Science.gov

Sample records for adrenergic nerve terminals

  1. β-Adrenergic Receptors Activate Exchange Protein Directly Activated by cAMP (Epac), Translocate Munc13-1, and Enhance the Rab3A-RIM1α Interaction to Potentiate Glutamate Release at Cerebrocortical Nerve Terminals*

    PubMed Central

    Ferrero, Jose J.; Alvarez, Ana M.; Ramírez-Franco, Jorge; Godino, María C.; Bartolomé-Martín, David; Aguado, Carolina; Torres, Magdalena; Luján, Rafael; Ciruela, Francisco; Sánchez-Prieto, José

    2013-01-01

    The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na+ channels with tetrodotoxin. We found that 8-pCPT-2′-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals. PMID:24036110

  2. Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism.

    PubMed

    Miyamoto, Tadayoshi; Kawada, Toru; Yanagiya, Yusuke; Inagaki, Masashi; Takaki, Hiroshi; Sugimachi, Masaru; Sunagawa, Kenji

    2004-08-01

    Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.

  3. Intracellular calcium buffering declines in aging adrenergic nerves.

    PubMed

    Tsai, H; Hewitt, C W; Buchholz, J N; Duckles, S P

    1997-01-01

    Stimulation-evoked norepinephrine release from rat tail artery adrenergic nerves increased with advancing age in the Fischer-344 rat when function of norepinephrine uptake mechanisms and prejunctional alpha-2 adrenoceptors were blocked. When calcium channels were bypassed with the ionophore, ionomycin (4 microM), norepinephrine release from aged nerves (20 months) was still elevated as compared to 6-month-old nerves. Norepinephrine release stimulated by high K+ was also higher in 20-month nerves. The intracellular calcium chelator, 1,2 bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetomethylester (BAPTA/AM), was used to determine whether age-related increases in norepinephrine release could be reversed with the addition of an artificial intracellular calcium buffer. Exposure to BAPTA/AM decreased stimulation-evoked norepinephrine release in both old and young tail arteries; however, the effect was significantly greater in older arteries. When mitochondrial calcium uptake was compromised using the uncoupler of mitochondrial oxidative phosphorylation, dinitrophenol, BAPTA caused a further decrease in stimulation-evoked norepinephrine release in 20-month tail arteries with much less effect in 6-month-old nerves. These results suggest that intracellular calcium buffering is less efficient in older nerves.

  4. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves

    SciTech Connect

    Trachte, G.J.

    1986-05-01

    The effect of the synthetic thromboxane/prostaglandin (PG) H2 agonist U46619 on the electrically stimulated rabbit isolated vas deferens was examined to test for thromboxane influences on adrenergic nerves. U46619 effects on force generation, (/sup 3/H) norepinephrine release and norepinephrine-induced contractions were assessed to determine the mechanism of action. U46619 maximally enhanced adrenergic force generation 135 +/- 24% at a concentration of 100 nM. U46619 potentiated maximal contractile effects of exogenously administered norepinephrine 16 +/- 4% and augmented (/sup 3/H)norepinephrine release from electrically stimulated preparations 142 +/- 44%. A competitive thromboxane/PGH2 receptor antagonist, SQ29548, significantly shifted the concentration-response curve for U46619 to the right in a concentration-dependent manner and blocked U46619-induced tritium release. Thus, U46619 appears to potentiate neurotransmitter release by interacting with thromboxane/PGH2 receptors. Because SQ29548 did not prevent the potentiation of norepinephrine contractions by U46619, the postjunctional effect may be independent of thromboxane/PGH2 receptors. We interpret these results to be indicative of both pre- and postjunctional sites of action of U46619. The physiological importance of these thromboxane effects is unknown currently.

  5. Electrophysiology of corneal cold receptor nerve terminals.

    PubMed

    Carr, Richard W; Brock, James A

    2002-01-01

    The mechanisms of sensory transduction in the fine nerve terminals of free nerve endings supplied by Adelta and C sensory axons are largely a matter of speculation. This is because the nerve terminals are small and inaccessible, particularly in intact tissues like skin. However, some of the difficulties associated with investigating the physiology of fine nerve terminals have recently been overcome using an in vitro preparation of the guinea-pig cornea that allows nerve terminal impulses (NTIs) to be recorded extracellularly from single polymodal and cold receptor nerve terminals. For cold receptors, the rate of spontaneously occurring NTIs is increased during cooling and decreased during heating. In addition, heating and cooling differentially modulate the shape of the recorded NTI. At the same temperature, NTIs are larger in amplitude and faster in time course during heating than those during cooling. The differential effect of heating and cooling on NTI shape is not considered to result simply from the temperature dependence of voltage-activated conductance kinetics or activity dependent changes in membrane excitability. Instead, changes in NTI shape may reflect changes in nerve terminal membrane potential that underlie the process of thermal transduction.

  6. Dependence of deoxycorticosterone/salt hypertension in the rat on the activity of adrenergic cardiac nerves.

    PubMed

    Bell, C; McLachlan, E M

    1979-08-01

    1. Chronic hypertension was induced in Wistar rats with intact kidneys by subcutaneous implantation of 50 mg of deoxycorticosterone acetate (DOCA) in wax and addition of sodium chloride (9 g/l) to the drinking water. 2. The development of DOCA/salt hypertension, as monitored by tail-cuff plethysmography, was prevented by: (a) destruction of the peripheral adrenergic nerves with neonatal administration of guanethidine (80 mg/kg subcutaneously for the first 14 days postnatally); (b) bilateral stellate ganglionectomy; (c) oral administration of the beta-adrenoreceptor antagonists propranolol or atenolol (1 mg day-1 kg-1) during the period of DOCA/salt treatment. 3. The dose of DOCA used was sufficient to inhibit the atrial Uptake2 pathway completely: this process appears to participate in termination of action of neurally released noradrenaline in the heart. 4. It is suggested that this model of DOCA/salt hypertension is due to adrenergic enhancement of cardiac output in the presence of an increased sodium load. The enhancement may be partly due to deficient myocardial inactivation of noradrenaline.

  7. Adrenergic vasoconstriction in peripheral nerves of the rabbit

    SciTech Connect

    Selander, D.; Mansson, L.G.; Karlsson, L.; Svanvik, J.

    1985-01-01

    The blood flow in the sciatic nerve of the rabbit was estimated from the wash out of intraneurally injected /sup 133/Xe. To avoid diffusion of the tracer into the surrounding muscular tissue, the nerve was covered by a gas-tight plastic film. Using this technique, the basal blood flow in the sciatic nerve was estimated to 35 ml X min-1 X 100 g-1. It was found that intraarterial norepinephrine and electrical stimulation of the lumbar sympathetic chain strongly reduced the wash out of /sup 133/Xe, which only can be explained by a pronounced reduction of the blood flow in the nerve itself. The blood flow again increased within 4 min of stopping the infusion of norepinephrine or the sympathetic stimulation. The prolonged effect and higher neurotoxicity of local anesthetics containing adrenaline may be explained by an alpha receptor-mediated vasoconstriction of the microvessels of peripheral nerves.

  8. Autoregulation of Neuromuscular Transmission by Nerve Terminals.

    DTIC Science & Technology

    1985-09-01

    release ACh synthesis by motor nerve terminals requires an adequate supply of its precusor, choline. We have found that diisopropyl1fluorophosphate (DFP...inhibits choline efflux from the isolated hemidiaphragm and futher suggest that, by limiting the availability of choline for ACh synthesis , DFP reduces the...the binding sites is compromised. The effect of choline in ACh synthesis and release has been investigated. We have shown previously that prevention

  9. Angiotensin and thromboxane in the enhanced renal adrenergic nerve sensitivity of acute renal failure.

    PubMed Central

    Robinette, J B; Conger, J D

    1990-01-01

    The roles of intrarenal angiotensin (A) and thromboxane (TX) in the vascular hypersensitivity to renal nerve stimulation (RNS) and paradoxical vasoconstriction to renal perfusion pressure (RPP) reduction in the autoregulatory range in 1 wk norepinephrine (NE)-induced acute renal failure (ARF) in rats were investigated. Renal blood flow (RBF) responses were determined before and during intrarenal infusion of an AII and TXA2 antagonist. Saralasin or SQ29548 alone partially corrected the slopes of RBF to RNS and RPP reduction in NE-ARF rats (P less than 0.02). Saralasin + SQ29548 normalized the RBF response to RNS. While combined saralasin + SQ29548 eliminated the vasoconstriction to RPP reduction, similar to the effect of renal denervation, appropriate vasodilatation was not restored. Renal vein norepinephrine efflux during RNS was disproportionately increased in NE-ARF (P less than 0.001) and was suppressed by saralasin + SQ29548 infusion (P less than 0.005). It is concluded that the enhanced sensitivity to RNS and paradoxical vasoconstriction to RPP reduction in 1 wk NE-ARF kidneys are the result of intrarenal TX and AII acceleration of neurotransmitter release to adrenergic nerve activity. PMID:2243129

  10. Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity

    PubMed Central

    Black, Ira B.; Reis, Donald J.

    1971-01-01

    1. In adrenalectomized fasted rats transection of the spinal cord at C7-C8 or placement of bilateral electrolytic lesions in the lateral hypothalamus when performed in the morning interrupted the daily rhythm of hepatic tyrosine transaminase by elevating low (AM) enzyme activities to high (PM) levels; lesions placed in PM did not affect the late afternoon rise in enzyme activity. 2. Bilateral thalamic lesions had no affect on enzyme activity. 3. The activity of hepatic catechol-O-methyl transferase was unaffected by hypothalamic lesions. 4. The lesion-evoked rise of tyrosine transaminase activity was abolished by exogenously administered norepinephrine. 5. Cycloheximide blocked the rise of tyrosine transaminase activity caused by hypothalamic lesions. 6. The results suggest that rhythmic activity of sympathetic nerves governed by lateral hypothalamus contribute to regulation of the daily rhythm in tyrosine transaminase by regulating the release of norepinephrine peripherally; norepinephrine may block the daily rise of enzyme by interfering with protein synthesis, possibly of new enzyme, by competing with pyridoxal co-factor. 7. It is proposed that alternating activity of sympathetic-adrenergic and vagal-cholinergic nerves to liver, controlled by the C.N.S., contribute to rhythmic activity of hepatic tyrosine transaminase. ImagesFig. 2 PMID:4400586

  11. Nerve growth factor facilitates redistribution of adrenergic and non-adrenergic non-cholinergic perivascular nerves injured by phenol in rat mesenteric resistance arteries.

    PubMed

    Yokomizo, Ayako; Takatori, Shingo; Hashikawa-Hobara, Narumi; Goda, Mitsuhiro; Kawasaki, Hiromu

    2016-01-05

    We previously reported that nerve growth factor (NGF) facilitated perivascular sympathetic neuropeptide Y (NPY)- and calcitonin gene-related peptide (CGRP)-containing nerves injured by the topical application of phenol in the rat mesenteric artery. We also demonstrated that mesenteric arterial nerves were distributed into tyrosine hydroxylase (TH)-, substance P (SP)-, and neuronal nitric oxide synthase (nNOS)-containing nerves, which had axo-axonal interactions. In the present study, we examined the effects of NGF on phenol-injured perivascular nerves, including TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves, in rat mesenteric arteries in more detail. Wistar rats underwent the in vivo topical application of 10% phenol to the superior mesenteric artery, proximal to the abdominal aorta, under pentobarbital-Na anesthesia. The distribution of perivascular nerves in the mesenteric arteries of the 2nd to 3rd-order branches isolated from 8-week-old Wistar rats was investigated immunohistochemically using antibodies against TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves. The topical phenol treatment markedly reduced the density of all nerves in these arteries. The administration of NGF at a dose of 20µg/kg/day with an osmotic pump for 7 days significantly increased the density of all perivascular nerves over that of sham control levels. These results suggest that NGF facilitates the reinnervation of all perivascular nerves injured by phenol in small resistance arteries.

  12. Autoregulation of Neuromuscular Transmission by Nerve Terminals

    DTIC Science & Technology

    1985-12-01

    precursor control. In addition, the influence of acetyl - cholinesterase (AChE) inhibition on these mechanisms has been examined. Neuromuscular...In addition, this effort ir-1ided new experimentation to learn the fate of Ca2+ once it enters the termin~ l in response to depolarization. The...modu- lin, may play a role in the excitation-secretion coupling mechanism. In theory, Ca L +-calmodulin regulates ACh release by altering cAMP

  13. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals.

    PubMed

    McMahon, Shane M; Chang, Che-Wei; Jackson, Meyer B

    2016-03-01

    Cytosolic Ca(2+) buffers bind to a large fraction of Ca(2+) as it enters a cell, shaping Ca(2+) signals both spatially and temporally. In this way, cytosolic Ca(2+) buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca(2+) entry. Secretion of these hormones exhibits a complex dependence on the frequency and pattern of electrical activity, and the role of cytosolic Ca(2+) buffers in controlling pituitary Ca(2+) signaling is poorly understood. Here, cytosolic Ca(2+) buffers were studied with two-photon imaging in patch-clamped nerve terminals of the rat posterior pituitary. Fluorescence of the Ca(2+) indicator fluo-8 revealed stepwise increases in free Ca(2+) after a series of brief depolarizing pulses in rapid succession. These Ca(2+) increments grew larger as free Ca(2+) rose to saturate the cytosolic buffers and reduce the availability of Ca(2+) binding sites. These titration data revealed two endogenous buffers. All nerve terminals contained a buffer with a Kd of 1.5-4.7 µM, and approximately half contained an additional higher-affinity buffer with a Kd of 340 nM. Western blots identified calretinin and calbindin D28K in the posterior pituitary, and their in vitro binding properties correspond well with our fluorometric analysis. The high-affinity buffer washed out, but at a rate much slower than expected from diffusion; washout of the low-affinity buffer could not be detected. This work has revealed the functional impact of cytosolic Ca(2+) buffers in situ in nerve terminals at a new level of detail. The saturation of these cytosolic buffers will amplify Ca(2+) signals and may contribute to use-dependent facilitation of release. A difference in the buffer compositions of oxytocin and vasopressin nerve terminals could contribute to the differences in release plasticity of these two hormones.

  14. N-terminal {beta}{sub 2}-adrenergic receptor polymorphisms do not correlate with bronchodilator response in asthma families

    SciTech Connect

    Holyroyd, K.J.; Dragwa, C.; Xu, J.

    1994-09-01

    Family and twin studies have suggested that susceptibility to asthma is inherited. One clinically relevant phenotype in asthma is the bronchodilator response to beta adrenergic therapy (reversibility) which may also be inherited and vary among asthmatics. Two polymorphisms of the {beta}{sub 2}-adrenergic receptor common to both asthmatic and normal individuals have been reported. One polymorphism, an amino acid polymorphism at position 16, correlated in one study with the need for long-term corticosteriod use in a population of asthmatics. It is conceivable that the increased use of corticosteroids needed to control symptoms in these patients may be explained by a decreased responsiveness to brochodilators mediated through this amino acid polymorphism in the {beta}{sub 2}-adrenergic receptor. However, the response to {beta}{sub 2} bronchodilators was not tested in these patients. In our Dutch asthma families, DNA sequencing of the {beta}{sub 2}-adrenergic receptor has been performed for N-terminal polymorphisms at amino acid positions 16 and 27 in over 100 individuals, and no correlation was found with the increase of FEV{sub 1} in response to bronchodilator. Linkage analysis between bronchodilator response and marker D5S412 near the {beta}{sub 2}-adrenergic receptor gene was performed in 286 sibpairs from these families. Using a bronchodilator response of >10% in FEV{sub 1} as a qualitative definition of affected individuals, there were 145 unaffected sibpairs, 121 sibpairs where one was affected, and 20 in which both were affected. Linear regression analysis of these sibpair data suggested possible linkage (p=0.007). This supports further examination of the {beta}{sub 2}-adrenergic receptor and its regulatory regions for polymorphisms that correlate with the bronchodilator response in asthma families.

  15. Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors.

    PubMed

    Miyashita, T; Williams, C L

    2006-03-01

    A significant number of animal and human studies demonstrate that memories for new experiences are encoded more effectively under environmental or laboratory conditions which elevate peripheral concentrations of the hormone epinephrine and in turn, induce emotional arousal. Although this phenomenon has been replicated across several learning paradigms, understanding of how this arousal related hormone affects memory processing remains obscure because epinephrine does not freely enter into the central circulation to produce any direct effects on the brain. This study examined whether epinephrine's actions on the CNS may be mediated by the initial activation of peripheral vagal fibers that project to the brain. The vagus was selected as a candidate for this role since it is densely embedded with beta-adrenergic receptors and the peripheral endings of this nerve innervate a broad spectrum of sensory organs that are directly affected by epinephrine release. Electrophysiological recordings of cervical vagal activity was measured over 110 min in urethane-anesthetized Sprague-Dawley rats given saline, epinephrine (0.3 mg/kg), the peripherally acting beta-adrenergic antagonist sotalol (2.0 mg/kg), or a combination of sotalol followed 15 min later by an injection of epinephrine. Epinephrine produced a significant increase in vagal nerve firing 10 min post-injection (p < .05) relative to controls and neural impulses recorded from the vagus remained significantly elevated for the remaining 55 min collection period. The excitatory actions of epinephrine were not observed in groups given an identical dose of the hormone after peripheral beta-adrenergic receptor blockade with sotalol. These findings demonstrate that neural discharge in vagal afferent fibers is increased by elevations in peripheral concentrations of epinephrine and the significance of these findings in understanding how epinephrine modulates brain limbic structures to encode and store new information into memory

  16. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals

    PubMed Central

    McMahon, Shane M.; Chang, Che-Wei

    2016-01-01

    Cytosolic Ca2+ buffers bind to a large fraction of Ca2+ as it enters a cell, shaping Ca2+ signals both spatially and temporally. In this way, cytosolic Ca2+ buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca2+ entry. Secretion of these hormones exhibits a complex dependence on the frequency and pattern of electrical activity, and the role of cytosolic Ca2+ buffers in controlling pituitary Ca2+ signaling is poorly understood. Here, cytosolic Ca2+ buffers were studied with two-photon imaging in patch-clamped nerve terminals of the rat posterior pituitary. Fluorescence of the Ca2+ indicator fluo-8 revealed stepwise increases in free Ca2+ after a series of brief depolarizing pulses in rapid succession. These Ca2+ increments grew larger as free Ca2+ rose to saturate the cytosolic buffers and reduce the availability of Ca2+ binding sites. These titration data revealed two endogenous buffers. All nerve terminals contained a buffer with a Kd of 1.5–4.7 µM, and approximately half contained an additional higher-affinity buffer with a Kd of 340 nM. Western blots identified calretinin and calbindin D28K in the posterior pituitary, and their in vitro binding properties correspond well with our fluorometric analysis. The high-affinity buffer washed out, but at a rate much slower than expected from diffusion; washout of the low-affinity buffer could not be detected. This work has revealed the functional impact of cytosolic Ca2+ buffers in situ in nerve terminals at a new level of detail. The saturation of these cytosolic buffers will amplify Ca2+ signals and may contribute to use-dependent facilitation of release. A difference in the buffer compositions of oxytocin and vasopressin nerve terminals could contribute to the differences in release plasticity of these two hormones. PMID:26880753

  17. Measuring acute changes in adrenergic nerve activity of the heart in the living animal

    SciTech Connect

    Sisson, J.C.; Bolgos, G.; Johnson, J. )

    1991-04-01

    Changes in the function of the adrenergic neurons of the heart may be important indicators of the adaptations of an animal to physiologic stress and disease. Rates of loss of norepinephrine (NE) from the heart were considered to be proportional to NE secretion and to adrenergic function. In rat hearts, yohimbine induced almost identical increases in rates of loss of {sup 3}H-NE and of {sup 125}I-metaiodobenzylguanidine (MIBG), a functional analog of NE. Clonidine induced decreases in rates of loss of {sup 3}H-NE that were also mimicked by those of {sup 125}I-MIBG. In the dog heart, pharmacologically-induced increases and decreases in rates of loss of {sup 123}I-MIBG could be measured externally; these values were similar to those obtained for {sup 125}I-MIBG in the rat heart. Thus acute changes in the adrenergic neuron activity can be measured in the living heart. The method is applicable to man in determining the capacity of the adrenergic system to respond to provocative challenges.

  18. β Adrenergic Receptor Kinase C-Terminal Peptide Gene-Therapy Improves β2-Adrenergic Receptor-Dependent Neoangiogenesis after Hindlimb Ischemia.

    PubMed

    Cannavo, Alessandro; Liccardo, Daniela; Lymperopoulos, Anastasios; Gambino, Giuseppina; D'Amico, Maria Loreta; Rengo, Franco; Koch, Walter J; Leosco, Dario; Ferrara, Nicola; Rengo, Giuseppe

    2016-02-01

    After hindlimb ischemia (HI), increased catecholamine levels within the ischemic muscle can cause dysregulation of β2-adrenergic receptor (β2AR) signaling, leading to reduced revascularization. Indeed, in vivo β2AR overexpression via gene therapy enhances angiogenesis in a rat model of HI. G protein-coupled receptor kinase 2 (GRK2) is a key regulator of βAR signaling, and β adrenergic receptor kinase C-terminal peptide (βARKct), a peptide inhibitor of GRK2, has been shown to prevent βAR down-regulation and to protect cardiac myocytes and stem cells from ischemic injury through restoration of β2AR protective signaling (i.e., protein kinase B/endothelial nitric oxide synthase). Herein, we tested the potential therapeutic effects of adenoviral-mediated βARKct gene transfer in an experimental model of HI and its effects on βAR signaling and on endothelial cell (EC) function in vitro. Accordingly, in this study, we surgically induced HI in rats by femoral artery resection (FAR). Fifteen days of ischemia resulted in significant βAR down-regulation that was paralleled by an approximately 2-fold increase in GRK2 levels in the ischemic muscle. Importantly, in vivo gene transfer of the βARKct in the hindlimb of rats at the time of FAR resulted in a marked improvement of hindlimb perfusion, with increased capillary and βAR density in the ischemic muscle, compared with control groups. The effect of βARKct expression was also assessed in vitro in cultured ECs. Interestingly, ECs expressing the βARKct fenoterol, a β2AR-agonist, induced enhanced β2AR proangiogenic signaling and increased EC function. Our results suggest that βARKct gene therapy and subsequent GRK2 inhibition promotes angiogenesis in a model of HI by preventing ischemia-induced β2AR down-regulation.

  19. Palmitoylethanolamide inhibits glutamate release in rat cerebrocortical nerve terminals.

    PubMed

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wu, Chia-Chan; Huang, Shu-Kuei; Wang, Su-Jane

    2015-03-11

    The effect of palmitoylethanolamide (PEA), an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated. PEA inhibited the Ca²⁺-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca²⁺ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Ca(v)2.1 (P/Q-type) channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca²⁺ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca²⁺ influx mediated by Ca(v)2.1 (P/Q-type) channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  20. How is the cytoplasmic calcium concentration controlled in nerve terminals?

    PubMed

    Blaustein, M P; McGraw, C F; Somlyo, A V; Schweitzer, E S

    1980-09-01

    1. The ability of intraterminal organelles to sequester calcium and buffer the cytoplasmic free Ca2+ concentration ([Ca2+]i) has been investigated in isolated mammalian presynaptic nerve terminals (synaptosomes). A combination of biochemical and morphological methods has been used. 2. When the plasmalemma of synaptosomes is disrupted by osmotic shock or saponin, Ca from the medium can be sequestered by two types of intraterminal organelles in the presence of ATP. 2. Typical mitochondrial poisons (e.g., oligomycin, azide and 2,4-dinitrophenol) block the Ca uptake into one type of organelle (mitochondria); the second type of organelle, which has a higher affinity for Ca (half-saturation congruent to 0.35 microM Ca2+) is spared by the mitochondrial poisons. 4. When the "leaky" synaptosomes are incubated in media containing oxalate, and then fixed and prepared for electron microscopy, electron-dense deposits are observed in the intraterminal mitochondria and smooth endoplasmic reticulum (SER). Mitochondrial poisons block the formation of the deposits in the mitochondria, but spare the SER. 5. X-ray microprobe analysis demonstrates that these deposits contain Ca. 6. Experiments with the Ca-sensitive metallochromic indicator, arsenazo III, demonstrate that the intraterminal organelles in the "leaky" synaptosomes can buffer Ca2+ in the medium to below 5 X 10(-7) M. With small (physiological) Ca loads, the Ca2+ is effectively buffered (to < 5 X 10(-7) M) even in the presence of mitochondrial poisons. 7. The data indicate that the SER in presynaptic terminals may play an important role in helping to buffer the Ca that normally enters during neuronal activity.

  1. The effects of inorganic particles of lunar soil simulant on brain nerve terminals

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Sivko, Roman; Borisov, Arseniy

    2012-07-01

    The health effects from lunar soil exposure are almost completely unknown, whereas the observations suggest that it can be deleterious to human physiology. It is important that the components of lunar soil may be internalized with lipid fractions of the lung epithelium, which in turn may help ions to overcome the blood-brain barrier. The study focused on the effects of JSC-1a Lunar Soil Simulant (LSS) (Orbital Technologies Corporation, Madison, USA) on rat brain nerve terminals (synaptosomes). We revealed that brain nerve terminals were not indifferent to the exposure to LSS inorganic particles. Using Zetasizer Nanosystem (Malvern Instruments) with helium-neon laser for dynamic light scattering (DLS), the synaptosomal size before and after the addition of LSS was measured and the binding of LSS inorganic particles to nerve terminals was demonstrated. Using potential-sensitive fluorescent dye rhodamine 6G, we showed that LSS inorganic particles did not influence the potential of the plasma membrane of nerve terminals. Acidification of synaptic vesicles of nerve terminals did not change in the presence of LSS inorganic particles that was revealed with pH-sensitive fluorescent dye acridine orange. However, LSS inorganic particles influenced accumulation of glutamate, the main excitatory neurotransmitter in the CNS, by nerve terminals. Thus, we report that inorganic particles of LSS influence accumulation of glutamate in brain nerve terminals and this fact may have harmful consequences to human physiology, in particular glutamate homeostasis in the mammalian CNS.

  2. Structure/Function assessment of synapses at motor nerve terminals

    PubMed Central

    Johnstone, A. F. M.; Viele, K.; Cooper, R. L.

    2010-01-01

    The release of transmitter at neuromuscular junctions (NMJ) of the opener muscle in crayfish is quantal in nature. This NMJ offers the advantage of being able to record quantal events at specific visually identified release sites, thus allowing measurement of the physiological parameters of vesicle release and its response to be directly correlated with synaptic structure. These experiments take advantage of areas between the varicosities on the nerve terminal that we define as “stems”. Stems were chosen as the region to study because of their low synaptic output due to fewer synaptic sites. Through 3-D reconstruction from hundreds of serial sections, obtained by transmission electron microscopy (TEM), at a site in which focal macropatch recordings were obtained, the number of synapses and AZs are revealed. Thus, physiological profiles with various stimulation conditions can be assessed in regards to direct synaptic structure. Here we used the properties of the quantal shape to determine if distinct subsets of quantal signatures existed and if differences in the distributions are present depending on the frequency of stimulation. Such a quantal signature could come about by parameters of area, rise time, peak amplitude, latency and tau decay. In this study, it is shown that even at defined sites on the stem, with few active zones, synaptic transmission is still complex and the quantal responses appear to be variable even for a given synapse over time. In this study we could not identify a quantal signature for the conditions utilized. PMID:20730805

  3. Effects of brevetoxin-B on motor nerve terminals of mouse skeletal muscle.

    PubMed Central

    Tsai, M. C.; Chen, M. L.

    1991-01-01

    1. The effects of brevetoxin-B, a red tide toxin, on motor nerve terminal activity were assessed on mouse triangularis sterni nerve-muscle preparations. The perineural waveforms were recorded with extracellular electrodes placed in the perineural sheaths of motor nerves. 2. At 0.11 microM, brevetoxin-B increased the components of waveforms associated with sodium and potassium currents while it decreased the calcium activated potassium current and the slow calcium current of the nerve terminal. The fast calcium current and slow potassium current were not affected. 3. At 1.11 microM, brevetoxin-B decreased all of the components of waveforms associated with sodium, potassium and calcium currents. 4. It is concluded that brevetoxin-B affects sodium, potassium as well as calcium currents in the nerve terminal. The effects may contribute to its pharmacological actions on synaptic transmission. PMID:1652340

  4. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles.

    PubMed Central

    Weihe, E; Tao-Cheng, J H; Schäfer, M K; Erickson, J D; Eiden, L E

    1996-01-01

    Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8622973

  5. [Peculiarities of synaptic vesicle recycling in frog and mouse motor nerve terminals].

    PubMed

    Zefirov, A L; Zakharov, A V; Mukhamedzianov, R D; Petrov, A M

    2008-01-01

    Using electrophysiology and fluorescence microscopy (dye FM1-43), comparative study of neurotransmitter secretion, synaptic vesicle exo-endocytosis, and recycling has been carried out in frog and mouse motor nerve terminals during a long strong stimulation (3 min; 20 imp/s). The obtained data have revealed three synaptic vesicle pools and two recycling ways existing on motor nerve terminals. The strong stimulation induced consecutive depletion of readily releasable, mobilized, and reserve vesicle pools of frog nerve terminals. The exocytosis rate exceeded the endocytosis rate; predominant was the slow synaptic vesicle recycling that replenished the reserve pool. In mouse nerve endings, vesicles of the readily releasable and mobilized pools were only exocytosed, the pools being replenished by fast recycling. At the same time, exo- and endocytosis occurred nearly in parallel and vesicles of the reserve pool did not participate in the neurotransmitter secretion. In is suggested that evolution of motor nerve terminals was directed to a decrease of the vesicle pool size, economic spending, and effective reuse of synaptic vesicles. This is achieved by an increase of endocytosis and recycling rates. These features can provide a long maintenance of a quite level of neurotransmitter secretion in nerve terminals of homoiothermal animals to preserve reliability of synaptic transmission during the high-frequency activity.

  6. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse.

    PubMed

    Tanabe, Mitsuo; Takasu, Keiko; Kasuya, Noriyo; Shimizu, Shinobu; Honda, Motoko; Ono, Hideki

    2005-03-01

    1. To gain further insight into the mechanisms underlying the antihyperalgesic and antiallodynic actions of gabapentin, a chronic pain model was prepared by partially ligating the sciatic nerve in mice. The mice then received systemic or local injections of gabapentin combined with either central noradrenaline (NA) depletion by 6-hydroxydopamine (6-OHDA) or alpha-adrenergic receptor blockade. 2. Intraperitoneally (i.p.) administered gabapentin produced antihyperalgesic and antiallodynic effects that were manifested by elevation of the withdrawal threshold to a thermal (plantar test) or mechanical (von Frey test) stimulus, respectively. 3. Similar effects were obtained in both the plantar and von Frey tests when gabapentin was injected intracerebroventricularly (i.c.v.) or intrathecally (i.t.), suggesting that it acts at both supraspinal and spinal loci. This novel supraspinal analgesic action of gabapentin was only obtained in ligated neuropathic mice, and gabapentin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. 4. In mice in which central NA levels were depleted by 6-OHDA, the antihyperalgesic and antiallodynic effects of i.p. and i.c.v. gabapentin were strongly suppressed. 5. The antihyperalgesic and antiallodynic effects of systemic gabapentin were reduced by both systemic and i.t. administration of yohimbine, an alpha2-adrenergic receptor antagonist. By contrast, prazosin (i.p. or i.t.), an alpha1-adrenergic receptor antagonist, did not alter the effects of gabapentin. 6. It was concluded that the antihyperalgesic and antiallodynic effects of gabapentin are mediated substantially by the descending noradrenergic system, resulting in the activation of spinal alpha2-adrenergic receptors.

  7. Interaction of nanoparticles of ferric oxide with brain nerve terminals and blood platelets

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Sivko, Roman; Borisov, Arseniy

    2012-07-01

    Nanoparticles of ferric oxide are the components of Lunar and Martian soil simulants. The observations suggest that exposure to Lunar soli simulant can be deleterious to human physiology and the components of lunar soil may be internalized by lung epithelium and may overcome the blood-brain barrier. The study focused on the effects of nanoparticles of ferric oxide on the functional state of rat brain nerve terminals (synaptosomes) and rabbit blood platelets. Using photon correlation spectroscopy, we demonstrated the binding of nanoparticles of ferric oxide with nerve terminals and platelets. Nanoparticles did not depolarize the plasma membrane of nerve terminals and platelets that was shown by fluorimetry with potential-sensitive fluorescent dye rhodamine 6G. Using pH-sensitive fluorescent dye acridine orange, we revealed that the acidification of synaptic vesicles of nerve terminals and secretory granules of platelets did not change in the presence of nanoparticles. The initial velocity of uptake of excitatory neurotransmitter glutamate was not influenced by nanoparticles of ferric oxide, whereas glutamate binding to nerve terminals was altered. Thus, it was suggested that nanoparticles of ferric oxide might disturb glutamate transport in the mammalian CNS.

  8. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals

    PubMed Central

    Fassio, Anna; Fadda, Manuela; Benfenati, Fabio

    2016-01-01

    The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission. PMID:27242505

  9. Expanded Terminal Fields of Gustatory Nerves Accompany Embryonic BDNF Overexpression in Mouse Oral Epithelia

    PubMed Central

    Sun, Chengsan; Dayal, Arjun

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132

  10. Chorda Tympani Nerve Terminal Field Maturation and Maintenance Is Severely Altered Following Changes To Gustatory Nerve Input to the Nucleus of the Solitary Tract

    PubMed Central

    Dudgeon, Sara L.; Hill, David L.

    2011-01-01

    Neural competition among multiple inputs can affect the refinement and maintenance of terminal fields in sensory systems. In the rat gustatory system, the chorda tympani, greater superficial petrosal, and glossopharyngeal nerves have distinct but overlapping terminal fields in the first central relay, the nucleus of the solitary tract (NTS). This overlap is largest at early postnatal ages followed by a significant refinement and pruning of the fields over a three-week period, suggesting that competitive mechanisms underlie the pruning. Here, we manipulated the putative competitive interactions among the three nerves by sectioning the greater superficial petrosal and glossopharyngeal nerves at postnatal day 15 (P15), P25, or at adulthood, while leaving the chorda tympani nerve intact. The terminal field of the chorda tympani nerve was assessed 35 days following nerve sections, a period before the sectioned nerves functionally regenerated. Regardless of the age when the nerves were cut, the chorda tympani nerve terminal field expanded to a volume four times larger than sham controls. Terminal field density measurements revealed that the expanded terminal field was similar to P15 control rats. Thus, it appears that the chorda tympani nerve terminal field defaults to its early postnatal field size and shape when the nerves with overlapping fields are cut, and this anatomical plasticity is retained into adulthood. These findings not only demonstrate the dramatic and lifelong plasticity in the central gustatory system, but also suggest that corresponding changes in functional and taste-related behaviors will accompany injury-induced changes in brainstem circuits. PMID:21613473

  11. Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals.

    PubMed Central

    Molgó, J.; Comella, J. X.; Legrand, A. M.

    1990-01-01

    1. Ciguatoxin (CTX), a marine toxin produced by the benthic dinoflagellate Gambierdiscus toxicus, is responsible for a complex endemic disease in man known as ciguatera fish poisoning. In the present study we have investigated the effects of purified CTX extracted for Gymnothorax javanicus moray-eel liver on frog isolated neuromuscular preparations with conventional electrophysiological techniques. 2. CTX (1-2.5 nM) applied to cutaneous pectoris nerve-muscle preparations induced, after a short delay, spontaneous fibrillations of the muscle fibres that could be suppressed with 1 microM tetrodotoxin (TTX) or by formamide to uncouple excitation-contraction. 3. In preparations treated with formamide, CTX (1-2.5 nM) caused either spontaneous or repetitive muscle action potentials (up to frequencies of 60-100 Hz) in response to a single nerve stimulus. Recordings performed at extrajunctional regions of the muscle membrane revealed that during the repetitive firing a prolongation of the repolarizing phase of the action potential occurred. At junctional sites the repetitive action potentials were triggered by repetitive endplate potentials (e.p.ps). 4. CTX (2.5 nM) caused a TTX-sensitive depolarization of the muscle membrane. 5. In junctions equilibrated in solutions containing high Mg2+ + low Ca2+, addition of CTX (1.5 nM) first induced an average increase of 239 +/- 36% in the mean quantal content of e.p.ps. Subsequently CTX reduced and finally blocked nerve-evoked transmitter release irreversibly. 6. CTX (1.5-2.5 nM) increased the frequency of miniature endplate potentials (m.e.p.ps) in junctions bathed either in normal Ringer, low Ca2(+)-high Mg2+ medium or in a nominally Ca2(+)-free solution containing EGTA.2+ Extensive washing with toxin-free solutions did not reverse the effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1972891

  12. Sodium channels in presynaptic nerve terminals. Regulation by neurotoxins

    PubMed Central

    1980-01-01

    Regulation of Na+ channels by neurotoxins has been studied in pinched- off nerve endings (synaptosomes) from rat brain. Activation of Na+ channels by the steroid batrachotoxin and by the alkaloid veratridine resulted in an increase in the rate of influx of 22Na into the synaptosomes. In the presence of 145 mM Na+, these agents also depolarized the synaptosomes, as indicated by increased fluorescence in the presence of a voltage-sensitive oxacarbocyanine dye [diO-C5(3)]. Polypeptide neurotoxins from the scorpion Leiurus quinquestriatus and from the sea anemone Anthopleura xanthogrammica potentiated the stimulatory effects of batrachotoxin and veratridine on the influx of 22Na into synaptosomes. Saxitoxin and tetrodotoxin blocked the stimulatory effects of batrachotoxin and veratridine, both in the presence and absence of the polypeptide toxins, but did not affect control 22Na influx or resting membrane potential. A three-state model for Na+ channel operation can account for the effects of these neurotoxins on Na+ channels as determined both by Na+ flux measurements in vitro and by electrophysiological experiments in intact nerve and muscle. PMID:6252277

  13. Autoregulation of neuromuscular transmission by nerve terminals. Annual report, 1 July 1983-1 July 1984

    SciTech Connect

    Bierkamper, G.G.

    1984-09-01

    The objective of this project is to investigate three mechanisms through which acetycholine (ACh) release may be modulated prejunctionally at the motor nerve terminal of skeletal muscle: (1) prejunctional cholinoceptor regulation of ACh release, (2) modulation of ACh release through preconditioning patterns of nerve stimulation, and (3) precursor control of ACh release. Neuromuscular transmission has been assessed in the vascular perfused rat phrenic nerve-diaphragm preparation (VPRH) by measuring the release of ACh directly by radioenzymatic assay or by chemiluminescence assay, and indirectly by intracellular recordings and by force of contradiction (FC) measurements. Additional experiments have been done on rat sciatic nerve in order to examine the axonal transport of nicotinic binding sites. The mouse hemidiahragm preparation has been used to study antidromic activity (backfiring) in the phrenic nerve in the presence of an anticholinesterase agent. The data resulting from the project support the concept that the nerve terminal possesses local mechanism for modulating ACh release. Attempts have been made to understand the normal function of these mechanisms and then to explore their activity under demanding physological conditions, drug exposure, and in the presence of acetylcholinesterase (AChE) inhibitors.

  14. Balance of calcineurin Aα and CDK5 activities sets release probability at nerve terminals

    PubMed Central

    Kim, Sung Hyun; Ryan, Timothy A.

    2013-01-01

    The control of neurotransmitter release at nerve terminals is of profound importance for neurological function and provides a powerful control system in neural networks. We show that the balance of enzymatic activities of the alpha isoform of the phosphatase calcineurin (CNAα) and the kinase CDK5 has a dramatic influence over single AP-driven exocytosis at nerve terminals. Acute or chronic loss of these enzymatic activities results in a 7-fold impact on single action potential-driven exocytosis. We demonstrate that this control is mediated almost entirely through Cav2.2 (N-type) voltage-gated calcium channels as blocking these channels with a peptide toxin eliminates modulation by these enzymes. We found that a fraction of nerve terminals are kept in a presynaptically silent state with no measurable Ca2+ influx driven by single AP stimuli due to the balance of CNAα and CDK5 activities as blockade of either CNAα or CDK5 activity changes the proportion of presynaptically silent nerve terminals. Thus CNAα and CDK5 enzymatic activities are key determinants of release probability. PMID:23699505

  15. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise.

    PubMed

    Holwerda, Seth W; Restaino, Robert M; Fadel, Paul J

    2015-03-01

    Blood flow to active skeletal muscle increases markedly during dynamic exercise. However, despite the massive capacity of skeletal muscle vasculature to dilate, arterial blood pressure is well maintained. Sympathetic nerve activity is elevated with increased intensity of dynamic exercise, and is essential for redistribution of cardiac output to active skeletal muscle and maintenance of arterial blood pressure. In addition, aside from the sympathetic nervous system, evidence from human studies is now emerging that supports roles for non-adrenergic vasoconstrictor pathways that become active during exercise and contribute to vasoconstriction in active skeletal muscle. Neuropeptide Y and adenosine triphosphate are neurotransmitters that are co-released with norepinephrine from sympathetic nerve terminals capable of producing vasoconstriction. Likewise, plasma concentrations of arginine vasopressin, angiotensin II (Ang II) and endothelin-1 (ET-1) increase during dynamic exercise, particularly at higher intensities. Ang II and ET-1 have both been shown to be important vasoconstrictor pathways for restraint of blood flow in active skeletal muscle and the maintenance of arterial blood pressure during exercise. Indeed, although both adrenergic and non-adrenergic vasoconstriction can be attenuated in exercising muscle with greater intensity of exercise, with the higher volume of blood flow, the active skeletal muscle vasculature remains capable of contributing importantly to the maintenance of blood pressure. In this brief review we provide an update on skeletal muscle blood flow regulation during exercise with an emphasis on adrenergic and non-adrenergic vasoconstrictor pathways and their potential capacity to offset vasodilation and aid in the regulation of blood pressure.

  16. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue.

    PubMed

    Kawashima, M; Imura, K; Sato, I

    2012-05-10

    Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals.

  17. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats

    PubMed Central

    Thang, Loc V.; Demel, Stacie L.; Crawford, Robert; Kaminski, Norbert E.; Swain, Greg M.; Van Rooijen, Nico

    2015-01-01

    We tested the hypothesis that vascular macrophage infiltration and O2− release impairs sympathetic nerve α2-adrenergic autoreceptor (α2AR) function in mesenteric arteries (MAs) of DOCA-salt hypertensive rats. Male rats were uninephrectomized or sham operated (sham). DOCA pellets were implanted subcutaneously in uninephrectomized rats who were provided high-salt drinking water or high-salt water with apocynin. Sham rats received tap water. Blood pressure was measured using radiotelemetry. Treatment of sham and DOCA-salt rats with liposome-encapsulated clodronate was used to deplete macrophages. After 3–5, 10–13, and 18–21 days of DOCA-salt treatment, MAs and peritoneal fluid were harvested from euthanized rats. Norepinephrine (NE) release from periarterial sympathetic nerves was measured in vitro using amperometry with microelectrodes. Macrophage infiltration into MAs as well as TNF-α and p22phox were measured using immunohistochemistry. Peritoneal macrophage activation was measured by flow cytometry. O2− was measured using dihydroethidium staining. Hypertension developed over 28 days, and apocynin reduced blood pressure on days 18–21. O2− and macrophage infiltration were greater in DOCA-salt MAs compared with sham MAs after day 10. Peritoneal macrophage activation occurred after day 10 in DOCA-salt rats. Macrophages expressing TNF-α and p22phox were localized near sympathetic nerves. Impaired α2AR function and increased NE release from sympathetic nerves occurred in MAs from DOCA-salt rats after day 18. Macrophage depletion reduced blood pressure and vascular O2− while restoring α2AR function in DOCA-salt rats. Macrophage infiltration into the vascular adventitia contributes to increased blood pressure in DOCA-salt rats by releasing O2−, which disrupts α2AR function, causing enhanced NE release from sympathetic nerves. PMID:26320034

  18. Adrenergically mediated intrapancreatic control of the glucagon response to glucopenia in the isolated rat pancreas.

    PubMed Central

    Hisatomi, A; Maruyama, H; Orci, L; Vasko, M; Unger, R H

    1985-01-01

    Alpha adrenergic blockade with phentolamine (10 microM) reduces the glucagon response to severe glucopenia (from 150 to 25 mg/dl) to 22% of the control values in the isolated perfused rat pancreas. Propranolol (10 microM) had no significant effect. Neither alpha nor beta adrenergic blockade reduced the magnitude of glucopenic suppression of insulin secretion, but phentolamine increased insulin levels before and during glucopenia. The pattern of somatostatin secretion in these experiments resembled that of insulin. Depletion of norepinephrine from sympathetic nerve endings by pretreatment with 6-hydroxydopamine lowered the pancreatic norepinephrine content to less than 20% of control values and reduced the glucagon response to glucopenia to 69% of the controls. Combined alpha and beta adrenergic blockade during less severe glucopenia (from 120 to 60 mg/dl) reduced the glucagon response to 21% of controls. However, slight glucopenia (from 100 to 80 mg/dl), which elicited only 11% increase in glucagon in the control experiments, was not altered significantly by combined alpha and beta adrenergic blockade. Morphologic studies of adrenergic nerve terminals labeled with [3H]norepinephrine revealed associations with alpha cells. It is concluded that in the isolated rat pancreas adrenergic mediation accounts for most of the glucagon but not insulin response to glucopenia. It is controlled within the pancreas itself, possibly through a direct enhancement by glucopenia of norepinephrine release from nerve endings. Images PMID:2857731

  19. Size-related differences in the branching pattern of the motor nerve terminals in triangularis sterni muscle of the mouse.

    PubMed

    Tomasi, J; Fenol, R; Santafe, M; Mayayo, E

    1989-01-01

    A light microscopy morphometric study was performed in singly innervated synaptic areas of the triangularis sterni muscle of the normal adult Swiss mouse. Investigating mechanisms of the motor nerve growth control, we tested the hypothesis that significant differences in the nerve terminal branching pattern can be detected between different populations of nerve endings classified according to their arborization complexity or size. The main observations of this morphometric study are first, that the mean segment length of the terminal arborization between branch points behaves as an independent variable from the remaining parameters; the mean value of this parameter did not change in nerve endings of differing size and complexity. Secondly, the increase in size of the nerve endings is accompanied by a significant reduction in the mean length of the distal free-end segments. Results are discussed in the context of the possible regulatory mechanisms governing nerve terminal growth and remodelling.

  20. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus

    PubMed Central

    2014-01-01

    Background Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Three distinct nuclei within mouse thalamus receive retinal input, the dorsal lateral geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN), and the intergeniculate nucleus (IGL). However, in each of these nuclei, retinal inputs are vastly outnumbered by nonretinal inputs that arise from cortical and subcortical sources. Although retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus. Results Immunolabeling specific subsets of synapses with antibodies against vesicle-associated neurotransmitter transporters or neurotransmitter synthesizing enzymes revealed significant differences in the composition, distribution and morphology of nonretinal terminals in dLGN, vLGN and IGL. For example, inhibitory terminals are more densely packed in vLGN, and cortical terminals are more densely distributed in dLGN. Overall, synaptic terminal density appears least dense in IGL. Similar nuclei-specific differences were observed for retinal terminals using immunolabeling, genetic labeling, axonal tracing and serial block face scanning electron microscopy: retinal terminals are smaller, less morphologically complex, and more densely distributed in vLGN than in dLGN. Since glutamatergic terminal size often correlates with synaptic function, we used in vitro whole cell recordings and optic tract stimulation in acutely prepared thalamic slices to reveal that excitatory postsynaptic currents (EPSCs) are considerably smaller in vLGN and show distinct responses following paired stimuli. Finally, anterograde labeling of retinal terminals throughout early postnatal development revealed that anatomical differences in retinal nerve terminal structure are not observable as

  1. Effects of Latrodectus spider venoms on sensory and motor nerve terminals of muscle spindles.

    PubMed

    Queiroz, L S; Duchen, L W

    1982-08-23

    The effects of the venoms of the spiders Latrodectus mactans tredecimguttatus (black widow) and Latrodectus mactans hasselti (red back) on sensory nerve terminals in muscle spindles were studied in the mouse. A sublethal dose of venom was injected into tibialis anterior and extensor digitorum longus muscles of one leg. After survival from 30 minutes to 6 weeks muscles were examined in serial paraffin sections impregnated with silver or by electron microscopy. Sensory endings became swollen, some within 30 minutes, while over the next few hours there was progressive degeneration of annulospiral endings. By 24 hours every spindle identified by light or electron microscopy was devoid of sensory terminals. Degenerated nerve endings were taken up into the sarcoplasm of intrafusal muscle fibres. Regeneration of sensory axons began within 24 hours, new incomplete spirals were formed by 5 days and by 1 week annulospiral endings were almost all normal in appearance. Intrafusal motor terminals underwent similar acute degenerative and regenerative changes. These experiments show that intrafusal sensory and motor terminals are equally affected by Latrodectus venoms. Sensory nerve fibres possess a capacity for regeneration equal to that of motor fibres and reinnervate intrafusal muscle fibres close to their original sites of innervation.

  2. Control and Plasticity of the Presynaptic Action Potential Waveform at Small CNS Nerve Terminals

    PubMed Central

    Hoppa, Michael B.; Gouzer, Geraldine; Armbruster, Moritz; Ryan, Timothy A.

    2014-01-01

    SUMMARY The steep dependence of exocytosis on Ca2+ entry at nerve terminals implies that voltage control of both Ca2+ channel opening and the driving force for Ca2+ entry are powerful levers in sculpting synaptic efficacy. Using fast, genetically encoded voltage indicators in dissociated primary neurons, we show that at small nerve terminals K+ channels constrain the peak voltage of the presynaptic action potential (APSYN) to values much lower than those at cell somas. This key APSYN property additionally shows adaptive plasticity: manipulations that increase presynaptic Ca2+ channel abundance and release probability result in a commensurate lowering of the APSYN peak and narrowing of the waveform, while manipulations that decrease presynaptic Ca2+ channel abundance do the opposite. This modulation is eliminated upon blockade of Kv3.1 and Kv1 channels. Our studies thus reveal that adaptive plasticity in the APSYN waveform serves as an important regulator of synaptic function. PMID:25447742

  3. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals.

    PubMed

    Iturriaga, Rodrigo; Alcayaga, Julio

    2004-12-01

    The carotid body (CB) is the main arterial chemoreceptor. The most accepted model of arterial chemoreception postulates that carotid body glomus (type I) cells are the primary receptors, which are synaptically connected to the nerve terminals of petrosal ganglion (PG) neurons. In response to natural stimuli, glomus cells are expected to release one (or more) transmitter(s) which, acting on the peripheral nerve terminals of processes from chemosensory petrosal neurons, increases the sensory discharge. Among several molecules present in glomus cells, acetylcholine and adenosine nucleotides and dopamine are considered as excitatory transmitter candidates. In this review, we will examine recent evidence supporting the notion that acetylcholine and adenosine 5'-triphosphate are the main excitatory transmitters in the cat and rat carotid bodies. On the other hand, dopamine may act as a modulator of the chemoreception process in the cat, but as an excitatory transmitter in the rabbit carotid body.

  4. Vitamin B2 inhibits glutamate release from rat cerebrocortical nerve terminals.

    PubMed

    Wang, Su-Jane; Wu, Wen-Mein; Yang, Feili-Lo; Hsu, Guoo-Shyng Wang; Huang, Chia-Yu

    2008-08-27

    We examined the effect of riboflavin, vitamin B2, on the release of endogenous glutamate from nerve terminals purified from rat cerebral cortex. The release of glutamate evoked by 4-aminopyridine was inhibited by riboflavin. Further experiments indicated that riboflavin-mediated inhibition of glutamate release (i) results from a reduction of vesicular exocytosis, not from an inhibition of nonvesicular release; (ii) is associated with a decrease in presynaptic N-type and P/Q-type voltage-dependent Ca channel activity. These findings are the first to suggest that, in rat cerebrocortical nerve terminals, riboflavin suppresses voltage-dependent Ca channel activity and in so doing inhibits evoked glutamate release. This finding may explain the neuroprotective effects of vitamin B2 against neurotoxicity.

  5. Lacosamide diminishes dryness-induced hyperexcitability of corneal cold sensitive nerve terminals.

    PubMed

    Kovács, Illés; Dienes, Lóránt; Perényi, Kristóf; Quirce, Susana; Luna, Carolina; Mizerska, Kamila; Acosta, M Carmen; Belmonte, Carlos; Gallar, Juana

    2016-09-15

    Lacosamide is an anti-epileptic drug that is also used for the treatment of painful diabetic neuropathy acting through voltage-gated sodium channels. The aim of this work was to evaluate the effects of acute application of lacosamide on the electrical activity of corneal cold nerve terminals in lacrimo-deficient guinea pigs. Four weeks after unilateral surgical removal of the main lachrimal gland in guinea pigs, corneas were excised and superfused in vitro at 34°C for extracellular electrophysiological recording of nerve terminal impulse activity of cold thermosensitive nerve terminals. The characteristics of the spontaneous and the stimulus-evoked (cooling ramps from 34°C to 15°C) activity before and in presence of lacosamide 100µM and lidocaine 100µM were compared. Cold nerve terminals (n=34) recorded from dry eye corneas showed significantly enhanced spontaneous activity (8.0±1.1 vs. 5.2±0.7imp/s; P<0.05) and cold response (21.2±1.7 vs. 16.8±1.3imp/s; P<0.05) as well as reduced cold threshold (1.5±0.1 vs. 2.8±0.2 Δ°C; P<0.05) to cooling ramps compared to terminals (n=58) from control animals. Both lacosamide and lidocaine decreased spontaneous activity and peak response to cooling ramps significantly (P<0.05). Temperature threshold was increased by the addition of lidocaine (P<0.05) but not lacosamide (P>0.05) to the irrigation fluid. In summary, the application of lacosamide results in a significant decrease of the augmented spontaneous activity and responsiveness to cold of corneal sensory nerves from tear-deficient animals. Based on these promising results we speculate that lacosamide might be used to reduce the hyperexcitability of corneal cold receptors caused by prolonged ocular surface dryness due to hyposecretory or evaporative dry eye disease.

  6. Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals.

