chin, C H; Chew, K C

    1997-01-01

    Lumbosacral nerve root avulsion is a rare clinical entity. Since the first description in 1955, only 35 cases have been reported. It is often associated with pelvic fractures and may be missed in the initial clinical examination as these patients usually present with multiple injuries. We present three such cases with clinical and radiological findings. These patients were involved in road traffic accidents. Two had fractures of the sacroiliac joint with diastasis of the symphysis pubis (Tile type C 1.2) and one had fractures of the public rami (Tile type B 2.1). All three had various degrees of sensory and motor deficit of the lower limbs. Lumbar myelogram shows characteristic pseudomeningoceles in the affected lumboscral region. Magnetic resonance (MR) imaging provides an additional non-invasive modality to diagnose this condition.

  8. Optic Nerve Sheath Meningiomas.

    PubMed

    Radhakrishnan, Sunita; Lee, Michael S

    2005-01-01

    Optic nerve sheath meningiomas (ONSMs) grow slowly and, if untreated, patients may have stable visual function for up to several years. Treatment of an ONSM may lead to vision loss (radiation retinopathy or optic neuropathy). Therefore, observation is recommended for a patient with ONSM and relatively preserved visual acuity, color vision, pupils, and visual fields. Follow-up every 4 to 6 months initially is recommended extending to annual examinations if visual function and tumor size remain stable for a few years. Neuroimaging can be repeated every 12 months. An undisputed decline in visual function or any intracranial extension warrants treatment of the ONSM. The treatment of choice for a tumor confined to the orbit is stereotactic fractionated radiation. Stereotactic fractionated radiation uses multiple small doses of radiation using tight margins. A reasonable alternative, three-dimensional conformal fractionated radiation uses computed tomography-guided planning but usually requires wider margins. Conventional radiation uses much wider margins and would not be recommended for treatment of ONSM. The radiation can be administered during 5 to 6 weeks in 28 daily fractions of 1.8 to 2 Gy/fraction to a total of 50.4 to 56 Gy. Many patients have improvement or stabilization of their visual function. Gamma knife radiosurgery does not have a role in ONSM because the required dose is toxic to the optic nerve. A tumor that extends intracranially may be treated with fractionated radiation if any vision remains. Surgical excision can be considered for significant intracranial extension but this often leads to complete vision loss in the ipsilateral eye. A blind, disfigured eye also may be treated with en bloc surgical resection of the meningioma.

  9. [Study of a beta-adrenergic stimulant and its antidepressant activity in man].

    PubMed

    Jouvent, R; Lecrubier, Y; Puech, A J; Simon, H F; Widlocher, D

    1977-01-01

    In animals, the psychopharmacological profile of beta-adrenergic stimulants is very similar to that of tricyclic antidepressants. In patients, more particularly in endogenous depressive patients, the antidepressant effect of salbutamol was very clear. A definite improvement was observed in all of the 22 studied patients after 1 to 3 days of intermittent venous infusion. The place of salbutamol in the therapeutic armamentarium of depressive states has still to be defined exactly. It is speculated that the antidepressant effect of imipramine-like derivatives is related to the stimulation of central beta 2-adrenergic receptors.

  10. Independent expression of the adrenergic phenotype by neural crest cells in vitro.

    PubMed Central

    Cohen, A M

    1977-01-01

    Neural crest cells obtained from Japanese quail and grown in vitro without other embryonic tissues differentiate into adrenergic cells. These cells show intense catecholamine-specific histochemical fluorescence, and some have long, varicose neuronal processes. Ultrastructural examination shows two populations of cells, one with small (about 90 nm) dense-core vesicles resembling principal sympathetic neurons and the other with larger (about 150 nm) dense-core granules resembling chromaffin or small intensely fluorescent cells. Neuronal cells without adrenergic characteristics are also present. These results are compatible with the hypothesis that a population of cells determined along neuronal lines exists in the neural crest prior to migration. Images PMID:268641

  11. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson's disease.

    PubMed

    Alexander, G M; Schwartzman, R J; Nukes, T A; Grothusen, J R; Hooker, M D

    1994-08-01

    We studied the effect of the beta 2-adrenergic agonist albuterol on Parkinson's disease (PD) patients receiving chronic levodopa treatment. The albuterol-treated patients demonstrated reduced parkinsonian symptoms and an increased ability to tap their index finger between two points 20 cm apart, and were able to perform a "walk test" in 70% of their control time. Three patients currently on chronic albuterol therapy still show amelioration of their parkinsonian symptoms, and two have reduced their daily levodopa dose. This study suggests that beta 2-adrenergic agonists as adjunct therapy to levodopa may be beneficial in PD.

  12. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  13. [Post-traumatic infraorbital nerve neuropathy].

    PubMed

    Sakavicius, Dalius; Kubilius, Ricardas; Sabalys, Gintautas

    2002-01-01

    The authors have investigated functional state of infraorbital nerve of 479 patients with zygomatic fractures. The degree of nerve damage was evaluated according to changes of pain threshold during damaged nerve stimulation. It was estimated that in 64.3% of zygomatic fractures the infraorbital nerve was affected. The nerve damage degree could be mild, moderate and severe. In 43.18% of moderate and severe nerve damage cases the neuropathy develops. The symptoms, signs and treatment of neuropathy have been described. The neuropathy with clinical symptoms as permanent soreness and paresthesias (itch, "running ant", fibrillations of cheek tissues etc.) in the infraorbital nerve innervation zone occur to 43.18% of the patients after moderate and severe damage of the nerve. The treatment of neuropathy was analysed. In cases of moderate and severe nerve damages, authors recommend to perform decompression of the nerve, because if not applied, the function of nerve does not recover.

  14. β-Adrenergic response is counteracted by extremely-low-frequency pulsed electromagnetic fields in beating cardiomyocytes.

    PubMed

    Cornacchione, Marisa; Pellegrini, Manuela; Fassina, Lorenzo; Mognaschi, Maria Evelina; Di Siena, Sara; Gimmelli, Roberto; Ambrosino, Paolo; Soldovieri, Maria Virginia; Taglialatela, Maurizio; Gianfrilli, Daniele; Isidori, Andrea M; Lenzi, Andrea; Naro, Fabio

    2016-09-01

    Proper β-adrenergic signaling is indispensable for modulating heart frequency. Studies on extremely-low-frequency pulsed electromagnetic field (ELF-PEMF) effects in the heart beat function are contradictory and no definitive conclusions were obtained so far. To investigate the interplay between ELF-PEMF exposure and β-adrenergic signaling, cultures of primary murine neonatal cardiomyocytes and of sinoatrial node were exposed to ELF-PEMF and short and long-term effects were evaluated. The ELF-PEMF generated a variable magnetic induction field of 0-6mT at a frequency of 75Hz. Exposure to 3mT ELF-PEMF induced a decrease of contraction rate, Ca(2+) transients, contraction force, and energy consumption both under basal conditions and after β-adrenergic stimulation in neonatal cardiomyocytes. ELF-PEMF exposure inhibited β-adrenergic response in sinoatrial node (SAN) region. ELF-PEMF specifically modulated β2 adrenergic receptor response and the exposure did not modify the increase of contraction rate after adenylate cyclase stimulation by forskolin. In HEK293T cells transfected with β1 or β2 adrenergic receptors, ELF-PEMF exposure induced a rapid and selective internalization of β2 adrenergic receptor. The β-adrenergic signaling, was reduced trough Gi protein by ELF-PEMF exposure since the phosphorylation level of phospholamban and the PI3K pathway were impaired after isoproterenol stimulation in neonatal cardiomyocytes. Long term effects of ELF-PEMF exposure were assessed in cultures of isolated cardiomyocytes. ELF-PEMF counteracts cell size increase, the generation of binucleated of cardiomyocytes and prevents the up-regulation of hypertrophic markers after β-adrenergic stimulation, indicating an inhibition of cell growth and maturation. These data show that short and long term exposure to ELF-PEMF induces a reduction of cardiac β-adrenergic response at molecular, functional and adaptative levels.