    PubMed Central

    Jackson, M B; Zhang, S J

    1995-01-01

    1. A theoretical model was developed to investigate action potential propagation in posterior pituitary nerve terminals. This model was then used to evaluate the efficacy of depolarizing and shunting GABA responses on action potential propagation. 2. Experimental data obtained from the posterior pituitary with patch clamp techniques were used to derive empirical expressions for the voltage and time dependence of the nerve terminal Na+ and K+ channels. The essential structure employed here was based on anatomical and cable data from the posterior pituitary, and consisted of a long cylindrical axon (diameter, 0.5 mm) with a large spherical swelling (diameter, 4-21 mm) in the middle. 3. In the absence of an inhibitory conductance, simulated action potentials propagated with high fidelity through the nerve terminal. Swellings could block propagation, but only when sizes exceeded those observed in the posterior pituitary. Adding axonal branches reduced the critical size only slightly. These results suggested that action potentials invade the entire posterior pituitary nerve terminal in the absence of inhibition or depression. 4. The addition of inhibitory conductance to a swelling caused simulated action potentials to fail at the swelling. Depolarizing inhibitory conductances were 1.6 times more effective than shunting inhibitory conductances in blocking propagation. 5. Inhibitory conductances within the range of experimentally observed magnitudes and localized to swellings in the observed range of sizes were too weak to block simulated action potentials. However, twofold enhancement of GABA responses by neurosteroid resulted in currents strong enough to block propagation in realistic swelling sizes. 6. GABA could block simulated propagation without neurosteroid enhancement provided that GABA was present throughout a region in the order of a few hundred micrometres. For this widespread inhibition depolarizing conductance was 2.2 times more effective than shunting

  7. cap alpha. -2 adrenergic receptor: a radiohistochemical study

    SciTech Connect

    Unnerstall, J.R.

    1984-01-01

    ..cap alpha..-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant ..cap alpha..-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the ..cap alpha..-2 receptors, labeled with the agonist (/sup 3/H)para-aminoclonidine, verified the concept that ..cap alpha..-2 receptors are closely associated with adrenergic nerve terminals and that ..cap alpha..-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since ..cap alpha..-2 agonists can influence sympathetic outflow, ..cap alpha..-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic ..cap alpha..-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of (/sup 3/H)rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic ..cap alpha..-2 antagonist (/sup 3/H)RX781094 also binds to ..cap alpha..-2 receptors with high-affinity. Further, the distribution of (/sup 3/H)RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using (/sup 3/H)para-aminoclonidine.

  8. The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration.

    PubMed

    Ladera, Carolina; Godino, María Del Carmen; Martín, Ricardo; Luján, Rafael; Shigemoto, Ryuichi; Ciruela, Francisco; Torres, Magdalena; Sánchez-Prieto, José

    2007-12-01

    Excitatory synaptic transmission is inhibited by G protein coupled receptors, including the adenosine A(1), GABA(B), and metabotropic glutamate receptor 7. These receptors are present in nerve terminals where they reduce the release of glutamate through activating signaling pathways negatively coupled to Ca(2+) channels and adenylyl cyclase. However, it is not clear whether these receptors operate in distinct subpopulations of nerve terminals or if they are co-expressed in the same nerve terminals, despite the functional consequences that such distributions may have on synaptic transmission. Applying Ca(2+) imaging and immunocytochemistry, we show that these three G protein coupled receptors coexist in a subpopulation of cerebrocortical nerve terminals. The three receptors share an intracellular signaling pathway through which their inhibitory responses are integrated and coactivation of these receptors produced an integrated response. Indeed, this response was highly variable, from a synergistic response at subthreshold agonist concentrations to an occluded response at high agonist concentrations. The presence of multiple receptors in a nerve terminal could be responsible for the physiological effects of neurotransmitter spillover from neighboring synapses or alternatively, the co-release of transmitters by the same nerve terminal.

  9. Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells

    NASA Technical Reports Server (NTRS)

    Wu, L. C.; D'Amelio, F.; Fox, R. A.; Polyakov, I.; Daunton, N. G.

    1997-01-01

    The present report describes a desktop computer-based method for the quantitative assessment of the area occupied by immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the somatosensory cortex outlined by GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called 'AND'ing produced an image with the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined threshold of 128. Thus, the terminal area appears in black against a white background. This methodology provides an objective means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in light microscopic sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided.

  10. Repression of inactive motor nerve terminals in partially denervated rat muscle after regeneration of active motor axons.

    PubMed Central

    Ribchester, R R; Taxt, T

    1984-01-01

    The fourth deep lumbrical muscle in the hind foot of adult rats was partially denervated by crushing the sural nerve (s.n.). The denervated muscle fibres became completely reinnervated by sprouts from lateral plantar nerve (l.p.n.) motor axons. By about 20 days after the nerve crush, s.n. motor axons started to reinnervate the muscle. In control muscles, a small proportion of the muscle fibres--about 2.5% of the muscle per motor unit--was reinnervated by s.n. motor axons over the following 20 days. Hence the regenerating terminals were able to re-establish functional synapses, despite the fact that all the muscle fibres were functionally innervated by l.p.n. terminals. When nerve impulse conduction in the l.p.n. was blocked with tetrodotoxin for up to 2 weeks, starting from the time when s.n. axons returned to the muscle, s.n. motor axons retrieved a much larger proportion of the muscle fibres--about 6.5% of the muscle per motor unit. There was a concomitant decrease in the tension produced by the sprouted l.p.n. motor axons. Intracellular recordings showed that many muscle fibres became innervated exclusively by regenerated s.n. motor nerve terminals. Measurements of end-plate potentials suggested that l.p.n. sprouts and the original nerve terminals were eliminated non-selectively. These results suggest that regenerating, active motor nerve terminals have an additional competitive advantage in reinnervating innervated muscles, if the intact terminals are inactive. When the l.p.n. was cut, rather than blocked, extensive reinnervation by the s.n. occurred-about 30% of the muscle per motor unit. This suggests that the absence of an intact nerve terminal in the motor end-plate provides a stronger stimulus than inactivity for synapse formation by regenerating motor axons. PMID:6707966

  11. Remodelling of motor nerve terminals in demyelinating axons of periaxin null mutant mice

    PubMed Central

    Court, Felipe A; Brophy, Peter J; Ribchester, Richard R

    2015-01-01

    Myelin formation around axons increases nerve conduction velocity and regulates phenotypic characteristics of the myelinated axon. In the peripheral nervous system, demyelinating forms of hereditary Charcot-Marie-Tooth (CMT) diseases, due to Schwann-cell intrinsic molecular defects, leads to reduced nerve conduction velocity and changes in the axonal phenotype. Several mouse models of CMT diseases have been generated, allowing the study of consequences of demyelination in peripheral nerve fibres. Nevertheless, the effect of demyelination at the level of the neuromuscular synapse has been largely overlooked. Here we show that in the periaxin knock-out mice, a model of CMT condition, neuromuscular junctions develop profound morphological changes in pre-terminal region of motoraxons. These changes include extensive preterminal branches which originate in demyelinated regions of the nerve fibre and axonal swellings associated with residually-myelinated regions of the fibre. Using intracellular recording from muscle fibres we detected asynchronous failure of action potential transmission at high but not low stimulation frequencies, a phenomenon consistent with branch point failure. Taken together, our morphological and electrophysiological findings suggest that preterminal branching due to segmental demyelination near the neuromuscular synapse in periaxin KO mice may underlie phenotypic disabilities present in this mouse model of CMT disease. These results opens a new avenue of research in order to understand the cellular changes responsible for clinical disabilities in demyelinating conditions. PMID:18205176

  12. Observation of apical part and nerve terminals of human vestibular hair cells.

    PubMed

    Morita, I; Komatsuzaki, A; Kanda, T; Tatsuoka, H; Chiba, T

    1995-01-01

    The human vestibular sensory epithelia of macula utriculi in 3 cases of acoustic neurinoma were examined by conventional and intermediate voltage electron microscopes. The apical part and the nerve terminals of hair cells were studied by means of a computer-aided three-dimensional (3-D) reconstruction technique. The sensory epithelia were fairly well preserved. Most type I and all type II hair cells appeared as those described in the other reports. However, some type I hair cells were incompletely surrounded by nerve calyces and received direct contacts from the efferent nerve endings. These type I hair cells were also innervated by a few neighbouring afferent nerve calyces. The stereocilia and the cuticular plate of type I hair cells differed from those of type II hair cells. The mean diameter of type I hair cell stereocilia was 488 +/- 59 nm and that of type II hair cells was 373 +/- 21 nm. The cuticular plate of type I hair cells resembled a cone and was about several times as thick as that of type II hair cells which was similar to a flat disc.

  13. Spike and Neuropeptide-Dependent Mechanisms Control GnRH Neuron Nerve Terminal Ca(2+) over Diverse Time Scales.

    PubMed

    Iremonger, Karl J; Porteous, Robert; Herbison, Allan E

    2017-03-22

    Fast cell-to-cell communication in the brain is achieved by action potential-dependent synaptic release of neurotransmitters. The fast kinetics of transmitter release are determined by transient Ca(2+) elevations in presynaptic nerve terminals. Neuromodulators have previously been shown to regulate transmitter release by inhibiting presynaptic Ca(2+) influx. Few studies to date have demonstrated the opposite, that is, neuromodulators directly driving presynaptic Ca(2+) rises and increases in nerve terminal excitability. Here we use GCaMP Ca(2+) imaging in brain slices from mice to address how nerve terminal Ca(2+) is controlled in gonadotropin-releasing hormone (GnRH) neurons via action potentials and neuromodulators. Single spikes and bursts of action potentials evoked fast, voltage-gated Ca(2+) channel-dependent Ca(2+) elevations. In contrast, brief exposure to the neuropeptide kisspeptin-evoked long-lasting Ca(2+) plateaus that persisted for tens of minutes. Neuropeptide-mediated Ca(2+) elevations were independent of action potentials, requiring Ca(2+) entry via voltage-gated Ca(2+) channels and transient receptor potential channels in addition to release from intracellular store mechanisms. Together, these data reveal that neuromodulators can exert powerful and long-lasting regulation of nerve terminal Ca(2+) independently from actions at the soma. Thus, GnRH nerve terminal function is controlled over disparate timescales via both classical spike-dependent and nonclassical neuropeptide-dependent mechanisms.SIGNIFICANCE STATEMENT Nerve terminals are highly specialized regions of a neuron where neurotransmitters and neurohormones are released. Many neuroendocrine neurons release neurohormones in long-duration bursts of secretion. To understand how this is achieved, we have performed live Ca(2+) imaging in the nerve terminals of gonadotropin-releasing hormone neurons. We find that bursts of action potentials and local neuropeptide signals are both capable of

  14. Connections of the terminal nerve and the olfactory system in two galeomorph sharks: an experimental study using a carbocyanine dye.

    PubMed

    Yáñez, Julián; Folgueira, Mónica; Köhler, Elisabeth; Martínez, Cristina; Anadón, Ramón

    2011-11-01

    In elasmobranchs the terminal nerve courses separately from the olfactory nerve. This characteristic makes elasmobranchs excellent models to study the anatomy and function of these two systems. Here we study the neural connections of the terminal nerve and olfactory system in two sharks by experimental tracing methods using carbocyanine dyes. The main projections from the terminal nerve system (consisting of three ganglia in Scyliorhinus canicula) course ipsilaterally to the medial septal nucleus and bilaterally to the ventromedial telencephalic pallial region. Minor terminal nerve projections were also traced ipsilaterally to diencephalic and mesencephalic levels. With regard to the olfactory connections, our results show that in sharks, unlike ray-finned fishes, the primary olfactory projections are mainly restricted to the olfactory bulb. We also performed tracer application to the olfactory bulb in order to analyze the possible central neuroanatomical relationship between the projections of the terminal nerve and the olfactory bulb. In these experiments labeled neurons and fibers were observed from telencephalic to caudal mesencephalic regions. However, we observe almost no overlap between the two systems at central levels. The afferent and the putatively efferent connections of the dogfish olfactory bulb are compared with those previously reported in other elasmobranchs. The significance of the extratelencephalic secondary olfactory projections is also discussed in a comparative context.

  15. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    PubMed

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain.

  16. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate.

    PubMed

    Stensrud, Mats Julius; Sogn, Carl Johan; Gundersen, Vidar

    2015-12-15

    There is compelling evidence that glutamate can act as a cotransmitter in the mammalian brain. Interestingly, the third vesicular glutamate transporter (VGLUT3) is primarily found in neurons that were anticipated to be nonglutamatergic. Whereas the function of VGLUT3 in acetylcholinergic and serotoninergic neurons has been elucidated, the role of VGLUT3 in neurons releasing gamma-aminobutyric acid (GABA) is not settled. We have previously shown that VGLUT3 is found together with the vesicular GABA transporter (VIAAT) on synaptic vesicle membranes in the hippocampus. Now we provide novel electron microscopic data from the rat hippocampus suggesting that glutamate is enriched in inhibitory nerve terminals containing VGLUT3 compared to those lacking VGLUT3. The opposite was found for GABA; VGLUT3-positive inhibitory terminals contained lower density of GABA labeling compared to VGLUT3-negative inhibitory terminals. In addition, semiquantitative confocal immunofluorescence showed that N-methyl-D-aspartate (NMDA)-receptor labeling was present more frequently in VGLUT3-positive/VIAAT-positive synapses versus in VGLUT3-negative/VIAAT-positive synapses. Electron microscopic immunogold data further suggest that NMDA receptors are enriched in VGLUT3 containing inhibitory terminals. Our data reveal new chemical characteristics of a subset of GABAergic interneurons in the hippocampus. The analyses suggest that glutamate is coreleased with GABA from hippocampal basket cell-synapses to act on NMDA receptors.

  17. Neuronal porosome - The secretory portal at the nerve terminal: Its structure-function, composition, and reconstitution

    NASA Astrophysics Data System (ADS)

    Jena, Bhanu P.

    2014-09-01

    Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate secretion from cells. Membrane bound secretory vesicles transiently dock and fuse at the cytosolic compartment of the porosome base to expel intravesicular contents to the outside during cell secretion. In the past decade, the structure, isolation, composition, and functional reconstitution of the neuronal porosome complex has been accomplished providing a molecular understanding of its structure-function. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins; compared to the 120 nm nuclear pore complex comprised of over 500 protein molecules composed of 30 different proteins. Being a membrane-associated supramolecular complex has precluded determination of the atomic structure of the porosome. However recent studies using small-angle X-ray solution scattering (SAXS), provide at sub-nanometer resolution, the native 3D structure of the neuronal porosome complex associated with docked synaptic vesicle at the nerve terminal. Additionally, results from the SAXS study and earlier studies using atomic force microscopy, provide the possible molecular mechanism involved in porosome-mediated neurotransmitter release at the nerve terminal.

  18. Effect of potassium channel blockade and alpha 2-adrenoceptor activation on the release of nitric oxide from non-adrenergic non-cholinergic nerves.

    PubMed

    De Man, J G; Boeckxstaens, G E; Herman, A G; Pelckmans, P A

    1994-05-01

    1. Using a superfusion bioassay cascade, we studied the effect of K+ channel blockers and alpha 2-adrenoceptor agents on the release of a transferable factor, previously characterized as nitric oxide (NO) or a nitric oxide-related substance (NO-R), in response to non-adrenergic non-cholinergic (NANC) nerve stimulation in the canine ileocolonic junction (ICJ). 2. The non-selective K+ channel blockers, 4-aminopyridine (4-AP, 50 microM) and tetraethylammonium (TEA, 1 mM) and the more selective blocker of Ca(2+)-activated K+ channels, charybdotoxin (Leiurus quinquestriatus venom (LQV), 0.4 microgram ml-1), significantly enhanced the release of NO-R induced by low frequency stimulation (2-4 Hz). In the presence of 4-AP and TEA, the release of NO-R was nearly abolished by tetrodotoxin (2 microM), and by L-NG-nitroarginine (L-NOARG, 0.1 mM). Relaxations induced by direct injection of exogenous NO (5-50 pmol) or nitroglycerin (GTN, 10-30 pmol) onto the rabbit aortic detector ring were not affected. 3. The alpha 2-adrenoceptor agonist, UK-14,304 (0.3 microM) inhibited the release of NO-R induced by low (2-4 Hz), but not that induced by high (16 Hz), frequency stimulation. This inhibitory effect was completely reversed by the alpha 2-adrenoceptor antagonist, yohimbine (0.3 microM). Neither UK-14,304 nor yohimbine affected the relaxations induced by exogenous NO (5 pmol) or GTN (10 pmol) on the aortic detector ring.3+

  19. The effects of dietary protein restriction on chorda tympani nerve taste responses and terminal field organization.

    PubMed

    Thomas, J E; Hill, D L

    2008-11-19

    Prenatal dietary sodium restriction produces profound developmental effects on rat functional taste responses and formation of neural circuits in the brainstem. Converging evidence indicates that the underlying mechanisms for these effects are related to a compromised nutritional state and not to direct stimulus-receptor interactions. We explored whether early malnourishment produces similar functional and structural effects to those seen following dietary sodium restriction by using a protein deficient, sodium replete diet. To determine if early dietary protein-restriction affects the development of the peripheral gustatory system, multi-fiber neurophysiological recordings were made from the chorda tympani nerve and anterograde track tracing of the chorda tympani nerve into the nucleus of the solitary tract (NTS) was accomplished in rats fed a protein-restricted or a control diet (6% and 20%, respectively). The dietary regimens began on embryonic day 7 and continued until rats were used for neurophysiological recordings (postnatal days (P) 35-50) or for chorda tympani terminal field labeling (P40-50). Responses to a concentration series of NaCl, sodium acetate, KCl, and to 0.50 M sucrose, 0.03 M quinine-HCl, and 0.01 N HCl revealed attenuated responses (30-60%) to sodium-specific stimuli in rats fed the 6% protein diet compared with those fed the 20% protein diet. Responses to all other stimuli were similar between groups. Terminal field volumes were nearly twofold larger in protein-restricted rats compared with controls, with the differences located primarily in the dorsal-caudal zone of the terminal field. These results are similar to the results seen previously in rats fed a sodium-restricted diet throughout pre- and postnatal development, suggesting that dietary sodium- and protein-restriction share similar mechanisms in altering gustatory development.

  20. Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal

    PubMed Central

    Trojanova, Johana; Kulik, Akos; Janacek, Jiri; Kralikova, Michaela; Syka, Josef; Turecek, Rostislav

    2014-01-01

    The physiological functions of glycine receptors (GlyRs) depend on their subcellular locations. In axonal terminals of the central neurons, GlyRs trigger a slow facilitation of presynaptic transmitter release; however, their spatial relationship to the release sites is not known. In this study, we examined the distribution of GlyRs in the rat glutamatergic calyx of Held nerve terminal using high-resolution pre-embedding immunoelectron microscopy. We performed a quantitative analysis of GlyR-associated immunogold (IG) labeling in 3D reconstructed calyceal segments. A variable density of IG particles and their putative accumulations, inferred from the frequency distribution of inter-IG distances, indicated a non-uniform distribution of the receptors in the calyx. Subsequently, increased densities of IG particles were found in calyceal swellings, structures characterized by extensive exocytosis of glutamate. In swellings as well as in larger calyceal stalks, IG particles did not tend to accumulate near the glutamate releasing zones. On the other hand, GlyRs in swellings (but not in stalks) preferentially occupied membrane regions, unconnected to postsynaptic cells and presumably accessible by ambient glycine. Furthermore, the sites with increased GlyR concentrations were found in swellings tightly juxtaposed with GABA/glycinergic nerve endings. Thus, the results support the concept of an indirect mechanism underlying the modulatory effects of calyceal GlyRs, activated by glycine spillover. We also suggest the existence of an activity-dependent mechanism regulating the surface distribution of α homomeric GlyRs in axonal terminals of central neurons. PMID:25339867

  1. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals.

    PubMed Central

    David, C; McPherson, P S; Mundigl, O; de Camilli, P

    1996-01-01

    Amphiphysin, a major autoantigen in paraneoplastic Stiff-Man syndrome, is an SH3 domain-containing neuronal protein, concentrated in nerve terminals. Here, we demonstrate a specific, SH3 domain-mediated, interaction between amphiphysin and dynamin by gel overlay and affinity chromatography. In addition, we show that the two proteins are colocalized in nerve terminals and are coprecipitated from brain extracts consistent with their interactions in situ. We also report that a region of amphiphysin distinct from its SH3 domain mediates its binding to the alpha c subunit of AP2 adaptin, which is also concentrated in nerve terminals. These findings support a role of amphiphysin in synaptic vesicle endocytosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:8552632

  2. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    PubMed

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  3. Patch-clamp Capacitance Measurements and Ca2+ Imaging at Single Nerve Terminals in Retinal Slices

    PubMed Central

    Kim, Mean-Hwan; Vickers, Evan; von Gersdorff, Henrique

    2012-01-01

    embedded in agar (or placed onto a filter paper) and then sliced 20, 23, 18, 9. In this video, we employ the pre-embedding agar technique using goldfish retina. Some of the giant bipolar cell terminals in our slices of goldfish retina are axotomized (axon-cut) during the slicing procedure. This allows us to isolate single presynaptic nerve terminal inputs, because recording from axotomized terminals excludes the signals from the soma-dendritic compartment. Alternatively, one can also record from intact Mb bipolar cells, by recording from terminals attached to axons that have not been cut during the slicing procedure. Overall, use of this experimental protocol will aid in studies of retinal synaptic physiology, microcircuit functional analysis, and synaptic transmission at ribbon synapses. PMID:22297269

  4. Lunar and Martian soil stimulants have different effects on L-[14C]glutamate binding to brain nerve terminals

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Nazarova, Anastasiya; Borysov, Arseniy; Chunihin, Olexander

    Nano-sized particles can be deleterious to human physiology because they may be internalized by lung epithelium and overcome the blood-brain barrier. The health effects from exposure to Lunar and Martian dust are almost completely unknown, whereas they can be deleterious to human physiology. The effects of Lunar and Martian Soil Simulants (Orbital Technologies Corporation, Madison, USA) on the conductance of planar lipid membrane, membrane potential, acidification of synaptic vesicles, glutamate uptake, and ambient level of glutamate in isolated rat brain nerve terminals (synaptosomes) were studied using photon correlation spectroscopy, Planar Lipid Bilayer technique, spectrofluorimetry, radiolabeled assay, respectively. Lunar and Martian Soil Simulants did not influence the conductance of planar lipid membrane. It was revealed that nerve terminals were not indifferent to the exposure to inorganic particles of Lunar and Martian Soil Simulants. Using Zetasizer Nanosystem (Malvern Instruments) with helium-neon laser for dynamic light scattering (DLS), the synaptosomal size before and after the addition of Lunar and Martian Soil Simulants was measured and the binding of Lunar and Martian Soil Simulants inorganic particles to nerve terminals was demonstrated. Using potential-sensitive fluorescent dye rhodamine 6G, we showed that Lunar and Martian Soil particles did not influence the potential of the plasma membrane of nerve terminals. Acidification of synaptic vesicles of nerve terminals was not changed in the presence of Lunar and Martian Soil particles that was revealed with pH-sensitive fluorescent dye acridine orange. Martian Soil Simulant particles did not change binding of L-[14C]glutamate to brain nerve terminals, in contrast, Lunar ones changed this parameter and this fact may have harmful consequences to human physiology, in particular, glutamate homeostasis in the mammalian CNS.

  5. Transients in global Ca2+ concentration induced by electrical activity in a giant nerve terminal

    PubMed Central

    Neher, Erwin; Taschenberger, Holger

    2013-01-01

    Giant nerve terminals offer a unique opportunity to learn about dynamic changes in intracellular global Ca2+ concentration ([Ca2+]i) because this quantity can be measured precisely with indicator dyes and the composition of the intra-terminal ionic milieu can be controlled. We review here recent literature on [Ca2+]i signalling in the calyx of Held and discuss what these measurements can tell us about endogenous Ca2+ buffers and Ca2+ extrusion mechanisms. We conclude that in spite of the favourable experimental conditions, some unresolved questions still remain regarding absolute values for the Ca2+-binding ratio, the affinity of the basic fixed buffer and the Ca2+ affinities of the major endogenous Ca2+ binding proteins. Uncertainties about some of these presynaptic properties, including the roles of Mg2+ and ATP (as a Mg2+ buffer), however, extend to the point that mechanisms controlling the decay of [Ca2+]i signals in unperturbed terminals may have to be reconsidered. PMID:23529127

  6. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.

  7. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    SciTech Connect

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  8. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase.

    PubMed

    Piao, Lian-Hua; Fujita, Tsugumi; Jiang, Chang-Yu; Liu, Tao; Yue, Hai-Yuan; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na(+)-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  9. Flow Cytometric Analysis of Presynaptic Nerve Terminals Isolated from Rats Subjected to Hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana

    2008-06-01

    Flow cytometric studies revealed an insignificant decrease in cell size heterogeneity and cytoplasmic granularity of rat brain nerve terminals (synaptosomes) isolated from animals subjected to centrifuge-induced hypergravity as compared to control ones. The analysis of plasma membrane potential using the potentiometric optical dye rhodamine 6G showed a decrease in fluorescence intensity by 10 % at steady state level in hypergravity synaptosomes. To monitor synaptic vesicle acidification we used pH-sensitive fluorescent dye acridine orange and demonstrated a lower fluorescence intensity level at steady state (10%) after hypergravity as compared to controls. Thus, exposure to hypergravity resulted in depolarization of the synaptosomal plasma membrane and diminution in synaptic vesicle acidification that may be a cause leading to altered synaptic neurotransmission.

  10. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex

    PubMed Central

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel

    2016-01-01

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  11. A fast, transient K+ current in neurohypophysial nerve terminals of the rat.

    PubMed Central

    Thorn, P J; Wang, X M; Lemos, J R

    1991-01-01

    1. Nerve terminals of the rat posterior pituitary were acutely dissociated and identified using a combination of morphological and immunohistochemical techniques. Macroscopic terminal membrane currents and voltages were studied using the whole-cell patch clamp technique. 2. In physiological solutions, depolarizing voltage clamp steps, from a holding potential (-80 mV) similar to the normal terminal resting potential, elicited a fast, inward followed by a fast, transient, outward current. 3. The threshold of activation for the outward current was -60 mV. The outward current quickly reached a peak and then decayed more slowly. The decay was fitted by two exponentials with time constants of 21 +/- 2.9 and 143 +/- 36 ms. These decay constants did not show a dependence on voltage. The time to peak of the outward current decreased and the amplitude increased with increasingly depolarized potential steps. 4. The outward current was blocked by the substitution of K+ with Cs+ and its reversal potential was consistent with a potassium current. 5. The transient outward current showed steady-state inactivation at more depolarized (than -80 mV) holding potentials with 50% inactivation occurring at -47.9 mV. The time course of recovery from inactivation was complex with full recovery taking greater than 16 s. 6. 4-Aminopyridine (4-AP) blocked the transient outward current in a dose-dependent manner (approximately IC50 = 3 mM), while charybdotoxin (4 micrograms/ml) and tetraethylammonium (100 mM) had no effect on the current amplitude. 7. Lowering external [Ca2+] had no effect on the fast, transient outward current nor did the calcium channel blocker Cd2+ (2 mM). 8. The neurohypophysial outward current reported here corresponds most closely to IA, and not to the delayed rectifier or Ca2(+)-activated K+ currents. Neurohypophysial IA, however, appears to be different from the outward currents found in the cell bodies in the hypothalamus which project their axons to the posterior

  12. Influence of motor activities on the release of transmitter quanta from motor nerve terminals in mice.

    PubMed

    Taquahashi, Y; Yonezawa, K; Nishimura, M

    1999-05-01

    We investigated the effects of motor activities on transmitter release in mouse nerve-muscle preparations of the diaphragm muscle (DPH), extensor digitorum longus muscle (EDL), and soleus muscle (SOL). Mice were divided into a control group, a motor-restricted (RST) group, and a motor-compelled (CMP) group. The quantal content (m) of endplate potentials was measured intracellularly. In DPH the motor activity was unaffected. In the CMP group the m value of the EDL group increased with increases in the cooperativity of Ca2+ in transmitter release. Compared with the CMP group, the SOL of the RST group had a smaller m value with increases in the cooperativity of Ca2+ in transmitter release. These results suggest that motor activities can influence neuromuscular activity specific to different systems, however, the motor compulsion specifically activated the function of EDL and the motor restriction activated the function of SOL, and these effects might lead to altered activity of the release of transmitter quanta in motor nerve terminals of mice.

  13. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.

    PubMed

    Brooke, Ruth E; Moores, Thomas S; Morris, Neil P; Parson, Simon H; Deuchars, Jim

    2004-12-01

    Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05-0.5 mM), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25-150 nM) and Penitrem A (100 nM), suggesting a selective action on Kv3 subunits. Consistent with this, 15-microM 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05-1 microM. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ.

  14. Visualization of Endosome Dynamics in Living Nerve Terminals with Four-dimensional Fluorescence Imaging

    PubMed Central

    Stewart, Richard S.; Kiss, Ilona M.; Wilkinson, Robert S.

    2014-01-01

    Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections. PMID:24799002

  15. Calmodulin increases transmitter release by mobilizing quanta at the frog motor nerve terminal.

    PubMed

    Brailoiu, Eugen; Miyamoto, Michael D; Dun, Nae J

    2002-11-01

    The role of calmodulin (CaM) in transmitter release was investigated using liposomes to deliver CaM and monoclonal antibodies against CaM (antiCaM) directly into the frog motor nerve terminal. Miniature endplate potentials (MEPPs) were recorded in a high K+ solution, and effects on transmitter release were monitored using estimates of the quantal release parameters m (number of quanta released), n (number of functional transmitter release sites), p (mean probability of release), and var(s) p (spatial variance in p). Administration of CaM, but not heat-inactivated CaM, encapsulated in liposomes (1000 units ml(-1)) produced an increase in m (25%) that was due to an increase in n. MEPP amplitude was not altered by CaM. Administration of antiCaM, but not heat-inactivated antiCaM, in liposomes (50 microl ml(-1)) produced a progressive decrease in m (40%) that was associated with decreases in n and p. MEPP amplitude was decreased (15%) after a 25 min lag time, suggesting a separation in time between the decreases in quantal release and quantal size. Bath application of the membrane-permeable CaM antagonist W7 (28 microM) produced a gradual decrease in m (25%) that was associated with a decrease in n. W7 also produced a decrease in MEPP amplitude that paralleled the decrease in m. The decreases in MEPP size and m produced by W7 were both reversed by addition of CaM. Our results suggest that CaM increases transmitter release by mobilizing synaptic vesicles at the frog motor nerve terminal.

  16. Role of endogenous hydrogen sulfide in nerve-evoked relaxation of pig terminal bronchioles.

    PubMed

    Fernandes, Vítor S; Recio, Paz; López-Oliva, Elvira; Martínez, María Pilar; Ribeiro, Ana Sofía; Barahona, María Victoria; Martínez, Ana Cristina; Benedito, Sara; Agis-Torres, Ángel; Cabañero, Alberto; Muñoz, Gemma M; García-Sacristán, Albino; Orensanz, Luis M; Hernández, Medardo

    2016-12-01

    Hydrogen sulfide (H2S) is a gasotransmitter employed for intra- and inter-cellular communication in almost all organ systems. This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 μm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine β-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K(+), transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K(+) concentration inhibited the GYY4137 relaxation. Large conductance Ca(2+)-activated K(+) channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca(2+)]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced via NO/sGC-independent mechanisms involving K(+) channels and intracellular Ca(2+) desensitization-dependent pathways. Thus, based on our current results H2S donors might be useful as bronchodilator agents for the treatment of lung diseases with persistent airflow limitation, such as asthma and chronic obstructive lung disease.

  17. Quantal potential fields around individual active zones of amphibian motor-nerve terminals.

    PubMed Central

    Bennett, M R; Farnell, L; Gibson, W G; Macleod, G T; Dickens, P

    2000-01-01

    The release of a quantum from a nerve terminal is accompanied by the flow of extracellular current, which creates a field around the site of transmitter action. We provide a solution for the extent of this field for the case of a quantum released from a site on an amphibian motor-nerve terminal branch onto the receptor patch of a muscle fiber and compare this with measurements of the field using three extracellular electrodes. Numerical solution of the equations for the quantal potential field in cylindrical coordinates show that the density of the field at the peak of the quantal current gives rise to a peak extracellular potential, which declines approximately as the inverse of the distance from the source at distances greater than about 4 microm from the source along the length of the fiber. The peak extracellular potential declines to 20% of its initial value in a distance of about 6 microm, both along the length of the fiber and in the circumferential direction around the fiber. Simultaneous recordings of quantal potential fields, made with three electrodes placed in a line at right angles to an FM1-43 visualized branch, gave determinations of the field strengths in accord with the numerical solutions. In addition, the three electrodes were placed so as to straddle the visualized release sites of a branch. The positions of these sites were correctly predicted on the basis of the theory and independently ascertained by FM1-43 staining of the sites. It is concluded that quantal potential fields at the neuromuscular junction that can be measured with available recording techniques are restricted to regions within about 10 microm of the release site. PMID:10692301

  18. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    NASA Astrophysics Data System (ADS)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  19. Study on distribution of terminal branches of the facial nerve in mimetic muscles (orbicularis oculi muscle and orbicularis oris muscle).

    PubMed

    Mitsukawa, Nobuyuki; Moriyama, Hiroshi; Shiozawa, Kei; Satoh, Kaneshige

    2014-01-01

    There have been many anatomical reports to date regarding the course of the facial nerve to the mimetic muscles. However, reports are relatively scarce on the detailed distribution of the terminal branches of the facial nerve to the mimetic muscles. In this study, we performed detailed examination of the terminal facial nerve branches to the mimetic muscles, particularly the branches terminating in the orbicularis oculi muscle and orbicularis oris muscle. Examination was performed on 25 Japanese adult autopsy cases, involving 25 hemifaces. The mean age was 87.4 years (range, 60-102 years). There were 12 men and 13 women (12 left hemifaces and 13 right hemifaces). In each case, the facial nerve was exposed through a preauricular skin incision. The main trunk of the facial nerve was dissected from the stylomastoid foramen. A microscope was used to dissect the terminal branches to the periphery and observe them. The course and distribution were examined for all terminal branches of the facial nerve. However, focus was placed on the course and distribution of the zygomatic branch, buccal branch, and mandibular branch to the orbicularis oculi muscle and orbicularis oris muscle. The temporal branch was distributed to the orbicularis oculi muscle in all cases and the marginal mandibular branch was distributed to the orbicularis oris muscle in all cases. The zygomatic branch was distributed to the orbicularis oculi muscle in all cases, but it was also distributed to the orbicularis oris muscle in 10 of 25 cases. The buccal branch was not distributed to the orbicularis oris muscle in 3 of 25 cases, and it was distributed to the orbicularis oculi muscle in 8 cases. There was no significant difference in the variations. The orbicularis oculi muscle and orbicularis oris muscle perform particularly important movements among the facial mimetic muscles. According to textbooks, the temporal branch and zygomatic branch innervate the orbicularis oculi muscle, and the buccal branch

  20. Some properties of the presynaptic nerve terminals in a mammalian sympathetic ganglion

    PubMed Central

    Dunant, Y.

    1972-01-01

    1. Superior cervical ganglia of adult rats were excised and maintained in vitro in stable conditions. Potentials were recorded with external electrodes. After transmission was blocked by mecamylamine, a small potential change was recorded from the rostral area of the ganglion in response to preganglionic stimulation. 2. This electrical response was identified as the presynaptic action potential recorded from the nerve terminals by a number of criteria based on histological and physiological considerations including the disappearance of the spike in a glucose free solution. As shown by Nicolescu, Dolivo, Rouiller & Foroglou-Kerameus (1966) on the same preparation this condition causes an irreversible and selective lesion of the presynaptic nerve endings. 3. A suitable concentration of mecamylamine permitted the presynaptic response and the excitatory post-synaptic potential (EPSP) to be recorded simultaneously. As the stimulus was increased, the EPSP increased linearly with the amplitude of the presynaptic response. 4. After replacement of potassium ions in the bathing solution by caesium and during the early phase of post-tetanic facilitation there was an increase in the presynaptic response accompanied by a disproportionate increase in the EPSP. 5. No changes in the presynaptic response were found in the presence of the following drugs, all of which depressed the EPSP: acetylcholine, hemicholinium, curare, further doses of ganglion-blocking agents, and high Mg2+ and low Ca2+ concentrations. 6. Ouabain (4·5 × 10-4 M) reversibly decreased the amplitude of the presynaptic response and increased the spontaneous release of transmitter. The EPSP was at first enhanced and then depressed. PMID:4335802

  1. The effects of the β-agonist isoproterenol on the down-regulation, functional responsiveness, and trafficking of β2-adrenergic receptors with amino-terminal polymorphisms

    PubMed Central

    Koryakina, Yulia; Jones, Stacie M.; Cornett, Lawrence E.; Seely, Kathryn; Brents, Lisa; Prather, Paul L.; Kofman, Alexander; Kurten, Richard C.

    2014-01-01

    The β2-adrenergic receptor (β2AR) is an important target for respiratory and cardiovascular disease medications. Clinical studies suggest that amino-terminal polymorphisms of the β2AR may act as disease modifiers. We hypothesized that polymorphisms at amino acids 16 and 27 result in differential trafficking and down-regulation of β2AR variants following β-agonist exposure. The functional consequences of the four possible combinations of these polymorphisms in the human β2AR (designated β2AR-RE, -GE, -RQ and -GQ) were studied using site-directed mutagenesis and recombinant expression in HEK 293 cells. Ligand binding assays demonstrated that after 24 h exposure to 1 μM isoproterenol, isoforms with Arg16 (β2AR-RE and β2AR-RQ) underwent increased down-regulation compared to isoforms with Gly16 (β2AR-GE and β2AR-GQ). Consistent with these differences in down-regulation between isoforms, prolonged isoproterenol treatment resulted in diminished cyclic AMP response to subsequent isoproterenol challenge in β2AR-RE relative to β2AR-GE. Confocal microscopy revealed that the receptor isoforms had similar co-localization with the early endosomal marker EEA1 following isoproterenol treatment, suggesting that they had similar patterns of internalization. None of the isoforms exhibited significant co-localization with the recycling endosome marker Rab11 in response to isoproterenol treatment. Furthermore, we found that prolonged isoproterenol treatment led to a higher degree of co-localization of β2AR-RE with the lysosomal marker Lamp1 compared to that of β2AR-GE. Taken together, these results indicate that a mechanism responsible for differential responses of these receptor isoforms to β-agonist involves differences in the efficiency with which agonist-activated receptors are trafficked to lysosomes for degradation, or differences in degradation in the lysosomes. PMID:22938397

  2. Altered Active Zones, Vesicle Pools, Nerve Terminal Conductivity, and Morphology during Experimental MuSK Myasthenia Gravis

    PubMed Central

    Patel, Vishwendra; Oh, Anne; Voit, Antanina; Sultatos, Lester G.; Babu, Gopal J.; Wilson, Brenda A.; Ho, Mengfei; McArdle, Joseph J.

    2014-01-01

    Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG. PMID:25438154

  3. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals.

    PubMed

    Marland, Jamie Roslin Keynes; Hasel, Philip; Bonnycastle, Katherine; Cousin, Michael Alan

    2016-01-29

    Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity.

  4. Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations.

    PubMed Central

    Taft, W C; DeLorenzo, R J

    1984-01-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498

  5. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  6. Platelets as potential peripheral markers to study functioning of the high-affinity sodium-dependent glutamate transporters in the nerve terminals of the brain

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Kasatkina, L. A.

    Activity of the high-affinity sodium-dependent glutamate transporters in the brain nerve terminals is demonstrated to alter under artificial gravity conditions. A comparison analysis is made for L-[14C] glutamate transport in platelets and isolated nerve terminals. The kinetic characteristics of the transporters, [Na+]-dependence and influence of the transpoter inhibitor DL-threo-beta-benzyloxyaspartate on the L-[14C] glutamate uptake process are determined. It is shown that glutamate uptake process is very similar for platelets and nerve terminals. Thus it is reasonable to use platelets as a potential peripheral model for glutamate transport.

  7. Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.

    PubMed

    Baydyuk, Maryna; Wu, Xin-Sheng; He, Liming; Wu, Ling-Gang

    2015-03-18

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we report for the first time that BDNF slows down calcium channel activation, including P/Q-type channels, and inhibits exocytosis induced by brief depolarization or single action potentials, inhibits slow and rapid endocytosis, and inhibits vesicle mobilization to the readily releasable pool. These presynaptic mechanisms may contribute to the important roles of BDNF in regulating synapses and neuronal circuits and suggest that regulation of presynaptic calcium channels, exocytosis, and endocytosis are potential mechanisms by which neurotrophins achieve diverse neuronal functions.

  8. Potassium channel blocking actions of beta-bungarotoxin and related toxins on mouse and frog motor nerve terminals.

    PubMed Central

    Rowan, E. G.; Harvey, A. L.

    1988-01-01

    1. beta-Bungarotoxin and other snake toxins with phospholipase activity augment acetylcholine release evoked from mouse motor nerve terminals before they produce blockade. This action of the toxins is independent of their phospholipase A2 activity, but the underlying mechanism for the facilitation of release is unclear. To determine whether the toxins affect ionic currents at motor nerve terminals, extracellular recordings were made from perineural sheaths of motor nerves innervating mouse triangularis sterni muscles. 2. Perineural waveforms had a characteristic shape, with two major negative deflections, the first being associated with nodal Na+ currents and the second with terminal K+ currents. Block of the K+ currents revealed a Ca2+-dependent component. 3. During the facilitatory phase of its action, beta-bungarotoxin (150 nM) reduced the second negative component of the perineural waveform by 30-50%. 4. The reduction could be a consequence of a decreased K+ ion contribution or of an increase in the current carried by Ca2+. As beta-bungarotoxin had similar effects in solutions which contained no added Ca2+, it is unlikely to be acting on the Ca2+ current. Also, it is unlikely to be blocking the Ca2+-activated K+ current, which is suppressed in zero Ca2+ conditions. 5. Other prejunctionally active snake toxins (taipoxin, notexin and crotoxin) had similar effects to those of beta-bungarotoxin, but a similar basic phospholipase of low toxicity from cobra venom had no effect. 6. Thus, beta-bungarotoxin and related toxins block a fraction of the K+ current in the motor nerve terminals of mouse preparations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3263160

  9. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus

    PubMed Central

    Ahn, J.

    2015-01-01

    Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker of N-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways. PMID:26719087

  10. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro

    PubMed Central

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Ray; Rise, Frode

    2015-01-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer’s disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [14C]fructose or its AGE-prone metabolite [14C]glyceraldehyde into rat neocortex in vivo led to formation of 14C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [14C]fructose labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. Hexokinase 1, which channels fructose into glycolysis, was highly expressed, and enzyme activity was similar with fructose or glucose as substrates, whereas the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only ~4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. Fructose may be formed from glucose through the polyol pathway. The genes encoding enzymes of this pathway, aldose reductase and sorbitol dehydrogenase, were expressed in rat neocortex. We conclude that fructose is transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. PMID:25708447

  11. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-(13)C2]Glucose Metabolism in Anesthetized Rats.

    PubMed

    Patel, Anant B; Lai, James C K; Chowdhury, Golam I M; Rothman, Douglas L; Behar, Kevin L

    2017-01-01

    The (13)C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6-(13)C2]glucose or [2-(13)C]acetate. Nerve terminal (13)C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of (13)C labeling from [1,6-(13)C2]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (GluC4, 21.8 min; GABAC2 21.0 min) compared to cortical tissue (GluC4, 12.4 min; GABAC2, 14.5 min), except for AspC3, which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The (13)C labeling ratio for glutamate-C4 from [2-(13)C]acetate over that of (13)C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the (13)C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.

  12. The effect of 3,3-di-pyridyl-methyl-1-phenyl-2-indolinone on the nerve terminal currents of mouse skeletal muscles.

    PubMed

    Tsai, M C; Su, J L; Chen, M L; Fan, S Z; Cheng, C Y

    1992-09-01

    The effects of 3,3-dipyridyl-methyl-1-phenyl-2-indolinone (DPMPI), a new cognition enhancer, on perineural waveforms were assessed on triangularis sterni nerve-muscle preparations in the mouse. The perineural waveforms were recorded with extracellular electrodes placed in the perineural sheaths of motor nerves. At 64.5 microM, DPMPI decreased the fast potassium current of the nerve terminal. The sodium current, calcium currents and calcium-dependent potassium current of the nerve terminal were not affected. At a greater concentration (215 microM), DPMPI decreased all of the components of the waveforms associated with sodium, potassium and calcium currents. It is concluded that DPMPI affects potassium, as well as sodium currents in the nerve terminal. The effect may contribute to its pharmacological actions on synaptic transmission.

  13. Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of Held: a comparison of two auditory nerve terminals

    PubMed Central

    Lin, Kun-Han; Oleskevich, Sharon; Taschenberger, Holger

    2011-01-01

    Abstract The functional properties of mammalian presynaptic nerve endings remain elusive since most terminals of the central nervous system are not accessible to direct electrophysiological recordings. In this study, direct recordings were performed for the first time at endbulb of Held terminals to characterize passive membrane properties, voltage-gated Ca2+ channels (VGCCs) and Ca2+-dependent exocytosis. Endbulb of Held terminals arise from endings of auditory nerve fibres contacting spherical bushy cells (SBCs) in the anterior ventral cochlear nucleus (AVCN). These terminals had a high mean input resistance (1.1 GΩ) and a small mean capacitance (4.3 pF). Presynaptic VGCCs were predominantly of the P/Q type (86%) and expressed at a high density with an estimated average number of 6400 channels per terminal. Presynaptic Ca2+ currents (ICa(V)) activated and deactivated rapidly. Simulations of action potential (AP)-driven gating of VGCCs suggests that endbulb APs trigger brief Ca2+ influx with a mean half-width of 240 μs and a peak amplitude of 0.45 nA which results from the opening of approximately 2600 channels. Unlike Ca2+ currents at the calyx of Held, ICa(V) of endbulb terminals showed no inactivation during trains of AP-like presynaptic depolarizations. Endbulb terminals are endowed with a large readily releasable vesicle pool (1064 vesicles) of which only a small fraction (<10%) is consumed during a single AP-like stimulus. Fast presynaptic APs together with rapidly gating VGCCs will generate brief intracellular Ca2+ transients that favour highly synchronous transmitter release. Collectively these characteristics ensure sustained and precise transmission of timing information from auditory stimuli at the endbulb→SBC synapse. PMID:21746778

  14. Distribution of muscarinic acetylcholine receptors and presynaptic nerve terminals in amphibian heart

    PubMed Central

    1980-01-01

    At many synapses, neurotransmitter receptor molecules in the postsynaptic membrane are selectively concentrated at a site directly opposite the presynaptic nerve terminal. In this paper, I examine acetylcholine (ACh) receptor distribution in cardiac muscle in relatin to the distribution of presynaptic axonal varicosities. The density of varicosities, stained with zinc iodide and osmium, ranges from 0.7/100 micrometer 2 in ventricle to 1.9/100 micrometer 2 in sinus venosus. It is estimated that < 3% of the muscle surface is apposed to presynaptic varicosities. ACh receptors, however, are randomly distributed on the muscle surface and not concentrated in patche. ACh receptor distribution was determined by iontophoretic application of ACh and mapping of ACh sensitivity and by [3H]QNB (quinuclidinyl benzilate) binding and autoradiography [3H]QNB binds with > 90% specificity to a single, saturable, high-affinity (Kd = 11.1 pM at 21 degrees C) class of binding sites. QNB binding sites are thought to correspond to ACh receptors, because muscarinic agonists compete for [3H]QNB binding and produce a hyperpolarization in the sinus venosus with the same order of potency. The concentrations of QNB binding sites in the sinus and atria are about twice those found in ventricle. The receptor density corresponds to the density of innervation measured by zinc iodide and osmium staining. Autoradiographic experiments show that [3H]QNB binding sites are distributed randomly over the entire surface of the muscle. This distribution of ACh receptors in cardiac muscle has important implications for the function of the cardiac neuroeffector junction. PMID:6968315

  15. Imaging neuromuscular junctions by confocal fluorescence microscopy: individual endplates seen in whole muscles with vital intracellular staining of the nerve terminals

    PubMed Central

    MARQUES, M. J.; NETO, H. SANTO

    1998-01-01

    The mammalian neuromuscular junction has been extensively studied by different methods to understand better the biological aspects of its normal development, ageing and pathological conditions, such as disorders of neuromuscular transmission. In the present report, a new technique is described that combines confocal microscopy with the use of a vital nerve terminal dye (4-Di-2-ASP) and rhodamine-alpha-bungarotoxin to stain postsynaptic acetylcholine receptors in the same endplate. Nerve terminals in the sternomastoid muscles of living adult mice were stained with 4-Di-2-ASP, which labels intracellular compartments of the nerve terminal containing mitochondria. Slides of these muscles were viewed by confocal microscopy and images were stored on magnetic optical discs. This procedure was compatible with subsequent acetylcholine receptor staining with rhodamine-α-bungarotoxin and observation under the confocal microscope. Classical features of the adult neuromuscular junction were displayed, such as the branched-pattern distribution of the nerve terminals and receptors and their complete colocalisation. In addition, nerve fibres from intramuscular nerve branches with their neighbouring cells, nuclei and muscle fibre striations could also be visualised. We conclude that the present technique can complement existing methods of investigation of nerve terminal anatomy and pathology, particularly where preservation of 3-dimensional relationships is required and intracellular disturbances involving mitochondrial organisation, such as ageing or other degenerative disorders, may be present. PMID:9688508

  16. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum).

    PubMed

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L

    2006-07-19

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

  17. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin

    PubMed Central

    Bewick, Guy S.; Banks, Robert W.

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  18. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2016-04-05

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given.

  19. Effect of prolonged inactivity on skeletal motor nerve terminals during aestivation in the burrowing frog, Cyclorana alboguttata.

    PubMed

    Hudson, Nicholas J; Lavidis, Nickolas A; Choy, Peng T; Franklin, Craig E

    2005-04-01

    This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.

  20. On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminals

    PubMed Central

    Silinsky, E.M.

    1981-01-01

    1 The behaviour of the divalent cations Ca and Sr as agonists for receptors that mediate the synchronous evoked secretion of acetylcholine (ACh) was studied in the hope of determining whether the relationship between Ca binding and ACh secretion is determined only by the law of mass action or by the mathematical framework of receptor theory. Experiments were designed to evaluate the assumption that maximum effect requires occupation of all receptors by testing for the presence of spare Ca receptors on presynaptic terminals. Frog cutaneous nerve-muscle preparations were employed in conjunction with conventional electrophysiological methods. 2 Curves of log [Ca] or log [Sr] against the mean number of ACh quanta released (m̄) were constructed to saturation. The log [Sr]-m̄ relationship was shifted to the right and had a smaller maximum than the log [Ca]-m̄ curve. This suggests that Ca has a higher efficacy than Sr and raises the possibility that spare binding sites are present for Ca. 3 As a qualitative test for spare Ca receptors, La3+ (≥0.5 μm) or 2-chloroadenosine (25 μm) was employed as an irreversible antagonist of the effects of extracellular Ca on evoked ACh release. Despite the irreversible blockade of a proportion of receptors, increases in the [Ca] overcame this antagonism and produced a parallel shift in the log [Ca]-m̄ relation to the right. This suggests an apparent receptor reserve for Ca. Antagonism of Sr-mediated ACh release by either La3+ or 2-chloroadenosine could not be overcome by increasing the [Sr]. 4 As a quantitative test for spare Ca binding sites, the equilibrium affinity constant for Sr(KSr) as a competitive inhibitor of Ca was determined and compared with values for KSr calculated by two other methods which invoke the spare receptor assumption. All three methods produced comparable results. (KSr = 0.24-0.27 mm-1). 5 The equilibrium affinity constant for Ca (KCa) was calculated by comparing reciprocal plots of the concentrations of

  1. Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea.

    PubMed

    Brock, J A; Pianova, S; Belmonte, C

    2001-06-01

    1. Extracellular recording techniques were used to study nerve terminal impulses (NTIs) recorded from single polymodal nociceptors and cold-sensitive receptors in guinea-pig cornea isolated in vitro. 2. The amplitude and time course of NTIs recorded from polymodal nociceptors was different from those of cold-sensitive receptors. 3. Bath application of tetrodotoxin (1 microM) changed the time course of spontaneous NTIs recorded from both polymodal and cold-sensitive receptors. 4. Bath application of lignocaine (lidocaine; 1-5 mM) abolished all electrical activity. 5. Local application of lignocaine (2.5 and 20 mM) through the recording electrode changed the time course of the NTIs recorded from polymodal nociceptors but not that of NTIs recorded from cold-sensitive nerve endings. 6. It is concluded that action potentials propagate actively in the sensory nerve endings of polymodal nociceptors. In contrast, cold-sensitive receptor nerve endings appear to be passively invaded from a point more proximal in the axon where the action potential can fail or be initiated.

  2. Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals.

    PubMed

    Grilli, Massimo; Neri, Elisa; Zappettini, Stefania; Massa, Francesca; Bisio, Angela; Romussi, Giovanni; Marchi, Mario; Pittaluga, Anna

    2009-01-01

    We investigated the effects of salvinorin A on the basal and the 12 mM K(+)-evoked release of preloaded [(3)H]noradenaline ([(3)H]NA) and [(3)H]serotonin ([(3)H]5-HT) from mouse hippocampal nerve terminals (synaptosomes), as well as on the basal and 12mM K(+)-evoked release of preloaded [(3)H]dopamine ([(3)H]DA) from mouse striatal and prefrontal cortex (PFc) synaptosomes. Salvinorin A (0.1-1000 nM) failed to affect the basal release of amines, but inhibited the 12 mM K(+)-evoked, Ca(2+)-dependent, exocytotic-like release of [(3)H]5-HT and [(3)H]DA. At the same concentration, salvinorin A facilitated the 12 mM K(+)-evoked, Ca(2+)-dependent, exocytotic-like release of [(3)H]NA. These effects could not be observed in pertussis toxin (PTx) entrapped synaptosomes. The broad spectrum kappa-opioid receptor (KOR) antagonist norbinaltorphimine (norBNI, 1-100 nM) antagonized the inhibition of [(3)H]5-HT and [(3)H]DA exocytosis as well as the facilitation of [(3)H]NA overflow induced by 100 nM salvinorin A. The KOR agonist U69593 (1-100 nM) mimicked salvinorin A in inhibiting [(3)H]5-HT and of [(3)H]DA exocytosis, its effect being prevented by norBNI, but leaving unchanged the K(+)-evoked release of [(3)H]NA. The effects of Salvinorin A on neurotransmitter exocytosis were not prevented by the selective mu opioid (MOR) receptor antagonist CTAP (10-100 nM), whereas facilitation of [(3)H]NA exocytosis, but not inhibition of [(3)H]5-HT and [(3)H]DA K(+)-evoked release, was counteracted by the delta opioid receptor (DOR) antagonist naltrindole (1-100 nM). We conclude that salvinorin A presynaptically modulates central NA, 5-HT, and DA exocytosis evoked by a mild depolarizing stimulus by acting at presynaptic opioid receptors having different pharmacological profiles.

  3. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    SciTech Connect

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  4. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves

    PubMed Central

    1986-01-01

    The labeling patterns produced by radioiodinated botulinum neurotoxin (125I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. 125I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. 125I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. Although 125I-BoNT type A interacts specifically with developing terminals of newborn rats, the unmyelinated plasma membrane of the nerve trunk is not labeled, indicating that the acceptors are unique components restricted to the nerve terminal area. BoNT types A and B have distinct acceptors on the terminal membrane. Having optimized the conditions for saturation of these binding sites and calibrated the autoradiographic procedure, we found the densities of the acceptors for types A and B to be approximately 150 and 630/micron 2 of membrane, respectively. It is proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action

  5. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.