  15. Variation in Lingual Nerve Course: A Human Cadaveric Study

    PubMed Central

    Al-Amery, Samah M.; Nambiar, Phrabhakaran; Naidu, Murali

    2016-01-01

    The lingual nerve is a terminal branch of the mandibular nerve. It is varied in its course and in its relationship to the mandibular alveolar crest, submandibular duct and also the related muscles in the floor of the mouth. This study aims to understand the course of the lingual nerve from the molar area until its insertion into the tongue muscle. This cadaveric research involved the study of 14 hemi-mandibles and consisted of two parts: (i) obtaining morphometrical measurements of the lingual nerve to three landmarks on the alveolar ridge, and (b) understanding non-metrical or morphological appearance of its terminal branches inserting in the ventral surface of the tongue. The mean distance between the fourteen lingual nerves and the alveolar ridge was 12.36 mm, and they were located 12.03 mm from the lower border of the mandible. These distances were varied when near the first molar (M1), second molar (M2) and third molar (M3). The lingual nerve coursed on the floor of the mouth for approximately 25.43 mm before it deviated toward the tongue anywhere between the mesial of M1 and distal of M2. Thirteen lingual nerves were found to loop around the submandibular duct for an average distance of 6.92 mm (95% CI: 5.24 to 8.60 mm). Their looping occurred anywhere between the M2 and M3. In 76.9% of the cases the loop started around the M3 region and the majority (69.2%) of these looping ended at between the first and second molars and at the lingual developmental groove of the second molar. It gave out as many as 4 branches at its terminal end at the ventral surface of the tongue, with the presence of 2 branches being the most common pattern. An awareness of the variations of the lingual nerve is important to prevent any untoward complications or nerve injury and it is hoped that these findings will be useful for planning of surgical procedures related to the alveolar crest, submandibular gland/ duct and surrounding areas. PMID:27662622

  16. The effects of a new ultra-short-acting beta-adrenergic blocker, ONO-1101, on cardiac function during and after cardiopulmonary bypass.

    PubMed

    Ahmet, I; Fukushima, N; Sawa, Y; Masai, T; Kadoba, K; Kagisaki, K; Chang, J C; Yamaguchi, T; Matsuda, H

    1999-01-01

    The administration of an ultra-short-acting beta-adrenergic antagonist, esmolol, has been introduced as a novel method for beating-heart surgery. In the present study, a new ultra-short-acting beta-blocker, ONO-1101, was administered during cardiopulmonary bypass (CPB) to investigate its effects on cardiac function and hemodynamics. Nine adult mongrel dogs underwent 60 min of CPB during which they were given either ONO-1101 (ONO group; n = 4) or saline (control group; n = 5). In the ONO group, the hearts became flaccid enough for surgery to be performed without cardiac standstill within 10 min after the commencement of ONO-1101 with significant decreases in the heart rate, the preload recruitable stroke work (PRSW), and the slope of the end-systolic left ventricular pressure-volume relationship (Emax). The mean arterial pressure and systemic vascular resistance also decreased, but were maintained above 50 mmHg during CPB without catecholamine. These indices increased to the control group level 20 min after the discontinuation of ONO-1101. The serum concentration of ONO-1101 decreased from the maximum level of 121 +/- 15 microg/ml soon after infusion to 11 +/- 5 microg/ml within 30 min after discontinuation. These data suggest that ONO-1101 may be useful to enable beating-heart surgery to be performed without aortic cross-clamp as an ultra-short-acting beta-adrenergic blocker.

  17. Stem cell-based approaches to improve nerve regeneration: potential implications for reconstructive transplantation?

    PubMed

    Khalifian, Saami; Sarhane, Karim A; Tammia, Markus; Ibrahim, Zuhaib; Mao, Hai-Quan; Cooney, Damon S; Shores, Jaimie T; Lee, W P Andrew; Brandacher, Gerald

    2015-02-01

    Reconstructive transplantation has become a viable option to restore form and function after devastating tissue loss. Functional recovery is a key determinant of overall success and critically depends on the quality and pace of nerve regeneration. Several molecular and cell-based therapies have been postulated and tested in pre-clinical animal models to enhance nerve regeneration. Schwann cells remain the mainstay of research focus providing neurotrophic support and signaling cues for regenerating axons. Alternative cell sources such as mesenchymal stem cells and adipose-derived stromal cells have also been tested in pre-clinical animal models and in clinical trials due to their relative ease of harvest, rapid expansion in vitro, minimal immunogenicity, and capacity to integrate and survive within host tissues, thereby overcoming many of the challenges faced by culturing of human Schwann cells and nerve allografting. Induced pluripotent stem cell-derived Schwann cells are of particular interest since they can provide abundant, patient-specific autologous Schwann cells. The majority of experimental evidence on cell-based therapies, however, has been generated using stem cell-seeded nerve guides that were developed to enhance nerve regeneration across "gaps" in neural repair. Although primary end-to-end repair is the preferred method of neurorrhaphy in reconstructive transplantation, mechanistic studies elucidating the principles of cell-based therapies from nerve guidance conduits will form the foundation of further research employing stem cells in end-to-end repair of donor and recipient nerves. This review presents key components of nerve regeneration in reconstructive transplantation and highlights the pre-clinical studies that utilize stem cells to enhance nerve regeneration.

  18. Impact of order of movement on nerve strain and longitudinal excursion: a biomechanical study with implications for neurodynamic test sequencing.

    PubMed

    Nee, Robert J; Yang, Chich-Haung; Liang, Chung-Chao; Tseng, Guo-Fang; Coppieters, Michel W

    2010-08-01

    It is assumed that strain in a nerve segment at the end of a neurodynamic test will be greatest if the joint nearest that nerve segment is moved first in the neurodynamic test sequence. To test this assumption, the main movements of the median nerve biased neurodynamic test were applied in three different sequences to seven fresh-frozen human cadavers. Strain and longitudinal excursion were measured in the median nerve at the distal forearm. Strain and relative position of the nerve at the end of a test did not differ between sequences. The nerve was subjected to higher levels of strain for a longer duration during the sequence where wrist extension occurred first. The pattern of excursion was different for each sequence. The results highlight that order of movement does not affect strain or relative position of the nerve at the end of a test when joints are moved through comparable ranges of motion. When used clinically, different neurodynamic sequences may still change the mechanical load applied to a nerve segment. Changes in load may occur because certain sequences apply increased levels of strain to the nerve for a longer time period, or because sequences differ in ranges of joint motions.

  19. Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area

    PubMed Central

    Sivolella, Stefano; Brunello, Giulia; Ferrarese, Nadia; Puppa, Alessandro Della; D’Avella, Domenico; Bressan, Eriberto; Zavan, Barbara

    2014-01-01

    Injury to peripheral nerves can occur as a result of various surgical procedures, including oral and maxillofacial surgery. In the case of nerve transaction, the gold standard treatment is the end-to-end reconnection of the two nerve stumps. When it cannot be performed, the actual strategies consist of the positioning of a nerve graft between the two stumps. Guided nerve regeneration using nano-structured scaffolds is a promising strategy to promote axon regeneration. Biodegradable electrospun conduits composed of aligned nanofibers is a new class of devices used to improve neurite extension and axon outgrowth. Self assembled peptide nanofibrous scaffolds (SAPNSs) demonstrated promising results in animal models for central nervous system injuries, and, more recently, for peripheral nerve injury. Aims of this work are (1) to review electrospun and self-assembled nanofibrous scaffolds use in vitro and in vivo for peripheral nerve regeneration; and (2) its application in peripheral nerve injuries treatment. The review focused on nanofibrous scaffolds with a diameter of less than approximately 250 nm. The conjugation in a nano scale of a natural bioactive factor with a resorbable synthetic or natural material may represent the best compromise providing both biological and mechanical cues for guided nerve regeneration. Injured peripheral nerves, such as trigeminal and facial, may benefit from these treatments. PMID:24562333

  20. High‐fat diet induces protein kinase A and G‐protein receptor kinase phosphorylation of β2‐adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts

    PubMed Central

    Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan

    2017-01-01

    Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve.Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts.In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function.We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium.The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a

  1. Inhibition of α-adrenergic tone disturbs the distribution of blood flow in the exercising human limb.

    PubMed

    Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K

    2013-07-15

    The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.