    PubMed Central

    Bartschat, D K; Blaustein, M P

    1985-01-01

    86Rb efflux was examined in isolated presynaptic nerve terminals (synaptosomes) from rat brain in a study designed to assess K permeability (PK) changes sensitive to alterations in internal Ca activity. Rb efflux from 86Rb-loaded synaptosomes into nominally Ca-free physiological saline (PSS) containing 5 mM-K was about 0.3-0.4%/s. Raising extracellular K concentration [( K]o), to depolarize the synaptosomes, stimulated the 86Rb efflux. Addition of Ca to the 5 mM-K PSS had no effect, but Ca did further stimulate 86Rb efflux into K-rich solutions. The effect of Ca was graded, with apparent half-maximal activation, KA approximately equal to 0.5 mM-Ca. These data fit the view that, during depolarization, Ca enters the terminals through voltage-regulated Ca channels, and that the rise in intracellular Ca concentration opens certain (Ca-activated) K channels. The Ca-dependent stimulation of 86Rb efflux was greatest during the initial seconds of incubation (component CT), and then declined to a much lower rate (component CS). Much of this change in rate could be attributed to inactivation of voltage-regulated Ca channels and reduced entry of Ca. The Ca-dependent increase in 86Rb efflux was completely inhibited by 100 microM-La. In the presence of Ca, but not in its absence, the Ca ionophore A23187 stimulated 86Rb efflux both in 5 and 100 mM-K PSS. The effect in 100 mM-K was quantitatively greater, perhaps because of the increased outward driving force on Rb in depolarized synaptosomes. When synaptosomes were suspended in media containing the voltage-sensitive fluorescent dye, DiS-C3-(5) (1,1'-dipentyl-2,2'-thiocarbocyanine), the addition of Ca+ A23187 decreased the fluorescence intensity (= synaptosome hyperpolarization) when the media contained 5 mM-K but not 100 mM-K. This implies that in the presence of Ca + A23187, PK was increased, and the membrane potential moved closer to the K equilibrium potential, EK. Quinine sulphate, a blocker of Ca-activated K channels

  6. Terminal Segment Surgical Anatomy of the Rat Facial Nerve: Implications for Facial Reanimation Study

    PubMed Central

    Henstrom, Doug; Hadlock, Tessa; Lindsay, Robin; Knox, Christopher J.; Malo, Juan; Vakharia, Kalpesh T.; Heaton, James T.

    2015-01-01

    Introduction Rodent whisking behavior is supported by the buccal and mandibular branches of the facial nerve, a description of how these branches converge and contribute to whisker movement is lacking. Methods Eight rats underwent isolated transection of either the buccal or mandibular branch and subsequent opposite branch transection. Whisking function was analyzed following both transections. Anatomical measurements, and video recording of stimulation to individual branches, were taken from both facial nerves in 10 rats. Results Normal to near-normal whisking was demonstrated after isolated branch transection. Following transection of both branches whisking was eliminated. The buccal and mandibular branches form a convergence just proximal to the whisker-pad, named the “distal pes.” Distal to this convergence, we identified consistent anatomy that demonstrated cross-innervation. Conclusion The overlap of efferent supply to the whisker pad must be considered when studying facial nerve regeneration in the rat facial nerve model. PMID:22499096

  7. Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals.

    PubMed

    Marchi, Mario; Grilli, Massimo; Pittaluga, Anna M

    2015-01-01

    This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation.

  8. The active zone protein family ELKS supports Ca2+ influx at nerve terminals of inhibitory hippocampal neurons.

    PubMed

    Liu, Changliang; Bickford, Lydia S; Held, Richard G; Nyitrai, Hajnalka; Südhof, Thomas C; Kaeser, Pascal S

    2014-09-10

    In a presynaptic nerve terminal, synaptic vesicle exocytosis is restricted to specialized sites called active zones. At these sites, neurotransmitter release is determined by the number of releasable vesicles and their probability of release. Proteins at the active zone set these parameters by controlling the presynaptic Ca(2+) signal, and through docking and priming of synaptic vesicles. Vertebrate ELKS proteins are enriched at presynaptic active zones, but their functions are not well understood. ELKS proteins are produced by two genes in vertebrates, and each gene contributes ∼50% to total brain ELKS. We generated knock-out mice for ELKS1 and found that its constitutive removal causes lethality. To bypass lethality, and to circumvent redundancy between ELKS1 and ELKS2 in synaptic transmission, we used a conditional genetic approach to remove both genes in cultured hippocampal neurons after synapses are established. Simultaneous removal of ELKS1 and ELKS2 resulted in a 50% decrease of neurotransmitter release at inhibitory synapses, paralleled by a reduction in release probability. Removal of ELKS did not affect synapse numbers or their electron microscopic appearance. Using Ca(2+) imaging, we found that loss of ELKS caused a 30% reduction in single action potential-triggered Ca(2+) influx in inhibitory nerve terminals, consistent with the deficits in synaptic transmission and release probability. Unlike deletion of the active zone proteins RIM, RIM-BP, or bruchpilot, ELKS removal did not lead to a measurable reduction in presynaptic Ca(2+) channel levels. Our results reveal that ELKS is required for normal Ca(2+) influx at nerve terminals of inhibitory hippocampal neurons.

  9. Local cutaneous nerve terminal and mast cell responses to manual acupuncture in acupoint LI4 area of the rats.

    PubMed

    Wu, Mei-Ling; Xu, Dong-Sheng; Bai, Wan-Zhu; Cui, Jing-Jing; Shu, Hong-Ming; He, Wei; Wang, Xiao-Yu; Shi, Hong; Su, Yang-Shuai; Hu, Ling; Zhu, Bing; Jing, Xiang-Hong

    2015-10-01

    Previous studies have shown that the effects of manual acupuncture (MA) are contributed by collagen fibers and mast cells in local acupoints, at which acupuncture stimulation causes various afferent fiber groups to be excited. However what happens in local nerve fibers and mast cells after MA remains unclear. The aim of this study was to examine the response of cutaneous nerve fibers and mast cells to MA stimulation in acupoint Hegu (LI4). The contralateral LI4 of the same rat was used as a non-stimulated control. Immnohistochemistry analysis were carried out to observe the expression of histamine (HA), serotonin (5-HT) and nociceptive neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), in the LI4 area. Mast cells were labeled with anti-mast cell tryptase antibody and simultaneously with HA or 5-HT primary antibodies to observe their co-expression. Our results showed that SP and CGRP were expressed more highly on the cutaneous nerve fibers of LI4 after MA stimulation than that of the control. Mast cells aggregated in close proximity to the blood vessels in intra-epidermis and dermis and some of them with degranulation in the lower dermis and subcutaneous tissue of LI4. Both mast cells and their granules appeared with HA (+) and 5-HT (+) expression at stimulated L14 sites, while a few intact mast cells with a little expression of 5-HT and HA were distributed in areas of non-stimulated L14. The results indicated that local cutaneous nerve terminals and mast cells responded to MA with higher expression of SP and CGRP in nerve fibers, as well as with aggregation and degranulation of mast cells with HA and 5-HT granules at acupoint LI4. These neuroactive substances may convey signals to certain pathways that contribute to the effects of acupuncture.

  10. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage.

    PubMed

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E

    2017-03-17

    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases.

  11. Disappearance of afferent and efferent nerve terminals in the inner ear of the chick embryo after chronic treatment with beta-bungarotoxin

    PubMed Central

    1977-01-01

    Beta-Bungarotoxin(beta-BT) was applied to chick embryos at 3-day intervals beginning on the 4th day of incubation to see the effect of chronically and massively applied beta-BT, and to investigate the hair cell-nerve relationship in the developing inner ear by electron microscopy. On the 10th day of incubation, nerve terminals had achieved contact with differentiating hair cells, but the acoustico-vestibular ganglion cells of treated animals were decreased in number to one-third of those of the control. By the 14th day, most of the ganglion cells degenerated and disappeared, and only a few nerve terminals were seen in the neuroepithelium. At this time, most of the hair cells lacked synaptic contacts with nerve terminals; but their presynaptic specialization remained intact and they showed evidence of continuing differentiation. On the 17th day, the acoustico-vestibular ganglion cells were completely absent. All the hair cells were devoid of afferent and efferent innervation but were fully differentiated on the 21st day. Beta-BT was found to have a similar destructive effect on cultured spinal ganglion cells. The present study shows that beta-BT kills acoustico-vestibular and spinal nerve cells when applied chronically and massively during development. Furthermore, the differentiation of hair cells proceeds normally, and their presynaptic specializations are maintained when nerve terminals are absent during later developmental stages. PMID:856835

  12. Electrophysiological identification of the functional presynaptic nerve terminals on an isolated single vasopressin neurone of the rat supraoptic nucleus.

    PubMed

    Ohbuchi, T; Yokoyama, T; Fujihara, H; Suzuki, H; Ueta, Y

    2010-05-01

    Release of arginine vasopressin (AVP) and oxytocin from magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) is under the control of glutamate-dependent excitation and GABA-dependent inhibition. The possible role of the synaptic terminals attached to SON neurones has been investigated using whole-cell patch-clamp recording in in vitro rat brain slice preparations. Recent evidence has provided new insights into the repercussions of glial environment modifications on the physiology of MNCs at the synaptic level in the SON. In the present study, excitatory glutamatergic and inhibitory GABAergic synaptic inputs were recorded from an isolated single SON neurone cultured for 12 h, using the whole-cell patch clamp technique. Neurones expressed an AVP-enhanced green fluorescent protein (eGFP) fusion gene in MNCs. In addition, native synaptic terminals attached to a dissociated AVP-eGFP neurone were visualised with synaptic vesicle markers. These results suggest that the function of presynaptic nerve terminals may be evaluated directly in a single AVP-eGFP neurone. These preparations would be helpful in future studies aiming to electrophysiologically distinguish between the functions of synaptic terminals and glial modifications in the SON neurones.

  13. Comparative study of fluoxetine, sibutramine, sertraline and dexfenfluramine on the morphology of serotonergic nerve terminals using serotonin immunohistochemistry.

    PubMed

    Kalia, M; O'Callaghan, J P; Miller, D B; Kramer, M

    2000-03-06

    We compared the effects of treatment with high doses of fluoxetine, sibutramine, sertraline, and dexfenfluramine for 4 days on brain serotonergic nerve terminals in rats. Methylenedioxymethamphetamine (MDMA) and 5,7-dihydroxytryptamine (5,7-DHT) were used as positive controls because both compounds deplete brain serotonin. Food intake and body weight changes were also monitored and yoked, pair-fed animals were used to control for possible changes in morphology due to nutritional deficits. Fluoxetine, sibutramine, sertraline and dexfenfluramine all produced a significant reduction in body weight. Fluoxetine, sibutramine and sertraline treatment resulted in no depletion of brain serotonin but produced morphological abnormalities in the serotonergic immunoreactive nerve network. In contrast, dexfenfluramine and MDMA depleted brain serotonin and produced morphological changes in the serotonin nerve network. These results indicate that even though fluoxetine, sibutramine and sertraline do not deplete brain serotonin, they do produce morphological changes in several brain regions (as identified by serotonin immunohistochemistry). Dexfenfluramine and MDMA, on the other hand, markedly deplete brain serotonin and also produce morphological changes. Collectively, these results lend support to the concept that all compounds acting on brain serotonin systems, whether capable of producing serotonin depletion or not, could produce similar effects on the morphology of cerebral serotonin systems.

  14. The effects of combined application of inorganic Martian dust simulant and carbon dots on glutamate transport rat brain nerve terminals

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Nazarova, Anastasiya; Borysov, Arseniy; Pastukhov, Artem; Pozdnyakova, Natalia; Dudarenko, Marina

    2016-07-01

    During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the central nervous system (Oberdorster et al., 2004). Recently, the research team of this study found the minor fractions of nanoparticles with the size ~ 50 -60 nm in Lunar and Martian dust stimulants (JSC-1a and JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin), whereas the average size of the simulants was 1 mm and 4mm, respectively (Krisanova et al., 2013). Also, the research team of this study discovered new phenomenon - the neuromodulating and neurotoxic effect of carbon nano-sized particles - Carbon dots (C-dots), originated from ash of burned carbon-containing product (Borisova et al, 2015). The aims of this study was to analyse acute effects of upgraded stimulant of inorganic Martian dust derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, carbon dots, on the key characteristic of synaptic neurotransmission. Acute administration of carbon-containing Martian dust analogue resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) by isolated rat brain nerve terminals. The ambient level of the neurotransmitter in the preparation of nerve terminals increased in the presence of carbon dot-contained Martian dust analogue. These effects were associated with action of carbon component of the upgraded Martian dust stimulant but not with its inorganic constituent.

  15. Stronger antinociceptive efficacy of opioids at the injured nerve trunk than at its peripheral terminals in neuropathic pain.

    PubMed

    Labuz, Dominika; Machelska, Halina

    2013-09-01

    Activation of opioid receptors on peripheral sensory neurons has the potential for safe pain control, as it lacks centrally mediated side effects. While this approach often only partially suppressed neuropathic pain in animal models, opioids were mostly applied to animal paws although neuropathy was induced at the nerve trunk. Here we aimed to identify the most relevant peripheral site of opioid action for efficient antinociception in neuropathy. On days 2 and 14 following a chronic constriction injury (CCI) of the sciatic nerve in mice, we evaluated dose and time relationships of the effects of μ-, δ-, and κ-opioid receptor agonists injected either at the CCI site or intraplantarly (i.pl.) into the lesioned nerve-innervated paw, on spontaneous paw lifting and heat and mechanical hypersensitivity (using Hargreaves and von Frey tests, respectively). We found that neither agonist diminished spontaneous paw lifting, despite the application site. Heat hypersensitivity was partially attenuated by i.pl. μ-receptor agonist only, while it was improved by all three agonists applied at the CCI site. Mechanical hypersensitivity was slightly diminished by all agonists administered i.pl., whereas it was completely blocked by all opioids injected at the CCI site. These antinociceptive effects were opioid receptor type-selective and site-specific. Thus, opioids might not be effective against spontaneous pain, but they improve heat and mechanical hypersensitivity in neuropathy. Importantly, efficient alleviation of hypersensitivity is governed by peripheral opioid receptors at the injured nerve trunk rather than at its peripheral terminals. Identifying the primary action site of analgesics is important for the development of adequate pain therapies.

  16. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    The labeling patterns produced by radioiodinated botulinum neurotoxin (/sup 125/I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. (a) /sup 125/I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. (b) /sup 125/I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. (c) The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. (d) It is not proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release.

  17. Calcitonin Receptor-Like Receptor and Receptor Activity Modifying Protein 1 in the rat dorsal horn: localization in glutamatergic presynaptic terminals containing opioids and adrenergic α2C receptors

    PubMed Central

    Marvizón, Juan Carlos G.; Pérez, Orlando A.; Song, Bingbing; Chen, Wenling; Bunnett, Nigel W.; Grady, Eileen F.; Todd, Andrew J.

    2008-01-01

    Calcitonin-gene related peptide (CGRP) is abundant in the central terminals of primary afferents. However, the function of CGRP receptors in the spinal cord remains unclear. CGRP receptors are heterodimers of calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1). We studied the localization of CRLR and RAMP1 in the rat dorsal horn using well-characterized antibodies against them, which labeled numerous puncta in laminae I–II. In addition, RAMP1 was found in cell bodies, forming patches at the cell surface. The CRLR- and RAMP1-immunoreactive puncta were further characterized using double and triple labeling. Colocalization was quantified in confocal stacks using Imaris software. CRLR did not colocalize with primary afferent markers, indicating that these puncta were not primary afferent terminals. CRLR- and RAMP1-immunoreactive puncta contained synaptophysin and vesicular glutamate transporter-2 (VGLUT2), showing that they were glutamatergic presynaptic terminals. Electron microscopic immunohistochemistry confirmed that CRLR immunoreactivity was present in axonal boutons that were not in synaptic glomeruli. Using tyramide signal amplification for double labeling with the CRLR and RAMP1 antibodies, we found some clear instances of colocalization of CRLR with RAMP1 in puncta, but their overall colocalization was low. In particular, CRLR was absent from RAMP1-containing cells. Many of the puncta stained for CRLR and RAMP1 were labeled by anti-opioid and anti-enkephalin antibodies. CRLR and, to a lesser extent, RAMP1 also colocalized with adrenergic a2C receptors. Triple label studies demonstrated three-way colocalization of CRLR-VGLUT2-synaptophysin, CRLR-VGLUT2-opioids, and CRLR-opioids-a2C receptors. In conclusion, CRLR is located in glutamatergic presynaptic terminals in the dorsal horn that contain a2C adrenergic receptors and opioids. Some of these terminals contain RAMP1, which may form CGRP receptors with CRLR, but in

  18. The β1 adrenergic effects of antibodies against the C-terminal end of the ribosomal P2β protein of Trypanosoma cruzi associate with a specific pattern of epitope recognition

    PubMed Central

    Bergami, P Lopez; Gómez, KA; Levy, GV; Grippo, V; Baldi, A; Levin, MJ

    2005-01-01

    BALB/c mice immunized with recombinant Trypanosoma cruzi ribosomal P2β protein (TcP2β) develop a strong and specific antibody response against its 13 residue-long C-terminal epitope (peptide R13: EEEDDDMGFGLFD) that has a concomitant β1-adrenergic stimulating activity. However, other animals that undergo similar immunizations seem tolerant to this epitope. To evaluate further the antibody response against the ribosomal P proteins, 25 BALB/c and 25 Swiss mice were immunized with TcP2β. From the 50 animals, 31 developed a positive anti-R13 response, whereas 19 were non-responsive. From the 31 anti-R13 positive mice, 25 had anti-R13 antibodies that recognized the discontinuous motif ExDDxGF, and their presence correlated with the recording of supraventricular tachycardia. The other six had anti-R13 antibodies but with a normal electrocardiographic recording. These anti-R13 antibodies recognized the motif DDxGF shared by mammals and T. cruzi and proved to be a true anti-P autoantibody because they were similar to those elicited in Swiss, but not in BALB/c mice, by immunization with the C-terminal portion of the mouse ribosomal P protein. Our results show that the recognition of the glutamic acid in position 3 of peptide R13 defines the ability of anti-R13 antibodies to react with the motif AESDE of the second extracellular loop of the β1-adrenergic receptor, setting the molecular basis for their pathogenic β1 adrenoceptor stimulating activity. PMID:16178868

  19. Functional selectivity and time-dependence of μ-opioid receptor desensitization at nerve terminals in the mouse ventral tegmental area

    PubMed Central

    Lowe, J D; Bailey, C P

    2015-01-01

    BACKGROUND AND PURPOSE The majority of studies examining desensitization of the μ-opioid receptor (MOR) have examined those located at cell bodies. However, MORs are extensively expressed at nerve terminals throughout the mammalian nervous system. This study is designed to investigate agonist-induced MOR desensitization at nerve terminals in the mouse ventral tegmental area (VTA). EXPERIMENTAL APPROACH MOR function was measured in mature mouse brain slices containing the VTA using whole-cell patch-clamp electrophysiology. Presynaptic MOR function was isolated from postsynaptic function and the functional selectivity, time-dependence and mechanisms of agonist-induced MOR desensitization were examined. KEY RESULTS MORs located at GABAergic nerve terminals in the VTA were completely resistant to rapid desensitization induced by the high-efficacy agonists DAMGO and Met-enkephalin. MORs located postsynaptically on GABAergic cell bodies readily underwent rapid desensitization in response to DAMGO. However, after prolonged (>7 h) treatment with Met-enkephalin, profound homologous MOR desensitization was observed. Morphine could induce rapid MOR desensitization at nerve terminals when PKC was activated. CONCLUSIONS AND IMPLICATIONS Agonist-induced MOR desensitization in GABAergic neurons in the VTA is compartment-selective as well as agonist-selective. When MORs are located at cell bodies, higher-efficacy agonists induce greater levels of rapid desensitization than lower-efficacy agonists. However, the converse is true at nerve terminals where agonists that induce MOR desensitization via PKC are capable of rapid agonist-induced desensitization while higher-efficacy agonists are not. MOR desensitization induced by higher-efficacy agonists at nerve terminals only takes place after prolonged receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http

  20. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin.

    PubMed

    Bulc, Michał; Lewczuk, Bogdan; Prusik, Magdalena; Całka, Jarosław

    2013-05-01

    Innervation of the mammalian pineal gland during prenatal development is poorly recognized. Therefore, immunofluorescence studies of the pineals of 70- and 90-day-old foetuses of the domestic pig were performed using antibodies against tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON). The investigated glands were supplied by numerous nerve fibres containing TH and DβH. The density of these fibres was higher in the distal and middle parts of the gland than in the proximal one. NPY and CPON were identified in the majority of DβH-positive fibres as well as in a small population of DβH-negative fibres localized mainly in the proximal part of the pineal. The immunoreactive fibres were more numerous in 90-day-old foetuses than in 70-day-old ones. The effect of norepinephrine on melatonin secretion by the foetal pineals in the short-term organ culture was studied to determine the role of DβH-positive fibres during prenatal life. For the same purpose melatonin was measured in the blood in the umbilical cords and in the jugular vein of the mother. The pineals of both groups of foetuses did not secrete melatonin in the organ culture, independently of the presence or absence of norepinephrine in the medium. Melatonin concentrations in the blood in the umbilical cords of foetuses from the same litter and in the jugular vein of their mother were similar. The presence of adrenergic nerve fibres in the pig pineal during gestation does not seem to be associated with the control of melatonin secretion.

  1. Probabilistic secretion of quanta at somatic motor-nerve terminals: the fusion-pore model, quantal detection and autoinhibition.

    PubMed

    Thomson, P C; Lavidis, N A; Robinson, J; Bennett, M R

    1995-08-29

    The probability of detecting first, second, and later quanta secreted at release sites of a motor-nerve terminal during the early release period following a nerve impulse has been addressed. The possibility that early quantal release autoinhibits later quantal release during this period has also been ascertained. In this investigation, a model for the secretion of a quantum at a release site is developed in which, following the influx and diffusion of calcium ions to a release site protein associated with synaptic vesicles, kappa steps of association of the ions with the protein then occur at rate alpha. The release site protein then undergoes a conformational change which may not go on to completion if calcium ions dissociate from the protein at rate gamma. If this process does reach completion then a fusion-pore between the vesicle and the presynaptic membrane is created; this happens at rate delta. Key assumptions of this fusion-pore model are that the quantal secretions from each site are independent of each other, and that there is a large number of vesicles, each with a small probability of secretion, so that the number of secretions is Poisson in nature. These assumptions allow analytical expressions to be obtained for predicting the times at which first, second and later quanta are secreted during the early release period following an impulse. To test the model, experiments were performed in which the times of first, second and later quantal releases were determined at discrete regions along the length of visualized motor-terminal branches in toad (Bufo marinus) muscles. Estimates of model rate constants and of kappa from the times for first quantal secretions failed to give satisfactory predictions of the observed times of later secretions. Therefore, either the model fails, or the procedure used for detecting later quantal events as a consequence of their being masked by earlier quantal events is inadequate. To solve this detection problem, a two

  2. Early Exposure to General Anesthesia Disrupts Spatial Organization of Presynaptic Vesicles in Nerve Terminals of the Developing Rat Subiculum.

    PubMed

    Lunardi, N; Oklopcic, A; Prillaman, M; Erisir, A; Jevtovic-Todorovic, V

    2015-10-01

    Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum.

  3. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.

    PubMed Central

    Wang, G; Thorn, P; Lemos, J R

    1992-01-01

    1. Nerve terminals of the rat posterior pituitary were acutely dissociated and identified using a combination of morphological and immunohistochemical techniques. Terminal membrane currents were studied using the 'whole-cell' patch clamp technique and channels were studied using inside-out and outside-out patches. 2. In physiological solutions, but with 7 mM 4-aminopyridine (4-AP), depolarizing voltage clamp steps from different holding potentials (-90 or -50 mV) elicited a fast, inward current followed by a slow, sustained, outward current. This outward current did not appear to show any steady-state inactivation. 3. The threshold for activation of the outward current was -30 mV and the current-voltage relation was 'bell-shaped'. The amplitude increased with increasingly depolarized potential steps. The outward current reversal potential was measured using tail current analysis and was consistent with that of a potassium current. 4. The sustained potassium current was determined to be dependent on the concentration of intracellular calcium. Extracellular Cd2+ (80 microM), a calcium channel blocker, also reversibly abolished the outward current. 5. The current was delayed in onset and was sustained over the length of a 150 ms-duration depolarizing pulse. The outward current reached a peak plateau and then decayed slowly. The decay was fitted by a single exponential with a time constant of 9.0 +/- 2.2 s. The decay constants did not show a dependence on voltage but rather on intracellular Ca2+. The time course of recovery from this decay was complex with full recovery taking > 190 s. 6. 4-AP (7 mM), dendrotoxin (100 nM), apamin (40-80 nM), and charybdotoxin (10-100 nM) had no effect on the sustained outward current. In contrast Ba2+ (200 microM) and tetraethylammonium inhibited the current, the latter in a dose-dependent manner (apparent concentration giving 50% of maximal inhibition (IC50) = 0.51 mM). 7. The neurohypophysial terminal outward current recorded here

  4. The effect of calcium ions on the binomial statistic parameters that control acetylcholine release at preganglionic nerve terminals.

    PubMed Central

    Bennett, M R; Florin, T; Pettigrew, A G

    1976-01-01

    1. A study has been made of the effects of changing [Ca]O and [Mg]O on the binomial statistic parameters p and n that control the average quantal content (m) of the excitatory post-synaptic potential (e.p.s.p.) due to acetylcholine release at preganglionic nerve terminals. 2. When [Ca]O was increased in the range from 0-2 to 0-5 mM, p increased as the first power of [Ca]O whereas n increased as the 0-5 power of [Ca]O; when [Mg]O was increased in the range from 5 to 200 mM, p decreased as the first power of [Mg]O whereas n decreased as the 0-5 power of [Mg]O. 3. The increase in quantal release of a test impulse following a conditioning impulse was primarily due to an increase in n; the increase in quantal content of successive e.p.s.p.s in a short train was due to an increase in n and p, and the increase in n was quantitatively described in terms of the accumulation of a Ca-receptor complex in the nerve terminal. 4. The decrease in quantal content of successive e.p.s.p.s during long trains of impulses over several minutes was primarily due to a decrease in n. These results are discussed in terms of an hypothesis concerning the physical basis of n and p in the release process. PMID:181562

  5. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    PubMed Central

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  6. Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins

    NASA Technical Reports Server (NTRS)

    Kashani, A. H.; Chen, B. M.; Grinnell, A. D.

    2001-01-01

    Hyperosmotic solutions cause markedly enhanced spontaneous quantal release of neurotransmitter from many nerve terminals. The mechanism of this enhancement is unknown. We have investigated this phenomenon at the frog neuromuscular junction with the aim of determining the degree to which it resembles the modulation of release by stretch, which has been shown to be mediated by mechanical tension on integrins.The hypertonicity enhancement, like the stretch effect, does not require Ca2+ influx or release from internal stores, although internal release may contribute to the effect. The hypertonicity effect is sharply reduced (but not eliminated) by peptides containing the RGD sequence, which compete with native ligands for integrin bonds.There is co-variance in the magnitude of the stretch and osmotic effects; that is, individual terminals exhibiting a large stretch effect also show strong enhancement by hypertonicity, and vice versa. The stretch and osmotic enhancements also can partially occlude each other.There remain some clear-cut differences between osmotic and stretch forms of modulation: the larger range of enhancement by hypertonic solutions, the relative lack of effect of osmolarity on evoked release, and the reported higher temperature sensitivity of osmotic enhancement. Nevertheless, our data strongly implicate integrins in a significant fraction of the osmotic enhancement, possibly acting via the same mechanism as stretch modulation.

  7. Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon

    PubMed Central

    Chen, Chunsheng; Lyte, Mark; Stevens, Mark P.; Vulchanova, Lucy; Brown, David R.

    2008-01-01

    The sympathetic neurotransmitter norepinephrine has been found to increase mucosal adherence of enterohemorrhagic Escherichia coli O157:H7 in explants of murine cecum and porcine distal colon. In the present study, we tested the hypothesis that norepinephrine augments the initial, loose adherence of this important pathogen to the intestinal mucosa. In mucosal sheets of porcine cecum or proximal, spiral and distal colon mounted in Ussing chambers, norepinephrine (10 µM, contraluminal addition) increased mucosal adherence of wild-type E. coli O157:H7 strain 85–170; in the cecal mucosa, this effect occurred within 15 – 90 min after bacterial inoculation. In addition, norepinephrine transiently increased short-circuit current in cecal and colonic mucosal sheets, a measure of active anion transport. Norepinephrine was effective in promoting cecal adherence of a non-O157 E. coli strain as well as E. coli O157:H7 eae or espA mutant strains that are incapable of intimate mucosal attachment. Nerve fibers immunoreactive for the norepinephrine synthetic enzyme dopamine β-hydroxylase appeared in close proximity to the cecal epithelium, and the norepinephrine reuptake blocker cocaine, like norepinephrine and the selective α2-adrenoceptor agonist UK-14,304, increased E. coli O157:H7 adherence. These results suggest that norepinephrine, acting upon the large bowel mucosa, modulates early, non-intimate adherence of E. coli O157:H7 and probably other mucosa-associated bacteria. Sympathetic nerves innervating the cecocolonic mucosa may link acute stress exposure or psychostimulant abuse with an increased microbial colonization of the intestinal surface. This in turn may alter host susceptibility to enteric infections. PMID:16687138

  8. Fibroblast Growth Factor 22 Contributes to the Development of Retinal Nerve Terminals in the Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Singh, Rishabh; Su, Jianmin; Brooks, Justin; Terauchi, Akiko; Umemori, Hisashi; Fox, Michael A.

    2012-01-01

    At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses. PMID:22363257

  9. Regulation and function of the alpha/sub 2/ adrenergic autoreceptor in the central nervous system

    SciTech Connect

    Spengler, R.N.

    1987-01-01

    The purpose of this investigation was to determine whether changes observed in the number of alpha/sub 2/ adrenergic receptors in the brain as measured by radioligand binding experiments reflect changes in the function of alpha/sub 2/ autoregulatory receptors which are located on noradrenergic nerve terminals. Inhibition by clonidine of field stimulated /sup 3/H-norepinephrine (/sup 3/H-NE) release from rat hippocampal slices before and after several drug treatments was analyzed to investigate changes in alpha/sub 2/ adrenergic receptor function. Clonidine in a concentration-dependent manner inhibited /sup 3/H-NE release. The effect of clonidine was blocked by the specific alpha/sub 2/ adrenergic receptor antagonist, idazoxan. The cumulative administration of clonidine generated a smooth and well-fitted log-concentration-effect curve. Results are presented which demonstrate that this technique can be employed to investigate the role of changes in the function of the alpha/sub 2/ autoregulatory receptor. The present investigation also examined representatives of four drug classes which have been shown to alter the specific binding of /sup 3/H-clonidine to neural membranes to determine whether changes in the alpha/sub 2/ autoregulatory receptor function also occur.

  10. Effects of S14001 on adrenergic neuroeffector interaction in isolated canine saphenous veins.

    PubMed

    Hoshino, Y; Verbeuren, T J; Hughes, H; Vanhoutte, P M

    1992-09-01

    1. The effects of (S) fluoro-6 (morpholinyl-2 methoxy)-8-tetrahydro-1,2,3,4 quinoleine (S14001) on adrenergic neurotransmission in isolated canine saphenous veins were investigated in experiments which measured the accumulation, overflow and metabolism of 3H-norepinephrine. 2. S14001 inhibited the accumulation of total tritium (3H-norepinephrine and 3H-metabolites of norepinephrine) in a concentration-dependent manner. 3. Under basal conditions, S14001 increased tension and basal effiux of total tritium; the latter consisted predominantly of 3H-DOPEG. The increases in these parameters were not inhibited by desmethylimipramine (DMI). 4. During electrical stimulation, S14001 increased the contraction and overflow of total tritium; the latter consisted predominantly of 3H-DOPEG. The increases in these parameters were inhibited by DMI. 5. These experiments suggest that S14001 has dual effects on adrenergic neurotransmission in the canine saphenous vein: (a) an inhibitory action on the neuronal accumulation; and (b) a pharmacological displacement of the transmitter from adrenergic nerve terminals.

  11. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal

    PubMed Central

    Sun, Xiao-Ping; Schlichter, Lyanne C; Stanley, Elis F

    1999-01-01

    A high-conductance calcium-activated potassium channel (BK KCa) was characterized at a cholinergic presynaptic nerve terminal using the calyx synapse isolated from the chick ciliary ganglion.The channel had a conductance of 210 pS in a 150 mM:150 mM K+ gradient, was highly selective for K+ over Na+, and was sensitive to block by external charybdotoxin or tetraethylammonium (TEA) and by internal Ba2+. At +60 mV it was activated by cytoplasmic calcium [Ca2+]i with a Kd of ≈0.5 μM and a Hill coefficient of ≈2.0. At 10 μM [Ca2+]i the channel was 50 % activated (V½) at -8.0 mV with a voltage dependence (Boltzmann slope-factor) of 32.7 mV. The V½ values hyperpolarized with an increase in [Ca2+]i while the slope factors decreased. There were no overt differences in conductance or [Ca2+]i sensitivity between BK channels from the transmitter release face and the non-release face.Open and closed times were fitted by two and three exponentials, respectively. The slow time constants were strongly affected by both [Ca2+]i and membrane potential changes.In cell-attached patch recordings BK channel opening was enhanced by a prepulse permissive for calcium influx through the patch, suggesting that the channel can be activated by calcium ion influx through neighbouring calcium channels.The properties of the presynaptic BK channel are well suited for rapid activation during the presynaptic depolarization and Ca2+ influx that are associated with transmitter release. This channel may play an important role in terminating release by rapid repolarization of the action potential. PMID:10420003

  12. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner

    PubMed Central

    Cijsouw, Tony; Weber, Jens P.; Broeke, Jurjen H.; Broek, Jantine A.C.; Schut, Desiree; Kroon, Tim; Saarloos, Ingrid

    2014-01-01

    Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon–synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity. PMID:24590174

  13. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner.

    PubMed

    Cijsouw, Tony; Weber, Jens P; Broeke, Jurjen H; Broek, Jantine A C; Schut, Desiree; Kroon, Tim; Saarloos, Ingrid; Verhage, Matthijs; Toonen, Ruud F

    2014-03-03

    Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon-synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.

  14. α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals

    PubMed Central

    Wu, Xin-Sheng; Sheng, Jiansong; Zhang, Zhen; Yue, Hai-Yuan; Sun, Lixin; Sgobio, Carmelo; Lin, Xian; Peng, Shiyong; Jin, Yinghui; Gan, Lin; Wu, Ling-Gang

    2016-01-01

    α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53T in calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration. SIGNIFICANCE STATEMENT α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration. PMID:27098685

  15. Kinetic characterization of ecto-nucleoside triphosphate diphosphohydrolases in brain nerve terminals during rat postnatal development

    NASA Astrophysics Data System (ADS)

    Stanojević, I.; Drakulić, D.; Petrović, S.; Milošević, M.; Jovanović, N.; Horvat, A.

    2011-12-01

    A family of enzymes named ecto-nucleoside triphosphate diphosphohydrolase (NTPDases) catalyzes the termination of ATP and ADP actions. Three different NTPDases (NTPDase 1-3), differing in their preference for a substrate, have been localized in the brain of adult mammals. The goal of our study was to clarify ATP and ADP hydrolyzing activities and kinetic parameters of NTPDases in synaptic plasma membranes (SPM) isolated from 15-, 30-, 60- and 90-days-old female rat brains. ATP and ADP hydrolysis were maximal in the presence of Mg2+ and showed insensitivity to ion-transporting ATPase inhibitors. The pronounced increase in both, ATP and ADP hydrolysis, were found in the SPM isolated from rats in the first month of life, stayed at the same level in the second month, and then decreased in adulthood. Kinetic analysis are also developmental-dependent, and together with the rate of ATP:ADP hydrolysis, point that all three NTPDases are present in SPM isolated from different developmental stages, with different, developmental-dependent proportion of activities. The lowest velocity and the highest affinity were observed for ATP hydrolyses, while the highest velocity and lowest affinity were detected for ADP hydrolyses in SPM isolated from 15-day old rats. Since specific ATP and ADP hydrolysis were lowest in this stage, we concluded that velocity is crucial for ATPase-, while affinity is for ADPase-part of NTPDases. Increased NTPDases activities, changes in their hydrolysis velocity and substrates affinities during rat postnatal development indicate involvement of adenine nucleotides in processes implicated to neuronal maturation and augmented neuroprotection.

  16. The Structure of the Synaptic Vesicle-Plasma Membrane Interface Constrains SNARE Models of Rapid, Synchronous Exocytosis at Nerve Terminals

    PubMed Central

    Gundersen, Cameron B.

    2017-01-01

    Contemporary models of neurotransmitter release invoke direct or indirect interactions between the Ca2+ sensor, synaptotagmin and the incompletely zippered soluble, N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) complex. However, recent electron microscopic (EM) investigations have raised pragmatic issues concerning the mechanism by which SNAREs trigger membrane fusion at nerve terminals. The first issue is related to the finding that the area of contact between a “fully primed” synaptic vesicle and the plasma membrane can exceed 600 nm2. Approximately four-thousands lipid molecules can inhabit this contact zone. Thus, renewed efforts will be needed to explain how the zippering of as few as two SNARE complexes mobilizes these lipids to achieve membrane fusion. The second issue emerges from the finding that “docking filaments” are sandwiched within the area of vesicle-plasma membrane contact. It is challenging to reconcile the location of these filaments with SNARE models of exocytosis. Instead, this commentary outlines how these data are more compatible with a model in which a cluster of synaptotagmins catalyzes exocytotic membrane fusion. PMID:28280457

  17. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin.

    PubMed

    Edupuganti, Om P; Ovsepian, Saak V; Wang, Jiafu; Zurawski, Tomas H; Schmidt, James J; Smith, Leonard; Lawrence, Gary W; Dolly, J Oliver

    2012-07-01

    A targeted drug carrier (TDC) is described for transferring functional proteins or peptides into motor nerve terminals, a pivotal locus for therapeutics to treat neuromuscular disorders. It exploits the pronounced selectivity of botulinum neurotoxin type B (BoNT/B) for interacting with acceptors on these cholinergic nerve endings and becoming internalized. The gene encoding an innocuous BoNT/B protease-inactive mutant (BoTIM) was fused to that for core streptavidin, expressed in Escherichia coli and the purified protein was conjugated to surface-biotinylated liposomes. Such decorated liposomes, loaded with fluorescein as traceable cargo, acquired pronounced specificity for motor nerve terminals in isolated mouse hemidiaphragms and facilitated the intraneuronal transfer of the fluor, as revealed by confocal microscopy. Delivery of the protease light chain of botulinum neurotoxin type A (BoNT/A) via this TDC accelerated the onset of neuromuscular paralysis, indicative of improved translocation of this enzyme into the presynaptic cytosol with subsequent proteolytic inactivation of synaptosomal-associated protein of molecular mass 25 kDa (SNAP-25), an exocytotic soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) essential for neurotransmitter release. BoTIM-coupled liposomes, loaded with peptide inhibitors of proteases, yielded considerable attenuation of the neuroparalytic effects of BoNT/A or BoNT/F as a result of their cytosolic transfer, the first in situ demonstration of the ability of designer antiproteases to suppress the symptoms of botulism ex vivo. Delivery of the BoNT/A inhibitor by liposomes targeted with the full-length BoTIM proved more effective than that mediated by its C-terminal neuroacceptor-binding domain. This demonstrated versatility of TDC for nonviral cargo transfer into cholinergic nerve endings has unveiled its potential for direct delivery of functional targets into motor nerve endings.

  18. Occlusion of carotid artery and hypergravity loading of animals caused similar effects on L-[14C]glutamate uptake in rat brain nerve terminals

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Sivko, Roman; Krisanova, Natalia

    Changes in sodium-dependent L-[14C]glutamate uptake in rat brain nerve terminals was com-paratively analysed after hypergravity loading of animals (centrifugation of rats in special con-tainers at 10 G for 1 hour) and unilateral occlusion of carotid artery (20 min). The initial velocity of L-[14C]glutamate uptake was decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins after hypergravity and after occlusion -up to 2.25 ± 0.1 nmol x min-1 x mg-1 of proteins. Recently, we have shown that a decrease in L-[14C]glutamate uptake was at least partially caused by the redaction in the membrane potential of nerve terminals and the proton gradient of synaptic vesicles. These parameters were analysed after unilateral occlusion of carotid artery, where one brain hemisphere was used as a control, whereas the second one as subjected to ischemic/hypoxic conditions. Similarly with hypergravity, we revealed a decrease in the membrane potential of nerve terminals by ˜ 10 % and a reduction of the proton gradient of synaptic vesicles by ˜ 5 % after occlusion of carotid artery. Thus, a decrease in the activity of glutamate transporters after hypergrav-ity and unilateral occlusion of carotid artery was at least partially caused by changes in the membrane potential of nerve terminals and the proton gradient of synaptic vesicles. This fact may be considered in support of the suggestion that ischemia/hypoxia was a main unspecific stressor, which caused the alterations in glutamatergic neurotransmission under conditions of hypergravity.

  19. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro.

    PubMed Central

    Blaustein, M P

    1975-01-01

    1. 45-Ca uptake by pinched-off nerve terminals (synaptosomes) of rat brain incubated in standard physiological saline (including 132 mM-Na + 5mM-K + 1-2 mM-Ca) at 30 degrees C averages about 0-5 mumole Ca per g protein per minute. This may be equivalent to a Ca influx of about 0-03 p-mole/cm-2 sec. 2. The rate of 45-Ca uptake is increased when the concentration of K in the medium is increased above 15-20 mM, K replacing Na isosmotically. Maximum stimulation, a three- to six-fold increase in the rate of Ca uptake, occurs when [K]o is about 60 mM. The effect of increased [K]o is reversible. 3. The K-stimulated Ca uptake is associated primarily with the nerve terminal fraction of brain homogenates. The entering Ca is not accompanied by extracellular markers such as mannitol or inulin. Replacement of external chloride by methylsulphate or sulphate does not prevent the stimulation by K. 4. The effects of external K are quantitatively mimicked by Rb. Caesium also stimulates Ca uptake, but is only about one fifth as effective as K or Rb; Li is ineffective. 5. Two other depolarizing agents also stimulate Ca uptake by synaptosomes: veratridine (7-5 times 10- minus 6 to 7-5 times 10- minus 5 M) and scorpion (Leirus quinquestriatus) venom (6-7 times 10- minus 7 to 6-7 times 10- minus g/ml.). The stimulatory effects of veratridine and scorpion venom, but not of increased [K] are blocked by 2 times 10- minus 7 M tetrodotoxin. 6. Internal K also influences the rate of 45-Ca uptake by synaptosomes: lowering [K]i reduces the stimulatory effect of external K and veratridine. 7. Replacement of external Na by choline markedly inhibits the response to veratridine, but has a much smaller effect on the response to increased [K]o. 8. The Ca uptake mechanism has an apparent dissociation constant for Ca (KCa) of about 0-8 mM. Increasing [K]o increases the maximal rate of Ca uptake, but has no effect on KCa. The K-induced 45-Ca uptake is competitively inhibited by Mg-2+, Mn-2+ and La-3+. 9

  20. Acetylcholine and ATP are coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism.

    PubMed

    Unsworth, C D; Johnson, R G

    1990-01-01

    Although the exocytotic mechanism for quantal acetylcholine (ACh) release has been widely accepted for many years, it has repeatedly been challenged by reports that ACh released upon stimulation originates from the cytosol rather than synaptic vesicles. In this report, two independent experimental approaches were taken to establish the source of ACh released from the electromotor system of Narcine brasiliensis. Since ATP is colocalized with ACh in the cholinergic vesicle, the exocytotic theory predicts the corelease of these two components with a stoichiometry identical to that of the vesicle contents. The stimulated release of ATP from isolated synaptosomes could be accurately quantitated in the presence of the ATPase inhibitor adenosine 5'-[alpha, beta-methylene]triphosphate (500 microM), which prevented degradation of the released ATP. Various concentrations of elevated extracellular potassium (25-75 mM), veratridine (100 microM), and the calcium ionophore ionomycin (5 microM) all induced the corelease of ACh and ATP in a constant molar ratio of 5-6:1 (ACh/ATP), a stoichiometry consistent with that established for the vesicle content. In parallel to these stoichiometry studies, the compound 2-(4-phenylpiperidino)cyclohexanol (AH5183) was used to inhibit specifically the vesicular accumulation of newly synthesized (radiolabeled) ACh without affecting cytosolic levels of newly synthesized ACh in cholinergic nerve terminals. Treatment with AH5183 (10 microM) was shown to inhibit the release of newly synthesized ACh without markedly affecting total ACh release; thus, the entry of newly synthesized ACh into the synaptic vesicle is essential for its release. We conclude that ACh released upon stimulation originates exclusively from the vesicular pool and is coreleased stoichiometrically with other soluble vesicle contents.

  1. Pyridoxine inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex: a possible neuroprotective mechanism?

    PubMed

    Yang, Tsung-Tair; Wang, Su-Jane

    2009-10-01

    Pyridoxine (vitamin B(6)) protects neurons against neurotoxicity. An excessive release of glutamate is widely considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. We investigated whether pyridoxine affected glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Pyridoxine inhibited the release of glutamate that was evoked by exposing synaptosomes to the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent. Inhibition of glutamate release by pyridoxine was prevented by the vesicular transporter inhibitor bafilomycin A1, or by chelating intraterminal Ca(2+), but was insensitive to DL-threo-beta-benzyl-oxyaspartate, a glutamate transporter inhibitor. Pyridoxine did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization. Examination of the effect of pyridoxine on cytosolic [Ca(2+)] revealed that diminution of glutamate release could be attributed to a reduction in voltage-dependent Ca(2+) influx. Consistent with this, the pyridoxine-mediated inhibition of glutamate release was completely prevented by blocking the N- and P/Q-type Ca(2+) channels, but not by blocking intracellular Ca(2+) release or Na(+)/Ca(2+) exchange. Furthermore, the pyridoxine effect on 4-AP-evoked glutamate release was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I (GF109203X) or bisindolylmaleimide IX (Ro318220), and pyridoxine significantly decreased the 4-AP-induced phosphorylation of PKC, PKCalpha, and myristoylated alanine-rich C kinase substrate. Together, these results suggest that pyridoxine inhibits glutamate release from rat cortical synaptosomes, through the suppression of presynaptic voltage-dependent Ca(2+) entry and PKC activity.

  2. The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals.

    PubMed

    Bogen, Inger Lise; Haug, Kristin Huse; Roberg, Bjørg; Fonnum, Frode; Walaas, S Ivar

    2009-01-01

    The aim of this study was to examine the importance of the vesicle-associated synapsin I and II phosphoproteins for the accumulation of neurotransmitters in central cholinergic as compared to central glutamatergic and GABAergic nerve terminals. In brain homogenate samples from mice devoid of synapsin I and II, the levels of vesicular transporters for glutamate (VGLUT1-2) and GABA (VGAT) were decreased by 35-40% in striatum and cortex, while no change was apparent for the vesicular acetylcholine transporter (VAChT). The severe decrease in the levels of amino acid vesicular transporters caused only minor changes in the concentrations of the respective neurotransmitters in homogenates of the three selected brain areas from synapsin I- and II-deficient mice. However, when measured in a crude vesicular fraction, the concentrations of glutamate and GABA were decreased by 48-60% in synapsin-deficient mice, with a similar decrease in the levels of VGLUT1, VGLUT2 and VGAT. In comparison, the concentration of acetylcholine and the level of VAChT were not significantly different from wild-type in the vesicular fraction. No changes were seen in the activity of specific enzymes involved in the synthesis of acetylcholine, glutamate or GABA, however, immunoblotting indicated a decrease in the protein level of glutamic acid decarboxylase, isoform 65 (GAD(65)). In conclusion, the results indicate that neurotransmitter regulation in central cholinergic synapses may be less dependent on synapsin I and II compared to the marked alterations seen in the glutamatergic and GABAergic synapses.

  3. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors.

  4. The adrenergic-neurone blocking action of some coumaran compounds

    PubMed Central

    Fielden, R.; Roe, A. M.; Willey, G. L.

    1964-01-01

    Ethyldimethyl(7-methylcoumaran-3-yl)ammonium iodide (SK&F 90,109) and its guanidine analogue [N-(7-methylcoumaran-3-yl)guanidine nitrate] (SK&F 90,238) abolish the effects of adrenergic nerve stimulation in cats, as do xylocholine and bretylium. SK&F 90,109 has slight sympathomimetic actions; these are less marked than in SK&F 90,238. Large doses of SK&F 90,109 have an action, dependent on local noradrenaline stores, that delays the appearance of adrenergic-neurone blockade in conscious cats. Responses to adrenaline are, in general, enhanced by each drug, but SK&F 90,238 transiently antagonizes tachycardia induced by adrenaline and isoprenaline. Both drugs inhibit the release of noradrenaline from the spleen during splenic nerve stimulation, but the release of catechol amines from the adrenal glands, in response to electrical or chemical stimulation, is unimpaired. In contrast to the prolonged adrenergic-neurone blocking action, any inhibition of the effects of cholinergic nerve stimulation is transient. Large intravenous doses produce neuromuscular blockade. The compounds have a slight central depressant action. In contrast to reserpine and guanethidine the noradrenaline content of rat hearts is not appreciably lowered 24 hr after a single dose of either drug. Unlike xylocholine they are not local anaesthetics. Related compounds also block the effects of adrenergic-nerve stimulation. The possible modes of action of these drugs are discussed. PMID:14256809

  5. Contrasting effects of presynaptic alpha2-adrenergic autoinhibition and pharmacologic augmentation of presynaptic inhibition on sympathetic heart rate control.

    PubMed

    Miyamoto, Tadayoshi; Kawada, Toru; Yanagiya, Yusuke; Akiyama, Tsuyoshi; Kamiya, Atsunori; Mizuno, Masaki; Takaki, Hiroshi; Sunagawa, Kenji; Sugimachi, Masaru

    2008-11-01

    Presynaptic alpha2-adrenergic receptors are known to exert feedback inhibition on norepinephrine release from the sympathetic nerve terminals. To elucidate the dynamic characteristics of the inhibition, we stimulated the right cardiac sympathetic nerve according to a binary white noise signal while measuring heart rate (HR) in anesthetized rabbits (n = 6). We estimated the transfer function from cardiac sympathetic nerve stimulation to HR and the corresponding step response of HR, with and without the blockade of presynaptic inhibition by yohimbine (1 mg/kg followed by 0.1 mg.kg(-1).h(-1) iv). We also examined the effect of the alpha2-adrenergic receptor agonist clonidine (0.3 and 1.5 mg.kg(-1).h(-1) iv) in different rabbits (n = 5). Yohimbine increased the maximum step response (from 7.2 +/- 0.8 to 12.2 +/- 1.7 beats/min, means +/- SE, P < 0.05) without significantly affecting the initial slope (0.93 +/- 0.23 vs. 0.94 +/- 0.22 beats.min(-1).s(-1)). Higher dose but not lower dose clonidine significantly decreased the maximum step response (from 6.3 +/- 0.8 to 6.8 +/- 1.0 and 2.8 +/- 0.5 beats/min, P < 0.05) and also reduced the initial slope (from 0.56 +/- 0.07 to 0.51 +/- 0.04 and 0.22 +/- 0.06 beats.min(-1).s(-1), P < 0.05). Our findings indicate that presynaptic alpha2-adrenergic autoinhibition limits the maximum response without significantly compromising the rapidity of effector response. In contrast, pharmacologic augmentation of the presynaptic inhibition not only attenuates the maximum response but also results in a sluggish effector response.

  6. Differing effects of transport inhibitor on glutamate uptake by nerve terminals before and after exposure of rats to artificial gravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.; Himmelreich, N.

    Glutamate is the major excitatory neurotransmitter in the brain. Subsequent to its release from glutamatergic neurons and activation of receptors, it is removed from extracellular space by high affinity Na^+-dependent glutamate transporters, which utilize the Na^+/K^+ electrochemical gradient as a driving force and located in nerve terminals and astrocytes. The glutamate transporters may modify the time course of synaptic events. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity (e.g. cerebral ischemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia). The present study assessed transporter inhibitor for the ability to inhibit glutamate uptake by synaptosomes at the normal and hypergravity conditions (rats were rotated in a long-arm centrifuge at ten-G during one-hour period). DL-threo-beta-benzyloxyaspartate (DL-TBOA) is a newly developed competitive inhibitor of the high-affinity, Na^+-dependent glutamate transporters. As a potent, non- transported inhibitor of glutamate transporters, DL-TBOA promises to be a valuable new compound for the study of glutamatergic mechanisms. We demonstrated that DL-TBOA inhibited glutamate uptake ( 100 μM glutamate, 30 sec incubation period) in dose-dependent manner as in control as in hypergravity. The effect of this transport inhibitor on glutamate uptake by control synaptosomes and synaptosomes prepared of animals exposed to hypergravity was different. IC50 values calculated on the basis of curves of non-linear regression kinetic analysis was 18±2 μM and 11±2 μM ((P≤0,05) before and after exposure to artificial gravity, respectively. Inhibition caused by 10 μM DL-TBOA was significantly increased from 38,0±3,8 % in control group to 51,0±4,1 % in animals, exposed to hypergravity (P≤0,05). Thus, DL-TBOA had complex effect on glutamate uptake process and perhaps, became more potent under

  7. Radiolabeled meta-iodobenzylguanidine and the adrenergic neurons of salivary glands

    SciTech Connect

    Sisson, J.C.; Wieland, D.M.; Jaques, S. Jr.; Sherman, P.; Fisher, S.; Mallette, S.; Meyers, L.; Mangner, T.J.

    1987-01-01

    The handling of radiolabeled meta-iodobenzylguanidine (MIBG) by salivary glands was evaluated. In the submaxillary glands of rats, the uptake of 125I-MIBG was decreased after 1) nerve injury induced by 6-hydroxydopamine, 2) inhibition of the uptake-1 pathway by desmethylimipramine, and 3) surgical denervation. However, the reduction in 125I-MIGB uptake was less than that of 3H-norepinephrine (3H-NE) and of the endogenous content of NE in the glands. Yet, the sympathomimetic phenylpropanolamine displaced about the same fraction of 125I-MIBG as 3H-NE. These results suggest that 40% or more of 125I-MIBG resides in extraneuronal sites but that at least 30% and possibly more lies in the adrenergic nerve terminals. Fasting and feeding rats produced changes in the rates of disappearance of 125I-MIBG and 3H-NE from the submaxillary gland that were different, and the rates of loss of 125I-MIBG cannot be used as an index of adrenergic nerve activity. In man, the concentrations of 123I-MIBG in the salivary glands, particularly the parotid gland, are readily visible and measureable. Imipramine reduced the uptake of 123I-MIBG into parotid glands little or not at all; some of the 123I-MIBG may enter neurons via an imipramine-insensitive pathway, but a substantial fraction probably arrives in intraneuronal locations. Thus, phenylpropanolamine displaced over 50% of the parotid pool of 123I-MIBG. However, in only the most severe case of generalized autonomic neuropathy was the uptake of 123I-MIBG reduced.