  2. Activating autoantibodies to the beta1-adrenergic and M2 muscarinic receptors facilitate atrial fibrillation in patients with Graves’ hyperthyroidism

    PubMed Central

    Stavrakis, Stavros; Yu, Xichun; Patterson, Eugene; Huang, Shijun; Hamlett, Sean R.; Chalmers, Laura; Pappy, Reji; Cunningham, Madeleine W.; Morshed, Syed A.; Davies, Terry F.; Lazzara, Ralph; Kem, David C.

    2009-01-01

    Objectives We studied activating autoantibodies to β1-adrenergic (AAβ1AR) and M2 muscarinic receptors (AAM2R) in the genesis of atrial fibrillation (AF) in Graves’ hyperthyroidism. Background AF frequently complicates hyperthyroidism. AAβ1AR and AAM2R have been described in some patients with dilated cardiomyopathy and AF. We hypothesized their co-presence would facilitate AF in autoimmune Graves’ hyperthyroidism. Methods IgG purified from 38 patients with Graves’ hyperthyroidism with AF (n=17) or sinus rhythm (n=21) and 10 healthy controls was tested for its effects on isolated canine Purkinje fiber contractility with and without atropine and nadolol. IgG electrophysiologic effects were studied using intracellular recordings from isolated canine pulmonary veins. Potential cross-reactivity of AAβ1AR and AAM2R with stimulating thyrotropin receptor (TSHR) antibodies was evaluated before and after adsorption to CHO cells expressing human TSHRs using flow cytometry and enzyme-linked immunosorbent assays. Results The frequency of AAβ1AR and/or AAM2R differed significantly between patients with AF and sinus rhythm (AAβ1AR = 94% vs. 38%, p<0.001; AAM2R = 88% vs. 19%, p<0.001; and AAβ1AR+AAM2R = 82% vs. 10%, p<0.001). The co-presence of AAβ1AR and AAM2R was the strongest predictor of AF (odds ratio 33.61, 95% CI 1.17 - 964.11, p=0.04). IgG from autoantibody-positive patients induced hyperpolarization, decreased action potential duration, enhanced early afterdepolarization formation and facilitated triggered firing in pulmonary veins by local autonomic nerve stimulation. Imunoadsorption studies demonstrated that AAβ1AR and AAM2R were immunologically distinct from TSHR antibodies. Conclusions AAβ1AR and AAM2R when present in patients with Graves’ hyperthyroidism facilitate development of AF. PMID:19778674

  3. Restraint stress exacerbates cardiac and adipose tissue pathology via β-adrenergic signaling in rats with metabolic syndrome.

    PubMed

    Matsuura, Natsumi; Nagasawa, Kai; Minagawa, Yuji; Ito, Shogo; Sano, Yusuke; Yamada, Yuichiro; Hattori, Takuya; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2015-05-15

    Restraint stress stimulates sympathetic nerve activity and can affect adiposity and metabolism. However, the effects of restraint stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We investigated the effects of chronic restraint stress and β-adrenergic receptor (β-AR) blockade on cardiac and adipose tissue pathology and metabolic disorders in a rat model of MetS. DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats. Rats were exposed to restraint stress (restraint cage, 2 h/day) for 4 wk from 9 wk of age with or without daily subcutaneous administration of the β-AR blocker propranolol (2 mg/kg). Age-matched homozygous lean littermates of DS/obese rats (DahlS.Z-Lepr(+)/Lepr(+) rats) served as control animals. Chronic restraint stress exacerbated hypertension as well as left ventricular hypertrophy, fibrosis, diastolic dysfunction, and oxidative stress in a manner sensitive to propranolol treatment. Restraint stress attenuated body weight gain in DS/obese rats, and this effect tended to be reversed by propranolol (P = 0.0682). Restraint stress or propranolol did not affect visceral or subcutaneous fat mass. However, restraint stress potentiated cardiac and visceral adipose tissue inflammation in DS/obese rats, and these effects were ameliorated by propranolol. Restraint stress also exacerbated glucose intolerance, insulin resistance, and abnormal lipid metabolism in a manner sensitive to propranolol. In addition, restraint stress increased urinary norepinephrine excretion, and propranolol attenuated this effect. Our results thus implicate β-ARs in the exacerbation of cardiac and adipose tissue pathology and abnormal glucose and lipid metabolism induced by restraint stress in this model of MetS.

  4. Regulation of β-adrenergic control of heart rate by GTP-cyclohydrolase 1 (GCH1) and tetrahydrobiopterin

    PubMed Central

    Adlam, David; Herring, Neil; Douglas, Gillian; De Bono, Joseph P.; Li, Dan; Danson, Edward J.; Tatham, Amy; Lu, Cheih-Ju; Jennings, Katie A.; Cragg, Stephanie J.; Casadei, Barbara; Paterson, David J.; Channon, Keith M.

    2012-01-01

    Aims Clinical markers of cardiac autonomic function, such as heart rate and response to exercise, are important predictors of cardiovascular risk. Tetrahydrobiopterin (BH4) is a required cofactor for enzymes with roles in cardiac autonomic function, including tyrosine hydroxylase and nitric oxide synthase. Synthesis of BH4 is regulated by GTP cyclohydrolase I (GTPCH), encoded by GCH1. Recent clinical studies report associations between GCH1 variants and increased heart rate, but the mechanistic importance of GCH1 and BH4 in autonomic function remains unclear. We investigate the effect of BH4 deficiency on the autonomic regulation of heart rate in the hph-1 mouse model of BH4 deficiency. Methods and results In the hph-1 mouse, reduced cardiac GCH1 expression, GTPCH enzymatic activity, and BH4 were associated with increased resting heart rate; blood pressure was not different. Exercise training decreased resting heart rate, but hph-1 mice retained a relative tachycardia. Vagal nerve stimulation in vitro induced bradycardia equally in hph-1 and wild-type mice both before and after exercise training. Direct atrial responses to carbamylcholine were equal. In contrast, propranolol treatment normalized the resting tachycardia in vivo. Stellate ganglion stimulation and isoproterenol but not forskolin application in vitro induced a greater tachycardic response in hph-1 mice. β1-adrenoceptor protein was increased as was the cAMP response to isoproterenol stimulation. Conclusion Reduced GCH1 expression and BH4 deficiency cause tachycardia through enhanced β-adrenergic sensitivity, with no effect on vagal function. GCH1 expression and BH4 are novel determinants of cardiac autonomic regulation that may have important roles in cardiovascular pathophysiology. PMID:22241166

  5. Stereotactic radiotherapy using Novalis for skull base metastases developing with cranial nerve symptoms.

    PubMed

    Mori, Yoshimasa; Hashizume, Chisa; Kobayashi, Tatsuya; Shibamoto, Yuta; Kosaki, Katsura; Nagai, Aiko

    2010-06-01

    Skull base metastases are challenging situations because they often involve critical structures such as cranial nerves. We evaluated the role of stereotactic radiotherapy (SRT) which can give high doses to the tumors sparing normal structures. We treated 11 cases of skull base metastases from other visceral carcinomas. They had neurological symptoms due to cranial nerve involvement including optic nerve (3 patients), oculomotor (3), trigeminal (6), abducens (1), facial (4), acoustic (1), and lower cranial nerves (1). The interval between the onset of cranial nerve symptoms and Novalis SRT was 1 week to 7 months. Eleven tumors of 8-112 ml in volume were treated by Novalis SRT with 30-50 Gy in 10-14 fractions. The tumors were covered by 90-95% isodose. Imaging and clinical follow-up has been obtained in all 11 patients for 5-36 months after SRT. Seven patients among 11 died from primary carcinoma or other visceral metastases 9-36 months after Novalis SRT. All 11 metastatic tumors were locally controlled until the end of the follow-up time or patient death, though retreatment for re-growth was done in 1 patient. In 10 of 11 patients, cranial nerve deficits were improved completely or partially. In some patients, the cranial nerve symptoms were relieved even during the period of fractionated SRT. Novalis SRT is thought to be safe and effective treatment for skull base metastases with involvement of cranial nerves and it may improve cranial nerve symptoms quickly.