  8. Activity-dependent formation and location of voltage-gated sodium channel clusters at a CNS nerve terminal during postnatal development.

    PubMed

    Xu, Jie; Berret, Emmanuelle; Kim, Jun Hee

    2017-02-01

    In auditory pathways, the precision of action potential (AP) propagation depends on axon myelination and high densities of voltage-gated Na (Nav) channels clustered at nodes of Ranvier. Changes in Nav channel expression at the heminode, the final node before the nerve terminal, can alter AP invasion into the presynaptic terminal. We studied the activity-dependent formation of Nav channel clusters before and after hearing onset at postnatal day 12 in the rat and mouse auditory brain stem. In rats, the Nav channel cluster at the heminode formed progressively during the second postnatal week, around hearing onset, whereas the Nav channel cluster at the nodes was present before hearing onset. Initiation of heminodal Nav channel clustering was correlated with the expression of scaffolding protein ankyrinG and paranodal protein Caspr. However, in whirler mice with congenital deafness, heminodal Nav channels did not form clusters and maintained broad expression, but Nav channel clustering was normal at the nodes. In addition, a clear difference in the distance from the heminodal Nav channel to the calyx across the mediolateral axis of the medial nucleus of the trapezoid body (MNTB) developed after hearing onset. In the medial MNTB, where neurons respond best to high-frequency sounds, the heminodal Nav channel cluster was located closer to the terminal than in the lateral MNTB, where neurons respond best to low-frequency sounds. Thus sound-mediated neuronal activities are potentially associated with the refinement of the heminode adjacent to the presynaptic terminal in the auditory brain stem.

  9. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    PubMed

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  10. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.

    PubMed

    Ladera, Carolina; Martín, Ricardo; Bartolomé-Martín, David; Torres, Magdalena; Sánchez-Prieto, José

    2009-03-01

    N-type and P/Q-type Ca(2+) channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca(2+) channels with omega-conotoxin-GVIA and P/Q-type Ca(2+) channels with omega-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the alpha(1B) subunit of N-type channels (Ca(v) 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca(2+) channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca(2+) influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca(2+) channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.

  11. Interaction of desipramine and amitriptyline with adrenergic mechanisms in the human iris in vivo.

    PubMed

    Szabadi, E; Gaszner, P; Bradshaw, C M

    1981-01-01

    Mydriatic responses of the pupil were evoked by locally instilled noradrenaline and methoxamine in eight healthy volunteers. The effects of three single oral doses (25 mg, 50 mg and 100 mg) of amitriptyline and desipramine were compared on the mydriatic responses. Both antidepressants potentiated the mydriasis evoked by noradrenaline; desipramine appeared to be approximately four times more potent than amitriptyline. Both antidepressants antagonised the mydriasis evoked by noradrenaline; desipramine appeared to be approximately four times more potent than amitriptyline. Both antidepressants antagonised the mydriasis evoked by methoxamine, amitriptyline being approximately twice as potent as desipramine. It is suggested that the potentiation of the response to noradrenaline may reflect the blockade of the uptake of noradrenaline into adrenergic nerve terminals, whereas the antagonism of the response to methoxamine may reflect the blockade of postsynaptic alpha-adrenoceptors by the antidepressants. It is argued that the interaction of the antidepressants with adrenergic mechanisms could explain why amitriptyline, a potent anticholinergic agent, causes no significant change in resting pupil diameter, while desipramine, a relatively weaker anticholinergic agent, produces a significant mydriasis.

  12. Stimulation Induced Changes in Frog Neuromuscular Junctions: A Quantitative Ultrastructural Comparison of Rapid-Frozen and Chemically Fixed Nerve Terminals

    DTIC Science & Technology

    1984-03-06

    mitochondria to sequester calcium has been well established ( Lehninger , 197O; Alnaes and Rahamimoff, 1975; Rahamimoff, 1976; Lehninger , Reynafarje...mitochondria swell as they sequester calcium (Greenawalt, Rossi and Lehninger , 1964; Peachy, 1964; Hackenbrock and Caplan, 1969) and mitochondria...Rossi and Lehninger , 1964; Peachy, 1964; Lehninger , Reynafarje, Vercesi and Tew, 1978). Mitochondrial swelling correlates with nerve stimulation in

  13. THE EFFECTS OF ADRENERGIC AND ADRENOLYTIC AGENTS ON THE APPEARANCE OF CARDIAC ARRHYTHMIAS DURING EXPERIMENTAL HYPOTHERMIA,

    DTIC Science & Technology

    The object of this study was to compare the influence of the adrenergic drugs epinephrine and norepinephrine and the adrenolytic drug phentolamine on...fibrillation. Phentolamine was without significant effect on heart rate, blood pressure, and terminal temperature.

  14. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  15. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals.

    PubMed

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-08-01

    The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due

  16. Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia

    PubMed Central

    Lee, Seul Yi; Kim, Jun Hee

    2015-01-01

    Key points Here we demonstrate presynaptic responses and mechanisms of increased vesicular glutamate release during in vitro ischaemia in the calyx of Held terminal, an experimentally accessible presynaptic terminal in the CNS. The ischaemia-induced increase in presynaptic Ca2+ was mediated by both Ca2+ influx and Ca2+-induced Ca2+ release from intracellular stores. The reverse operation of the plasma membrane Na+/Ca2+ exchanger (NCX) plays a key role in Ca2+ influx for triggering Ca2+ release from intracellular stores at presynaptic terminals during in vitro ischaemia. Ca2+ uptake via NCX underlies the ischaemia-induced Ca2+ rise and the consequent increase in vesicular glutamate release from presynaptic terminals in the early phase of brain ischaemia. Abstract An early consequence of brain ischaemia is an increase in vesicular glutamate release from presynaptic terminals. However, the mechanisms of this increased glutamate release are not fully understood. Here we studied presynaptic responses and mechanisms of increased glutamate release during in vitro ischaemia, using pre- and postsynaptic whole-cell recordings and presynaptic Ca2+ imaging at the calyx of Held synapse in rat brainstem slices. Consistent with results from other brain regions, in vitro ischaemia significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) without affecting their amplitude, suggesting that ischaemia enhances vesicular glutamate release from presynaptic terminals. We found that ischaemia-induced vesicular glutamate release was dependent on a rise in basal Ca2+ at presynaptic terminals, which resulted from extracellular Ca2+ influx and Ca2+ release from intracellular stores. During early ischaemia, increased Ca2+ influx into presynaptic terminals was due to reverse operation of the plasma membrane Na+/Ca2+ exchanger (NCX) rather than presynaptic depolarization or voltage-activated Ca2+ currents. KB-R7943, an inhibitor of NCX, prevented the

  17. Intraspinal nerve terminals immunoreactive for tyrosine hydroxylase, serotonin and substance P in guinea-pigs with acute experimental allergic encephalomyelitis.

    PubMed

    Vyas, D; Bieger, D; White, S R

    1988-07-01

    Spinal cord axons and terminals stained for tyrosine hydroxylase-, serotonin- and substance P-like immunoreactivity were examined in guinea-pigs in the paraplegic phase of acute experimental allergic encephalomyelitis, an animal disease model for multiple sclerosis. Fibers positive for monoamine and substance P-like staining that terminated in the lumbar ventral horn appeared to be markedly damaged during the disease. However, no changes were detected in those substance P-containing fibers that terminated in the dorsal horn. It was concluded that small diameter, thinly myelinated or unmyelinated axons that course for long distances in the spinal cord, and, therefore, have a high probability for encountering inflammatory foci, are particularly vulnerable to damage during experimental allergic encephalomyelitis. Damage to these monoaminergic and peptidergic fibers may contribute to the neurological deficits that are associated with this autoimmune nervous system disease.

  18. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.

    PubMed

    Giompres, P E; Whittaker, V P

    1984-03-14

    In this study we demonstrate differences in the osmotic fragility of two metabolically and physically heterogeneous synaptic vesicle populations from stimulated electromotor nerve terminals. When synaptic vesicles isolated on sucrose density gradients are submitted to solutions of decreasing osmolarity 50% of VP2-type vesicles lysed at (mean + S.E. (number of experiments] 332 +/- 14 (4) mosM and 50% of VP1-type vesicles lysed at 573 +/- 8 (3) mosM. These results indicate that recycling vesicles are more resistant to hypo-osmotic lysis and they are consistent with our earlier conclusion that changes in water content on recycling are secondary to changes in the content of the osmotically active small-molecular-mass constituents acetylcholine and ATP.

  19. [Development of the adrenergic innervation of the atrioventricular valves of certain vertebrates].

    PubMed

    Strinskaia, L A; Leont'eva, G R; Avakian, O M; Govyrin, V A

    1980-01-01

    Adrenergic innervation of the atrioventricular valves in the carp Cyprinus carpo, frog Rana temporaria, tortoise Emys orbicularis, hens and albino rats has been investigated by histochemical glyoxylic technique. It was shown that the adrenergic innervation of cardiac valves becomes more intense and more complex during progressive evolution of cardio-vascular activity. Adrenergic nerves realize the connection between annullus fibrosus, valve, chordal tendineal and papillary muscles. Chromaffin cells of the valve serve as an additional store of catecholamines. A possibility cannot be excluded that these cells supply with biogenic amines the papillary muscles regulating their activity.

  20. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles.

    PubMed

    Banks, Robert W; Cahusac, Peter M B; Graca, Anna; Kain, Nakul; Shenton, Fiona; Singh, Paramjeet; Njå, Arild; Simon, Anna; Watson, Sonia; Slater, Clarke R; Bewick, Guy S

    2013-05-15

    Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate ending would provide support for our hypothesis that it is a general property of fundamental importance to the regulation of the responsiveness of the broad class of primary mechanosensory endings. We show not only that an SLV-based system is present in lanceolate endings, but also that there are clear parallels between its operation in the two types of mechanosensory endings. In particular, we demonstrate that, as in the muscle spindle: (i) FM1-43 labels the sensory terminals of the lanceolate ending, rather than the closely associated accessory (glial) cells; (ii) the dye enters and leaves the terminals primarily by SLV recycling; (iii) the dye does not block the electrical response to mechanical stimulation, in contrast to its effect on the hair cell and dorsal root ganglion cells in culture; (iv) SLV recycling is Ca(2+) sensitive; and (v) the sensory terminals are enriched in glutamate. Thus, in the lanceolate sensory ending SLV recycling is itself regulated, at least in part, by glutamate acting through a phospholipase D-coupled metabotropic glutamate receptor.

  1. Ziram, a pesticide associated with increased risk for Parkinson’s disease, differentially affects the presynaptic function of aminergic and glutamatergic nerve terminals at the Drosophila neuromuscular junction

    PubMed Central

    Martin, Ciara A.; Myers, Katherine M.; Chen, Audrey; Martin, Nathan T.; Barajas, Angel; Schweizer, Felix E.; Krantz, David E.

    2015-01-01

    Multiple populations of aminergic neurons are affected in Parkinson’s disease (PD), with serotonergic and noradrenergic loci responsible for some non-motor symptoms. Environmental toxins, such as the dithiocarbamate fungicide ziram, significantly increase the risk of developing PD and the attendant spectrum of both motor and non-motor symptoms. The mechanisms by which ziram and other environmental toxins increase the risk of PD, and the potential effects of these toxins on aminergic neurons, remain unclear. To determine the relative effects of ziram on the synaptic function of aminergic versus non-aminergic neurons, we used live-imaging at the Drosophila melanogaster larval neuromuscular junction (NMJ). In contrast to nearly all other studies of this model synapse, we imaged presynaptic function at both glutamatergic Type Ib and aminergic Type II boutons, the latter responsible for storage and release of octopamine, the invertebrate equivalent of noradrenalin. To quantify the kinetics of exo- and endo- cytosis, we employed an acid-sensitive form of GFP fused to the Drosophila vesicular monoamine transporter (DVMAT-pHluorin). Additional genetic probes were used to visualize intracellular calcium flux (GCaMP) and voltage changes (ArcLight). We find that at glutamatergic Type Ib terminals, exposure to ziram increases exocytosis and inhibits endocytosis. By contrast, at octopaminergic Type II terminals, ziram has no detectable effect on exocytosis and dramatically inhibits endocytosis. In contrast to other reports on the neuronal effects of ziram, these effects do not appear to result from perturbation of the UPS or calcium homeostasis. Unexpectedly, ziram also caused spontaneous and synchronized bursts of calcium influx (measured by GCaMP) and electrical activity (measured by ArcLight) at aminergic Type II, but not glutamatergic Type Ib, nerve terminals. These events are sensitive to both tetrodotoxin and cadmium chloride, and thus appear to represent spontaneous

  2. beta. -Adrenergic stimulation of brown adipocyte proliferation

    SciTech Connect

    Geloeen, A.; Collet, A.J.; Guay, G.; Bukowiecki, L.J. Laboratoire de Thermoregulation et Metabolisme Energetique, Lyon )

    1988-01-01

    The mechanisms of brown adipose tissue (BAT) growth were studied by quantitative photonic radioautography using tritiated thymidine to follow mitotic activity. To identify the nature of the adrenergic pathways mediating brown adipocyte proliferation and differentiation, the effects of cold exposure (4 days at 4{degree}C) on BAT growth were compared with those induced by treating rats at 25{degree}C with norepinephrine (a mixed agonist), isoproterenol (a {beta}-agonist), and phenylephrine (an {alpha}-agonist). Norepinephrine mimicked the effects of cold exposure, not only on the mitotic activity, but also on the distribution of the labeling among the various cellular types. Isoproterenol entirely reproduced the effects of norepinephrine both on the labeling index and on the cellular type labeling frequency. These results demonstrate that norepinephrine triggers a coordinated proliferation of brown adipocytes and endothelial cells in warm-exposed rats that is similar to that observed after cold exposure. They also suggest that cold exposure stimulates BAT growth by increasing the release of norepinephrine from sympathetic nerves and that the neurohormone activates mitoses in BAT precursor cells via {beta}-adrenergic pathways.

  3. Role of peptidergic nerve terminals in the skin: reversal of thermal sensation by calcitonin gene-related peptide in TRPV1-depleted neuropathy.

    PubMed

    Hsieh, Yu-Lin; Lin, Chih-Lung; Chiang, Hao; Fu, Yaw-Syan; Lue, June-Horng; Hsieh, Sung-Tsang

    2012-01-01

    To investigate the contribution of peptidergic intraepidermal nerve fibers (IENFs) to nociceptive responses after depletion of the thermal-sensitive receptor, transient receptor potential vanilloid subtype 1 (TRPV1), we took advantage of a resiniferatoxin (RTX)-induced neuropathy which specifically affected small-diameter dorsal root ganglion (DRG) neurons and their corresponding nerve terminals in the skin. Thermal hypoalgesia (p<0.001) developed from RTX-treatment day 7 (RTXd7) and became normalized from RTXd56 to RTXd84. Substance P (SP)(+) and TRPV1(+) neurons were completely depleted (p = 0.0001 and p<0.0001, respectively), but RTX had a relatively minor effect on calcitonin gene-related peptide (CGRP)(+) neurons (p = 0.029). Accordingly, SP(+) (p<0.0001) and TRPV1(+) (p = 0.0008) IENFs were permanently depleted, but CGRP(+) IENFs (p = 0.012) were only transiently reduced and had recovered by RTXd84 (p = 0.83). The different effects of RTX on peptidergic neurons were attributed to the higher co-localization ratio of TRPV1/SP than of TRPV1/CGRP (p = 0.029). Thermal hypoalgesia (p = 0.0018) reappeared with an intraplantar injection of botulinum toxin type A (botox), and the temporal course of withdrawal latencies in the hot-plate test paralleled the innervation of CGRP(+) IENFs (p = 0.0003) and CGRP contents in skin (p = 0.01). In summary, this study demonstrated the preferential effects of RTX on depletion of SP(+) IENFs which caused thermal hypoalgesia. In contrast, the skin was reinnervated by CGRP(+) IENFs, which resulted in a normalization of nociceptive functions.

  4. beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle.

    PubMed

    Breen, Leanne T; Smyth, Lisa M; Yamboliev, Ilia A; Mutafova-Yambolieva, Violeta N

    2006-02-01

    Endogenous nucleotides with extracellular functions may be involved in the complex neural control of human urinary bladder (HUB). Using HPLC techniques with fluorescence detection, we observed that in addition to ATP and its metabolites ADP, AMP and adenosine, electrical field stimulation (EFS; 4-16 Hz, 0.1 ms, 15 V, 60 s) of HUB detrusor smooth muscle coreleases novel nucleotide factors, which produce etheno-1N(6)-ADP-ribose (eADPR) on etheno-derivatization at high temperature. A detailed HPLC fraction analysis determined that nicotinamide adenine dinucleotide (beta-NAD+; 7.0 +/- 0.7 fmol/mg tissue) is the primary nucleotide that contributes to the formation of eADPR. The tissue superfusates collected during EFS also contained the beta-NAD+ metabolite ADPR (0.35 +/- 0.2 fmol/mg tissue) but not cyclic ADPR (cADPR). HUB failed to degrade nicotinamide guanine dinucleotide (NGD+), a specific substrate of ADP ribosyl cyclase, suggesting that the activity of this enzyme in the HUB is negligible. The EFS-evoked release of beta-NAD+ was frequency dependent and is reduced in the presence of tetrodotoxin (TTX; 0.3 micromol/l), omega-conotoxin GVIA (50 nmol/l), and botulinum neurotoxin A (BoNT/A; 100 nmol/l), but remained unchanged in the presence of guanethidine (3 micromol/l), omega-agatoxin IVA (50 nmol/l), or charbachol (1 micromol/l). Capsaicin (10 micromol/l) increased both the resting and EFS-evoked overflow of beta-NAD+. Exogenous beta-NAD+ (1 micromol/l) reduced both the frequency and amplitude of spontaneous contractions. In conclusion, we detected nerve-evoked overflow of beta-NAD+ and ADPR in HUB. The beta-NAD(+)/ADPR system may constitute a novel inhibitory extracellular nucleotide mechanism of neural control of the human bladder.

  5. Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder.

    PubMed

    Smyth, Lisa M; Bobalova, Janette; Mendoza, Michael G; Lew, Christy; Mutafova-Yambolieva, Violeta N

    2004-11-19

    Chemical signaling in autonomic neuromuscular transmission involves agents that function as neurotransmitters and/or neuromodulators. Using high performance liquid chromatography techniques with fluorescence and electrochemical detection we observed that, in addition to ATP and norepinephrine (NE), electrical field stimulation (EFS, 4-16 Hz, 0.1-0.3 ms, 15 V, 60-120 s) of isolated vascular and non-vascular preparations co-releases a previously unidentified compound with apparent nucleotide or nucleoside structure. Extensive screening of more than 25 nucleotides and nucleosides followed by detailed peak identification revealed that beta-nicotinamide adenine dinucleotide (beta-NAD) is released in tissue superfusates upon EFS of canine mesenteric artery (CMA), canine urinary bladder, and murine urinary bladder in the amounts of 7.1 +/- 0.7, 26.5 +/- 4.5, and 15.1 +/- 3.2 fmol/mg of tissue, respectively. Smaller amounts of the beta-NAD metabolites cyclic adenosine 5'-diphosphoribose (cADPR) and ADPR were also present in the superfusates collected during EFS of CMA (2.5 +/- 0.9 and 5.8 +/- 0.8 fmol/mg of tissue, respectively), canine urinary bladder (1.8 +/- 0.5 and 9.0 +/- 6.0 fmol/mg of tissue, respectively), and murine urinary bladder (1.4 +/- 0.1 and 6.2 +/- 2.4 fmol/mg of tissue, respectively). The three nucleotides were also detected in the samples collected before EFS (0.2-1.6 fmol/mg of tissue). Exogenous beta-NAD, cADPR, and ADPR (all 100 nm) reduced the release of NE in CMA at 16 Hz from 27.8 +/- 6.0 fmol/mg of tissue to 15.5 +/- 5.0, 12 +/- 3.0, and 10.0 +/- 4.0 fmol/mg of tissue, respectively. In conclusion, we detected constitutive and nerve-evoked overflow of beta-NAD, cADPR, and ADPR in vascular and non-vascular smooth muscles, beta-NAD being the prevailing compound. These substances modulate the release of NE, implicating novel nucleotide mechanisms of autonomic nervous system control of smooth muscle.

  6. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  7. Cardiovascular regulation by central adrenergic mechanisms and its alteration by hypotensive drugs.

    PubMed

    Haeusler, G

    1975-06-01

    Electrical stimulation of the posterior hypothalamus is followed by an immediate increase in sympathetic nerve activity and rise in blood pressure. Destruction of hypothalamic adrenergic structures by local unilateral injection of 6-hydroxydopamine into the posterior hypothalamus reduced the blood pressure rise in response to stimulation of the lesioned side. This and numerous other findings indicate an involvement of central adrenergic neurons in the mediation of an increase of sympathetic nerve activity caused by hypothalamic stimulation. However, central adrenergic neurons do not seem to be an integral part of the sympathoexcitatory pathways originating in the posterior hypothalamus but rather facilitate their activation: after almost complete norepinephrine depletion produced by combined treatment with reserpine and alpha-methl-p-tyrosine, hypothalamic stimulation was still followed by an increase in spontaneous sympathetic nerve activity. Stimulation of an alpha-adrenoceptive site, probably located in the lower brain stem, mimics an activation of the baroreceptor reflex. The hypotensive drug, clonidine, stimulates this alpha-adrenoceptive site. In low doses clonidine facilitates the activation of the reflex, and in high doses this drug induces a state which closely resembles a pronounced activation of the reflex. Experiments following depletion of norepinephrine suggest that the central part of the baroreceptor reflex arc does not contain adrenergic neurons. However, these findings are compatible with the view that some neurons within the reflex arc are supplied with alpha-adrenoceptors. For the present it cannot be stated with certainty whether these alpha-adrenoceptors possess an innervation by adrenergic neurons projecting onto the reflex arc. In favor of such an innervation are the obsevations that alpha-methyldopa has its site of action in the lower brain stem and that the integrity of central adrenergic neurons is essential for its hypotensive effect. It

  8. Role of postsynaptic alpha-adrenergic receptors in the beta-adrenergic stimulation of melatonin production in the Syrian hamster pineal gland in organ culture.

    PubMed

    Santana, C; Guerrero, J M; Reiter, R J; Menendez-Pelaez, A

    1989-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal melatonin production was investigated in the Syrian hamster. The studies were conducted using organ cultured pineal glands collected from both anatomically intact and superior cervical ganglionectomized hamsters. Results obtained indicate that phenylephrine, an alpha-adrenergic agonist, by itself has no effect in promoting melatonin production; however, it potentiates the stimulatory effects of isoproterenol, a beta-adrenergic agonist, on pineal melatonin production in nonoperated hamsters. Similar observations were obtained with pineal glands whose presynaptic terminals were removed by prior superior cervical ganglionectomy. However, a longer incubation time was required (4-6 hours vs. 2 hours) with pineal glands taken from ganglionectomized animals. Apparently, beta-adrenergic activation is an absolute requirement to stimulate pineal melatonin production, and an alpha-adrenergic receptor mechanism potentiates beta-adrenergic activation. In addition, the findings obtained with denervated pineal glands suggest that the regulation of pineal melatonin production by both alpha- and beta-adrenergic mechanisms is through receptors located on postsynaptic structures.

  9. The dual phosphatase activity of Synaptojanin1 is required for both efficient synaptic vesicle internalization and re-availability at nerve terminals

    PubMed Central

    Mani, Meera; Lee, Sang Yoon; Lucast, Louise; Cremona, Ottavio; Di Paolo, Gilbert; De Camilli, Pietro; Ryan, Timothy A.

    2013-01-01

    Summary Phosphoinositides have been implicated in synaptic vesicle recycling largely based on studies of enzymes that regulate phosphoinositide synthesis and hydrolysis. One such enzyme is Synaptojanin1, a multifunctional protein conserved from yeast to humans, which contains two phospho-inositol phosphatase domains and a proline-rich domain. Genetic ablation of Synaptojanin1 leads to pleiotropic defects in presynaptic function, including accumulation of free clathrin-coated vesicles and delayed vesicle re-availability, implicating this enzyme in post-endocytic uncoating of vesicles. To further elucidate the role of Synaptojanin1 at nerve terminals, we performed quantitative synaptic vesicle recycling assays in synj1−/− neurons. Our studies show that Synaptojanin1 is also required for normal vesicle endocytosis. Defects in both endocytosis and post-endocytic vesicle re-availability can be fully restored upon reintroduction of Synaptojanin1. However, expression of Synaptojanin1 with mutations abolishing catalytic activity of each phosphatase domain reveals that the dual action of both domains is required for normal synaptic vesicle internalization and re-availability. PMID:18093523

  10. The Metabotropic Glutamate Receptor mGlu7 Activates Phospholipase C, Translocates Munc-13-1 Protein, and Potentiates Glutamate Release at Cerebrocortical Nerve Terminals*

    PubMed Central

    Martín, Ricardo; Durroux, Thierry; Ciruela, Francisco; Torres, Magdalena; Pin, Jean-Philippe; Sánchez-Prieto, José

    2010-01-01

    At synaptic boutons, metabotropic glutamate receptor 7 (mGlu7 receptor) serves as an autoreceptor, inhibiting glutamate release. In this response, mGlu7 receptor triggers pertussis toxin-sensitive G protein activation, reducing presynaptic Ca2+ influx and the subsequent depolarization evoked release. Here we report that receptor coupling to signaling pathways that potentiate release can be seen following prolonged exposure of nerve terminals to the agonist l-(+)-phosphonobutyrate, l-AP4. This novel mGlu7 receptor response involves an increase in the release induced by the Ca2+ ionophore ionomycin, suggesting a mechanism that is independent of Ca2+ channel activity, but dependent on the downstream exocytotic release machinery. The mGlu7 receptor-mediated potentiation resists exposure to pertussis toxin, but is dependent on phospholipase C, and increased phosphatidylinositol (4,5)-bisphosphate hydrolysis. Furthermore, the potentiation of release does not depend on protein kinase C, although it is blocked by the diacylglycerol-binding site antagonist calphostin C. We also found that activation of mGlu7 receptors translocate the active zone protein essential for synaptic vesicle priming, munc13-1, from soluble to particulate fractions. We propose that the mGlu7 receptor can facilitate or inhibit glutamate release through multiple pathways, thereby exerting homeostatic control of presynaptic function. PMID:20375012

  11. Effect of the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon on the glutamate release from rat brain nerve terminals under altered gravity conditions.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.

    L-glutamate acts within the mammalian central nervous system as the predominant excitatory neurotransmitter and as a potent neurotoxin The balance between these physiological and pathological actions of glutamate is thought to be kept in check by the rapid removal of the neurotransmitter from the synaptic cleft The majority of uptake is mediated by the high-affinity Na -dependent glutamate transporters Depolarization leads to stimulation of glutamate efflux mediated by reversal of the high-affinity glutamate transporters The effects of the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon FCCP on the glutamate release from isolated nerve terminals rat brain synaptosomes were investigated in control and after centrifuge-induced hypergravity rats were rotated in a long-arm centrifuge at ten-G during one-hour period The treatment of synaptosomes with 1 mu M FCCP during 11 min resulted in the increase in L- 14 C glutamate release by 23 0 pm 2 3 of total accumulated synaptosomal label in control animals and 24 0 pm 2 3 animals subjected to hypergravity FCCP evoked release of L- 14 C glutamate from synaptosomes was not altered in animals exposed to hypergravity as compared to control Glutamate transport is of electrogenic nature and thus depends on the membrane potential The high-KCl stimulated L- 14 C glutamate release in Ca 2 -free media occurred due to reversal of the glutamate transporters Carrier --mediated release of L- 14 C glutamate 6 min slightly increased as a result of

  12. Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration.

    PubMed

    Jeng, Winnie; Ramkissoon, Annmarie; Parman, Toufan; Wells, Peter G

    2006-04-01

    Reactive oxygen species (ROS) are implicated in amphetamine-initiated neurodegeneration, but the mechanism is unclear. Here, we show that amphetamines are bioactivated by CNS prostaglandin H synthase (PHS) to free radical intermediates that cause ROS formation and neurodegenerative oxidative DNA damage. In vitro incubations of purified PHS-1 with 3,4-methylenedioxyamphetamine (MDA) and methamphetamine (METH) demonstrated PHS-catalyzed time- and concentration-dependent formation of an amphetamine carbon- and/or nitrogen-centered free radical intermediate, and stereoselective oxidative DNA damage, evidenced by 8-oxo-2'-deoxyguanosine (8-oxo-dG) formation. Similarly in vivo, MDA and METH caused dose- and time-dependent DNA oxidation in multiple brain regions, remarkably dependent on the regional PHS levels, including the striatum and substantia nigra, wherein neurodegeneration of dopaminergic nerve terminals was evidenced by decreased immunohistochemical staining of tyrosine hydroxylase. Motor impairment using the rotarod test was evident within 3 wk after the last drug dose, and persisted for at least 6 months. Pretreatment with the PHS inhibitor acetylsalicylic acid blocked MDA-initiated DNA oxidation and protected against functional motor impairment for at least 1.5 months after drug treatment. This is the first direct evidence for PHS-catalyzed bioactivation of amphetamines causing temporal and regional differences in CNS oxidative DNA damage directly related to structural and functional neurodegenerative consequences.

  13. β-Adrenergic blockers.

    PubMed

    Frishman, William H; Saunders, Elijah

    2011-09-01

    KEY POINTS AND PRACTICAL RECOMMENDATIONS: •  β-Blockers are appropriate treatment for patients with hypertension and those who have concomitant ischemic heart disease, heart failure, obstructive cardiomyopathy, or certain arrhythmias. •  β-Blockers can be used in combination with other antihypertensive drugs to achieve maximal blood pressure control. Labetalol can be used in hypertensive emergencies and urgencies. •  β-Blockers may be useful in patients having hyperkinetic circulation (palpitations, tachycardia, hypertension, and anxiety), migraine headache, and essential tremor. •  β-Blockers are highly heterogeneous with respect to various pharmacologic effects: degree of intrinsic sympathomimetic activity, membrane-stabilizing activity, β(1) selectivity, α(1) -adrenergic-blocking effect, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific effects may be important in the selection of a drug for clinical use. •  β-Blocker usage to reduce perioperative ischemia and cardiovascular complications may not benefit as many patients as was once hoped and may actually cause harm in some individuals. Currently the best evidence supports β-blocker use in two patient groups: patients undergoing vascular surgery with known ischemic heart disease or multiple risk factors for it and for patients already receiving β-blockers for known cardiovascular conditions.

  14. Tetanic depression is overcome by tonic adenosine A2A receptor facilitation of L-type Ca2+ influx into rat motor nerve terminals

    PubMed Central

    Oliveira, Laura; Timóteo, M Alexandrina; Correia-de-Sá, Paulo

    2004-01-01

    Motor nerve terminals possess multiple voltage-sensitive calcium channels operating acetylcholine (ACh) release. In this study, we investigated whether facilitation of neuromuscular transmission by adenosine generated during neuronal firing was operated by Ca2+ influx via ‘prevalent’ P-type or via the recruitment of ‘silent’ L-type channels. The release of [3H]ACh from rat phrenic nerve endings decreased upon increasing the stimulation frequency of the trains (750 pulses) from 5 Hz (83 ± 4 × 103 disintegrations per minute per gram (d.p.m. g−1); n = 11) to 50 Hz (30 ± 3 × 103 d.p.m. g−1; n = 5). The P-type Ca2+ channel blocker, ω-agatoxin IVA (100 nm) reduced (by 40 ± 10%; n = 6) the release of [3H]ACh evoked by 50-Hz trains, while nifedipine (1 μm, an L-type blocker) was inactive. Tetanic depression was overcome (88 ± 6 × 103 d.p.m. g−1; n = 12) by stimulating the phrenic nerve with 50-Hz bursts (five bursts of 150 pulses, 20 s interburst interval). In these conditions, ω-agatoxin IVA (100 nm) failed to affect transmitter release, but nifedipine (1 μm) decreased [3H]ACh release by 21 ± 7% (n = 4). Inactivation of endogenous adenosine with adenosine deaminase (ADA, 0.5 U ml−1) reduced (by 54 ± 8%, n = 5) the release of [3H]ACh evoked with 50-Hz bursts. This effect was opposite to the excitatory actions of adenosine (0.5 mm), S-(p-nitrobenzyl)-6-thioinosine (5 μm, an adenosine uptake blocker) and CGS 21680C (3 nm, a selective A2A receptor agonist); as the A1 receptor agonist R-N6-phenylisopropyl adenosine (R-PIA, 300 nm) failed to affect the release of [3H]ACh, the results indicate that adenosine generated during 50-Hz bursts exerts an A2A-receptor-mediated tonus. The effects of ADA (0.5 U ml−1) and CGS 21680C (3 nm) were prevented by nifedipine (1 μm). Blocking tonic A2A receptor activation, with ADA (0.5 U ml−1) or 3,7-dimethyl-1-propargyl xanthine (10 μm, an A2A antagonist), recovered ω-agatoxin IVA (100 nm) inhibition and

  15. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals

    NASA Technical Reports Server (NTRS)

    Chen, B. M.; Grinnell, A. D.

    1997-01-01

    Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.

  16. Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat.

    PubMed

    Nasser, Yasmin; Ho, Winnie; Sharkey, Keith A

    2006-04-10

    Adrenergic receptors in the enteric nervous system (ENS) are important in control of the gastrointestinal tract. Here we describe the distribution of adrenergic receptors in the ENS of the ileum and colon of the guinea pig, rat, and mouse by using single- and double-labelling immunohistochemistry. In the myenteric plexus (MP) of the rat and mouse, alpha2a-adrenergic receptors (alpha2a-AR) were widely distributed on neurons and enteric glial cells. alpha2a-AR mainly colocalized with calretinin in the MP, whereas submucosal alpha2a-AR neurons colocalized with vasoactive intestinal polypeptide (VIP), neuropeptide Y, and calretinin in both species. In the guinea pig ileum, we observed widespread alpha2a-AR immunoreactivity on nerve fibers in the MP and on VIP neurons in the submucosal plexus (SMP). We observed extensive beta1-adrenergic receptor (beta1-AR) expression on neurons and nerve fibers in both the MP and the SMP of all species. Similarly, the beta2-adrenergic receptor (beta2-AR) was expressed on neurons and nerve fibers in the SMP of all species, as well as in the MP of the mouse. In the MP, beta1- and beta2-AR immunoreactivity was localized to several neuronal populations, including calretinin and nitrergic neurons. In the SMP of the guinea pig, beta1- and beta2-AR mainly colocalized with VIP, whereas, in the rat and mouse, beta1- and beta2-AR were distributed among the VIP and calretinin populations. Adrenergic receptors were widely localized on specific neuronal populations in all species studied. The role of glial alpha2a-AR is unknown. These results suggest that sympathetic innervation of the ENS is directed toward both enteric neurons and enteric glia.

  17. Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle

    PubMed Central

    Ajijola, Olujimi A.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; Benharash, Peyman; Hadaya, Joseph; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Increased cardiac sympathetic activation worsens dispersion of repolarization and is proarrhythmic. The functional differences between intrinsic nerve stimulation and adrenergic receptor activation remain incompletely understood. This study was undertaken to determine the functional differences between efferent cardiac sympathetic nerve stimulation and direct adrenergic receptor activation in porcine ventricles. Female Yorkshire pigs (n = 13) underwent surgical exposure of the heart and stellate ganglia. A 56-electrode sock was placed over the ventricles to record epicardial electrograms. Animals underwent bilateral sympathetic stimulation (BSS) (n = 8) or norepinephrine (NE) administration (n = 5). Activation recovery intervals (ARIs) were measured at each electrode before and during BSS or NE. The degree of ARI shortening during BSS or NE administration was used as a measure of functional nerve or adrenergic receptor density. During BSS, ARI shortening was nonuniform across the epicardium (F value 9.62, P = 0.003), with ARI shortening greatest in the mid-basal lateral right ventricle and least in the midposterior left ventricle (LV) (mean normalized values: 0.9 ± 0.08 vs. 0.56 ± 0.08; P = 0.03). NE administration resulted in greater ARI shortening in the LV apex than basal segments [0.91 ± 0.04 vs. 0.63 ± 0.05 (averaged basal segments); P = 0.003]. Dispersion of ARIs increased in 50% and 60% of the subjects undergoing BSS and NE, respectively, but decreased in the others. There is nonuniform response to cardiac sympathetic activation of both porcine ventricles, which is not fully explained by adrenergic receptor density. Different pools of adrenergic receptors may mediate the cardiac electrophysiological effects of efferent sympathetic nerve activity and circulating catecholamines. PMID:23241324

  18. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

    PubMed Central

    Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    Summary The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[14C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na+-dependent uptake, tonic release and the extracellular level of L-[14C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[14C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained. PMID:24991515

  19. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport.

    PubMed

    Borisova, Tatiana; Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

  20. Neural Blockade Anaesthesia of the Mandibular Nerve and Its Terminal Branches: Rationale for Different Anaesthetic Techniques Including Their Advantages and Disadvantages

    PubMed Central

    Khoury, Jason; Townsend, Grant

    2011-01-01

    Anaesthesia of structures innervated by the mandibular nerve is necessary to provide adequate pain control when performing dental and localised surgical procedures. To date, numerous techniques have been described and, although many of these methods are not used routinely, there are some situations where their application may be indicated. Patient factors as well as anatomical variability of the mandibular nerve and associated structures dictate that no one technique can be universally applied with a 100% success rate. This fact has led to a proliferation of alternative techniques that have appeared in the literature. This selective review of the literature provides a brief description of the different techniques available to the clinician as well as the underlying anatomy which is fundamental to successfully anaesthetising the mandibular nerve. PMID:21716730

  1. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Waters, Wendy W.; Ziegler, Michael G.; deBlock, Heidi F.; Mills, Paul J.; Robertson, David; Huang, Paul L.

    2004-01-01

    Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.

  2. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight.

    PubMed

    Meck, Janice V; Waters, Wendy W; Ziegler, Michael G; deBlock, Heidi F; Mills, Paul J; Robertson, David; Huang, Paul L

    2004-04-01

    Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.

  3. [Anatomical variants of the medial calcaneal nerve and the Baxter nerve in the tarsal tunnel].

    PubMed

    Martín-Oliva, X; Elgueta-Grillo, J; Veliz-Ayta, P; Orosco-Villaseñor, S; Elgueta-Grillo, M; Viladot-Perice, R

    2013-01-01

    The tarsal tunnel is composed of the posterior border of the medial malleoulus, the posterior aspect of the talus and the medial aspect of the calcaneus. The medial calcaneal nerve emerges from the posterior aspect of the posterior tibial nerve in 75% of cases and from the lateral plantar nerve in the remaining 25%. Finally, the medial calcaneal nerve ends as a single terminal branch in 79% of cases and in numerous terminal branches in the remaining 21%. To describe the anatomical variants of the posterior tibial nerve and its terminal branches. To describe the steps for tarsal tunnel release. To describe Baxter nerve release. The anatomical variants of the posterior tibial nerve and its terminal branches within the tarsal tunnel were studied. Then the Lam technique was performed; it consists of: 1) opening of the laciniate ligament, 2) opening of the fascia over the abductor hallucis muscle, 3) exoneurolysis of the posterior tibial nerve and its terminal branches, identifying the emergence and pathway of the medial calcaneal branch, the lateral plantar nerve and its Baxter nerve branch and the medial plantar nerve. Baxter nerve was found in 100% of cases. In 100% of cases in our series the nerve going to the abductor digiti minimi muscle of the foot was found; 87.5% of cases had two terminal branches. The dissections proved that a crucial step was the release of the distal tarsal tunnel.

  4. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  5. [Innervation of the anterior byssus retractor muscle (ABRM) in Mytilus edulis L. III. Histochemical localisation of the terminal nerves through 5-hydroxytryptamine (author's transl)].

    PubMed

    Gilloteaux, J

    1977-04-04

    Detection of nerve structures containing 5-HT were described in the anterior byssus retractor muscle (ABRM) in Mytilus edulis L. after using the fluorescence microscope technique of Flack. We are able to confirm our previous results and assumptions given by histology and electron microscope studies: the neuromuscular "en passage" junctions, largely distributed within the ABRM, contain 5-HT.

  6. Evidence that adrenaline is released from adrenergic neurones in the rectum of the fowl

    PubMed Central

    Komori, S.; Ohashi, H.; Okada, T.; Takewaki, T.

    1979-01-01

    1 The rectum isolated from the fowl was perfused with Tyrode solution via the caudal mesenteric artery. Noradrenaline and adrenaline were biologically or fluorimetrically assayed in perfusates collected before and during stimulation of Remak's nerve or of the periarterial nerves. 2 Perfusates collected during nerve stimulation relaxed the chick rectum and rat stomach strips which served as assay tissues. This effect was attributed to the action of noradrenaline or adrenaline released from adrenergic nerve endings which appeared in the perfusates. 3 Perfusates obtained during stimulation (30 Hz for 60 s) of Remak's nerve contained both noradrenaline and adrenaline when measured fluorimetrically. The mean output per stimulus train was 0.8 ± 0.2 ng/g wet wt. tissue for noradrenaline and 1.7 ± 0.2 ng/g wet wt. tissue for adrenaline (n = 7). Perfusates obtained during stimulation (30 Hz for 60 s) of the periarterial nerves contained noradrenaline in a concentration of 1.6 ± 0.3 ng/g wet wt. tissue per stimulus train, but almost no adrenaline (n = 7). 4 Neither stimulation of Remak's nerve nor the periarterial nerves liberated catecholamines when the rectum was perfused with Tyrode solution containing low Ca2+ (0.1 mM) and high Mg2+ (10 mM). 5 Infusion of high potassium solution (50 mM) increased markedly the output of noradrenaline and adrenaline. 6 Adrenaline as well as noradrenaline may function as the adrenergic neurotransmitter in the rectum of the fowl. PMID:760900

  7. Immunolocalization of the Ca2+-Activated K+ Channel Slo1 in Axons and Nerve Terminals of Mammalian Brain and Cultured Neurons

    PubMed Central

    Misonou, Hiroaki; Menegola, Milena; Buchwalder, Lynn; Park, Eunice W.; Meredith, Andrea; Rhodes, Kenneth J.; Aldrich, Richard W.; Trimmer, James S.

    2008-01-01

    Ca2+-activated voltage-dependent K+ channels (Slo1, KCa1.1, Maxi-K, or BK channel) play a crucial role in controlling neuronal signaling by coupling channel activity to both membrane depolarization and intracellular Ca2+ signaling. In mammalian brain, immunolabeling experiments have shown staining for Slo1 channels predominantly localized to axons and presynaptic terminals of neurons. We have developed anti-Slo1 mouse monoclonal antibodies that have been extensively characterized for specificity of staining against recombinant Slo1 in heterologous cells, and native Slo1 in mammalian brain, and definitively by the lack of detectable immunoreactivity against brain samples from Slo1 knockout mice. Here we provide precise immunolocalization of Slo1 in rat brain with one of these monoclonal antibodies and show that Slo1 is accumulated in axons and synaptic terminal zones associated with glutamatergic synapses in hippocampus and GABAergic synapses in cerebellum. By using cultured hippocampal pyramidal neurons as a model system, we show that heterologously expressed Slo1 is initially targeted to the axonal surface membrane, and with further development in culture, become localized in presynaptic terminals. These studies provide new insights into the polarized localization of Slo1 channels in mammalian central neurons and provide further evidence for a key role in regulating neurotransmitter release in glutamatergic and GABAergic terminals. PMID:16566008

  8. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics

    PubMed Central

    Rozov, A; Burnashev, N; Sakmann, B; Neher, E

    2001-01-01

    In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm

  9. Evidence that the human cutaneous venoarteriolar response is not mediated by adrenergic mechanisms

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Shibasaki, M.; Yen, T. C.

    2002-01-01

    The venoarteriolar response causes vasoconstriction to skin and muscle via local mechanisms secondary to venous congestion. The purpose of this project was to investigate whether this response occurs through alpha-adrenergic mechanisms. In supine individuals, forearm skin blood flow was monitored via laser-Doppler flowmetry over sites following local administration of terazosin (alpha(1)-antagonist), yohimbine (alpha(2)-antagonist), phentolamine (non-selective alpha-antagonist) and bretylium tosylate (inhibits neurotransmission of adrenergic nerves) via intradermal microdialysis or intradermal injection. In addition, skin blood flow was monitored over an area of forearm skin that was locally anaesthetized via application of EMLA (2.5 % lidocaine (lignocaine) and 2.5 % prilocaine) cream. Skin blood flow was also monitored over adjacent sites that received the vehicle for the specified drug. Each trial was performed on a minimum of seven subjects and on separate days. The venoarteriolar response was engaged by lowering the subject's arm from heart level such that the sites of skin blood flow measurement were 34 +/- 1 cm below the heart. The arm remained in this position for 2 min. Selective and non-selective alpha-adrenoceptor antagonism and presynaptic inhibition of adrenergic neurotransmission did not abolish the venoarteriolar response. However, local anaesthesia blocked the venoarteriolar response without altering alpha-adrenergic mediated vasoconstriction. These data suggest that the venoarteriolar response does not occur through adrenergic mechanisms as previously reported. Rather, the venoarteriolar response may due to myogenic mechanisms associated with changes in vascular pressure or is mediated by a non-adrenergic, but neurally mediated, local mechanism.

  10. Adrenergic signaling elements in the bladder wall of the adult rat.

    PubMed

    Persyn, Sara; Eastham, Jane; De Wachter, Stefan; Gillespie, James

    2016-12-01

    A growing body of work is describing the absence of a significant sympathetic innervation of the detrusor implying little sympathetic regulation of bladder contractility. However, low doses of adrenergic agonists are capable of relaxing the bladder smooth muscle. If these effects underpin a physiological response then the cellular nature and operation of this system are currently unknown. The present immunohistochemistry study was done to explore the existence of alternative adrenergic signaling elements in the rat bladder wall. Using antibodies to tyrosine hydroxylase (TH) and vesicular mono-amine transporter (vmat), few adrenergic nerves were found in the detrusor although TH immunoreactive (IR) nerves were apparent in the bladder neck. TH-IR and vmat-IR nerves were however abundant surrounding blood vessels. A population of vmat-IR cells was found within the network of interstitial cells that surround the detrusor muscle bundles. These vmat-IR cells were not or only weakly TH-IR. This suggests that these interstitial cells have the capacity to store and release catecholamines that may involve noradrenaline. Cells expressing the β1-adrenoceptor (β1AR-IR) were also detected within the interstitial cell network. Double staining with antibodies to β1AR and vmat suggests that the majority of vmat-IR interstitial cells show β1AR-IR indicative of an autocrine signaling system. In conclusion, a population of interstitial cells has the machinery to store, release and respond to catecholamines. Thus, there might exist a non-neuronal β-adrenergic system operating in the bladder wall possibly linked to one component of motor activity, micro-contractions, a system that may be involved in mechanisms underpinning bladder sensation.

  11. Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response.

    PubMed

    Emrick, Michelle A; Sadilek, Martin; Konoki, Keiichi; Catterall, William A

    2010-10-26

    Ca(V)1 channels initiate excitation-contraction coupling in skeletal and cardiac muscle. During the fight-or-flight response, epinephrine released by the adrenal medulla and norepinephrine released from sympathetic nerves increase muscle contractility by activation of the β-adrenergic receptor/cAMP-dependent protein kinase pathway and up-regulation of Ca(V)1 channels in skeletal and cardiac muscle. Although the physiological mechanism of this pathway is well defined, the molecular mechanism and the sites of protein phosphorylation required for Ca(V)1 channel regulation are unknown. To identify the regulatory sites of phosphorylation under physiologically relevant conditions, Ca(V)1.1 channels were purified from skeletal muscle and sites of phosphorylation on the α1 subunit were identified by mass spectrometry. Two phosphorylation sites were identified in the proximal C-terminal domain, serine 1575 (S1575) and threonine 1579 (T1579), which are conserved in cardiac Ca(V)1.2 channels (S1700 and T1704, respectively). In vitro phosphorylation revealed that Ca(V)1.1-S1575 is a substrate for both cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II, whereas Ca(V)1.1-T1579 is a substrate for casein kinase 2. Treatment of rabbits with isoproterenol to activate β-adrenergic receptors increased phosphorylation of S1575 in skeletal muscle Ca(V)1.1 channels in vivo, and treatment with propranolol to inhibit β-adrenergic receptors reduced phosphorylation. As S1575 and T1579 in Ca(V)1.1 channels and their homologs in Ca(V)1.2 channels are located at a key regulatory interface between the distal and proximal C-terminal domains, it is likely that phosphorylation of these sites in skeletal and cardiac muscle is directly involved in calcium channel regulation in response to the sympathetic nervous system in the fight-or-flight response.

  12. Vasoconstriction induced by ouabain in the canine coronary artery: contribution of adrenergic and nonadrenergic responses.

    PubMed

    Cooke, J P; Shepherd, J T; Vanhoutte, P M

    1988-07-01

    Ouabain, when applied to rings of the left circumflex coronary artery of the dog (which contains both alpha 1-adrenoceptors leading to contraction and beta 1-adrenoceptors leading to relaxation) caused an initial contraction which peaked within 15 minutes and a later secondary increase in tension which peaked within 60 minutes. These contractions were prevented by Ca2+ removal or by verapamil. Adrenergic denervation with 6-hydroxydopamine did not affect the initial contraction. Thus it is due to a nonadrenergic effect of the glycoside. Since the secondary increase in tension was prevented by adrenergic denervation and prazosin, it is likely to be due to norepinephrine released from adrenergic nerves acting on alpha-adrenoceptors. This interpretation was confirmed by the finding that ouabain, after a latent period of about 35 minutes, augmented the output of 3H-norepinephrine from helical strips of the artery previously incubated with tritiated transmitter. In rings contracted with prostaglandin F2 alpha, ouabain reduced beta-adrenergic relaxations caused by isoproterenol or exogenous norepinephrine, but not those caused by sodium nitroprusside. Thus, in this artery, ouabain depresses the responses of the beta-adrenoceptors to the norepinephrine which it releases, thereby permitting the neurotransmitter to cause contraction by activating postjunctional alpha 1-adrenoceptors.

  13. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Review Date 6/1/2015 ...

  14. Cadaveric nerve allotransplantation in the treatment of persistent thoracic neuralgia.

    PubMed

    Barbour, John R; Yee, Andrew; Moore, Amy M; Trulock, Elbert P; Buchowski, Jacob M; Mackinnon, Susan E

    2015-04-01

    When relief from neuralgia cannot be achieved with traditional methods, neurectomy may be considered to abate the stimulus, and primary opposition of the terminal nerve ending is recommended to prevent neuroma. Nerve repair with autograft is limited by autologous nerves available for large nerve defects. Cadaveric allografts provide an unlimited graft source without donor-site morbidities, but are rapidly rejected unless appropriate immunosuppression is achieved. An optimal treatment method for nerve allograft transplantation would minimize rejection while simultaneously permitting nerve regeneration. This report details a novel experience of nerve allograft transplantation using cadaveric nerve grafts to desensitize persistent postoperative thoracic neuralgia.

  15. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells

    PubMed Central

    2014-01-01

    Background Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions. Methods Human retinal endothelial cells were cultured in CSC complete medium in normal (5 mM) or high (25 mM) glucose to mimic a diabetic condition. Reverse transcription PCR and Western Blotting were performed to examine the expression of β1, β2 and β3-adrenergic receptors. For detections, immunocytochemistry was used. Bisulfite sequencing method was used for promoter methylation analysis. Apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used to measure reactive oxygen species (ROS) production in the cells. Results β1 and β3-adrenergic receptors were expressed in retinal endothelial cells while β2-adrenergic receptor was not detectable both at protein and mRNA levels. Hyperglycemia had no significant effect on β1 and β2-adrenergic receptors methylation and expression however β3-adrenergic receptors showed a significantly higher expression (p < 0.05) and methylation (p < 0.01) in high and low glucose concentration respectively. Apoptosis and oxidative stress were inversely correlated with β3-adrenergic receptors methylation with no significant effect on β1 and β2-adrenergic receptors. β2-adrenergic receptor was hypermethylated with halted expression. Conclusion Our study demonstrates that β1 and β3-adrenergic receptors expressed in human retinal endothelial cells. Oxidative stress and apoptosis are inversely proportional to the extent of promoter methylation

  16. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals.

    PubMed

    Sitges, María; Galindo, Carlos Alberto

    2005-01-01

    The present study shows that omega-agatoxin-TK, a toxin of the venom of Agelenopsis aperta, which is 10 times more concentrated than the P/Q type Ca(2+) channel blocker, omega-agatoxin-IVA in the venom, inhibits the high K(+) depolarisation-induced rise in internal Ca(2+) (Ca(i), as determined with fura-2) dose dependently in cerebral (striatal and hippocampal) isolated nerve endings, with calculated IC(50)'s of about 60nM. The maximal inhibition exerted by omega-agatoxin-TK in striatal synaptosomes (61 +/- 11%) is 10% larger than in hippocampal synaptosomes, suggesting a larger population of omega-agatoxin-TK-sensitive Ca(2+) channels in striatal than in hippocampal nerve endings. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1muM), inhibits part of the omega-agatoxin-TK-insensitive rise in Ca(i) induced by high K(+). In contrast to the inhibition exerted by omega-agatoxin-TK on the Ca(i) response to high K(+), omega-agatoxin-TK failed to inhibit the tetrodotoxin-sensitive elevations in Ca(i) and in internal Na(+) (Na(i), as determined with SBFI) induced by veratridine, indicating that the Ca(2+) influx activated by veratridine does not involve omega-agatoxin-TK-sensitive channels. High K(+) does not increase Na(i). In [(3)H]Glu preloaded hippocampal synaptosomes super-fused with low Na(+) Krebs Ringer HEPES (a condition that guarantees the elimination of neurotransmitter transporters-mediated release), the release of [(3)H]Glu induced by high K(+) is absolutely dependent on the entrance of external Ca(2+). This exocytotic release of [(3)H]Glu attained in the absence of a chemical Na(+) gradient is inhibited with the same potency and efficacy by omega-agatoxin-TK and by omega-agatoxin-IVA, which is known to differ from omega-agatoxin-TK in its amino terminal moiety. These results indicate that omega-agatoxin-TK represents a good pharmacological tool to study P/Q type Ca(2+) channel-mediated responses in cerebral nerve endings.