  6. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals

    SciTech Connect

    Kihara, Mikihiro; Schmelzer, J.D.; Poduslo, J.F.; Curran, G.L.; Nickander, K.K.; Low, P.A. )

    1991-07-15

    Since advanced glycosylation end products have been suggested to mediate hyperglycemia-induced microvascular atherogenesis and because aminoguanidine (AG) prevents their generation, the authors examined whether AG could prevent or ameliorate the physiologic and biochemical indices of streptozotocin (STZ)-induced experimental diabetic neuropathy. Four groups of adult Sprague-Dawley rats were studied: group I received STZ plus AG, group II received STZ plus AG, group III received STZ alone, and group IV was a control. They monitored conduction and action potential amplitudes serially in sciatic-tibial and caudal nerves, nerve blood flow, oxygen free radical activity (conjugated dienes and hydroperoxides), and the product of the permeability coefficient and surface area to {sup 125}I-labeled albumin. STZ-induced diabetes (group III) caused a 57% reduction in nerve blood flow and in abnormal nerve conduction and amplitudes and a 60% increase in conjugated dienes. Nerve blood flow was normalized by 8 weeks with AG (groups I and II) and conduction was significantly improved, in a dose-dependent manner, by 16 and 24 weeks in sciatic-tibial and caudal nerves, respectively. The permeability coefficient was not impaired, suggesting a normal blood-nerve barrier function for albumin, and the oxygen free-radical indices were not ameliorated by AG. They suggest that AG reverses nerve ischemia and more gradually improves their electrophysiology by an action on nerve microvessels. AG may have potential in the treatment of diabetic neuropathy.

  7. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    PubMed Central

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  8. Laminin-based Nanomaterials for Peripheral Nerve Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Neal, Rebekah Anne

    Peripheral nerve transection occurs commonly in traumatic injury, causing motor and sensory deficits distal to the site of injury. One option for surgical repair is the nerve conduit. Conduits currently on the market are hollow tubes into which the nerve ends are sutured. Although these conduits fill the gap, they often fail due to the slow rate of regeneration over long gaps. To facilitate increased speed of regeneration and greater potential for functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in peripheral nerve regeneration. In this dissertation, I fabricated laminin-1 and laminin-polycaprolactone (PCL) blend nanofibers that mimic the geometry and functionality of the peripheral nerve basement membrane. These fibers resist hydration in aqueous media and require no harsh chemical crosslinkers. Adhesion and differentiation of both neuron-like and neuroprogenitor cells is improved on laminin nanofibrous meshes over two-dimensional laminin substrates. Blend meshes with varying laminin content were characterized for composition, tensile properties, degradation rates, and bioactivity in terms of cell attachment and axonal elongation. I have established that 10% (wt) laminin content is sufficient to retain the significant neurite-promoting effects of laminin critical in peripheral nerve repair. In addition, I utilized modified collector plate design to manipulate electric field gradients during electrospinning for the fabrication of aligned nanofibers. These aligned substrates provide enhanced directional guidance cues to the regenerating axons. Finally, I replicated the clinical problem of peripheral nerve transection using a rat tibial nerve defect model for conduit implantation. When the lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment, I observed significant recovery of sensory and motor function over six weeks. This recovery was

  9. Role of sensory nerves in the cutaneous vasoconstrictor response to local cooling in humans.

    PubMed

    Hodges, Gary J; Traeger, J Andrew; Tang, Tri; Kosiba, Wojciech A; Zhao, Kun; Johnson, John M

    2007-07-01

    Local cooling (LC) causes a cutaneous vasoconstriction (VC). In this study, we tested whether there is a mechanism that links LC to VC nerve function via sensory nerves. Six subjects participated. Local skin and body temperatures were controlled with Peltier probe holders and water-perfused suits, respectively. Skin blood flow at four forearm sites was monitored by laser-Doppler flowmetry with the following treatments: untreated control, pretreatment with local anesthesia (LA) blocking sensory nerve function, pretreatment with bretylium tosylate (BT) blocking VC nerve function, and pretreatment with both LA and BT. Local skin temperature was slowly reduced from 34 to 29 degrees C at all four sites. Both sites treated with LA produced an increase in cutaneous vascular conductance (CVC) early in the LC process (64 +/- 55%, LA only; 42 +/- 14% LA plus BT; P < 0.05), which was absent at the control and BT-only sites (5 +/- 8 and 6 +/- 8%, respectively; P > 0.05). As cooling continued, there were significant reductions in CVC at all sites (P < 0.05). At control and LA-only sites, CVC decreased by 39 +/- 4 and 46 +/- 8% of the original baseline values, which were significantly (P < 0.05) more than the reductions in CVC at the sites treated with BT and BT plus LA (-26 +/- 8 and -22 +/- 6%). Because LA affected only the short-term response to LC, either alone or in the presence of BT, we conclude that sensory nerves are involved early in the VC response to LC, but not for either adrenergic or nonadrenergic VC with longer term LC.

  10. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration.

    PubMed

    Jiang, Xu; Mi, Ruifa; Hoke, Ahmet; Chew, Sing Yian

    2014-05-01

    Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p < 0.01). In addition, the compound muscle action potential (CMAP) amplitudes were higher and distal motor latency values were lower in the Nanofiber conduit group compared to the Microfiber group. This study demonstrated the impact of fibre size on peripheral nerve regeneration. These results could provide useful insights for future nerve guide designs.

  11. Novel Immunohistochemical Techniques Using Discrete Signal Amplification Systems for Human Cutaneous Peripheral Nerve Fiber Imaging

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Freeman, Roy

    2011-01-01

    Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues. PMID:21411809

  12. Pulmonary vasomotor nerve responses in isolated perfused lungs of Macaca mulatta and Papio species.

    PubMed Central

    de Burgh Daly, I; Ramsay, D J; Waaler, B A

    1975-01-01

    1. Lung lobes of Macaca mulatta and Papio species were isolated from the body and perfused by a pump delivering a constant volume inflow. The left atrial pressure was kept constant and therefore any recorded change in pulmonary arterial pressure reflected a change in pulmonary vascular resistance. 2. In five Macaca mulatta preparations stimulation of the upper thoracic sympathetic chain, the stellate ganglion, the middle cervical ganglion and the thoracic vagosympathetic nerve caused a small increase in calculated pulmonary vascular resistance usually followed by a larger decrease. Evidence is produced which suggests that the depressor response is mediated by adrenergic beta-receptors. In three preparations no change in pulmonary vascular resistance occurred. 3. In four Papio preparations stimulation of similar nerves invariably caused an increase in calculated pulmonary vascular resistance. In one animal no change in vascular resistance occurred. 4. A regression analysis of the results showed an inverse relationship between the magnitude of the pulmonary vascular response to nerve stimulation and the degree of excitement of the animals during capture, restraint and anaesthesia (P less than 0.01). Images Fig. 2 PMID:809575

  13. Fluorescent lectins for local in vivo visualization of peripheral nerves.

    PubMed

    KleinJan, Gijs Hendrik; Buckle, Tessa; van Willigen, Danny Michel; van Oosterom, Matthias Nathanaël; Spa, Silvia Johara; Kloosterboer, Harmen Egbert; van Leeuwen, Fijs Willem Bernhard

    2014-07-08

    Damage to peripheral nerves caused during a surgical intervention often results in function loss. Fluorescence imaging has the potential to improve intraoperative identification and preservation of these structures. However, only very few nerve targeting agents are available. This study describes the in vivo nerve staining capabilities of locally administered fluorescent lectin-analogues. To this end WGA, PNA, PHA-L and LEL were functionalized with Cy5 (λex max 640 nm; λem max 680 nm). Transfer of these imaging agents along the sciatic nerve was evaluated in Thy1-YFP mice (n = 12) after intramuscular injection. Migration from the injection site was assessed in vivo using a laboratory fluorescence scanner and ex vivo via fluorescence confocal microscopy. All four lectins showed retrograde movement and staining of the epineurium with a signal-to-muscle ratio of around two. On average, the longest transfer distance was obtained with WGA-Cy5 (0.95 cm). Since WGA also gave minimal uptake in the lymphatic system, this lectin type revealed the highest potential as a migration imaging agent to visualize nerves.

  14. Biofabrication and testing of a fully cellular nerve graft.

    PubMed

    Owens, Christopher M; Marga, Francoise; Forgacs, Gabor; Heesch, Cheryl M

    2013-12-01

    Rupture of a nerve is a debilitating injury with devastating consequences for the individual's quality of life. The gold standard of repair is the use of an autologous graft to bridge the severed nerve ends. Such repair however involves risks due to secondary surgery at the donor site and may result in morbidity and infection. Thus the clinical approach to repair often involves non-cellular solutions, grafts composed of synthetic or natural materials. Here we report on a novel approach to biofabricate fully biological grafts composed exclusively of cells and cell secreted material. To reproducibly and reliably build such grafts of composite geometry we use bioprinting. We test our grafts in a rat sciatic nerve injury model for both motor and sensory function. In particular we compare the regenerative capacity of the biofabricated grafts with that of autologous grafts and grafts made of hollow collagen tubes by measuring the compound action potential (for motor function) and the change in mean arterial blood pressure as consequence of electrically eliciting the somatic pressor reflex. Our results provide evidence that bioprinting is a promising approach to nerve graft fabrication and as a consequence to nerve regeneration.

  15. Angiotensin II, sympathetic nerve activity and chronic heart failure.

    PubMed

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2014-03-01

    Sympathetic nerve activity has been reported to be increased in both humans and animals with chronic heart failure. One of the mechanisms believed to be responsible for this phenomenon is increased systemic and cerebral angiotensin II signaling. Plasma angiotensin II is increased in humans and animals with chronic heart failure. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic heart failure. Angiotensin II signaling is enhanced in different brain sites such as the paraventricular nucleus, the rostral ventrolateral medulla and the area postrema. Blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the paraventricular nucleus. Injection of an angiotensin receptor blocker into the area postrema activates the sympathoinhibitory baroreflex. In peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity seen in chronic heart failure. Increased circulating angiotensin II during chronic heart failure may enhance the sympathoexcitatory chemoreflex and inhibit the sympathoinhibitory baroreflex. In addition, increased circulating angiotensin II can directly act on the central nervous system via the subfornical organ and the area postrema to increase sympathetic outflow. Inhibition of angiotensin II formation and its type 1 receptor has been shown to have beneficial effects in chronic heart failure patients.

  16. Biosynthesis and transport of gangliosides in peripheral nerve

    SciTech Connect

    Yates, A.J.; Tipnis, U.R.; Hofteig, J.H.; Warner, J.K.

    1984-01-01

    Radiolabelled glucosamine was injected into L-7 dorsal root ganglion (DRG) of rabbits. At several different times after injection DRG, lumbosacral trunks (LST) and sciatic nerves (SN) were removed and gangliosides extracted. Two and 3 weeks after injection the amounts of radioactivity in the ganglioside fractions of LST and SN were significantly higher than at days 1 and 2. The TCA soluble radioactivity decreased dramatically over the same time period. Colchicine prevented the appearance of radiolabelled lipid in LST and SN. From these experiments the authors conclude that some ganglioside is synthesized in the neuronal cell bodies of DRG and transported in the axons of the sciatic nerve. In another experiment the sciatic nerve was transected and ends separated to prevent regeneration. There was no difference in the amount of radiolabelled ganglioside that was isolated from DRG or LST of transected nerves compared with control nerves. The behavior of several potential acid soluble contaminants was studied in several steps used to isolate gangliosides. Of those studied only CMP-NeuAc could cause significant contamination of the final ganglioside preparation.

  17. Solitary fibrous tumour of the vagus nerve.

    PubMed

    Scholsem, Martin; Scholtes, Felix

    2012-04-01

    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  18. Overview of Optic Nerve Disorders

    MedlinePlus

    ... where the problem is in the pathway. Visual Pathways and the Consequences of Damage Nerve signals travel ... eyes. Damage to an eye or the visual pathway causes different types of vision loss depending on ...

  19. Nerve entrapment and gene therapy.

    PubMed

    Sud, Vipul

    2002-01-01

    Peripheral entrapment neuropathy is a common cause of upper-extremity pain, paresthesias, and weakness. Although any of the major nerves can be affected, compression of the median nerve at the carpal tunnel is the commonest site of clinically significant nerve compression. Etiologically, carpal tunnel syndrome (CTS) has numerous causes, but the idiopathic group greatly outnumbers the rest. Moreover, the pathophysiology of CTS patients claiming work-related repetitive hand motion as a basis for their disorder has been the subject of intensive study because of its economic ramifications for industry. CTS can serve as a model for reviewing the pathophysiology and biochemical changes of the nerve and its exterior milieu at the cellular level, as well as the possibilities of modifying these changes at the molecular level.

  20. Schwannomatosis of Cervical Vagus Nerve

    PubMed Central

    Sasi, M. P.

    2016-01-01

    Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis. PMID:27807496

  1. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus.

    PubMed

    O'Dell, Thomas J; Connor, Steven A; Guglietta, Ryan; Nguyen, Peter V

    2015-09-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.

  2. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    SciTech Connect

    Smiley, R.M. Columbia Univ College of Physicians and Surgeons, New York, NY ); Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J. )

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with {sup 32}PO{sub 4} in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the {beta}-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M{sub r} 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the {alpha}-2 agonist clonidine. Epinephrine, a combined {alpha} and {beta} agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the {alpha}-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes.

  3. β2-Adrenergic receptor solutions for structural biology analyzed with microscale NMR diffusion measurements.

    PubMed

    Horst, Reto; Stanczak, Pawel; Stevens, Raymond C; Wüthrich, Kurt

    2013-01-02

    Microcoil NMR measurements were performed to determine the final composition of solutions of the β(2)-adrenergic receptor (β(2)AR) reconstituted with a detergent and to study the hydrodynamic properties of the detergent micelles containing β(2)AR. Standards are established for the reproducible preparation of G-protein-coupled receptor solutions for crystallization trials and solution NMR studies.

  4. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems.

    PubMed

    Karavolos, Michail H; Winzer, Klaus; Williams, Paul; Khan, C M Anjam

    2013-02-01

    The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and β-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication.

  5. Increased dependency of cardiac pacemaker activity on extracellular Ca after adrenergic blockade in the frog heart.

    PubMed

    Fukuda, Y

    1986-01-01

    The frog sinus venosus shows spontaneous regular pacemaker activity, even in the absence of extracellular Ca2+. When an alpha-adrenergic blocking agent (phentolamine) is applied, the rate of pacemaker activity, height of action potential, rate of slow diastolic depolarization, and the maximum diastolic potential become strongly dependent upon the extracellular Ca2+ concentration.

  6. Possible involvement of parotid beta-adrenergic receptors in the etiology of sialadenosis.

    PubMed

    Chilla, R; Witzemann, V; Opaitz, M; Arglebe, C

    1981-01-01

    The concentration of beta-adrenergic receptors was determined in rat and human parotid glands, in normal tissue as well as after sympathetic denervation of the rat, and in human sialadenosis. Receptor levels were clearly elevated after denervation of the rat and in sialadenosis. The possible implications of these findings for the etiology of human sialadenosis are discussed.

  7. Effects of Adrenergic Blockade on Postpartum Adaptive Responses Induced by Labor Contractions

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Mills, N. A.; Lam, K. P.; Hayes, L. E.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Prenatal exposure to labor contractions augments the expression of postnatal adaptive responses in newborn rats. Near-term rat fetuses exposed prenatally to simulated labor contractions and delivered by cesarean section breath and attach to nipples at greater frequencies than non-stimulated fetuses. Plasma NE (norepinephrine) and EPI (epinephrine) was significantly elevated in newborn rats exposed to vaginal birth or simulated labor contractions (compressions) with cesarean delivery as compared to non-compressed fetuses. In the present study, we investigated adrenergic mechanisms underlying labor-induced postnatal adaptive responses. Following spinal transection of late pregnant rat dams, fetuses were administered neurogenic or non-neurogenic adrenergic blockade: 1) bretylium (10 mg/kg sc) to prevent sympathetic neuronal release, 2) hexamethonium (30 mg/kg) to produce ganglionic blockade, 3) phenoxybenzanune (10mg/kg sc), an a- adrenergic receptor antagonist, 4) ICI-118551, 10 mg/kg sc), a b receptor antagonist, or 5) vehicle alone. Fetuses were either compressed (C) or non-compressed (NC) prior to cesarean delivery. a- and b- adrenergic antagonists reduced respiration and nipple attachment rates while sympathetic and vehicle alone did not. These results provide additional support for the hypothesis that adaptive neonatal effects of labor contractions are mediated by adrenal and extra-adrenal catecholamines.