  17. Common peroneal nerve dysfunction

    MedlinePlus

    Neuropathy - common peroneal nerve; Peroneal nerve injury; Peroneal nerve palsy ... type of peripheral neuropathy (damage to nerves outside the brain ... nerve injuries. Damage to the nerve disrupts the myelin sheath ...

  18. α-Synuclein in cutaneous autonomic nerves

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Lafo, Jacob

    2013-01-01

    Objective: To develop a cutaneous biomarker for Parkinson disease (PD). Methods: Twenty patients with PD and 14 age- and sex-matched control subjects underwent examinations, autonomic testing, and skin biopsies at the distal leg, distal thigh, and proximal thigh. α-Synuclein deposition and the density of intraepidermal, sudomotor, and pilomotor nerve fibers were measured. α-Synuclein deposition was normalized to nerve fiber density (the α-synuclein ratio). Results were compared with examination scores and autonomic function testing. Results: Patients with PD had a distal sensory and autonomic neuropathy characterized by loss of intraepidermal and pilomotor fibers (p < 0.05 vs controls, all sites) and morphologic changes to sudomotor nerve fibers. Patients with PD had greater α-synuclein deposition and higher α-synuclein ratios compared with controls within pilomotor nerves and sudomotor nerves (p < 0.01, all sites) but not sensory nerves. Higher α-synuclein ratios correlated with Hoehn and Yahr scores (r = 0.58–0.71, p < 0.01), with sympathetic adrenergic function (r = −0.40 to −0.66, p < 0.01), and with parasympathetic function (r = −0.66 to −0.77, p > 0.01). Conclusions: We conclude that α-synuclein deposition is increased in cutaneous sympathetic adrenergic and sympathetic cholinergic fibers but not sensory fibers of patients with PD. Higher α-synuclein deposition is associated with greater autonomic dysfunction and more advanced PD. These data suggest that measures of α-synuclein deposition in cutaneous autonomic nerves may be a useful biomarker in patients with PD. PMID:24089386

  19. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  20. The effect of activation of central adrenergic receptors by clonidine on the excitability of the solitary tract neurons in cats.

    PubMed

    Lipski, J; Solnicka, E

    1976-01-01

    The effect of i.v. administered clonidine (10-15 mug/kg) on the evoked potential recorded in the dosal part of medulla oblongata, during carotid sinus nerve stimulation, was studied in chloralose-urethane anaesthetized cats. Clonidine influenced the amplitude and configuration of the evoked potential and the changes were parallel to the blood pressure depressor response. However, the blood pressure drops, evoked by i.v. infusion of papaverine, did not influence the potential. It is concluded that the synaptic transmission from the carotid sinus nerve to the second order neurons in the solatary tract area can be modulated by the clonidine-induced activation of central adrenergic receptors.

  1. PLURIVESICULAR SECRETORY PROCESSES AND NERVE ENDINGS IN THE PINEAL GLAND OF THE RAT

    PubMed Central

    De Robertis, Eduardo; de Iraldi, Amanda Pellegrino

    1961-01-01

    The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell—the pinealocyte—is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals. PMID:13720811

  2. Nerve distribution of canine pulmonary arteries and potential clinical implications

    PubMed Central

    Zhang, Yun; Chen, Weijie; Xu, Yanping; Liu, Hang; Chen, Yunlin; Yang, Hanxuan; Yin, Yuehui

    2016-01-01

    Sympathetic activation plays an important pathophysiological role in the progression of pulmonary artery hypertension. Although adrenergic vasomotor fibers are present in the adventitia of pulmonary arteries, the anatomy of the peri-arterial pulmonary nerves is still poorly understood. The aim of the current study was to determine the sympathetic nerve distribution in canine pulmonary arteries. A total of 2160 sympathetic nerves were identified in six Chinese Kunming canines. Nerve counts were greatest in the proximal segment, with a slight decrease in the distal segment; the middle segment showed the least number of nerves. In the left and right pulmonary arteries, 77.61% and 78.97% of the nerves were located within a 1-3-mm range, respectively. The number of nerves in the posterior region of the bifurcation and pulmonary trunk outnumbered those in the anterior region. Furthermore, 65.33% of the nerves were located in the first 2-mm range of the posterior region of bifurcation, and 89.62% of the nerves were located within the 1-3-mm range of the posterior region of the pulmonary trunk. In conclusion, a great abundance of sympathetic nerves occurred in the proximal and distal segments of the bilateral pulmonary arteries. There is a clear predominance of sympathetic nerve distribution in the posterior region of the bifurcation and pulmonary trunk. This anatomic distribution may have implications for the future development of percutaneous pulmonary artery denervation. PMID:27158332

  3. Dense-cored vesicles, smooth endoplasmic reticulum, and mitochondria are closely associated with non-specialized parts of plasma membrane of nerve terminals: implications for exocytosis and calcium buffering by intraterminal organelles.

    PubMed

    Lysakowski, A; Figueras, H; Price, S D; Peng, Y Y

    1999-01-18

    To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in bullfrog sympathetic ganglia. On average, each bouton had three active zones, 214 DCVs, 26 SER fragments (SERFs), and eight mitochondria. DCVs, SERFs and mitochondria were located, on average, 690, 624, and 526 nm, respectively, away from active zones. Virtually no DCVs were within "docking" (i.e., < or = 50 nm) distances of the active zones. Thus, it is unlikely that DCV exocytosis occurs at active zones via mechanisms similar to those for exocytosis of synaptic vesicles. Because there were virtually no SERFs or mitochondria within 50 nm of any active zone, Ca2+ modulation by these organelles is unlikely to affect ACh release evoked by a single action potential. In contrast, 30% of DCVs and 40% of SERFs were located within 50 nm of the nonspecialized regions of the plasma membrane. Because each bouton had at least one SERF within 50 nm of the plasma membrane and most of these SERFs had DCVs, but not mitochondria, near them, it is possible for Ca2+ release from the SER to provide the Ca2+ necessary for DCV exocytosis. The fact that 60% of the mitochondria had some part within 50 nm of the plasma membrane means that it is possible for mitochondrial Ca2+ buffering to affect DCV exocytosis.

  4. Nerve Blocks

    MedlinePlus

    ... Sometimes the needle has to be inserted fairly deep to reach the nerve causing your problem. This ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  5. alpha- and beta-adrenergic receptor mechanisms in spontaneous contractile activity of rat ileal longitudinal smooth muscle.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Balsiger, Bruno M

    2005-02-01

    Gastrointestinal motility is influenced by adrenergic modulation. Our aim was to identify specific subtypes of adrenergic receptors involved in inhibitory mechanisms that modulate gut smooth muscle contractile activity. Muscle strips of rat ileal longitudinal muscle were evaluated for spontaneous contractile activity and for equimolar dose-responses (10(-7) to 3 x 10(-5) M) to the adrenergic agents norepinephrine (nonselective agonist), phenylephrine (alpha(1)-agonist), clonidine (alpha(2)-agonist), prenalterol (beta(1)-agonist), ritodrine (beta(2)-agonist), and ZD7114 (beta(3)-agonist) in the presence and absence of tetrodotoxin (nonselective nerve blocker). Norepinephrine (3 x 10(-5) M) inhibited 65 +/- 6% (mean +/- SEM) of spontaneous contractile activity. The same molar dose of ritodrine, phenylephrine, or ZD7114 resulted in less inhibition (46 +/- 7%, 31 +/- 5%, and 39 +/- 3%, respectively; P < 0.05). The calculated molar concentration of ZD7114 needed to induce 50% inhibition was similar to that of norepinephrine, whereas higher concentrations of phenylephrine or ritodrine were required. Clonidine and prenalterol had no effect on contractile activity. Blockade of intramural neural transmission by tetrodotoxin affected the responses to ritodrine and phenylephrine (but not to norepinephrine or ZD7114), suggesting that these agents exert part of their effects via neurally mediated enteric pathways. Our results suggest that adrenergic modulation of contractile activity in the rat ileum is mediated primarily by muscular beta(3)-, beta(2)-, and alpha(1)-receptor mechanisms; the latter two also involve neural pathways.

  6. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement

    PubMed Central

    Sato, T.; Miyazawa, K.; Suzuki, Y.; Mizutani, Y.; Uchibori, S.; Asaoka, R.; Arai, M.; Togari, A.; Goto, S.

    2014-01-01

    Recently, involvement of the sympathetic nervous system in bone metabolism has attracted attention. β2-Adrenergic receptor (β2-AR) is presented on osteoblastic and osteoclastic cells. We previously demonstrated that β-AR blockers at low dose improve osteoporosis with hyperactivity of the sympathetic nervous system via β2-AR blocking, while they may have a somewhat inhibitory effect on osteoblastic activity at high doses. In this study, the effects of butoxamine (BUT), a specific β2-AR antagonist, on tooth movement were examined in spontaneously hypertensive rats (SHR) showing osteoporosis with hyperactivity of the sympathetic nervous system. We administered BUT (1 mg/kg) orally, and closed-coil springs were inserted into the upper-left first molar. After sacrifice, we calculated the amount of tooth movement and analyzed the trabecular microarchitecture and histomorphometry. The distance in the SHR control was greater than that in the Wistar-Kyoto rat group, but no significant difference was found in the SHR treated with BUT compared with the Wistar-Kyoto rat control. Analysis of bone volume per tissue volume, trabecular number, and osteoclast surface per bone surface in the alveolar bone showed clear bone loss by an increase of bone resorption in SHR. In addition, BUT treatment resulted in a recovery of alveolar bone loss. Furthermore, TH-immunoreactive nerves in the periodontal ligament were increased by tooth movement, and BUT administration decreased TH-immunoreactive nerves. These results suggest that BUT prevents alveolar bone loss and orthodontic tooth movement via β2-AR blocking. PMID:24868013

  7. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement.

    PubMed

    Sato, T; Miyazawa, K; Suzuki, Y; Mizutani, Y; Uchibori, S; Asaoka, R; Arai, M; Togari, A; Goto, S

    2014-08-01

    Recently, involvement of the sympathetic nervous system in bone metabolism has attracted attention. β2-Adrenergic receptor (β2-AR) is presented on osteoblastic and osteoclastic cells. We previously demonstrated that β-AR blockers at low dose improve osteoporosis with hyperactivity of the sympathetic nervous system via β2-AR blocking, while they may have a somewhat inhibitory effect on osteoblastic activity at high doses. In this study, the effects of butoxamine (BUT), a specific β2-AR antagonist, on tooth movement were examined in spontaneously hypertensive rats (SHR) showing osteoporosis with hyperactivity of the sympathetic nervous system. We administered BUT (1 mg/kg) orally, and closed-coil springs were inserted into the upper-left first molar. After sacrifice, we calculated the amount of tooth movement and analyzed the trabecular microarchitecture and histomorphometry. The distance in the SHR control was greater than that in the Wistar-Kyoto rat group, but no significant difference was found in the SHR treated with BUT compared with the Wistar-Kyoto rat control. Analysis of bone volume per tissue volume, trabecular number, and osteoclast surface per bone surface in the alveolar bone showed clear bone loss by an increase of bone resorption in SHR. In addition, BUT treatment resulted in a recovery of alveolar bone loss. Furthermore, TH-immunoreactive nerves in the periodontal ligament were increased by tooth movement, and BUT administration decreased TH-immunoreactive nerves. These results suggest that BUT prevents alveolar bone loss and orthodontic tooth movement via β2-AR blocking.

  8. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  9. Ulnar nerve dysfunction

    MedlinePlus

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... compressed in the elbow, a problem called cubital tunnel syndrome may result. When damage destroys the nerve ...

  10. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  11. Sex differences in alpha-adrenergic support of blood pressure.

    PubMed

    Schmitt, Judith A M; Joyner, Michael J; Charkoudian, Nisha; Wallin, B Gunnar; Hart, Emma C

    2010-08-01

    We tested whether the inter-individual variability in alpha-adrenergic support of blood pressure plays a critical role in the sex differences in tonic support of blood pressure by the autonomic nervous system. Blockade of the alpha-adrenergic receptors was achieved via phentolamine and showed a smaller (P < 0.05) decrease in blood pressure in women compared to men, implying that alpha-adrenergic support of blood pressure is less in women than in men.

  12. Microsurgical anatomy of the trochlear nerve.

    PubMed

    Joo, Wonil; Rhoton, Albert L

    2015-10-01

    The trochlear nerve is the cranial nerve with the longest intracranial course, but also the thinnest. It is the only nerve that arises from the dorsal surface of the brainstem and decussates in the superior medullary velum. After leaving the dorsal surface of the brainstem, it courses anterolaterally around the lateral surface of the brainstem and then passes anteriorly just beneath the free edge of the tentorium. It passes forward to enter the cavernous sinus, traverses the superior orbital fissure and terminates in the superior oblique muscle in the orbit. Because of its small diameter and its long course, the trochlear nerve can easily be injured during surgical procedures. Therefore, precise knowledge of its surgical anatomy and its neurovascular relationships is essential for approaching and removing complex lesions of the orbit and the middle and posterior fossae safely. This review describes the microsurgical anatomy of the trochlear nerve and is illustrated with pictures involving the nerve and its surrounding connective and neurovascular structures.

  13. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  14. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  15. Monitoring the human beta1, beta2, beta3 adrenergic receptors expression and purification in Pichia pastoris using the fluorescence properties of the enhanced green fluorescent protein.

    PubMed

    Talmont, Franck

    2009-01-01

    The three beta adrenergic receptor subtypes, beta1-, beta2- and beta3-, were expressed in the methylotrophic yeast Pichia pastoris. These receptors were N-terminally fused to the enhanced green fluorescent protein (EGFP) and the fluorescent properties of EGFP were used: (1) to select the recombinant strains, (2) to monitor the expression of the fluorescent receptors, and (3) to monitor the purification of the receptors by immobilized metal affinity chromatography. We demonstrate here that Pichia pastoris can be an alternative host to express and purify milligram amounts of human beta adrenergic receptors.

  16. Present state of alpha- and beta-adrenergic drugs I. The adrenergic receptor.

    PubMed

    Ahlquist, R P

    1976-11-01

    The cardiovascular alpha adrenergic receptors evoke vasoconstriction, the cardiovascular beta receptors evoke vasodilation and cardiac stimulation. All blood vessels have both alpha and beta receptors. In some areas, for example skin and kidney, the alpha receptors predominate. In some vascular beds, for example the nutrient vessels in skeletal muscle, beta receptors predominate. In other beds, such as coronary, visceral, and connective tissue both receptors are active. The cardiovascular effects of adrenergic agonists depend on which receptor they act on. Phenylephrine is specific for alpha receptors. Isoproterenol is specific for beta receptors. Epinephrine and norepinephrine act on both. The real value of knowing the receptor specificity of each agonist is that side effects can more easily be predicted. For example, adrenergic cardiac stimulants are antiasthmatics. Therefore, adrenergic antiasthmatics can produce excessive cardiac stimulation. For the future, agonists that are not only receptor-specific but also tissue-specific will be developed. The first of these in the United States is terbutaline. The rest of the world has in addition a similar drug, salbutamol. No one knows if this drug will be approved for use by American physicians.

  17. [Mivazerol and other benzylimidazoles with alpha-2 adrenergic properties].

    PubMed

    Cossement, E; Geerts, J P; Michel, P; Motte, G; Noyer, M

    1994-01-01

    4-Benzyl-imidazole compounds derived from Salbutanol are evaluated for potential adrenergic activities. The prevalent property of a series of new bioisosteres of catecholamines either of the saligenol-(ucb LO61) or benzamide-(Mivazerol) type is a selective alpha-adrenergic agonism, at the presynaptic level. The present study stresses the structural features responsible for the alpha-2-agonistic property.

  18. Adrenergic urticaria: review of the literature and proposed mechanism.

    PubMed

    Hogan, Sara R; Mandrell, Joshua; Eilers, David

    2014-04-01

    Adrenergic urticaria is a rare type of stress-induced physical urticaria characterized by transient outbreaks of red papules surrounded by halos of hypopigmented, vasoconstricted skin. First described in 1985, there are 10 reported cases of adrenergic urticaria in the English-language medical literature. Episodes are caused by various triggers, including emotional upset, coffee, and chocolate, during which serum catecholamines and IgE are elevated, whereas histamine and serotonin levels remain within normal limits. The precise mechanisms leading to the pathogenesis of adrenergic urticaria have yet to be elucidated. Diagnosis can be made by intradermal injection of epinephrine or norepinephrine, which reproduces the characteristic rash, or by clinical observation. Trigger avoidance and oral propranolol are currently the best known treatments for adrenergic urticaria. Nonspecific therapies, including tranquilizers and antihistamines, may also ease symptoms. This article explores the pathophysiology of adrenergic urticaria and proposes a mechanism by which propranolol treats the condition.

  19. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  20. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries.

    PubMed

    Nausch, Lydia W M; Bonev, Adrian D; Heppner, Thomas J; Tallini, Yvonne; Kotlikoff, Michael I; Nelson, Mark T

    2012-02-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.

  1. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  2. Cannabinoid modulation of alpha2 adrenergic receptor function in rodent medial prefrontal cortex

    PubMed Central

    Cathel, Alessandra M.; Reyes, Beverly A. S.; Wang, Qin; Palma, Jonathan; Mackie, Kenneth; Bockstaele, Elisabeth J. Van; Kirby, Lynn G.

    2014-01-01

    Endocannabinoids acting at the cannabinoid type 1 receptor (CB1R) are known to regulate attention, cognition and mood. Previous studies have shown that, in the rat medial prefrontal cortex (mPFC), CB1R agonists increase norepinephrine release, an effect that may be attributed, in part, to CB1Rs localized to noradrenergic axon terminals. The present study was aimed at further characterizing functional interactions between CB1R and adrenergic receptor (AR) systems in the mPFC using in-vitro intracellular electrophysiology and high-resolution neuroanatomical techniques. Whole-cell patch-clamp recordings of layer V/VI cortical pyramidal neurons in rats revealed that both acute and chronic treatment with the synthetic CB1R agonist WIN 55,212-2 blocked elevations in cortical pyramidal cell excitability and increases in input resistance evoked by the α2-adrenergic receptor (α2-AR) agonist clonidine, suggesting a desensitization of α2-ARs. These CB1R–α2-AR interactions were further shown to be both action potential- and gamma-aminobutyric acid-independent. To better define sites of cannabinoid–AR interactions, we localized α2A-ARs in a genetically modified mouse that expressed a hemoagglutinin (HA) tag downstream of the α2A-AR promoter. Light and electron microscopy indicated that HA-α2A-AR was distributed in axon terminals and somatodendritic processes especially in layer V of the mPFC. Triple-labeling immunocytochemistry revealed that α2A-AR and CB1R were localized to processes that contained dopamine-β-hydroxylase, a marker of norepinephrine. Furthermore, HA-α2A-AR was localized to processes that were directly apposed to CB1R. These findings suggest multiple sites of interaction between cortical cannabinoid–adrenergic systems that may contribute to understanding the effect of cannabinoids on executive functions and mood. PMID:25131562

  3. Adrenergic regulation of innate immunity: a review

    PubMed Central

    Scanzano, Angela; Cosentino, Marco

    2015-01-01

    The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system. The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents. The cells of immune system express adrenoceptors (AR), which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC), β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease. In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential. PMID:26321956

  4. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    SciTech Connect

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-03-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca/sup + +/ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10/sup -5/ M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (/sup 3/H)inositol, and basal (/sup 3/H) inositol phosphate (IP/sub 1/) accumulation was measured in the presence of Li/sup +/. Epinephrine > norepinephrine (NE) were the most active stimulants of IP/sub 1/ production. The ..cap alpha../sub 1/ adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP/sub 1/ production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP/sub 1/ below basal levels and when added together diminished IP/sub 1/ accumulation even further. The role of adrenergic stimulation in the production of c-AMP.

  5. Role of selective alpha and beta adrenergic receptor mechanisms in rat jejunal longitudinal muscle contractility.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Haefliger, Simon; Balsiger, Bruno M

    2008-06-01

    Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.

  6. Termination Documentation

    ERIC Educational Resources Information Center

    Duncan, Mike; Hill, Jillian

    2014-01-01

    In this study, we examined 11 workplaces to determine how they handle termination documentation, an empirically unexplored area in technical communication and rhetoric. We found that the use of termination documentation is context dependent while following a basic pattern of infraction, investigation, intervention, and termination. Furthermore,…

  7. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  8. Developmental changes in the role of a pertussis toxin sensitive guanine nucleotide binding protein in the rat cardiac alpha sub 1 -adrenergic system

    SciTech Connect

    Han, H.M.

    1989-01-01

    During development, the cardiac alpha{sub 1}-adrenergic chronotropic response changes from positive in the neonate to negative in the adult. This thesis examined the possibility of a developmental change in coupling of a PT-sensitive G-protein to the alpha{sub 1}-adrenergic receptor. Radioligand binding experiments performed with the iodinated alpha{sub 1}-selective radioligand ({sup 125}I)-I-2-({beta}-(4-hydroxphenyl)ethylaminomethyl)tetralone (({sup 125}I)-IBE 2254) demonstrated that the alpha{sub 1}-adrenergic receptor is coupled to a G-protein in both neonatal and adult rat hearts. However, in the neonate the alpha{sub 1}-adrenergic receptor is coupled to a PT-insensitive G-protein, whereas in the adult the alpha{sub 1}-adrenergic receptor is coupled to both a PT-insensitive and a PT-sensitive G-protein. Consistent with the results from binding experiments, PT did not have any effect on the alpha{sub 1}-mediated positive chronotropic response in the neonate, whereas in the adult the alpha{sub 1}-mediated negative chronotropic response was completely converted to a positive one after PT-treatment. This thesis also examined the possibility of an alteration in coupling of the alpha{sub 1}-adrenergic receptor to its effector under certain circumstances such as high potassium (K{sup +}) depolarization in nerve-muscle (NM) co-cultures, a system which has been previously shown to be a convenient in vitro model to study the mature inhibitory alpha{sub 1}-response.

  9. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    SciTech Connect

    Jumblatt, J.E.; North, G.T.

    1988-04-01

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alpha 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.

  10. The role of calcium in the effects of noradrenaline and phenoxybenzamine on adrenergic transmitter release from atria: no support for negative feedback of release

    PubMed Central

    Kalsner, Stanley

    1981-01-01

    1 The relation of calcium ion influx into nerve terminals to presynaptic adrenoceptor function and the possible masking, by desensitization due to intraneuronal calcium accumulation, of the effects of adrenoceptor agonists and antagonists on presynaptic α-adrenoceptors was investigated in guinea-pig atria previously incubated with [3H]-noradrenaline. 2 Atria were stimulated with 100 pulses at various frequencies (1 to 15 Hz) in standard (2.3 mm), low (0.26 mm) and high (6.9 mm) calcium-Krebs solution in the absence and then the presence first of noradrenaline and subsequently phenoxybenzamine. 3 The per pulse overflow of tritium was directly related to the calcium concentration of the Krebs solution, being much reduced and substantially increased in 0.26 and 6.9 mm calcium-Krebs solutions respectively. 4 Noradrenaline inhibited the overflow of tritium in low calcium-Krebs solution, to a relatively constant extent, independently of frequency. In addition, the agonist had a greater maximal inhibitory effect in standard than in reduced calcium-Krebs. The catecholamine was as effective an inhibitor of overflow at the lowest and highest frequencies in high as it was in standard calcium-Krebs solution. Phenoxybenzamine invariably increased the tritium overflow but was generally less effective both in low and in high calcium-Krebs solution. The patterns of inhibition and enhancement of stimulation-induced tritium overflow by these two agents do not indicate an intimate relationship between calcium influx and adrenoceptor activation; nor does desensitization appear to be an adequate explanation of the relationship between frequency of stimulation and the intensity of agonist and antagonist effect in the three different calcium concentrations. 5 It is concluded that the perineuronal levels of adrenergic transmitter do not establish the magnitudes of effect of exogenous adrenoceptor agonists and antagonists on tritium overflow and that a negative feedback regulation of

  11. Optical Biopsy of Peripheral Nerve Using Confocal Laser Endomicroscopy: A New Tool for Nerve Surgeons?

    PubMed Central

    Liao, Joseph C; Curtin, Catherine M

    2015-01-01

    Peripheral nerve injuries remain a challenge for reconstructive surgeons with many patients obtaining suboptimal results. Understanding the level of injury is imperative for successful repair. Current methods for distinguishing healthy from damaged nerve are time consuming and possess limited efficacy. Confocal laser endomicroscopy (CLE) is an emerging optical biopsy technology that enables dynamic, high resolution, sub-surface imaging of live tissue. Porcine sciatic nerve was either left undamaged or briefly clamped to simulate injury. Diluted fluorescein was applied topically to the nerve. CLE imaging was performed by direct contact of the probe with nerve tissue. Images representative of both damaged and undamaged nerve fibers were collected and compared to routine H&E histology. Optical biopsy of undamaged nerve revealed bands of longitudinal nerve fibers, distinct from surrounding adipose and connective tissue. When damaged, these bands appear truncated and terminate in blebs of opacity. H&E staining revealed similar features in damaged nerve fibers. These results prompt development of a protocol for imaging peripheral nerves intraoperatively. To this end, improving surgeons' ability to understand the level of injury through real-time imaging will allow for faster and more informed operative decisions than the current standard permits. PMID:26430636

  12. Nerve conduction velocity

    MedlinePlus

    ... polyneuropathy Tibial nerve dysfunction Ulnar nerve dysfunction Any peripheral neuropathy can cause abnormal results. Damage to the spinal ... Herniated disk Lambert-Eaton syndrome Mononeuropathy Multiple ... azotemia Primary amyloidosis Radial nerve dysfunction Sciatica ...

  13. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  14. Adrenergic Polymorphism and the Human Stress Response

    PubMed Central

    Rao, Fangwen; Zhang, Lian; Wessel, Jennifer; Zhang, Kuixing; Wen, Gen; Kennedy, Brian P.; Rana, Brinda K.; Das, Madhusudan; Rodriguez-Flores, Juan L.; Smith, Douglas W.; Cadman, Peter E.; Salem, Rany M.; Mahata, Sushil K.; Schork, Nicholas J.; Taupenot, Laurent; Ziegler, Michael G.; O’Connor, Daniel T.

    2009-01-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus, and then tested variants for contributions to sympathetic function and blood pressure. We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy-two twin pairs were evaluated for sympathetic traits, including catecholamine production and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty-nine single nucleotide polymorphisms (SNPs) and one tetranucleotide repeat were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned four common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable, as were stress-induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion, as well as blood pressure response to stress. TH promoter haplotype #2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. In hypertension, a case–control study (1266 subjects, 53% women) established the effect of C-824T in determination of blood pressure. We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate-limiting step, TH. The results suggest novel pathophysiological links between a key

  15. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  16. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  17. Exercise Testing, Training, and Beta-Adrenergic Blockade.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.

    1988-01-01

    This article summarizes the current knowledge on the effects of beta-adrenergic blocking drugs, used widely for treatment of cardiovascular diseases, on exercise performance, training benefits, and exercise prescription. (IAH)

  18. MELANOPHORE BANDS AND AREAS DUE TO NERVE CUTTING, IN RELATION TO THE PROTRACTED ACTIVITY OF NERVES

    PubMed Central

    Parker, G. H.

    1941-01-01

    1. When appropriate chromatic nerves are cut caudal bands, cephalic areas, and the pelvic fins of the catfish Ameiurus darken. In pale fishes all these areas will sooner or later blanch. By recutting their nerves all such blanched areas will darken again. 2. These observations show that the darkening of caudal bands, areas, and fins on cutting their nerves is not due to paralysis (Brücke), to the obstruction of central influences such as inhibition (Zoond and Eyre), nor to vasomotor disturbances (Hogben), but to activities emanating from the cut itself. 3. The chief agents concerned with the color changes in Ameiurus are three: intermedin from the pituitary gland, acetylcholine from the dispersing nerves (cholinergic fibers), and adrenalin from the concentrating nerves (adrenergic fibers). The first two darken the fish; the third blanches it. In darkening the dispersing nerves appear to initiate the process and to be followed and substantially supplemented by intermedin. 4. Caudal bands blanch by lateral invasion, cephalic areas by lateral invasion and internal disintegration, and pelvic fins by a uniform process of general loss of tint equivalent to internal disintegration. 5. Adrenalin may be carried in such an oil as olive oil and may therefore act as a lipohumor; it is soluble in water and hence may act as a hydrohumor. In lateral invasion (caudal bands, cephalic areas) it probably acts as a lipohumor and in internal disintegration (cephalic areas, pelvic fins) it probably plays the part of a hydrohumor. 6. The duration of the activity of dispersing nerves after they had been cut was tested by means of the oscillograph, by anesthetizing blocks, and by cold-blocks. The nerves of Ameiurus proved to be unsatisfactory for oscillograph tests. An anesthetizing block, magnesium sulfate, is only partly satisfactory. A cold-block, 0°C., is successful to a limited degree. 7. By means of a cold-block it can be shown that dispersing autonomic nerve fibers in Ameiurus can

  19. Adrenergic receptor control mechanism for growth hormone secretion.

    PubMed

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  20. The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction

    PubMed Central

    Jones, S. F.; Kwanbunbumpen, Suthiwan

    1970-01-01

    1. Electron micrographs of nerve terminals in rat phrenic nerve—diaphragm preparations have been studied. This has been done before and after prolonged nerve stimulation. The effectiveness of nerve stimulation has been monitored by intracellular micro-electrode recordings from the muscle cells. 2. Characteristic changes in the form and distribution of the nerve terminal mitochondria were noted after nerve stimulation. 3. Synaptic vesicle numbers in the region of nerve terminal less than 1800 Å from the synaptic cleft were significantly greater in tissue taken 2 and 3 min after nerve stimulation, than in unstimulated preparations. 4. The long and short diameters of the synaptic vesicle profiles less than 1800 Å from the synaptic cleft were measured. Analysis of the distribution of the diameters indicated synaptic vesicles to be basically spherical structures. Estimates of synaptic vesicle volume were made from the measurements. Synaptic vesicle volume was significantly reduced in tissue taken 2 and 4 min following nerve stimulation. 5. If hemicholinium, a compound which inhibits acetylcholine synthesis, was present during the period of nerve stimulation, much greater reductions in synaptic vesicle volume occurred. Synaptic vesicle numbers in the region of nerve terminal less than 1800 Å from the synaptic cleft were also reduced, compared with unstimulated control preparations. 6. These results are regarded as support for the hypothesis that the synaptic vesicles in nerve terminals at the mammalian neuromuscular junction represent stores of the transmitter substance, acetylcholine. ImagesABABPlate 2AB PMID:5503879

  1. Alpha-adrenergic control of growth hormone release during surgical stress in man.

    PubMed

    Vigas, M; Malatinský, J; Németh, S; Jurcovicová, J

    1977-04-01

    The mechanisms involved in the initial release of growth hormone (GH) during cholecystectomy have been studied after the administration of phentolamine in saline and in isotonic glucose, and after the administration of 10% glucose. Infusion of these substances was started 10 min before and terminated 30 min after skin incision. The serum GH levels 30 min after skin incision in a nontreated control group were raised to 14.4 +/- 1.0 ng/ml. The alpha-adrenergic blockade by phentolamine (20 mg during 40 min) regardless of whether administered in saline or in isotonic glucose inhibited GH response to surgery (4.3 +/- 2.1 ng/ml, or 2.2 +/- 0.4 ng/ml). The administration of 10% glucose (40 g during 40 min) led to a diminished response in some, but not in all the patients (6.2 +/- 1.2 ng/ml). It is concluded that the alpha-adrenergic mechanism participates in GH response to surgery.

  2. Effects of intranasal cocaine on sympathetic nerve discharge in humans.

    PubMed Central

    Jacobsen, T N; Grayburn, P A; Snyder, R W; Hansen, J; Chavoshan, B; Landau, C; Lange, R A; Hillis, L D; Victor, R G

    1997-01-01

    Cocaine-induced cardiovascular emergencies are mediated by excessive adrenergic stimulation. Animal studies suggest that cocaine not only blocks norepinephrine reuptake peripherally but also inhibits the baroreceptors, thereby reflexively increasing sympathetic nerve discharge. However, the effect of cocaine on sympathetic nerve discharge in humans is unknown. In 12 healthy volunteers, we recorded blood pressure and sympathetic nerve discharge to the skeletal muscle vasculature using intraneural microelectrodes (peroneal nerve) during intranasal cocaine (2 mg/kg, n = 8) or lidocaine (2%, n = 4), an internal local anesthetic control, or intravenous phenylephrine (0.5-2.0 microg/kg, n = 4), an internal sympathomimetic control. Experiments were repeated while minimizing the cocaine-induced rise in blood pressure with intravenous nitroprusside to negate sinoaortic baroreceptor stimulation. After lidocaine, blood pressure and sympathetic nerve discharge were unchanged. After cocaine, blood pressure increased abruptly and remained elevated for 60 min while sympathetic nerve discharge initially was unchanged and then decreased progressively over 60 min to a nadir that was only 2+/-1% of baseline (P < 0.05); however, plasma venous norepinephrine concentrations (n = 5) were unchanged up to 60 min after cocaine. Sympathetic nerve discharge fell more rapidly but to the same nadir when blood pressure was increased similarly with phenylephrine. When the cocaine-induced increase in blood pressure was minimized (nitroprusside), sympathetic nerve discharge did not decrease but rather increased by 2.9 times over baseline (P < 0.05). Baroreflex gain was comparable before and after cocaine. We conclude that in conscious humans the primary effect of intranasal cocaine is to increase sympathetic nerve discharge to the skeletal muscle bed. Furthermore, sinoaortic baroreflexes play a pivotal role in modulating the cocaine-induced sympathetic excitation. The interplay between these

  3. Hypoxia sensing through β-adrenergic receptors

    PubMed Central

    Cheong, Hoi I.; Asosingh, Kewal; Stephens, Olivia R.; Queisser, Kimberly A.; Xu, Weiling; Willard, Belinda; Hu, Bo; Dermawan, Josephine Kam Tai; Stark, George R.; Naga Prasad, Sathyamangla V.; Erzurum, Serpil C.

    2016-01-01

    Life-sustaining responses to low oxygen, or hypoxia, depend on signal transduction by HIFs, but the underlying mechanisms by which cells sense hypoxia are not completely understood. Based on prior studies suggesting a link between the β-adrenergic receptor (β-AR) and hypoxia responses, we hypothesized that the β-AR mediates hypoxia sensing and is necessary for HIF-1α accumulation. Beta blocker treatment of mice suppressed hypoxia induction of renal HIF-1α accumulation, erythropoietin production, and erythropoiesis in vivo. Likewise, beta blocker treatment of primary human endothelial cells in vitro decreased hypoxia-mediated HIF-1α accumulation and binding to target genes and the downstream hypoxia-inducible gene expression. In mechanistic studies, cAMP-activated PKA and/or GPCR kinases (GRK), which both participate in β-AR signal transduction, were investigated. Direct activation of cAMP/PKA pathways did not induce HIF-1α accumulation, and inhibition of PKA did not blunt HIF-1α induction by hypoxia. In contrast, pharmacological inhibition of GRK, or expression of a GRK phosphorylation–deficient β-AR mutant in cells, blocked hypoxia-mediated HIF-1α accumulation. Mass spectrometry–based quantitative analyses revealed a hypoxia-mediated β-AR phosphorylation barcode that was different from the classical agonist phosphorylation barcode. These findings indicate that the β-AR is fundamental to the molecular and physiological responses to hypoxia. PMID:28018974

  4. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    SciTech Connect

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr. )

    1987-11-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of ({sup 3}H)prazosin, ({sup 3}H)rauwolscine, and ({sup 125}I)iodocyanopindolol were used to quantitate {alpha}{sub 1}-, {alpha}{sub 2}-, and {beta}-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B{sub max}, per milligram membrane protein) for {alpha}{sub 1}-, and {alpha}{sub 2}-, and {beta}-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K{sub D}) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine.

  5. α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation.

    PubMed

    Kiviniemi, Antti M; Frances, Maria F; Tiinanen, Suvi; Craen, Rosemary; Rachinsky, Maxim; Petrella, Robert J; Seppänen, Tapio; Huikuri, Heikki V; Tulppo, Mikko P; Shoemaker, J Kevin

    2011-08-01

    The present study was designed to address the contribution of α-adrenergic modulation to the genesis of low-frequency (LF; 0.04-0.15 Hz) oscillations in R-R interval (RRi), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) during different sympathetic stimuli. Blood pressure and RRi were measured continuously in 12 healthy subjects during 5 min periods each of lower body negative pressure (LBNP; -40 mmHg), static handgrip exercise (HG; 20% of maximal force) and postexercise forearm circulatory occlusion (PECO) with and without α-adrenergic blockade by phentolamine. Muscle sympathetic nerve activity was recorded in five subjects during LBNP and in six subjects during HG and PECO. Low-frequency powers and median frequencies of BP, RRi and MSNA were calculated from power spectra. Low-frequency power during LBNP was lower with phentolamine versus without for both BP and RRi oscillations (1.6 ± 0.6 versus 1.2 ± 0.7 ln mmHg(2), P = 0.049; and 6.9 ± 0.8 versus 5.4 ± 0.9 ln ms(2), P = 0.001, respectively). In contrast, the LBNP with phentolamine increased the power of high-frequency oscillations (0.15-0.4 Hz) in BP and MSNA (P < 0.01 for both), which was not observed during saline infusion. Phentolamine also blunted the increases in the LBNP-induced increase in frequency of LF oscillations in BP and RRi. Phentolamine decreased the LF power of RRi during HG (P = 0.015) but induced no other changes in LF powers or frequencies during HG. Phentolamine resulted in decreased frequency of LF oscillations in RRi (P = 0.004) during PECO, and a similar tendency was observed in BP and MSNA. The power of LF oscillation in MSNA did not change during any intervention. We conclude that α-adrenergic modulation contributes to LF oscillations in BP and RRi during baroreceptor unloading (LBNP) but not during static exercise. Also, α-adrenergic modulation partly explains the shift to a higher frequency of LF oscillations during baroreceptor unloading and muscle

  6. Nonidet P40 and the retrograde transport of horseradish peroxidase in undamaged visceral nerves.

    PubMed

    Rogers, R C; Liholtz, L A; Ebly, E M

    1982-06-01

    The cell bodies of origin of peripheral nerves, in particular visceral nerves, are often difficult to identify using standard horseradish peroxidase (HRP) methods. The non-ionic surfactant Nonidet-P40, when applied to intact peripheral nerve along with HRP, allows the investigator to examine the neurons of origin of the nerve without cutting the fibers or injecting label into its peripheral terminal field.

  7. Bank Terminals

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, employees of the UAB Bank, Knoxville, Tennessee, are using Teller Transaction Terminals manufactured by SCI Systems, Inc., Huntsville, Alabama, an electronics firm which has worked on a number of space projects under contract with NASA. The terminals are part of an advanced, computerized financial transaction system that offers high efficiency in bank operations. The key to the system's efficiency is a "multiplexing" technique developed for NASA's Space Shuttle. Multiplexing is simultaneous transmission of large amounts of data over a single transmission link at very high rates of speed. In the banking application, a small multiplex "data bus" interconnects all the terminals and a central computer which stores information on clients' accounts. The data bus replaces the maze-of wiring that would be needed to connect each terminal separately and it affords greater speed in recording transactions. The SCI system offers banks real-time data management through constant updating of the central computer. For example, a check is immediately cancelled at the teller's terminal and the computer is simultaneously advised of the transaction; under other methods, the check would be cancelled and the transaction recorded at the close of business. Teller checkout at the end of the day, conventionally a time-consuming matter of processing paper, can be accomplished in minutes by calling up a summary of the day's transactions. SCI manufactures other types of terminals for use in the system, such as an administrative terminal that provides an immediate printout of a client's account, and another for printing and recording savings account deposits and withdrawals. SCI systems have been installed in several banks in Tennessee, Arizona, and Oregon and additional installations are scheduled this year.

  8. Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta 1- adrenergic receptor

    PubMed Central

    1995-01-01

    Sera from chagasic patients possess antibodies recognizing the carboxy- terminal part of the ribosomal P0 protein of Trypanosoma cruzi and the second extracellular loop of the human beta 1-adrenergic receptor. Comparison of both peptides showed that they contain a pentapeptide with very high homology (AESEE in P0 and AESDE in the human beta 1- adrenergic receptor). Using a competitive immunoenzyme assay, recognition of the peptide corresponding to the second extracellular loop (H26R) was inhibited by both P0-14i (AAAESEEEDDDDDF) and P0-beta (AESEE). Concomitantly, recognition of P0-beta was inhibited with the H26R peptide. Recognition of P0 in Western blots was inhibited by P0- 14i, P0-beta, and H26R, but not by a peptide corresponding to the second extracellular loop of the human beta 2-adrenergic receptor or by an unrelated peptide. Autoantibodies affinity purified with the immobilized H26R peptide were shown to exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats. This effect was blocked by both the specific beta 1 blocker bisoprolol and the peptide P0-beta. These results unambiguously prove that T. cruzi is able to induce a functional autoimmune response against the cardiovascular human beta 1-adrenergic receptor through a molecular mimicry mechanism. PMID:7790824

  9. Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta 1-adrenergic receptor.

    PubMed

    Ferrari, I; Levin, M J; Wallukat, G; Elies, R; Lebesgue, D; Chiale, P; Elizari, M; Rosenbaum, M; Hoebeke, J

    1995-07-01

    Sera from chagasic patients possess antibodies recognizing the carboxy-terminal part of the ribosomal P0 protein of Trypanosoma cruzi and the second extracellular loop of the human beta 1-adrenergic receptor. Comparison of both peptides showed that they contain a pentapeptide with very high homology (AESEE in P0 and AESDE in the human beta 1-adrenergic receptor). Using a competitive immunoenzyme assay, recognition of the peptide corresponding to the second extracellular loop (H26R) was inhibited by both P0-14i (AAAESEEEDDDDDF) and P0-beta (AESEE). Concomitantly, recognition of P0-beta was inhibited with the H26R peptide. Recognition of P0 in Western blots was inhibited by P0-14i, P0-beta, and H26R, but not by a peptide corresponding to the second extracellular loop of the human beta 2-adrenergic receptor or by an unrelated peptide. Autoantibodies affinity purified with the immobilized H26R peptide were shown to exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats. This effect was blocked by both the specific beta 1 blocker bisoprolol and the peptide P0-beta. These results unambiguously prove that T. cruzi is able to induce a functional autoimmune response against the cardiovascular human beta 1-adrenergic receptor through a molecular mimicry mechanism.

  10. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    ERIC Educational Resources Information Center

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  11. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  12. beta-Adrenergic receptor modulation of wound repair.

    PubMed

    Pullar, Christine E; Manabat-Hidalgo, Catherine G; Bolaji, Ranti S; Isseroff, R Rivkah

    2008-08-01

    Adrenergic receptors and their downstream effector molecules are expressed in all cell types in the skin, and it is only recently that functionality of the catecholamine agonist activated signaling in the cutaneous repair process has been revealed. In addition to responding to systemic elevations in catecholamines (as in stress situations) or to pharmacologically administered adrenergic agonists, epidermal keratinocytes themselves can synthesize catecholamine ligands. They also respond to these systemic or self-generated agonists via receptor mediated signaling, resulting in altered migration, and changes in wound re-epithelialization. Endothelial cells, inflammatory cells, dermal fibroblasts, and mesenchymal stem cells, all cells that contribute to the wound repair process, express multiple subtypes of adrenergic receptors and exhibit responses that can be either contribute or impair healing-and occasionally, depending on the species and assay conditions, results can be conflicting. There is still much to be uncovered regarding how this self-contained autocrine and paracrine signaling system contributes to cutaneous wound repair.

  13. Genetic manipulation of beta-adrenergic signalling in heart failure.

    PubMed

    Davidson, M J; Koch, W J

    2001-09-01

    Heart failure (HF) represents one of the leading causes for hospitalization in developed nations. Despite advances in the management of coronary artery disease, no significant improvements in prognosis have been achieved for HF over the last several decades. Heart failure itself represents a final common endpoint for several disease entities, including hypertension, coronary artery disease, and cardiomyopathy. However, certain biochemical features remain common to the failing myocardium. Foremost amongst these are alterations in the beta-adrenergic receptor signalling cascade. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies for the management of HF via enhancement of beta-adrenergic signalling. In this review, we will discuss the biochemical changes that accompany HF as well as corresponding therapeutic strategies. We will then review the evidence from transgenic mouse work supporting the use of adrenergic receptor augmentation in the failing heart and more recent in vivo applications of gene therapy directed at reversing or preventing HF.

  14. Intramuscular nerve distribution patterns of anterior forearm muscles in children: a guide for botulinum toxin injection.

    PubMed

    Yang, Fangjiu; Zhang, Xiaoming; Xie, Xiadan; Yang, Shengbo; Xu, Yan; Xie, Peng

    2016-01-01

    Botulinum toxin (BoNT) can relieve muscle spasticity by blocking axon terminals acetylcholine release at the motor endplate (MEP) and is the safest and most effective agent for the treatment of muscle spasticity in children with cerebral palsy. In order to achieve maximum effect with minimum effective dose of BoNT, one needs to choose an injection site as near to the MEP zone as possible. This requires a detailed understanding about the nerve terminal distributions within the muscles targeted for BoNT injection. This study focuses on BoNT treatment in children with muscle spasms caused by cerebral palsy. Considering the differences between children and adults in anatomy, we used child cadavers and measured both the nerve entry points and nerve terminal sense zones in three deep muscles of the anterior forearm: flexor digitorum profundus (FDP), flexor pollicis longus (FPL), and pronator quadratus (PQ). We measured the nerve entry points by using the forearm midline as a reference and demonstrated intramuscular nerve terminal dense zones by using a modified Sihler's nerve staining technique. The locations of the nerve entry points and that of the nerve terminal dense zones in the muscles were compared. We found that all nerve entry points are away from the corresponding intramuscular nerve terminal dense zones. Simply selecting nerve entry points as the sites for BoNT injection may not be an optimal choice for best effects in blocking muscle spasm. We propose that the location of the nerve terminal dense zones in each individual muscle should be used as the optimal target sites for BoNT injection when treating muscle spasms in children with cerebral palsy.

  15. Intramuscular nerve distribution patterns of anterior forearm muscles in children: a guide for botulinum toxin injection

    PubMed Central

    Yang, Fangjiu; Zhang, Xiaoming; Xie, Xiadan; Yang, Shengbo; Xu, Yan; Xie, Peng

    2016-01-01

    Botulinum toxin (BoNT) can relieve muscle spasticity by blocking axon terminals acetylcholine release at the motor endplate (MEP) and is the safest and most effective agent for the treatment of muscle spasticity in children with cerebral palsy. In order to achieve maximum effect with minimum effective dose of BoNT, one needs to choose an injection site as near to the MEP zone as possible. This requires a detailed understanding about the nerve terminal distributions within the muscles targeted for BoNT injection. This study focuses on BoNT treatment in children with muscle spasms caused by cerebral palsy. Considering the differences between children and adults in anatomy, we used child cadavers and measured both the nerve entry points and nerve terminal sense zones in three deep muscles of the anterior forearm: flexor digitorum profundus (FDP), flexor pollicis longus (FPL), and pronator quadratus (PQ). We measured the nerve entry points by using the forearm midline as a reference and demonstrated intramuscular nerve terminal dense zones by using a modified Sihler’s nerve staining technique. The locations of the nerve entry points and that of the nerve terminal dense zones in the muscles were compared. We found that all nerve entry points are away from the corresponding intramuscular nerve terminal dense zones. Simply selecting nerve entry points as the sites for BoNT injection may not be an optimal choice for best effects in blocking muscle spasm. We propose that the location of the nerve terminal dense zones in each individual muscle should be used as the optimal target sites for BoNT injection when treating muscle spasms in children with cerebral palsy. PMID:28078019

  16. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-05-01

    The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.

  17. The effect of adrenergic, cholinergic and peptidergic salivary stimulants on gastric mucosal integrity in the rat.

    PubMed Central

    Soper, B D; Tepperman, B L

    1986-01-01

    Sialoadenectomized and sham-operated rats were given salivary secretory stimulants 30 min prior to intragastric instillation of a bile salt solution (5 mM-sodium taurocholate in 100 mM-HCl). Administration of the alpha-agonist phenylephrine (0.15-15 mg/kg) resulted in a dose-dependent reduction in the loss of H+ and the intraluminal appearance of Na+ and K+ associated with bile-salt-induced damage to the stomach in the sham-sialoadenectomized rat. The effect was not apparent if the salivary glands had been previously excised. Adrenaline (0.8-4.0 mg/kg) and noradrenaline (0.8-4.0 mg/kg) were less effective in reducing the degree of mucosal damage in sham-sialoadenectomized rats and were not effective in sialoadenectomized rats. Administration of secretory stimulant doses of isoprenaline (5 mg/kg), pilocarpine (2 mg/kg) and substance P (25 mg/kg) either had no significant effect or exacerbated the net transmucosal fluxes of H+, Na+ and K+ associated with bile salt damage to the gastric mucosa. The protective action of phenylephrine in sham-sialoadenectomized rats was reversed by prior treatment with the alpha-antagonist, phentolamine (2 mg/kg). The effect of phentolamine was dose dependent. Vagotomy abolished the protective influence of phenylephrine in sham-sialoadenectomized rats but did not influence the response to other salivary secretory stimulants consistently. These data suggest that stimulation of alpha-adrenergic receptors in rat salivary tissue is associated with an amelioration of the increase in gastric mucosal permeability to H+, Na+ and K+ in response to an intraluminal bile salt solution. The apparent protective influence of alpha-adrenergic receptor activation in sham-sialoadenectomized rats is mediated in part by the vagus nerve. PMID:2886655

  18. Adrenergic denervation hypersensitivity in ileal circular smooth muscle after small bowel transplantation in rats.

    PubMed

    Shibata, C; Balsiger, B M; Anding, W J; Sarr, M G

    1997-11-01

    Effects of small bowel transplantation (SBT) on ileal motility are unknown. The aim of the present study was to investigate changes in spontaneous contractile activity and sensitivity to cholinergic and adrenergic agents in the ileal circular muscle after SBT in rats. Orthotopic SBT was performed in syngeneic rats to avoid immune phenomena. Distal ileal circular muscle strips from rats one week (N = 10) and eight weeks (N = 10) after SBT were stretched to optimal length (Lo), and basal spontaneous activity at Lo was measured. Dose-response experiments to the cholinergic agonist bethanechol (Be, 10(-8)-10(-4) M) were performed in the presence of tetrodotoxin (TTX, 10(-6) M) and to the adrenergic agonist norepinephrine (NE, 10(-8)-10(-4) M) with or without TTX. ED50 (negative log of drug-concentration that induced 50% effect) was calculated. We also studied rats with selective jejunoileal ischemia/ reperfusion, intestinal transection/reanastomosis, naive controls, and sham operated controls (N > or = 8/group). Spontaneous basal activity did not differ among groups. Sensitivity to Be was not different in rats after SBT or in other groups compared to control tissue. After SBT, hypersensitivity to NE was shown by a significant increase of ED50 at one and eight weeks after SBT (5.1 +/- 0.3 vs 6.2 +/- 0.4 and 6.2 +/- 0.2, respectively; P < 0.05) regardless of the presence of TTX. No hypersensitivity was observed after ischemia-reperfusion intestinal transection-reanastomosis, or sham operation. It is concluded that ileal hypersensitivity to NE was related to the extrinsic denervation obligated by the transplantation procedure, possibly mediated through an increase in number of receptors on smooth muscle, not on the enteric nerves.

  19. Impaired alpha1-adrenergic responses in aged rat hearts.

    PubMed

    Montagne, Olivier; Le Corvoisier, Philippe; Guenoun, Thierry; Laplace, Monique; Crozatier, Bertrand

    2005-06-01

    To determine age-related changes in the cardiac effect of alpha1-adrenergic stimulation, both cardiomyocyte Ca2+-transient and cardiac protein kinase C (PKC) activity were measured in 3-month- (3MO) and 24-month- (24MO) old Wistar rats. Ca2+ transients obtained under 1 Hz pacing by microfluorimetry of cardiomyocyte loaded with indo-1 (405/480 nm fluorescence ratio) were compared in control conditions (Kreb's solution alone) and after alpha1-adrenergic stimulation (phenylephrine or cirazoline, an alpha1-specific agonist). PKC activity and PKC translocation index (particulate/total activity) were also assayed before and after alpha1-adrenergic stimulation. In 3MO, cirazoline induced a significant increase in Ca2+ transient for a 10(-9) M concentration which returned to control values for larger concentrations. In contrast, in 24MO, we observed a constant negative effect of cirazoline on the Ca2+ transient with a significant decrease at 10(-6) M compared with both baseline and Kreb's solution. Preliminary experiments showed that, in a dose-response curve to phenylephrine, the response of Ca2+ transient was maximal at 10(-7) M. This concentration induced a significant increase in Ca2+ transient in 3MO and a significant decrease in 24MO. The same concentration was chosen to perform PKC activity measurements under alpha1-adrenergic stimulation. In the basal state, PKC particulate activity was higher in 24MO than that in 3MO but was not different in cytosolic fractions; so that the translocation index was higher in 24MO (P < 0.01). After phenylephrine, a translocation of PKC toward the particulate fraction was observed in 3MO but not in 24MO. In conclusion, cardiac alpha1-adrenoceptor response was found to be impaired in aged hearts. The negative effect of alpha1-adrenergic stimulation on Ca2+ transient in cardiomyocytes obtained from old rats can be related to an absence of alpha1-adrenergic-induced PKC translocation.

  20. Dexmedetomidine for Refractory Adrenergic Crisis in Familial Dysautonomia

    PubMed Central

    Dillon, Ryan C.; Palma, Jose-Alberto; Spalink, Christy L.; Altshuler, Diana; Norcliffe-Kaufmann, Lucy; Fridman, David; Papadopoulos, John; Kaufmann, Horacio

    2016-01-01

    Objective Adrenergic crises are a cardinal feature of familial dysautonomia (FD). Traditionally, adrenergic crisis have been treated with the sympatholytic agent clonidine or with benzodiazepines, which can cause excessive sedation and respiratory depression. Dexmedetomidine is an α2A-adrenergic agonist with greater selectivity and shorter half-life than clonidine. We aimed to evaluate the preliminary effectiveness and safety of intravenous dexmedetomidine in the treatment of refractory adrenergic crisis in patients with FD. Methods Retrospective chart review of patients with genetically confirmed FD who received intravenous dexmedetomidine for refractory adrenergic crises. The primary outcome was preliminary effectiveness of dexmedetomidine defined as change in blood pressure (BP) and heart rate (HR) 1-hour after the initiation of dexmedetomidine. Secondary outcomes included incidence of adverse events related to dexmedetomidine, hospital and intensive care unit (ICU) length of stay, and hemodynamic parameters 12-hours after dexmedetomidine cessation. Results Nine patients over 14 admissions were included in the final analysis. At 1-hour after the initiation of dexmedetomidine, systolic BP decreased from 160±7 to 122±7 mmHg (p=0.0005), diastolic BP decreased from 103±6 to 65±8 (p=0.0003), and HR decreased from 112±4 to 100±5 bpm (p=0.0047). The median total adverse events during dexmedetomidine infusion was 1 per admission. Median hospital length of stay was 9 days (IQR, 3 – 11 days) and median ICU length of stay was 7 days (IQR, 3 – 11 days). Conclusions Intravenous dexmedetomidine is safe in patients with FD and appears to be effective to treat refractory adrenergic crisis. Dexmedetomidine may be considered in FD patients who do not respond to conventional clonidine and benzodiazepine pharmacotherapy. PMID:27752785

  1. Adrenergic receptors on cerebral microvessels in control and Parkinsonian subjects

    SciTech Connect

    Cash, R.; Lasbennes, F.; Sercombe, R.; Seylaz, J.; Agid, Y.

    1985-08-12

    The binding of adrenergic ligands (/sup 3/H-prazosin, /sup 3/H-clonidine, /sup 3/H-dihydroalprenolol) was studied on a preparation of cerebral microvessels in the prefrontal cortex and putamen of control and Parkinsonian subjects. The adrenergic receptor density in microvessels of control patients was less than 0.5% and 3.3% respectively of the total binding. A significant decrease in the number of alpha-1 binding sites was observed on microvessels in the putamen of patients with Parkinson's disease. 22 references, 2 tables.

  2. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs

  3. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  4. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  5. Electrical Stimulation Enhances Reinnervation After Nerve Injury

    PubMed Central

    2015-01-01

    Electrical muscle stimulation following peripheral nerve injury has been a controversial method of treatment due primarily to the inconsistent literature surrounding it. In this presentation transcript I outline ongoing experiments investigating a clinically translatable daily muscle stimulation paradigm in rats following nerve injury. Results show that reinnervation of muscle and functional behavioural metrics are enhanced with daily stimulation with upregulation of intramuscular neurotrophic factors as a potential mechanism. In addition, the impact of stimulation on terminal sprouting, a mentioned negative aspect of electrical muscle stimulation, was a minor contributor to long term functional reinnervation of stimulated muscles in our studies. PMID:26913163

  6. Optimization and Implementation of Long Nerve Allografts

    DTIC Science & Technology

    2014-02-01

    decellularized allografts tested did not perform well in this repair model. Additional evaluations and...2c  was  completed.    All   animals  were  assessed  weekly  until  termination  26  weeks  after   receiving  the...the  engrafted  nerves  were  examined  for  nerve-­‐graft  continuity.     Animals  with  a  loss  of   continuity

  7. Optic Nerve Pit

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  8. Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes.

    PubMed

    Chen, Hsiao-Huei; Mullett, Steven J; Stewart, Alexandre F R

    2004-07-16

    Cardiac and skeletal muscle genes are regulated by the transcriptional enhancer factor (TEF-1) family of transcription factors. In skeletal muscle, TEF-1 factors interact with a skeletal muscle-specific cofactor called Vestigial-like 2 (Vgl-2) that is related to the Drosophila protein Vestigial. Here, we characterize Vgl-4, the only member of the Vestigial-like family expressed in the heart. Unlike other members of the Vgl family that have a single TEF-1 interaction domain called the tondu (TDU) motif, Vgl-4 has two TDU motifs in its carboxyl-terminal domain. Like other Vgl factors, Vgl-4 physically interacts with TEF-1 in an immunoprecipitation assay. Vgl-4 functionally interacts with TEF-1 and also with myocyte enhancer factor 2 in a mammalian two-hybrid assay. Overexpression of Vgl-4 in cardiac myocytes interfered with the basal expression and alpha1-adrenergic receptor-dependent activation of a TEF-1-dependent skeletal alpha-actin promoter. In cardiac myocytes cultured in serum and in serum-free medium, a myc-tagged Vgl-4 protein was located in the nucleus and cytoplasm but was exported from the nucleus when cells were treated with alpha1-adrenergic receptor agonist. A chimeric nuclear-retained Vgl-4 protein inhibited alpha1-adrenergic receptor-dependent activation. In contrast, deletion of the TDU motifs of Vgl-4 prevented Vgl-4 nuclear localization, relieved Vgl-4 interference of basal activity, and enhanced alpha1-adrenergic up-regulation of the skeletal alpha-actin promoter. Nuclear export of Vgl-4 is dependent on the nuclear exportin CRM-1. These results suggest that Vgl-4 modulates the activity of TEF-1 factors and counteracts alpha1-adrenergic activation of gene expression in cardiac myocytes.

  9. Muscle plasticity and β₂-adrenergic receptors: adaptive responses of β₂-adrenergic receptor expression to muscle hypertrophy and atrophy.

    PubMed

    Sato, Shogo; Shirato, Ken; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2011-01-01

    We discuss the functional roles of β₂-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β₂-adrenergic receptor expression to anabolic and catabolic conditions. β₂-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β₂-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β₂-adrenergic receptors negates their beneficial effects. Although the preventive effects of β₂-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β₂-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β₂-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β₂-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  10. Adrenergic and cromolyn sodium modulation of ECL cell histamine secretion.

    PubMed

    Lawton, G P; Tang, L H; Miu, K; Gilligan, C J; Absood, A; Modlin, I M

    1995-01-01

    The histamine secreting enterochromaffin-like (ECL) cell is now recognized as the principal regulator of gastric acid secretion. Histamine is not only a primary modulator of acid secretion, but may be of relevance in gastritis and as a mitogen in gastric neoplasia. Study of the ECL cell has been limited since no pure preparation was available. We therefore developed a pure isolated ECL cell preparation with a purity of 90-95% as determined by total histamine content and chromogranin immunofluorescence. Trypan blue exclusion demonstrated > 95% viability. While gastrin and acetylcholine are known modulators of acid secretion, the role of adrenergic neurotransmitters has not been clearly delineated. The purpose of this study was to examine adrenergic modulation of ECL cell histamine release. To further define the inhibitory mechanisms of histamine secretion, we evaluated the mast cell histamine inhibitor sodium cromoglycate. Histamine secretion was determined by radioimmunoassay. Basal secretion was 0.6 +/- 0.2 nmol/10(3) cells. Gastrin stimulated histamine secretion with an EC50 of 3 x 10(-10) M. Octopamine (alpha-adrenergic agonist) (10(-11)-10(-4) M) failed to stimulate histamine secretion. Isoproterenol (beta-adrenergic agonist) stimulated histamine secretion (EC50, 6 x 10(-8) M) and was inhibited by propranolol (IC50 5 x 10(-10) M).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors.

    PubMed

    Choi, Yong Kee; Wong, Erik H F; Henry, Brian; Shahid, Mohammed; Tarazi, Frank I

    2010-04-01

    Adrenergic (alpha1 and alpha2) and cholinergic muscarinic (M1-M5) receptor binding in rat forebrain was quantified after 4 wk of twice-daily subcutaneous administration of asenapine or vehicle. Asenapine (0.03, 0.1, and 0.3 mg/kg) produced increases in [3H]prazosin binding to alpha1-adrenergic receptors in the medial prefrontal cortex (mPFC: 30%, 39%, 57%) and dorsolateral frontal cortex (DFC: 27%, 37%, 53%) and increased [3H]RX821002 binding to alpha2-adrenergic receptors in mPFC (36%, 43%, 50%) and DFC (41%, 44%, 52%). Despite showing no appreciable affinity for muscarinic receptors, asenapine produced regionally selective increases in binding of [3H]QNB to M1-M5 receptors in mPFC (26%, 31%, 43%), DFC (27%, 34%, 41%), and hippocampal CA1 (40%, 44%, 42%) and CA3 (25%, 52%, 48%) regions. These regionally selective effects of asenapine on adrenergic and cholinergic muscarinic receptor subtypes may contribute to its beneficial clinical effects in the treatment of schizophrenia and bipolar disorder.

  12. Use of ß-adrenergic agonists in hybrid catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ractopamine hydrochloride (RH) is a potent ß-adrenergic agonist that has been used in some species of fish to improve growth performance and dress out characteristics. While this metabolic modifier has been shown to have positive effects on growth of fish, little research has focused on the mechani...

  13. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  14. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    PubMed Central

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Young, Ton-Ho; Salter, Donald M.; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4) injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury. PMID:26798417

  15. Optic Nerve Elongation

    PubMed Central

    Alvi, Aijaz; Janecka, Ivo P.; Kapadia, Silloo; Johnson, Bruce L.; McVay, William

    1996-01-01

    The length of the optic nerves is a reflection of normal postnatal cranio-orbital development. Unilateral elongation of an optic nerve has been observed in two patients with orbital and skull base neoplasms. In the first case as compared to the patient's opposite, normal optic nerve, an elongated length of the involved optic nerve of 45 mm was present. The involved optic nerve in the second patient was 10 mm longer than the normal opposite optic nerve. The visual and extraocular function was preserved in the second patient. The first patient had only light perception in the affected eye. In this paper, the embryology, anatomy, and physiology of the optic nerve and its mechanisms of stretch and repair are discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:17170975

  16. Terminal structure

    DOEpatents

    Schmidt, Frank; Allais, Arnaud; Mirebeau, Pierre; Ganhungu, Francois; Lallouet, Nicolas

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  17. Terminal Ballistics

    DTIC Science & Technology

    1976-02-01

    ballistics doe, little to c~plaini the workings of explosike pro jectiles. The termni,iaf phase (of di esplodling tbalfftic weapon is comiposed of esents...citterior, and terminal baillistic phases, and the study of this n’!w systemn hius useful parallel% it) the proiecoile ballistic sysStem. The...charge liner collapse Vi Jet velocity V, Slug velocity W Work Wp Weight of projecti!e Z A length variable a, bi Empirical constants. (In Chap. 5, Eq

  18. Termination unit

    DOEpatents

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  19. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  20. Discriminative stimulus properties of clenbuterol: evidence for beta adrenergic involvement.

    PubMed

    McElroy, J F; O'Donnell, J M

    1988-04-01

    Thirty rats were trained to discriminate the centrally acting beta adrenergic agonist clenbuterol (0.1 mg/kg) from saline using a water-reinforced (fixed-ratio 10 schedule) two-lever operant task. Discrimination acquisition required a mean +/- S.E.M. of 42 +/- 7 training sessions (median of 26 training sessions). The clenbuterol stimulus was dose-dependent (ED50 = 0.03 mg/kg) and stereoselective, and had a rapid onset (5 min) and a duration of approximately 1 hr. The beta adrenergic antagonist propranolol fully antagonized the clenbuterol discriminative stimulus (IC50 = 0.18 mg/kg). Other beta adrenergic agonists such as SOM 1122 (ED50 = 0.01 mg/kg), zinterol (ED50 = 0.03 mg/kg), salbutamol (ED50 = 0.23 mg/kg) and prenalterol (ED50 = 1.91 mg/kg) substituted for clenbuterol. The monoamine uptake inhibitor despiramine (ED50 = 2.25 mg/kg), the psychomotor stimulants amphetamine (ED50 = 0.33 mg/kg) and pentylenetetrazol (ED50 = 0.31 mg/kg), and the dopamine receptor antagonists haloperidol (ED50 = 0.08 mg/kg) and chlorpromazine (ED50 = 2.32 mg/kg) similarly substituted for clenbuterol. However, chlordiazepoxide, pentobarbital, fentanyl, cocaine and fenfluramine produced little or no clenbuterol lever selection up to doses that decreased response rate markedly. The ability of SOM 1122, zinterol, salbutamol, despiramine, amphetamine, pentylenetetrazol and haloperiol to substitute for the clenbuterol stimulus was antagonized by prior treatment with propranolol. Taken together, these results suggest that the discriminative stimulus properties of clenbuterol are mediated, at least in part, through an interaction with beta adrenergic receptors. The same drugs also were assayed for in vitro inhibition of [125I]iodopindolol binding to beta adrenergic receptor preparations of rat cerebral cortex and cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Adrenergic control of lipolysis in women compared with men.

    PubMed

    Schmidt, Stacy L; Bessesen, Daniel H; Stotz, Sarah; Peelor, Frederick F; Miller, Benjamin F; Horton, Tracy J

    2014-11-01

    Data suggest women are more sensitive to the lipolytic action of epinephrine compared with men while maintaining similar glucoregulatory effects (Horton et al. J Appl Physiol 107: 200-210, 2009). This study aimed to determine the specific adrenergic receptor(s) that may mediate these sex differences. Lean women (n = 14) and men (n = 16) were studied on 4 nonconsecutive days during the following treatment infusions: saline (S: control), epinephrine [E: mixed β-adrenergic (lipolytic) and α2-adrenergic (antilipolytic) stimulation], epinephrine + phentolamine (E + P: mixed β-adrenergic stimulation only), and terbutaline (T: selective β2-adrenergic stimulation). Tracer infusions of glycerol, palmitate, and glucose were administered to determine systemic lipolysis, free fatty acid (FFA) release, and glucose turnover, respectively. Following basal measurements, substrate and hormone concentrations were measured in all subjects over 90 min of treatment and tracer infusion. Women had greater increases in glycerol and FFA concentrations with all three hormone infusions compared with men (P < 0.01). Glycerol and palmitate rate of appearance (Ra) and rate of disappearance (Rd) per kilogram body weight were greater with E infusion in women compared with men (P < 0.05), whereas no sex differences were observed with other treatments. Glucose concentration and kinetics were not different between sexes with any infusion. In conclusion, these data support the hypothesis that the greater rate of lipolysis in women with infusion of E was likely due to lesser α2 antilipolytic activation. These findings may help explain why women have greater lipolysis and fat oxidation during exercise, a time when epinephrine concentration is elevated.

  2. Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s).

    PubMed

    Matsuda, Nilce Mitiko; Miller, Steven M

    2010-06-01

    Relaxation of gastrointestinal smooth muscle caused by release of non-adrenergic non-cholinergic (NANC) transmitters from enteric nerves occurs in several physiologic digestive reflexes. Likely candidate NANC inhibitory agents include nitric oxide (NO), adenosine triphosphate (ATP), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), carbon monoxide (CO), protease-activated receptors (PARs), hydrogen sulfide (H2S), neurotensin (NT) and beta-nicotinamide adenine dinucleotide (beta-NAD). Multiple NANC transmitters work in concert, are pharmacologically coupled and are closely coordinated. Individual contribution varies regionally in the gastrointestinal tract and between species. NANC inhibition of gastrointestinal smooth muscle involves several intracellular mechanisms, including increase of cyclic guanosine monophosphate (cGMP), increase of cyclic adenosine monophosphate (cAMP) and hyperpolarization of the cell membrane via direct or indirect activation of potassium ion (K+) channels.

  3. Inhibition of opioid release in the rat spinal cord by α2C adrenergic receptors

    PubMed Central

    Chen, Wenling; Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    Neurotransmitter receptors that control the release of opioid peptides in the spinal cord may play an important role in pain modulation. Norepinephrine, released by a descending pathway originating in the brainstem, is a powerful inducer of analgesia in the spinal cord. Adrenergic α2C receptors are present in opioid-containing terminals in the dorsal horn, where they could modulate opioid release. The goal of this study was to investigate this possibility. Opioid release was evoked from rat spinal cord slices by incubating them with the sodium channel opener veratridine in the presence of peptidase inhibitors (actinonin, captopril and thiorphan), and was measured in situ through the internalization of μ-opioid receptors in dorsal horn neurons. Veratridine produced internalization in 70% of these neurons. The α2 receptor agonists clonidine, guanfacine, medetomidine and UK-14304 inhibited the evoked μ-opioid receptor internalization with IC50s of 1.7 μM, 248 nM, 0.3 nM and 22 nM, respectively. However, inhibition by medetomidine was only partial, and inhibition by UK-14304 reversed itself at concentrations higher than 50 nM. None of these agonists inhibited μ-opioid receptor internalization produced by endomorphin-2, showing that they inhibited opioid release and not the internalization itself. The inhibition produced by clonidine, guanfacine or UK-14304 was completely reversed by the selective α2C antagonist JP-1203. In contrast, inhibition by guanfacine was not prevented by the α2A antagonist BRL-44408. These results show that α2C receptors inhibit the release of opioids in the dorsal horn. This action may serve to shut down the opioid system when the adrenergic system is active. PMID:18343461

  4. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    SciTech Connect

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  5. Scintigraphic assessment of regional cardiac adrenergic innervation

    SciTech Connect

    Dae, M.W.; O'Connell, J.W.; Botvinick, E.H.; Ahearn, T.; Yee, E.; Huberty, J.P.; Mori, H.; Chin, M.C.; Hattner, R.S.; Herre, J.M.

    1989-03-01

    To assess the feasibility of noninvasively imaging the regional distribution of myocardial sympathetic innervation, we evaluated the distribution of sympathetic nerve endings, using 123I metaiodobenzylguanidine (MIBG), and compared this with the distribution of myocardial perfusion, using 201Tl. Twenty dogs were studied: 11 after regional denervation, and nine as controls. Regional denervation was done by left stellate ganglion removal, right stellate ganglion removal, and application of phenol to the epicardial surface. Computer-processed functional maps displayed the relative distribution of MIBG and thallium in multiple projections in vivo and excised heart slices in all animals. In six animals, dual isotope emission computed tomograms were acquired in vivo. Tissue samples taken from innervated and denervated regions of the MIBG images were analyzed for norepinephrine content to validate image findings. Normal controls showed homogeneous and parallel distributions of MIBG and thallium in the major left ventricular mass. In the left stellectomized hearts, MIBG was reduced relative to thallium in the posterior left ventricle; whereas in right stellectomized hearts, reduced MIBG was in the anterior left ventricle. Phenol-painted hearts showed a broad area of decreased MIBG extending beyond the area of phenol application. In both stellectomized and phenol-painted hearts, thallium distribution remained homogeneous and normal. Norepinephrine content was greater in regions showing normal MIBG (550 +/- 223 ng/g) compared with regions showing reduced MIBG (39 +/- 44 ng/g) (p less than 0.001), confirming regional denervation. Combined MIBG-thallium functional maps display the regional distribution of sympathetic innervation.

  6. Rehabilitation, Using Guided Cerebral Plasticity, of a Brachial Plexus Injury Treated with Intercostal and Phrenic Nerve Transfers

    PubMed Central

    Dahlin, Lars B.; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders

    2017-01-01

    Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5–C7 and a non-rupture of C8–T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation—free contralateral gracilis muscle transfer directly innervated by the phrenic nerve—was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function. PMID:28316590

  7. Pharmacological Profiles of Alpha 2 Adrenergic Receptor Agonists Identified Using Genetically Altered Mice and Isobolographic Analysis

    PubMed Central

    Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Endogenous, descending noradrenergic fibers convey powerful analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (α2ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share similar a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express α2AAR and α2CAR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal α2ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of these six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal α2AR agonists featured. PMID:19393691

  8. Improvement of Sciatic Nerve Regeneration Using Laminin-Binding Human NGF-β

    PubMed Central

    Sun, Wenjie; Sun, Changkai; Zhao, Hui; Lin, Hang; Han, Qianqian; Wang, Jingyu; Ma, Hui; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-01-01

    Background Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-β could target to nerve cells and improve nerve regeneration. Methods Laminin-binding assay and sustained release assay of NGF-β fused with NtA (LBD-NGF) from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. Findings LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. Conclusion Fused with NtA, NGF-β could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries. PMID:19587785

  9. Reconstruction of posterior interosseous nerve injury following biceps tendon repair: case report and cadaveric study.

    PubMed

    Mokhtee, David B; Brown, Justin M; Mackinnon, Susan E; Tung, Thomas H

    2009-06-01

    Surgical repair of distal biceps tendon rupture is a technically challenging procedure that has the potential for devastating and permanently disabling complications. We report two cases of posterior interosseous nerve (PIN) injury following successful biceps tendon repair utilizing both the single-incision and two-incision approaches. We also describe our technique of posterior interosseous nerve repair using a medial antebrachial cutaneous nerve graft (MABC) and a new approach to the terminal branches of the posterior interosseous nerve that makes this reconstruction possible. Finally, we advocate consideration for identification of the posterior interosseous nerve prior to reattachment of the biceps tendon to the radial tuberosity.

  10. Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man.

    PubMed

    Danielson, Patrik; Alfredson, Håkan; Forsgren, Sture

    2007-04-01

    Changes in the patterns of production and in the effects of signal substances may be involved in the development of tendinosis, a chronic condition of pain in human tendons. There is no previous information concerning the patterns of sympathetic innervation in the human patellar tendon. In this study, biopsies of normal and tendinosis patellar tendons were investigated with immunohistochemical methods, including the use of antibodies against tyrosine hydroxylase (TH) and neuropeptide Y, and against alpha1-, alpha2A-, and beta1-adrenoreceptors. It was noticed that most of the sympathetic innervation was detected in the walls of the blood vessels entering the tendon through the paratendinous tissue, and that the tendon tissue proper of the normal and tendinosis tendons was very scarcely innervated. Immunoreactions for adrenergic receptors were noticed in nerve fascicles containing both sensory and sympathetic nerve fibers. High levels of these receptors were also detected in the blood vessel walls; alpha1-adrenoreceptor immunoreactions being clearly more pronounced in the tendinosis tendons than in the tendons of controls. Interestingly, immunoreactions for adrenergic receptors and TH were noted for the tendon cells (tenocytes), especially in tendinosis tendons. The findings give a morphological correlate for the occurrence of sympathetically mediated effects in the patellar tendon and autocrine/paracrine catecholamine mechanisms for the tenocytes, particularly, in tendinosis. The observation of adrenergic receptors on tenocytes is interesting, as stimulation of these receptors can lead to cell proliferation, degeneration, and apoptosis, events which are all known to occur in tendinosis. Furthermore, the results imply that a possible source of catecholamine production might be the tenocytes themselves

  11. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep

    PubMed Central

    Chen, Xiaochuan; Green, Alice S.; Macko, Antoni R.; Yates, Dustin T.; Kelly, Amy C.

    2013-01-01

    Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets. PMID:24253046

  12. Frequency dependent changes in mechanosensitivity of rat knee joint afferents after antidromic saphenous nerve stimulation.

    PubMed

    Just, S; Heppelmann, B

    2002-01-01

    The aim of the present study was to examine the effect of electrical saphenous nerve stimulation (14 V, 1-10 Hz) on the mechanosensitivity of rat knee joint afferents. The responses to passive joint rotations at defined torque were recorded from slowly conducting knee joint afferent nerve fibres (0.6-20.0 m/s). After repeated nerve stimulation with 1 Hz, the mechanosensitivity of about 79% of the units was significantly affected. The effects were most prominent at a torque close to the mechanical threshold. In about 46% of the examined nerve fibres a significant increase was obtained, whereas about 33% reduced their mechanosensitivity. The sensitisation was prevented by an application of 5 microM phentolamine, an alpha-adrenergic receptor blocker, together with a neuropeptide Y receptor blocker. An inhibition of N-type Ca(2+) channels by an application of 1 microM omega-conotoxin GVIA caused comparable changes of the mechanosensitivity during the electrical stimulation. Electrical nerve stimulation with higher frequencies resulted in a further reduction of the mean response to joint rotations. After stimulation with 10 Hz, there was a nearly complete loss of mechanosensitivity.In conclusion, antidromic electrical nerve stimulation leads to a frequency dependent transient decrease of the mechanosensitivity. A sensitisation was only obtained at 1 Hz, but this effect may be based on the influence of sympathetic nerve fibres.

  13. Effect of pioglitazone on nerve conduction velocity of the median nerve in the carpal tunnel in type 2 diabetes patients

    PubMed Central

    Chatterjee, Sudip; Sanyal, Debmalya; Das Choudhury, Sourav; Bandyopadhyay, Mili; Chakraborty, Suraj; Mukherjee, Arabinda

    2016-01-01

    AIM To evaluate the impact of pioglitazone pharmacotherapy in median nerve electrophysiology in the carpal tunnel among type 2 diabetes patients. METHODS The study was executed in patients with type 2 diabetes, treated with oral drugs, categorized under pioglitazone or non-pioglitazone group (14 in each group), and who received electrophysiological evaluation by nerve conduction velocity at baseline and 3 mo. RESULTS At 3 mo, pioglitazone-category had inferior amplitude in sensory median nerve [8.5 interquartile range (IQR) = 6.5 to 11.5) vs non-pioglitazone 14.5 (IQR 10.5 to 18.75)] (P = 0.002). Non-pioglitazone category displayed amelioration in amplitude in the sensory median nerve [baseline 13 (IQR = 9 to 16.25) vs 3 mo 8.5 (IQR = 6.5 to 11.5)] (P = 0.01) and amplitude in motor median nerve [baseline 9 (IQR = 4.75 to 11) vs 3 mo 6.75 (IQR = 4.75 to 10.25)] (P = 0.049); and deterioration of terminal latency of in motor ulnar nerve [baseline 2.07 (IQR = 1.92 to 2.25) vs 3 mo 2.16 (IQR = 1.97 to 2.325)] (P = 0.043). There was amelioration of terminal latency in sensory ulnar nerve [baseline 2.45 (IQR = 2.315 to 2.88) vs 3 mo 2.37 (IQR = 2.275 to 2.445) for pioglitazone group (P = 0.038). CONCLUSION Treatment with pioglitazone accentuates probability of compressive neuropathy. In spite of comparable glycemic control over 3 mo, patients treated with pioglitazone showed superior electrophysiological parameters for the ulnar nerve. Pioglitazone has favourable outcome in nerve electrophysiology which was repealed when the nerve was subjected to compressive neuropathy. PMID:27895823

  14. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    SciTech Connect

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B. )

    1990-07-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

  15. Ultraviolet radiation augments epidermal beta-adrenergic adenylate cyclase response

    SciTech Connect

    Iizuka, H.; Kajita, S.; Ohkawara, A.

    1985-05-01

    Pig skin was irradiated in vivo with fluorescent sunlamp tubes (peak emission at 305 nm). A significant increase in epidermal beta-adrenergic adenylate cyclase response was observed as early as 12 h following 1-2 minimum erythema doses (MEDs) UVB exposure, which lasted at least 48 h. The augmentation of adenylate cyclase response was relatively specific to the beta-adrenergic system and there was no significant difference in either adenosine- or histamine-adenylate cyclase response of epidermis. The increased beta-adrenergic adenylate cyclase response was less marked at higher doses of UVB exposure (5 MEDs); in the latter condition, a significant reduction in adenosine- or histamine-adenylate cyclase response was observed. There was no significant difference in either low- or high-Km cyclic AMP phosphodiesterase activity between control and UVB-treated skin at 1-2 MEDs. These data indicate that the epidermal adenylate cyclase responses are affected in vivo by UVB irradiation, which might be a significant regulatory mechanism of epidermal cyclic AMP systems.

  16. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  17. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action.

    PubMed Central

    García-Sáinz, J A; Hernández-Sotomayor, S M

    1985-01-01

    We have previously suggested that the effects of alpha 1-adrenergic agents on hepatocyte metabolism involve two mechanisms: (i) a calcium-independent insulin-sensitive process that is modulated by glucocorticoids and (ii) a calcium-dependent insulin-insensitive process that is modulated by thyroid hormones. We have studied the effect of epinephrine (plus propranolol) on gluconeogenesis from lactate and dihydroxyacetone. It was observed that the adrenergic stimulation of gluconeogenesis from lactate seemed to occur through both mechanisms, whereas when the substrate was dihydroxyacetone the action took place exclusively through the calcium-independent insulin-sensitive process. This effect was absent in hepatocytes from adrenalectomized rats, suggesting that it is modulated by glucocorticoids. PMID:2995981

  18. The adrenergic regulation of the cardiovascular system in the South American rattlesnake, Crotalus durissus.

    PubMed

    Galli, Gina L J; Skovgaard, Nini; Abe, Augusto S; Taylor, Edwin W; Wang, Tobias

    2007-11-01

    The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (G(sys)) more than doubled), while injection of propranolol caused a systemic vasoconstriction, pointing to a potent alpha-adrenergic, and a weaker beta-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused a small but non-significant pulmonary vasodilatation and there was tendency of reducing this dilatation after either phentolamine or propranolol. Injection of phentolamine increased pulmonary conductance (G(pul)), while injection of propranolol produced a small pulmonary constriction, indicating that alpha-adrenergic and beta-adrenergic receptors contribute to a basal regulation of the pulmonary vasculature. Our results suggest adrenergic regulation of the systemic vasculature, rather than the pulmonary, may be an important factor in the development of intracardiac shunts.

  19. Peripheral nerve surgery.

    PubMed

    McQuarrie, I G

    1985-05-01

    In treating the three main surgical problems of peripheral nerves--nerve sheath tumors, entrapment neuropathies, and acute nerve injuries--the overriding consideration is the preservation and restoration of neurologic function. Because of this, certain other principles may need to be compromised. These include achieving a gross total excision of benign tumors, employing conservative therapy as long as a disease process is not clearly progressing, and delaying repair of a nerve transection until the skin wound has healed. Only three pathophysiologic processes need be considered: neurapraxia (focal segmental dymyelination), axonotmesis (wallerian degeneration caused by a lesion that does not disrupt fascicles of nerve fibers), and neurotmesis (wallerian degeneration caused by a lesion that interrupts fascicles). With nerve sheath tumors and entrapment neuropathies, the goal is minimize the extent to which neurapraxia progresses to axonotmesis. The compressive force is relieved without carrying out internal neurolysis, a procedure that is poorly tolerated, presumably because a degree of nerve ischemia exists with any long-standing compression. When the nerve has sustained blunt trauma (through acute compression, percussion, or traction), the result can be a total loss of function and an extensive neuroma-in-continuity (scarring within the nerve). However, the neural pathophysiology may amount to nothing more than axonotmesis. Although this lesion, in time, leads to full and spontaneous recovery, it must be differentiated from the neuroma-in-continuity that contains disrupted fascicles requiring surgery. Finally, with open nerve transection, the priority is to match the fascicles of the proximal stump with those of the distal stump, a goal that is best achieved if primary neurorrhaphy is carried out.

  20. Angiotensin II potentiates α-adrenergic vasoconstriction in the elderly.

    PubMed

    Barrett-O'Keefe, Zachary; Witman, Melissa A H; McDaniel, John; Fjeldstad, Anette S; Trinity, Joel D; Ives, Stephen J; Conklin, Jamie D; Reese, Van; Runnels, Sean; Morgan, David E; Sander, Mikael; Richardson, Russell S; Wray, D Walter

    2013-03-01

    Aging is characterized by increased sympatho-excitation, expressed through both the α-adrenergic and RAAS (renin-angiotensin-aldosterone) pathways. Although the independent contribution of these two pathways to elevated vasoconstriction with age may be substantial, significant cross-talk exists that could produce potentiating effects. To examine this interaction, 14 subjects (n=8 young, n=6 old) underwent brachial artery catheterization for administration of AngII (angiotensin II; 0.8-25.6 ng/dl per min), NE [noradrenaline (norepinephrine); 2.5-80 ng/dl per min] and AngII with concomitant α-adrenergic antagonism [PHEN (phentolamine); 10 μg/dl per min]. Ultrasound Doppler was utilized to determine blood flow, and therefore vasoconstriction, in both infused and contralateral (control) limbs. Arterial blood pressure was measured directly, and sympathetic nervous system activity was assessed via microneurography and plasma NE analysis. AngII sensitivity was significantly greater in the old, indicated by both greater maximal vasoconstriction (-59±4% in old against -48±3% in young) and a decreased EC50 (half-maximal effective concentration) (1.4±0.2 ng/dl per min in old against 2.6±0.7 μg/dl per min in young), whereas the maximal NE-mediated vasoconstriction was similar between these groups (-58±9% in old and -62±5% in young). AngII also increased venous NE in the old group, but was unchanged in the young group. In the presence of α-adrenergic blockade (PHEN), maximal AngII-mediated vasoconstriction in the old was restored to that of the young (-43±8% in old and -39±6% in young). These findings indicate that, with healthy aging, the increased AngII-mediated vasoconstriction may be attributed, in part, to potentiation of the α-adrenergic pathway, and suggest that cross-talk between the RAAS and adrenergic systems may be an important consideration in therapeutic strategies targeting these two pathways.

  1. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure.

  2. Histomorphogenesis of cranial nerves in Huso huso larvae

    PubMed Central

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed. PMID:27482355

  3. Histomorphogenesis of cranial nerves in Huso huso larvae.

    PubMed

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed.

  4. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells.

    PubMed

    Huan, Hong-Bo; Wen, Xu-Dong; Chen, Xue-Jiao; Wu, Lin; Wu, Li-Li; Zhang, Liang; Yang, Da-Peng; Zhang, Xia; Bie, Ping; Qian, Cheng; Xia, Feng

    2017-01-01

    The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH(+)) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcinogenesis were observed. The suppression of the SNS reduced IL-6 and TGF-β expression, which suppressed hepatocarcinogenesis, and KCs play a key role in this process. After the ablation of KCs, IL-6 and TGF-β expression and the development of HCC were inhibited. This study demonstrates that sympathetic innervation is crucial for hepatocarcinogenesis and that the SNS promotes hepatocarcinogenesis by activating α1-ARs of KCs to boost the activation of KCs and to maintain the inflammatory microenvironment. These results indicate that sympathetic denervation or α1-ARs blockage may represent novel treatment approaches for HCC.

  5. β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis

    PubMed Central

    Jiao, Kai; Niu, Li-Na; Li, Qi-hong; Ren, Gao-tong; Zhao, Chang-ming; Liu, Yun-dong; Tay, Franklin R.; Wang, Mei-qing

    2015-01-01

    The present study tested whether activation of the sympathetic tone by aberrant joint loading elicits abnormal subchondral bone remodeling in temporomandibular joint (TMJ) osteoarthritis. Abnormal dental occlusion was created in experimental rats, which were then intraperitoneally injected by saline, propranolol or isoproterenol. The norepinephrine contents, distribution of sympathetic nerve fibers, expression of β-adrenergic receptors (β-ARs) and remodeling parameters in the condylar subchondral bone were investigated. Mesenchymal stem cells (MSCs) from condylar subchondral bones were harvested for comparison of their β-ARs, pro-osteoclastic gene expressions and pro-osteoclastic function. Increases in norepinephrine level, sympathetic nerve fiber distribution and β2-AR expression were observed in the condylar subchondral bone of experimental rats, together with subchondral bone loss and increased osteoclast activity. β-antagonist (propranolol) suppressed subchondral bone loss and osteoclast hyperfunction while β-agonist (isoproterenol) exacerbated those responses. MSCs from experimental condylar subchondral bone expressed higher levels of β2-AR and RANKL; norepinephrine stimulation further increased their RANKL expression and pro-osteoclastic function. These effects were blocked by inhibition of β2-AR or the PKA pathway. RANKL expression by MSCs decreased after propranolol administration and increased after isoproterenol administration. It is concluded that β2-AR signal-mediated subchondral bone loss in TMJ osteoarthritisis associated with increased RANKL secretion by MSCs. PMID:26219508

  6. Central projections of auditory nerve fibers in the barn owl.

    PubMed

    Carr, C E; Boudreau, R E

    1991-12-08

    The central projections of the auditory nerve were examined in the barn owl. Each auditory nerve fiber enters the brain and divides to terminate in both the cochlear nucleus angularis and the cochlear nucleus magnocellularis. This division parallels a functional division into intensity and time coding in the auditory system. The lateral branch of the auditory nerve innervates the nucleus angularis and gives rise to a major and a minor terminal field. The terminals range in size and shape from small boutons to large irregular boutons with thorn-like appendages. The medial branch of the auditory nerve conveys phase information to the cells of the nucleus magnocellularis via large axosomatic endings or end bulbs of Held. Each medial branch divides to form 3-6 end bulbs along the rostrocaudal orientation of a single tonotopic band, and each magnocellular neuron receives 1-4 end bulbs. The end bulb envelops the postsynaptic cell body and forms large numbers of synapses. The auditory nerve profiles contain round clear vesicles and form punctate asymmetric synapses on both somatic spines and the cell body.

  7. Pathophysiology of nerve regeneration and nerve reconstruction in burned patients.

    PubMed

    Coert, J Henk

    2010-08-01

    In extensive burns peripheral nerves can be involved. The injury to the nerve can be direct by thermal or electrical burns, but nerves can also be indirectly affected by the systemic reaction that follows the burn. Mediators will be released causing a neuropathy to nerves remote from the involved area. Involved mediators and possible therapeutic options will be discussed. In burned patients nerves can be reconstructed using autologous nerve grafts or nerve conduits. A key factor is an adequate wound debridement and a well-vascularized bed to optimize the outgrowth of the axons. Early free tissue transfers have shown promising results.

  8. Glossopharyngeal Nerve Schwannoma

    PubMed Central

    Puzzilli, F.; Mastronardi, L.; Agrillo, U.; Nardi, P.

    1999-01-01

    Complete resection with conservation of cranial nerves is the primary goal of contemporary surgery for lower cranial nerve tumors. We describe the case of a patient with a schwannoma of the left glossopharyngeal nerve, operated on in our Neurosurgical Unit. The far lateral approach combined with laminectomy of the posterior arch of C1 was done in two steps. The procedure allowed total tumor resection and was found to be better than classic unilateral suboccipital or combined supra- and infratentorial approaches. The advantages and disadvantages of the far lateral transcondylar approach, compared to the other more common approaches, are discussed. ImagesFigure 1Figure 2 PMID:17171083

  9. Sensory nerves in lung and airways.

    PubMed

    Lee, Lu-Yuan; Yu, Jerry

    2014-01-01

    Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.

  10. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  11. Optic Nerve Imaging

    MedlinePlus

    ... machines can help monitor and detect loss of optic nerve fibers. The Heidelberg Retina Tomograph (HRT) is a special ... keeping organized, you can establish a routine that works for you. Read more » Are You at Risk ...

  12. Axillary nerve dysfunction

    MedlinePlus

    ... Causes Axillary nerve dysfunction is a form of peripheral neuropathy . It occurs when there is damage to the ... Multiple mononeuropathy Muscle function loss Numbness and tingling Peripheral neuropathy Systemic Review Date 2/3/2015 Updated by: ...

  13. Tibial nerve dysfunction

    MedlinePlus

    ... Tibial nerve dysfunction is an unusual form of peripheral neuropathy . It occurs when there is damage to the ... PA: Elsevier Saunders; 2012:chap 76. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  14. Vagus Nerve Stimulation.

    PubMed

    Howland, Robert H

    2014-06-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality.

  15. Ulnar nerve damage (image)

    MedlinePlus

    ... is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where it crosses the elbow, so prolonged pressure on the elbow or entrapment ...

  16. Optic Nerve Disorders

    MedlinePlus

    ... of optic nerve disorders, including: Glaucoma is a group of diseases that are the leading cause of blindness in the United States. Glaucoma usually happens when the fluid pressure inside the eyes slowly rises and damages the ...

  17. Nerve Damage (Diabetic Neuropathies)

    MedlinePlus

    ... may include numbness or insensitivity to pain or temperature a tingling, burning, or prickling sensation sharp pains ... from working properly, the body cannot regulate its temperature as it should. Nerve damage can also cause ...

  18. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  19. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  20. Diabetic Nerve Problems

    MedlinePlus

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  1. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    SciTech Connect

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  2. Anti-β1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease

    PubMed Central

    Labovsky, V; Smulski, C R; Gómez, K; Levy, G; Levin, M J

    2007-01-01

    Chronic Chagas heart disease (cChHD), a chronic manifestation of the Trypanosoma cruzi infection, is characterized by high antibody levels against the C-terminal region of the ribosomal P proteins (i.e. peptide R13, EEEDDDMGFGLFD) which bears similarity with the second extracellular loop of β1-adrenergic receptor (β1-AR, peptide H26R HWWRAESDEARRCYNDPKCCDFVTNR). Because it has not been demonstrated clearly that IgGs from cChHD patients bind to native human β1-AR, the aim of this study was to investigate further the physical interaction between cChHD IgGs and the human β1-AR. Immunofluorescence assays demonstrated the binding of these antibodies to the receptor expressed on stably transfected cells, together with a β1-AR agonist-like effect. In addition, immunoadsorption of the serum samples from cChHD patients with a commercially available matrix, containing peptides representing the first and the second extracellular loop of the β1-AR, completely abolished reactivity against the H26R peptide and the physiological response to the receptor. The follow-up of this specificity after in vitro immunoadsorption procedures suggests that this treatment might be used to diminish significantly the serum levels of anti-β1-AR antibodies in patients with Chagas heart disease. PMID:17419712

  3. Adrenergic Response to Maximum Exercise of Trained Road Cyclists

    PubMed Central

    Janikowska, Grażyna; Kochańska - Dziurowicz, Aleksandra; Żebrowska, Aleksandra; Bijak, Aleksandra; Kimsa, Magdalena

    2014-01-01

    The aim of this study was to evaluate adrenergic responses in the peripheral blood of trained road cyclists at rest, at maximal intensity of incremental bicycle exercise test, and during 15 minutes of recovery, as well as the relationship between them. Competitive male road cyclists, in the pre-competitive phase of a season, mean age 21.7 ± 6.4 years, and BMI 20.7 ± 0.8 kg·m−2, performed an incremental test on a bicycle ergometer with unloaded cycling for 5 min, then increased the load to 40 W every 3 min, up to maximal exercise intensity. The plasma catecholamine concentrations (epinephrine, norepinephrine) and oxygen uptake were estimated. The expression of 132 genes related to the adrenergic system in leukocytes was measured. A statistically significant increase in plasma epinephrine concentration (p < 0.01) was observed in response to exercise. The mean of maximal oxygen uptake was 65.7 ± 5.5 ml·kg−1·min−1. The RGS2 gene expression was highest regardless of the test phase for all athletes. The effort had a statistically significant influence on ADRB2 and RAB2A expression. In addition, the RAB2A, ADM and HSPB1 expression level increased during recovery. We can conclude that plasma epinephrine concentration and genes related to the adrenergic system such as ADM, ADRB2, CCL3, GPRASP1, HSPB1, RAB2A, RGS2 and ROCK1 seem to have an influence on the response to high-intensity exercise in trained cyclists. PMID:25031678

  4. Nerves and Tissue Repair.

    DTIC Science & Technology

    1992-05-21

    complete dependence on nerves. Organ culture of sciatic nerves, combined with an assay for axolotl transferrin developed earlier, allows quantitative study...axonal release of various unknown proteins. Combining this approach with the ELISA for quantitative measurement of axolotl transferrin developed with...light microscope autoradiographic analysis following binding of radiolabelled Tf. Studies of Tf synthesis will employ cDNA probes for axolotl Tf mRNA

  5. Traumatic facial nerve injury.

    PubMed

    Lee, Linda N; Lyford-Pike, Sofia; Boahene, Kofi Derek O

    2013-10-01

    Facial nerve trauma can be a devastating injury resulting in functional deficits and psychological distress. Deciding on the optimal course of treatment for patients with traumatic facial nerve injuries can be challenging, as there are many critical factors to be considered for each patient. Choosing from the great array of therapeutic options available can become overwhelming to both patients and physicians, and in this article, the authors present a systematic approach to help organize the physician's thought process.

  6. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  7. Aging, Terminal Decline, and Terminal Drop

    ERIC Educational Resources Information Center

    Palmore, Erdman; Cleveland, William

    1976-01-01

    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  8. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  9. Mapping Neuronal Activation and the Influence of Adrenergic Signaling during Contextual Memory Retrieval

    ERIC Educational Resources Information Center

    Zhang, Wei-Ping; Guzowski, John F.; Thomas, Steven A.

    2005-01-01

    We recently described a critical role for adrenergic signaling in the hippocampus during contextual and spatial memory retrieval. To determine which neurons are activated by contextual memory retrieval and its sequelae in the presence and absence of adrenergic signaling, transcriptional imaging for the immediate-early gene "Arc" was used in…

  10. Terminal latency abnormality in amyotrophic lateral sclerosis without split hand syndrome.

    PubMed

    Park, Donghwi; Park, Jin-Sung

    2017-02-10

    Amyotrophic lateral sclerosis (ALS) has a peculiar involvement pattern; clinically it is known as split hand syndrome and electrophysiologically shows abnormalities in the abductor pollicis brevis (APB)/abductor digiti minimi (ADM) ratio. The aim of this study was to find a significant electrophysiological parameter in upper limb onset ALS patients with normal APB/ADM ratio when compared to cervical spondylotic amyotrophy (CSA) and healthy controls. We retrospectively reviewed the electrophysiological results of 47 upper limb onset ALS and 42 CSA cases; 20 healthy individuals were included as controls. We included ALS and CSA patients with normal ADM/APB ratio (≥0.6, and ≤1.7), and the parameters of electrophysiological study were compared. The electrophysiological parameters of statistical significance among ALS, CSA and normal controls were: amplitude of median and ulnar nerves, the terminal latency of median nerve, F-wave latency of median and ulnar nerves, terminal latency ratio of ulnar/median nerves, and F-wave latency ratio of ulnar/median nerves (p < 0.05). Among these parameters, the terminal latency ratio of ulnar/median nerve and terminal latency of median nerve in ALS were significantly different with both of CSA and normal control (p < 0.006). The abnormality in the terminal latency of the median nerve can be partly explained by the distal motor axonal dysfunction due to sodium and potassium channel abnormalities. The hypothesis of distal axonopathy is known to play an important role in the pathogenesis of ALS causing a significant prolongation of the terminal latency in the median nerve and the ulnar/median nerve ratio.

  11. A Case of Adrenergic Urticaria Associated with Vitiligo

    PubMed Central

    Lang, Caroline; Kaya, Gürkan

    2016-01-01

    Adrenergic urticaria is a rare form of urticaria, induced by a stress-induced concomitant release of epinephrine and norepinephrine. Here we describe the case of a 60-year-old female patient presenting with disseminated erythematous papules surrounded by a white halo and vitiligo lesions on the hands, arms, and feet. Histological examination of one of the erythematous papules showed a dermal inflammatory infiltrate composed of lymphocytes and eosinophils of perivascular and interstitial localization. After 2 weeks of treatment with antihistamines, the lesions disappeared completely. PMID:28232908

  12. Increased alpha-adrenergic responsiveness in idiopathic Raynaud's disease.

    PubMed

    Freedman, R R; Sabharal, S C; Desai, N; Wenig, P; Mayes, M

    1989-01-01

    In our study of 28 patients with idiopathic Raynaud's disease, the patients had significantly greater digital blood flow responses to intraarterial phenylephrine and clonidine than did normal control subjects. There were no group differences in finger blood flow responses to body heating, reflex cooling, digital ischemia, or to intraarterial tyramine or isoproterenol. There were also no group differences in blood pressure or heart rate during any procedure. These results suggest that patients with idiopathic Raynaud's disease have increased peripheral vascular alpha-adrenergic receptor sensitivity and/or density compared with normal persons.

  13. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  14. Optic nerve aspergillosis.

    PubMed

    Yuan, Lisi; Prayson, Richard A

    2015-07-01

    We report a 55-year-old woman with optic nerve Aspergillosis. Aspergillus is an ubiquitous airborne saprophytic fungus. Inhaled Aspergillus conidia are normally eliminated in the immunocompetent host by innate immune mechanisms; however, in immunosuppressed patients, they can cause disease. The woman had a past medical history of hypertension and migraines. She presented 1 year prior to death with a new onset headache behind the left eye and later developed blurred vision and scotoma. A left temporal artery biopsy was negative for giant cell arteritis. One month prior to the current admission, she had an MRI showing optic nerve thickening with no other findings. Because of the visual loss and a positive antinuclear antibody test, she was given a trial of high dose steroids and while it significantly improved her headache, her vision did not improve. At autopsy, the left optic nerve at the level of the cavernous sinus and extending into the optic chiasm was enlarged in diameter and there was a 1.3 cm firm nodule surrounding the left optic nerve. Histologically, an abscess surrounded and involved the left optic nerve. Acute angle branching, angioinvasive fungal hyphae were identified on Grocott's methenamine silver stained sections, consistent with Aspergillus spp. No gross or microscopic evidence of systemic vasculitis or infection was identified in the body. The literature on optic nerve Aspergillosis is reviewed.

  15. Projection of forelimb nerve afferents to external cuneate nucleus of the rat as revealed by intraneural injection of a neurotoxic lectin, Ricinus communis agglutinin.

    PubMed

    Cha, S W; Tan, C K

    1996-01-01

    This study seeks to extend the observations of previous studies of projection of primary afferent fibres from the forelimb nerves and muscles to the external cuneate nucleus (ECN) of mammals using a neurotoxic lectin, Ricinus communis agglutinin (RCA) to achieve chemical ganglionectomy of the dorsal root ganglia. Following intraneural injection of RCA into the three main forelimb nerves, namely the radial, ulnar and median nerves, terminal degeneration of the primary afferent fibres in the ECN was studied under the light microscope by means of the Fink-Heimer method. The results show that the primary afferent fibres from these three nerves project to the medial part of the ECN. The field of terminal degeneration take a crescentic form. The projection from the median nerve was most dorsally located whereas that from the radial nerve was the most ventral with extensive overlaps between them. Of the three nerves, the projection from the radial nerve was the most dense. Rostrocaudally, the three nerves also show extensive overlaps. The rostrocaudal extent of maximum terminal degeneration was greatest for the radial nerve and least for the median nerve. Analysis of variance showed that these differences were statistically significant. This suggests that the radial nerve has the most extensive projection to the ECN and the median nerve the least.

  16. [New treatment for peripheral nerve defects: nerve elongation].

    PubMed

    Kou, Y H; Jiang, B G

    2016-10-18

    Peripheral nerve defects are still a major challenge in clinical practice, and the most commonly used method of treatment for peripheral nerve defects is nerve transplantation, which has certain limitations and shortcomings, so new repair methods and techniques are needed. The peripheral nerve is elongated in limb lengthening surgery without injury, from which we got inspirations and proposed a new method to repair peripheral nerve defects: peripheral nerve elongation. The peripheral nerve could beelongated by a certain percent, but the physiological change and the maximum elongation range were still unknown. This study discussed the endurance, the physiological and pathological change of peripheral nerve elongation in detail, and got a lot of useful data. First, we developed peripheral nerve extender which could match the slow and even extension of peripheral nerve. Then, our animal experiment result confirmed that the peripheral nerve had better endurance for chronic elongation than that of acute elongation and cleared the extensibility of peripheral nerve and the range of repair for peripheral nerve defects. Our result also revealed the histological basis and changed the rule for pathological physiology of peripheral nerve elongation: the most important structure foundation of peripheral nerve elongation was Fontana band, which was the coiling of nerve fibers under the epineurium, so peripheral nerve could be stretched for 8.5%-10.0% without injury because of the Fontana band. We confirmed that peripheral nerve extending technology could have the same repair effect as traditional nerve transplantation through animal experiments. Finally, we compared the clinical outcomes between nerve elongation and performance of the conventional method in the repair of short-distance transection injuries in human elbows, and the post-operative follow-up results demonstrated that early neurological function recovery was better in the nerve elongation group than in the

  17. The β3-adrenergic receptor is dispensable for browning of adipose tissues.

    PubMed

    de Jong, Jasper M A; Wouters, René T F; Boulet, Nathalie; Cannon, Barbara; Nedergaard, Jan; Petrovic, Natasa

    2017-02-21

    Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β3-adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β3-adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β3-adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β3-adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression (Ucp1, Pgc1a, Dio2 and Cidea) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β3-adrenergic receptor. Experiments with the β3-adrenergic receptor agonist CL-316,243 verified the functional absence of β3-adrenergic signaling in these knockout mice. The β3-adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus, our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β3-adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. This should be taken into account in the increasing number of studies on the induction of browning and their extrapolation to human physiology.

  18. Adrenergic deficiency leads to impaired electrical conduction and increased arrhythmic potential in the embryonic mouse heart.

    PubMed

    Baker, Candice; Taylor, David G; Osuala, Kingsley; Natarajan, Anupama; Molnar, Peter J; Hickman, James; Alam, Sabikha; Moscato, Brittany; Weinshenker, David; Ebert, Steven N

    2012-07-06

    To determine if adrenergic hormones play a critical role in the functional development of the cardiac pacemaking and conduction system, we employed a mouse model where adrenergic hormone production was blocked due to targeted disruption of the dopamine β-hydroxylase (Dbh) gene. Immunofluorescent histochemical evaluation of the major gap junction protein, connexin 43, revealed that its expression was substantially decreased in adrenergic-deficient (Dbh-/-) relative to adrenergic-competent (Dbh+/+ and Dbh+/-) mouse hearts at embryonic day 10.5 (E10.5), whereas pacemaker and structural protein staining appeared similar. To evaluate cardiac electrical conduction in these hearts, we cultured them on microelectrode arrays (8×8, 200 μm apart). Our results show a significant slowing of atrioventricular conduction in adrenergic-deficient hearts compared to controls (31.4±6.4 vs. 15.4±1.7 ms, respectively, p<0.05). To determine if the absence of adrenergic hormones affected heart rate and rhythm, mouse hearts from adrenergic-competent and deficient embryos were cultured ex vivo at E10.5, and heart rates were measured before and after challenge with the β-adrenergic receptor agonist, isoproterenol (0.5 μM). On average, all hearts showed increased heart rate responses following isoproterenol challenge, but a significant (p<0.05) 225% increase in the arrhythmic index (AI) was observed only in adrenergic-deficient hearts. These results show that adrenergic hormones may influence heart development by stimulating connexin 43 expression, facilitating atrioventricular conduction, and helping to maintain cardiac rhythm during a critical phase of embryonic development.

  19. Motor evoked potentials enable differentiation between motor and sensory branches of peripheral nerves in animal experiments.

    PubMed

    Turkof, Edvin; Jurasch, Nikita; Knolle, Erik; Schwendenwein, Ilse; Habib, Danja; Unger, Ewald; Reichel, Martin; Losert, Udo

    2006-10-01

    Differentiation between motor and sensory fascicles is frequently necessary in reconstructive peripheral nerve surgery. The goal of this experimental study was to verify if centrally motor evoked potentials (MEP) could be implemented to differentiate sensory from motor fascicles, despite the well-known intermingling between nerve fascicles along their course to their distant periphery. This new procedure would enable surgeons to use MEP for placing nerve grafts at corresponding fascicles in the proximal and distal stumps without the need to use time-consuming staining. In ten sheep, both ulnar nerves were exposed at the terminal bifurcation between the last sensory and motor branch. Animals were then relaxed to avoid volume conduction. On central stimulation, the evoked nerve compound action potentials were simultaneously recorded from both terminal branches. In all cases, neurogenic motor nerve action potentials were recorded only from the terminal motor branch. The conclusion was that MEPs can be used for intraoperative differentiation between sensory and motor nerves. Further studies are necessary to develop this method for in situ measurements on intact nerve trunks.

  20. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis).