  8. Effects of beta-adrenergic antagonist, propranolol on spatial memory and exploratory behavior in mice.

    PubMed

    Sun, Huaying; Mao, Yu; Wang, Jianhong; Ma, Yuanye

    2011-07-08

    The beta-adrenergic system has been suggested to be involved in novelty detection and memory modulation. The present study aimed to investigate the role of beta-adrenergic receptors on novelty-based spatial recognition memory and exploratory behavior in mice using Y-maze test and open-field respectively. Mice were injected with three doses of beta-adrenergic receptor antagonist, propranolol (2, 10 and 20 mg/kg) or saline at three different time points (15 min prior to training, immediately after training and 15 min before test). The results showed that higher doses of propranolol (10 and 20 mg/kg) given before the training trial impaired spatial recognition memory while those injected at other two time points did not. A detailed analysis of exploratory behavior in open-field showed that lower dose (2 mg/kg) of propranolol reduced exploratory behavior of mice. Our findings indicate that higher dose of propranolol can impair acquisition of spatial information in the Y-maze without altering locomotion, suggesting that the beta-adrenergic system may be involved in modulating memory processes at the time of learning.

  9. Beta Adrenergic Blocking Medications for Aggressive or Self-Injurious Mentally Retarded Persons.

    ERIC Educational Resources Information Center

    Ruedrich, Stephen L.; And Others

    1990-01-01

    Literature is reviewed and a case report is presented concerning blockers of the beta-adrenergic function of the sympathetic nervous system, postulated to have efficacy in treatment of aggressive or self-injurious syndromes in persons with mental retardation. Concerns are raised regarding endorsement of beta-blocking medications before they have…

  10. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2015-10-01

    regeneration using our approach with an acellular nerve allograft to be equivalent to standard autograft repair in rodent models. An ongoing large animal ...be clinically acceptable for use in the animal studies in Aim 2. The anatomy of HAM is shown pictorially in Figure 7. In vivo, the epithelial...product. Given that the large animal studies with large caliber nerves in Aim 3 will use AxoGuard we feel that the single layer SIS material is totally

  11. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    performed following application of 0.1% Rose Bengal dye in saline to wrap and epineurium with illumination at 532 nm. The HAM wrap/nerve sample was then...the three fixation methods under study (a) epineurial suture, (b) fibrin glue and (c) photochemical tissue bonding (PTB) with a wrap material. All...methods induced bonding between the nerve segments with bond strength in the order of suture>PTB> fibrin glue. Conventional epineurial suturing using

  12. The alpha(2C)-adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder.

    PubMed

    Bruno, Kristy J; Hess, Ellen J

    2006-09-01

    Drugs that modify noradrenergic transmission such as atomoxetine and clonidine are increasingly prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). However, the therapeutic targets of these compounds are unknown. Norepinephrine is also implicated in the hyperactivity exhibited by coloboma mice. To identify the receptor subtypes that regulate the hyperactivity, coloboma mice were systematically challenged with adrenergic drugs. The beta-adrenergic receptor antagonist propranolol and the alpha(1)-adrenergic receptor antagonist prazosin each had little effect on the hyperactivity. Conversely, the alpha(2)-adrenergic receptor antagonist yohimbine reduced the activity of coloboma mice but not control mice. Subtype-selective blockade of alpha(2C)-, but not alpha(2A)- or alpha(2B)-adrenergic receptors, ameliorated hyperactivity of coloboma mice without affecting activity of control mice, suggesting that alpha(2C)-adrenergic receptors mediate the hyperactivity. Localized in the basal ganglia, alpha(2C)-adrenergic receptors are in a prime position to impact locomotor activity and are, therefore, potential targets of pharmacotherapy for ADHD.

  13. Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells.

    PubMed

    Maestroni, G J; Conti, A

    1994-03-01

    We have recently demonstrated that adrenergic agents can affect hematopoiesis after syngeneic bone marrow transplantation in mice. In particular, chemical sympathectomy by 6-hydroxydopamine (6-OHDA) and/or administration of the alpha 1-adrenergic antagonist prazosin were shown to increase the concentration of blood granulocytes, platelets, and bone marrow colony-forming units-granulocyte/macrophage (CFU-GM), and to induce a granulocytic hyperplasia of the spleen. Here we show that prazosin can also enhance myelopoiesis and platelet formation in normal mice. Furthermore, noradrenaline and the alpha 1-adrenergic agonist methoxamine could directly inhibit the in vitro growth of GM-CFU. The effect of noradrenaline was counteracted by prazosin and by other alpha-adrenergic antagonists such as phentolamine and yohimbine, in the following order of potency: prazosin > phentolamine > yohimbine. In line with these results, we were able to demonstrate that 3H-prazosin binds specifically to both bone marrow cell membranes and intact bone marrow cells. Scatchard analysis of the binding to intact cells revealed the presence of two binding sites. A kd of 0.98 +/- 0.32 nM and a B max of 5 +/- 2.9 fM/2 x 10(6) cells characterized the higher affinity site, while the lower affinity site displayed a kd of 55.9 +/- 8.2 nM and a B max of 44 +/- 7.7 fM/mg protein. These saturation studies, together with competition experiments to evaluate the ability of various adrenergic compounds to displace 3H-prazosin binding, classified the higher affinity site as an alpha 1-adrenergic receptor. The remaining low affinity binding site remains to be characterized. Furthermore, separation of bone marrow cells by counterflow centrifugal elutriation (CCE) showed that the high-affinity binding is due to a lymphoid/stem cell fraction with no blasts and no GM-CFU progenitors. The low-affinity site was apparent on the rotor-off fraction, which was enriched with GM-CFU progenitor cells. These findings

  14. Pentadecapeptide BPC 157 interactions with adrenergic and dopaminergic systems in mucosal protection in stress.

    PubMed

    Sikirić, P; Mazul, B; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Jurina, L; Konjevoda, P; Hanzevacki, M; Gjurasin, M; Separović, J; Ljubanović, D; Artuković, B; Bratulić, M; Tisljar, M; Miklić, P; Sumajstorcić, J

    1997-03-01

    Since superior protection against different gastrointestinal and liver lesions and antiinflammatory and analgesic activities were noted for pentadecapeptide BPC (an essential fragment of an organoprotective gastric juice protein named BPC), the beneficial mechanism of BPC 157 and its likely interactions with other systems were studied. Hence its beneficial effects would be abolished by adrenal gland medullectomy, the influence of different agents affecting alpha, beta, and dopamine receptors on BPC 157 gastroprotection in 48 h restraint stress was further investigated. Animals were pretreated (1 hr before stress) with saline (controls) or BPC 157 (dissolved in saline) (10 microg or 10 ng/kg body wt intraperitoneally or intragastrically) applied either alone to establish basal conditions or, when manipulating the adrenergic or dopaminergic system, a simultaneous administration was carried out with various agents with specific effects on adrenergic or dopaminergic receptors [given in milligrams per kilogram intraperitoneally except for atenolol, which was given subcutaneously] phentolamine (10.0), prazosin (0.5), yohimbine (5.0), clonidine (0.1) (alpha-adrenergic domain), propranolol (1.0), atenolol (20.0) (beta-adrenergic domain), domperidone (5.0), and haloperidol (5.0) (peripheral/central dopamine system). Alternatively, agents stimulating adrenergic or dopaminergic systems--adrenaline (5.0) or bromocriptine (10.0)--were applied. A strong protection, noted following intragastric or intraperitoneal administration of BPC 157, was fully abolished by coadministration of phentolamine, clonidine, and haloperidol, and consistently not affected by prazosin, yohimbine, or domperidone. Atenolol abolished only intraperitoneal BPC 157 protection, whereas propranolol affected specifically intragastric BPC 157 protection. Interestingly, the severe course of lesion development obtained in basal conditions, unlike BPC 157 gastroprotection, was not influenced by the application of

  15. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146.

  16. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery

    PubMed Central

    Noguera, I; Medina, P; Segarra, G; Martínez, M C; Aldasoro, M; Vila, J M; Lluch, S

    1997-01-01

    The aim of the present study was to investigate in rat mesenteric artery rings whether low concentrations of vasopressin could modify the contractile responses to noradrenaline and electrical stimulation of perivascular nerves. Vasopressin (10−10–10−7 M) caused concentration-dependent contractions (pD2=8.36±0.09). The V1-receptor antagonist d(CH2)5Tyr(Me)AVP (10−9–10−8 M) produced parallel rightward shifts of the control curve for vasopressin. Schild analysis yielded a pA2 value of 9.83 with a slope of 1.10±0.14. Vasopressin (3×10 −10 and 10−9 M) caused concentration-dependent potentiation of the contractions elicited by electrical stimulation (2–8 Hz; 0.2 ms duration for 30 s) and produced leftward shifts of the concentration-response curve for noradrenaline. The V1-receptor antagonist induced concentration-dependent inhibitions of potentiation induced by vasopressin. The selective V1-receptor agonist [Phe*, Orn8]-vasotocin (3×10 −10 and 10−9 M) induced potentiation of electrical stimulation-evoked responses which was also inhibited in the presence of the V1 antagonist (10−8 M). In contrast, the V2-receptor agonist deamino-8-D-arginine vasopressin (desmopressin 10−8–10−7 M) did not modify the electrical stimulation-induced responses and the V2-receptor antagonist [d(CH2)5, D-Ile*, Ile4, Arg8]-vasopressin (10−8–10−7 M) did not affect the potentiation evoked by vasopressin. In artery rings contracted by 10−6 M noradrenaline in the presence of 10−6 M guanethidine and 10−6 M atropine, electrical stimulation (2, 4 and 8 Hz) produced frequency-dependent relaxations which were unaffected by 10−9 M vasopressin but abolished by 10−6 M tetrodotoxin. Vasopressin also potentiated contractions elicited by KCl and contractions induced by addition of CaCl2 to KCl depolarized vessels. The augmenting effects were inhibited by the V1 antagonist. In the presence of the calcium antagonist nifedipine (10

  17. Histamine H3-receptor signaling in cardiac sympathetic nerves: Identification of a novel MAPK-PLA2-COX-PGE2-EP3R pathway.

    PubMed

    Levi, Roberto; Seyedi, Nahid; Schaefer, Ulrich; Estephan, Rima; Mackins, Christina J; Tyler, Eleanor; Silver, Randi B

    2007-04-15

    We hypothesized that the histamine H(3)-receptor (H(3)R)-mediated attenuation of norepinephrine (NE) exocytosis from cardiac sympathetic nerves results not only from a Galpha(i)-mediated inhibition of the adenylyl cyclase-cAMP-PKA pathway, but also from a Gbetagamma(i)-mediated activation of the MAPK-PLA(2) cascade, culminating in the formation of an arachidonate metabolite with anti-exocytotic characteristics (e.g., PGE(2)). We report that in Langendorff-perfused guinea-pig hearts and isolated sympathetic nerve endings (cardiac synaptosomes), H(3)R-mediated attenuation of K(+)-induced NE exocytosis was prevented by MAPK and PLA(2) inhibitors, and by cyclooxygenase and EP(3)-receptor (EP(3)R) antagonists. Moreover, H(3)R activation resulted in MAPK phosphorylation in H(3)R-transfected SH-SY5Y neuroblastoma cells, and in PLA(2) activation and PGE(2) production in cardiac synaptosomes; H(3)R-induced MAPK phosphorylation was prevented by an anti-betagamma peptide. Synergism between H(3)R and EP(3)R agonists (i.e., imetit and sulprostone, respectively) suggested that PGE(2) may be a downstream effector of the anti-exocytotic effect of H(3)R activation. Furthermore, the anti-exocytotic effect of imetit and sulprostone was potentiated by the N-type Ca(2+)-channel antagonist omega-conotoxin GVIA, and prevented by an anti-Gbetagamma peptide. Our findings imply that an EP(3)R Gbetagamma(i)-induced decrease in Ca(2+) influx through N-type Ca(2+)-channels is involved in the PGE(2)/EP(3)R-mediated attenuation of NE exocytosis elicited by H(3)R activation. Conceivably, activation of the Gbetagamma(i) subunit of H(3)R and EP(3)R may also inhibit Ca(2+) entry directly, independent of MAPK intervention. As heart failure, myocardial ischemia and arrhythmic dysfunction are associated with excessive local NE release, attenuation of NE release by H(3)R activation is cardioprotective. Accordingly, this novel H(3)R signaling pathway may ultimately bear therapeutic significance in hyper-adrenergic

  18. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles

    PubMed Central

    Donato, Anthony J; Lesniewski, Lisa A; Delp, Michael D

    2007-01-01

    Ageing is associated with increased leg vascular resistance and reductions in leg blood flow during rest and exercise, potentially predisposing older adults to a host of functional and cardiovascular complications. The purpose of these studies was to examine the effects and possible mechanisms of ageing and exercise training on arteriolar adrenergic vasoreactivity. Young and old male Fischer 344 rats were divided into young sedentary (YS), old sedentary (OS), young exercise-trained (YT) or old exercise-trained (OT) groups, where training consisted of chronic treadmill exercise. Isolated soleus (SOL) and gastrocnemius (GAS) muscle arterioles were studied in vitro. Responses to noradrenaline in endothelium-intact and endothelium-denuded arterioles, as well as during nitric oxide synthase (NOS) inhibition were determined. Vasodilator responses to isoproterenol and forskolin were also determined. Results: Noradrenaline-mediated vasoconstriction was increased in SOL arterioles with ageing, and exercise training in old rats attenuated α-adrenergic vasoconstriction in arterioles from both muscle types. Removal of the endothelium and NOS inhibition eliminated these ageing and training effects. Isoproterenol-mediated vasodilatation was impaired with ageing in SOL and GAS arterioles, and exercise training had little effect on this response. Forskolin-induced vasodilatation was not affected by age. The data demonstrate that ageing augments α-adrenergic vasoconstriction while exercise training attenuates this response, and both of these alterations are mediated through an endothelial α-receptor-NOS-signalling pathway. In contrast, ageing diminishes β-receptor-mediated vasodilatation, but this impairment is specific to the smooth muscle. These studies indicate that α- and β-adrenergic mechanisms may serve to increase systemic vascular resistance with ageing, and that the effects of exercise training on adrenergic vasomotor properties could contribute to the beneficial

  19. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    SciTech Connect

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-05-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with (/sup 3/H)-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with (/sup 3/H)-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension.

  20. Blocking the beta-adrenergic system does not affect sweat gland function during heat acclimation.

    PubMed

    Martinez, Ricardo; Jones, Douglas; Hodge, Daniel; Buono, Michael J

    2012-08-16

    The purpose of the current study was to test the hypothesis that the beta-adrenergic innervation of the human eccrine sweat gland facilitates greater sweat production following heat acclimation. Eight healthy subjects (mean ± SD age: 25.1 ± 4.1 years, weight: 79.0 ± 16.1 kg, and VO(2)max: 48.5 ± 8.0 ml/kg/min) underwent active heat acclimation by walking at 40% of their VO(2)max for 8 days (90 min a day) in an environmental chamber (35.3 ± 0.8°C and 40.2 ± 2.1% rH). To test the hypothesis, the adrenergic component of sweat gland innervation was inhibited by continuously administering a 0.5% solution of the beta-adrenergic antagonist propranolol via iontophoresis to a 5 cm(2) area of one forearm during each 90-min exercise bout. The opposing control forearm underwent iontophoresis with a saline solution. Following heat acclimation, mean sweat rate in the inhibited and control forearm was 0.47 ± 0.30 mg/cm(2)/min and 0.44 ± 0.25mg/cm(2)/min, respectively. Findings of the current study fail to support the hypothesis that adrenergic innervation facilitates human eccrine sweat gland function during heat acclimation, as no significant differences in sweating were observed. In light of the above, the physiological significance of the dual cholinergic and adrenergic innervation of the eccrine sweat gland has yet to be determined.