    PubMed

    Wu, Shun-Fan; Yao, Yao; Huang, Jia; Ye, Gong-Yin

    2012-08-01

    Octopamine, the invertebrate counterpart of adrenaline and noradrenaline, plays a key role in regulation of many physiological and behavioral processes in insects. It modulates these functions through binding to specific octopamine receptors, which are typical rhodopsin-like G-protein coupled receptors. A cDNA encoding a seven-transmembrane receptor was cloned from the nerve cord of the rice stem borer, Chilo suppressalis, viz. CsOA2B2, which shares high sequence similarity to CG6989, a Drosophila β-adrenergic-like octopamine receptor (DmOctβ2R). We generated an HEK-293 cell line that stably expresses CsOA2B2 in order to examine the functional and pharmacological properties of this receptor. Activation of CsOA2B2 by octopamine increased the production of cAMP in a dose-dependent manner (EC(50)=2.33 nmol l(-1)), with a maximum response at 100 nmol l(-1). Tyramine also activated the receptor but with much less potency than octopamine. Dopamine and serotonin had marginal effects on cAMP production. Using a series of known agonists and antagonists for octopamine receptors, we observed a rather unique pharmacological profile for CsOA2B2 through measurements of cAMP. The rank order of potency of the agonists was naphazoline > clonidine. The activated effect of octopamine is abolished by co-incubation with phentolamine, mianserin or chlorpromazine. Using in vivo pharmacology, CsOA2B2 antagonists mianserin and phentolamine impaired the motor ability of individual rice stem borers. The results of the present study are important for a better functional understanding of this receptor as well as for practical applications in the development of environmentally sustainable pesticides.

  1. Bioisosteric phentolamine analogs as potent alpha-adrenergic antagonists.

    PubMed

    Hong, Seoung-Soo; Bavadekar, Supriya A; Lee, Sang-Il; Patil, Popat N; Lalchandani, S G; Feller, Dennis R; Miller, Duane D

    2005-11-01

    The synthesis and biological evaluation of a new series of bioisosteric phentolamine analogs are described. Replacement of the carbon next to the imidazoline ring of phentolamine with a nitrogen atom provides compounds (2, 3) that are about 1.6 times and 4.1 times more potent functionally than phentolamine on rat alpha1-adrenergic receptors, respectively. In receptor binding assays, the affinities of phentolamine and its bioisosteric analogs were determined on the human embryonic kidney (HEK) and Chinese Hamster ovary (CHO) cell lines expressing the human alpha1- and alpha2-AR subtypes, respectively. Analogs 2 and 3, both, displayed higher binding affinities at the alpha2- versus the alpha1-ARs, affinities being the least at the alpha1B-AR. Binding affinities of the methoxy ether analog 2 were greater than those of the phenolic analog 3 at all six alpha-AR subtypes. One of the nitrogen atoms in the imidazoline ring of phentolamine was replaced with an oxygen atom to give compounds 4 and 5, resulting in a 2-substituted oxazoline ring. The low functional antagonist activity on rat aorta, and binding potencies of these two compounds on human alpha1A- and alpha2A-AR subtypes indicate that a basic functional group is important for optimum binding to the alpha1- and alpha2A-adrenergic receptors.

  2. The Principles of Ligand Specificity on beta-2-adrenergic receptor

    PubMed Central

    Chan, H. C. Stephen; Filipek, Slawomir; Yuan, Shuguang

    2016-01-01

    G protein-coupled receptors are recognized as one of the largest families of membrane proteins. Despite sharing a characteristic seven-transmembrane topology, G protein-coupled receptors regulate a wide range of cellular signaling pathways in response to various physical and chemical stimuli, and prevail as an important target for drug discovery. Notably, the recent progress in crystallographic methods led to a breakthrough in elucidating the structures of membrane proteins. The structures of β2-adrenergic receptor bound with a variety of ligands provide atomic details of the binding modes of agonists, antagonists and inverse agonists. In this study, we selected four representative molecules from each functional class of ligands and investigated their impacts on β2-adrenergic receptor through a total of 12 × 100 ns molecular dynamics simulations. From the obtained trajectories, we generated molecular fingerprints exemplifying propensities of protein-ligand interactions. For each functional class of compounds, we characterized and compared the fluctuation of the protein backbone, the volumes in the intracellular pockets, the water densities in the receptors, the domain interaction networks as well as the movements of transmembrane helices. We discovered that each class of ligands exhibits a distinct mode of interactions with mainly TM5 and TM6, altering the shape and eventually the state of the receptor. Our findings provide insightful prospective into GPCR targeted structure-based drug discoveries. PMID:27703221

  3. Structural analysis of beta-adrenergic and muscarinic cholinergic receptors

    SciTech Connect

    Kerlavage, A.R.; Fraser, C.M.; Venter, J.C.

    1987-05-01

    The authors have recently cloned the gene encoding the human brain beta-adrenergic receptor. Beta-adrenergic and muscarinic cholinergic receptors have also been cloned from other tissues. In order to correlate the primary structures of these receptors with their function, they have undertaken detailed mapping of their functionally important sites. Purified guinea pig lung beta receptor was radioiodinated and digested with trypsin. The resultant peptides were resolved by reverse phase HPLC into nine peaks containing /sup 125/I, corresponding exactly with the predicted number of tyrosine containing peptides in the beta receptor. Hamster lung beta receptor was labeled with (/sup 125/I)-iodocyanopindolol diazarine ((/sup 125/I)CYPD) and partially purified by SDS-PAGE. The (/sup 125/I)CYPD-labeled receptor was extracted from the gel, digested with either trypsin or CNBr and the digests were resolved by reverse phase HPLC. The tryptic digest contained one (/sup 125/I)CYPD-labeled peak and the CNBr digest contained two. Rat brain muscarinic receptor was specifically labeled with (/sup 3/H)-propylbenzilyl-choline mustard ((/sup 3/H)PrBCM) and partially purified by SDS-PABE. The (/sup 3/H)PrBCM-labeled receptor was extracted from the gel and digested with CNBr. The resultant HPLC profile revealed a single (/sup 3/H)PrBCM-labeled peak. These data yield information on the location of functional sites within the primary sequences of these receptors.

  4. Beta-Adrenergic Receptor Blockers in Hypertension: Alive and Well.

    PubMed

    Frishman, William H

    2016-10-27

    βeta-Adrenergic receptor blockers (β-blockers) are an appropriate treatment for patients having systemic hypertension (HTN) who have concomitant ischemic heart disease (IHD), heart failure, obstructive cardiomyopathy, aortic dissection or certain cardiac arrhythmias. β-blockers can be used in combination with other antiHTN drugs to achieve maximal blood pressure control. Labetalol can be used in HTN emergencies and urgencies. β-blockers may be useful in HTN patients having a hyperkinetic circulation (palpitations, tachycardia, HTN, and anxiety), migraine headache, and essential tremor. β-blockers are highly heterogeneous with respect to various pharmacologic properties: degree of intrinsic sympathomimetic activity , membrane stabilizing activity , β1 selectivity, α1-adrenergic blocking effects, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific properties may be important in the selection of a drug for clinical use. β-blocker usage to reduce perioperative myocardial ischemia and cardiovascular (CV) complications may not benefit as many patients as was once hoped, and may actually cause harm in some individuals. Currently the best evidence supports perioperative β-blocker use in two patient groups: patients undergoing vascular surgery with known IHD or multiple risk factors for it, and for those patients already receiving β-blockers for known CV conditions.

  5. Adrenergic mechanisms in oxygen chemoreception in the cat aortic body.

    PubMed

    Mulligan, E; Lahiri, S; Mokashi, A; Matsumoto, S; McGregor, K H

    1986-03-01

    Sixteen cats were studied to test the hypothesis that oxygen chemoreception in the cat aortic body is dependent on the beta-adrenergic mechanism. The chemoreceptor activity was measured from a few aortic chemoreceptor afferents in each cat, anesthetized with alpha-chloralose (60 mg X kg-1). Three types of experiments were conducted. Aortic chemoreceptor responses to steady-state hypoxia (PaO2 range, 100-30 Torr) were measured (a) before and during intravenous infusion of the beta-receptor agonist, isoproterenol (0.5 micrograms X kg-1) in nine spontaneously breathing cats, and (b) before and after intravenous injection of the beta-receptor antagonist, propranolol (1 mg X kg-1) in seven cats which were paralyzed and artificially ventilated. In the third category (c) the stimulatory effect of hypotension on aortic chemoreceptor activity was measured in six of the seven cats in group (b) before and after propranolol injection. Isoproterenol infusion only moderately stimulated aortic chemoreceptor activity. This stimulation was blocked by propranolol. However, propranolol did not attenuate aortic chemoreceptor responses to hypoxia or to hypotension. We conclude that the beta-receptor adrenergic mechanism does not mediate oxygen chemoreception in the cat aortic body.

  6. Distribution of beta-adrenergic receptors on human lymphocyte subpopulations.

    PubMed Central

    Pochet, R; Delespesse, G; Gausset, P W; Collet, H

    1979-01-01

    A technique is described allowing the quantification and the characterization of specific beta-adrenergic receptors in intact living human lymphocytes. 125I-Iodohydroxybenzylpindolol, a potent beta-adrenergic antagonist was used to label specific binding sites on unfractionated lymphoid cells and on purified subpopulations of T (F1 and F2) and B cells. F1 and F2 were obtained by filtration through nylon wool column as previously described (Delespesse et al., 1976), they differ in their response to mitogens, and in their interactions with adherent cells and B cells. 125I-HYP binding to unfractionated lymphocytes was a saturable, stereospecific and rapid process with a dissociation constant of 2.5 10(-10) M and a binding capacity of 400--600 sites/cell. Bindings on unfractionated lymphocytes, purified B cells and T cells of the F2 fraction were similar. No detectable binding was noted on T cells from the F1 fraction. Enriched T cells obtained by a rosetting technique displayed 200 receptors/cell. PMID:43789

  7. Enzyme induction and β-adrenergic receptor blocking drugs

    PubMed Central

    Branch, R. A.; Herman, R. J.

    1984-01-01

    1 All β-adrenergic receptor blockers that require metabolism prior to elimination are potentially subject to drug interactions due to enzyme induction. However, data is only available in man for propranolol, metoprolol and alprenolol. 2 Cross-sectional population studies suggest that environmental factors, such as smoking in the young, are able to influence the oral clearance of propranolol. 3 Long-term studies comparing within-subject clearances of metoprolol, alprenolol and propranolol before and after rifampicin and pentobarbitone, indicate that oral clearance is increased by 50%-500%. 4 Inducing agents can influence intrinsic clearance, liver blood flow, and protein binding in addition to drug metabolising ability, indicating that changes in pharmacokinetic disposition may be complex. 5 Enzyme induction exhibits both dose and time dependency relationships. 6 The maximal extent of enzyme induction is similar between subjects. The range of intersubject variation in drug metabolism is similar before and after induction. 7 The reduction in steady-state β-adrenergic receptor drug concentration following enzyme induction is sufficiently large that an altered pharmacodynamic response would be expected if no dosage modification is made. PMID:6146342

  8. Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin

    SciTech Connect

    Shepherd, R.E.; Lang, C.H.; McDonough, K.H.

    1987-02-01

    A dose-dependent impairment of intrinsic myocardial performance has been observed following in vivo administration of endotoxin. The present study reports a dose-dependent increase in plasma catecholamines following endotoxin (ET) that may impair ..beta..-adrenergic responsiveness. Hearts were removed from pentobarbital-anesthetized rats 4 h after a bolus injection of saline or ET and were studied as isolated cell preparations following collagenase digestion. Responsiveness of isoproterenol-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in myocytes prepared from hearts of animals injected with 10 and 100 ..mu..g ET was decreased when compared with control rats and was significantly blunted in myocytes prepared from animals receiving 1000 ..mu..g ET. Similar sensitivities of the cAMP system existed, as judged by similar half-maximum effective concentration values. cAMP accumulation in the presence of 1 ..mu..M forskolin was depressed in myocytes from the 1000-..mu..g ET animals; ..beta..-adrenergic receptor density was decreased 25% in myocytes from high-dose ET animals when compared with control animals. This was accompanied by a nonsignificant reduction in the affinity of binding sites for (+/-)(/sup 3/H)CGP 12177. The blunted myocyte hormonal responsiveness following ET challenge appears to be related to the decreased activity of the adenylate cyclase that may be attributed to alterations in both receptor density and in the adenylate cyclase itself.

  9. Agonist photoaffinity label for the. beta. -adrenergic receptor

    SciTech Connect

    Resek, J.F.; Ruoho, A.E.

    1987-05-01

    An iodinated photosensitive derivative of norepinephrine, N-(p-azido-m-iodophenethylamidoisobutyryl)norepinephrine (NAIN), has been synthesized and characterized. Carrier-free radioiodinated NAIN ((/sup 125/I)-NAIN) was used at 1-2 x 10/sup -9/ M to photoaffinity label the ..beta..-adrenergic receptor in guinea pig lung membranes. SDS-PAGE analysis of (-)-alprenolol (10/sup -5/M) protectable (/sup 125/I)-NAIN labeling showed the same molecular weight polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel, (/sup 125/I)-IABP. Specific labeling of the ..beta..-adrenergic receptor with (/sup 125/I)-NAIN was dependent on the presence of MgCl/sub 2/ and the absence of guanyl nucleotide. GTP..gamma..S (10/sup -4/ M) abolished specific receptor labeling by (/sup 125/I)-NAIN. N-ethylmaleimide (2 mm) in the presence of (/sup 125/I)-NAIN protected against the guanyl nucleotide effect. These data are consistent with photolabeling by (/sup 125/I)-NAIN while the agonist, receptor, and GTP binding protein are in a high affinity complex.

  10. GLIAL RESPONSES AFTER CHORDA TYMPANI NERVE INJURY

    PubMed Central

    Bartel, Dianna L.

    2013-01-01

    The chorda tympani (CT) nerve innervates lingual taste buds and is susceptible to damage during dental and inner ear procedures. Interruption of the CT results in a disappearance of taste buds, which can be accompanied by taste disturbances. Because the CT usually regenerates to reinnervate taste buds successfully in a few weeks, a persistence of taste disturbances may indicate alterations in central nervous function. Peripheral injury to other sensory nerves leads to glial responses at central terminals, which actively contribute to abnormal sensations arising from nerve damage. Therefore, the current study examined microglial and astrocytic responses in the first central gustatory relay -the nucleus of the solitary tract (nTS)- after transection of the CT. Damage to the CT resulted in significant microglial responses in terms of morphological reactivity and an increased density of microglial cells from 2-20 days after injury. This increased microglial population primarily resulted from microglial proliferation from 1.5-3 days, which was supplemented by microglial migration within sub-divisions of the nTS between days 2-3. Unlike other nerve injuries, CT injury did not result in recruitment of bone marrow-derived precursors. Astrocytes also reacted in the nTS with increased levels of GFAP by 3 days, although none showed evidence of cell division. GFAP levels remained increased at 30 days by which time microglial responses had resolved. These results show that nerve damage to the CT results in central glial responses, which may participate in long lasting taste alterations following CT lesion. PMID:22315167

  11. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man.

    PubMed

    Fairfax, Seth T; Holwerda, Seth W; Credeur, Daniel P; Zuidema, Mozow Y; Medley, John H; Dyke, Peter C; Wray, D Walter; Davis, Michael J; Fadel, Paul J

    2013-07-15

    Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P = 0.016) and then robustly decreased to a nadir of -5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (-2.1 ± 0.7% and -0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors.

  12. Barriers of the peripheral nerve

    PubMed Central

    Peltonen, Sirkku; Alanne, Maria; Peltonen, Juha

    2013-01-01

    This review introduces the traditionally defined anatomic compartments of the peripheral nerves based on light and electron microscopic topography and then explores the cellular and the most recent molecular basis of the different barrier functions operative in peripheral nerves. We also elucidate where, and how, the homeostasis of the normal human peripheral nerve is controlled in situ and how claudin-containing tight junctions contribute to the barriers of peripheral nerve. Also, the human timeline of the development of the barriers of the peripheral nerve is depicted. Finally, potential future therapeutic modalities interfering with the barriers of the peripheral nerve are discussed. PMID:24665400

  13. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  14. Interaction of perivascular adipose tissue and sympathetic nerves in arteries from normotensive and hypertensive rats.

    PubMed

    Török, J; Zemančíková, A; Kocianová, Z

    2016-10-24

    The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.

  15. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…

  16. Action potential initiation in the peripheral terminals of cold-sensitive neurones innervating the guinea-pig cornea.

    PubMed

    Carr, Richard W; Pianova, Svetlana; McKemy, David D; Brock, James A

    2009-03-15

    The site at which action potentials initiate within the terminal region of unmyelinated sensory axons has not been resolved. Combining recordings of nerve terminal impulses (NTIs) and collision analysis, the site of action potential initiation in guinea-pig corneal cold receptors was determined. For most receptors (77%), initiation mapped to a point in the time domain that was closer to the nerve terminal than to the site of electrical stimulation at the back of the eye. Guinea-pig corneal cold receptors are Adelta-neurones that lose their myelin sheath at the point where they enter the cornea, and therefore their axons conduct more slowly within the cornea. Allowing for this inhomogeneity in conduction speed, the resulting spatial estimates of action potential initiation sites correlated with changes in NTI shape predicted by simulation of action potentials initiating within a nerve terminal. In some receptors, more than one NTI shape was observed. Simulations of NTI shape suggest that the origin of differing NTI shapes result from action potentials initiating at different, spatially discrete, locations within the nerve terminal. Importantly, the relative incidence of NTI shapes resulting from action potential initiation close to the nerve termination increased during warming when nerve activity decreased, indicating that the favoured site of action potential initiation shifts toward the nerve terminal when it hyperpolarizes. This finding can be explained by a hyperpolarization-induced relief of Na(+) channel inactivation in the nerve terminal. The results provide direct evidence that the molecular entities responsible for stimulus transduction and action potential initiation reside in parallel with one another in the unmyelinated nerve terminals of cold receptors.

  17. Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise.

    PubMed

    Fernandes, Igor A; Mattos, João D; Campos, Monique O; Machado, Alessandro C; Rocha, Marcos P; Rocha, Natalia G; Vianna, Lauro C; Nobrega, Antonio C L

    2016-06-01

    Handgrip-induced increases in blood flow through the contralateral artery that supplies the cortical representation of the arm have been hypothesized as a consequence of neurovascular coupling and a resultant metabolic attenuation of sympathetic cerebral vasoconstriction. In contrast, sympathetic restraint, in theory, inhibits changes in perfusion of the cerebral ipsilateral blood vessels. To confirm whether sympathetic nerve activity modulates cerebral blood flow distribution during static handgrip (SHG) exercise, beat-to-beat contra- and ipsilateral internal carotid artery blood flow (ICA; Doppler) and mean arterial pressure (MAP; Finometer) were simultaneously assessed in nine healthy men (27 ± 5 yr), both at rest and during a 2-min SHG bout (30% maximal voluntary contraction), under two experimental conditions: 1) control and 2) α1-adrenergic receptor blockade. End-tidal carbon dioxide (rebreathing system) was clamped throughout the study. SHG induced increases in MAP (+31.4 ± 10.7 mmHg, P < 0.05) and contralateral ICA blood flow (+80.9 ± 62.5 ml/min, P < 0.05), while no changes were observed in the ipsilateral vessel (-9.8 ± 39.3 ml/min, P > 0.05). The reduction in ipsilateral ICA vascular conductance (VC) was greater compared with contralateral ICA (contralateral: -0.8 ± 0.8 vs. ipsilateral: -2.6 ± 1.3 ml·min(-1)·mmHg(-1), P < 0.05). Prazosin was effective to induce α1-blockade since phenylephrine-induced increases in MAP were greatly reduced (P < 0.05). Under α1-adrenergic receptor blockade, SHG evoked smaller MAP responses (+19.4 ± 9.2, P < 0.05) but similar increases in ICAs blood flow (contralateral: +58.4 ± 21.5 vs. ipsilateral: +54.3 ± 46.2 ml/min, P > 0.05) and decreases in VC (contralateral: -0.4 ± 0.7 vs. ipsilateral: -0.4 ± 1.0 ml·min(-1)·mmHg(-1), P > 0.05). These findings indicate a role of sympathetic nerve activity in the regulation of cerebral blood flow distribution during SHG.

  18. Genes and nerves.

    PubMed

    Dieu, Tam; Johnstone, Bruce R; Newgreen, Don F

    2005-04-01

    The unpredictability of a brachial plexus graft, a median nerve repair, or a facial-nerve reconstruction is well known. No matter how precise the technical skills, a perfect recovery from a peripheral-nerve lesion is elusive. To resolve this problem, understanding of the normal development of the peripheral nervous system is needed. Presently, the development of the innervation in the upper limb is complex and not fully understood. However, many of the genes involved in this process are now known, and the link between anatomy and genetics is becoming clearer. This short review aims to acquaint the clinical surgeon with some of the main genes. The principal steps in the establishment of neural circuits will be summarized, in particular, the specification and development of neurons and glia, the pathfinding of cells and axons towards their target, and the downstream molecules that control the circuitry of these neurons.

  19. The nerve: A fragile balance between physiology and pathophysiology.

    PubMed

    Estebe, Jean-Pierre; Atchabahian, Arthur

    2017-03-01

    Regarding nerves as simple cables and electrical conduits is a gross error that does not allow us to understand the anomalies and disorders observed postoperatively. Instead, nerves should be seen as a living tissue of which physiological regulation is as complex as that of the blood-brain barrier. This review describes the basic structure and functions of this blood-nerve barrier and highlights the mechanisms of its breakdown and the resultant disorders. For clinical practice, it is important to note that the diffusion of molecules from the perineurium or from the blood is very limited, and so the blood-nerve barrier is a major pharmacologic barrier. Any stress upon neural physiological balance, particularly the terminal vascular blood supply, will induce the classic inflammatory cascade. Due to the complexity of the vascular system, nerve ischaemia will occur more quickly when the terminal blood supply is compromised. This blood supply can adapt in a variety of ways but when these possibilities of adaptation are exceeded, tissue ischaemia may be more extensive. Also, even after the initial injury has subsided, inflammation can cause a secondary insult. This could be particularly important in some patients with subclinical neuropathy.

  20. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure

    PubMed Central

    Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M.; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S.; Sacconi, Leonardo

    2016-01-01

    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca2+ release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca2+ transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca2+ sparks, reduces Ca2+ transient variability, and hastens the decay of Ca2+ transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca2+ rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca2+ rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity. PMID:27598150

  1. MOOD STATES, SYMPATHETIC ACTIVITY, AND IN VIVO β-ADRENERGIC RECEPTOR FUNCTION IN A NORMAL POPULATION

    PubMed Central

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G.; Mills, Paul J.; Dimsdale, Joel E.

    2009-01-01

    The purpose of this study was to examine the relationship between mood states and β-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or β-adrenergic receptor function. Sixty-two participants aged 25–50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). β-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased β-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of β-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or β-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) β-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index. PMID:17583588

  2. Phospholipase D1 is involved in α1-adrenergic contraction of murine vascular smooth muscle.

    PubMed

    Wegener, Jörg W; Loga, Florian; Stegner, David; Nieswandt, Bernhard; Hofmann, Franz

    2014-03-01

    α1-Adrenergic stimulation increases blood vessel tone in mammals. This process involves a number of intracellular signaling pathways that include signaling via phospholipase C, diacylglycerol (DAG), and protein kinase C. So far, it is not certain whether signaling via phospholipase D (PLD) and PLD-derived DAG is involved in this process. We asked whether PLD participates in the α1-adrenergic-mediated signaling in vascular smooth muscle. α1-Adrenergic-induced contraction was assessed by myography of isolated aortic rings and by pressure recordings using the hindlimb perfusion model in mice. The effects of the PLD inhibitor 1-butanol (IC50 0.15 vol%) and the inactive congener 2-butanol were comparatively studied. Inhibition of PLD by 1-butanol reduced specifically the α1-adrenergic-induced contraction and the α1-adrenergic-induced pressure increase by 10 and 40% of the maximum, respectively. 1-Butanol did not influence the aortic contractions induced by high extracellular potassium, by the thromboxane analog U46619, or by a phorbol ester. The effects of 1-butanol were absent in mice that lack PLD1 (Pld1(-/-) mice) or that selectively lack the CaV1.2 channel in smooth muscle (sm-CaV1.2(-/-) mice) but still present in the heterozygous control mice. α1-Adrenergic contraction of vascular smooth muscle involves activation of PLD1, which controls a portion of the α1-adrenergic-induced CaV1.2 channel activity.

  3. [Lumbosacral nerve bowstring disease].

    PubMed

    Shi, J G; Xu, X M; Sun, J C; Wang, Y; Guo, Y F; Yang, H S; Kong, Q J; Yang, Y; Shi, G D; Yuan, W; Jia, L S

    2017-03-21

    Objective: To define a novel disease-lumbosacral nerve bowstring disease, and propose the diagnostic criteria, while capsule surgery was performed and evaluated in the preliminary study. Methods: From June 2016 to December 2016, a total of 30 patients (22 male and 8 female; mean age of 55.1±9.7 years) with lumbosacral nerve bowstring disease were included in Department of Spine Surgery, Changzheng Hospital, the Second Military Medical University.Lumbosacral nerve bowstring disease was defined as axial hypertension of nerve root and spinal cord caused by congenital anomalies, which could be accompanied by other lesions as lumbar disc herniation, spinal cord stenosis or spondylolisthesis, or aggravated by iatrogenic lesions, resulting in neurological symptoms.This phenomenon is similar to a stretched string, the higher tension on each end the louder sound.Meanwhile, the shape of lumbosacral spine looks like a bow, thus, the disease is nominated as lumbosacral nerve bowstring disease.All the patients underwent capsule surgery and filled out Owestry disability index (ODI) and Tempa scale for kinesiophobia (TSK) before and after surgery. Results: The mean surgery time was (155±36) min, (4.3±0.4) segments were performed surgery.The pre-operative VAS, TSK and ODI scores were (7.6±0.8), (52.0±10.3) and (68.4±12.7), respectively.The post-operative VAS, TSK and ODI scores were (3.3±0.4), ( 24.6±5.2) and (32.1±7.4)(P<0.05, respectively), respectively. Conclusion: The definition and diagnostic criteria of lumbosacral nerve bowstring disease was proposed.Capsule surgery was an effective strategy with most patients acquired excellent outcomes as symptoms relieved and quality of life improved.

  4. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting

    PubMed Central

    Fernandez, Stanley F.; Ovchinnikov, Vladislav; Canty, John M.

    2013-01-01

    Hibernating myocardium due to chronic repetitive ischemia is associated with regional sympathetic nerve dysfunction and spontaneous arrhythmic death in the absence of infarction. Although inhomogeneity in regional sympathetic innervation is an acknowledged substrate for sudden death, the mechanism(s) responsible for these abnormalities in viable, dysfunctional myocardium (i.e., neural stunning vs. sympathetic denervation) and their association with nerve sprouting are unknown. Accordingly, markers of sympathetic nerve function and nerve sprouting were assessed in subendocardial tissue collected from chronically instrumented pigs with hibernating myocardium (n = 18) as well as sham-instrumented controls (n = 7). Hibernating myocardium exhibited evidence of partial sympathetic denervation compared with the normally perfused region and sham controls, with corresponding regional reductions in tyrosine hydroxylase protein (−32%, P < 0.001), norepinephrine uptake transport protein (−25%, P = 0.01), and tissue norepinephrine content (−45%, P < 0.001). Partial denervation induced nerve sprouting with regional increases in nerve growth factor precursor protein (31%, P = 0.01) and growth associated protein-43 (38%, P < 0.05). All of the changes in sympathetic nerve markers were similar in animals that developed sudden death (n = 9) compared with electively terminated pigs with hibernating myocardium (n = 9). In conclusion, sympathetic nerve dysfunction in hibernating myocardium is most consistent with partial sympathetic denervation and is associated with regional nerve sprouting. The extent of sympathetic remodeling is similar in animals that develop sudden death compared with survivors; this suggests that sympathetic remodeling in hibernating myocardium is not an independent trigger for sudden death. Nevertheless, sympathetic remodeling likely contributes to electrical instability in combination with other factors. PMID:23125211

  5. Nerve Transfers in Tetraplegia.

    PubMed

    Fox, Ida K

    2016-05-01

    Hand and upper extremity function is instrumental to basic activities of daily living and level of independence in cervical spinal cord injury (SCI). Nerve transfer surgery is a novel and alternate approach for restoring function in SCI. This article discusses the biologic basis of nerve transfers in SCI, patient evaluation, management, and surgical approaches. Although the application of this technique is not new; recent case reports and case series in the literature have increased interest in this field. The challenges are to improve function, achieve maximal gains in function, avoid complications, and to primum non nocere.

  6. Phospholemman and beta-adrenergic stimulation in the heart.

    PubMed

    Wang, JuFang; Gao, Erhe; Song, Jianliang; Zhang, Xue-Qian; Li, Jifen; Koch, Walter J; Tucker, Amy L; Philipson, Kenneth D; Chan, Tung O; Feldman, Arthur M; Cheung, Joseph Y

    2010-03-01

    Phosphorylation at serine 68 of phospholemman (PLM) in response to beta-adrenergic stimulation results in simultaneous inhibition of cardiac Na(+)/Ca(2+) exchanger NCX1 and relief of inhibition of Na(+)-K(+)-ATPase. The role of PLM in mediating beta-adrenergic effects on in vivo cardiac function was investigated with congenic PLM-knockout (KO) mice. Echocardiography showed similar ejection fraction between wild-type (WT) and PLM-KO hearts. Cardiac catheterization demonstrated higher baseline contractility (+dP/dt) but similar relaxation (-dP/dt) in PLM-KO mice. In response to isoproterenol (Iso), maximal +dP/dt was similar but maximal -dP/dt was reduced in PLM-KO mice. Dose-response curves to Iso (0.5-25 ng) for WT and PLM-KO hearts were superimposable. Maximal +dP/dt was reached 1-2 min after Iso addition and declined with time in WT but not PLM-KO hearts. In isolated myocytes paced at 2 Hz. contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes and [Na(+)](i) reached maximum 2-4 min after Iso addition, followed by decline in WT but not PLM-KO myocytes. Reducing pacing frequency to 0.5 Hz resulted in much smaller increases in [Na(+)](i) and no decline in contraction and [Ca(2+)](i) transient amplitudes with time in Iso-stimulated WT and PLM-KO myocytes. Although baseline Na(+)-K(+)-ATPase current was 41% higher in PLM-KO myocytes because of increased alpha(1)- but not alpha(2)-subunit activity, resting [Na(+)](i) was similar between quiescent WT and PLM-KO myocytes. Iso increased alpha(1)-subunit current (I(alpha1)) by 73% in WT but had no effect in PLM-KO myocytes. Iso did not affect alpha(2)-subunit current (I(alpha2)) in WT and PLM-KO myocytes. In both WT and NCX1-KO hearts, PLM coimmunoprecipitated with Na(+)-K(+)-ATPase alpha(1)- and alpha(2)-subunits, indicating that association of PLM with Na(+)-K(+)-ATPase did not require NCX1. We conclude that under stressful conditions in which [Na(+)](i) was high, beta-adrenergic agonist

  7. Dissociation between nerve-muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin.

    PubMed Central

    Bray, J J; Harris, A J

    1975-01-01

    Small doses of botulinum toxin can produce partial blockage of transmitter release at the nerve--muscle junction. 2. Subthreshold e.p.p.s, 3--10 days after poisoning, show a distribution of amplitudes that is fitted by Poisson statistics. Successive e.p.p.s. in a short train show a marked facilitation. 3. Two weeks or more after poisoning with a dose of toxin that paralyses the whole muscle, when nerve--muscle transmission is in course of recovery, subthreshold e.p.p.s have an amplitude distribution that is fitted by binomial statistics. This property of transmission is similar to those described in newly formed nerve--muscle junctions, during embryogenesis or regeneration. 4. Muscle fibres with subthreshold transmission in the 5--10 day group of muscles were all supersensitive to ACh, as were a number of fibres in which nerve stimulation still produced an action potential. 5. Two weeks or more after poisoning, muscle fibres with subthreshold transmission had lost their extrajunctional ACh-sensitivity, as had many fibres with m.e.p.p.s of roughly normal frequency but no response to nerve stimulation. 6. In diaphragm muscles poisoned with botulinum toxin between 1 and 4 days previously, the rate of fast axonal transport of radioactively labelled proteins down the phrenic nerve is not greatly affected, but the amount of materials carried is reduced to about one quarter of normal. These labelled proteins accumulate in the intramuscular portion of the phrenic nerve, in or near the nerve terminals, to a much greater extent than in controls, showing that the normal release of some of these materials has been prevented by the toxin. 7. It is concluded that the blockage of the trophic effects of nerves by botulinum toxin is due to a blockage of release of trophic factors other than ACh. 8. The muscle nerve cannot maintain a muscle in its normal state simply by activation of contraction, and a regenerating nerve terminal can restore a muscle towards its normal state before

  8. Overview of the Cranial Nerves

    MedlinePlus

    ... and toxins. Some cranial nerve disorders interfere with eye movement. Eye movement is controlled by 3 pairs of muscles. These ... be able to move their eyes normally. How eye movement is affected depends on which nerve is affected. ...

  9. Nerve Injuries of the Upper Extremity

    MedlinePlus

    ... of individual nerve fibers and surrounding outer sheath (“insulation”) Figure 2: Nerve repair with realignment of bundles © ... of individual nerve fibers and surrounding outer sheath insulation Figure 2 - Nerve repair with realignment of bundles ...

  10. [Involvement of adrenergic mechanisms in developing the nervous syndrome of high pressure and nitrogen narcosis].

    PubMed

    Sledkov, A I; Bernarskii, K V; Shilina, M N

    1996-01-01

    Involvement of the adrenergic mediator system in central mechanisms of hyperbaric nitrogen narcosis or the high pressure nervous syndrome (NSHP) produced by nitrogen or heliox gas mixtures under increased pressure was studied in mice and rabbit experiments with the use of pharmacological substances-analyzers. Accumulated data are indicative of lack of a significant role of the adrenergic system in the NSHP genesis and a protective effect of activation of the central but not peripheric adrenergic mediation in development of the behavioural and electrophysiological symptomatics of nitrogen narcosis. Mechanisms of NSHP and nitrogen narcosis and possible principles of pharmacological correction are under discussion.

  11. Nerve agent-induced seizures and their pharmacological modulation

    SciTech Connect

    McDonough, J.H.; Shih, T.M.; Adams, N.L.; Koviak, T.A.; Cook, L.A.

    1993-05-13

    Intoxication with nerve agents produces prolonged central nervous system seizures (status epilepticus) that can produce irreversible brain pathology (15). This report summarizes our recent findings regarding the neurotransmitter changes that occur in discrete brain regions as a function of seizure duration and the differential effectiveness of anticholinergic, benzodiazepine and excitatory amino acid (EAA) antagonist drugs in terminating soman-induced seizures when given at different times after seizure onset. These results are discussed in relation to a model we have proposed to explain the sequence of electrophysiological, biochemical and neurochemical events and mechanisms controlling nerve agent-induced seizures.

  12. Coexistence of Right Nonrecurrent Nerve and Bifurcated Recurrent Laryngeal Nerve Pointed by Zuckerkandl's Tubercle

    PubMed Central

    Dogan, Sami; Cetin, Fuat

    2017-01-01

    The recurrent laryngeal nerve (RLN) has many anatomical variations and various relations with adjacent structures. Identification and total exposure of the cervical part of the RLN was performed during operations on the thyroid gland. An extremely rare anatomical variation of the nerve was encountered during the surgical procedure. Coexistence of both right RLN and non-RLN was observed in one patient surgically treated with total thyroidectomy. We first exposed the right RLN with an extralaryngeal terminal bifurcation at its usual position. Thereafter, we also identified an ipsilateral non-RLN joining the anterior branch of the RLN just before laryngeal entry. A Zuckerkandl's tubercle has pointed out the junction of the two nerves. In this period, the incidence of coexistence of non-RLN and RLN was 0.2% in our series. A non-recurrent course is a rare anatomical variation of the inferior laryngeal nerve. The coexistence of both non-RLN and RLN is an extremely rare anatomical finding which should be taken into account during thyroid surgery.

  13. Optic nerve hypoplasia in children.

    PubMed Central

    Zeki, S. M.; Dutton, G. N.

    1990-01-01

    Optic nerve hypoplasia (ONH) is characterised by a diminished number of optic nerve fibres in the optic nerve(s) and until recently was thought to be rare. It may be associated with a wide range of other congenital abnormalities. Its pathology, clinical features, and the conditions associated with it are reviewed. Neuroendocrine disorders should be actively sought in any infant or child with bilateral ONH. Early recognition of the disorder may in some cases be life saving. Images PMID:2191713

  14. Variation in Lingual Nerve Course: A Human Cadaveric Study

    PubMed Central

    Al-Amery, Samah M.; Nambiar, Phrabhakaran; Naidu, Murali

    2016-01-01

    The lingual nerve is a terminal branch of the mandibular nerve. It is varied in its course and in its relationship to the mandibular alveolar crest, submandibular duct and also the related muscles in the floor of the mouth. This study aims to understand the course of the lingual nerve from the molar area until its insertion into the tongue muscle. This cadaveric research involved the study of 14 hemi-mandibles and consisted of two parts: (i) obtaining morphometrical measurements of the lingual nerve to three landmarks on the alveolar ridge, and (b) understanding non-metrical or morphological appearance of its terminal branches inserting in the ventral surface of the tongue. The mean distance between the fourteen lingual nerves and the alveolar ridge was 12.36 mm, and they were located 12.03 mm from the lower border of the mandible. These distances were varied when near the first molar (M1), second molar (M2) and third molar (M3). The lingual nerve coursed on the floor of the mouth for approximately 25.43 mm before it deviated toward the tongue anywhere between the mesial of M1 and distal of M2. Thirteen lingual nerves were found to loop around the submandibular duct for an average distance of 6.92 mm (95% CI: 5.24 to 8.60 mm). Their looping occurred anywhere between the M2 and M3. In 76.9% of the cases the loop started around the M3 region and the majority (69.2%) of these looping ended at between the first and second molars and at the lingual developmental groove of the second molar. It gave out as many as 4 branches at its terminal end at the ventral surface of the tongue, with the presence of 2 branches being the most common pattern. An awareness of the variations of the lingual nerve is important to prevent any untoward complications or nerve injury and it is hoped that these findings will be useful for planning of surgical procedures related to the alveolar crest, submandibular gland/ duct and surrounding areas. PMID:27662622

  15. Evidence for adrenergic control of transcellular calcium distribution in liver.

    PubMed Central

    Hill, C E; Dawson, A P; Pryor, J S

    1985-01-01

    Free Ca2+ concentration and 45Ca flux were measured in the perfusate and bile of the perfused rat liver. With a perfusate Ca2+ concentration of 1 mM, the bile concentration was 0.35 mM. The ratio of 45Ca in bile to that in blood increased from 0.3 to 0.6 over 90 min of perfusion. Both verapamil and adrenaline (via alpha-adrenergic receptors) increased the 45Ca bile/perfusate ratio to 0.8. Adrenaline infusion increased the bile Ca2+ concentration to 0.8 mM. This decreased to 0.35 mM after the infusion was stopped. PMID:4062875

  16. Refractory case of adrenergic urticaria successfully treated with clotiazepam.

    PubMed

    Kawakami, Yukari; Gokita, Mari; Fukunaga, Atsushi; Nishigori, Chikako

    2015-06-01

    Adrenergic urticaria (AU) is a rare type of stress-induced physical urticaria characterized by widespread pruritic urticarial papules. Diagnosis can be made by i.d. injection of adrenaline or noradrenaline, which produces the characteristic rash. Although the lesions of AU typically respond to beta-blockers such as propranolol, the therapeutic options for AU are limited. Here, we report a case of AU that was resistant to beta-blockers and successfully treated with clotiazepam. The clinical picture of AU resembles that of cholinergic urticaria (CU), however, positive noradrenaline test and negative acetylcholine skin test were useful for the differential diagnosis of AU and CU. Although his symptoms were resistant to several therapeutic methods including olopatadine (H1 antagonist), lafutidine (H2 antagonist) and propranolol, the severity and frequency of his attacks and his subjective symptoms were reduced by oral clotiazepam, an anxiolytic benzodiazepine. Dermatologists should be aware that anxiolytic benzodiazepines may be a therapeutic option in AU.

  17. β-Adrenergic Receptor and Insulin Resistance in the Heart.

    PubMed

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.

  18. β-Adrenergic Receptor and Insulin Resistance in the Heart

    PubMed Central

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Over-stimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR over-stimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs over-stimulation leads to induction of insulin resistance in the heart. PMID:28035081

  19. Femoral nerve dysfunction

    MedlinePlus

    ... Read More Abscess Diabetes Mononeuropathy Multiple mononeuropathy Myelin Peripheral neuropathy Polyarteritis nodosa Systemic Tumor Review Date 1/5/ ... Related MedlinePlus Health Topics Leg Injuries and Disorders Peripheral Nerve Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  20. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  1. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  2. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure.

    PubMed

    Ryan, John J; Archer, Stephen L

    2014-06-20

    The right ventricle (RV) is the major determinant of functional state and prognosis in pulmonary arterial hypertension. RV hypertrophy (RVH) triggered by pressure overload is initially compensatory but often leads to RV failure. Despite similar RV afterload and mass some patients develop adaptive RVH (concentric with retained RV function), while others develop maladaptive RVH, characterized by dilatation, fibrosis, and RV failure. The differentiation of adaptive versus maladaptive RVH is imprecise, but adaptive RVH is associated with better functional capacity and survival. At the molecular level, maladaptive RVH displays greater impairment of angiogenesis, adrenergic signaling, and metabolism than adaptive RVH, and these derangements often involve the left ventricle. Clinically, maladaptive RVH is characterized by increased N-terminal pro-brain natriuretic peptide levels, troponin release, elevated catecholamine levels, RV dilatation, and late gadolinium enhancement on MRI, increased (18)fluorodeoxyglucose uptake on positron emission tomography, and QTc prolongation on the ECG. In maladaptive RVH there is reduced inotrope responsiveness because of G-protein receptor kinase-mediated downregulation, desensitization, and uncoupling of β-adrenoreceptors. RV ischemia may result from capillary rarefaction or decreased right coronary artery perfusion pressure. Maladaptive RVH shares metabolic abnormalities with cancer including aerobic glycolysis (resulting from a forkhead box protein O1-mediated transcriptional upregulation of pyruvate dehydrogenase kinase), and glutaminolysis (reflecting ischemia-induced cMyc activation). Augmentation of glucose oxidation is beneficial in experimental RVH and can be achieved by inhibition of pyruvate dehydrogenase kinase, fatty acid oxidation, or glutaminolysis. Therapeutic targets in RV failure include chamber-specific abnormalities of metabolism, angiogenesis, adrenergic signaling, and phosphodiesterase-5 expression. The ability to

  3. Constitutive glycogen synthase kinase-3α/β activity protects against chronic β-adrenergic remodelling of the heart

    PubMed Central

    Webb, Ian G.; Nishino, Yasuhiro; Clark, James E.; Murdoch, Colin; Walker, Simon J.; Makowski, Marcus R.; Botnar, Rene M.; Redwood, Simon R.; Shah, Ajay M.; Marber, Michael S.

    2010-01-01

    Aims Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3α and 9 of GSK-3β respectively, required for inactivation by upstream kinases. Methods and results Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion Expression of inactivation-resistant GSK-3α/β does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3α/β, may enable a sustained cardiac response to chronic β-agonist stimulation while preventing pathological remodelling. PMID:20299330

  4. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  5. Stable long-term recordings from cat peripheral nerves.

    PubMed

    Stein, R B; Nichols, T R; Jhamandas, J; Davis, L; Charles, D

    1977-06-03

    A procedure has been developed for the stable long-term recording of nerve signals in unanesthetized mammals, which should have wide application in basic research on the nervous system and also in clinical areas such as the derivation of control signals for powered prostheses. Methods are fully described for constructing devices consisting of (1) Silastic nerve cuffs containing three or more electrodes, (2) coiled leads insulated with Silastic which extend from the cuffs to an integrated circuit socket, (3) a vitreous carbon transcutaneous connector which surrounds the integrated circuit socket and makes a good interface with the skin. Neural activity has been recorded from mammalian nerves for many months during normal behaviour. The peak-to-peak amplitude and latency of the recorded compound action potentials remain stable and may continue at a constant level more or less indefinitely. A tripolar recording configuration between a central lead and the two end leads, which are connected together, permits good rejection of EMG signals from surrounding muscles. The amplitude of single unit potentials increases as the square of the conduction velocity of the nerve fibre. Thus, the largest nerve fibres will dominate the signals recorded during behaviour. The reasons for premature termination of a few experiments are given together with methods for overcoming these problems. For example, platinum-iridium electrodes remain relatively stable, whereas silver wires tend to fracture after being in an animal for several months. This and other relationships are discussed which permit an optimal design of nerve cuffs for a given recording situation.

  6. Accuracy of regenerating motor neurons: influence of diffusion in denervated nerve.

    PubMed

    Madison, R D; Robinson, G A

    2014-07-25

    Following injury to a peripheral nerve the denervated distal nerve segment undergoes remarkable changes including loss of the blood-nerve barrier, Schwann cell proliferation, macrophage invasion, and the production of many cytokines and neurotrophic factors. The aggregate consequence of such changes is that the denervated nerve becomes a permissive and even preferred target for regenerating axons from the proximal nerve segment. The possible role that an original end-organ target (e.g. muscle) may play in this phenomenon during the regeneration period is largely unexplored. We used the rat femoral nerve as an in vivo model to begin to address this question. We also examined the effects of disrupting communication with muscle in terms of accuracy of regenerating motor neurons as judged by their ability to correctly project to their original terminal nerve branch. Our results demonstrate that the accuracy of regenerating motor neurons is dependent upon the denervated nerve segment remaining in uninterrupted continuity with muscle. We hypothesized that this influence of muscle on the denervated nerve might be via diffusion-driven movement of biomolecules or the active axonal transport that continues in severed axons for several days in the rat, so we devised experiments to separate these two possibilities. Our data show that disrupting ongoing diffusion-driven movement in a denervated nerve significantly reduces the accuracy of regenerating motor neurons.

  7. Dissociation between sympathetic nerve traffic and sympathetically mediated vascular tone in normotensive human obesity.

    PubMed

    Agapitov, Alexei Vasilievich; Correia, Marcelo Lima de Gusmão; Sinkey, Christine Ann; Haynes, William Geoffrey

    2008-10-01

    Obesity increases the risk of hypertension and its cardiovascular complications. This has been partly attributed to increased sympathetic nerve activity, as assessed by microneurography and catecholamine assays. However, increased vasoconstriction in response to obesity-induced sympathoactivation has not been unequivocally demonstrated in obese subjects without hypertension. We evaluated sympathetic alpha-adrenergic vascular tone in the forearm by brachial arterial infusion of the alpha-adrenoreceptor antagonist phentolamine (120 microg/min) in normotensive obese (daytime ambulatory arterial pressure: 123+/-1/77+/-1 mm Hg; body mass index: 35+/-1 kg/m(2)) and lean (daytime ambulatory arterial pressure: 123+/-2/77+/-2 mm Hg; body mass index: 22+/-1 kg/m(2)) subjects (n=25 per group) matched by blood pressure, age, and gender. Microneurographic sympathetic nerve activity to skeletal muscle was significantly higher in obese subjects (30+/-3 versus 22+/-1 bursts per minute; P=0.02). Surprisingly, complete alpha-adrenergic receptor blockade by phentolamine (at concentrations sufficient to completely inhibit norepinephrine and phenylephrine-induced vasoconstriction) caused equivalent vasodilatation in obese (-57+/-2%) and lean subjects (-57+/-3%; P=0.9). In conclusion, sympathetic vascular tone in the forearm circulation is not increased in obese normotensive subjects despite increased sympathetic outflow. Vasodilator factors or mechanisms occurring in obese normotensive subjects could oppose the vasoconstrictor actions of increased sympathoactivation. Our findings may help to explain why some obese subjects are protected from the development of hypertension.

  8. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration.

    PubMed

    Vyas, Alka A; Patel, Himatkumar V; Fromholt, Susan E; Heffer-Lauc, Marija; Vyas, Kavita A; Dang, Jiyoung; Schachner, Melitta; Schnaar, Ronald L

    2002-06-11

    Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering.

  9. Interactions between adrenergic systems, anaesthetic and TRH analogue induced analeptic effects on VBT transmission.

    PubMed

    Clarke, K A; Djouhri, L

    1991-09-01

    Previous behavioural and electrophysiological studies have indicated an antinarcotic action of thyrotropin-releasing hormone (TRH) and its analogues in antagonizing the action of CNS depressant drugs, including baclofen and a variety of anesthetics. While beta-adrenergic receptors are implicated in the level of anaesthesia/arousal, whether the analeptic action of TRH involves adrenergic systems for its expression is uncertain. The object of the present experiments, therefore, was to examine interactions between adrenergic systems and the anti-anaesthetic effects of TRH analogue CG3703. It was found that pretreatment with the beta-block (+/-)propranolol did not abolish or reduce the ability of CG3703 to antagonize urethane-induced depression of VBT transmission. These results suggest therefore, that beta-adrenergic systems are unlikely to be involved in the anti-anaesthetic effect of the tripeptide.

  10. Alpha 2 adrenergic receptors in hyperplastic human prostate: identification and characterization using (/sup 3/H) rauwolscine

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1986-05-01

    (/sup 3/H)Rauwolscine ((/sup 3/H)Ra), a selective ligand for the alpha 2 adrenergic receptor, was used to identify and characterize alpha 2 adrenergic receptors in prostate glands of men with benign prostatic hyperplasia. Specific binding of (/sup 3/H)Ra to prostatic tissue homogenates was rapid and readily reversible by addition of excess unlabelled phentolamine. Scatchard analysis of saturation experiments demonstrates a single, saturable class of high affinity binding sites (Bmax = 0.31 +/- 0.04 fmol./microgram. DNA, Kd = 0.9 +/- 0.11 nM.). The relative potency of alpha adrenergic drugs (clonidine, alpha-methylnorepinephrine and prazosin) in competing for (/sup 3/H)Ra binding sites was consistent with the order predicted for an alpha 2 subtype. The role of alpha 2 adrenergic receptors in normal prostatic function and in men with bladder outlet obstruction secondary to BPH requires further investigation.

  11. Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition?

    PubMed Central

    Vamecq, Joseph; Mention-Mulliez, Karine; Leclerc, Francis; Dobbelaere, Dries

    2015-01-01

    Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions. PMID:26426025

  12. [Modifying effect of incorporated 137Cs on the mechanism of adrenergic control of myocardial contraction].

    PubMed

    Lobanok, L M; Bulanova, K Ia; Gerasimovich, N V; Sineleva, M V; Miliutin, A A

    1994-01-01

    Incorporated 137Cs (absorbed dose of 0.26 Gy) causes decrease of myocardial's contractile function and inotropic response to beta-adrenagonists effect, isoproterenol-stimulated adenylate cyclase activity and beta-adrenoreceptors affinity. Adrenergic effects, mediated by alpha-adrenergic structures on heart contractile function, on the contrary, become stronger, that is due to the increase of the receptors' density on sarcolemma surface.

  13. Structural evidence that botulinum toxin blocks neuromuscular transmission by impairing the calcium influx that normally accompanies nerve depolarization

    PubMed Central

    1981-01-01

    Taking advantage of the fact that nerve terminal mitochondria swell and sequester calcium during repetitive nerve stimulation, we here confirm that this change is caused by calcium influx into the nerve and use this fact to show that botulinum toxin abolishes such calcium influx. The optimal paradigm for producing the mitochondrial changes in normal nerves worked out to be 5 min of stimulation at 25 Hz in frog Ringer's solution containing five time more calcium than normal. Applying this same stimulation paradigm to botulinum-intoxicated nerves produced no mitochondrial changes at all. Only when intoxicated nerves were stimulated in 4-aminopyridine (which grossly exaggerates calcium currents in normal nerves) or when they were soaked in black widow spider venom (which is a nerve-specific calcium ionophore) could nerve mitochondria be induced to swell and accumulate calcium. These results indicate that nerve mitochondria are not damaged directly by the toxin and point instead to a primary inhibition of the normal depolarization- evoked calcium currents that accompany nerve activity. Because these currents normally provide the calcium that triggers transmitter secretion from the nerve, this demonstration of their inhibition helps to explain how botulinum toxin paralyzes. PMID:6259176

  14. The effect of adrenergic agonists and antagonists on cysteine-proteinase inhibitor (cystatin) in rat saliva.

    PubMed

    Bedi, G S

    1991-01-01

    The effect of a number of adrenergic agonists and antagonists on the induction of rat salivary cystatin was investigated. A highly sensitive and specific radioimmunoassay was used to determine cystatin in rat whole saliva. Treatment for 10 consecutive days with a non-specific beta-adrenergic agonist isoproterenol, or the beta 1-adrenergic agonists dobutamine or methoxyphenamine, resulted in the induction of the salivary cystatin. Induction was also found in rats treated for 10 days with arterenol. Only trace quantities of cystatin could be detected in saliva of rats treated with the beta 2-adrenergic agonists terbutaline or salbutamol. When isoproterenol was injected concomitantly with the mixed beta-antagonist propranolol or the beta 1-adrenergic antagonists metaprolol, proctocol or atenolol the production of cystatin was totally suppressed. However, the beta 2-antagonist, ICI 118551, produced only a partial reduction in salivary cystatin induction elicited by isoproterenol. The findings suggest that the induction of salivary cystatin is regulated, in part, by beta 1-adrenergic receptor stimulation.

  15. Photoaffinity labeling the. beta. -adrenergic receptor with an iodoazido derivative of norepinephrine

    SciTech Connect

    Resek, J.F.

    1989-01-01

    The {beta}-adrenergic receptor is an integral membrane protein coupled to adenylate cyclase by the guanine nucleotide binding protein, Gs. Agonist binding to the receptor results in coupling the receptor to Gs, increased adenylate cyclase activity, and receptor desensitization. In contrast, antagonists bind but do not activate the receptor or result in desensitization. To study the structure and regulation of the {beta}-adrenergic receptor in the membrane, it is useful to develop ligands which covalently label the binding site. In this thesis the synthesis and characterization of the first agonist photolabel for the {beta}-adrenergic receptor is presented. The agonist photoaffinity label, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), was synthesized in non-radioactive and radioactive carrier-free forms with {sup 125}I (2,200 Ci/mmole). NAIN was chemically characterized by TLC mobility, melting point, NMR, IR, and Mass Spectroscopy. NAIN was shown to be competitive with the {beta}-adrenergic ligand ({sup 125}I)-ICYP in several membranes containing {beta}-adrenergic receptors. Binding data indicated that NAIN coupled the receptor to Gs and had an affinity for the receptor which was similar to isoproterenol. NAIN stimulated adenylate cyclase activity in guinea pig lung and S49 WT mouse lymphoma cell membranes with a K{sub act} and V max similar to isoproterenol while in frog erythrocyte ghosts, NAIN produced 77% of the maximally stimulated adenylate cyclase activity of isoproterenol. These data show that NAIN is an agonist for the {beta}-adrenergic receptor.

  16. Characterization of beta-adrenergic receptors through the replicative life span of IMR-90 cells

    SciTech Connect

    Scarpace, P.J.

    1987-01-01

    Beta-adrenergic receptor number and receptor affinity for isoproterenol were assessed at various in vitro ages of the human diploid fibroblast cell line IMR-90. From population doubling level (PDL) 33 to 44, there was a positive correlation between beta-adrenergic receptor density and PDL. Beta-adrenergic receptors, assessed by Scatchard analysis of (/sup 125/I)-iodocyanopindolol (ICYP) binding, increased from 15 fmol/mg protein at PDL 33 to 36 fmol/mg protein at PDL 44. In contrast, from PDL 44 to 59, there was a negative correlation between beta-adrenergic receptor density and PDL. Receptor density declined to 12 fmol/mg protein at PDL 59. When the density of beta-adrenergic receptors was expressed as receptor per cell, the findings were similar. Receptor agonist affinity for isoproterenol was determined from Hill plots of (/sup 125/I)-ICYP competition with isoproterenol. There was no change in the dissociation constant for isoproterenol with in vitro age. In humans, serum norepinephrine concentrations increase with age. This increase in serum norepinephrine may be partially responsible for the decreased beta-adrenergic receptor-agonist affinity observed with age in human lymphocytes and rat heart and lung. The present findings are consistent with the hypothesis that the decreases in receptor agonist affinity in rat and man with age are secondary to increases in catecholamine concentrations.

  17. Modulation of. beta. -adrenergic response in rat brain astrocytes by serum and hormones

    SciTech Connect

    Wu, D.K.; Morrison, R.S.; de Vellis, J.

    1985-01-01

    Purified astrocyte cultures from neonatal rat cerebrum respond to isoproterenol, a ..beta..-adrenergic agonist, with a transient rise in cAMP production. This astroglial property was regulated by serum, a chemically defined medium (serum-free medium plus hydrocortisone, putrescine, prostaglandin F/sub 2/, insulin, and fibroblast growth factor) and epidermal growth factor. Compared to astrocytes grown in serum-supplemented medium, astrocytes grown in the chemically defined medium were nonresponsive to isoproterenol stimulation, and this difference did not appear to be due to selection of a subpopulation of cells by either medium. The data suggest that a decreased ..beta..-adrenergic receptor number and an increased degradation of cAMP may account for the reduced response to ..beta..-adrenergic stimulation. The nonresponsive state of astrocytes in the defined medium was reversible when the medium was replaced with serum-supplemented medium. An active substance(s) in serum was responsible for restoring the responsiveness of astrocytes. Each of the five components of the defined medium had little effect by itself; however, together they acted synergistically to desensitize astrocytes to ..beta..-adrenergic stimulation. On the other hand, epidermal growth factor, a potent mitogen for astrocytes, was very competent by itself in reducing the cAMP response of astrocytes to ..beta..-adrenergic stimulation. Thus purified astrocytes grown in the chemically defined medium appear to be a good model for the study of hormonal interactions and of serum factors which may modulate the ..beta..-adrenergic response.

  18. Beta-adrenergic receptors of lymphocytes in children with allergic respiratory diseases

    SciTech Connect

    Bittera, I.; Gyurkovits, K.; Falkay, G.; Eck, E.; Koltai, M.

    1988-01-01

    The beta-adrenergic receptor binding sites on peripheral lymphocytes in children with bronchial asthma (n = 16) and seasonal allergic rhinitis (n = 8) were examined in comparison with normal controls (n = 18) by means of /sup 124/I-cyanopindolol. The number of beta-adrenergic receptors was significantly lower in the asthmatic group (858 +/- 460/lymphocyte) than in the controls (1564 +/- 983/lymphocyte). The value (1891 +/- 1502/lymphocyte in children with allergic rhinitis was slightly higher than that in healthy controls. Of the 24 patients suffering from allergic diseases of the lower or upper airways, the bronchial histamine provocation test was performed in 21; 16 gave positive results, while 5 were negative. No difference in beta-adrenergic receptor count was found between the histamine-positive and negative patients. Neither was there any correlation between the number of beta-adrenergic receptors and the high (16/24) and low (8/24) serum IgE concentrations found in allergic patients. The significant decrease in beta-adrenergic receptor count in asthmatic children lends support to Szentivanyi's concept. Further qualitative and quantitative analysis of lymphocyte beta-adrenergic receptors may provide an individual approach to the treatment of bronchial asthma with beta-sympathomimetic drugs.

  19. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    SciTech Connect

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.

  20. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver

    SciTech Connect

    Katz, M.S.; Boland, S.R.; Schmidt, S.J.

    1985-06-01

    beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-(/sup 125/I)iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase.

  1. Elevated level of. beta. -adrenergic receptors in hepatocytes from regenerating rat liver

    SciTech Connect

    Sandnes, D.; Sand, T.E.; Sager, G.; Broenstad, G.O.; Refsnes, M.R.; Gladhaug, I.P.; Jacobsen, S.; Christoffersen, T.

    1986-01-01

    Hepatocytes from regenerating rat liver show an enhanced epinephrine-sensitive adenylate cyclase activity and cAMP response, which may be involved in triggering of the cell proliferation. We have determined adrenergic receptors and adenylate cyclase activity in hepatocytes isolated at various time points after partial hepatectomy. The number of ..beta..-adrenergic receptors, measured by binding of (/sup 125/I)iodocyanopindolol ((/sup 125/I)CYP) to a particulate fraction prepared from isolated hepatocytes, increased rapidly after partial hepatectomy as compared with sham-operated or untreated controls. The maximal increase, which was observed at 48 h, was between 5- and 6-fold (from approx.1800 to approx.10,500 sites per cell). Thereafter, the number of ..beta..- adrenergic receptors decreased gradually. Competition experiments indicated ..beta../sub 2/-type receptors. Parallelism was found between the change in the number of ..beta../sub 2/-adrenergic receptors and the isoproterenol-responsive adenylate cyclase activity. The number of ..cap alpha../sub 1/-adrenergic receptors, determined by binding of (/sup 3/H)prazosin, was transiently lowered by about 35% at 18-24 h. with no significant change in K/sub d/. Although the results of this study do not exclude the possibility of post-receptor events, they suggest that the increased number of..beta../sub 2/-adrenergic receptors is a major factor responsible for the enhanced catecholamine-responsive adenylate cyclase activity in regenerating liver.

  2. Effect of β-adrenergic antagonists on in-hospital mortality after ischemic stroke

    PubMed Central

    Phelan, Christopher; Alaigh, Vivek; Fortunato, Gil; Staff, Ilene; Sansing, Lauren

    2015-01-01

    Background Ischemic stroke accounts for 85–90% of all strokes and currently has very limited therapeutic options. Recent studies of β-adrenergic antagonists suggest they may have neuroprotective effects that lead to improved functional outcomes in rodent models of ischemic stroke, however there is limited data in patients. We aimed to determine whether there was an improvement in mortality rates among patients who were taking β-blockers during the acute phase of their ischemic stroke. Methods A retrospective analysis of a prospectively collected database of ischemic stroke patients was performed. Patients who were on β-adrenergic antagonists both at home and during the first three days of hospitalization were compared to patients who were not on β-adrenergic antagonists to determine the association with patient mortality rates. Results The study included a patient population of 2804 patients. In univariate analysis, use of β-adrenergic antagonists was associated with older age, atrial fibrillation, hypertension and more severe initial stroke presentation. Despite this, multivariable analysis revealed a reduction in in-hospital mortality among patients who were treated with β-adrenergic antagonists (odds ratio 0.657; 95% confidence interval 0.655–0.658). Conclusions The continuation of home β-adrenergic antagonist medication during the first three days of hospitalization after an ischemic stroke is associated with a decrease in patient mortality. This supports the work done in rodent models suggesting neuroprotective effects of β-blockers after ischemic stroke. PMID:26163891

  3. Postnatal treatment of rats with adrenergic receptor agonists or antagonists influences differentiation of sexual behavior.

    PubMed

    Jarzab, B; Sickmöller, P M; Geerlings, H; Döhler, K D

    1987-12-01

    The aim of the study was to investigate the possible role of the adrenergic system in development and differentiation of neural centers controlling sexual behavior in adulthood. For this purpose normal and androgenized female rats were treated with the alpha 1-receptor antagonist prazosin, the alpha 2-receptor agonist clonidine, or the alpha 2-receptor antagonist yohimbine-HCl throughout the first week of life. In adulthood all animals were ovariectomized and, after appropriate hormone-priming, they were tested for the capacity to display female and male sexual behavior patterns. Alteration of adrenergic transmission during the critical postnatal period for sexual differentiation of neural centers resulted in significant changes in the capacity to express female lordosis behavior in adulthood. In nonandrogenized animals clonidine significantly reduced the capacity for lordosis behavior. In androgenized animals clonidine had the opposite effect; it attenuated the inhibitory effect of testosterone propionate (TP) on differentiation of lordosis behavior. Prazosin, which was without effect in nonandrogenized animals, also attenuated the inhibitory effect of TP on differentiation of lordosis behavior. Yohimbine was without effect in androgenized and nonandrogenized animals. There was no influence of any of the adrenergic drugs on differentiation of male sexual behavior. In conclusion, differentiation of lordosis behavior seems to be mediated or modulated via adrenergic transmission. The defeminizing effect of testosterone postnatally on the differentiation of lordosis behavior seems to be expressed via alpha 1-adrenergic transmission, and diminished adrenergic activity during the postnatal period seems to protect the developing brain against this effect of testosterone.

  4. ACTS Mobile Terminals

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Agan, Martin J.; Jedrey, Thomas C.

    1997-01-01

    The development of the Advanced Communications Technology Satellite (ACTS) Mobile Terminal (AMT) and its follow-on, the Broadband Aeronautical Terminal (BAT), have provided an excellent testbed for the evaluation of K- and Ka-band mobile satellite communications systems. An overview of both of these terminals is presented in this paper.

  5. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells

    PubMed Central

    Duregotti, Elisa; Negro, Samuele; Scorzeto, Michele; Zornetta, Irene; Dickinson, Bryan C.; Chang, Christopher J.; Montecucco, Cesare; Rigoni, Michela

    2015-01-01

    An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases. PMID:25605902

  6. NEURON SPECIFIC α-ADRENERGIC RECEPTOR EXPRESSION IN HUMAN CEREBELLUM: IMPLICATIONS FOR EMERGING CEREBELLAR ROLES IN NEUROLOGIC DISEASE

    PubMed Central

    SCHAMBRA, U. B.; MACKENSEN, G. B.; STAFFORD-SMITH, M.; HAINES, D. E.; SCHWINN, D. A.

    2008-01-01

    Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of α1 adrenergic receptor subtype mRNA (α1a, α1b, α1d), and α2 adrenergic receptor subtype mRNA (α2a, α2b, α2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific α1 adrenergic receptor and α2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six α adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except α2a adrenergic receptor mRNA. All Purkinje cells label strongly for α2a and α2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express α1a and α2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express α1b and α2c adrenergic receptor subtypes. Basket cells show a strong signal for α1a, moderate signal for α2a and light label for α2b adrenergic receptor mRNA. In stellate cells, besides a strong label of α2a adrenergic receptor mRNA in all and moderate label of α2b message in select stellate cells, the inner stellate cells are also moderately positive for α1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of α2a and α2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic

  7. Reactive microglia after taste nerve injury: comparison to nerve injury models of chronic pain.

    PubMed

    Bartel, Dianna L; Finger, Thomas E

    2013-01-01

    The chorda tympani (CT), which innervates taste buds on the anterior portion of the tongue, is susceptible to damage during inner ear surgeries. Injury to the CT causes a disappearance of taste buds, which is concurrent with significant microglial responses at central nerve terminals in the nucleus of the solitary tract (nTS). The resulting taste disturbances that can occur may persist for months or years, long after the nerve and taste buds have regenerated. These persistent changes in taste sensation suggest alterations in central functioning and may be related to the microglial responses. This is reminiscent of nerve injuries that result in chronic pain, where microglial reactivity is essential in maintaining the altered sensation (i.e., pain). In these models, methods that diminish microglial responses also diminish the corresponding pain behavior. Although the CT nerve does not contain nociceptive pain fibers, the microglial reactivity after CT damage is similar to that described in pain models. Therefore, methods that decrease microglial responses in pain models were used here to test if they could also affect microglial reactivity after CT injury. Treatment with minocycline, an antibiotic that dampens pain responsive microglia, was largely ineffective in diminishing microglial responses after CT injury. In addition, signaling through the toll-like 4 receptor (TLR4) does not seem to be required after CT injury as blocking or deleting TLR4 had no effect on microglial reactivity. These results suggest that microglial responses following CT injury rely on different signaling mechanisms than those described in nerve injuries resulting in chronic pain.

  8. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  9. Comparison of chemoreceptions of terminal buds and pit organs of the carp, Cyprinus carpio L.

    PubMed

    Marui, T; Funakoshi, M

    1980-07-14

    Neural responses to several chemicals of the pit organs and terminal buds on the facial skin of the carp were compared electrophysiologically. Nerve inpulses from the pit organs were larger than those from the terminal buds. The pit organs were more sensitive to salts and especially acids than the terminal buds. The former did not respond to sucrose, silk worm pupa extract, betaine and amino acids except acidic ones. The latter, however, responded well to them.

  10. Pharmacology and Nerve-endings (Walter Ernest Dixon Memorial Lecture): (Section of Therapeutics and Pharmacology).

    PubMed

    Dale, H

    1935-01-01

    A brief account is given of the scientific career of Walter Ernest Dixon, and of the importance of his work and his influence for the development of Pharmacology in England. It is suggested that the Memorial Lecture may appropriately deal with some matter of new interest, from one of the fields of research in which Dixon himself was active. Special mention is made of his work with Brodie on the physiology and pharmacology of the bronchioles and the pulmonary blood-vessels, as probably showing the beginning of Dixon's interest in the actions of the alkaloids and organic bases which reproduce the effects of autonomic nerves.An account is given of Dixon's early interest in the suggestion, first made by Elliott, that autonomic nerves transmit their effects by releasing, at their endings, specific substances, which reproduce their actions; and of his attempt to obtain experimental support for this conception. After the War it was established by the experiments of O. Loewi; and it is now generally recognized that parasympathetic effects are so transmitted by release of acetylcholine, sympathetic effects by that of a substance related to adrenaline.Very recent evidence indicates that acetylcholine, by virtue of its other ("nicotine-like") action, also acts as transmitter of activity at synapses in autonomic ganglia, and from motor nerve to voluntary muscle.The terms "cholinergic" and "adrenergic" have been introduced to describe nerve-fibres which transmit their actions by the release at their endings of acetylcholine, and of a substance related to adrenaline, respectively. It is shown that Langley and Anderson's evidence, long available, as to the kinds of peripheral efferent fibres which can replace one another in regeneration, can be summarized by the statement, that cholinergic can replace cholinergic fibres, and that adrenergic can replace adrenergic fibres; but that fibres of different chemical function cannot replace one another. The bearing of this new evidence on

  11. Iontophoretic beta-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.

    PubMed

    Shamsuddin, A K M; Reddy, M M; Quinton, P M

    2008-08-01

    With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished beta-adrenergic but not cholinergic sweating in CF. Therefore, the beta-adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating beta-adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in beta-adrenergic and cholinergic sweating. We also tested the efficacy of different beta-adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca(2+)-dependent Cl(-) conductance as well as K(+) conductances. In contrast, the beta-adrenergic secretory response is mediated exclusively by activation of a cAMP-dependent CFTR Cl(-) conductance without a concurrent activation of a K(+) conductance. Thus, the electrochemical driving forces generated by beta-adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller beta-adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the beta-adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent beta-adrenergic sweat responses, levels of intracellular cAMP above that achievable with a beta-adrenergic agonist alone are

  12. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  13. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  14. A Cadaveric Study of the Communication Patterns Between the Buccal Trunks of the Facial Nerve and the Infraorbital Nerve in the Midface.

    PubMed

    Tansatit, Tanvaa; Phanchart, Piyaporn; Chinnawong, Dawinee; Apinuntrum, Prawit; Phetudom, Thavorn; Sahraoui, Yasmina M E

    2016-01-01

    Most nerve communications reported in the literature were found between the terminal branches. This study aimed to clarify and classify patterns of proximal communications between the buccal branches (BN) of the facial nerve and the infraorbital nerve (ION).The superficial musculoaponeurotic system protects any communication sites from conventional dissections. Based on this limitation, the soft tissues of each face were peeled off the facial skull and the facial turn-down flap specimens were dissected from the periosteal view. Dissection was performed in 40 hemifaces to classify the communications in the sublevator space. Communication site was measured from the ala of nose.A double communication was the most common type found in 62.5% of hemifaces. Triple and single communications existed in 25% and 10% of 40 hemiface specimens, respectively. One hemiface had no communication. The most common type of communication occurred between the lower trunk of the BN of the facial nerve and the lateral labial (fourth) branch of the ION (70% in 40 hemifaces). Communication site was deep to the levator labii superioris muscle at 16.2 mm from the nasal ala. Communications between the motor and the sensory nerves in the midface may be important to increase nerve endurance and to compensate functional loss from injury.Proximal communications between the main trunks of the facial nerve and the ION in the midface exist in every face. This implies some specific functions in normal individuals. Awareness of these nerves is essential in surgical procedure in the midface.

  15. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment

    SciTech Connect

    Garcia-Sevilla, J.A.; Zis, A.P.; Hollingsworth, P.J.; Greden, J.F.; Smith, C.B.

    1981-12-01

    The specific binding of tritiated (3H)-clonidine, an alpha 2-adrenergic receptor agonist, to platelet membranes was measured in normal subjects and in patients with major depressive disorder. The number of platelet alpha 2-adrenergic receptors from the depressed group was significantly higher than that found in platelets obtained from the control population. Treatment with tricyclic antidepressant drugs led to significant decreases in the number of platelet alpha 2-adrenergic receptors. These results support the hypothesis that the depressive syndrome is related to an alpha 2-adrenergic receptor supersensitivity and that the clinical effectiveness of tricyclic antidepressant drugs is associated with a decrease in the number of these receptors.

  16. Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human.

    PubMed

    Balaratnasingam, Chandrakumar; Morgan, William H; Johnstone, Victoria; Pandav, Surinder S; Cringle, Stephen J; Yu, Dao-Yi

    2009-11-01

    Intraocular pressure and cerebrospinal fluid (CSF) pressure are important determinants of the trans-laminar pressure gradient which is believed to be important in the pathogenesis of glaucomatous optic nerve degeneration. Computational models and finite element calculations of optic nerve head biomechanics have been previously used to predict pressures and stresses in the human optic nerve. The purpose of this report is to morphometrically compare the optic nerve laminar and pia mater structure between humans and dogs, and to use previously reported tissue pressure measurements in the dog optic nerve to estimate individual-specific human optic nerve pressures and pressure gradients. High resolution light microscopy was used to acquire quantitative histological measurements from sagittal sections taken from the middle of the optic nerve in 34 human cadaveric eyes and 10 dog eyes. Parameters measured included the pre-laminar and lamina cribrosa thickness, distance from posterior boundary of lamina cribrosa to inner limiting membrane (ILM), shortest distance between anterior lamina cribrosa surface and subarachnoid space, shortest distance between ILM and inner surface of pia mater in contact with the subarachnoid space and optic nerve diameter. Pia mater thickness in the proximal 4 mm of post-laminar nerve was also determined. There was no significant difference in lamina cribrosa thickness between dog and human eyes (P = 0.356). The distance between the intraocular and subarachnoid space was greater in dogs (P < 0.001). Pia mater thickness was greatest at the termination of subarachnoid space in both species. In humans, pia mater thickness decreased over the proximal 500 mum to reach a constant value of approximately 60 mum. In dogs this decrease occurred over 1000 mum to reach a constant diameter of approximately 30 mum. Using previous measurements of optic nerve pressures and pressure gradients in dogs we estimate that at an IOP of 15 mmHg and a CSF pressure of 0

  17. Neuromuscular Ultrasound of Cranial Nerves

    PubMed Central

    Tawfik, Eman A.; Cartwright, Michael S.

    2015-01-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed. PMID:25851889

  18. Details of the intralingual topography and morphology of the lingual nerve.

    PubMed

    Rusu, M C; Nimigean, V; Podoleanu, L; Ivaşcu, R V; Niculescu, M C

    2008-09-01

    The lingual nerve supplies the tongue with trigeminal sensory fibers and sensory fibers that originate from the chorda tympani. The aim of this study was to investigate, by dissection, the anatomical features of the lingual nerve at the level of the tongue and to correlate the findings with existing data. Six human adult cadavers dissected bilaterally and 6 specimens of tongue-pharynx-larynx from autopsied adult cadavers were studied. The lingual nerve gives off its terminal branches at the anterior border of the hyoglossus muscle where the anastomotic loops between the lingual and hypoglossal nerves are found. Two morphological types of terminal division of the lingual nerve were seen: a single primary trunk or two primary trunks, a medial one distributed in the middle third of the tongue and a lateral one for the anterior third of the tongue. The primary terminal branches of the lingual nerve were located on the outer surface of the genioglossus muscle, forming a nervous layer over the deep artery of the tongue. The following emerged from the primary trunk(s): thin branches for the ipsilateral mucosa of the ventral surface of the tongue and 4-9 thick secondary trunks, with palisade disposition and translingual courses that followed the outer surface of the genioglossus muscle towards the dorsal mucosa of the ipsilateral part of the tongue, anterior to the circumvallate papillae.

  19. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  20. Physiology and pharmacology of the cardiovascular adrenergic system.

    PubMed

    Lymperopoulos, Anastasios

    2013-09-04

    Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.

  1. Optodynamic simulation of β-adrenergic receptor signalling

    PubMed Central

    Siuda, Edward R.; McCall, Jordan G.; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J.; Anderson, Sonya L.; Planer, William J.; Rogers, John A.; Bruchas, Michael R.

    2015-01-01

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. PMID:26412387

  2. Indenopyrazole oxime ethers: synthesis and β1-adrenergic blocking activity.

    PubMed

    Angelone, Tommaso; Caruso, Anna; Rochais, Christophe; Caputo, Angela Maria; Cerra, Maria Carmela; Dallemagne, Patrick; Filice, Elisabetta; Genest, David; Pasqua, Teresa; Puoci, Francesco; Saturnino, Carmela; Sinicropi, Maria Stefania; El-Kashef, Hussein

    2015-03-06

    This paper reports the synthesis and cardiac activity of new β-blockers derived from (Z/E)-indeno[1,2-c]pyrazol-4(1H)-one oximes (5a,b). The latter compounds were allowed to react with epichlorohydrin, followed by reacting the oxiranyl derivatives formed (6a,b) with some aliphatic amines to give the target compounds (Z/E)-1-phenyl-1H-indeno[1,2-c]pyrazol-4-one O-((2-hydroxy-3-(substituted amino)propyl)oxime (7a-c) and (Z/E)-1-methyl-1H-indeno[1,2-c]pyrazol-4-one O-((2-hydroxy-3-(substituted amino)propyl)oxime (8a-c). These final products 7a-c and 8a-c were evaluated for their ability to modulate the cardiac performance of a prototype mammalian heart. The results showed that, out of these molecules tested, 7b elicits a more potent depressant effect on contractility and relaxation, and competitively antagonizes β1-adrenergic receptors.

  3. Beta-adrenergic blockade and atrio--ventricular conduction impairment.

    PubMed

    Giudicelli, J F; Lhoste, F; Boissier, J R

    1975-04-01

    Atrio--ventricular conduction and its modifications induced by six Beta-adrenergic blocking agents have been investigated in the dog. Premature atrial stimuli (St2) were applied at variable intervals following regular stimuli (St1) ensuring atrial pacing; atrial (AERP), nodoventricular (NERP) and global (GERP) effective refractory periods as well as global functional refractory period (GFRP) were determined before and after administration of each of the six drugs. When Beta-blockade was produced with d,1-propranolol which hwas membrane stabilizing effects (MSE) but no intrinsic sympathomimetic activity (ISA) or with sotalol, which has neither MSE nor ISA, all parameters were significantly increased. When Beta-blockade was achieved with pindolol or practolol, which have only a poor Beta-adrenolytic potency and no ISA. Alprenolol showed intermediate effects. Thus, it appears that Beta-blockade and not MSE, is responsible for the onset of A-V conduction impairment but that ISA, probably through a metabolic mechanism, affords protection against this impairment. On the other hand, measurement of ventricular effective refractory period (VERP) has shown that at the Purkinje-free junction, it is MSE which is mainly involved in conduction impairment.

  4. Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors

    PubMed Central

    González, Angel; Perez-Acle, Tomas; Pardo, Leonardo; Deupi, Xavier

    2011-01-01

    The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process. PMID:21915263

  5. Mechanism of increased alpha adrenergic vasoconstriction in human essential hypertension.

    PubMed Central

    Egan, B; Panis, R; Hinderliter, A; Schork, N; Julius, S

    1987-01-01

    Multiple components of vascular alpha adrenergic responsiveness were investigated in twenty-four men with mild hypertension and eighteen age- and weight-matched normotensive controls. Arterial plasma norepinephrine (paNE), an index of sympathetic drive, was increased in hypertensives compared to normotensives (mean +/- SE), 199 +/- 24 vs. 134 +/- 11 pg/ml, P less than 0.02. The effective concentration of intra-arterial (iaNE) increasing forearm vascular resistance (FAVR) 30% (NE-EC30, an index of vascular alpha-receptor sensitivity) was similar in normotensives and hypertensives, 9 +/- 1 vs. 13 +/- 3 ng/100 ml per min, respectively, P greater than 0.3. The phentolamine induced reduction in FAVR, an index of vascular alpha-tone, was greater in hypertensives, -21.3 +/- 1.8 vs. normotensives, -14.9 +/- 1.2 U, P less than 0.02. We interpret these data as evidence for normal vascular alpha-receptor sensitivity to norepinephrine in mild hypertensives. Consequently, the increased sympathetic drive in mild hypertensives explains the elevated vascular alpha-tone. Although vascular alpha-receptor sensitivity to iaNE was normal, the FAVR responses at high doses (reactivity) were greater in hypertensives to regional infusion of both NE and angiotensin II. This "nonspecific" enhancement of vascular reactivity is probably explained by structural vascular changes in hypertensives. PMID:3040806

  6. Physiology and pharmacology of the cardiovascular adrenergic system

    PubMed Central

    Lymperopoulos, Anastasios

    2013-01-01

    Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to “push” the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart. PMID:24027534

  7. Parasympathetic non-adrenergic, non-cholinergic mechanisms in reflex secretion of parotid acinar granules in conscious rats.

    PubMed Central

    Ekström, J; Helander, H F; Tobin, G

    1993-01-01

    1. Female adult rats were subjected to sympathetic denervation of the parotid glands by bilateral removal of the superior cervical ganglion 10-12 days before acute experiments. The sympathectomy was in some of the experimental groups combined with either bilateral adrenal medullectomy, treatment with the sensory neurotoxin capsaicin or parasympathetic denervation of the gland by cutting the auriculotemporal nerve. 2. Food but not water was withheld for 29-32 h before acute experiments. All animals were given an intraperitoneal injection of phentolamine (2 mg kg-1) and propranolol (1 mg kg-1) and, when appropriate, also atropine (1 mg kg-1). Then the experimental animals were fed their ordinary food of hard chow for 60-90 min. Thereafter, these animals and their non-fed controls were killed, and the parotid glands were removed and used for either morphometric assessment or measurement of amylase activity. 3. In the atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar secretory granules by 50% and the total activity of amylase by 55%; the corresponding figures were, when sympathectomy was combined with adrenal medullectomy, 51 and 63%. Also, in atropinized animals subjected to sympathectomy and capsaicin pretreatment, eating reduced the numerical density of acinar granules and the total amylase activity, in this case by 45 and 35%, respectively. 4. In the atropinized rats subjected to sympathectomy and parasympathectomy, eating caused no change in the numerical density of acinar granules but reduced the total amylase activity by 35%. 5. In the non-atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar granules by 22%, while there was no change in the total amylase activity. 6. In conclusion, eating evoked a reflex activation of the sympathectomized parotid gland that engaged non-adrenergic non-cholinergic receptors of the acinar cells. The present results give weight to a

  8. Oculofacial Pain: Corneal Nerve Damage Leading to Pain Beyond the Eye

    PubMed Central

    Rosenthal, Perry; Borsook, David; Moulton, Eric A.

    2016-01-01

    The cornea is supplied principally by the ophthalmic branch of the trigeminal nerve and is the most densely innervated organ in the human body. Under normal conditions, the corneal nerve terminals incorporate sensors that monitor the thickness and integrity of the tear film, which are essential for meaningful vision. A disrupted tear film or direct noxious stimulation of these corneal nerves can produce discomfort or pain limited to the affected surface. Damage to these nerves can sometimes lead to a chronic neuropathic condition, where pain persists months following the initial insult, long after the nerves appear to have healed in the cornea itself following treatment. Neuropathic pain appears to persist indefinitely in a few patients. PMID:27723896

  9. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex

    SciTech Connect

    Goldman-Rakic, P.S.; Lidow, M.S.; Gallager, D.W. )

    1990-07-01

    Quantitative in vitro autoradiography was used to determine and compare the areal and laminar distribution of the major dopaminergic, adrenergic, and serotonergic neurotransmitter receptors in 4 cytoarchitectonic regions of the prefrontal cortex in adult rhesus monkeys. The selective ligands, 3H-SCH-23390, 3H-raclopride, 3H-prazosin, and 3H-clonidine were used to label the D1 and D2 dopamine receptor subtypes and the alpha 1- and alpha 2-adrenergic receptors, respectively, while 125I-iodopindolol was used to detect beta-adrenergic receptors. The radioligands, 3H-5-hydroxytryptamine and 3H-ketanserin labeled, respectively, the 5-HT1 and 5-HT2 receptors. Densitometry was performed on all cortical layers and sublayers for each of the 7 ligands to allow quantitative as well as qualitative comparison among them in each cytoarchitectonic area. Although each monoamine receptor was distributed in a distinctive laminar-specific pattern that was remarkably similar from area to area, there was considerable overlap among the dopaminergic, adrenergic, and serotoninergic receptors, while subtypes of the same receptor class tended to have complementary laminar profiles and different concentrations. Thus, the D1 dopamine, the alpha 1- and alpha 2-adrenergic, and the 5-HT1 receptors were present in highest relative concentration in superficial layers I, II, and IIIa (the S group). In contrast, the beta 1- and beta 2-adrenergic subtypes and the 5-HT2 receptor had their highest concentrations in the intermediate layers, IIIb and IV (the I group), while the D2 receptor was distinguished by relatively high concentrations in the deep layer V compared to all other layers (the D class). Thus, clear laminar differences were observed in the D1 vs D2 dopaminergic, the alpha- vs beta-adrenergic, and the 5-HT1 vs 5-HT2 serotoninergic receptor subtypes in all 4 areas examined.

  10. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.

    PubMed

    Sanae, F; Miyamoto, K; Koshiura, R

    1989-11-15

    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  11. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    PubMed

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states.

  12. Nerve blocks for chronic pain.

    PubMed

    Hayek, Salim M; Shah, Atit

    2014-10-01

    Nerve blocks are often performed as therapeutic or palliative interventions for pain relief. However, they are often performed for diagnostic or prognostic purposes. When considering nerve blocks for chronic pain, clinicians must always consider the indications, risks, benefits, and proper technique. Nerve blocks encompass a wide variety of interventional procedures. The most common nerve blocks for chronic pain and that may be applicable to the neurosurgical patient population are reviewed in this article. This article is an introduction and brief synopsis of the different available blocks that can be offered to a patient.

  13. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  14. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  15. Terminal automation system maintenance

    SciTech Connect

    Coffelt, D.; Hewitt, J.

    1997-01-01

    Nothing has improved petroleum product loading in recent years more than terminal automation systems. The presence of terminal automation systems (TAS) at loading racks has increased operational efficiency and safety and enhanced their accounting and management capabilities. However, like all finite systems, they occasionally malfunction or fail. Proper servicing and maintenance can minimize this. And in the unlikely event a TAS breakdown does occur, prompt and effective troubleshooting can reduce its impact on terminal productivity. To accommodate around-the-clock loading at racks, increasingly unattended by terminal personnel, TAS maintenance, servicing and troubleshooting has become increasingly demanding. It has also become increasingly important. After 15 years of trial and error at petroleum and petrochemical storage and transfer terminals, a number of successful troubleshooting programs have been developed. These include 24-hour {open_quotes}help hotlines,{close_quotes} internal (terminal company) and external (supplier) support staff, and {open_quotes}layered{close_quotes} support. These programs are described.

  16. Accessory nerve palsy.

    PubMed

    Olarte, M; Adams, D

    1977-11-01

    After apparently uncomplicated excision of benign lesions in the posterior cervical triangle, two patients had shoulder pain. In one, neck pain and trapezius weakness were not prominent until one month after surgery. Inability to elevate the arm above the horizontal without externally rotating it, and prominent scapular displacement on arm abduction, but not on forward pushing movements, highlighted the trapezius dysfunction and differentiated it from serratus anterior weakness. Spinal accessory nerve lesions should be considered when minor surgical procedures, lymphadenitis, minor trauma, or tumours involved the posterior triangle of the neck.

  17. The development of catecholaminergic nerves in the spinal cord of rat. II. Regional development.

    PubMed

    Commissiong, J W

    1983-12-01

    The development of noradrenergic and dopaminergic nerves in 5 regions of the developing spinal cord of rat, from fetal day (FD) 16, to the young adult stage was studied. The normal synthetic capacity of adrenergic nerves in the ventral horn of the cervical and lumbar regions developed at the same time, and at the same rate, despite their spatial separation, and before similar development of the noradrenergic nerves in the dorsal horn and zona intermedia. In the ventral horn, the synthesis of NE from injected L-DOPA, as well as the release and metabolism of NE are well-established at 12 h (ND 0.5) after birth. In the dorsal horn these developments occur later at ND 4. Except in the dorsal horn of the cervical region, there was no easily observable, consistent pattern in the development of regional spinal dopaminergic innervation. The capacity of the developing cord to synthesize dopamine (DA) from injected DOPA is significantly developed at FD 16 (the earliest time studied), and peaked in all regions as early as ND 4. Control experiments indicate that 100%, and only 10% respectively of NE and DA synthetized from injected DOPA, occurred in descending monoaminergic fibers. Norepinephrine is synthesized exclusively in noradrenergic nerves. Cells appear transiently in the developing cord at FD 18, that are capable of synthesizing catecholamines (probably mainly DA) from injected DOPA. During postnatal development of the cord, and to a less extent in the adult, the network of catecholaminergic nerves actually present, is more extensive than that normally revealed during routine fluorescence microscopy. The results are discussed in the context of current attempts to understand the functional importance of catecholaminergic nerves in the mammalian spinal cord, and elsewhere in the CNS.

  18. Changes in nerve- and endothelium-mediated contractile tone of the corpus cavernosum in a mouse model of pre-mature ageing.

    PubMed

    Lafuente-Sanchis, A; Triguero, D; Garcia-Pascual, A

    2014-07-01

    Erectile dysfunction (ED) is very prevalent in the older population, although the ageing-related mechanisms involved in the development of ED are poorly understood. We propose that age-induced differences in nerve- and endothelium-mediated smooth muscle contractility in the corpus cavernosum (CC) could be found between a senescent-accelerated mouse prone (SAMP8) and senescent-accelerated mouse resistant (SAMR1) strains. We analysed the changes in muscle tension induced by electrical field stimulation (EFS) or agonist addition 'in vitro', assessing nerve density (adrenergic, cholinergic and nitrergic), the expression of endothelial nitric oxide synthase (eNOS), cGMP accumulation and the distribution of interstitial cells (ICs) by immunofluorescence. We observed no change in both the nerve-dependent adrenergic excitatory contractility at physiological levels of stimulation and in the nitrergic inhibitory response in SAMP8 animals. Unlike cholinergic innervation, the density of adrenergic and nitrergic nerves increased in SAMP8 mice. In contrast, smooth muscle sensitivity to exogenous noradrenaline (NA) was slightly reduced, whereas cGMP accumulation in response to EFS and DEA/NO, and relaxations to DEA/NO and sildenafil, were not modified. No changes in the expression of eNOS and in the distribution of vimentin-positive ICs were detected in the aged animals. The ACh induced atropine-sensitive biphasic endothelium-dependent responses involved relaxation at low concentrations that turned into contractions at the highest doses. CC relaxation was mainly because of the production of NO together with some relaxant prostanoid, which did not change in SAMP8 animals. In contrast, the contractile component was considerably higher in the aged animals and it was completely inhibited by indomethacin. In conclusion, a clear imbalance towards enhanced production of contractile prostanoids from the endothelium may contribute to ED in the elderly. On the basis of these data, we

  19. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    SciTech Connect

    El-Refai, M.; Chan, T.

    1986-05-01

    Adrenalectomy caused a large increase in the number of ..beta..-adrenergic binding sites on liver plasma membranes as measured by /sup 125/I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for /sup 3/H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in ..beta..-adrenergic mediated action was much less than what may be expected as a result of the increase in the ..beta..-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 ..mu..M) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory ..cap alpha../sub 2/-adrenergic receptors in adrenalectomy is responsible for the muted ..beta..-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 ..mu..M), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The ..cap alpha..-adrenergic antagonists had no significant effect on the ..beta..-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the ..beta..-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of ..cap alpha..-adrenergic receptors.

  20. The cutaneous nerve biopsy: technical aspects, indications, and contribution.

    PubMed

    Mellgren, Svein Ivar; Nolano, Maria; Sommer, Claudia

    2013-01-01

    Skin biopsy with a 3mm disposable circular punch is easy to perform and allows, after proper processing, the visualization of epidermal, dermal, and sweat gland nerve fibers. A technique of sampling the epidermis alone by applying a suction capsule, the "blister" technique, has also been developed. It is most common to stain immunohistochemically for the pan-axonal marker protein gene product 9.5 (PGP 9.5), an ubiquitin C-terminal hydroxylase. The sections are then observed and analyzed with bright-field microscopy or with indirect immunofluorescence with or without confocal microscopy. Most studies report quantification of intraepidermal nerve fiber density displayed in bright-field microscopy. Normative values have been established, particularly from the distal part of the leg, 10cm above the external malleolus. In diabetes mellitus early degeneration of intraepidermal nerve fibers is induced and there is slower regeneration even when there is no evidence of neuropathy. Skin biopsy is of particular value in the diagnosis of small fiber neuropathy when nerve conduction studies are normal. It may also be repeated in order to study the progressive nature of the disease and also has the potential of studying regeneration of nerve fibers and thus the effects of treatment. Inflammatory demyelinating neuropathies may also involve loss of small-diameter nerve fibers and IgM deposits in dermal myelinated nerve fibers in anti-MAG neuropathy. In some cases the presence of vasculitis in skin may indicate a nonsystemic vasculitic neuropathy and in HIV neuropathy intraepidermal nerve fiber density is reduced in a length-dependent manner. In several hereditary neuropathies intraepidermal nerve fiber density may be reduced but other abnormalities can also be demonstrated in dermal myelinated fibers. Some small swellings and varicosities may be present in the distal leg skin biopsy of healthy individuals but large axonal swellings are considered as evidence of a pathological

  1. Identification of alpha1-adrenergic receptors and their involvement in phosphoinositide hydrolysis in the frog heart.

    PubMed

    Lazou, Antigone; Gaitanaki, Catherine; Vaxevanellis, Spiros; Pehtelidou, Anastasia

    2002-07-01

    The aim of this study was to characterize alpha(1)-adrenergic receptors in frog heart and to examine their related signal transduction pathway. alpha(1)-Adrenergic binding sites were studied in purified heart membranes using the specific alpha(1)-adrenergic antagonist [(3)H]prazosin. Analysis of the binding data indicated one class of binding sites displaying a K(d) of 4.19 +/- 0.56 nM and a B(max) of 14.66 +/- 1.61 fmol/mg original wet weight. Adrenaline, noradrenaline, or phenylephrine, in the presence of propranolol, competed with [(3)H]prazosin binding with a similar potency and a K(i) value of about 10 microM. The kinetics of adrenaline binding was closely related to its biological effect. Adrenaline concentration dependently increased the production of inositol phosphates in the heart in the presence or absence of propranolol. Maximal stimulation was about 8.5-fold, and the half-maximum effective concentration was 30 and 21 microM in the absence and presence of propranolol, respectively. These data clearly show that alpha(1)-adrenergic receptors are coupled to the phosphoinositide hydrolysis in frog heart. To our knowledge, this is the first direct evidence supporting the presence of functional alpha(1)-adrenergic receptors in the frog heart.

  2. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    SciTech Connect

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J. )

    1988-01-01

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol ({beta}-blocker) and phentolamine ({alpha}-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection.

  3. Alpha 1 adrenergic receptors in canine lower genitourinary tissues: insight into development and function

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1987-10-01

    Radioligand receptor binding methods were used to characterize the alpha 1-adrenergic receptor in the bladder body, bladder base, prostate and urethra of the male dog. Saturation experiments were performed in tissue homogenates using (/sup 125/iodine)-Heat, an alpha 1-adrenergic antagonist of high specific activity (2,200 Ci. per mmol.). The equilibrium dissociation constant Kd for (/sup 125/iodine)-Heat binding in the bladder body (0.56 pM.), bladder base (0.81 +/- 0.11 pM.), prostate (0.86 +/- 0.19 pM.) and urethra (0.55 pM.) was similar, suggesting homogeneity of alpha 1-adrenergic binding sites in lower genitourinary tissues. The receptor density in the bladder body, bladder base, prostate and urethra, expressed as fmol. per mg. wet weight, was 0.22 +/- 0.02, 0.82 +/- 0.09, 0.55 +/- 0.06 and 0.27 +/- 0.06, respectively (mean +/- standard error of mean). Competitive binding experiments with (/sup 125/iodine)-Heat and unlabeled prazosin and clonidine confirmed the selectivity of Heat for alpha 1-adrenergic binding sites. Anatomical dissections have revealed that a major component of the smooth muscle of the bladder base and prostate originates from the ureter, whereas a major component of the smooth muscle of the urethra originates from the bladder. The measured alpha 1-adrenergic receptor densities support these developmental theories.

  4. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder.

    PubMed

    Zhang, Xiaobin; Norton, Joanna; Carrière, Isabelle; Ritchie, Karen; Chaudieu, Isabelle; Ryan, Joanne; Ancelin, Marie-Laure

    2017-02-15

    Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder.

  5. Targeting of Beta Adrenergic Receptors Results in Therapeutic Efficacy against Models of Hemangioendothelioma and Angiosarcoma

    PubMed Central

    Stiles, Jessica M.; Amaya, Clarissa; Rains, Steven; Diaz, Dolores; Pham, Robert; Battiste, James; Modiano, Jaime F.; Kokta, Victor; Boucheron, Laura E.; Mitchell, Dianne C.; Bryan, Brad A.

    2013-01-01

    Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans. PMID:23555867

  6. β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation

    PubMed Central

    Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.

    2013-01-01

    Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208

  7. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder

    PubMed Central

    Zhang, Xiaobin; Norton, Joanna; Carrière, Isabelle; Ritchie, Karen; Chaudieu, Isabelle; Ryan, Joanne; Ancelin, Marie-Laure

    2017-01-01

    Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder. PMID:28198454

  8. Social crowding stress diminishes the pituitary-adrenocortical and hypothalamic histamine response to adrenergic stimulation.

    PubMed

    Bugajski, J; Gadek-Michalska, A; Borycz, J

    1993-12-01

    Social stress of crowding almost totally reduced the rise in serum corticosterone elicited by intracerebroventricular administration of isoprenaline, a beta-adrenergic receptor agonist, after 3 and 7 day of crowding and substantially diminished that response after 14 and 21 days. Crowding stress totally abolished the increase in hypothalamic histamine induced by isoprenaline in control rats. Crowding also significantly diminished the increase in serum corticosterone evoked by clonidine, an alpha 2-adrenergic agonist, and abolished the clonidine-induced elevation in hypothalamic histamine levels. The stimulatory effect of phenylephrine, an alpha 1-adrenergic agonist, on corticosterone secretion was only moderately diminished in crowded rats. Neither phenylephrine nor crowding stress changed significantly the hypothalamic histamine levels. These results indicate that social stress of crowding considerably impairs the hypothalamic-pituitary-adrenocortical responsiveness to central beta- and alpha 2-adrenergic receptor stimulation. Crowding also abolishes the rise in hypothalamic histamine induced by beta- and alpha 2-adrenergic agonist, suggesting a role of hypothalamic histamine in the HPA adaptation to the social stress of crowding.

  9. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  10. The adrenergic system in pulmonary arterial hypertension: bench to bedside (2013 Grover Conference series).

    PubMed

    Bristow, Michael R; Quaife, Robert A

    2015-09-01

    In heart failure with reduced left ventricular ejection fraction (HFrEF), adrenergic activation is a key compensatory mechanism that is a major contributor to progressive ventricular remodeling and worsening of heart failure. Targeting the increased adrenergic activation with β-adrenergic receptor blocking agents has led to the development of arguably the single most effective drug therapy for HFrEF. The pressure-overloaded and ultimately remodeled/failing right ventricle (RV) in pulmonary arterial hypertension (PAH) is also adrenergically activated, which raises the issue of whether an antiadrenergic strategy could be effectively employed in this setting. Anecdotal experience suggests that it will be challenging to administer an antiadrenergic treatment such as a β-blocking agent to patients with established moderate-severe PAH. However, the same types of data and commentary were prevalent early in the development of β-blockade for HFrEF treatment. In addition, in HFrEF approaches have been developed for delivering β-blocker therapy to patients who have extremely advanced heart failure, and these general principles could be applied to RV failure in PAH. This review examines the role played by adrenergic activation in the RV faced with PAH, contrasts PAH-RV remodeling with left ventricle remodeling in settings of sustained increases in afterload, and suggests a possible approach for safely delivering an antiadrenergic treatment to patients with RV dysfunction due to moderate-severe PAH.

  11. Neuronal adrenergic and muscular cholinergic contractile hypersensitivity in canine jejunum after extrinsic denervation.

    PubMed

    Balsiger, Bruno M; He, Chong-Liang; Zyromski, Nicholas J; Sarr, Michael G

    2003-01-01

    Extrinsic denervation may be responsible for motor dysfunction after small bowel transplantation. The aim of this study was to examine the role of extrinsic innervation of canine jejunum on contractile activity. An in vitro dose response of cholinergic and adrenergic agonists was evaluated in canine jejunal strips of circular muscle at 0, 2, and 8 weeks in a control group and after jejunoileal extrinsic denervation (EX DEN). Neurons in circular muscle were quantitated by means of immunohistochemical techniques. Adrenergic and cholinergic responses did not differ at any time in the control group. However, at 2 and 8 weeks, extrinsic denervation caused an increased sensitivity to the procontractile effects of the cholinergic agonist bethanechol at the level of the smooth muscle cells, and increased sensitivity to the inhibitory effects of the adrenergic agent norepinephrine mediated at the level of the enteric nervous system. Immunohistochemical analysis showed a reduction in all neurons and a complete lack of adrenergic fibers in the EX DEN group after 2 and 8 weeks. Extrinsic denervation induces enteric neuronal cholinergic and adrenergic smooth muscle hypersensitivity in canine jejunal circular muscle.

  12. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1

    SciTech Connect

    Yin Naida; Jin Xia; He Jiangyan; Yin Zhan

    2009-07-01

    Teleost vitellogenins (VTGs) are large multidomain apolipoproteins, traditionally considered to be estrogen-responsive precursors of the major egg yolk proteins, expressed and synthesized mainly in hepatic tissue. The inducibility of VTGs has made them one of the most frequently used in vivo and in vitro biomarkers of exposure to estrogen-active substances. A significant level of zebrafish vtgAo1, a major estrogen responsive form, has been unexpectedly found in heart tissue in our present studies. Our studies on zebrafish cardiomyopathy, caused by adrenergic agonist treatment, suggest a similar protective function of the cardiac expressed vtgAo1. We hypothesize that its function is to unload surplus intracellular lipids in cardiomyocytes for 'reverse triglyceride transportation' similar to that found in lipid transport proteins in mammals. Our results also demonstrated that zebrafish vtgAo1 mRNA expression in heart can be suppressed by both {alpha}-adrenergic agonist, phenylephrine (PE) and {beta}-adrenergic agonist, isoproterenol (ISO). Furthermore, the strong stimulation of zebrafish vtgAo1 expression in plasma induced by the {beta}-adrenergic antagonist, MOXIsylyl, was detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Such stimulation cannot be suppressed by taMOXIfen, an antagonist to estrogen receptors. Thus, our present data indicate that the production of teleost VTG in vivo can be regulated not only by estrogenic agents, but by adrenergic signals as well.

  13. Long thoracic nerve injury.

    PubMed

    Wiater, J M; Flatow, E L

    1999-11-01

    Injury to the long thoracic nerve causing paralysis or weakness of the serratus anterior muscle can be disabling. Patients with serratus palsy may present with pain, weakness, limitation of shoulder elevation, and scapular winging with medial translation of the scapula, rotation of the inferior angle toward the midline, and prominence of the vertebral border. Long thoracic nerve dysfunction may result from trauma or may occur without injury. Fortunately, most patients experience a return of serratus anterior function with conservative treatment, but recovery may take as many as 2 years. Bracing often is tolerated poorly. Patients with severe symptoms in whom 12 months of conservative treatment has failed may benefit from surgical reconstruction. Although many surgical procedures have been described, the current preferred treatment is transfer of the sternal head of the pectoralis major tendon to the inferior angle of the scapula reinforced with fascia or tendon autograft. Many series have shown good to excellent results, with consistent improvement in function, elimination of winging, and reduction of pain.

  14. Facial nerve palsy due to birth trauma

    MedlinePlus

    Seventh cranial nerve palsy due to birth trauma; Facial palsy - birth trauma; Facial palsy - neonate; Facial palsy - infant ... infant's facial nerve is also called the seventh cranial nerve. It can be damaged just before or at ...

  15. Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ.

    PubMed

    Chouhan, Amit K; Zhang, Jinhui; Zinsmaier, Konrad E; Macleod, Gregory T

    2010-02-03

    Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca(2+) during nerve stimulation, but it is unknown whether this limits presynaptic Ca(2+) levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca(2+) sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically encoded Ca(2+) indicators to examine cytosolic and mitochondrial Ca(2+) levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at approximately 42 Hz and approximately 8 Hz, respectively. Mitochondrial Ca(2+) sequestration starts in both terminals at approximately 250 nM, exhibits a similar Ca(2+)-uptake affinity (approximately 410 nM), and does not require Ca(2+) release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca(2+) uptake in type Is terminals is more responsive to low-frequency nerve stimulation and this is due to higher cytosolic Ca(2+) levels. Since type Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca(2+) sequestration may be responsible for the lower cytosolic Ca(2+) levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca(2+) uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca(2+) levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca(2+) in functionally different nerve terminals, but do not limit cytosolic Ca(2+) levels within the range of motor neuron firing rates in situ.

  16. Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ

    PubMed Central

    Chouhan, Amit K.; Zhang, Jinhui; Zinsmaier, Konrad E.; Macleod, Gregory T.

    2010-01-01

    Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca2+ during nerve stimulation, but it is unknown whether this limits presynaptic Ca2+ levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca2+ sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically-encoded Ca2+ indicators (GECIs) to examine cytosolic and mitochondrial Ca2+ levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at ∼42 Hz and ∼8 Hz, respectively. Mitochondrial Ca2+ sequestration starts in both terminals at ∼250 nM, exhibits a similar Ca2+-uptake affinity (∼410 nM), and does not require Ca2+ release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca2+ uptake in type-Is terminals is more responsive to low frequency nerve stimulation and this is due to higher cytosolic Ca2+ levels. Since type-Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca2+ sequestration may be responsible for the lower cytosolic Ca2+ levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca2+ uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca2+ levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca2+ in functionally different nerve terminals, but do not limit cytosolic Ca2+ levels within the range of motor neuron firing rates in situ. PMID:20130196

  17. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  18. Neuromas of the calcaneal nerves.

    PubMed

    Kim, J; Dellon, A L

    2001-11-01

    A neuroma of a calcaneal nerve has never been reported. A series of 15 patients with heel pain due to a neuroma of a calcaneal nerve are reviewed. These patients previously had either a plantar fasciotomy (n = 4), calcaneal spur removal (n = 2), ankle fusion (n = 2), or tarsal tunnel decompression (n = 7). Neuromas occurred on calcaneal branches that arose from either the posterior tibial nerve (n = 1), lateral plantar nerve (n = 1), the medial plantar nerve (n = 9), or more than one of these nerves (n = 4). Operative approach was through an extended tarsal tunnel incision to permit identification of all calcaneal nerves. The neuroma was resected and implanted into the flexor hallucis longus muscle. Excellent relief of pain occurred in 60%, and good relief in 33%. One patient (17%) had no improvement and required resection of the lateral plantar nerve. Awareness that the heel may be innervated by multiple calcaneal branches suggests that surgery for heel pain of neural origin employ a surgical approach that permits identification of all possible calcaneal branches.

  19. The Adrenergic Nervous System in Heart Failure: Pathophysiology and Therapy

    PubMed Central

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Koch, Walter J.

    2013-01-01

    Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to “push” the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart. PMID:23989716

  20. GABAA receptor-mediated stimulation of non-adrenergic non-cholinergic neurones in the dog ileocolonic junction.

    PubMed

    Boeckxstaens, G E; Pelckmans, P A; Rampart, M; Ruytjens, I F; Verbeuren, T J; Herman, A G; Van Maercke, Y M

    1990-10-01

    1. The inhibitory effects of gamma-aminobutyric acid (GABA), the GABAA receptor agonist homotaurine and the GABAB receptor agonist (+/-)-baclofen were investigated on circular muscle strips of the dog terminal ileum and ileocolonic junction. 2. In the presence of atropine, GABA and homotaurine induced concentration-dependent relaxations, similar to the non-adrenergic non-cholinergic (NANC)-mediated relaxations evoked by electrical stimulation or by acetylcholine. The ileocolonic junction was more sensitive to GABA and homotaurine than the ileum. (+/-)-Baclofen had no effect. Cross desensitization only occurred between GABA and homotaurine. 3. The GABAA receptor antagonist bicuculline shifted the concentration-response curves to GABA and homotaurine to the right. The maximal relaxation to GABA remained unaffected. 4. GABA-induced relaxations were not inhibited by timolol, guanethidine, domperidone, hexamethonium and desensitization to ATP, but were abolished by tetrodotoxin. 5. Bicuculline, and pretreatment with GABA or (+/-)-baclofen had no effect on the NANC-evoked relaxations to electrical stimulation and acetylcholine. 6. In conclusion, GABA stimulates GABAA receptors located on inhibitory NANC neurones in the dog ileocolonic junction. Our results suggest that it is unlikely that GABA is the final inhibitory NANC neurotransmitter.

  1. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  2. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and dra