  1. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome.

    PubMed

    Loebel, Madlen; Grabowski, Patricia; Heidecke, Harald; Bauer, Sandra; Hanitsch, Leif G; Wittke, Kirsten; Meisel, Christian; Reinke, Petra; Volk, Hans-Dieter; Fluge, Øystein; Mella, Olav; Scheibenbogen, Carmen

    2016-02-01

    Infection-triggered disease onset, chronic immune activation and autonomic dysregulation in CFS point to an autoimmune disease directed against neurotransmitter receptors. Autoantibodies against G-protein coupled receptors were shown to play a pathogenic role in several autoimmune diseases. Here, serum samples from a patient cohort from Berlin (n=268) and from Bergen with pre- and post-treatment samples from 25 patients treated within the KTS-2 rituximab trial were analysed for IgG against human α and β adrenergic, muscarinic (M) 1-5 acetylcholine, dopamine, serotonin, angiotensin, and endothelin receptors by ELISA and compared to a healthy control cohort (n=108). Antibodies against β2, M3 and M4 receptors were significantly elevated in CFS patients compared to controls. In contrast, levels of antibodies against α adrenergic, dopamine, serotonin, angiotensin, and endothelin receptors were not different between patients and controls. A high correlation was found between levels of autoantibodies and elevated IgG1-3 subclasses, but not with IgG4. Further patients with high β2 antibodies had significantly more frequently activated HLA-DR+ T cells and more frequently thyreoperoxidase and anti-nuclear antibodies. In patients receiving rituximab maintenance treatment achieving prolonged B-cell depletion, elevated β2 and M4 receptor autoantibodies significantly declined in clinical responder, but not in non-responder. We provide evidence that 29.5% of patients with CFS had elevated antibodies against one or more M acetylcholine and β adrenergic receptors which are potential biomarkers for response to B-cell depleting therapy. The association of autoantibodies with immune markers suggests that they activate B and T cells expressing β adrenergic and M acetylcholine receptors. Dysregulation of acetylcholine and adrenergic signalling could also explain various clinical symptoms of CFS.

  2. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    PubMed Central

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnès; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function. PMID:27776147

  3. Hypoxia-reoxygenation and polyunsaturated fatty acids modulate adrenergic functions in cultured cardiomyocytes.

    PubMed

    Delerive, P; Oudot, F; Ponsard, B; Talpin, S; Sergiel, J P; Cordelet, C; Athias, P; Grynberg, A

    1999-02-01

    The polyunsaturated fatty acids (PUFAs) of the omega 3 series are known to modulate adrenergic functions in ventricular myocytes. This study evaluated the influence of hypoxia duration and PUFA composition on the ability of cultured rat cardiomyocytes in producing alpha- and beta-adrenergic messengers (IPs and cAMP). After hypoxia (1.5, 2.5 or 3.5 h) followed by reoxygenation (1h). IP and cAMP production was induced by phenylephrine or isoproterenol stimulation, respectively. Hypoxia did not affect the basal level of messenger production in unstimulated cells, but decreased the cAMP production elicited by isoproterenol stimulation (up to 50%). The decrease in IP production after phenylephrine stimulation was observed only after long-term hypoxia duration close to irreversible cellular damages. The use of modified culture media supplemented with either arachidonic acid (AA) or docosahexaenoic acid (DHA) induced cardiomyocytes displaying either an arachidonic acid membrane profile (35% AA and 2% DHA in the phospholipids) or a docosahexaenoic acid membrane profile (15% AA and 20% DHA). These modifications did not alter the basal level of either messenger production in unstimulated cells nor the IP released after alpha-adrenergic stimulation. Conversely, the decrease in cAMP production was significantly more pronounced in docosahexaenoic acid-enriched cells than in arachidonic acid-enriched cells. This study suggests that hypoxia alters the beta-adrenergic messenger production, and that the alpha-system may balance the depression of the beta-system. The depression of the beta-adrenergic function induced by the incorporation of docosahexaenoic acid in membrane phospholipids may contribute to the beneficial effect of this fatty acid in the reperfused heart.

  4. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    PubMed Central

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  5. Beta-adrenergic stimulation reverses the IKr–IKs dominant pattern during cardiac action potential

    PubMed Central

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T.; Chen-Izu, Ye

    2014-01-01

    β-adrenergic stimulation differentially modulates different K+ channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of IKs, IKr, and IK1 current in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K+ current to the total repolarization reserve. In this study we used an innovative AP-clamp Sequential Dissection technique to directly record the dynamic –IKs, IKr, IK1– currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of IKs, IKr, IK1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca2+ homeostasis. We found that isoproterenol treatment significantly enhanced IKs, moderately increased IK1, but slightly decreased IKr in a dose-dependent manner. The dominance pattern of the K+ currents was IKr>IK1>IKs at the control condition, but reversed to IKradrenergic stimulation. We systematically determined the changes in the relative contribution of IKs, IKr, IK1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K+ currents in a dose-dependent manner. This Knowledge is important for designing anti-arrhythmic drug strategies to treat the hearts exposed to various sympathetic tones. PMID:24535581

  6. Loss of platelet alpha 2-adrenergic receptors during simulated extracorporeal circulation: prevention with prostaglandin E1

    SciTech Connect

    Wachtogel, Y.T.; Musial, J.; Jenkin, B.; Niewiarowski, S.; Edmunds, L.H. Jr.; Colman, R.W.

    1985-05-01

    Cardiopulmonary bypass prolongs bleeding time and increases postoperative blood loss. During in vitro recirculation in an extracorporeal circuit containing a membrane oxygenator and primed with fresh heparinized human blood, the authors previously observed thrombocytopenia, impaired platelet aggregation, and depletion of granular contents, all of which were prevented with prostaglandin E1 (PGE1). To investigate these changes further, they studied the number and affinity of platelet alpha 2-adrenergic receptors by measuring the binding of /sup 3/H-yohimbine. Before recirculation, they found 235 alpha 2-adrenergic receptors per platelet, a Kd of 3.37 nmol/L, complete aggregation with 1.04 mumol/L epinephrine, and a platelet count of 281,000 microliters/sup -1/. After 2 minutes of recirculation, 9.44 mumol/L epinephrine was required to produce complete aggregation, and the platelet count was 104,000 microliters-1 (44% of control). After 2 hours of recirculation, the platelet count had increased to 123,000 microliters/sup -1/. However, epinephrine did not induce platelet aggregation even at 100 mumol/L. Moreover, alpha 2-adrenergic binding sites were not detectable, and affinity for yohimbine could not be calculated. Two minutes after PGE1 0.3 mumol/L was added to the circuit, platelet numbers, response to epinephrine, alpha 2-adrenergic binding sites per platelet, and affinity for yohimbine were not significantly different from control values. At 2 hours, the number of alpha 2-adrenergic sites was not significantly changed from control, but the affinity of yohimbine for platelets was significantly decreased 2.5-fold.

  7. Facial nerve palsy and hemifacial spasm.

    PubMed

    Valls-Solé, Josep

    2013-01-01

    Facial nerve lesions are usually benign conditions even though patients may present with emotional distress. Facial palsy usually resolves in 3-6 weeks, but if axonal degeneration takes place, it is likely that the patient will end up with a postparalytic facial syndrome featuring synkinesis, myokymic discharges, and hemifacial mass contractions after abnormal reinnervation. Essential hemifacial spasm is one form of facial hyperactivity that must be distinguished from synkinesis after facial palsy and also from other forms of facial dyskinesias. In this condition, there can be ectopic discharges, ephaptic transmission, and lateral spread of excitation among nerve fibers, giving rise to involuntary muscle twitching and spasms. Electrodiagnostic assessment is of relevance for the diagnosis and prognosis of peripheral facial palsy and hemifacial spasm. In this chapter the most relevant clinical and electrodiagnostic aspects of the two disorders are reviewed, with emphasis on the various stages of facial palsy after axonal degeneration, the pathophysiological mechanisms underlying the various features of hemifacial spasm, and the cues for differential diagnosis between the two entities.

  8. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed