Science.gov

Sample records for adrenocortical cancer cells

  1. Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells

    SciTech Connect

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Masuelli, Laura; Marchese, Rodolfo; Misiti, Silvia; De Venanzi, Agostino; Poggi, Maurizio; Toscano, Vincenzo; Stigliano, Antonio

    2011-06-10

    Thiazolidinediones, specific peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-{gamma}-inhibitor, showed that rosiglitazone acts through both PPAR-{gamma}-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-{gamma}. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPK{alpha} and beclin-1. The autophagy seems to be independent of PPAR-{gamma} activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.

  2. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  3. Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma.

    PubMed

    Phan, Liem M; Fuentes-Mattei, Enrique; Wu, Weixin; Velazquez-Torres, Guermarie; Sircar, Kanishka; Wood, Christopher G; Hai, Tao; Jimenez, Camilo; Cote, Gilbert J; Ozsari, Levent; Hofmann, Marie-Claude; Zheng, Siyuan; Verhaak, Roeland; Pagliaro, Lance; Cortez, Maria Angelica; Lee, Mong-Hong; Yeung, Sai-Ching J; Habra, Mouhammed Amir

    2015-10-01

    Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited response to chemotherapy. Hepatocyte growth factor (HGF) and its receptor cMET augment cancer growth and resistance to chemotherapy, but their role in adrenocortical carcinoma has not been examined. In this study, we investigated the association between HGF/cMET expression and cancer hallmarks of adrenocortical carcinoma. Transcriptomic and immunohistochemical analyses indicated that increased HGF/cMET expression in human adrenocortical carcinoma samples was positively associated with cancer-related biologic processes, including proliferation and angiogenesis, and negatively correlated with apoptosis. Accordingly, treatment of adrenocortical carcinoma cells with exogenous HGF resulted in increased cell proliferation in vitro and in vivo while short hairpin RNA-mediated knockdown or pharmacologic inhibition of cMET suppressed cell proliferation and tumor growth. Moreover, exposure of cells to mitotane, cisplatin, or radiation rapidly induced pro-cMET expression and was associated with an enrichment of genes (e.g., CYP450 family) related to therapy resistance, further implicating cMET in the anticancer drug response. Together, these data suggest an important role for HGF/cMET signaling in adrenocortical carcinoma growth and resistance to commonly used treatments. Targeting cMET, alone or in combination with other drugs, could provide a breakthrough in the management of this aggressive cancer. PMID:26282167

  4. [Importance of proliferative potential (as the ratio of a proliferative cells number and duration of mitosis) in diagnoses of malignant degree and prognosis of adrenocortical cancer].

    PubMed

    Raĭkhlin, N T; Bukaeva, I A; Filimoniuk, A V; Smirnova, E A; Probatova, N A; Pavlovskaia, A I; Shabanov, M A; Ponomareva, M V

    2011-01-01

    The aim of research has been the estimation of a proliferative potential as simultaneous detection of a proliferative cells number (Ki-67 index) and duration of mitosis (nucleolar argyrophilic protein expression--B23/nucleophosmin and C23/nucleolin) at patients with adrenocortical cancer. In according to lifetime of patients after operation 2 groups had been sorted out. The first one included patients surviving 56.12 months, the second one--9.25 months. We've found out that different aspects of tumor diagnosis as well distinction of benignant or malignant tumor growth, a malignant degree of tumors, a prognostic criteria of illness, survival of patients etc. must be characterized by total research both a proliferative cells fraction (Ki-67 index) and a rate of mitosis (expressions of B23/nucleophosmin and C23/nucleolin). PMID:22288173

  5. Adrenocortical carcinoma

    MedlinePlus

    ... JavaScript. Adrenocortical carcinoma is a cancer of the adrenal glands . Causes Adrenocortical carcinoma is most common in children ... tumor. Symptoms Symptoms of increased cortisol or other adrenal gland hormones: Fatty, rounded hump high on the back ...

  6. Serum and growth factor requirements for proliferation of human adrenocortical cells in culture: comparison with bovine adrenocortical cells.

    PubMed

    Hornsby, P J; Sturek, M; Harris, S E; Simonian, M H

    1983-11-01

    Although bovine adrenocortical cells proliferate readily in cell culture, proliferation of fetal or adult human adrenocortical cells has been observed to be limited and preparation of pure proliferating cultures of human adrenocortical cells has not been reported. The growth requirements of fetal human definitive zone adrenocortical cells in culture were compared to the established requirements of bovine adrenocortical cells. The medium used was 1:1 Ham's F12 and Dulbecco's modified Eagle's medium supplemented with transferrin and insulin. Earlier experiments showed that human cells had a greater proliferative response to horse serum than to fetal bovine serum, whereas the opposite was true for bovine cells. When plated on fibronectin-coated dishes and exposed to varying concentrations of horse serum in the presence of 100 ng/ml fibroblast growth factor (FGF), increasing cell growth was observed up to a serum concentration of 50%. When 50% fetal bovine serum was used instead of horse serum proliferation was less. In contrast, bovine adrenocortical cells showed a maximal proliferative response to either fetal bovine serum or horse serum at 10%. Human adrenocortical cells thus have a very high requirement for serum; 50% is the highest level that may be practically used, but the shape of the dose-response curve suggests that this concentration is still suboptimal. Growth was less in the absence of FGF. Epidermal growth factor can partially substitute for FGF. No response to 100 nM placental lactogen was observed. Less growth was observed when dishes were not coated with fibronectin. The factors present in horse serum that are evidently needed in high amounts by human cells are unknown. Despite this lack of knowledge, use of 50% horse serum enabled long-term growth of human adrenocortical cells that are pure by the criterion of retraction in response to ACTH. Nonadrenocortical cells do not show a retraction response. Such long-term cultures may be useful in studies of

  7. Giant adrenal pseudocyst harbouring adrenocortical cancer

    PubMed Central

    Wilkinson, Michael; Fanning, Deirdre Mary; Moloney, James; Flood, Hugh

    2011-01-01

    The authors report a very rare case of adreno-cortical carcinoma arising in a giant adrenal pseudocyst. A 64-year-old woman presented to the emergency department with a 6 week history of progressively worsening severe left abdominal pain, anorexia, anergia and constipation. On examination, she was cachectic with tenderness over the left abdomen and flank. Medical history was significant for gastritis and anaemia. During her investigation, a well-defined para-renal 12×6 centimetre multi-loculated cyst, of uncertain origin was identified on CT. Ultrasound-guided biopsy was not diagnostic. MRI showed the cyst to be likely adrenal in origin. Serum and urinary catecholamines were unremarkable. At laparotomy an unresectable large, tense, fixed, cystic mass was seen to occupy the left side of the abdomen. The cyst was de-roofed. Pathology showed a high-grade poorly differentiated adreno-cortical carcinoma with a pseudo-capsule. She died 2 months postoperatively. PMID:22679267

  8. Adrenocortical Cells with Stem/Progenitor Cell Properties: Recent Advances

    PubMed Central

    Kim, Alex; Hammer, Gary D.

    2007-01-01

    The existence and location of undifferentiated cells with the capability of maintaining the homeostasis of the adrenal cortex have long been sought. These cells are thought to remain mostly quiescent with a potential to commit to self-renewal processes or terminal differentiation to homeostatically repopulate the organ. In addition, in response to physiologic stress, the undifferentiated cells undergo rapid proliferation to accommodate organismic need. Sufficient adrenocortical proliferative capacity lasting the lifespan of the host has been demonstrated through cell transplantation and enucleation experiments. Labeling experiments with tritium, BrdU, or trypan blue, as well as transgenic assays support the clonogenic identity and location of these undefined cells within the gland periphery. We define undifferentiated adrenocortical cells as cells devoid of steroidogenic gene expression, and differentiated cells as cells with steroidogenic capacity. In this review, we discuss historic developmental studies together with recent molecular examinations that aim to characterize such populations of cells. PMID:17240045

  9. Effects of Type 1 Insulin-Like Growth Factor Receptor Silencing in a Human Adrenocortical Cell Line.

    PubMed

    Ribeiro, T C; Jorge, A A; Montenegro, L R; Almeida, M Q; Ferraz-de-Souza, B; Nishi, M Y; Mendonca, B B; Latronico, A C

    2016-07-01

    Type 1 insulin-like growth factor receptor (IGF-1R) is overexpressed in a variety of human cancers, including adrenocortical tumors. The aim of the work was to investigate the effects of IGF-1R downregulation in a human adrenocortical cell line by small interfering RNA (siRNA). The human adrenocortical tumor cell line NCI H295R was transfected with 2 specific IGF1R siRNAs (# 1 and # 2) and compared with untreated cells and a negative control siRNA. IGF1R expression was determined by quantitative reverse-transcription PCR (qRTPCR) and Western blot. The effects of IGF-1R downregulation on cell proliferation and apoptosis were assessed. IGF-1R levels were significantly decreased in cells treated with IGF-1R siRNA # 1 or # 2. Relative expression of IGF1R mRNA decreased approximately 50% and Western blot analysis revealed a 30% of reduction in IGF-1R protein. Downregulation of this gene resulted in 40% reduction in cell growth in vitro and 45% increase in apoptosis using siRNA # 2. These findings demonstrate that decreasing IGF-1R mRNA and protein expression in NCI H295R cells can partially inhibit adrenal tumor cell growth in vitro. Targeting IGF1R is a promising therapy for pediatric malignant adrenocortical tumor and can still be an option for adult adrenocortical cancer based on personalized genomic tumor profiling. PMID:27246621

  10. Adrenocortical cancer (ACC) - literature overview and own experience.

    PubMed

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers. PMID:25554619

  11. Nesfatin-1 inhibits proliferation and enhances apoptosis of human adrenocortical H295R cells.

    PubMed

    Ramanjaneya, Manjunath; Tan, Bee K; Rucinski, Marcin; Kawan, Mohamed; Hu, Jiamiao; Kaur, Jaspreet; Patel, Vanlata H; Malendowicz, Ludwik K; Komarowska, Hanna; Lehnert, Hendrik; Randeva, Harpal S

    2015-07-01

    NUCB2/nesfatin and its proteolytically cleaved product nesfatin-1 are recently discovered anorexigenic hypothalamic neuroproteins involved in energy homeostasis. It is expressed both centrally and in peripheral tissues, and appears to have potent metabolic actions. NUCB2/nesfatin neurons are activated in response to stress. Central nesfatin-1 administration elevates circulating ACTH and corticosterone levels. Bilateral adrenalectomy increased NUCB2/nesfatin mRNA levels in rat paraventricular nuclei. To date, studies have not assessed the effects of nesfatin-1 stimulation on human adrenocortical cells. Therefore, we investigated the expression and effects of nesfatin-1 in a human adrenocortical cell model (H295R). Our findings demonstrate that NUCB2 and nesfatin-1 are expressed in human adrenal gland and human adrenocortical cells (H295R). Stimulation with nesfatin-1 inhibits the growth of H295R cells and promotes apoptosis, potentially via the involvement of Bax, BCL-XL and BCL-2 genes as well as ERK1/2, p38 and JNK1/2 signalling cascades. This has implications for understanding the role of NUCB2/nesfatin in adrenal zonal development. NUCB2/nesfatin may also be a therapeutic target for adrenal cancer. However, further studies using in vivo models are needed to clarify these concepts. PMID:25869615

  12. Improved clonal and nonclonal growth of human, rat and bovine adrenocortical cells in culture.

    PubMed

    McAllister, J M; Hornsby, P J

    1987-10-01

    This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determined by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblast overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had similar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortical cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and increased the cloning efficiency of cultured bovine adrenocortical cells. PMID:3667487

  13. Global gene expression response to telomerase in bovine adrenocortical cells

    SciTech Connect

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H. . E-mail: bettsd@uoguelph.ca

    2005-09-30

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state.

  14. Regulation of the adrenocortical stem cell niche: implications for disease

    PubMed Central

    Walczak, Elisabeth M.; Hammer, Gary D.

    2015-01-01

    Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed. PMID:25287283

  15. Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells in vitro.

    PubMed

    Wang, Xu; Wan, Dan; Ihsan, Awais; Liu, Qianying; Cheng, Guyue; Li, Juan; Liu, Zhenli; Yuan, Zonghui

    2015-10-01

    Quinocetone (QCT) is a new feeding antibacterial agent in the QdNOs family. The mechanism of its adrenal toxicity is far from clear. This study was conducted to estimate the adrenal cell damage induced by QCT and its bidesoxy-quinocetone (B-QCT) metabolite and to further investigate their mechanisms. Following doses of QCT increasing from 5 to 50 μM, cell apoptosis and necrosis, mitochondrial dysfunction and redox imbalance were observed in porcine adrenocortical cells. The mRNA levels of the six components of intermediary enzymes and the adrenal renin-angiotensin-aldosterone system (RAAS) displayed a dysregulation induced by QCT, indicating that QCT might influence aldosterone secretion not only through the upstream of the production but also through the downstream of the adrenal RAAS pathway. In contrast, B-QCT had few toxic effects on the cell apoptosis, mitochondrial dysfunction and redox imbalance. Moreover, LCMS-IT-TOF analysis showed that no desoxy metabolites of QCT were found in either cell lysate or supernatant samples. In conclusion, we reported on the cytotoxicity in porcine adrenocortical cells exposed to QCT via oxidative stress, which raised awareness that its toxic effects resulted from N→O groups, and its toxic mechanism might involve the interference of the steroid hormone biosynthesis pathway. PMID:26296292

  16. Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: Relationship with cell proliferation

    SciTech Connect

    Mantovani, G.; Lania, A.G.; Bondioni, S.; Peverelli, E.; Pedroni, C.; Ferrero, S.; Pellegrini, C.; Vicentini, L.; Arnaldi, G.; Bosari, S.; Beck-Peccoz, P.; Spada, A.

    2008-01-01

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n = 16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n = 5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.

  17. mTOR pathway is activated by PKA in adrenocortical cells and participates in vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease (PPNAD).

    PubMed

    de Joussineau, Cyrille; Sahut-Barnola, Isabelle; Tissier, Frédérique; Dumontet, Typhanie; Drelon, Coralie; Batisse-Lignier, Marie; Tauveron, Igor; Pointud, Jean-Christophe; Lefrançois-Martinez, Anne-Marie; Stratakis, Constantine A; Bertherat, Jérôme; Val, Pierre; Martinez, Antoine

    2014-10-15

    Primary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis that contributes to the tumorigenic process. We used in vitro and in vivo models to investigate the possibility of a crosstalk between PKA and mammalian target of rapamycin (mTOR) pathways in adrenocortical cells and its possible involvement in apoptosis resistance. Impact of PKA signaling on activation of the mTOR pathway and apoptosis was measured in a mouse model of PPNAD (AdKO mice), in human and mouse adrenocortical cell lines in response to pharmacological inhibitors and in PPNAD tissues by immunohistochemistry. AdKO mice showed increased mTOR complex 1 (mTORC1) pathway activity. Inhibition of mTORC1 by rapamycin restored sensitivity of adrenocortical cells to apoptosis in AdKO but not in wild-type mice. In both cell lines and mouse adrenals, rapid phosphorylation of mTORC1 targets including BAD proapoptotic protein was observed in response to PKA activation. Accordingly, BAD hyperphosphorylation, which inhibits its proapoptotic activity, was increased in both AdKO mouse adrenals and human PPNAD tissues. In conclusion, mTORC1 pathway is activated by PKA signaling in human and mouse adrenocortical cells, leading to increased cell survival, which is correlated with BAD hyperphosphorylation. These alterations could be causative of tumor formation. PMID:24865460

  18. Molecular pathways of human adrenocortical carcinoma - translating cell signalling knowledge into diagnostic and treatment options.

    PubMed

    Szyszka, Paulina; Grossman, Ashley B; Diaz-Cano, Salvador; Sworczak, Krzysztof; Dworakowska, Dorota

    2016-01-01

    Adrenocortical carcinoma is associated with a low cure rate and a high recurrence rate. The prognosis is poor, and at diagnosis 30-40% of cases are already metastatic. The current therapeutic options (surgical resection, followed by adjuvant mitotane treatment +/- chemotherapy) are limited, and the results remain unsatisfactory. Key molecular events that contribute to formation of adrenocortical cancer are IGF2 overexpression, TP53-inactivating mutations, and constitutive activation of the Wnt/b-catenin signalling pathway via activating mutations of the b-catenin gene. The underlying genetic causes of inherited tumour syndromes have provided insights into molecular pathogenesis. The increased occurrence of adrenocortical tumours in Li-Fraumeni and Beckwith-Wiedemann syndromes, and Carney complex, has highlighted the roles of specific susceptibility genes: TP53, IGF2, and PRKAR1A, respectively. Further studies have confirmed that these genes are also involved in sporadic tumour cases. Crucially, transcriptome-wide studies have determined the differences between malignant and benign adrenocortical tumours, providing potential diagnostic tools. In conclusion, enhancing our understanding of the molecular events of adrenocortical tumourigenesis, especially with regard to the signalling pathways that may be disrupted, will greatly contribute to improving a range of available diagnostic, prognostic, and treatment approaches. (Endokrynol Pol 2016; 67 (4): 427-440). PMID:27387247

  19. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  20. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer

    PubMed Central

    Legendre, Christophe R.; Demeure, Michael J.; Whitsett, Timothy G.; Gooden, Gerald C.; Bussey, Kimberly J.; Jung, Sungwon; Waibhav, Tembe; Kim, Seungchan; Salhia, Bodour

    2016-01-01

    Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors. PMID:26963385

  1. 5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation?

    PubMed

    de Krijger, Ronald E; Bertherat, Jérôme

    2016-02-01

    For the clinician, despite its rarity, adrenocortical cancer is a heterogeneous tumor both in term of steroid excess and tumor evolution. For patient management, it is crucial to have an accurate vision of this heterogeneity, in order to use a correct tumor classification. Pathology is the best way to classify operated adrenocortical tumors: to recognize their adrenocortical nature and to differentiate benign from malignant tumors. Among malignant tumors pathology also aims at prognosis assessment. Although progress has being made for prognosis assessment, there is still a need for improvement. Recent studies have established the value of Ki67 for adrenocortical cancer (ACC) prognostication, aiming also at standardization to reduce variability. The use of genomics to study adrenocortical tumors gives a very new insight in their pathogenesis and molecular classification. Genomics studies of ACC give now a clear description of the mRNA (transcriptome) and miRNA expression profile, as well as chromosomal and methylation alterations. Exome sequencing also established firmly the list of the main ACC driver genes. Interestingly, genomics study of ACC also revealed subtypes of malignant tumors with different pattern of molecular alterations, associated with different outcome. This leads to a new vision of adrenocortical tumors classification based on molecular analysis. Interestingly, these molecular classifications meet also the results of pathological analysis. This opens new perspectives on the development and use of various molecular tools to classify, along with pathological analysis, ACC, and guides patient management at the area of precision medicine. PMID:26676358

  2. Adrenocortical Stem and Progenitor Cells: Unifying Model of Two Proposed Origins

    PubMed Central

    Wood, Michelle A.; Hammer, Gary D.

    2010-01-01

    The origins of our understanding of the cellular and molecular mechanisms by which signaling pathways and downstream transcription factors coordinate the specification of adrenocortical cells within the adrenal gland have arisen from studies on the role of Sf1 in steroidogenesis and adrenal development initiated 20 years ago in the laboratory of Dr. Keith Parker. Adrenocortical stem/progenitor cells have been predicted to be undifferentiated and quiescent cells that remain at the periphery of the cortex until needed to replenish the organ, at which time they undergo proliferation and terminal differentiation. Identification of these stem/progenitor cells has only recently been explored. Recent efforts have examined signaling molecules, including Wnt, Shh, and Dax1, which may coordinate intricate lineage and signaling relationships between the adrenal capsule (stem cell niche) and underlying cortex (progenitor cell pool) to maintain organ homeostasis in the adrenal gland. PMID:21094677

  3. Adrenocortical carcinoma.

    PubMed

    Baudin, Eric

    2015-06-01

    Recent developments in the treatment of adrenocortical carcinoma (ACC) include diagnostic and prognostic risk stratification algorithms, increasing evidence of the impact of historical therapies on overall survival, and emerging targets from integrated epigenomic and genomic analyses. Advances include proper clinical and molecular characterization of all patients with ACC, standardization of proliferative index analyses, referral of these patients to large cancer referral centers at the time of first surgery, and development of new trials in patients with well-characterized ACC. Networking and progress in the molecular characterization of ACC constitute the basis for significant future therapeutic breakthroughs. PMID:26038209

  4. Adrenocortical Stem and Progenitor Cells—Implications for Adrenocortical Carcinoma

    PubMed Central

    Simon, Derek P.; Hammer, Gary D.

    2012-01-01

    The continuous centripetal repopulation of the adrenal cortex is consistent with a population of cells endowed with the stem/progenitor cell properties of self-renewal and pluripotency. The adrenocortical capsule and underlying undifferentiated cortical cells are emerging as critical components of the stem/progenitor cell niche. Recent genetic analysis has identified various signaling pathways including Sonic Hedgehog (Shh) and Wnt as crucial mediators of adrenocortical lineage and organ homeostasis. Shh expression is restricted to the peripheral cortical cells that express a paucity of steroidogenic genes but give rise to the underlying differentiated cells of the cortex. Wnt/β-catenin signaling maintains the undifferentiated state and adrenal fate of adrenocortical stem/progenitor cells, in part through induction of its target genes Dax1 and inhibin-α, respectively. The pathogenesis of ACC, a rare yet highly aggressive cancer with an extremely poor prognosis, is slowly emerging from studies of the stem/progenitor cells of the adrenal cortex coupled with the genetics of familial syndromes in which ACC occurs. The frequent observation of constitutive activation of Wnt signaling due to loss-of-function mutations in the tumor suppressor gene APC or gain-of-function mutation in β-catenin in both adenomas and carcinomas, suggests perhaps that the Wnt pathway serves an early or initiating insult in the oncogenic process. Loss of p53 might be predicted to cooperate with additional genetic insults such as IGF2 as both are the most common genetic abnormalities in malignant versus benign adrenocortical neoplasms. It is unclear whether other factors such as Pod1 and Pref1, which are implicated in stem/progenitor cell biology in the adrenal and/or other organs, are also implicated in the etiology of adrenocortical carcinoma. The rarity and heterogeneous presentation of ACC makes it difficult to identify the cellular origin and the molecular progression to cancer. A more

  5. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  6. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus

    PubMed Central

    Wood, Michelle A.; Acharya, Asha; Finco, Isabella; Swonger, Jessica M.; Elston, Marlee J.; Tallquist, Michelle D.; Hammer, Gary D.

    2013-01-01

    The lineage relationships of fetal adrenal cells and adrenal capsular cells to the differentiated adrenal cortex are not fully understood. Existing data support a role for each cell type as a progenitor for cells of the adult cortex. This report reveals that subsets of capsular cells are descendants of fetal adrenocortical cells that once expressed Nr5a1. These fetal adrenocortical cell descendants within the adrenal capsule express Gli1, a known marker of progenitors of steroidogenic adrenal cells. The capsule is also populated by cells that express Tcf21, a known inhibitor of Nr5a1 gene expression. We demonstrate that Tcf21-expressing cells give rise to Nr5a1-expressing cells but only before capsular formation. After the capsule has formed, capsular Tcf21-expressing cells give rise only to non-steroidogenic stromal adrenocortical cells, which also express collagen 1a1, desmin and platelet-derived growth factor (alpha polypeptide) but not Nr5a1. These observations integrate prior observations that define two separate origins of adult adrenocortical steroidogenic cells (fetal adrenal cortex and/or the adrenal capsule). Thus, these observations predict a unique temporal and/or spatial role of adult cortical cells that arise directly from either fetal cortical cells or from fetal cortex-derived capsular cells. Last, the data uncover the mechanism by which two populations of fetal cells (fetal cortex derived Gli1-expressing cells and mesenchymal Tcf21-expressing mesenchymal cells) participate in the establishment of the homeostatic capsular progenitor cell niche of the adult cortex. PMID:24131628

  7. Molecular Profiling of Refractory Adrenocortical Cancers and Predictive Biomarkers to Therapy

    PubMed Central

    Millis, Sherri Z.; Ejadi, Samuel; Demeure, Michael J.

    2015-01-01

    PURPOSE Current first-line chemotherapy for patients with metastatic adrenocortical cancer (ACC) includes doxorubicin, etoposide, cisplatin, and mitotane with a reported response rate of only 23.2%. New therapeutic leads for patients with refractory tumors are needed; there is no standard second-line treatment. METHODS Samples from 135 ACC tumors were analyzed by immunohistochemistry, in situ hybridization (FISH or CISH), and/or gene sequencing at a single commercial reference laboratory (Caris Life Sciences) to identify markers associated with drug sensitivity and resistance. RESULTS Overexpression of proteins related to demonstrated chemotherapy sensitivity or resistance included topoisomerase 1, progesterone receptor, and topoisomerase 2-alpha in 46%, 63%, and 42% of cases, respectively. Loss of excision repair cross-complementary group 1 (ERCC1), phosophatase and tensin homolog, O(6)-methylguanine-methyltransferase, and ribonucleotide reductase M1 (RRM1) was identified in 56%, 59%, 71%, and 58% of cases, respectively. Other aberrations included overexpression of programmed death-ligand 1 or programmed cell death protein 1 tumor-infiltrating lymphocytes in >40% of cases. In all, 35% of cases had a mutation in the canonical Wnt signaling pathway (either CTNNB1 or APC) and 48% had a mutation in TP53. No other genomic alterations were identified. CONCLUSION Biomarker alterations in ACC may be used to direct therapies, including recommendations for and potential resistance of some patients to traditional chemotherapies, which may explain the low response rate in the unselected population. Limited outcomes data support the use of mitotane and platinum therapies for patients with low levels of the proteins RRM1 and ERCC1. PMID:26715866

  8. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue

    PubMed Central

    Röhrig, Theresa; Pihlajoki, Marjut; Ziegler, Ricarda; Cochran, Rebecca S.; Schrade, Anja; Schillebeeckx, Maximiliaan; Mitra, Robi D.; Heikinheimo, Markku; Wilson, David B.

    2014-01-01

    Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epi-genetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed. PMID:25498963

  9. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. PMID:27432863

  10. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice

    PubMed Central

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-01-01

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  11. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    PubMed

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  12. Adrenocortical endocrine disruption.

    PubMed

    Harvey, Philip W

    2016-01-01

    in vivo ACTH challenge test to prove adrenocortical competency, and the H295R cell line to examine molecular mechanisms of steroidogenic pathway toxicity, are discussed. Finally, because of the central role of the adrenal in the physiologically adaptive stress response, the distinguishing features of stress, compared with adrenocortical toxicity, are discussed with reference to the evidence required to claim that adrenal hypertrophy results from stress rather than adrenocortical enzyme inhibition which is a serious adverse toxicological finding. This article is part of a special issue entitled 'Endocrine disruptors and steroids'. PMID:25460300

  13. Molecular Imaging in the Management of Adrenocortical Cancer: A Systematic Review.

    PubMed

    Wong, Ka Kit; Miller, Barbra S; Viglianti, Benjamin L; Dwamena, Ben A; Gauger, Paul G; Cook, Gary J; Colletti, Patrick M; Rubello, Domenico; Gross, Milton D

    2016-08-01

    Adrenocortical cancer (ACC) is an uncommon primary neoplasm of the adrenal cortex with dismal prognosis. It often presents with symptoms and signs of adrenal cortical hormone hypersecretion and abdominal mass effect or is incidentally detected as an adrenal mass on imaging performed for other indications. Endocrine evaluation, comprehensive staging, and meticulous resection are crucial to ensure the best possible outcome. Despite extensive initial surgical resection, local and distant metastases are not uncommon with disappointing 5-year survival, although progress is being made at high-volume centers. Accurate restaging of recurrent disease is important to guide further management. Mitotane, external beam radiation and chemotherapy, and newer anticancer systemic treatments are used as adjunctives for inoperable disease and distant metastases. Contrast-enhanced CT and MRI are first-line imaging modalities for evaluation of ACC to characterize adrenal masses and to determine tumor resectability. Emerging literature supports F-FDG PET/CT use to determine the malignant potential of adrenal masses. In patients with a diagnosis of ACC, FDG PET/CT is sensitive for detecting metastatic disease, and its tumor accumulation has been correlated to pathology, Weiss scores, and prognosis. Metomidate, labeled with C for PET or with I for SPECT/CT, allows characterization of an adrenal mass as being of adrenocortical origin with high specificity. Taking advantage of its adrenocortical avidity, metomidate has been labeled with I for radionuclide therapy in a subset of ACC. In this review, we describe how nuclear medicine imaging, and specifically PET, can assist surgical management of ACC. PMID:26825212

  14. microRNAs as Potential Biomarkers in Adrenocortical Cancer: Progress and Challenges

    PubMed Central

    Cherradi, Nadia

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis and limited therapeutic options. Over the last decade, pan-genomic analyses of genetic and epigenetic alterations and genome-wide expression profile studies allowed major advances in the understanding of the molecular genetics of ACC. Besides the well-known dysfunctional molecular pathways in adrenocortical tumors, such as the IGF2 pathway, the Wnt pathway, and TP53, high-throughput technologies enabled a more comprehensive genomic characterization of adrenocortical cancer. Integration of expression profile data with exome sequencing, SNP array analysis, methylation, and microRNA (miRNA) profiling led to the identification of subgroups of malignant tumors with distinct molecular alterations and clinical outcomes. miRNAs post-transcriptionally silence their target gene expression either by degrading mRNA or by inhibiting translation. Although our knowledge of the contribution of deregulated miRNAs to the pathogenesis of ACC is still in its infancy, recent studies support their relevance in gene expression alterations in these tumors. Some miRNAs have been shown to carry potential diagnostic and prognostic values, while others may be good candidates for therapeutic interventions. With the emergence of disease-specific blood-borne miRNAs signatures, analyses of small cohorts of patients with ACC suggest that circulating miRNAs represent promising non-invasive biomarkers of malignancy or recurrence. However, some technical challenges still remain, and most of the miRNAs reported in the literature have not yet been validated in sufficiently powered and longitudinal studies. In this review, we discuss the current knowledge regarding the deregulation of tumor-associated and circulating miRNAs in ACC patients, while emphasizing their potential significance in pathogenic pathways in light of recent insights into the role of miRNAs in shaping the tumor microenvironment. PMID:26834703

  15. High-density lipoprotein is a potential growth factor for adrenocortical cells

    SciTech Connect

    Murao, Koji . E-mail: mkoji@kms.ac.jp; Imachi, Hitomi; Cao, Wenming; Yu, Xiao; Li, Junhua; Yoshida, Kazuya; Ahmed, Rania A.M.; Matsumoto, Kensuke; Nishiuchi, Takamasa; Ishida, Toshihiko; Wong, Norman C.W.

    2006-05-26

    The entry of cholesterol contained within high-density lipoprotein (HDL) into adrenocortical cells is mediated by a human homologue of SR-BI, CD36, and LIMPII Analogous-1 (CLA-1) and thus augmenting their growth. To address the role of CLA-1, we created a mutant mCLA that lacked the C-terminal tail. HDL CE selective uptake by cells carrying the mCLA-1 receptor was fully active and equivalent to those transfected with full-length CLA-1 (fCLA-1). Expression of mCLA inhibited the proliferation of an adrenocortical cell line and the incorporation of [{sup 3}H]thymidine into the cells. This effect was sensitive to wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). Our transcriptional studies revealed that the inhibitory action of mCLA required the transcriptional factor AP-1 and the effect of HDL on AP-1 activation was also abrogated by wortmannin. These findings raise the possibility that the inhibitors of the effects of HDL may be of therapeutic value for adrenocortical tumor.

  16. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children

    PubMed Central

    Kroenke, Candyce H; Epel, Elissa; Adler, Nancy; Bush, Nicole R.; Obradović, Jelena; Lin, Jue; Blackburn, Elizabeth; Stamperdahl, Juliet Lise; Boyce, W. Thomas

    2011-01-01

    Objective To examine associations between autonomic nervous system and adrenocortical reactivity to laboratory stressors and buccal cell telomere length (BTL) in children. Methods The study sample comprised 78 five- and six-year-old children from a longitudinal cohort study of kindergarten social hierarchies, biological responses to adversity, and child health. Buccal cell samples and reactivity measures were collected in the spring of the kindergarten year. BTL was measured by realtime PCR, as the telomere-to-single copy gene (T/S) ratio. Parents provided demographic information; parents and teachers reported children’s internalizing and externalizing behavior problems. Components of children’s autonomic (heart rate (HR), respiratory sinus arrhythmia (RSA), pre-ejection period (PEP)) and adrenocortical (salivary cortisol) responses were monitored during standardized laboratory challenges. We examined relations between reactivity, internalizing and externalizing behavior, and BTL, adjusted for age, race, and gender. Results Heart rate and cortisol reactivity were inversely related to BTL, PEP was positively related to BTL, and RSA was unrelated. Internalizing behaviors were also inversely related to BTL (standardized β=−0.33, p=0.004). Split at the median of reactivity parameters, children with high sympathetic activation (decreasing PEP) and high parasympathetic withdrawal (decreasing RSA) did not differ with regard to BTL. However, children with both this profile and high cortisol reactivity (N=12) had significantly shorter BTL (0.80 vs. 1.00, χ2=7.6, p=0.006), compared with other children. Conclusions Autonomic and adrenocortical reactivity in combination were associated with shorter buccal cell telomere length in children. These data suggest that psychophysiological processes may influence, and that BTL may be a useful marker of, early biological aging. PMID:21873585

  17. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed Central

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-01-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes. PMID:9601084

  18. POD-1/TCF21 Reduces SHP Expression, Affecting LRH-1 Regulation and Cell Cycle Balance in Adrenocortical and Hepatocarcinoma Tumor Cells

    PubMed Central

    França, Monica Malheiros; Ferraz-de-Souza, Bruno; Lerario, Antonio Marcondes; Fragoso, Maria Candida Barisson Villares; Lotfi, Claudimara Ferini Pacicco

    2015-01-01

    POD-1/TCF21 may play a crucial role in adrenal and gonadal homeostasis and represses Sf-1/SF-1 expression in adrenocortical tumor cells. SF-1 and LRH-1 are members of the Fzt-F1 subfamily of nuclear receptors. LRH-1 is involved in several biological processes, and both LRH-1 and its repressor SHP are involved in many types of cancer. In order to assess whether POD-1 can regulate LRH-1 via the same mechanism that regulates SF-1, we analyzed the endogenous mRNA levels of POD-1, SHP, and LRH-1 in hepatocarcinoma and adrenocortical tumor cells using qRT-PCR. Hereafter, these tumor cells were transiently transfected with pCMVMycPod-1, and the effect of POD-1 overexpression on E-box elements in the LRH-1 and SHP promoter region were analyzed by ChIP assay. Also, Cyclin E1 protein expression was analyzed to detect cell cycle progression. We found that POD-1 overexpression significantly decreased SHP/SHP mRNA and protein levels through POD-1 binding to the E-box sequence in the SHP promoter. Decreased SHP expression affected LRH-1 regulation and increased Cyclin E1. These findings show that POD-1/TCF21 regulates SF-1 and LRH-1 by distinct mechanisms, contributing to the understanding of POD-1 involvement and its mechanisms of action in adrenal and liver tumorigenesis, which could lead to the discovery of relevant biomarkers. PMID:26421305

  19. A Case of Cushing's Syndrome with Multiple Adrenocortical Adenomas Composed of Compact Cells and Clear Cells.

    PubMed

    Asakawa, Masahiro; Yoshimoto, Takanobu; Ota, Mitsutane; Numasawa, Mitsuyuki; Sasahara, Yuriko; Takeuchi, Takato; Nakano, Yujiro; Oohara, Norihiko; Murakami, Masanori; Bouchi, Ryotaro; Minami, Isao; Tsuchiya, Kyoichiro; Hashimoto, Koshi; Izumiyama, Hajime; Kawamura, Naoko; Kihara, Kazunori; Negi, Mariko; Akashi, Takumi; Eishi, Yoshinobu; Sasano, Hironobu; Ogawa, Yoshihiro

    2016-06-01

    A 58-year-old woman was referred to our hospital for Cushingoid features and diagnosed as adrenal Cushing's syndrome due to a right adrenocortical mass (60 × 55 mm). The mass was composed of three different tumors; the first one was homogeneously lipid-poor neoplasm measuring 20 × 13 mm located at the most dorsal region, the second one was heterogeneous and lipid-rich tumor containing multiple foci of calcification measuring 50 × 32 mm located at the central region, and the last one was heterogeneous harboring dilated and tortuous vessels and lipid-poor one measuring 35 × 18 mm at the most ventral region of the adrenal gland. A right adrenalectomy was subsequently performed by open surgery. Macroscopic and microscopic analyses revealed that all three tumors were adrenocortical adenomas; the first one represents a pigmented adrenocortical adenoma, the second one adrenocortical adenoma associated with degeneration, and the third one adrenocortical adenoma harboring extensive degeneration. Immunohistochemical analysis of the steroidogenic enzymes also revealed that all of the tumors had the capacity of synthesizing cortisol. This is a very rare case of Cushing's syndrome caused by multiple adrenocortical adenomas including a pigmented adenoma. Immunohistochemical analysis of steroidogenic enzymes contributed to understanding of steroidogenesis in each of these three different adrenocortical adenomas in this case. PMID:26961704

  20. Properties and requirements for production of a macrophage product which suppresses steroid production by adrenocortical cells.

    PubMed Central

    Mathison, J C; La Forest, A C; Ulevitch, R J

    1984-01-01

    Lipopolysaccharide-treated murine peritoneal exudate macrophages (PEM) release a factor or factors into the supernatant that suppress adrenocorticotropic hormone-induced steroidogenesis in explanted rabbit adrenocortical cells (J. C. Mathison et al., J. Immunol. 130:2757-2762, 1983). To determine the requirements for suppression, PEM supernatants (30 microliters) were added to explanted rabbit adrenocortical cells in a final volume of 120 microliters with 10 mU of adrenocorticotropic hormone per ml, and after 18 h at 37 degrees C, steroid concentrations were measured by a fluorometric assay. Supernatant from proteose peptone-elicited C3HeB/FeJ PEM (5 X 10(6) PEM per 3.5-cm well, 10 micrograms of Salmonella minnesota Re595 LPS per ml, 18 h) suppressed steroid production ca. 50%, and kinetic studies demonstrated that the appearance of suppressive activity in the supernatant was gradual over 4 to 18 h. Release of suppressive activity was not associated with decreased viability of the PEM (assessed by fluorescein diacetate staining and measurement of lactic dehydrogenase in the supernatant). Suppression was not observed when the PEM supernatant was diluted 10-fold before addition to the adrenocortical cells, whereas supernatant concentrated 20-fold (prepared with a 10,000-molecular-weight-cutoff filter) produced 75 to 80% suppression. The suppressive activity was stable at pH 4, pH 11, or 70 degrees C for 30 min but was inactivated at 100 degrees C (10 min). Suppressive activity was also induced in C3HeB/FeJ PEM by O111:B4 lipopolysaccharide or heat-killed Listeria monocytogenes. In contrast, PEM from C3H/HeJ mice did not produce detectable suppressive activity in response to Re595 lipopolysaccharide or heat-killed L. monocytogenes. Thus, these results provide additional support for the inducible, selective release of a macrophage product that could affect the host response to lipopolysaccharide by regulation of the adrenocortical response to adrenocorticotropic

  1. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis

    PubMed Central

    Leal, Letícia F.; Bueno, Ana Carolina; Gomes, Débora C.; Abduch, Rafael; de Castro, Margaret; Antonini, Sonir R.

    2015-01-01

    Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC. PMID:26515592

  2. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  3. Effect of corticosteroid binding proteins on the steroidogenic activity of bovine adrenocortical cell suspensions.

    PubMed

    Basset, M; Rostaing-Metz, B; Chambaz, E M

    1982-07-01

    The possible role of steroid binding proteins in the hormonal secretion process of a steroidogenic tissue was examined using bovine adrenocortical cell suspensions, either under basal conditions or in the presence of half-maximally active concentration (1 x 10(-9) M) of synthetic adrenocorticotropic hormone (ACTH). Three types of plasma cortisol binding proteins were used, namely bovine serum albumine (BSA), purified transcortin (CBG) and purified anticortisol immunoglobulins (IgG). When added to the incubation medium, CBG (at 1 x 10(-10) to 2 x 10(-9) M cortisol binding sites) and anticortisol IgG (at 4.8 x 10(-10) to 3 x 10(-9) M cortisol binding sites) did not influence either the basal nor the ACTH-stimulated net cortisol production of the cell preparations. Whereas crystallized and delipidated BSA showed also no effect, crude commercial BSA preparation (Cohn fraction V) exhibited an ACTH-like cofactor effect which resulted in a marked increase in the net cortisol production by stimulated cells. These observations might be explained by the presence in crude BSA of lipoprotein-cholesterol complexes, possibly acting as an extracellular source of cholesterol available for corticosteroidogenesis. It may be concluded that specific high affinity cortisol binding systems present outside adrenocortical steroidogenic cells do not influence their secretory activity under short term in vitro condition. In addition, it can be stressed that use of ill defined protein preparations (e.g. crude BSA) may lead to artifactual observations in the study of the differentiated functions of isolated steroidogenic cells. PMID:6287106

  4. ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs.

    PubMed

    LaPensee, Christopher R; Mann, Jacqueline E; Rainey, William E; Crudo, Valentina; Hunt, Stephen W; Hammer, Gary D

    2016-05-01

    ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis. PMID:26986192

  5. Adrenocortical hemorrhagic necrosis: the role of catecholamines and retrograde medullary-cell embolism

    SciTech Connect

    Szabo, S.; McComb, D.J.; Kovacs, K.; Huettner, I.

    1981-10-01

    We investigated the pathogenesis of adrenal necrosis using animal models of the disease (induced by administration of acrylonitrile, cysteamine, or pyrazole) and human cases. Results of electron-microscopic and histochemical time-response studies with rat models revealed an early, retrograde embolization of medullary cells and cell fragments in the cortical capillaries that showed prominent endothelial injury. The experimental adrenal lesions were prevented by surgical removal of the medulla one month before administration of adrenocorticolytic chemicals, or by the administration of the alpha-adrenergic antagonist phenoxybenzamine hydrochloride. Histochemical staining for medullary (argyrophil) granules in human cases of adrenal necrosis demonstrated tissue fragments that stained positively for silver in vascular cortical spaces in nine of ten autopsy specimens and in all four surgical cases we reviewed. Thus, catecholamines released from the adrenal medulla and from the retrograde medullary emboli in the cortex may have a role in the pathogenesis of adrenocortical necrosis.

  6. Effects of neuromedin-U on immature rat adrenocortical cells: in vitro and in vivo studies.

    PubMed

    Ziolkowska, Agnieszka; Macchi, Carlo; Trejter, Marcin; Rucinski, Marcin; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-03-01

    Neuromedin U (NMU) is a brain-gut peptide, that in the peripheral organs and tissues acts via a G protein-coupled receptor, called NMUR1. Reverse transcription-polymerase chain reaction showed the expression of NMUR1 mRNA in either cortex and medulla or dispersed zona glomerulosa and zona fasciculata-reticularis cells of the immature rat adrenals. Accordingly, immunocytochemistry demonstrated the presence of NMUR1-like immunoreactivity in the cortex and medulla of immature adrenals. NMU8 administration to immature rats was found to raise aldosterone, but not corticosterone, plasma concentration, without altering adrenal growth. Conversely, the exposure to NMU8 markedly enhanced the proliferative activity of immature rat inner adrenocortical cells in primary in vitro culture, without significantly affecting their corticosterone secretion. Collectively, our findings suggest that adrenals of immature rats may be a target for circulating NMU. However, the physiological significance and relevance of the adrenal effects of NMU remain to be ascertained. PMID:18288377

  7. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells.

    PubMed

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B

    2014-08-25

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24 h significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention. PMID:25038520

  8. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells

    PubMed Central

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B.

    2014-01-01

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24hr significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention. PMID:25038520

  9. Vincristine, cisplatin, teniposide, and cyclophosphamide combination in the treatment of recurrent or metastatic adrenocortical cancer.

    PubMed

    Khan, Tanweera S; Sundin, Anders; Juhlin, Claes; Wilander, Erik; Oberg, Kjell; Eriksson, Barbro

    2004-01-01

    The efficacy and tolerability of a combination of vincristine, cisplatin, teniposide, and cyclophosphamide (OPEC) in 11 patients (median age, 45 yr) with recurrent and/or metastatic adrenocortical cancer (ACC) (seven functional and four nonfunctional) were evaluated. All patients received this regimen after the failure of streptozocin and o,p'-DDD (SO) combination therapy. The regimen comprised cyclophosphamide, 600 mg/m2, and vincristine, 1.5 mg/m2, maximum dose 2.0 mg (d 1); cisplatin, 100 mg/m2 (d 2) and teniposide, 150 mg/m2 (d 4). Cycles were repeated every 4 wk. One to eight cycles (median, six cycles) of OPEC were administered to each patient. The median duration of treatment was 6 mo. The overall 2-yr survival rate was 82% and the median survival since diagnosis was 44 mo while it was 21 mo since start of OPEC therapy. Responses were obtained in nine patients: partial response in two patients, and stable disease in seven patients. The median duration of response was 6.75 mo. A total of 60 cycles of chemotherapy were given to all patients; grade 1-2 toxicity occurred in 57 cycles, while grade 3 toxicity was observed only in two cycles, according to NCI's Common Toxicity Criteria. We conclude that the OPEC regimen may be considered in recurrent or metastatic ACC as a second-line medical treatment. However, the combination is accompanied by considerable side effects and dose modifications are necessary in order to be able to recommend the treatment. This regimen needs further evaluation compared with SO therapy preferably in a randomized multicenter trial. PMID:15299189

  10. Expression of the spexin gene in the rat adrenal gland and evidences suggesting that spexin inhibits adrenocortical cell proliferation.

    PubMed

    Rucinski, Marcin; Porzionato, Andrea; Ziolkowska, Agnieszka; Szyszka, Marta; Macchi, Veronica; De Caro, Raffaele; Malendowicz, Ludwik K

    2010-04-01

    Spexin (SPX, also called NPQ) is a recently identified, highly conserved peptide which is processed and secreted. We analysed the SPX gene and its protein product in the rat adrenal gland to ascertain whether SPX is involved in the regulation of corticosteroid secretion of and growth of adrenocortical cells. In adult rat adrenal glands the highest levels of SPX mRNA were present in the glomerulosa (ZG) and fasciculate/reticularis (ZF/R) zones. High SPX gene expression levels were found in freshly isolated adult rat ZG and ZF/R cells. In cultured adrenocortical cells the levels of SPX mRNA were lower than in freshly isolated cells. SPX mRNA expression levels were found to be 2-3 times higher during days 90-540 of postnatal development than found during days 2-45. Prolonged ACTH administration lowered and dexamethasone increased adrenal SPX mRNA levels in vivo. Adrenal enucleation produced a significant linear increase in SPX mRNA levels, with the highest value occurring at day 8 after surgery, with control values taken on day 30 after enucleation. Immunohistochemistry revealed SPX-like immunoreactivity in the entire cortex of the adult male rat and in enucleation-induced regenerating cortex. A concentration of 10-6M SPX peptide stimulated basal aldosterone secretion by freshly isolated ZG. In prolonged exposure of adrenocortical cell primary cultures to SPX (10-6M) resulted in a small increase in corticosterone secretion and a notable decrease in BrdU incorporation. The results suggest the direct involvement of SPX in the regulation of adrenocortical cell proliferation; however, the mechanism of action remains unknown. PMID:20045034

  11. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  12. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  13. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines.

    PubMed

    Mueller, Matthias; Atanasov, Atanas; Cima, Igor; Corazza, Nadia; Schoonjans, Kristina; Brunner, Thomas

    2007-03-01

    Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements. PMID:17170096

  14. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  15. Role of ALADIN in Human Adrenocortical Cells for Oxidative Stress Response and Steroidogenesis

    PubMed Central

    Jühlen, Ramona; Idkowiak, Jan; Taylor, Angela E.; Kind, Barbara; Arlt, Wiebke; Huebner, Angela; Koehler, Katrin

    2015-01-01

    Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome. PMID:25867024

  16. Adrenocortical Carcinoma

    PubMed Central

    Kim, Alex C.; Sabolch, Aaron; Raymond, Victoria M.; Kandathil, Asha; Caoili, Elaine M.; Jolly, Shruti; Miller, Barbra S.; Giordano, Thomas J.

    2014-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, often with an unfavorable prognosis. Here we summarize the knowledge about diagnosis, epidemiology, pathophysiology, and therapy of ACC. Over recent years, multidisciplinary clinics have formed and the first international treatment trials have been conducted. This review focuses on evidence gained from recent basic science and clinical research and provides perspectives from the experience of a large multidisciplinary clinic dedicated to the care of patients with ACC. PMID:24423978

  17. ATR-101 disrupts mitochondrial functions in adrenocortical carcinoma cells and in vivo.

    PubMed

    Cheng, Yunhui; Kerppola, Raili Emilia; Kerppola, Tom Klaus

    2016-04-01

    Adrenocortical carcinoma (ACC) generally has poor prognosis. Existing treatments provide limited benefit for most patients with locally advanced or metastatic tumors. We investigated the mechanisms for the cytotoxicity, xenograft suppression, and adrenalytic activity of ATR-101 (PD132301-02), a prospective agent for ACC treatment. Oral administration of ATR-101 inhibited the establishment and impeded the growth of ACC-derived H295R cell xenografts in mice. ATR-101 induced H295R cell apoptosis in culture and in xenografts. ATR-101 caused mitochondrial hyperpolarization, reactive oxygen release, and ATP depletion within hours after exposure, followed by cytochrome c release, caspase-3/7 activation, and membrane permeabilization. The increase in mitochondrial membrane potential occurred concurrently with the decrease in cellular ATP levels. When combined with ATR-101, lipophilic free radical scavengers suppressed the reactive oxygen release, and glycolytic precursors prevented the ATP depletion, abrogating ATR-101 cytotoxicity. ATR-101 directly inhibited F1F0-ATPase activity and suppressed ATP synthesis in mitochondrial fractions. ATR-101 administration to guinea pigs caused oxidized lipofuscin accumulation in thezona fasciculatalayer of the adrenal cortex, implicating reactive oxygen release in the adrenalytic effect of ATR-101. These results support the development of ATR-101 and other adrenalytic compounds for the treatment of ACC. PMID:26843528

  18. Comparison of the Effects of PRKAR1A and PRKAR2B Depletion on Signaling Pathways, Cell Growth, and Cell Cycle Control of Adrenocortical Cells

    PubMed Central

    Basso, F.; Rocchetti, F.; Rodriguez, S.; Nesterova, M.; Cormier, F.; Stratakis, C.; Ragazzon, B.; Bertherat, J.; Rizk-Rabin, M.

    2016-01-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation in the abundance of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. Nonetheless, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. PMID:25268545

  19. Comparison of the effects of PRKAR1A and PRKAR2B depletion on signaling pathways, cell growth, and cell cycle control of adrenocortical cells.

    PubMed

    Basso, F; Rocchetti, F; Rodriguez, S; Nesterova, M; Cormier, F; Stratakis, C A; Ragazzon, B; Bertherat, J; Rizk-Rabin, M

    2014-11-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. However, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. PMID:25268545

  20. Alterations of Phosphodiesterases in Adrenocortical Tumors.

    PubMed

    Hannah-Shmouni, Fady; Faucz, Fabio R; Stratakis, Constantine A

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs. PMID:27625633

  1. Alterations of Phosphodiesterases in Adrenocortical Tumors

    PubMed Central

    Hannah-Shmouni, Fady; Faucz, Fabio R.; Stratakis, Constantine A.

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs.

  2. Combined steroidogenic characters of fetal adrenal and Leydig cells in childhood adrenocortical carcinoma.

    PubMed

    Fujisawa, Yasuko; Sakaguchi, Kimiyoshi; Ono, Hiroyuki; Yamaguchi, Rie; Kato, Fumiko; Kagami, Masayo; Fukami, Maki; Ogata, Tsutomu

    2016-05-01

    Although childhood adrenocortical carcinomas (c-ACCs) with a TP53 mutation are known to produce androgens, detailed steroidogenic characters have not been clarified. Here, we examined steroid metabolite profiles and expression patterns of steroidogenic genes in a c-ACC removed from the left adrenal position of a 2-year-old Brazilian boy with precocious puberty, using an atrophic left adrenal gland removed at the time of tumorectomy as a control. The c-ACC produced not only abundant dehydroepiandrosterone-sulfate but also a large amount of testosterone via the Δ5 pathway with Δ5-androstenediol rather than Δ4-androstenedione as the primary intermediate metabolite. Furthermore, the c-ACC was associated with elevated expressions of CYP11A1, CYP17A1, POR, HSD17B3, and SULT2A1, a low but similar expression of CYB5A, and reduced expressions of AKR1C3 (HSD17B5) and HSD3B2. Notably, a Leydig cell marker INSL3 was expressed at a low but detectable level in the c-ACC. Furthermore, molecular studies revealed a maternally inherited heterozygous germline TP53 mutation, and several post-zygotic genetic aberrations in the c-ACC including loss of paternally derived chromosome 17 with a wildtype TP53 and loss of maternally inherited chromosome 11 and resultant marked hyperexpression of paternally expressed growth promoting gene IGF2 and drastic hypoexpression of maternally expressed growth suppressing gene CDKN1C. These results imply the presence of combined steroidogenic properties of fetal adrenal and Leydig cells in this patient's c-ACC with a germline TP53 mutation and several postzygotic carcinogenic events. PMID:26940356

  3. Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFβ, and Wnt/β-catenin Signaling in Adrenocortical Carcinoma Cells

    PubMed Central

    Ehrlund, Anna; Jonsson, Philip; Vedin, Lise-Lotte; Williams, Cecilia; Gustafsson, Jan-Åke; Treuter, Eckardt

    2012-01-01

    The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) β and Wnt/β-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma. PMID:22427816

  4. Production of platelet-activating factor is a component of the angiotensin II-protein kinase C activation pathway in bovine adrenocortical cells.

    PubMed

    Pelosin, J M; Keramidas, M; Chambaz, E M

    1991-08-15

    Lyso-platelet-activating factor (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) enzyme activity was characterized for the first time in bovine adrenocortical tissue. It was found to be associated with the microsomal membrane fraction, in which it exhibited a specific activity of 0.4 nmol/min per mg of protein and catalytic properties similar to those described in other cell types. The adrenocortical acetyltransferase activity was increased by 2-3-fold on incubation of the preparation with purified protein kinase C (PKC) under phosphorylating condition. This activation was optimal after 5 min of incubation and paralleled an increase in PKC-catalysed 32P incorporation into microsomal proteins. Both acetyltransferase activation and protein phosphorylation were dependent on the presence of Ca2+ and phospholipids, and were blocked in the presence of the potent PKC inhibitor H-7. In the intact adrenocortical cell, angiotensin II and a potent phorbol ester (phorbol 12-myristate 13-acetate) were able to rapidly induce an increase in the biosynthesis of PAF, which was mostly released into the extracellular medium. These data suggest that bovine adrenocortical lyso-PAF acetyltransferase may be regulated by a PKC-dependent activation pathway, whereas no evidence for an additional adrenocorticotropin/cyclic AMP-dependent stimulation process was obtained in this cell type. Bovine adrenocortical cell membrane preparations were shown to possess high-affinity PAF-binding sites (Kd approximately 0.5 nM). Altogether, these observations suggest that PAF production and release may play a role in the autocrine or paracrine control of adrenocortical cell activation. PMID:1883337

  5. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  6. Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMP-dependent protein kinase.

    PubMed Central

    Rocchi, S; Gaillard, I; van Obberghen, E; Chambaz, E M; Vilgrain, I

    2000-01-01

    During activation of adrenocortical cells by adrenocorticotrophic hormone (ACTH), tyrosine dephosphorylation of paxillin is stimulated and this correlates with protrusion of filopodial structures and a decreased number of focal adhesions. These effects are inhibited by Na(3)VO(4), a phosphotyrosine phosphatase inhibitor [Vilgrain, Chinn, Gaillard, Chambaz and Feige (1998) Biochem. J. 332, 533-540]. However, the tyrosine phosphatases involved in these processes remain to be identified. In this study, we provide evidence that the Src homology domain (SH)2-containing phosphotyrosine phosphatase (SHP)2, but not SHP1, is expressed in adrenocortical cells and is phosphorylated upon ACTH challenge. ACTH (10(-8) M) treatment of (32)P-labelled adrenocortical cells resulted in an increase in phosphorylated SHP2. By probing SHP2-containing immunoprecipitates with an antibody to phosphoserine we found that SHP2 was phosphorylated on serine in ACTH-treated cells in a dose- and time-dependent manner. Furthermore, using an in vitro kinase assay, we showed that SHP2 was a target for cAMP-dependent protein kinase (PKA). Serine was identified as the only target amino acid phosphorylated in SHP2. Phosphorylation of SHP2 by PKA resulted in a dramatic stimulation of phosphatase activity measured either with insulin receptor substrate-1 or with the synthetic peptide [(32)P]poly(Glu/Tyr) as substrate. In an in-gel assay of SHP2-containing immunoprecipitates, phosphorylated in vitro by PKA or isolated from adrenocortical cells treated with 10 nM ACTH, a pronounced activation of SHP2 activity was shown. These observations clearly support the idea that a PKA-mediated signal transduction pathway contributes to SHP2 regulation in adrenocortical cells and point to SHP2 as a possible mediator of the effects of ACTH. PMID:11085942

  7. Familial predisposition to adrenocortical tumors: clinical and biological features and management strategies.

    PubMed

    Ribeiro, Raul C; Pinto, Emilia M; Zambetti, Gerard P

    2010-06-01

    The incidence of adrenocortical tumors (ACTs) is increased in several familial cancer syndromes resulting from abnormalities in genes that encode transcription factors implicated in cell proliferation, differentiation, senescence, apoptosis, and genomic instability. These include P53, MEN1, APC, and PRKAR1A. Adenomas are the most common ACTs, but adrenocortical carcinomas occur rarely as well. The clinical manifestations of ACTs, which result from increased secretion of adrenocortical hormones, are similar in the familial and sporadic forms of the disease. However, their management may differ because of unique aspects of the constitutional syndromes. The analysis of gene expression profiles of ACTs in these constitutional syndromes have contributed to our understanding of adrenal tumorigenesis and revealed new molecular diagnostic and prognostic markers and candidate genes for targeted therapies. This chapter summarizes the clinical and biological features, pathogenesis, and management strategies for ACTs that develop in patients with familial cancer syndrome. PMID:20833338

  8. PTTG1 Over-expression in Adrenocortical Cancer is Associated with Poor Survival and Represents a Potential Therapeutic Target

    PubMed Central

    Demeure, Michael J.; Coan, Kathryn E.; Grant, Clive S.; Komorowski, Richard A.; Stephan, Elizabeth; Sinari, Shripad; Mount, David; Bussey, Kimberly J.

    2014-01-01

    Background Adrenocortical carcinoma (ACC) is associated with poor survival rates. The objective of the study was to analyze ACC gene expression profiling data for prognostic biomarkers and therapeutic targets. Methods 44 ACC and 4 normal adrenals were profiled on Affymetrix U133 Plus 2 expression microarrays. Pathway and transcriptional enrichment analysis was performed. Protein levels were determined by western blot. Drug efficacy was assessed against ACC cell lines. Previously published expression datasets were analyzed for validation. Results Pathway enrichment analysis identified marked dysregulation of cyclin-dependent kinases and mitosis. Over-expression of PTTG1, which encodes securin, a negative regulator of p53, was identified as a marker of poor survival. Median survival for patients with tumors expressing high PTTG1 levels (log2 ratio of PTTG1 to average beta-actin <-3.04 ) was 1.8 years compared to 9.0 years if tumors expressed lower levels of PTTG1 (P<0.0001). Analysis of a previously published data set confirmed the association of high PTTG1 expression with a poor prognosis. Treatment of two ACC cell lines with vorinostat decreased securin levels and inhibited cell growth (IC50s of 1.69 uM and 0.891 uM, for SW-13 and H295R, respectively). Conclusion Over-expression of PTTG1 is correlated with poor survival in ACC. PTTG1/securin is a prognostic biomarker and warrants investigation as a therapeutic target. PMID:24238056

  9. Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II.

    PubMed Central

    Lebrethon, M C; Naville, D; Begeot, M; Saez, J M

    1994-01-01

    The regulation of ACTH receptor binding sites and mRNA by ACTH and angiotensin II (A-II) was studied using cultured human adrenal fasciculata reticularis cells (HAC). These cells expressed two major ACTH receptor transcripts of 1.8 and 3.4 kb and three minor ones of 4, 7, and 11 kb. ACTH increased the levels of all these transcripts in a time- and dose-dependent manner. At a maximal concentration of 10(-8) M, ACTH enhanced 21- and 4-fold the level of ACTH receptor mRNA and the number of receptors per cell, respectively. Pretreatment of HAC with A-II produced a dose-dependent enhancement of ACTH receptor mRNA that was associated with an increase of both ACTH receptor number and responsiveness to this hormone. The effects of A-II were completely blocked by an AT1 receptor subtype antagonist but not by an AT2 antagonist. The effects of ACTH together with A-II on ACTH receptor mRNA were greater than those induced by each hormone alone. These results show that ACTH receptor number and mRNA are positively regulated by the two main hormones (ACTH and A-II) which, in vivo, regulate adrenocortical functions. In addition, they also show that HAC are a target for A-II. Thus, regulation of ACTH receptors may be one mechanism by which ACTH and A-II regulate adrenocortical functions under both normal and pathological conditions. Images PMID:8163681

  10. Recurrence and mortality prognostic factors in childhood adrenocortical tumors: Analysis from the Brazilian National Institute of Cancer experience.

    PubMed

    Bulzico, Daniel; de Faria, Paulo Antônio Silvestre; de Paula, Marcela Pessoa; Bordallo, Maria Alice Neves; Pessoa, Cencita H C N; Corbo, Rossana; Ferman, Sima; Vaisman, Mario; Neto, Leonardo Vieira

    2016-05-01

    Prognostic markers that can help identifying precocious risk of unfavorable outcomes in patients with childhood adrenocortical tumors (ACTs) are still unclear. This observational and retrospective study aimed to identify clinical and pathology prognostic factors of recurrence and death in a tertiary cancer center population. Clinical, pathology, demographic, staging, and therapy data from patients with childhood ACT (median age: 3.6 years) treated at the Brazilian National Institute of Cancer between 1997 and 2015 were assessed. Univariate and bivariate analyses were used to study the association of clinical and pathology characteristics with recurrence and mortality. Recurrence and disease-related mortality were the main outcomes. Twenty-seven patients were included. Complete tumor resection was performed in 21 cases. The median tumor size was 8.2 cm. Mitotane was the most common adjuvant/palliative therapy (n = 13). Recurrence occurred in 6 patients, after a median time of 7.2 months, and was more common among those with larger tumors (P =.008), higher Weiss score (P =.001), and microscopic tumoral necrosis (P =.002). Ten patients died from the disease. Older age (P =.04), larger tumor size (P =.002), metastatic disease (P =.003), previous recurrence (P =.003), incomplete resection (P =.002), intraoperative tumor spillage (P =.005), higher Weiss score (P =.03), microscopic necrosis (P =.005), and capsular invasion (P =.02) were all associated with increased death risk. Even though complete tumor resection was performed in most cases, a considerable number of cases of childhood ACT resulted in recurrence and death. Early identification of unfavorable outcomes is essential to determine ideal therapy and appropriate surveillance. PMID:27246903

  11. Adrenocortical tumors and insulin resistance: What is the first step?

    PubMed

    Altieri, Barbara; Tirabassi, Giacomo; Casa, Silvia Della; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors. PMID:26637955

  12. Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells.

    PubMed

    Sbiera, Silviu; Leich, Ellen; Liebisch, Gerhard; Sbiera, Iuliu; Schirbel, Andreas; Wiemer, Laura; Matysik, Silke; Eckhardt, Carolin; Gardill, Felix; Gehl, Annemarie; Kendl, Sabine; Weigand, Isabel; Bala, Margarita; Ronchi, Cristina L; Deutschbein, Timo; Schmitz, Gerd; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin; Kroiss, Matthias

    2015-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer. PMID:26305886

  13. Origin and Molecular Pathology of Adrenocortical Neoplasms

    PubMed Central

    Bielinska, M.; Parviainen, H.; Kiiveri, S.; Heikinheimo, M.; Wilson, D.B.

    2008-01-01

    Neoplastic adrenocortical lesions are common in humans and several species of domestic animals. Although there are unanswered questions about the origin and evolution of adrenocortical neoplasms, analysis of human tumor specimens and animal models indicates that adrenocortical tumorigenesis involves both genetic and epigenetic alterations. Chromosomal changes accumulate during tumor progression, and aberrant telomere function is one of the key mechanisms underlying chromosome instability during this process. Epigenetic changes serve to expand the size of the uncommitted adrenal progenitor population, modulate their phenotypic plasticity (i.e., responsiveness to extracellular signals), and increase the likelihood of subsequent genetic alterations. Analyses of heritable and spontaneous types of human adrenocortical tumors have documented alterations in either cell surface receptors or their downstream effectors that impact neoplastic transformation. Many of the mutations associated with benign human adrenocortical tumors result in dysregulated cyclic AMP signaling, whereas key factors/signaling pathways associated with adrenocortical carcinomas include dysregulated expression of the IGF2 gene cluster, activation of the Wnt/β-catenin pathway, and inactivation of the p53 tumor suppressor. A better understanding of the factors and signaling pathways involved in adrenal tumorigenesis is necessary to develop targeted pharmacologic and genetic therapies. PMID:19261630

  14. Cortisol Stimulates Secretion of Dehydroepiandrosterone in Human Adrenocortical Cells Through Inhibition of 3βHSD2

    PubMed Central

    Topor, Lisa Swartz; Asai, Masato; Dunn, James; Majzoub, Joseph A.

    2011-01-01

    Context: Initiating factors leading to production of adrenal androgens are poorly defined. Cortisol is present in high concentrations within the adrenal gland, and its production rises with growth during childhood. Objective: Our aim was to characterize the effect of cortisol and other glucocorticoids on androgen secretion from a human adrenocortical cell line and from nonadrenal cells transfected with CYP17A1 or HSD3B2. Design/Setting: This study was performed in cultured cells, at an academic medical center. Methods: The effects of cortisol upon steroid production in human adrenal NCI-H295R cells were measured by immunoassay, tandem mass spectrometry, and thin-layer chromatography. The effects of cortisol upon the activities of 17, 20 lyase and 3βHSD2 were measured in NCI-H295R cells and in transfected COS-7 cells. Results: Cortisol markedly and rapidly stimulated dehydroepiandrosterone (DHEA) in a dose-dependent manner at cortisol concentrations ≥50 μm. Cortisone and 11-deoxycortisol were also potent stimulators of DHEA secretion, whereas prednisolone and dexamethasone were not. Treatment with cortisol did not affect expression of CYP17A1 or HSD3B2 mRNAs. Stimulation of DHEA secretion by cortisol was associated with competitive inhibition of 3βHSD2 activity. Conclusions: Cortisol inhibits 3βHSD2 activity in adrenal cells and in COS-7 cells transfected with HSD3B2. Thus, it is possible that intraadrenal cortisol may participate in the regulation of adrenal DHEA secretion through inhibition of 3βHSD2. We hypothesize that a rise in intraadrenal cortisol during childhood growth may lead to inhibition of 3βHSD2 activity and contribute to the initiation of adrenarche. PMID:20943790

  15. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells.

    PubMed

    van den Dungen, Myrthe W; Rijk, Jeroen C W; Kampman, Ellen; Steegenga, Wilma T; Murk, Albertinka J

    2015-06-01

    Persistent organic pollutants (POPs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorobiphenyl (PCB) 126 and 153, perfluorooctanesulfonic acid (PFOS), hexabromocyclododecane (HBCD), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), tributyltin (TBT), and methylmercury (MeHg) can be accumulated in seafood and then form a main source for human exposure. Some POPs have been associated with changes in steroid hormone levels in both humans and animals. This study describes the in vitro effects of these POPs and mixtures thereof in H295R adrenocortical carcinoma cells. Relative responses for 13 steroid hormones and 7 genes involved in the steroidogenic pathway, and CYP1A1, were analyzed. PFOS induced the most pronounced effects on steroid hormone levels by significantly affecting 9 out of 13 hormone levels measured, with the largest increases found for 17β-estradiol, corticosterone, and cortisol. Furthermore, TCDD, both PCBs, and TBT significantly altered steroidogenesis. Increased steroid hormone levels were accompanied by related increased gene expression levels. The differently expressed genes were MC2R, CYP11B1, CYP11B2, and CYP19A1 and changes in gene expression levels were more sensitive than changes in hormone levels. The POP mixtures tested showed mostly additive effects, especially for DHEA and 17β-estradiol levels. This study shows that some seafood POPs are capable of altering steroidogenesis in H295R cells at concentrations that mixtures might reach in human blood, suggesting that adverse health effects cannot be excluded. PMID:25765474

  16. Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis)

    SciTech Connect

    Miller, L.L. Hontela, A.

    2011-06-01

    Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na{sub 2}SO{sub 3}) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed to stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC{sub 50} > 2000 mg/L). RT cells were more sensitive (EC{sub 50} = 8.7 mg/L) to selenite than BT cells (EC{sub 50} = 90.4 mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines. - Research Highlights: > We investigated species-specific sensitivity to Se in trout adrenocortical cells. > Selenite

  17. Enucleation-induced rat adrenal gland regeneration: expression profile of selected genes involved in control of adrenocortical cell proliferation.

    PubMed

    Tyczewska, Marianna; Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Trejter, Marcin; Hochol-Molenda, Anna; Nowak, Krzysztof W; Malendowicz, Ludwik K

    2014-01-01

    Enucleation-induced adrenal regeneration is a highly controlled process; however, only some elements involved in this process have been recognized. Therefore, we performed studies on regenerating rat adrenals. Microarray RNA analysis and QPCR revealed that enucleation resulted in a rapid elevation of expression of genes involved in response to wounding, defense response, and in immunological processes. Factors encoded by these genes obscure possible priming effects of various cytokines on initiation of regeneration. In regenerating adrenals we identified over 100 up- or downregulated genes involved in adrenocortical cell proliferation. The changes were most significant at days 2-3 after enucleation and their number decreased during regeneration. For example, expression analysis revealed a notable upregulation of the growth arrest gene, Gadd45, only 24 hours after surgery while expression of cyclin B1 and Cdk1 genes was notably elevated between days 1-8 of regeneration. These changes were accompanied by changes in expression levels of numerous growth factors and immediate-early transcription factors genes. Despite notable differences in mechanisms of adrenal and liver regeneration, in regenerating adrenals we identified genes, the expression of which is well recognized in regenerating liver. Thus, it seems legitimate to suggest that, in the rat, the general model of liver and adrenal regeneration demonstrate some degree of similarity. PMID:25431590

  18. Enucleation-Induced Rat Adrenal Gland Regeneration: Expression Profile of Selected Genes Involved in Control of Adrenocortical Cell Proliferation

    PubMed Central

    Tyczewska, Marianna; Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Trejter, Marcin; Hochol-Molenda, Anna; Nowak, Krzysztof W.; Malendowicz, Ludwik K.

    2014-01-01

    Enucleation-induced adrenal regeneration is a highly controlled process; however, only some elements involved in this process have been recognized. Therefore, we performed studies on regenerating rat adrenals. Microarray RNA analysis and QPCR revealed that enucleation resulted in a rapid elevation of expression of genes involved in response to wounding, defense response, and in immunological processes. Factors encoded by these genes obscure possible priming effects of various cytokines on initiation of regeneration. In regenerating adrenals we identified over 100 up- or downregulated genes involved in adrenocortical cell proliferation. The changes were most significant at days 2-3 after enucleation and their number decreased during regeneration. For example, expression analysis revealed a notable upregulation of the growth arrest gene, Gadd45, only 24 hours after surgery while expression of cyclin B1 and Cdk1 genes was notably elevated between days 1–8 of regeneration. These changes were accompanied by changes in expression levels of numerous growth factors and immediate-early transcription factors genes. Despite notable differences in mechanisms of adrenal and liver regeneration, in regenerating adrenals we identified genes, the expression of which is well recognized in regenerating liver. Thus, it seems legitimate to suggest that, in the rat, the general model of liver and adrenal regeneration demonstrate some degree of similarity. PMID:25431590

  19. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma

    PubMed Central

    Armignacco, Roberta; Ercolino, Tonino; Canu, Letizia; Baroni, Gianna; Nesi, Gabriella; Galli, Andrea; Mannelli, Massimo; Luconi, Michaela

    2015-01-01

    Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients. PMID:25691058

  20. Stages of Adrenocortical Carcinoma

    MedlinePlus

    ... of Childhood Treatment for more information.) Having certain genetic conditions increases the risk of adrenocortical carcinoma. Anything ... can be a sign of disease. CT scan (CAT scan) : A procedure that makes a series of ...

  1. Galanin stimulates cortisol secretion from human adrenocortical cells through the activation of galanin receptor subtype 1 coupled to the adenylate cyclase-dependent signaling cascade.

    PubMed

    Belloni, Anna S; Malendowicz, Ludwik K; Rucinski, Marcin; Guidolin, Diego; Nussdorfer, Gastone G

    2007-12-01

    Previous studies showed that galanin receptors are expressed in the rat adrenal, and galanin modulates glucocorticoid secretion in this species. Hence, we investigated the expression of the various galanin receptor subtypes (GAL-R1, GAL-R2 and GAL-R3) in the human adrenocortical cells, and the possible involvement of galanin in the control of cortisol secretion. Reverse transcription-polymerase chain reaction detected the expression of GAL-R1 (but not GAL-R2 and GAL-R3) in the inner zones of the human adrenal cortex. The galanin concentration dependently enhanced basal, but not ACTH-stimulated secretion of cortisol from dispersed inner adrenocortical cells (maximal effective concentration, 10(-8) M). The cortisol response to 10(-8) M galanin was abrogated by GAL-R1 immunoneutralization, and unaffected by GAL-R2 or GAL-R3 immunoneutralization. Galanin (10(-8) M) and ACTH (10(-9) M) enhanced cyclic-AMP production from dispersed cells, and the response was suppressed by the adenylate cyclase inhibitor SQ-22536 (10(-4) M). Galanin did not affect inositol triphosphate release, which, in contrast, was raised by angiotensin-II (10(-8) M). SQ-22536 and the protein kinase (PK)A inhibitor H-89 (10(-5) M) abolished the cortisol response to 10(-8) M galanin, while the phospholipase C inhibitor U-73122 and the PKC inhibitor calphostin-C were ineffective. Preincubation with pertussis toxin (Ptx) (0.5 microg/ml) partially inhibited the cortisol response to galanin. We conclude that galanin stimulates cortisol secretion from human inner adrenocortical cells, acting through GAL-R1 coupled to the adenylate cyclase/PKA-dependent signaling cascade via a Ptx-sensitive Galpha protein. PMID:17982695

  2. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    PubMed

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  3. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells

    PubMed Central

    Toole, Colleen M.; Filer, Dayne L.; Lewis, Kenneth C.; Martin, Matthew T.

    2016-01-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  4. The effect of mitotane on viability, steroidogenesis and gene expression in NCI‑H295R adrenocortical cells.

    PubMed

    Lehmann, Tomasz P; Wrzesiński, Tomasz; Jagodziński, Paweł P

    2013-03-01

    Mitotane, also known as o,p'‑DDD or (RS)‑1‑chl-oro‑2‑[2,2‑dichloro‑1‑(4‑chlorophenyl)‑ethyl]‑benzene, is an adrenal cortex-specific cytotoxic drug used in the therapy of adrenocortical carcinoma (ACC). The drug also inhibits steroidogenesis, however, the mechanisms of its anticancer and antisteroidogenic effects remain unknown. At present, data on the impact of mitotane on cell viability and the regulation of genes encoding proteins associated with steroids synthesis in the adrenal cortex, including cortisol and dehydroepiandrosterone sulfate (DHEAS), are limited and contradictory. In the present study, the effect of 24‑h mitotane treatment on viability of the ACC cell line, NCI‑H295R, was analyzed, identifying a decrease in cell viability and an increase in caspase‑3 and ‑7 activities. Mitotane treatment also led to decreased cortisol and DHEAS concentration in the culture media. Concomitantly, mitotane resulted in decreased mRNA levels of two cytochromes P450 (CYP11A1 and CYP17A1), mRNAs encoding proteins involved in the synthesis of cortisol and DHEAS. Mitotane did not affect mRNA levels of cyclin dependent kinase inhibitor 1A (encoding p21) and MYC (encoding cMyc). cMyc and p21 are key transcription factors associated with cell cycle regulation. However, mitotane inhibited expression of transforming growth factor β1 gene, encoding a potent inhibitor of cell proliferation and steroidogenesis. PRKAR1A, a protein kinase A regulatory subunit, is involved in the activation of steroidogenesis. PRKAR1A mRNA levels were reduced following 24‑h treatment with mitotane. Results indicate that mitotane markedly inhibited expression of genes involved in steroidogenesis, secretion of cortisol and DHEAS. Reduced expression of TGFB1 cannot account fully for the effect of mitotane on CYP11A1 and CYP17A1. We hypothesized that reduced viability of NCI‑H295R cells in the presence of mitotane may be a result of apoptosis triggered by increased

  5. 5th International ACC Symposium: The New Genetics of Benign Adrenocortical Neoplasia: Hyperplasias, Adenomas, and Their Implications for Progression into Cancer.

    PubMed

    Kirschner, Lawrence S; Stratakis, Constantine A

    2016-02-01

    Genetic tools for the analysis of human tumors have developed rapidly over the past 20 years. Adrenocortical neoplasms have been subject to multiple analyses using these new genetic tools. Analysis of adrenocortical carcinomas (ACCs) has been complicated by the fact that these tumors tend to exhibit multiple somatic abnormalities, so that identifying driver mutations is complex task. In contrast, benign adrenocortical neoplasms have proven to be a fertile ground for the identification of the genetic causes of adrenocortical adenomas, as well as a variety of adrenocortical hyperplasia. Analysis of cortisol-producing adrenocortical adenomas has revealed alterations leading to enhanced signaling through the cAMP-dependent protein kinase (PKA) pathway. In contrast, macronodular cortisol-producing neoplasias have been shown to result from mutations in the ARMC5 gene, whose function is not yet quite so clear. In contrast, adrenal tumors resulting in excess production of the blood pressure hormone aldosterone almost always result from abnormalities of calcium handling, both in single adenomas and in bilateral hyperplasias. In both cases, there is elevation of a signaling pathway responsible both for hormone secretion and for gland growth and maintenance, thus confirming the linkage of these two output of cellular physiology. The connection between the benign hyperplasia observed in these states and adrenocortical carcinogenesis is not nearly as clear, although genetic studies are beginning to elucidate the relationship between benign and malignant tumors of this gland. PMID:26684645

  6. Curcumin inhibits bTREK-1 K+ channels and stimulates cortisol secretion from adrenocortical cells

    PubMed Central

    Enyeart, Judith A.; Liu, Haiyan; Enyeart, John J.

    2008-01-01

    Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential. Inhibition of these channels by adrenocorticotropic hormone (ACTH) is coupled to membrane depolarization and cortisol secretion. Curcumin, a phytochemical with medicinal properties extracted from the spice turmeric, was found to modulate both bTREK-1 K+ currents and cortisol secretion from AZF cells. In whole-cell patch clamp experiments, curcumin inhibited bTREK-1 with an IC50 of 0.93μM by a mechanism that was voltage-independent. bTREK-1 inhibition by curcumin occurred through interaction with an external binding site and was independent of ATP hydrolysis. Curcumin produced a concentration-dependent increase in cortisol secretion that persisted for up to 24 h. At a maximally effective concentration of 50 μM, curcumin increased secretion as much as10-fold. These results demonstrate that curcumin potently inhibits bTREK-1 K+ channels and stimulates cortisol secretion from bovine AZF cells. The inhibition of bTREK-1 by curcumin may be linked to cortisol secretion through membrane depolarization. Since TREK-1 is widely expressed in a variety of cells, it is likely that some of the biological actions of curcumin, including its therapeutic effects, may be mediated through inhibition of these K+ channels. PMID:18406348

  7. A Large Family with Carney Complex Caused by the S147G PRKAR1A Mutation Shows a Unique Spectrum of Disease Including Adrenocortical Cancer

    PubMed Central

    Anselmo, João; Medeiros, Sandra; Carneiro, Victor; Greene, Elizabeth; Levy, Isaac; Nesterova, Maria; Lyssikatos, Charalampos; Horvath, Anelia; Carney, J. Aidan

    2012-01-01

    Context: Most tumors in Carney complex (CNC) are benign, including primary pigmented nodular adrenocortical disease (PPNAD), the main endocrine tumor in CNC. Adrenocortical cancer (AC) has never been observed in the syndrome. Herein, we describe a large Azorean family with CNC caused by a point mutation in the PRKAR1A gene coding for type 1-α (RIα) regulatory subunit of the cAMP-dependent protein kinase A, in which the index patient presented with AC. Objective: We studied the genotype-phenotype correlation in CNC. Design and Setting: We reported on case series and in vitro testing of the PRKAR1A mutation in a tertiary care referral center. Patients: Twenty-two members of a family were investigated for Cushing syndrome and other CNC components; their DNA was sequenced for PRKAR1A mutations. Results: Cushing syndrome due to PPNAD occurred in four patients, including the proposita who presented with AC and three who had Cushing syndrome and/or PPNAD. Lentigines were found in six additional patients who did not have PPNAD. A base substitution (c.439A>G/p.S147G) in PRKAR1A was identified in the proposita, in the three others with PPNAD, in the proposita's twin daughters who had lentigines but no evidence of hypercortisolism, and in five other family members, including one without lentigines or evidence of hypercortisolism. Unlike in other RIα defects, loss of heterozygosity was not observed in AC. The S147G mutation was compared to other expressed PRKAR1A mutations; it led to decreased cAMP and catalytic subunit binding by RIα and increased protein kinase A activity in vitro. Conclusions: In a large family with CNC, one amino acid substitution caused a spectrum of adrenal disease that ranged from lack of manifestations to cancer. PPNAD and AC were the only manifestations of CNC in these patients, in addition to lentigines. These data have implications for counseling patients with CNC and are significant in documenting the first case of AC in the context of PPNAD

  8. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  9. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  10. Efonidipine, a Ca(2+)-channel blocker, enhances the production of dehydroepiandrosterone sulfate in NCI-H295R human adrenocortical carcinoma cells.

    PubMed

    Ikeda, Keiichi; Saito, Takatoshi; Tojo, Katsuyoshi

    2011-01-01

    Steroid biosynthesis is initiated with transportation of cholesterol along with steroidogenic acute regulatory protein (StAR) into the mitchondria and is achieved with several steroidogenic enzymes. It has been reported that Ca(2+) channel blockers (CCBs), such as azelnidipine, efonidipine and nifedipine, suppress the biosynthesis of aldosterone and cortisol, but the overall effects of CCBs on steroid biosynthesis remain to be clarified. The present study was designed to evaluate the effects of CCBs on the expression of steroidogenic enzymes and the production of adrenal androgen, dehydroepiandrosterone sulfate (DHEA-S) that has anti-atherosclerotic actions. NCI-H295R human adrenocortical carcinoma cells and HepG2 human hepatoma cells were cultured for 24 hours with or without a CCB (amlodipine, efonidipine, nifedipine, azelnidipine R(-)-efonidipine, verapamil or diltiazem). HepG2 hepatoma cells were used to confirm the effects of CCBs on the expression of StAR. In fact, efonidipine and nifedipine increased the expression of StAR in HepG2 cells. Efonidipine and nifedipine, but not other examined CCBs, also increased the N(6), 2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP)-induced StAR mRNA, which reflects the action of adrenocorticotropic hormone, and efonidipine and R(-)-efonidipine enhanced the dbcAMP-induced DHEA-S production in NCI-H295R adrenocortical carcinoma cells. Therefore, efonidipine and nifedipine might increase the expression of StAR and, in turn, efonidipine enhanced the dbcAMP-induced DHEA-S production, independent of Ca(2+) channel blockade. These results indicate that such effects are not associated with Ca(2+) influx. Moreover, only efonidipine enhanced the angiotensin II-induced expression of StAR mRNA (P < 0.01 vs. angiotensin II alone). In conclusion, efonidipine might exert an additional action beyond anti-hypertensive actions. PMID:21757861

  11. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  12. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells

    PubMed Central

    Lewis, Aurélia E.; Aesoy, Reidun; Bakke, Marit

    2016-01-01

    Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology. PMID:27379015

  13. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells.

    PubMed

    Lewis, Aurélia E; Aesoy, Reidun; Bakke, Marit

    2016-01-01

    Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology. PMID:27379015

  14. Activation of the SCPx promoter in mouse adrenocortical Y1 cells

    SciTech Connect

    Lopez, Dayami; Niesen, Melissa; Bedi, Mohini; Hale, David; McLean, Mark P. . E-mail: mmclean@health.usf.edu

    2007-06-01

    Sterol carrier protein X (SCPx) is a peroxisomal protein with both lipid transfer and thiolase activity. Treatment of mouse adrenal Y1 cells with cAMP for 24 h caused a significant induction of SCPx mRNA levels. Reporter gene studies demonstrated that treatment with cAMP and SF-1 was able to activate the SCPx promoter. Sequence analysis revealed the presence of three putative steroidogenic factor-1 (SF-1) binding motifs (designated SFB1, SFB2, and SFB3) and one CRE. Only SFB1 and SFB3 were able to bind recombinant SF-1 protein in electrophoretic mobility shift assays. The CRE was able to form a DNA/protein complex in the presence of Y1 nuclear extracts. Mutational analysis studies demonstrated that SFB3 is required for full activation of the SCPx promoter by cAMP treatment. Regulation of the SCPx gene by SF-1 and cAMP is similar to the regulatory mechanisms observed for other steroidogenic genes.

  15. Squamous cell skin cancer

    MedlinePlus

    ... cell; NMSC - squamous cell; Squamous cell skin cancer; Squamous cell carcinoma of the skin ... squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type does not spread to ...

  16. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  17. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC).

    PubMed

    Casaburi, Ivan; Avena, Paola; De Luca, Arianna; Chimento, Adele; Sirianni, Rosa; Malivindi, Rocco; Rago, Vittoria; Fiorillo, Marco; Domanico, Francesco; Campana, Carmela; Cappello, Anna Rita; Sotgia, Federica; Lisanti, Michael P; Pezzi, Vincenzo

    2015-09-22

    The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1). This tumor is characterized by limited therapeutic options and unsuccessful treatments. A useful strategy to develop an effective therapy for ACC is to identify a common downstream target of these multiple pathways. A good candidate could be the transcription factor estrogen-related receptor alpha (ERRα) because of its ability to regulate energy metabolism, mitochondrial biogenesis and signalings related to cancer progression. In this study we tested the effect of ERRα inverse agonist, XCT790, on the proliferation of H295R adrenocortical cancer cell line. Results from in vitro and in vivo experiments showed that XCT790 reduced H295R cell growth. The inhibitory effect was associated with impaired cell cycle progression which was not followed by any apoptotic event. Instead, incomplete autophagy and cell death by a necrotic processes, as a consequence of the cell energy failure, induced by pharmacological reduction of ERRα was evidenced. Our results indicate that therapeutic strategies targeting key factors such as ERRα that control the activity and signaling of bioenergetics processes in high-energy demanding tumors could represent an innovative/alternative therapy for the treatment of ACC. PMID:26312764

  18. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC)

    PubMed Central

    Chimento, Adele; Sirianni, Rosa; Malivindi, Rocco; Rago, Vittoria; Fiorillo, Marco; Domanico, Francesco; Campana, Carmela; Cappello, Anna Rita; Sotgia, Federica; Lisanti, Michael P.; Pezzi, Vincenzo

    2015-01-01

    The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1). This tumor is characterized by limited therapeutic options and unsuccessful treatments. A useful strategy to develop an effective therapy for ACC is to identify a common downstream target of these multiple pathways. A good candidate could be the transcription factor estrogen-related receptor alpha (ERRα) because of its ability to regulate energy metabolism, mitochondrial biogenesis and signalings related to cancer progression. In this study we tested the effect of ERRα inverse agonist, XCT790, on the proliferation of H295R adrenocortical cancer cell line. Results from in vitro and in vivo experiments showed that XCT790 reduced H295R cell growth. The inhibitory effect was associated with impaired cell cycle progression which was not followed by any apoptotic event. Instead, incomplete autophagy and cell death by a necrotic processes, as a consequence of the cell energy failure, induced by pharmacological reduction of ERRα was evidenced. Our results indicate that therapeutic strategies targeting key factors such as ERRα that control the activity and signaling of bioenergetics processes in high-energy demanding tumors could represent an innovative/alternative therapy for the treatment of ACC. PMID:26312764

  19. Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma

    PubMed Central

    de Sousa, Gabriela Resende Vieira; Ribeiro, Tamaya C.; Faria, Andre M.; Mariani, Beatriz M.P.; Lerario, Antonio M.; Zerbini, Maria Claudia N.; Soares, Iberê C.; Wakamatsu, Alda; Alves, Venancio A.F.; Mendonca, Berenice B.; Fragoso, Maria Candida B.V.; Latronico, Ana Claudia; Almeida, Madson Q.

    2015-01-01

    Low DICER1 expression was associated with poor outcome in several cancers. Recently, hot-spot DICER1 mutations were found in ovarian tumors, and TARBP2 truncating mutations in tumor cell lines with microsatellite instability. In this study, we assessed DICER1 e TRBP protein expression in 154 adult adrenocortical tumors (75 adenomas and 79 carcinomas). Expression of DICER1 and TARBP2 gene was assessed in a subgroup of 61 tumors. Additionally, we investigated mutations in metal biding sites located at the RNase IIIb domain of DICER1 and in the exon 5 of TARBP2 in 61 tumors. A strong DICER1 expression was demonstrated in 32% of adenomas and in 51% of carcinomas (p = 0.028). Similarly, DICER1 gene overexpression was more frequent in carcinomas (60%) than in adenomas (23%, p = 0.006). But, among adrenocortical carcinomas, a weak DICER1 expression was significantly more frequent in metastatic than in non-metastatic adrenocortical carcinomas (66% vs. 31%; p = 0.002). Additionally, a weak DICER1 expression was significantly correlated with a reduced overall (p = 0.004) and disease-free (p = 0.005) survival. In the multivariate analysis, a weak DICER1 expression (p = 0.048) remained as independent predictor of recurrence. Regarding TARBP2 gene, its protein and gene expression did not correlate with histopathological and clinical parameters. No variant was identified in hot spot areas of DICER1 and TARBP2. In conclusion, a weak DICER1 protein expression was associated with reduced disease-free and overall survival and was a predictor of recurrence in adrenocortical carcinomas. PMID:26087193

  20. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors.

    PubMed

    Berthon, Annabel S; Szarek, Eva; Stratakis, Constantine A

    2015-01-01

    Cyclic-AMP (cAMP)-dependent protein kinase (PKA) is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS) from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH). More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα), were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C) recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA's role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway. PMID:26042218

  1. Treatment Option Overview (Adrenocortical Carcinoma)

    MedlinePlus

    ... of Childhood Treatment for more information.) Having certain genetic conditions increases the risk of adrenocortical carcinoma. Anything ... can be a sign of disease. CT scan (CAT scan) : A procedure that makes a series of ...

  2. QRFP induces aldosterone production via PKC and T-type calcium channel-mediated pathways in human adrenocortical cells: evidence for a novel role of GPR103.

    PubMed

    Ramanjaneya, Manjunath; Karteris, Emmanouil; Chen, Jing; Rucinski, Marcin; Ziolkowska, Agnieszka; Ahmed, Naima; Kagerer, Sonja; Jöhren, Olaf; Lehnert, Hendrik; Malendowicz, Ludwik K; Randeva, Harpal S

    2013-11-01

    Hormonal regulation of adrenal function occurs primarily through activation of GPCRs. GPCRs are central to many of the body's endocrine and neurotransmitter pathways. Recently, it was shown that activation of GPR103 by its ligand QRFP induced feeding, locomotor activity, and metabolic rate, and QRFP is bioactive in adipose tissue of obese individuals. Given that the adrenal gland is a pivotal organ for energy balance and homeostasis, we hypothesized that GPR103 and QRFP are involved in steroidogenic responses. Using qRT-PCR and immunohistochemistry, we mapped both GPR103 and QRFP in human fetal and adult adrenal gland as well as rat adrenals. Both were primarily localized in the adrenal cortex but not in the medulla. Activation of GPR103 in human adrenocortical H295R cells led to a decrease in forskolin-increased cAMP and an increase of intracellular Ca(2+) levels. In addition, treatment of H295R cells with QRFP induced aldosterone and cortisol secretion as measured by ELISA. These increases were accompanied by increased expression and activity of StAR, CYB11B1, and CYP11B2 as assessed by qRT-PCR and luciferase reporter assay, respectively. Using specific inhibitors, we also demonstrated that aldosterone induction involves MAPK, PKC, and/or T-type Ca(2+) channel-dependent pathways. These novel data demonstrate that QRFP induces adrenal steroidogenesis in vitro by regulating key steroidogenic enzymes involving MAPK/PKC and Ca(2+) signaling pathways. PMID:23964068

  3. Adrenocortical involution in rats during oestrus synchronisation with medroxyprogesterone.

    PubMed

    Fell, B F; Campbell, R M; Dinsdale, D

    1977-05-01

    Daily treatment of female rats with medroxyprogesterone acetate in aqueous suspension resulted in adrenocortical atrophy. The doses given were those used for oestrus synchronisation. Intramuscular injections of 2-0 mg medroxyprogesterone acetate were used to investigate the atrophic process. Adrenocortical involution was associated with extensive single cell deletion (apoptosis). It is suggested that theses changes were due to suppression of pituitary ACTH secretion. The cytological changes support the concept that single cell death plays an important role in organ remodelling. Biochemical determinations of DNA, RNA, protein and dry matter, and histological examination, did not reveal significant changes in the liver. PMID:560035

  4. Sphingosine-1-Phosphate Rapidly Increases Cortisol Biosynthesis and the Expression of Genes Involved in Cholesterol Uptake and Transport in H295R Adrenocortical Cells

    PubMed Central

    Lucki, Natasha C.; Li, Donghui; Sewer, Marion B.

    2011-01-01

    In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gαi signaling, phospholipase C (PLC), Ca2+/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca2+, the phosphorylation of hormone sensitive lipase (HSL) at Ser563, and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis. PMID:21864647

  5. Expression of prepro-ghrelin and related receptor genes in the rat adrenal gland and evidences that ghrelin exerts a potent stimulating effect on corticosterone secretion by cultured rat adrenocortical cells.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Malendowicz, Ludwik K

    2009-08-01

    The orexigenic peptide ghrelin (GHREL) and obestatin (OBS) originate from the same peptide precursor, preproghrelin (ppGHREL). Apart from orexigenic effect, GHREL also regulates neuroendocrine function. We investigated GHREL and OBS effects on corticosterone secretion by freshly isolated and cultured rat adrenocortical cells. Classic RT-PCR revealed the presence of ppGHREL, GHS-R1a, GPR39v1 and GPR39v2 and GOAT4 (ghrelin O-acyl transferase) mRNAs in rat adrenals and cultured for 4 days rat adrenocortical cells. Expression of ppGHREL, GHS-R1a, and GOAT genes was notably higher in the cortex than in medulla. High expression level of GOAT gene was found in the zona glomerulosa, while expression level of both GPR39v1 and GPR39v2 genes was similar in adrenal cortical zones and in medulla. In freshly isolated cells neither GHREL nor OBS had an effect on corticosteroid output. Prolonged exposure of cultured cells to GHREL resulted in a potent, comparable to ACTH, stimulating effect of GHREL on corticosterone secretion. Prolonged exposure to OBS was ineffective. Neither GHREL nor OBS had any effect on proliferation of studied cells, while ACTH notably lowered it. GHREL down regulated GHS-R1a gene expression while both ACTH and GHREL stimulated expression level of GPR39v1 gene. Expression of CYP11A1 gene was notably stimulated and that of StAR gene remained unaffected by ACTH or GHREL. Thus, our study is the first to demonstrate direct stimulating effect of GHREL on corticosterone output by cultured rat adrenocortical cells. This stimulating action differs from that evoked by ACTH and is not dependent on the presence of functional ACTH receptor. PMID:19416745

  6. Cell phones and cancer

    MedlinePlus

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  7. Cell phones and cancer

    MedlinePlus

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  8. Laparoscopic Adrenalectomy for Large Adrenocortical Carcinoma

    PubMed Central

    al Qadhi, Hani; al Wahaibi, Khalifa; Rizvi, Syed G.

    2015-01-01

    Background: Adrenocortical cancer (ACC) is a rare disease that is difficult to treat. Laparoscopic adrenalectomy (LA) is performed, even for large adrenocortical carcinomas. However, the oncological effectiveness of LA remains unclear. This review presents the current knowledge of the feasibility and oncological effectiveness of laparoscopic surgery for ACC, with an analysis of data for outcomes and other parameters. Database: A systematic review of the literature was performed by searching the PubMed and Medline databases for all relevant articles in English, published between January 1992 and August 2014 on LA for adrenocortical carcinoma. Discussion: The search resulted in retrieval of 29 studies, of which 10 addressed the outcome of LA versus open adrenalectomy (OA) and included 844 patients eligible for this review. Among these, 206 patients had undergone LA approaches, and 638 patients had undergone OA. Among the 10 studies that compared the outcomes obtained with LA and OA for ACC, 5 noted no statistically significant difference between the 2 groups in the oncological outcomes of recurrence and disease-free survival, whereas the remaining 5 reported inferior outcomes in the LA group. Using a paired t test for statistical analysis, except for tumor size, we found no significant difference in local recurrence, peritoneal carcinomatosis, positive resection margin, and time to recurrence between the LA and OA groups. The overall mean tumor size in patients undergoing LA and OA was 7.1 and 11.2 cm, respectively (P = .0003), and the mean overall recurrence was 61.5 and 57.9%, respectively. The outcome of LA is believed to depend to a large extent on the size and stage of the lesion (I and II being favorable) and the surgical expertise in the center where the patient undergoes the operation. However, the present review shows no difference in the outcome between the 2 approaches across all stages. A poor outcome is likely to result from inadequate surgery

  9. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells. PMID:19288031

  10. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  11. Biology is Destiny: A Case of Adrenocortical Carcinoma Diagnosed and Resected at Inception in a Patient Under Close Surveillance for Lung Cancer.

    PubMed

    Miron, Benjamin; Ristau, Benjamin T; Tomaszewski, Jeffrey J; Jones, Josh; Milestone, Bart; Wong, Yu-Ning; Uzzo, Robert G; Edmondson, Donna; Scott, Walter; Kutikov, Alexander

    2016-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that is generally associated with a poor prognosis whose existence dictates the management of incidental renal masses. We report a case of ACC diagnosed and treated at its apparent inception in a patient undergoing close surveillance imaging of a prior malignancy. Despite timely detection and resection of a localized ACC this patient rapidly progressed to systemic disease. This case highlights the rapid growth kinetics of ACC and puts into perspective the challenges associated with the established treatment paradigm for patients diagnosed with an adrenal mass. PMID:27617213

  12. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples

    PubMed Central

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S.; Kebebew, Electron

    2015-01-01

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics. PMID:26446994

  13. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia

    PubMed Central

    Villares Fragoso, Maria Candida Barisson; Wanichi, Ingrid Quevedo; Cavalcante, Isadora Pontes; Mariani, Beatriz Marinho de Paula

    2016-01-01

    Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune–Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1–3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia. PMID:27512387

  14. Isolation of rat adrenocortical mitochondria

    SciTech Connect

    Solinas, Paola; Fujioka, Hisashi; Tandler, Bernard; Hoppel, Charles L.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  15. Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma

    PubMed Central

    Lefèvre, L; Omeiri, H; Drougat, L; Hantel, C; Giraud, M; Val, P; Rodriguez, S; Perlemoine, K; Blugeon, C; Beuschlein, F; de Reyniès, A; Rizk-Rabin, M; Bertherat, J; Ragazzon, B

    2015-01-01

    Adrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position −1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing. PMID:26214578

  16. Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of translocation apparatus proteins.

    PubMed

    Black, V H; Sanjay, A; van Leyen, K; Möeller, I; Lauring, B; Kreibich, G

    2002-11-01

    Steroid-secreting cells possess abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. In this study we demonstrate that adrenal smooth microsomal subfractions enriched in these membranes also possess high levels of proteins belonging to the translocation apparatus, proteins previously assumed to be confined to morphologically identifiable rough endoplasmic reticulum (RER). We further demonstrate that these smooth microsomal subfractions are capable of effecting the functions of these protein complexes: co-translational translocation, signal peptide cleavage and N-glycosylation of newly synthesized polypeptides. We hypothesize that these elements participate in regulating the levels of ER-targeted membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally-regulated manner. PMID:12530645

  17. Fragmentation of cancer cells

    NASA Astrophysics Data System (ADS)

    Vanapalli, Siva; Kamyabi, Nabiollah

    Tumor cells have to travel through blood capillaries to be able to metastasize and colonize in distant organs. Among the numerous cells that are shed by the primary tumor, very few survive in circulation. In vivo studies have shown that tumor cells can undergo breakup at microcapillary junctions affecting their survival. It is currently unclear what hydrodynamic and biomechanical factors contribute to fragmentation and moreover how different are the breakup dynamics of highly and weakly metastatic cells. In this study, we use microfluidics to investigate flow-induced breakup of prostate and breast cancer cells. We observe several different modes of breakup of cancer cells, which have striking similarities with breakup of viscous drops. We quantify the breakup time and find that highly metastatic cancer cells take longer to breakup than lowly metastatic cells suggesting that tumor cells may dynamically modify their deformability to avoid fragmentation. We also identify the role that cytoskeleton and membrane plays in the breakup process. Our study highlights the important role that tumor cell fragmentation plays in cancer metastasis. Cancer Prevention and Research Institute of Texas.

  18. Basal cell cancer (image)

    MedlinePlus

    ... is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure rate of more than 95%, but regular examination ...

  19. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  20. Cancer Stem Cells in Pancreatic Cancer

    PubMed Central

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer. PMID:24281178

  1. Pathogenesis of benign adrenocortical tumors.

    PubMed

    Vezzosi, Delphine; Bertherat, Jérôme; Groussin, Lionel

    2010-12-01

    Most adrenocortical tumors (ACT) are benign unilateral adrenocortical adenomas, often discovered incidentally. Exceptionally, ACT are bilateral. However bilateral ACT have been very helpful to progress in the pathophysiology of ACT. Although most ACT are of sporadic origin, they may also be part of syndromic and/or hereditary disorders. The identification of the genetics of familial diseases associated with benign ACT has been helpful to define somatic alterations in sporadic ACT: for example, identification of PRKAR1A mutations in Carney complex or alterations of the Wnt/β-catenin pathway in Familial Adenomatous Polyposis Coli. Components of the cAMP signaling pathway-for example, adrenocorticotropic-hormone receptors and other membrane receptors, Gs protein, phosphodiesterases and protein kinase A-can be altered to various degrees in benign cortisol-secreting ACT. These progress have been important for the understanding of the pathogenesis of benign ACT, but already have profound implications for clinical management, for example in unraveling the genetic origin of disease in some patients with ACT. They also have therapeutic consequences, and should help to develop new therapeutic options. PMID:21115158

  2. Low white blood cell count and cancer

    MedlinePlus

    Neutropenia and cancer; Absolute neutrophil count and cancer; ANC and cancer ... A person with cancer can get a low white blood cell count from the cancer or from treatment for the cancer. Cancer may ...

  3. Treatment Options by Stage (Adrenocortical Carcinoma)

    MedlinePlus

    ... of Childhood Treatment for more information.) Having certain genetic conditions increases the risk of adrenocortical carcinoma. Anything ... can be a sign of disease. CT scan (CAT scan) : A procedure that makes a series of ...

  4. Extramitochondrial OPA1 and adrenocortical function.

    PubMed

    Fülöp, László; Rajki, Anikó; Katona, Dávid; Szanda, Gergö; Spät, András

    2013-12-01

    We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion. PMID:23906536

  5. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  6. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  7. Pancreatic small cell cancer.

    PubMed

    El Rassy, Elie; Tabchi, Samer; Kourie, Hampig Raphael; Assi, Tarek; Chebib, Ralph; Farhat, Fadi; Kattan, Joseph

    2016-06-01

    Small cell carcinoma (SCC) is most commonly associated with lung cancer. Extra-pulmonary SCC can originate in virtually any organ system, with the gastrointestinal tract being the most common site of involvement. We review the clinical presentation, pathogenesis, histology, imaging modalities and optimal therapeutic management of PSCC in light of available evidence. PMID:26566245

  8. Nonsmall cell lung cancer.

    PubMed

    Sculier, Jean-Paul

    2013-03-01

    The objective of this review is to report the Clinical Year in Review proceedings in the field of nonsmall cell lung cancer that were presented at the 2012 European Respiratory Society Congress in Vienna, Austria. Various topics were reviewed, including epidemiology, screening, diagnosis, treatment, prognosis, and palliative and end of life care. PMID:23457162

  9. General Information about Adrenocortical Carcinoma

    MedlinePlus

    ... Support for Caregivers Survivorship Questions to Ask About Cancer Research Advanced Cancer Choices for Care Talking about Advanced ... Cancer and Caregivers Questions to Ask about Advanced Cancer Research Managing Cancer Care Finding Health Care Services Advance ...

  10. Small Cell Lung Cancer

    PubMed Central

    Kalemkerian, Gregory P.; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura QM; Downey, Robert J.; Gandhi, Leena; Ganti, Apar Kishor P.; Govindan, Ramaswamy; Grecula, John C.; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W.; Merritt, Robert E.; Moran, Cesar A.; Niell, Harvey B.; O’Malley, Janis; Patel, Jyoti D.; Ready, Neal; Rudin, Charles M.; Williams, Charles C.; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted. PMID:23307984

  11. Advanced diagnostic approaches and current medical management of insulinomas and adrenocortical disease in ferrets (Mustela putorius furo).

    PubMed

    Chen, Sue

    2010-09-01

    Endocrine neoplasia is the most common tumor type in domestic ferrets, especially in middle-aged to older ferrets. Islet cell tumors and adrenocortical tumors constitute the major types of endocrine neoplasms. Insulinoma is a tumor that produces and releases excessive amounts of insulin. Evaluation of fasted blood glucose levels provides a quick diagnostic assessment for the detection of insulinomas. Use of glucocorticoids, diazoxide, and diet modification are some of the medical treatment options for insulinomas. Adrenocortical neoplasia in ferrets usually overproduces one or more sex hormones. Sex hormones which can result in progressive alopecia, vulvar swelling in females, and prostagomegaly in males. Abdominal ultrasonography and sex hormone assays can be used to diagnose adrenocortical neoplasms. Drugs such as leuprolide acetate, deslorelin acetate, and the hormone melatonin can be used to treat adrenocortical neoplasms in ferrets when surgery is not an option. PMID:20682429

  12. The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

    PubMed Central

    2016-01-01

    Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and 17β-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases (3β-HSD2 and 17β-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and 100 μg/mL) showed a significant decrease in 17β-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and 17β-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/ Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and 17β-HSD1, and lead to a decrease in 17β-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer. PMID:27188280

  13. Stochastic elimination of cancer cells.

    PubMed Central

    Michor, Franziska; Nowak, Martin A; Frank, Steven A; Iwasa, Yoh

    2003-01-01

    Tissues of multicellular organisms consist of stem cells and differentiated cells. Stem cells divide to produce new stem cells or differentiated cells. Differentiated cells divide to produce new differentiated cells. We show that such a tissue design can reduce the rate of fixation of mutations that increase the net proliferation rate of cells. It has, however, no consequence for the rate of fixation of neutral mutations. We calculate the optimum relative abundance of stem cells that minimizes the rate of generating cancer cells. There is a critical fraction of stem cell divisions that is required for a stochastic elimination ('wash out') of cancer cells. PMID:14561289

  14. A Rare Case of Functioning Adrenocortical Oncocytoma Presenting as Cushing Syndrome

    PubMed Central

    Tartaglia, Nicola; Cianci, Pasquale; Altamura, Amedeo; Lizzi, Vincenzo; Vovola, Fernanda; Fersini, Alberto; Ambrosi, Antonio; Neri, Vincenzo

    2016-01-01

    Functioning adrenocortical oncocytoma is very rare neoplasm. It is usually nonfunctional and benign and incidentally detected. Generally, these tumors originate in the kidneys, thyroid, parathyroid, and salivary or pituitary glands; they have also been reported in other sites including choroid plexus, respiratory tract, and larynx. Histologically, they are characterized by cells with eosinophilic granular cytoplasm and numerous packed mitochondria. We reported a case of a 44-year-old female who presented with Cushing syndrome for hypersecretion of cortisol due to adrenocortical oncocytoma. Magnetic resonance of abdomen revealed a right adrenal mass. Laparoscopic adrenalectomy was performed and the tumor was pathologically confirmed as benign adrenocortical oncocytoma. After surgical treatment, Cushing's syndrome resolved. PMID:26989553

  15. A Rare Case of Functioning Adrenocortical Oncocytoma Presenting as Cushing Syndrome.

    PubMed

    Tartaglia, Nicola; Cianci, Pasquale; Altamura, Amedeo; Lizzi, Vincenzo; Vovola, Fernanda; Fersini, Alberto; Ambrosi, Antonio; Neri, Vincenzo

    2016-01-01

    Functioning adrenocortical oncocytoma is very rare neoplasm. It is usually nonfunctional and benign and incidentally detected. Generally, these tumors originate in the kidneys, thyroid, parathyroid, and salivary or pituitary glands; they have also been reported in other sites including choroid plexus, respiratory tract, and larynx. Histologically, they are characterized by cells with eosinophilic granular cytoplasm and numerous packed mitochondria. We reported a case of a 44-year-old female who presented with Cushing syndrome for hypersecretion of cortisol due to adrenocortical oncocytoma. Magnetic resonance of abdomen revealed a right adrenal mass. Laparoscopic adrenalectomy was performed and the tumor was pathologically confirmed as benign adrenocortical oncocytoma. After surgical treatment, Cushing's syndrome resolved. PMID:26989553

  16. Laser capture microdissection–reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse

    PubMed Central

    Schillebeeckx, Maximiliaan; Schrade, Anja; Löbs, Ann-Kathrin; Pihlajoki, Marjut; Wilson, David B.; Mitra, Robi D.

    2013-01-01

    DNA methylation is a mechanism for long-term transcriptional regulation and is required for normal cellular differentiation. Failure to properly establish or maintain DNA methylation patterns leads to cell dysfunction and diseases such as cancer. Identifying DNA methylation signatures in complex tissues can be challenging owing to inaccurate cell enrichment methods and low DNA yields. We have developed a technique called laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) for the multiplexed interrogation of the DNA methylation status of cytosine–guanine dinucleotide islands and promoters. LCM-RRBS accurately and reproducibly profiles genome-wide methylation of DNA extracted from microdissected fresh frozen or formalin-fixed paraffin-embedded tissue samples. To demonstrate the utility of LCM-RRBS, we characterized changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Compared with adjacent normal tissue, the adrenocortical tumors showed reproducible gains and losses of DNA methylation at genes involved in cell differentiation and organ development. LCM-RRBS is a rapid, cost-effective, and sensitive technique for analyzing DNA methylation in heterogeneous tissues and will facilitate the investigation of DNA methylation in cancer and organ development. PMID:23589626

  17. Steroidogenic acute regulatory protein gene expression, steroid-hormone secretion and proliferative activity of adrenocortical cells in the presence of proteasome inhibitors: in vivo studies on the regenerating rat adrenal cortex.

    PubMed

    Rucinski, Marcin; Tortorella, Cinzia; Ziolkowska, Agnieszka; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-05-01

    Previous studies have shown that proteasome inhibitors promote the accumulation of steroidogenic acute regulatory protein (StAR) in cultured rat adrenocortical cells. Unexpectedly, this response was associated with a moderate lowering in the corticosterone secretion and proliferation rate of cultured cells. Hence, we studied the effects of proteasome inhibitors MG115 and MG132 on the secretion and proliferative activity of the regenerating adrenal cortex in rats 5 days after surgery. Animals were given two subcutaneous injections of 0.15 or 1.5 nmol/100 g of inhibitors 24 and 12 h before decapitation. Real-time PCR and Western blotting showed that StAR expression, both mRNA and protein, was markedly lower in regenerating adrenals than in the intact gland of sham-operated rats. Neither MG115 nor MG132 affected StAR expression in regenerating gland. Inhibitors induced a slight decrease in the plasma concentrations of aldosterone and corticosterone, but did not significantly alter metaphase index of the regenerating adrenal cortex. Our findings provide the first evidence that down-regulation of StAR occurs during the early stages of adrenal regeneration. Moreover, this suggests that the steroidogenic pathway is more sensitive to proteasome inhibitors than that regulating proliferative activity of regenerating adrenal cortex in the rat. PMID:18425351

  18. Protein kinase A alterations in adrenocortical tumors.

    PubMed

    Espiard, S; Ragazzon, B; Bertherat, J

    2014-11-01

    Stimulation of the cAMP pathway by adrenocorticotropin (ACTH) is essential for adrenal cortex maintenance, glucocorticoid and adrenal androgens synthesis, and secretion. Various molecular and cellular alterations of the cAMP pathway have been observed in endocrine tumors. Protein kinase A (PKA) is a central key component of the cAMP pathway. Molecular alterations of PKA subunits have been observed in adrenocortical tumors. PKA molecular defects can be germline in hereditary disorders or somatic in sporadic tumors. Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) can be observed in patients with ACTH-independent Cushing's syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic cortisol-secreting adrenocortical adenomas. Germline gene duplication of the catalytic subunits Cα (PRKACA) has been observed in patients with PPNAD. Furthermore, exome sequencing revealed recently activating somatic mutations of PRKACA in about 40% of cortisol-secreting adrenocortical adenomas. In vitro and in vivo functional studies help in the progress to understand the mechanisms of adrenocortical tumors development due to PKA regulatory subunits alterations. All these alterations are observed in benign oversecreting tumors and are mimicking in some way cAMP pathway constitutive activation. On the long term, unraveling these alterations will open new strategies of pharmacological treatment targeting the cAMP pathway in adrenal tumors and cortisol-secretion disorders. PMID:25105543

  19. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R.

    PubMed

    Tremoen, Nina Hårdnes; Fowler, Paul A; Ropstad, Erik; Verhaegen, Steven; Krogenæs, Anette

    2014-01-01

    Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including

  20. Expression of neuropeptide hormone receptors in human adrenal tumors and cell lines: antiproliferative effects of peptide analogues.

    PubMed

    Ziegler, C G; Brown, J W; Schally, A V; Erler, A; Gebauer, L; Treszl, A; Young, L; Fishman, L M; Engel, J B; Willenberg, H S; Petersenn, S; Eisenhofer, G; Ehrhart-Bornstein, M; Bornstein, S R

    2009-09-15

    Peptide analogues targeting various neuropeptide receptors have been used effectively in cancer therapy. A hallmark of adrenocortical tumor formation is the aberrant expression of peptide receptors relating to uncontrolled cell proliferation and hormone overproduction. Our microarray results have also demonstrated a differential expression of neuropeptide hormone receptors in tumor subtypes of human pheochromocytoma. In light of these findings, we performed a comprehensive analysis of relevant receptors in both human adrenomedullary and adrenocortical tumors and tested the antiproliferative effects of peptide analogues targeting these receptors. Specifically, we examined the receptor expression of somatostatin-type-2 receptor, growth hormone-releasing hormone (GHRH) receptor or GHRH receptor splice variant-1 (SV-1) and luteinizing hormone-releasing hormone (LHRH) receptor at the mRNA and protein levels in normal human adrenal tissues, adrenocortical and adrenomedullary tumors, and cell lines. Cytotoxic derivatives of somatostatin AN-238 and, to a lesser extent, AN-162, reduced cell numbers of uninduced and NGF-induced adrenomedullary pheochromocytoma cells and adrenocortical cancer cells. Both the splice variant of GHRH receptor SV-1 and the LHRH receptor were also expressed in adrenocortical cancer cell lines but not in the pheochromocytoma cell line. The GHRH receptor antagonist MZ-4-71 and LHRH antagonist Cetrorelix both significantly reduced cell growth in the adrenocortical cancer cell line. In conclusion, the expression of receptors for somatostatin, GHRH, and LHRH in the normal human adrenal and in adrenal tumors, combined with the growth-inhibitory effects of the antitumor peptide analogues, may make possible improved treatment approaches to adrenal tumors. PMID:19717419

  1. Targeting Breast Cancer Stem Cells

    PubMed Central

    Liu, Suling; Wicha, Max S.

    2010-01-01

    There is increasing evidence that many cancers, including breast cancer, contain populations of cells that display stem-cell properties. These breast cancer stem cells, by virtue of their relative resistance to radiation and cytotoxic chemotherapy, may contribute to treatment resistance and relapse. The elucidation of pathways that regulate these cells has led to the identification of potential therapeutic targets. A number of agents capable of targeting breast cancer stem cells in preclinical models are currently entering clinical trials. Assessment of the efficacy of the agents will require development of innovative clinical trial designs with appropriate biologic and clinical end points. The effective targeting of breast cancer stem cells has the potential to significantly improve outcome for women with both early-stage and advanced breast cancer. PMID:20498387

  2. ENDOCRINE TUMOURS: The genomics of adrenocortical tumors.

    PubMed

    Faillot, Simon; Assie, Guillaume

    2016-06-01

    The last decade witnessed the emergence of genomics, a set of high-throughput molecular measurements in biological samples. These pan-genomic and agnostic approaches have revolutionized the molecular biology and genetics of malignant and benign tumors. These techniques have been applied successfully to adrenocortical tumors. Exome sequencing identified new major drivers in all tumor types, including KCNJ5, ATP1A1, ATP2B3 and CACNA1D mutations in aldosterone-producing adenomas (APA), PRKACA mutations in cortisol-producing adenomas (CPA), ARMC5 mutations in primary bilateral macronodular adrenocortical hyperplasia (PBMAH) and ZNRF3 mutations in adrenocortical carcinomas (ACC). Moreover, the various genomic approaches - including exome sequencing, transcriptome, miRNome, genome and methylome - converge into a single molecular classification of adrenocortical tumors. Especially for ACC, two main molecular groups have emerged, showing major differences in outcomes. These ACC groups differ by their gene expression profiles, but also by recurrent mutations and specific DNA hypermethylation patterns in the subgroup of poor outcome. The clinical impact of these findings is just starting. The main altered signaling pathways now become therapeutic targets. The molecular groups of diseases individualize robust subtypes within diseases such as APA, CPA, PBMAH and ACC. A revised nosology of adrenocortical tumors should impact the clinical research. Obvious consequences also include genetic counseling for the new genetic diseases such as ARMC5 mutations in PBMAH, and a better prognostication of ACC based on targeted measurements of a few discriminant molecular alterations. Identifying the main molecular groups of adrenocortical tumors by extensively gathering the molecular variations is a significant step forward towards precision medicine. PMID:26739091

  3. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  4. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  5. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  6. Intrarenal Adrenocortical Adenoma Treated by Robotic Partial Nephrectomy with Adrenalectomy

    PubMed Central

    Sulek, Jay; Smith, Steven C.; Hampton, Lance J.

    2016-01-01

    Abstract Background: We present an intrarenal adrenocortical adenoma discovered incidentally after robot-assisted partial nephrectomy and total adrenalectomy for a suspicious renal mass. Current literature describes the rare occurrence of an adrenocortical adenoma arising from a renal–adrenal fusion. This case represents an uncommon, benign pathology that should be considered in the differential diagnosis of an enhancing renal mass. Case Presentation: The patient is a 62-year-old female found to have an enhancing mass at the anterolateral aspect of the upper pole of the right kidney concerning for renal-cell carcinoma. CT imaging was performed to work up a cause for hyperparathyroidism. During robot-assisted partial nephrectomy, the lesion was found to be partially adherent to the lateral limb of the right adrenal gland. Microscopic evaluation with Melan-A staining showed the mass to be of adrenal origin with benign features and lack of capsulation, indicating an adrenal adenoma arising from intrarenal ectopic adrenal rests. Conclusion: An intrarenal adrenal adenoma arising from ectopic adrenal tissue is a unique pathology that represents a benign differential diagnosis in the evaluation of an enhancing renal mass. However, it cannot be differentiated from renal-cell carcinoma based on cross-sectional imaging alone and requires postoperative pathologic assessment to confirm the diagnosis. PMID:27579413

  7. Contemporary Renal Cell Cancer Epidemiology

    PubMed Central

    Chow, Wong-Ho; Devesa, Susan S.

    2010-01-01

    We analyzed renal cell cancer incidence patterns in the United States and reviewed recent epidemiologic evidence with regard to environmental and host genetic determinants of renal cell cancer risk. Renal cell cancer incidence rates continued to rise among all racial/ethnic groups in the United States, across all age groups, and for all tumor sizes, with the most rapid increases for localized stage disease and small tumors. Recent cohort studies confirmed the association of smoking, excess body weight, and hypertension with an elevated risk of renal cell cancer, and suggested that these factors can be modified to reduce the risk. There is increasing evidence for an inverse association between renal cell cancer risk and physical activity and moderate intake of alcohol. Occupational exposure to TCE has been positively associated with renal cell cancer risk in several recent studies, but its link with somatic mutations of the VHL gene has not been confirmed. Studies of genetic polymorphisms in relation to renal cell cancer risk have produced mixed results, but genome-wide association studies with larger sample size and a more comprehensive approach are underway. Few epidemiologic studies have evaluated risk factors by subtypes of renal cell cancer defined by somatic mutations and other tumor markers. PMID:18836333

  8. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret

    PubMed Central

    Schillebeeckx, Maximiliaan; Pihlajoki, Marjut; Gretzinger, Elisabeth; Yang, Wei; Thol, Franziska; Hiller, Theresa; Löbs, Ann-Kathrin; Röhrig, Theresa; Schrade, Anja; Cochran, Rebecca; Jay, Patrick Y.; Heikinheimo, Markku; Mitra, Robi D.; Wilson, David B.

    2014-01-01

    Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both “male-specific” (Spinlw1) and “female-specific” (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing. PMID:25289806

  9. Adrenocortical suppression in cats given megestrol acetate.

    PubMed

    Chastain, C B; Graham, C L; Nichols, C E

    1981-12-01

    Megestrol acetate was given orally to 8 cats at a dose of 2.5 mg every other day for 2 weeks and to 8 cats at a dose of 5.0 mg every day for 2 weeks. Four cats were designated nontreated controls. Pre-ACTH-stimulated plasma concentrations of cortisol (hydrocortisone) and ACTH-stimulated cortisol and tolerance to large-dose glucose infusion (IV) were determined on each of the 20 cats given megestrol acetate. Cats were restrained with acepromazine maleate and ketamine hydrochloride during blood sample collection and large-dose glucose infusion. Adrenocortical function and tolerance to large-dose glucose infusion were reevaluated for 4 weeks--after 1st and 2nd weeks of megestrol acetate treatment of the treated groups, and after 1st and 2nd weeks when treatment was stopped (ie, experiment weeks 3 and 4). Each week a cat from the control group and 2 cats from the 2 treated groups were selected to determine the changes occurring during the experiment for that week; after collection of plasma samples, each week's 5 selected cats were euthanatized and necropsied. Significant impairment of adrenocortical function and alteration of adrenocortical morphology occurred with both treated groups. The most severe adrenocortical alterations occurred in the cats 1 week after megestrol acetate was no longer given (ie, experiment week 3). Megestrol acetate-induced adrenocortical suppression contributed to the death of 1 cat. It was concluded that if stress occurs to cats on treatment or soon after treatment with megestrol acetate, glucocorticoids should be supplemented. The effects of megestrol acetate on glucose tolerance were overshadowed by the unforeseen intolerance caused by chemical restraint with acepromazine maleate and ketamine hydrochloride. PMID:6280517

  10. Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu

    ClinicalTrials.gov

    2013-02-27

    Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal

  11. Autophagy, cell death, and cancer

    PubMed Central

    Lin, Lin; Baehrecke, Eric H

    2015-01-01

    Autophagy is an evolutionarily conserved intracellular catabolic process that is used by all cells to degrade dysfunctional or unnecessary cytoplasmic components through delivery to the lysosome. Increasing evidence reveals that autophagic dysfunction is associated with human diseases, such as cancer. Paradoxically, although autophagy is well recognized as a cell survival process that promotes tumor development, it can also participate in a caspase-independent form of programmed cell death. Induction of autophagic cell death by some anticancer agents highlights the potential of this process as a cancer treatment modality. Here, we review our current understanding of the molecular mechanism of autophagy and the potential roles of autophagy in cell death, cancer development, and cancer treatment. PMID:27308466

  12. Drugs Approved for Kidney (Renal Cell) Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs ... that are not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) ...

  13. Invasive cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  14. Adrenal Gland Cancer

    MedlinePlus

    ... either benign or malignant. Benign tumors aren't cancer. Malignant ones are. Most adrenal gland tumors are ... and may not require treatment. Malignant adrenal gland cancers are uncommon. Types of tumors include Adrenocortical carcinoma - ...

  15. Salivary Gland Cancer Stem Cells

    PubMed Central

    Adams, April; Warner, Kristy; Nör, Jacques E.

    2013-01-01

    Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies. PMID:23810400

  16. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295r adrenocortical carcinoma cells

    SciTech Connect

    Letcher, Robert J. . E-mail: robert.letcher@ec.gc.ca; Sanderson, J. Thomas; Bokkers, Abraham; Giesy, John P.; Berg, Martin van den

    2005-12-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 {mu}M) compared with 8% for BPA relative to the maximum induction by 17{beta}-estradiol (E2, 1 {mu}M). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 {mu}M, virtually 100% inhibition of vtg at 20 {mu}M, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 {mu}M). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 {mu}M, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 {mu}M), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 {mu}M. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 {mu}M) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 {mu}M) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At

  17. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295R adrenocortical carcinoma cells.

    PubMed

    Letcher, Robert J; Sanderson, J Thomas; Bokkers, Abraham; Giesy, John P; van den Berg, Martin

    2005-12-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 microM) compared with 8% for BPA relative to the maximum induction by 17beta-estradiol (E2, 1 microM). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 microM, virtually 100% inhibition of vtg at 20 microM, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 microM). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 microM, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 microM), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 microM. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 microM) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 microM) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At

  18. Celecoxib reduces glucocorticoids in vitro and in a mouse model with adrenocortical hyperplasia.

    PubMed

    Liu, Sisi; Saloustros, Emmanouil; Berthon, Annabel; Starost, Matthew F; Sahut-Barnola, Isabelle; Salpea, Paraskevi; Szarek, Eva; Faucz, Fabio R; Martinez, Antoine; Stratakis, Constantine A

    2016-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to ACTH-independent Cushing's syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP-dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase 2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1500 mg/kg celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, celecoxib caused histological changes that, at least in part, reversed BAH and this was associated with a reduction of corticosterone levels. PMID:26438728

  19. Celecoxib reduces glucocorticoids in vitro and in a mouse model with adrenocortical hyperplasia

    PubMed Central

    Liu, Sisi; Saloustros, Emmanouil; Berthon, Annabel; Starost, Matthew F.; Sahut-Barnola, Isabelle; Salpea, Paraskevi; Szarek, Eva; Faucz, Fabio R.; Martinez, Antoine; Stratakis, Constantine A.

    2015-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to adrenocorticotropin hormone (ACTH) - independent Cushing’s syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP–dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase-2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with Celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1,500 mg/kg Celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, Celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, Celecoxib caused histological changes that reversed, at least in part, BAH and this was associated with a reduction of corticosterone levels. PMID:26438728

  20. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma.

    PubMed

    Zheng, Siyuan; Cherniack, Andrew D; Dewal, Ninad; Moffitt, Richard A; Danilova, Ludmila; Murray, Bradley A; Lerario, Antonio M; Else, Tobias; Knijnenburg, Theo A; Ciriello, Giovanni; Kim, Seungchan; Assie, Guillaume; Morozova, Olena; Akbani, Rehan; Shih, Juliann; Hoadley, Katherine A; Choueiri, Toni K; Waldmann, Jens; Mete, Ozgur; Robertson, A Gordon; Wu, Hsin-Ta; Raphael, Benjamin J; Shao, Lina; Meyerson, Matthew; Demeure, Michael J; Beuschlein, Felix; Gill, Anthony J; Sidhu, Stan B; Almeida, Madson Q; Fragoso, Maria C B V; Cope, Leslie M; Kebebew, Electron; Habra, Mouhammed A; Whitsett, Timothy G; Bussey, Kimberly J; Rainey, William E; Asa, Sylvia L; Bertherat, Jérôme; Fassnacht, Martin; Wheeler, David A; Hammer, Gary D; Giordano, Thomas J; Verhaak, Roel G W

    2016-05-01

    We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers. PMID:27165744

  1. Ultrastructure of the adrenocortical homologue in dexamethasone-treated eels.

    PubMed Central

    Bhattacharyya, T K; Butler, D G

    1980-01-01

    The ultrastructural modifications of the adrenocortical homologue (AH) in the North American eel (Anguilla rostrata) were studied following a 10 day treatment with dexamethasone (20 mg/day). The principal changes were: disorganization of smooth endoplasmic reticlum, regression and fragmentation of the Golgi apparatus, and a lowering of matrix density in the mitochondria. Steroid treatment also induced the appearance of numerous cytoplasmic inclusions: (a) lamellated bodies with electron-lucent cores; (b) membranous whorls isolating cytoplasmic regions containing smooth endoplasmic reticulum and mitochondria and (c) complex aggregates showing whorls of membranes, residues of cytoplasmic organelles, and dense matrix. The non-accumulation of lipid droplets in repressed AH cells was noteworthy. These subcellular changes indicate endogenous cellular autophagy in the AH as a result of steroid-induced suppression of ACTH production by the pituitary. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:7400039

  2. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  3. Squamous cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  4. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  5. Innate Lymphoid Cells in Cancer.

    PubMed

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples. PMID:26438443

  6. Cancer stem cell signaling pathways.

    PubMed

    Matsui, William H

    2016-09-01

    Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer. PMID:27611937

  7. Familial Adrenocortical Carcinoma in Association With Lynch Syndrome

    PubMed Central

    Challis, Benjamin G.; Kandasamy, Narayanan; Powlson, Andrew S.; Koulouri, Olympia; Annamalai, Anand Kumar; Happerfield, Lisa; Marker, Alison J.; Arends, Mark J.; Nik-Zainal, Serena

    2016-01-01

    Context: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Although the majority of childhood ACC arises in the context of inherited cancer susceptibility syndromes, it remains less clear whether a hereditary tumor predisposition exists for the development of ACC in adults. Here, we report the first occurrence of familial ACC in a kindred with Lynch syndrome resulting from a pathogenic germline MSH2 mutation. Case: A 54-year-old female with a history of ovarian and colorectal malignancy was found to have an ACC. A detailed family history revealed her mother had died of ACC and her sister had previously been diagnosed with endometrial and colorectal cancers. A unifying diagnosis of Lynch syndrome was considered, and immunohistochemical analyses demonstrated loss of MSH2 and MSH6 expression in both AACs (proband and her mother) and in the endometrial carcinoma of her sister. Subsequent genetic screening confirmed the presence of a germline MSH2 mutation (resulting in deletions of exons 1–3) in the proband and her sister. Conclusion: Our findings provide strong support for the recent proposal that ACC should be considered a Lynch syndrome-associated tumor and included in the Amsterdam II clinical diagnostic criteria. We also suggest that screening for ACC should be considered in cancer surveillance strategies directed at individuals with germline mutations in DNA mismatch repair genes. PMID:27144940

  8. Interaction between Angiotensin II and Insulin/IGF-1 Exerted a Synergistic Stimulatory Effect on ERK1/2 Activation in Adrenocortical Carcinoma H295R Cells

    PubMed Central

    Tong, An-li; Wang, Fen; Cui, Yun-ying; Li, Chun-yan; Li, Yu-xiu

    2016-01-01

    The cross talk between angiotensin II (Ang II) and insulin has been described mainly in cardiovascular cells, hepatocytes, adipocytes, and so forth, and to date no such cross talk was reported in adrenal. In this study, we examined the interaction between Ang II and insulin/IGF-1 in ERK and AKT signaling pathways and expression of steroidogenic enzymes in H295R cells. Compared to the control, 100 nM Ang II increased phospho-ERK1/2 approximately 3-fold. Insulin (100 nM) or IGF-1 (10 nM) alone raised phospho-ERK1/2 1.8- and 1.5-fold, respectively, while, after pretreatment with 100 nM Ang II for 30 min, insulin (100 nM) or IGF-1 (10 nM) elevated phospho-ERK1/2 level 8- and 7-fold, respectively. The synergistic effect of Ang II and insulin/IGF-1 on ERK1/2 activation was inhibited by selective AT1 receptor blocker, PKC inhibitor, and MEK1/2 inhibitor. Ang II marginally suppressed AKT activation under the basal condition, while it had no effect on phospho-AKT induced by insulin/IGF-1. Ang II significantly stimulated mRNA expression of CYP11B1 and CYP11B2, and such stimulatory effects were enhanced when cells were cotreated with insulin/IGF-1. We are led to conclude that Ang II in combination with insulin/IGF-1 had an evident synergistic stimulatory effect on ERK1/2 activation in H295R cells and the effect may be responsible for the enhanced steroid hormone production induced by Ang II plus insulin/IGF-1. PMID:27293433

  9. Neuromedin-U stimulates enucleation-induced adrenocortical regeneration in the rat.

    PubMed

    Trejter, Marcin; Neri, Giuliano; Rucinski, Marcin; Majchrzak, Mariola; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-06-01

    Neuromedin-U (NMU) is a brain-gut peptide, which has been previously found to stimulate hypothalamic-pituitary-adrenal axis in the rat. Enucleation-induced adrenal regeneration in rats with contralateral adrenalectomy is a well-established model of adrenal growth, that not only depends on the compensatory ACTH hypersecretion, but is also modulated by several regulatory peptides. Hence, we investigated whether NMU may be included in this group of bioactive molecules. Reverse transcription-polymerase chain reaction and immunocytochemistry showed that regenerating rat adrenocortical cells at days 5 and 8 after surgery express the NMU receptor NMUR1 as mRNA and protein. NMU8 administration to rats bearing regenerating adrenals markedly raised the plasma concentration of corticosterone and notably enhanced proliferative activity of adrenocortical cells. ACTH blood level was unchanged at day 5 and significantly decreased at day 8. The conclusion is drawn that NMU stimulates regeneration of rat adrenal cortex, via a mechanism independent of pituitary ACTH and involving the activation of NMUR1 located on adrenocortical cells. PMID:18506360

  10. Nanomechanical analysis of cells from cancer patients

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Jin, Yu-Sheng; Rao, Jianyu; Gimzewski, James K.

    2007-12-01

    Change in cell stiffness is a new characteristic of cancer cells that affects the way they spread. Despite several studies on architectural changes in cultured cell lines, no ex vivo mechanical analyses of cancer cells obtained from patients have been reported. Using atomic force microscopy, we report the stiffness of live metastatic cancer cells taken from the body (pleural) fluids of patients with suspected lung, breast and pancreas cancer. Within the same sample, we find that the cell stiffness of metastatic cancer cells is more than 70% softer, with a standard deviation over five times narrower, than the benign cells that line the body cavity. Different cancer types were found to display a common stiffness. Our work shows that mechanical analysis can distinguish cancerous cells from normal ones even when they show similar shapes. These results show that nanomechanical analysis correlates well with immunohistochemical testing currently used for detecting cancer.

  11. Adrenocortical function in cane toads from different environments.

    PubMed

    Hernández, Sandra E; Sernia, Conrad; Bradley, Adrian J

    2016-05-01

    The adrenocortical function of cane toads (Rhinella marina) exposed to different experimental procedures, as well as captured from different environments, was assessed by challenging the hypothalamic-pituitary-adrenal (HPA) axis. It was found that restriction stress as well as cannulation increased plasma corticosterone (B) levels for up to 12h. A single dose of dexamethasone (DEX 2mg/kg) significantly reduced B levels demonstrating its potential for use in the evaluation of the HPA axis in amphibia. We also demonstrate that 0.05 IU/g BW (im) of synthetic adrenocorticotropic hormone (ACTH) significantly increased plasma B levels in cane toads. Changes in size area of the cortical cells were positively associated with total levels of B after ACTH administration. We also found differences in adrenal activity between populations. This was assessed by a DEX-ACTH test. The animals captured from the field and maintained in captivity for one year at the animal house (AH) present the highest levels of total and free B after ACTH administration. We also found that animals from the front line of dispersion in Western Australia (WA) present the weakest adrenal response to a DEX-ACTH test. The animals categorized as long established in Queensland Australia (QL), and native in Mexico (MX), do not shown a marked difference in the HPA activity. Finally we found that in response to ACTH administration, females reach significantly higher levels of plasma B than males. For the first time the adrenocortical response in cane toads exposed to different experimental procedures, as well as from different populations was assessed systematically. PMID:26877241

  12. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells.

    PubMed

    Sanderson, J Thomas; Boerma, Joke; Lansbergen, Gideon W A; van den Berg, Martin

    2002-07-01

    Various pesticides known or suspected to interfere with steroid hormone function were screened in H295R cells for effects on catalytic activity and mRNA expression of aromatase. Dibutyl-, tributyl-, and triphenyltin chloride decreased aromatase and ethoxyresorufin O-deethylase activities concentration dependently (1-300 nM; 24-h exposure). However, these decreases occurred only at cytotoxic concentrations, indicated by decreases in mitochondrial MTT reduction and intracellular neutral red uptake. The organotins did not cause direct inhibition during the catalytic assay (1-1000 nM; 1.5-h exposure). The same was true for p,p'-DDT, and o,p-DDT, and o,p-DDE, which decreased aromatase activity only at cytotoxic concentrations (> or =10 microM; 24-h exposure). p,p'-DDE had no effect on aromatase activity or cell viability at 1 and 10 microM. Various imidazole-like fungicides were aromatase inhibitors. Imazalil and prochloraz were potent mixed inhibitors (K(i)/K(i)(') = 0.04/0.3 and 0.02/0.3 microM, respectively), whereas propiconazole, difenoconazole, and penconazole were less potent competitive inhibitors (K(i) = 1.9, 4.5, and 4.7 microM, respectively). Fenarimol, tebuconazole, and hexaconazole decreased aromatase activity close to cytotoxic concentrations. Vinclozolin, as was shown previously for atrazine, induced aromatase activity and CYP19 mRNA levels about 2.5- and 1.5-fold, respectively. To investigate the mechanism of aromatase induction in H295R cells, the ability of the pesticides to increase intracellular cAMP levels was examined. Vinclozolin (100 microM) and atrazine (30 microM) increased cAMP levels about 1.5-fold above control. Forskolin and isobutyl methylxanthine (IBMX) increased cAMP levels 3 and 1.8-fold, respectively. Time-response curves for cAMP induction and concentration-response curves for aromatase induction by vinclozolin, atrazine, and IBMX were similar, suggesting that the mechanism of aromatase induction by these pesticides is mediated

  13. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. General Information about Renal Cell Cancer

    MedlinePlus

    ... Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  15. Invasive cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  16. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    SciTech Connect

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-05-15

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21, 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.

  17. Targeting the Checkpoint to Kill Cancer Cells

    PubMed Central

    Benada, Jan; Macurek, Libor

    2015-01-01

    Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells. PMID:26295265

  18. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  19. On the Stem Cell Origin of Cancer

    PubMed Central

    Sell, Stewart

    2010-01-01

    In each major theory of the origin of cancer—field theory, chemical carcinogenesis, infection, mutation, or epigenetic change—the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth. PMID:20431026

  20. Cancer stem cells and exosome signaling.

    PubMed

    Hannafon, Bethany N; Ding, Wei-Qun

    2015-01-01

    Exosomes have been recognized as mediators of intercellular communication among different cell populations in various biological model systems. By transfer of signaling molecules such as proteins, lipids, and RNAs between different cell types, exosomes are implicated in both physiological and pathological processes. The tumor microenvironment consists of multiple types of cells including adult stem cells, cancer stem cells, and stromal cells. These cells are known to intercommunicate with each other thereby modulating tumor progression. Recent studies have provided evidence demonstrating that exosomes mediate the interactions among different types of cells within the tumor microenvironment, providing new insight into how these cells interact with each other through exosome signaling. This review is focused on recent studies that have examined exosome-mediated intercommunication among cancer stem cells, adult stem cells, cancer cells, and stromal cells within the tumor microenvironment. Based on the current literature, it seems clear that adult stem cells and cancer stem cells secret exosomes that can be transferred to their surrounding cells thereby modulating cancer progression. Likewise, cancer cells and stromal cells also release exosomes that can be taken up by cancer stem cells or adult stem cells, leading to alterations to their phenotype. The molecular mechanisms and biological consequences of the exosome-mediated interactions of these cells remain to be further elucidated. A better understanding of how exosomes mediate intercellular communication in the tumor microenvironment and the specific biological consequences of these interactions will likely offer new opportunities in the development of diagnostic or therapeutic strategies against cancer. PMID:27358879

  1. Cancer stem cells and exosome signaling

    PubMed Central

    Hannafon, Bethany N.

    2015-01-01

    Exosomes have been recognized as mediators of intercellular communication among different cell populations in various biological model systems. By transfer of signaling molecules such as proteins, lipids, and RNAs between different cell types, exosomes are implicated in both physiological and pathological processes. The tumor microenvironment consists of multiple types of cells including adult stem cells, cancer stem cells, and stromal cells. These cells are known to intercommunicate with each other thereby modulating tumor progression. Recent studies have provided evidence demonstrating that exosomes mediate the interactions among different types of cells within the tumor microenvironment, providing new insight into how these cells interact with each other through exosome signaling. This review is focused on recent studies that have examined exosome-mediated intercommunication among cancer stem cells, adult stem cells, cancer cells, and stromal cells within the tumor microenvironment. Based on the current literature, it seems clear that adult stem cells and cancer stem cells secret exosomes that can be transferred to their surrounding cells thereby modulating cancer progression. Likewise, cancer cells and stromal cells also release exosomes that can be taken up by cancer stem cells or adult stem cells, leading to alterations to their phenotype. The molecular mechanisms and biological consequences of the exosome-mediated interactions of these cells remain to be further elucidated. A better understanding of how exosomes mediate intercellular communication in the tumor microenvironment and the specific biological consequences of these interactions will likely offer new opportunities in the development of diagnostic or therapeutic strategies against cancer.

  2. Basal cell skin cancer

    MedlinePlus

    ... occur in younger people who have had extensive sun exposure. You are more likely to get basal cell ... severe sunburns early in life Long-term daily sun exposure (such as the sun exposure received by people ...

  3. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  4. Oxidative stress and adrenocortical insufficiency

    PubMed Central

    Prasad, R; Kowalczyk, J C; Meimaridou, E; Storr, H L; Metherell, L A

    2014-01-01

    Maintenance of redox balance is essential for normal cellular functions. Any perturbation in this balance due to increased reactive oxygen species (ROS) leads to oxidative stress and may lead to cell dysfunction/damage/death. Mitochondria are responsible for the majority of cellular ROS production secondary to electron leakage as a consequence of respiration. Furthermore, electron leakage by the cytochrome P450 enzymes may render steroidogenic tissues acutely vulnerable to redox imbalance. The adrenal cortex, in particular, is well supplied with both enzymatic (glutathione peroxidases and peroxiredoxins) and non-enzymatic (vitamins A, C and E) antioxidants to cope with this increased production of ROS due to steroidogenesis. Nonetheless oxidative stress is implicated in several potentially lethal adrenal disorders including X-linked adrenoleukodystrophy, triple A syndrome and most recently familial glucocorticoid deficiency. The finding of mutations in antioxidant defence genes in the latter two conditions highlights how disturbances in redox homeostasis may have an effect on adrenal steroidogenesis. PMID:24623797

  5. Genetic p53 deficiency partially rescues the adrenocortical dysplasia (acd) phenotype at the expense of increased tumorigenesis

    PubMed Central

    Else, Tobias; Trovato, Alessia; Kim, Alex C.; Wu, Yipin; Ferguson, David O.; Kuick, Rork D.; Lucas, Peter C.; Hammer, Gary D.

    2009-01-01

    Summary Telomere dysfunction and shortening induce chromosomal instability and tumorigenesis. In this study, we analyze the adrenocortical dysplasia (acd) mouse, harboring a mutation in Tpp1/Acd. Additional loss of p53 dramatically rescues the acd phenotype in an organ-specific manner, including skin hyperpigmentation and adrenal morphology, but not germ cell atrophy. Survival to weaning age is significantly increased in Acdacd/acd p53−/− mice. On the contrary p53−/− and p53+/− mice with the Acdacd/acd genotype show a decreased tumor free survival compared to Acd+/+ mice. Tumors from Acdacd/acd p53+/− mice show a striking switch from the classical spectrum of p53−/− mice towards carcinomas. The acd mouse model provides further support for an in vivo role of telomere deprotection in tumorigenesis. Significance Critically shortened dysfunctional telomeres of the Terc−/− mice have been shown to impact tissue development and maintenance and lead to the occurrence of a pro-cancer genome. The present study examines the contribution of telomere shortening vs. telomere deprotection to the development of genetic instability and cancer. By studying the acd mouse, we show that telomere deprotection without significant telomere shortening is sufficient to induce tumor formation in the context of p53 absence. It also raises the possibility that telomere deprotection contributes to the high prevalence of carcinomas in humans. PMID:19477426

  6. Morphological changes in the pituitary-adrenocortical axis in natives of La Paz

    NASA Astrophysics Data System (ADS)

    Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime

    1991-03-01

    Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.

  7. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  8. [Comparative clinical analysis of histological systems of adrenocortical tumors diagnosis].

    PubMed

    Bokhyan, V Yu; Stilidi, I S; Pavlovskaya, A I

    2015-01-01

    Differential diagnosis of adrenocortical cancer (ACC) and cortical adenoma presents certain difficulties since there is no specific histological criterion allowing to distinguish tumors of the adrenal cortex with malignant clinical course. Currently there are offered several systems, and the most widely spread have the index Weiss (IW) and the modified index Weiss (MIW). The accuracy of one or another of the proposed systems remains a matter of debate. There was analyzed own experience on the use of IW and MIW in the diagnosis of 91 cases of the ACC and 13 cases of cortex adenomas of the size at least 5 cm. For the diagnosis of large adenomas sensitivity IW was 77%, MIW--100%. For the diagnosis of metastatic and non-metastatic ACC--100% and 97%, 100% and 86%, respectively (p > 0.05). In multivariate analysis of life expectancy of patients the definition of IW and MIW had a prognostic significance. MIW was less subjective, more simple and convenient to be used and it showed a great informative value at the reclassification of certain "adenomas" into ACC. However to use it on their own, without IW, was impractical as MIW had wider gray area and did not reach the threshold value in some cases of ACC. For the diagnosis of tumors of the adrenal cortex IW remains a standard; when a value was equal of 2 or in cases of doubt it was necessary to calculate MIW as well. PMID:26995980

  9. Brain Metastasis in Patients With Adrenocortical Carcinoma: A Clinical Series

    PubMed Central

    Tageja, Nishant; Rosenberg, Avi; Mahalingam, Sowmya; Quezado, Martha; Velarde, Margarita; Edgerly, Maureen; Fojo, Tito

    2015-01-01

    Introduction: Adrenocortical carcinoma (ACC) is a heterogeneous and rare disease. At presentation or at the time of a recurrence, the disease commonly spreads to the liver, lungs, lymph nodes, and bones. The brain has only rarely been reported as a site of metastases. Objective: The aims of this report were to describe the clinical characteristics of patients with ACC who developed brain metastasis and were evaluated at the National Cancer Institute. Methods: We describe the history and clinical presentation of six patients with ACC and metastatic disease in the brain. Images of the six patients and pathology slides were reviewed when available. Results: The median age at the time of the diagnosis of ACC was 42 years. The median time from the initial diagnosis until the presentation of brain metastasis was 43 months. As a group the patients had previously received multiples lines of chemotherapy (median of three), and they presented with one to three metastatic brain lesions. Four patients underwent metastasectomy, one had radiosurgery, and one had both modalities. Two patients are still alive, three died, between 2 and 14 months after the diagnosis of brain metastases, and one was lost to follow-up. Conclusion: Patients with advanced ACC can rarely present with metastasis to the brain, most often long after the initial diagnosis. Timely diagnosis of brain metastasis with appropriate intervention after discussion in a multidisciplinary meeting can improve the prognosis in this particular scenario. PMID:25412413

  10. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research. PMID:21044008

  11. Cancer stem cells in small cell lung cancer

    PubMed Central

    Verlicchi, Alberto; Rosell, Rafael

    2016-01-01

    Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy. PMID:26958490

  12. Multiple Myeloma Cancer Stem Cells

    PubMed Central

    Huff, Carol Ann; Matsui, William

    2008-01-01

    Multiple myeloma is characterized by the clonal expansion of neoplastic plasma cells within the bone marrow, elevated serum immunoglobulin, and osteolytic bone disease. The disease is highly responsive to a wide variety of anticancer treatments including conventional cytotoxic chemotherapy, corticosteroids, radiation therapy, and a growing number of agents with novel mechanisms of action. However, few if any patients are cured with these modalities and relapse remains a critical issue. A better understanding of clonogenic multiple myleoma cells is essential to ultimately improving long-term outcomes, but the nature of the cells responsible for myeloma regrowth and disease relapse is unclear. We review evidence that functional heterogeneity exists in multiple myeloma and discuss potential strategies and clinical implications of the stem-cell model of cancer in this disease. PMID:18539970

  13. Head and Neck Cancer Stem Cells

    PubMed Central

    Krishnamurthy, S.; Nör, J.E.

    2012-01-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the “drivers” of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  14. Head and neck cancer stem cells.

    PubMed

    Krishnamurthy, S; Nör, J E

    2012-04-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  15. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  16. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  17. Colon Cancer Cell Separation by Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  18. Mitochondria, cholesterol and cancer cell metabolism.

    PubMed

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  19. Cancer stem cells and differentiation therapy.

    PubMed

    Sell, Stewart

    2006-01-01

    Cancers arise from stem cells in adult tissues and the cells that make up a cancer reflect the same stem cell --> progeny --> differentiation progression observed in normal tissues. All adult tissues are made up of lineages of cells consisting of tissue stem cells and their progeny (transit-amplifying cells and terminally differentiated cells); the number of new cells produced in normal tissue lineages roughly equals the number of old cells that die. Cancers result from maturation arrest of this process, resulting in continued proliferation of cells and a failure to differentiate and die. The biological behavior, morphological appearance, and clinical course of a cancer depend on the stage of maturation at which the genetic lesion is activated. This review makes a comparison of cancer cells to embryonic stem cells and to adult tis sue stem cells while addressing two basic questions: (1) Where do cancers come from?, and (2) How do cancers grow? The answers to these questions are critical to the development of approaches to the detection, prevention, and treatment of cancer. PMID:16557043

  20. Mast cells, angiogenesis and cancer.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2011-01-01

    Mast cells (MCs) were first described by Paul Ehrlich 1 in his doctoral thesis. MCs have long been implicated in the pathogenesis of allergic reactions and certain protective responses to parasites. As most tumors contain inflammatory cell infiltrates, which often include plentiful MCs, the question as to the possible contribution of MCs to tumor development has progressively been emerging. In this chapter, the specific involvement of MCs in tumor biology and tumor fate will be considered, with particular emphasis on the capacity of these cells to stimulate tumor growth by promoting angiogenesis and lymphangiogenesis. Data from experimental carcinogenesis and from different tumor settings in human pathology will be summarized. Information to be presented will suggest that MCs may serve as a novel therapeutic target for cancer treatment. PMID:21713661

  1. Ouabain enhances lung cancer cell detachment.

    PubMed

    Ruanghirun, Thidarat; Pongrakhananon, Varisa; Chanvorachote, Pithi

    2014-05-01

    A human steroid hormone, ouabain, has been shown to play a role in several types of cancer cell behavior; however, its effects on cancer metastasis are largely unknown. Herein, we demonstrate that sub-toxic concentrations of ouabain facilitate cancer cell detachment from the extracellular matrix in human lung cancer cells. Ouabain at concentrations of 0-10 pM significantly enhanced cell detachment in dose- and time- dependent manners, while having minimal effect on cell viability. The detachment-inducing effect of ouabain was found to be mediated through focal-adhesion kinase and ATP-dependent tyrosine kinase pathways. Alpha-5 and beta-1 integrins were found to be down-regulated in response to ouabain treatment. Since detachment of cancer cells is a prerequisite process for metastasis to begin, these insights benefit our understanding over the molecular basis of cancer biology. PMID:24778025

  2. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism

    PubMed Central

    2014-01-01

    The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells. PMID:25250177

  3. The biology of cancer stem cells.

    PubMed

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies. PMID:17645413

  4. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  5. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  6. Cancer

    MedlinePlus

    ... body. Cancerous cells are also called malignant cells. Causes Cancer grows out of cells in the body. Normal ... of many cancers remains unknown. The most common cause of cancer-related death is lung cancer. In the U.S., ...

  7. Deregulation of Cell Signaling in Cancer

    PubMed Central

    Giancotti, Filippo G.

    2014-01-01

    Summary Oncogenic mutations disrupt the regulatory circuits that govern cell function, enabling tumor cells to undergo de-regulated mitogenesis, to resist to proapoptotic insults, and to invade through tissue boundaries. Cancer cell biology has played a crucial role in elucidating the signaling mechanisms by which oncogenic mutations sustain these malignant behaviors and thereby in identifying rational targets for cancer drugs. The efficacy of such targeted therapies illustrate the power of a reductionist approach to the study of cancer. PMID:24561200

  8. Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer

    PubMed Central

    Landen, Charles N.; Goodman, Blake; Katre, Ashwini A.; Steg, Adam D.; Nick, Alpa M.; Stone, Rebecca L.; Miller, Lance D.; Mejia, Pablo Vivas; Jennings, Nicolas B.; Gershenson, David M.; Bast, Robert C.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2010-01-01

    Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression, in whom the percent of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 v 13.81 months, p<0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared to chemotherapy alone (a 74–90% reduction, p<0.015). These data demonstrate that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity, but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer. PMID:20889728

  9. Role of stem cells in cancer therapy and cancer stem cells: a review

    PubMed Central

    Sagar, Jayesh; Chaib, Boussad; Sales, Kevin; Winslet, Marc; Seifalian, Alexander

    2007-01-01

    For over 30 years, stem cells have been used in the replenishment of blood and immune systems damaged by the cancer cells or during treatment of cancer by chemotherapy or radiotherapy. Apart from their use in the immuno-reconstitution, the stem cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. The recent concept of 'cancer stem cells' has directed scientific communities towards a different wide new area of research field and possible potential future treatment modalities for the cancer. Aim of this review is primarily focus on the recent developments in the use of the stem cells in the cancer treatments, then to discuss the cancer stem cells, now considered as backbone in the development of the cancer; and their role in carcinogenesis and their implications in the development of possible new cancer treatment options in future. PMID:17547749

  10. Genotype analysis of the human endostatin variant p.D104N in benign and malignant adrenocortical tumors

    PubMed Central

    de Paula Mariani, Beatriz Marinho; Trarbach, Ericka Barbosa; Ribeiro, Tamaya Castro; Pereira, Maria Adelaide Albergaria; Mendonca, Berenice Bilharinho; Fragoso, Maria Candida Barisson Villares

    2012-01-01

    OBJECTIVE: Endostatin is a potent endogenous inhibitor of angiogenesis. It is derived from the proteolytic cleavage of collagen XVIII, which is encoded by the COL18A1 gene. A polymorphic COL18A1 allele encoding the functional polymorphism p.D104N impairs the activity of endostatin, resulting in a decreased ability to inhibit angiogenesis. This polymorphism has been previously analyzed in many types of cancer and has been considered a phenotype modulator in some benign and malignant tumors. However, these data are controversial, and different results have been reported for the same tumor types, such as prostate and breast cancer. The purpose of this study was to genotype the p.D104N variant in a cohort of pediatric and adult patients with adrenocortical tumors and to determine its possible association with the biological behavior of adrenocortical tumors. METHODS: DNA samples were obtained from 38 pediatric and 56 adult patients (0.6–75 yrs) with adrenocortical tumors. The DNA samples were obtained from peripheral blood, frozen tissue or paraffin-embedded tumor blocks when blood samples or fresh frozen tissue samples were unavailable. Restriction fragment length polymorphism analysis was used to genotype the patients and 150 controls. The potential associations of the p.D104N polymorphism with clinical and histopathological features and oncologic outcome (age of onset, tumor size, malignant tumor behavior, and clinical syndrome) were analyzed. RESULTS: Both the patient group and the control group were in Hardy–Weinberg equilibrium. The frequencies of the p.D104N polymorphism in the patient group were 81.9% (DD), 15.9% (DN) and 2.2% (NN). In the controls, these frequencies were 80.6%, 17.3% and 2.0%, respectively. We did not observe any association of this variant with clinical or histopathological features or oncologic outcome in our cohort of pediatric and adult patients with adrenocortical tumors. PMID:22358232

  11. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  12. Regulation of NANOG in cancer cells.

    PubMed

    Gong, Shuai; Li, Qiuhui; Jeter, Collene R; Fan, Qingxia; Tang, Dean G; Liu, Bigang

    2015-09-01

    As one of the key pluripotency transcription factors, NANOG plays a critical role in maintaining the self-renewal and pluripotency in normal embryonic stem cells. Recent data indicate that NANOG is expressed in a variety of cancers and its expression correlates with poor survival in cancer patients. Of interest, many studies suggest that NANOG enhances the defined characteristics of cancer stem cells and may thus function as an oncogene to promote carcinogenesis. Therefore, NANOG expression determines the cell fate not only in pluripotent cells but also in cancer cells. Although the regulation of NANOG in normal embryonic stem cells is reasonably well understood, the regulation of NANOG in cancer cells has only emerged recently. The current review provides a most updated summary on how NANOG expression is regulated during tumor development and progression. PMID:26013997

  13. Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms.

    PubMed

    Lefebvre, H; Duparc, C; Prévost, G; Zennaro, M C; Bertherat, J; Louiset, E

    2015-06-15

    Serotonin (5-hydroxytryptamine; 5-HT) is able to activate the hypothalamo-pituitary-adrenal axis via multiple actions at different levels. In the human adrenal gland, 5-HT, released by subcapsular mast cells, stimulates corticosteroid production through a paracrine mode of communication which involves 5-HT receptor type 4 (5-HT4) primarily located in zona glomerulosa. As a result, 5-HT is much more efficient to stimulate aldosterone secretion than cortisol release in vitro and administration of 5-HT4 receptor agonists to healthy individuals is followed by an increase in plasma aldosterone levels without any change in plasma cortisol concentrations. Interestingly, adrenocortical hyperplasias and tumors responsible for corticosteroid hypersecretion exhibit various cellular and molecular defects which tend to reinforce the intraadrenal serotonergic tone. These pathophysiological mechanisms, which are summarized in the present review, include an increase in adrenal 5-HT production and overexpression of 5-HT receptors in adrenal neoplastic tissues. Altogether, these data support the concept of adrenal serotonergic paracrinopathy and suggest that 5-HT and its receptors may constitute valuable targets for pharmacological treatments of primary adrenal diseases. PMID:25433205

  14. Network analysis reveals potential markers for pediatric adrenocortical carcinoma

    PubMed Central

    Kulshrestha, Anurag; Suman, Shikha; Ranjan, Rakesh

    2016-01-01

    Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings. PMID:27555782

  15. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  16. Dendritic cell-based cancer therapeutic vaccines

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques

    2013-01-01

    The past decade has seen tremendous developments in novel cancer therapies, through targeting of tumor cell-intrinsic pathways whose activity is linked to genetic alterations, as well as the targeting of tumor cell-extrinsic factors such as growth factors. Furthermore, immunotherapies are entering the clinic at an unprecedented speed following the demonstration that T cells can efficiently reject tumors and that their anti-tumor activity can be enhanced with antibodies against immune regulatory molecules (checkpoints blockade). Current immunotherapy strategies include monoclonal antibodies against tumor cells or immune regulatory molecules, cell-based therapies such as adoptive transfer of ex vivo activated T cells and natural killer (NK) cells, and cancer vaccines. Herein, we discuss the immunological basis for therapeutic cancer vaccines and how the current understanding of dendritic cell (DC) and T cell biology might enable development of next-generation curative therapies for patients with cancer. PMID:23890062

  17. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  18. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  19. Radiofrequency treatment alters cancer cell phenotype

    PubMed Central

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-01-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment. PMID:26165830

  20. Ghrelin and obestatin inhibit enucleation-induced adrenocortical proliferation in the rat.

    PubMed

    Rucinski, Marcin; Trejter, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Malendowicz, Ludwik K

    2010-05-01

    Studies involving the role of ghrelin (GHREL) in regulating the proliferative activity of various cell types have obtained variable results depending primarily on the experimental model applied. It was recently reported that neither GHREL nor obestatin (OBS) affected the proliferative activity of cultured rat adrenocortical cells. In view of the conflicting results, we investigated the effects of GHREL and OBS on the proliferative activity of rat adrenocortical cells in a model of bilateral enucleation-induced adrenocortical regeneration in the rat. Rats were sacrificed 5 or 8 days after surgery. Twenty-four hours before being sacrificed, the appropriate groups were infused with 3 nmol GHREL or OBS/100 g. The mitotic index was assessed using the stachmokinetic method with vincristine. In comparison with intact rats, expression levels of ppGHREL, BAX, JUN-B and JUN-C genes were notably higher in regenerating adrenals, and neither GHREL nor OBS infusion affected these levels. Expression levels of the GHS-R, GPR39v2 and FOS genes were affected neither by adrenal enucleation nor GHREL or OBS infusion. Expression of only two studied genes, GPR39v1 and EGR1, was regulated by OBS. In the regenerating adrenal glands, GPR39v1 and EGR1 mRNA levels were higher than the levels in intact animals. GHREL infusion had no effect while OBS infusion notably stimulated GPR39v1 mRNA levels in the regenerating adrenal gland and evoked an opposite effect on EGR1 mRNA. OBS administration resulted in a potent decrease in the mitotic index of the studied cells, an effect found at both days 5 and 8 of the experiment. GHREL exerted a similar effect only at day 5 of adrenocortical regeneration. Neither GHREL nor OBS had an effect on blood aldosterone concentrations. GHREL infusion lowered plasma corticosterone concentration at day 5 but not 8 of the experiment, while OBS administration was ineffective. Thus, this study is the first to demonstrate that, in vivo, both GHREL and OBS inhibit the

  1. Breast cancer cell lines: friend or foe?

    PubMed Central

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research. PMID:12631387

  2. Turning Cancer Cells into Cancer Killers.

    PubMed

    2016-01-01

    Researchers have changed leukemia cells into natural killer cells by adding a specific antibody to bone marrow cells from patients with acute myeloblastic leukemia. The induced natural killer cells killed leukemia cells in culture. The antibody does not trigger the same conversion in bone marrow from healthy patients. PMID:26621762

  3. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  4. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  5. Interfacial geometry dictates cancer cell tumorigenicity

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  6. Interfacial geometry dictates cancer cell tumorigenicity.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Wycislo, Kathryn L; Fan, Timothy M; Kilian, Kristopher A

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis. PMID:27043781

  7. [Diagnostic benefits of adrenocortical scintigraphy in hepatic adrenal rest tumor].

    PubMed

    Ishida, Kosuke; Horii, Rika; Yamashita, Tatsuya; Arai, Kuniaki; Yamashita, Taro; Kagaya, Takashi; Sakai, Yoshio; Mizukoshi, Eishiro; Honda, Masao; Kaneko, Shuichi

    2014-10-01

    An 81-year-old female was referred to our hospital for the examination of an S7 liver tumor. The tumor was suspected to be a hepatic adrenal rest tumor (HART) based on ultrasonography, dynamic CT, Gd-EOB-DTPA-enhanced MRI, and CT during abdominal angiography. After various hormonal tests, the tumor was confirmed as hormonally non-functional. The diagnosis of HART was confirmed based on (131)I-adosterol accumulation in the tumor by adrenocortical scintigraphy. The resected tumor was histologically compatible with HART, and it may have been able to produce cortisol based on the immunohistochemical findings of various adrenocortical hormone metabolic enzymes. Adrenocortical scintigraphy may thus be useful in diagnosing HART. PMID:25283230

  8. Cancer: The Transforming Power of Cell Competition.

    PubMed

    Gil, Jesus; Rodriguez, Tristan

    2016-02-22

    The tumour-host microenvironment plays key roles in cancer, but the mechanisms involved are not fully understood. Two new studies provide insight into this problem by showing that through cell competition, a fitness-sensing process that usually eliminates defective cells, pre-cancerous lesions signal the death of surrounding tissue that in turn promotes their neoplastic transformation. PMID:26906487

  9. Learning about Cancer by Studying Stem Cells

    MedlinePlus

    ... About Cancer by Studying Stem Cells Inside Life Science View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem ... Once Upon a Stem Cell This Inside Life Science article also appears on LiveScience . Learn about related ...

  10. Acid Ceramidase (ASAH1) Is a Global Regulator of Steroidogenic Capacity and Adrenocortical Gene Expression

    PubMed Central

    Lucki, Natasha C.; Bandyopadhyay, Sibali; Wang, Elaine; Merrill, Alfred H.

    2012-01-01

    In H295R human adrenocortical cells, ACTH rapidly activates ceramide (Cer) and sphingosine (SPH) turnover with a concomitant increase in SPH-1-phosphate secretion. These bioactive lipids modulate adrenocortical steroidogenesis, primarily by acting as second messengers in the protein kinase A/cAMP-dependent pathway. Acid ceramidase (ASAH1) directly regulates the intracellular balance of Cer, SPH, and SPH-1-phosphate by catalyzing the hydrolysis of Cer into SPH. ACTH/cAMP signaling stimulates ASAH1 transcription and activity, supporting a role for this enzyme in glucocorticoid production. Here, the role of ASAH1 in regulating steroidogenic capacity was examined using a tetracycline-inducible ASAH1 short hairpin RNA H295R human adrenocortical stable cell line. We show that ASAH1 suppression increases the transcription of multiple steroidogenic genes, including Cytochrome P450 monooxygenase (CYP)17A1, CYP11B1/2, CYP21A2, steroidogenic acute regulatory protein, hormone-sensitive lipase, 18-kDa translocator protein, and the melanocortin-2 receptor. Induced gene expression positively correlated with enhanced histone H3 acetylation at target promoters. Repression of ASAH1 expression also induced the expression of members of the nuclear receptor nuclear receptor subfamily 4 (NR4A) family while concomitantly suppressing the expression of dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1. ASAH1 knockdown altered the expression of genes involved in sphingolipid metabolism and changed the cellular amounts of distinct sphingolipid species. Finally, ASAH1 silencing increased basal and cAMP-dependent cortisol and dehydroepiandrosterone secretion, establishing ASAH1 as a pivotal regulator of steroidogenic capacity in the human adrenal cortex. PMID:22261821

  11. Pitfalls in the management of acute adrenocortical insufficiency: discussion paper.

    PubMed Central

    Waise, A; Young, R J

    1989-01-01

    In patients with acute adrenocortical insufficiency prompt recognition and treatment may be life-saving. Treatment should be initiated immediately before confirmation of the diagnosis. As shown by these case reports, junior staff on acute medical and surgical services, to whom these patients usually first present, may not appreciate that (a) hyponatraemia and hyperkalaemia, in the absence of renal failure, should immediately suggest the diagnosis of adrenal insufficiency and (b) treatment should precede confirmation of the diagnosis. Attempts to correct hyperkalaemia due to adrenocortical insufficiency with insulin and infusions of dextrose is inappropriate and potentially dangerous but seems to be a not unusual mistake. PMID:2614769

  12. Chronic effects of mercuric chloride ingestion on rat adrenocortical function

    SciTech Connect

    Agrawal, R.; Chansouria, J.P.N. )

    1989-09-01

    Mercurial contamination of environment has increased. Mercury accumulates in various organs and adversely affects their functions. Some of the most prominent toxic effects of inorganic mercury compounds include neurotoxicity, hepatotoxicity and nephrotoxicity. Besides this, mercury has also been reported to affect various endocrine glands like pituitary, thyroid, gonadal and adrenal glands. There have been no reports on the toxic effects of chronic oral administration of varying doses of mercuric chloride on adrenocortical function in albino rats. The present work was undertaken to study the adrenocortical response to chronic oral administration of mercuric chloride of varying dose and duration in albino rats.

  13. n-3 polyunsaturated fatty acids abrogate mTORC1/2 signaling and inhibit adrenocortical carcinoma growth in vitro and in vivo.

    PubMed

    Liu, Jun; Xu, Meinian; Zhao, Yongbin; Ao, Chunping; Wu, Yukun; Chen, Zhenguo; Wang, Bangqi; Bai, Xiaochun; Li, Ming; Hu, Weilie

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs) are essential for human health and have been reported to reduce the risk of cancer, inhibit the growth of various types of tumors both in vitro and in vivo, and affect adrenal function. However, their effects on adrenocortical carcinoma (ACC) are not known. In the present study, we demonstrated that docosahexenoic acid (DHA) inhibited ACC cell proliferation, colony formation and cell cycle progression, and promoted apoptosis. In addition, ectopic expression of fat-1, a desaturase that converts n-6 to n-3 PUFAs endogenously, also inhibited ACC cell proliferation. Moreover, supplementing n-3 PUFAs in the diet efficiently prevented ACC cell growth in xenograft models. Notably, implanted ACC cells were unable to grow in fat-1 transgenic severe combined immune deficiency mice. Further study revealed that exogenous and endogenous n-3 PUFAs efficiently suppressed both mTOR complex 1 (mTORC1) and mTORC2 signaling in ACC in vitro and in vivo. Taken together, our findings provide comprehensive preclinical evidence that n-3 PUFAs efficiently prevent ACC growth by inhibiting mTORC1/2, which may have important implications in the treatment of ACC. PMID:27035283

  14. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined

    PubMed Central

    Lee, Hyemi; Park, Heon Joo; Park, Chang-Shin; Oh, Eun-Taex; Choi, Bo-Hwa; Williams, Brent; Lee, Chung K.; Song, Chang W.

    2014-01-01

    Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5–10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44high/CD24low cells of MCF-7 cells and, CD44high/CD24high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia. PMID:24505341

  15. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  16. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  17. Dendritic cell-based cancer immunotherapy for colorectal cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  18. Wnt and the Cancer Niche: Paracrine Interactions with Gastrointestinal Cancer Cells Undergoing Asymmetric Cell Division

    PubMed Central

    Xin, Hong-Wu; Ambe, Chenwi M.; Ray, Satyajit; Kim, Bo-Kyu; Koizumi, Tomotake; Wiegand, Gordon W.; Hari, Danielle; Mullinax, John E.; Jaiswal, Kshama R.; Garfield, Susan H.; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S.; Avital, Itzhak

    2013-01-01

    Objective: Stem-like cancer cells contribute to cancer initiation and maintenance. Stem cells can self-renew by asymmetric cell division (ACD). ACD with non-random chromosomal cosegregation (ACD-NRCC) is one possible self-renewal mechanism. There is a paucity of evidence supporting ACD-NRCC in human cancer. Our aim was to investigate ACD-NRCC and its potential interactions with the cancer niche (microenvironment) in gastrointestinal cancers. Design: We used DNA double and single labeling approaches with FACS to isolate live cells undergoing ACD-NRCC. Results: Gastrointestinal cancers contain rare subpopulations of cells capable of ACD-NRCC. ACD-NRCC was detected preferentially in subpopulations of cells previously suggested to be stem-like/tumor-initiating cancer cells. ACD-NRCC was independent of cell-to-cell contact, and was regulated by the cancer niche in a heat-sensitive paracrine fashion. Wnt pathway genes and proteins are differentially expressed in cells undergoing ACD-NRCC vs. symmetric cell division. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in suppression of ACD-NRCC. However, using a Wnt-agonist did not increase the relative proportion of cells undergoing ACD-NRCC. Conclusion: Gastrointestinal cancers contain subpopulations of cells capable of ACD-NRCC. Here we show for the first time that ACD-NRCC can be regulated by the Wnt pathway, and by the cancer niche in a paracrine fashion. However, whether ACD-NRCC is exclusively associated with stem-like cancer cells remains to be determined. Further study of these findings might generate novel insights into stem cell and cancer biology. Targeting the mechanism of ACD-NRCC might engender novel approaches for cancer therapy. PMID:23901343

  19. An unusual case of adrenocortical carcinoma with liver metastasis that occurred at 23 years after surgery.

    PubMed

    Bergeat, Damien; Rayar, Michel; Beuzit, Luc; Levi Sandri, Giovanni Battista; Dagher, Julien; Merdrignac, Aude; Tanguy, Laetitia; Boudjema, Karim; Sulpice, Laurent; Meunier, Bernard

    2016-06-01

    Adrenocortical carcinoma (ACC) is an uncommon and aggressive cancer occurring more frequently in women; local or distant recurrences occur in 80% of cases, typically within 1 year after curative resection. Liver is the preferred metastatic site. Herein, we report the case of a unique liver metastasis from ACC occurring 23 years after the curative prior tumor surgery. A 45-year-old woman was operated in 1991 for adrenocortical stage II without microvascular involvement or capsular infiltration. At that time, no adjuvant treatment was indicated. The initial surgery consisted on a left adrenalectomy with contemporaneous left nephrectomy and regional lymphadenectomy. Five years after surgery, the patient was considered cured. However, 23 years later, the patient presented an atypical right subcostal pain. A 4 cm liver ACC metastasis involving the segment 4 and initially diagnosed as a hemangioma was discovered. A curative resection of the segment 4 was performed. Final pathological examination confirmed the diagnosis of ACC metastasis with a complete R0 resection; no lymph node metastases were observed. This case is the latest metachronous ACC metastasis ever reported in literature. To date, the patient is alive with no signs of recurrence after a post-surgical follow-up of 13 months. PMID:27275470

  20. An unusual case of adrenocortical carcinoma with liver metastasis that occurred at 23 years after surgery

    PubMed Central

    Rayar, Michel; Beuzit, Luc; Levi Sandri, Giovanni Battista; Dagher, Julien; Merdrignac, Aude; Tanguy, Laetitia; Boudjema, Karim; Sulpice, Laurent; Meunier, Bernard

    2016-01-01

    Adrenocortical carcinoma (ACC) is an uncommon and aggressive cancer occurring more frequently in women; local or distant recurrences occur in 80% of cases, typically within 1 year after curative resection. Liver is the preferred metastatic site. Herein, we report the case of a unique liver metastasis from ACC occurring 23 years after the curative prior tumor surgery. A 45-year-old woman was operated in 1991 for adrenocortical stage II without microvascular involvement or capsular infiltration. At that time, no adjuvant treatment was indicated. The initial surgery consisted on a left adrenalectomy with contemporaneous left nephrectomy and regional lymphadenectomy. Five years after surgery, the patient was considered cured. However, 23 years later, the patient presented an atypical right subcostal pain. A 4 cm liver ACC metastasis involving the segment 4 and initially diagnosed as a hemangioma was discovered. A curative resection of the segment 4 was performed. Final pathological examination confirmed the diagnosis of ACC metastasis with a complete R0 resection; no lymph node metastases were observed. This case is the latest metachronous ACC metastasis ever reported in literature. To date, the patient is alive with no signs of recurrence after a post-surgical follow-up of 13 months.

  1. A clinical and immunological study of adrenocortical insufficiency (Addison's disease)

    PubMed Central

    Irvine, W. J.; Stewart, A. G.; Scarth, Laura

    1967-01-01

    Fifty-one patients with adrenocortical insufficiency were subdivided into three groups according to the nature of their adrenal disease; twelve patients with idiopathic, twenty-three patients with probable idiopathic and sixteen patients with tuberculous adrenal insufficiency. The importance of objective confirmation of a clinical diagnosis of adrenal insufficiency is stressed and the difficulties of classification of many patients with adult onset adrenal insufficiency are discussed. Idiopathic and probable idiopathic adrenal insufficiency had a sex ratio that was predominantly female (2·5:1) with a mean age of onset of 33 years. Antibodies to adrenal cortex were detected by the methods of immunofluorescence and complement fixation. They were detected in the serum of 80% (20:25) of the females with idiopathic or probable idiopathic adrenal insufficiency and in only 10% (1:10) of the males. The titre of the adrenal antibody was low (≤32) as tested either by immunofluorescence or complement fixation. The serum of only one patient with tuberculous adrenal insufficiency reacted with adrenal tissue in the complement fixation test but the immunofluorescence method showed that this serum reacted with the vascular endothelium and not the secretory cells. No correlation was observed between the duration of the clinical illness and the presence, or absence, or titre of the adrenal antibody. Adrenal antibody was not detected in the sera of fifty-one control subjects matched for age and sex. Four of sixty-nine patients with lymphadenoid goitre, one out of ninety-three patients with diabetes mellitus and none of 230 patients with thyrotoxicosis, primary hypothyroidism or pernicious anaemia had antibody in the serum specific for adrenocortical secretory cells. There is a clinical and immunological overlap between idiopathic adrenal insufficiency and other diseases associated with autoimmune phenomena— thyroid disease, atrophic gastritis and hypoparathyroidism. It is

  2. Cancer Stem Cells in the Thyroid

    PubMed Central

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  3. Therapeutic strategies targeting cancer stem cells

    PubMed Central

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-01-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  4. Cell Fate Decisions During Breast Cancer Development

    PubMed Central

    Gross, Kayla; Wronski, Ania; Skibinski, Adam; Phillips, Sarah; Kuperwasser, Charlotte

    2016-01-01

    During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter cell fate decisions and put pre-malignant cells on a path towards cancer development with specific phenotypes. Understanding the early stages of breast cancer initiation and progression and how normal developmental processes are hijacked during transformation has significant implications for improving early detection and prevention of breast cancer. In addition, insights gleaned from this understanding may also be important for developing subtype-specific treatment options. PMID:27110512

  5. Therapeutic strategies targeting cancer stem cells.

    PubMed

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  6. Cancer Stem Cells in the Thyroid.

    PubMed

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  7. Ultrasound Effect on Cancerous versus Non-Cancerous Cells.

    PubMed

    Azagury, Aharon; Amar-Lewis, Eliz; Yudilevitch, Yana; Isaacson, Carol; Laster, Brenda; Kost, Joseph

    2016-07-01

    Previous studies have found that cancer cells whose metastatic potential is low are more vulnerable to mechanical stress-induced trauma to their cytoskeleton compared with benign cells. Because ultrasound induces mechanical stresses on cells and tissues, it is postulated that there may be a way to apply ultrasound to tumors to reduce their ability to metastasize. The difference between low-malignant-potential cancer cells and benign cells could be a result of their different responses to the mechanical stress insonation induced. This hypothesis was tested in vitro and in vivo. Low-malignant-potential cells were found to be more sensitive to insonation, resulting in a significantly higher mortality rate compared with that of benign cells, 89% versus 21%, respectively. This effect can be controlled by varying ultrasound parameters: intensity, duration, and duty cycle. Thus, the results presented in this study suggest the application of ultrasound to discriminate between benign and malignant cells. PMID:27067417

  8. Cancer stem cells in multiple myeloma.

    PubMed

    Ghosh, Nilanjan; Matsui, William

    2009-05-01

    Several key observations providing evidence for the cancer stem cell hypothesis and insights into the unique biology of these cells have come from the study of multiple myeloma. These include evidence that cancer cells may be functionally heterogeneous in spite of their genetic homogeneity and that malignant progenitors share many biological features with normal adult stem cells including drug resistance and regulatory processes governing self-renewal. We review studies that have examined clonogenic cells in multiple myeloma, highlight controversies regarding the cell of origin in multiple myeloma, and discuss potential targeting strategies. PMID:18809245

  9. Hallmarks of cancer stem cell metabolism

    PubMed Central

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-01-01

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome. PMID:27219018

  10. Hallmarks of cancer stem cell metabolism.

    PubMed

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-06-14

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome. PMID:27219018

  11. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  12. Cancer stem cells in head and neck cancer.

    PubMed

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  13. Cell Senescence: Aging and Cancer

    ScienceCinema

    Campisi, Judith

    2013-05-29

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  14. Cell Senescence: Aging and Cancer

    SciTech Connect

    Campisi, Judith

    2008-01-01

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  15. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  16. Understanding cellular architecture in cancer cells

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Tang, Chao

    2011-03-01

    Understanding the development of cancer is an important goal for today's science. The morphology of cellular organelles, such as the nucleus, the nucleoli and the mitochondria, which is referred to as cellular architecture or cytoarchitecture, is an important indicator of the state of the cell. In particular, there are striking difference between the cellular architecture of a healthy cell versus a cancer cell. In this work we present a dynamical model for the evolution of organelles morphology in cancer cells. Using a dynamical systems approach, we describe the evolution of a cell on its way to cancer as a trajectory in a multidimensional morphology state. The results provided by this work may increase our insight on the mechanism of tumorigenesis and help build new therapeutic strategies.

  17. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    PubMed Central

    Longatto-Filho, Adhemar; Faria, André M.; Fragoso, Maria C. B. V.; Lovisolo, Silvana M.; Lerário, Antonio M.; Almeida, Madson Q.

    2015-01-01

    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients' clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis. PMID:26587828

  18. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  19. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia T.

    2015-10-01

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  20. Continuous Hyperthermic Peritoneal Perfusion (CHPP) With Cisplatin for Children With Peritoneal Cancer

    ClinicalTrials.gov

    2012-03-29

    Peritoneal Neoplasms; Retroperitoneal Neoplasms; Gastrointestinal Neoplasms; Adenocarcinoma; Neuroblastoma; Ovarian Neoplasms; Sarcoma; Adrenocortical Carcinoma; Wilms Tumor; Rhabdomyosarcoma; Desmoplastic Small Round Cell Tumor

  1. Stem cells and cancer: an overview.

    PubMed

    Sales, Kevin M; Winslet, Marc C; Seifalian, Alexander M

    2007-12-01

    Definite evidence of the importance of cancer stem cells in the progression of cancer has now come to light. Key markers of these cells have been identified in many solid tumours as well as leukaemias. Specific studies modelling the tumour induction of specific cells isolated by surface antigens such as CD44 have demonstrated that these cells are not only present in tumours but that they are the key units in their tumourgenecity. These findings provide useful insight for disease progression, treatment and metastasis. The wide variety of proposed markers, and their similarity to endothelial progenitor cells found in angiogenesis, complicates these studies. Definite proof falls only in the induction of tumours in vivo. Here we review the developments in cancer stem cells and the markers that have been found for these cells. PMID:17955391

  2. Cell Polarity Proteins in Breast Cancer Progression.

    PubMed

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362918

  3. Identifying cancer origin using circulating tumor cells

    PubMed Central

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-01-01

    ABSTRACT Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  4. Identifying cancer origin using circulating tumor cells.

    PubMed

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-04-01

    Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK(+) and CK18(+) CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7(+) or TTF-1(+), (CK20/ CDX2)(+), or (PSA/ PSMA)(+) corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  5. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    SciTech Connect

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  6. DNA Methylation Profiling Identifies Global Methylation Differences and Markers of Adrenocortical Tumors

    PubMed Central

    Rechache, Nesrin S.; Wang, Yonghong; Stevenson, Holly S.; Killian, J. Keith; Edelman, Daniel C.; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A.; Meltzer, Paul S.

    2012-01-01

    Context: It is not known whether there are any DNA methylation alterations in adrenocortical tumors. Objective: The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Methods: Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Results: Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Conclusions: Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors. PMID:22472567

  7. Signaling in colon cancer stem cells.

    PubMed

    Roy, Sanchita; Majumdar, Adhip Pn

    2012-01-01

    : Colorectal cancer is the fourth most common form of cancer worldwide and ranks third among the cancer-related deaths in the US and other Western countries. It occurs with equal frequency in men and women, constituting 10% of new cancer cases in men and 11% in women. Despite recent advancement in therapeutics, the survival rates from metastatic are less than 5%. Growing evidence supports the contention that epithelial cancers including colorectal cancer, the incidence of which increases with aging, are diseases driven by the pluripotent, self-renewing cancer stem cells (CSCs). Dysregulation of Wnt, Notch, Hedgehog and/or TGF-β signaling pathways that are involved in proliferation and maintenance of CSCs leads to the development of CRC. This review focuses on the signaling pathways relevant for CRC to understand the mechanisms leading to tumor progression and therapy resistance, which may help in the development of therapeutic strategies for CRC. PMID:22866952

  8. Targeting natural killer cells in cancer immunotherapy.

    PubMed

    Guillerey, Camille; Huntington, Nicholas D; Smyth, Mark J

    2016-08-19

    Alteration in the expression of cell-surface proteins is a common consequence of malignant transformation. Natural killer (NK) cells use an array of germline-encoded activating and inhibitory receptors that scan for altered protein-expression patterns, but tumor evasion of detection by the immune system is now recognized as one of the hallmarks of cancer. NK cells display rapid and potent immunity to metastasis or hematological cancers, and major efforts are now being undertaken to fully exploit NK cell anti-tumor properties in the clinic. Diverse approaches encompass the development of large-scale NK cell-expansion protocols for adoptive transfer, the establishment of a microenvironment favorable to NK cell activity, the redirection of NK cell activity against tumor cells and the release of inhibitory signals that limit NK cell function. In this Review we detail recent advances in NK cell-based immunotherapies and discuss the advantages and limitations of these strategies. PMID:27540992

  9. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential.

    PubMed

    Shenouda, Mina; Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-01-01

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  10. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential

    PubMed Central

    Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-01-01

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  11. Gene sensitizes cancer cells to chemotherapy drugs

    Cancer.gov

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  12. Measuring the metastatic potential of cancer cells

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Gratzner, Howard; Atassi, M. Z.

    1993-01-01

    Cancer cells must secrete proteolytic enzymes to invade adjacent tissues and migrate to a new metastatic site. Urokinase (uPA) is a key enzyme related to metastasis in cancers of the lung, colon, gastric, uterine, breast, brain, and malignant melanoma. A NASA technology utilization project has combined fluorescence microscopy, image analysis, and flow cytometry, using fluorescent dyes, and urokinase-specific antibodies to measure uPA and abnormal DNA levels (related to cancer cell proliferation) inside the cancer cells. The project is focused on developing quantitative measurements to determine if a patient's tumor cells are actively metastasizing. If a significant number of tumor cells contain large amounts of uPA (esp. membrane-bound) then the post-surgical chemotherapy or radiotherapy can be targeted for metastatic cells that have already left the primary tumor. These analytical methods have been applied to a retrospective study of biopsy tissues from 150 node negative, stage 1 breast cancer patients. Cytopathology and image analysis has shown that uPA is present in high levels in many breast cancer cells, but not found in normal breast. Significant amounts of uPA also have been measured in glioma cell lines cultured from brain tumors. Commercial applications include new diagnostic tests for metastatic cells, in different cancers, which are being developed with a company that provides a medical testing service using flow cytometry for DNA analysis and hormone receptors on tumor cells from patient biopsies. This research also may provide the basis for developing a new 'magic bullet' treatment against metastasis using chemotherapeutic drugs or radioisotopes attached to urokinase-specific monoclonal antibodies that will only bind to metastatic cells.

  13. Stereotactic Body Radiation Therapy in Treating Patients With Metastatic Breast Cancer, Non-small Cell Lung Cancer, or Prostate Cancer

    ClinicalTrials.gov

    2016-06-17

    Male Breast Carcinoma; Prostate Adenocarcinoma; Recurrent Breast Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Prostate Carcinoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Prostate Cancer

  14. FOXA1 defines cancer cell specificity

    PubMed Central

    Zhang, Gaihua; Zhao, Yongbing; Liu, Yi; Kao, Li-Pin; Wang, Xiao; Skerry, Benjamin; Li, Zhaoyu

    2016-01-01

    A transcription factor functions differentially and/or identically in multiple cell types. However, the mechanism for cell-specific regulation of a transcription factor remains to be elucidated. We address how a single transcription factor, forkhead box protein A1 (FOXA1), forms cell-specific genomic signatures and differentially regulates gene expression in four human cancer cell lines (HepG2, LNCaP, MCF7, and T47D). FOXA1 is a pioneer transcription factor in organogenesis and cancer progression. Genomewide mapping of FOXA1 by chromatin immunoprecipitation sequencing annotates that target genes associated with FOXA1 binding are mostly common to these cancer cells. However, most of the functional FOXA1 target genes are specific to each cancer cell type. Further investigations using CRISPR-Cas9 genome editing technology indicate that cell-specific FOXA1 regulation is attributable to unique FOXA1 binding, genetic variations, and/or potential epigenetic regulation. Thus, FOXA1 controls the specificity of cancer cell types. We raise a “flower-blooming” hypothesis for cell-specific transcriptional regulation based on these observations. PMID:27034986

  15. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs.

  16. Printing Cancer Cells into Intact Microvascular Networks: A Model for Investigating Cancer Cell Dynamics during Angiogenesis

    PubMed Central

    Phamduy, Theresa B.; Sweat, Richard S.; Azimi, Mohammad S.; Burow, Matthew E.; Murfee, Walter L.; Chrisey, Douglas B.

    2016-01-01

    While cancer cell invasion and metastasis is dependent on cancer cell-stroma, cancer cell-blood vessel, and cancer cell-lymphatic vessel interactions, our understanding of these interactions remain largely unknown. A need exists for physiologically-relevant models that more closely mimic the complexity of cancer cell dynamics in a real tissue environment. The objective of this study was to combine laser-based cell printing and tissue culture methods to create a novel ex vivo model in which cancer cell dynamics can be tracked during angiogenesis in an intact microvascular network. Laser direct-write (LDW) was utilized to reproducibly deposit breast cancer cells (MDA-MB-231 and MCF-7) and fibroblasts into spatially-defined patterns on cultured rat mesenteric tissues. In addition, heterogeneous patterns containing co-printed MDA-MB-231/fibroblasts or MDA-MB-231/MCF-7 cells were generated for fibroblast-directed and collective cell invasion models. Printed cells remained viable and the cells retained the ability to proliferate in serum-rich media conditions. Over a culture period of five days, time-lapse imaging confirmed fibroblast and MDA-MB-231 cell migration within the microvascular networks. Confocal microscopy indicated that printed MDA-MB-231 cells infiltrated the tissue thickness and were capable of interacting with endothelial cells. Angiogenic network growth in tissue areas containing printed cancer cells was characterized by significantly increased capillary sprouting compared to control tissue areas containing no printed cells. Our results establish an innovative ex vivo experimental platform that enables time-lapse evaluation of cancer cell dynamics during angiogenesis within a real microvascular network scenario. PMID:26190039

  17. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  18. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme.

    PubMed

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T; Peng, Lifeng; Davis, Paul F; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM's cancer biology. PMID:27148537

  19. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  20. Follicular cell-derived thyroid cancer.

    PubMed

    Dralle, Henning; Machens, Andreas; Basa, Johanna; Fatourechi, Vahab; Franceschi, Silvia; Hay, Ian D; Nikiforov, Yuri E; Pacini, Furio; Pasieka, Janice L; Sherman, Steven I

    2015-01-01

    Follicular cell-derived thyroid cancers are derived from the follicular cells in the thyroid gland, which secrete the iodine-containing thyroid hormones. Follicular cell-derived thyroid cancers can be classified into papillary thyroid cancer (80-85%), follicular thyroid cancer (10-15%), poorly differentiated thyroid cancer (<2%) and undifferentiated (anaplastic) thyroid cancer (<2%), and these have an excellent prognosis with the exception of undifferentiated thyroid cancer. The advent and expansion of advanced diagnostic techniques has driven and continues to drive the epidemic of occult papillary thyroid cancer, owing to overdiagnosis of clinically irrelevant nodules. This transformation of the thyroid cancer landscape at molecular and clinical levels calls for the modification of management strategies towards personalized medicine based on individual risk assessment to deliver the most effective but least aggressive treatment. In thyroid cancer surgery, for instance, injuries to structures outside the thyroid gland, such as the recurrent laryngeal nerve in 2-5% of surgeries or the parathyroid glands in 5-10% of surgeries, negatively affect quality of life more than loss of the expendable thyroid gland. Furthermore, the risks associated with radioiodine ablation may outweigh the risks of persistent or recurrent disease and disease-specific mortality. Improvement in the health-related quality of life of survivors of follicular cell-derived thyroid cancer, which is decreased despite the generally favourable outcome, hinges on early tumour detection and minimization of treatment-related sequelae. Future opportunities include more widespread adoption of molecular and clinical risk stratification and identification of actionable targets for individualized therapies. PMID:27188261

  1. IGF2 and IGF1R in pediatric adrenocortical tumors: roles in metastasis and steroidogenesis.

    PubMed

    Peixoto Lira, Régia Caroline; Fedatto, Paola Fernanda; Marco Antonio, David Santos; Leal, Letícia Ferro; Martinelli, Carlos Eduardo; de Castro, Margaret; Tucci, Silvio; Neder, Luciano; Ramalho, Leandra; Seidinger, Ana Luiza; Cardinalli, Izilda; Mastellaro, Maria José; Yunes, José Andres; Brandalise, Silvia Regina; Tone, Luiz Gonzaga; Rauber Antonini, Sonir Roberto; Scrideli, Carlos Alberto

    2015-06-01

    Deregulation of the IGF system observed in human tumors indicates a role in malignant cell transformation and in tumor cell proliferation. Although overexpression of the IGF2 and IGF1R genes was described in adrenocortical tumors (ACTs), few studies reported their profiles in pediatric ACTs. In this study, the IGF2 and IGF1R expression was evaluated by RT-qPCR according to the patient's clinical/pathological features in 60 pediatric ACT samples, and IGF1R protein was investigated in 45 samples by immunohistochemistry (IHC). Whole transcriptome and functional assays were conducted after IGF1R inhibition with OSI-906 in NCI-H295A cell line. Significant IGF2 overexpression was found in tumor samples when compared with non-neoplastic samples (P<0.001), significantly higher levels of IGF1R in patients with relapse/metastasis (P=0.031) and moderate/strong IGF1R immunostaining in 62.2% of ACTs, but no other relationship with patient survival and clinical/pathological features was observed. OSI-906 treatment downregulated genes associated with MAPK activity, induced limited reduction of cell viability and increased the apoptosis rate. After 24h, the treatment also decreased the expression of genes related to the steroid biosynthetic process, the protein levels of the steroidogenic acute regulatory protein (STAR), and androgen secretion in cell medium, supporting the role of IGF1R in steroidogenesis of adrenocortical carcinoma cells. Our data showed that the IGF1R overexpression could be indicative of aggressive ACTs in children. However, in vitro treatments with high concentrations of OSI-906 (>1μM) showed limited reduction of cell viability, suggesting that OSI-906 alone could not be a suitable therapy to abolish carcinoma cell growth. PMID:27185872

  2. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones.

    PubMed

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-01-01

    BACKGROUND The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11b-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. MATERIAL AND METHODS Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. RESULTS Hill's equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57-0.0247×(CDEX-4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. CONCLUSIONS Combined use of DEX and ETO reduced ETO's inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones. PMID:26568275

  3. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones

    PubMed Central

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-01-01

    Background The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11β-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. Material/Methods Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. Results Hill’s equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57–0.0247×(CDEX–4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. Conclusions Combined use of DEX and ETO reduced ETO’s inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones. PMID

  4. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids. PMID:16515531

  5. Angiotensin II promotes endometrial cancer cell survival.

    PubMed

    Nowakowska, Magdalena; Matysiak-Burzyńska, Zuzanna; Kowalska, Karolina; Płuciennik, Elżbieta; Domińska, Kamila; Piastowska-Ciesielska, Agnieszka W

    2016-08-01

    Endometrial cancer (EC) is one of the most common female cancers. One of the key processes involved in EC development is uncontrolled proliferation stimulated by local factors such as angiotensin. The aim of the present study was to evaluate the influence of angiotensin II (Ang II) on human EC cells. Biological assays and gene expression analysis were performed on three cell lines: ISH, MFE-296 and MFE-280. Our results indicated that at the beginning of cancerogenesis Ang II induced abnormal proliferation at lower doses. We also showed that dose-dependent induction of proliferation was connected with changes in the expression of MKI67, CCND1 and CCNE1 genes in well- and poorly differentiated cancer cells. After Ang II treatment, poorly differentiated endometrial cancer cell line acquired a mesenchymal phenotype, which was characterized by induced expression of EMT-related genes (VIM, CD44, SNAI1, ZEB1 and ZEB2). Our study revealed that Ang II influences EC cells in terms of cancer-related processes, and is responsible for increased proliferation, reduction in apoptosis, increased mobility and modulation of adhesion potential. Its effect and effectiveness appear to be highly connected with the differentiation status of the cancerous cells, as Ang II appears to play a crucial role in the early and late stages of malignant transformation. PMID:27349856

  6. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge. PMID:21470128

  7. Cancer Stem Cells: A Stride Towards Cancer Cure?

    PubMed Central

    SENGUPTA, AMITAVA; CANCELAS, JOSE A.

    2014-01-01

    Despite major refinements in cancer therapy drugs, our progress at increasing the cure rates of most cancers has been hampered by high relapse rates. A possible biological explanation of the high frequency of relapse and resistance to currently available drugs has been provided by the cancer stem cell (CSC) proposition. Basically, the CSC theory hypothesizes the presence of a hierarchically organized, relatively rare population of cells that is responsible for tumor initiation, self-renewal and maintenance, mutation accumulation and therapy resistance. Since first postulated by John Dick, multiple reports have provided support for this hypothesis by isolating (more or less) rare cell populations, where the ability to initiate tumors in vivo has been demonstrated. Most progress and stronger data supporting this theory are found predominantly in myelogenous leukemias, whose study has benefited from over half-a-century progress in our understanding of the normal hierarchical organization of hematopoiesis. This review, however, also analyzes the advancement in the quantitative and functional analysis of solid tumor stem cells and in the analysis of the tumor microenvironment as specialized, nurturing niches for CSCs. Overall, this review intends to briefly summarize most of the evidences that support the CSC theory and the apparent contradictions, if not skepticism from the scientific community, about its validity for all forms of cancer, or alternatively on just a few cancers initiated by a limited number of somatic or germinal mutations. PMID:20458736

  8. Transbronchial Dissemination of Squamous Cell Lung Cancer

    PubMed Central

    Tadokoro, Akira; Kanaji, Nobuhiro; Ishii, Tomoya; Watanabe, Naoki; Inoue, Takuya; Kadowaki, Norimitsu; Bandoh, Shuji

    2015-01-01

    We report a case of squamous cell lung cancer with transbronchial dissemination in a 73-year-old man. Bronchoscopic examination revealed multiple bronchial mucosal nodules that existed independently of one another. We reviewed 16 previous cases of endobronchial metastasis in lung cancer. All patients were men. Among the reports that described the smoking history, most patients were smokers (6/7), and the most frequent histological type of cancer was squamous cell carcinoma (11/17). Although hematogenous and lymphogenous routes have been reported as metastatic mechanisms, no previous cases involving transbronchial dissemination have been described. Transbronchial dissemination may be an alternative pathway of endobronchial metastasis. PMID:26672760

  9. Dendritic cell defects in the colorectal cancer

    PubMed Central

    Legitimo, Annalisa; Consolini, Rita; Failli, Alessandra; Orsini, Giulia; Spisni, Roberto

    2014-01-01

    Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression. PMID:25483675

  10. Cortisol-secreting adrenocortical tumours in dogs and their relevance for human medicine.

    PubMed

    Galac, Sara

    2016-02-01

    Spontaneous cortisol-secreting adrenocortical tumours in pet dogs are an attractive animal model for their human counterparts. Adrenal morphology and function are similar in dogs and humans, and adrenocortical tumours have comparable clinical and pathological characteristics. Their relatively high incidence in pet dogs represents a potential source of adrenocortical tumour tissue to facilitate research. The molecular characteristics of canine cortisol-secreting adrenocortical tumours suggest that they will be useful for the study of angiogenesis, the cAMP/protein kinase A pathway, and the role of Steroidogenic Factor-1 in adrenal tumourigenesis. Pet dogs with spontaneous cortisol-secreting adrenocortical tumours may also be useful in clinical testing of new drugs and in investigating the molecular background of adrenocortical tumours. PMID:26123587

  11. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  12. Cancer stem cells: the lessons from pre-cancerous stem cells

    PubMed Central

    Gao, Jian-Xin

    2008-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not contradictory to the CSC hypothesis but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respect to their phenotype, differentiation and tumourigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumour stromal components such as tumour vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumour-initiating cells (TIC) → pCSC → CSC → cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) → pre-cancerous lesions (pCSC) → malignant lesions (CSC → cancer). The embryonic stem (ES) cell and germ line stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC → pCSC → CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC cannot be made at this time. However, this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer. PMID:18053092

  13. Iron, inflammation and invasion of cancer cells

    PubMed Central

    FISCHER-FODOR, EVA; MIKLASOVA, NATALIA; BERINDAN-NEAGOE, IOANA; SAHA, BHASKAR

    2015-01-01

    Chronic inflammation is associated with the metastasis of tumor cells evolving from a benign tumor to disseminating cancer. Such a metastatic progression is fostered by the angiogenesis propelled by various mediators interacting at the site of tumor growth. Angiogenesis causes two major changes that are assisted by altered glycosylation and neo-antigen presentation by the cancer cells. The angiogenesis-promoted pathological changes include enhanced inflammation and degradation of tissue matrices releasing tumor cells from the site of its origin. The degraded tumor cells release the neo-antigens resulting from altered glycosylation. Presentation of neo-antigens to T cells escalates metastasis and inflammation. Inflammasome activation and inflammation in several infections are regulated by iron. Based on the discrete reports, we propose a link between iron, inflammation, angiogenesis and tumor growth. Knowing the link better may help us formulate a novel strategy for cancer immunotherapy. PMID:26609256

  14. Overcoming Multidrug Resistance in Cancer Stem Cells

    PubMed Central

    Moitra, Karobi

    2015-01-01

    The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed. PMID:26649310

  15. Biomechanical investigation of colorectal cancer cells

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Lucchetti, Donatella; Maiorana, Alessandro; Papi, Massimiliano; Maulucci, Giuseppe; Ciasca, Gabriele; Svelto, Maria; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    The nanomechanical properties of SW480 colon cancer cells were investigated using Atomic Force Microscopy. SW480 cells are composed of two sub-populations with different shape and invasiveness. These two cells populations showed similar adhesion properties while appeared significantly different in term of cells stiffness. Since cell stiffness is related to invasiveness and growth, we suggest elasticity as a useful parameter to distinguish invasive cells inside the colorectal tumor bulk and the high-resolution mechanical mapping as a promising diagnostic tool for the identification of malignant cells.

  16. Ubiquitin ligase CHIP suppresses cancer stem cell properties in a population of breast cancer cells.

    PubMed

    Tsuchiya, Mai; Nakajima, Yuka; Hirata, Naoya; Morishita, Tamaki; Kishimoto, Hiroyuki; Kanda, Yasunari; Kimura, Keiji

    2014-10-01

    Cancer stem cells (CSCs) have several distinctive characteristics, including high metastatic potential, tumor-initiating potential, and properties that resemble normal stem cells such as self-renewal, differentiation, and drug efflux. Because of these characteristics, CSC is regarded to be responsible for cancer progression and patient prognosis. In our previous study, we showed that a ubiquitin E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) suppressed breast cancer malignancy. Moreover, a recent clinical study reported that CHIP expression levels were associated with favorable prognostic parameters of patients with breast cancer. Here we show that CHIP suppresses CSC properties in a population of breast cancer cells. CHIP depletion resulted in an increased proportion of CSCs among breast cancers when using several assays to assess CSC properties. From our results, we propose that inhibition of CSC properties may be one of the functions of CHIP as a suppressor of cancer progression. PMID:25234599

  17. Cancer stem cells: a metastasizing menace!

    PubMed

    Bandhavkar, Saurabh

    2016-04-01

    Cancer is one of the leading causes of death worldwide, and is estimated to be a reason of death of more than 18 billion people in the coming 5 years. Progress has been made in diagnosis and treatment of cancer; however, a sound understanding of the underlying cell biology still remains an unsolved mystery. Current treatments include a combination of radiation, surgery, and/or chemotherapy. However, these treatments are not a complete cure, aimed simply at shrinking the tumor and in majority of cases, there is a relapse of tumor. Several evidences suggest the presence of cancer stem cells (CSCs) or tumor-initiating stem-like cells, a small population of cells present in the tumor, capable of self-renewal and generation of differentiated progeny. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. As a result, increasing attention has been given to CSC research to resolve the therapeutic problems related to cancer. Progress in this field of research has led to the development of novel strategies to treat several malignancies and has become a hot topic of discussion. In this review, we will briefly focus on the main characteristics, therapeutic implications, and perspectives of CSCs in cancer therapy. PMID:26773710

  18. DNA From Dead Cancer Cells Induces TLR9-Mediated Invasion and Inflammation In Living Cancer Cells

    PubMed Central

    Tuomela, Johanna; Sandholm, Jouko; Kaakinen, Mika; Patel, Ankita; Kauppila, Joonas H.; Ilvesaro, Joanna; Chen, Dongquan; Harris, Kevin W.; Graves, David; Selander, Katri S.

    2014-01-01

    TLR9 is a cellular DNA-receptor, which is widely expressed in breast and other cancers. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. We show here that living cancer cells uptake DNA from chemotherapy-killed cancer cells. We discovered that such DNA induces TLR9- and cathepsin-mediated invasion in living cancer cells. To study whether this phenomenon contributes to treatment responses, triple negative, human MDA-MB-231 breast cancer cells stably expressing control or TLR9 siRNA were inoculated orthotopically into nude mice. The mice were treated with vehicle or doxorubicin. The tumor groups exhibited equal decreases in size in response to doxorubicin. However, while the weights of vehicle-treated mice were similar, mice bearing control siRNA tumors became significantly more cachectic in response to doxorubicin, as compared with similarly treated mice bearing TLR9 siRNA tumors, suggesting a TLR9-mediated inflammation at the site of the tumor. In conclusion, our findings propose that DNA released from chemotherapy-killed cancer cells has significant influence on TLR9-mediated biological effects in living cancer cells. Through these mechanisms, tumor TLR9 expression may affect treatment responses to chemotherapy. PMID:24212717

  19. Perspectives on cancer stem cells in osteosarcoma.

    PubMed

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2013-09-10

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  20. Natural T cell immunity against cancer.

    PubMed

    Nagorsen, Dirk; Scheibenbogen, Carmen; Marincola, Francesco M; Letsch, Anne; Keilholz, Ulrich

    2003-10-01

    It has long been a matter of debate whether tumors are spontaneously immunogenic in patients. With the availability of sensitive methods, naturally occurring T cells directed against tumor-associated antigens (TAAs) can be frequently detected in cancer patients. In this review, we summarize the current data on T cell responses to TAAs in various malignancies, including melanoma, colorectal cancer, leukemia, and breast cancer. T cell responses against various antigens, including melanoma differentiation antigens, carcinoembryonic antigen, epithelial cell adhesion molecule, her-2/neu, Wilms' tumor protein, proteinase 3, NY-ESO-1, and surviving, have been reported in a substantial number of patients. In contrast, other TAAs, including most antigens of the MAGE family, do not usually elicit spontaneous T cell responses. A distinction between direct ex vivo T cell responses and in vitro-generated T cell responses is provided because in vitro stimulation results in quantitative and functional changes of T cell responses. The possible role of TAA-specific T cells in immunosurveillance and tumor escape and the implications for immunological treatment strategies are discussed. Naturally occurring T cells against TAAs are a common phenomenon in tumor patients. Understanding the mechanisms and behavior of natural TAA-specific T cells could provide crucial information for rational development of more efficient T cell-directed immunotherapy. PMID:14555498

  1. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells

    PubMed Central

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn’t exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker. PMID:27073722

  2. Biomechanics and biophysics of cancer cells

    PubMed Central

    Suresh, Subra

    2010-01-01

    The past decade has seen substantial growth in research into how changes in the biomechanical and biophysical properties of cells and subcellular structures influence, and are influenced by, the onset and progression of human diseases. This paper presents an overview of the rapidly expanding, nascent field of research that deals with the biomechanics and biophysics of cancer cells. The review begins with some key observations on the biology of cancer cells and on the role of actin microfilaments, intermediate filaments and microtubule biopolymer cytoskeletal components in influencing cell mechanics, locomotion, differentiation and neoplastic transformation. In order to set the scene for mechanistic discussions of the connections among alterations to subcellular structures, attendant changes in cell deformability, cytoadherence, migration, invasion and tumor metastasis, a survey is presented of the various quantitative mechanical and physical assays to extract the elastic and viscoelastic deformability of cancer cells. Results available in the literature on cell mechanics for different types of cancer are then reviewed. Representative case studies are presented next to illustrate how chemically induced cytoskeletal changes, biomechanical responses and signals from the intracellular regions act in concert with the chemomechanical environment of the extracellular matrix and the molecular tumorigenic signaling pathways to effect malignant transformations. Results are presented to illustrate how changes to cytoskeletal architecture induced by cancer drugs and chemotherapy regimens can significantly influence cell mechanics and disease state. It is reasoned through experimental evidence that greater understanding of the mechanics of cancer cell deformability and its interactions with the extracellular physical, chemical and biological environments offers enormous potential for significant new developments in disease diagnostics, prophylactics, therapeutics and drug

  3. Cancer Cells with Irons in the Fire

    PubMed Central

    Bystrom, Laura M.; Rivella, Stefano

    2014-01-01

    Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer. PMID:24835768

  4. Phenotype heterogeneity in cancer cell populations

    NASA Astrophysics Data System (ADS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  5. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  6. Quantifying Collective Cell Migration during Cancer Progression

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Stuelten, Christina; Nordstrom, Kerstin; Parent, Carole; Losert, Wolfgang

    2014-03-01

    As tumors become more malignant, cells invade the surrounding tissue and migrate throughout the body to form secondary, metastatic tumors. This metastatic process is initiated when cells leave the primary tumor, either individually or as groups of collectively migrating cells. The mechanisms regulating how groups of cells collectively migrate are not well characterized. Here we study the migration dynamics of epithelial sheets composed of many cells using quantitative image analysis techniques. By extracting motion information from time-lapse images of cell lines of varying malignancy, we are able to measure how migration dynamics change during cancer progression. We further investigate the role that cell-cell adhesion plays in these collective dynamics by analyzing the migration of cell lines with varying levels of E-cadherin (a cell-cell adhesion protein) expression.

  7. [Cancer stemness and circulating tumor cells].

    PubMed

    Saito, Tomoko; Mimori, Koshi

    2015-05-01

    The principle concept of cancer stem cells (CSCs) giving rise to the carcinogenesis, relapse or metastasis of malignancy is broadly recognized. On the other hand, circulating tumor cells (CTCs) also plays important roles in relapse or metastasis of malignancy, and there has been much focused on the association between CSCs and CTCs in cancer cases. The technical innovations for detection of CTCs enabled us to unveil the nature of CTCs. We now realize that CTCs isolated by cell surface antibodies, such as DCLK1, LGR5 indicated CSC properties, and CTCs with epitherial-mesenchymal transition(EMT) phenotype showed characteristics of CSCs. PMID:25985635

  8. Immune cell interplay in colorectal cancer prognosis

    PubMed Central

    Norton, Samuel E; Ward-Hartstonge, Kirsten A; Taylor, Edward S; Kemp, Roslyn A

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment. PMID:26483876

  9. Targeting cancer stem cells with oncolytic virus

    PubMed Central

    Tong, Yin

    2014-01-01

    Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells which are shown to be relatively resistant to conventional anticancer therapies and have been correlated to disease recurrence. Oncolytic viruses utilize methods of cell killing that differ from traditional therapies and thus are able to elude the typical mechanisms that CSCs use to resist current chemotherapies and radiotherapies. Moreover, genetically engineered oncolytic viruses may further augment the oncolytic effects. Here we review the recent data regarding the ability of several oncolytic viruses to eradicate CSCs.

  10. Lipid metabolic reprogramming in cancer cells

    PubMed Central

    Beloribi-Djefaflia, S; Vasseur, S; Guillaumond, F

    2016-01-01

    Many human diseases, including metabolic, immune and central nervous system disorders, as well as cancer, are the consequence of an alteration in lipid metabolic enzymes and their pathways. This illustrates the fundamental role played by lipids in maintaining membrane homeostasis and normal function in healthy cells. We reviewed the major lipid dysfunctions occurring during tumor development, as determined using systems biology approaches. In it, we provide detailed insight into the essential roles exerted by specific lipids in mediating intracellular oncogenic signaling, endoplasmic reticulum stress and bidirectional crosstalk between cells of the tumor microenvironment and cancer cells. Finally, we summarize the advances in ongoing research aimed at exploiting the dependency of cancer cells on lipids to abolish tumor progression. PMID:26807644

  11. Adoptive T Cell Immunotherapy for Cancer

    PubMed Central

    Perica, Karlo; Varela, Juan Carlos; Oelke, Mathias; Schneck, Jonathan

    2015-01-01

    Harnessing the immune system to recognize and destroy tumor cells has been the central goal of anti-cancer immunotherapy. In recent years, there has been an increased interest in optimizing this technology in order to make it a clinically feasible treatment. One of the main treatment modalities within cancer immunotherapy has been adoptive T cell therapy (ACT). Using this approach, tumor-specific cytotoxic T cells are infused into cancer patients with the goal of recognizing, targeting, and destroying tumor cells. In the current review, we revisit some of the major successes of ACT, the major hurdles that have been overcome to optimize ACT, the remaining challenges, and future approaches to make ACT widely available. PMID:25717386

  12. Cell Phones and Cancer Risk

    MedlinePlus

    ... Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at NCI (Intramural) ... is heating. The ability of microwave ovens to heat food is one example of this effect of ...

  13. Dielectrophoretic Separation of Cancer Cells from Blood

    PubMed Central

    Gascoyne, Peter R. C.; Wang, Xiao-Bo; Huang, Ying; Becker, Frederick F.

    2009-01-01

    Recent measurements have demonstrated that the dielectric properties of cells depend on their type and physiological status. For example, MDA-231 human breast cancer cells were found to have a mean plasma membrane specific capacitance of 26 mF/m2, more than double the value (11 mF/m2) observed for resting T-lymphocytes. When an inhomogeneous ac electric field is applied to a particle, a dielectrophoretic (DEP) force arises that depends on the particle dielectric properties. Therefore, cells having different dielectric characteristics will experience differential DEP forces when subjected to such a field. In this article, we demonstrate the use of differential DEP forces for the separation of several different cancerous cell types from blood in a dielectric affinity column. These separations were accomplished using thin, flat chambers having microelectrode arrays on the bottom wall. DEP forces generated by the application of ac fields to the electrodes were used to influence the rate of elution of cells from the chamber by hydrodynamic forces within a parabolic fluid flow profile. Electrorotation measurements were first made on the various cell types found within cell mixtures to be separated, and theoretical modeling was used to derive the cell dielectric parameters. Optimum separation conditions were then predicted from the frequency and suspension conductivity dependencies of cell DEP responses defined by these parameters. Cell separations were then undertaken for various ratios of cancerous to normal cells at different concentrations. Eluted cells were characterized in terms of separation efficiency, cell viability, and separation speed. For example, 100% efficiency was achieved for purging MDA-231 cells from blood at the tumor to normal cell ratio 1:1 × 105 or 1:3 × 105, cell viability was not compromised, and separation rates were at least 103 cells/s. Theoretical and experimental criteria for the design and operation of such separators are presented. PMID

  14. Pubertal outcome in a female with virilizing adrenocortical carcinoma

    PubMed Central

    Breidbart, Emily; Cameo, Tamara; Garvin, James H.; Hibshoosh, Hanina

    2016-01-01

    Adrenocortical tumors are neoplasms that rarely occur in pediatric patients. Adrenocortical carcinoma (ACC) is even more uncommon, and is an aggressive malignancy with 5-year survival of 55% in a registry series. There is a lack of information on long-term endocrine outcome in survivors. We describe a 10-year follow-up in a patient who presented at 3 years 5 months with a 1-year history of axillary odor and 6 months’ history of pubic hair development with an increased clitoral size. Androgen levels were increased and a pelvic sonogram revealed a suprarenal mass of the left kidney. The tumor was successfully removed. At 6 years 11 months, androgen levels increased again. Workup for tumor recurrence was negative and the findings likely represented early adrenarche. The patient had menarche at an appropriate time and attained a height appropriate for her family. PMID:26812773

  15. Pubertal outcome in a female with virilizing adrenocortical carcinoma.

    PubMed

    Breidbart, Emily; Cameo, Tamara; Garvin, James H; Hibshoosh, Hanina; Oberfield, Sharon E

    2016-04-01

    Adrenocortical tumors are neoplasms that rarely occur in pediatric patients. Adrenocortical carcinoma (ACC) is even more uncommon, and is an aggressive malignancy with 5-year survival of 55% in a registry series. There is a lack of information on long-term endocrine outcome in survivors. We describe a 10-year follow-up in a patient who presented at 3 years 5 months with a 1-year history of axillary odor and 6 months' history of pubic hair development with an increased clitoral size. Androgen levels were increased and a pelvic sonogram revealed a suprarenal mass of the left kidney. The tumor was successfully removed. At 6 years 11 months, androgen levels increased again. Workup for tumor recurrence was negative and the findings likely represented early adrenarche. The patient had menarche at an appropriate time and attained a height appropriate for her family. PMID:26812773

  16. Nano-discs Destroy Cancer Cells

    SciTech Connect

    2010-01-01

    A new technique, designed with the potential to treat brain cancers, is under study at Argonne National Laboratory and the University of Chicago Medical Center. The micron-sized magnetic materials, with vortex-like arrangements of spins, were successfully interfaced with Glioblastoma multiforme (GBM) cancer cells. The microdisks are gold-coated and biofunctionalized with a cancer-targeting antibody. The antibody recognizes unique receptors on the cancer cells and attaches to them (and them alone), leaving surrounding healthy cells unaffected during treatment. Under application of an alternative magnetic field, the magnetic vortices shift, leading to oscillatory motion of the disks and causing the magneto-mechanic stimulus to be transmitted directly to the cancer cell. Probably because of the damage to the cancer cell membrane, this results in cellular signal transduction and amplification, causing initiation of apoptosis (programmed cell death or "cell suicide"). Manifestation of apoptosis is of clinical significance because the malignant cells are known to be almost "immortal" (due to suppressed apoptosis), and, consequently, highly resistant to conventional (chemo- and radio-) therapies. Due to unique properties of the vortex microdisks, an extremely high spin-vortex-induced cytotoxicity effect can be caused by application of unprecedentedly weak magnetic fields. An alternative magnetic field as slow as about 10s Hertz (for comparison, 60 Hertz in a electrical outlet) and as small as less than 90 Oersteds (which is actually less than the field produced by a magnetized razor blade) applied only for 10 minutes was sufficient to cause ~90% cancer cell destruction in vitro. The study has only been conducted in cells in a laboratory; animal trials are being planned. Watch a news clip of the story from ABC-7 News: http://abclocal.go.com/wls/story?section=news/health&id=7245605 More details on this study can be found in the original research paper: Biofunctionalized

  17. Cancer-Associated Myeloid Regulatory Cells.

    PubMed

    De Vlaeminck, Yannick; González-Rascón, Anna; Goyvaerts, Cleo; Breckpot, Karine

    2016-01-01

    Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level. PMID:27065074

  18. Cancer-Associated Myeloid Regulatory Cells

    PubMed Central

    De Vlaeminck, Yannick; González-Rascón, Anna; Goyvaerts, Cleo; Breckpot, Karine

    2016-01-01

    Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level. PMID:27065074

  19. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  20. Plurihormonal Cosecretion by a Case of Adrenocortical Oncocytic Neoplasm.

    PubMed

    Corrales, J J; Robles-Lázaro, C; Sánchez-Marcos, A I; González-Sánchez, M C; Antúnez-Plaza, P; Miralles, J M

    2016-01-01

    Adrenocortical oncocytic neoplasms (oncocytomas) are extremely rare; only approximately 159 cases have been described so far. The majority are nonfunctional and benign. We describe an unusual case of a functional oncocytoma secreting an excess of glucocorticoids (cortisol) and androgens (androstenedione and DHEAS), a pattern of plurihormonal cosecretion previously not reported in men, presenting with endocrine manifestations of Cushing's syndrome. The neoplasm was considered to be of uncertain malignant potential (borderline) according to the Lin-Weiss-Bisceglia criteria. PMID:27413559

  1. Plurihormonal Cosecretion by a Case of Adrenocortical Oncocytic Neoplasm

    PubMed Central

    Corrales, J. J.; Robles-Lázaro, C.; Sánchez-Marcos, A. I.; González-Sánchez, M. C.; Antúnez-Plaza, P.; Miralles, J. M.

    2016-01-01

    Adrenocortical oncocytic neoplasms (oncocytomas) are extremely rare; only approximately 159 cases have been described so far. The majority are nonfunctional and benign. We describe an unusual case of a functional oncocytoma secreting an excess of glucocorticoids (cortisol) and androgens (androstenedione and DHEAS), a pattern of plurihormonal cosecretion previously not reported in men, presenting with endocrine manifestations of Cushing's syndrome. The neoplasm was considered to be of uncertain malignant potential (borderline) according to the Lin-Weiss-Bisceglia criteria. PMID:27413559

  2. Spermatogonial stem cells, infertility and testicular cancer

    PubMed Central

    Singh, Shree Ram; Burnicka-Turek, Ozanna; Chauhan, Chhavi; Hou, Steven X

    2011-01-01

    Abstract The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers. PMID:21155977

  3. Neural stem cell therapy for cancer.

    PubMed

    Bagó, Juli Rodriguez; Sheets, Kevin T; Hingtgen, Shawn D

    2016-04-15

    Cancers of the brain remain one of the greatest medical challenges. Traditional surgery and chemo-radiation therapy are unable to eradicate diffuse cancer cells and tumor recurrence is nearly inevitable. In contrast to traditional regenerative medicine applications, engineered neural stem cells (NSCs) are emerging as a promising new therapeutic strategy for cancer therapy. The tumor-homing properties allow NSCs to access both primary and invasive tumor foci, creating a novel delivery platform. NSCs engineered with a wide array of cytotoxic agents have been found to significantly reduce tumor volumes and markedly extend survival in preclinical models. With the recent launch of new clinical trials, the potential to successfully manage cancer in human patients with cytotoxic NSC therapy is moving closer to becoming a reality. PMID:26314280

  4. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    PubMed

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  5. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  6. Surgery for small cell lung cancer.

    PubMed

    de Hoyos, Alberto; DeCamp, Malcolm M

    2014-11-01

    Small-cell lung cancer (SCLC) comprises approximately 14% of all lung cancer cases. Most patients present with locally advanced or metastatic disease and are therefore treated nonoperatively with chemotherapy, radiotherapy, or both. A small subset of patients with SCLC present with early-stage disease and will benefit from surgical resection plus chemotherapy. The rationale for radiotherapy in these patients remains controversial. PMID:25441133

  7. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  8. Cell Membrane Softening in Cancer Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  9. The role of mast cells in cancers

    PubMed Central

    Maciel, Thiago T.; Moura, Ivan C.

    2015-01-01

    Mast cells are immune cells that accumulate in the tumors and their microenvironment during disease progression. Mast cells are armed with a wide array of receptors that sense environment modifications and, upon stimulation, they are able to secrete several biologically active factors involved in the modulation of tumor growth. For example, mast cells are able to secrete pro-angiogenic and growth factors but also pro- and anti-inflammatory mediators. Recent studies have allowed substantial progress in understanding the role of mast cells in tumorigenesis/disease progression but further studies are necessary to completely elucidate their impact in the pathophysiology of cancer. Here we review observations suggesting that mast cells could modulate tumor growth in humans. We also discuss the drawbacks related to observations from mast cell-deficient mouse models, which could have consequences in the determination of a potential causative relationship between mast cells and cancer. We believe that the understanding of the precise role of mast cells in tumor development and progression will be of critical importance for the development of new targeted therapies in human cancers. PMID:25705392

  10. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    NASA Astrophysics Data System (ADS)

    Dilão, Rui

    2015-02-01

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data.

  11. The metabolic landscape of cancer stem cells.

    PubMed

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs. PMID:26337609

  12. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    PubMed Central

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance. PMID:26658759

  13. [Cancer cell plasticity and metastatic dissemination].

    PubMed

    Moyret-Lalle, Caroline; Pommier, Roxane; Bouard, Charlotte; Nouri, Ebticem; Richard, Geoffrey; Puisieux, Alain

    Metastatic dissemination consists of a sequence of events resulting in the invasion by cancer cells of tissues located away from the primary tumour. This process is highly inefficient, since each event represents an obstacle that only a limited number of cells can overcome. However, two biological phenomena intrinsically linked with tumour development facilitate the dissemination of cancer cells throughout the body and promote the formation of metastases, namely the genetic diversity of cancer cells within a given tumour, which arises from their genetic instability and from successive clonal expansions, and cellular plasticity conveyed to the cells by micro-environmental signals. Genetic diversity increases the probability of selecting cells that are intrinsically resistant to biological and physical constraints encountered during metastatic dissemination, whereas cellular plasticity provides cells with the capacity to adapt to stressful conditions and to changes in the microenvironment. The epithelial-mesenchymal transition, an embryonic trans-differentiation process frequently reactivated during tumour development, plays an important role in that context by endowing tumor cells with a unique capacity of motility, survival and adaptability to the novel environments and stresses encountered during the invasion-metastasis cascade. PMID:27615180

  14. Wnt signaling in cancer stem cells and colon cancer metastasis

    PubMed Central

    Ben-Ze'ev, Avri

    2016-01-01

    Overactivation of Wnt signaling is a hallmark of colorectal cancer (CRC). The Wnt pathway is a key regulator of both the early and the later, more invasive, stages of CRC development. In the normal intestine and colon, Wnt signaling controls the homeostasis of intestinal stem cells (ISCs) that fuel, via proliferation, upward movement of progeny cells from the crypt bottom toward the villus and differentiation into all cell types that constitute the intestine. Studies in recent years suggested that cancer stem cells (CSCs), similar to ISCs of the crypts, consist of a small subpopulation of the tumor and are responsible for the initiation and progression of the disease. Although various ISC signature genes were also identified as CRC markers and some of these genes were even demonstrated to have a direct functional role in CRC development, the origin of CSCs and their contribution to cancer progression is still debated. Here, we describe studies supporting a relationship between Wnt-regulated CSCs and the progression of CRC. PMID:27134739

  15. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  16. Foxp3 expression in human cancer cells

    PubMed Central

    Karanikas, Vaios; Speletas, Matthaios; Zamanakou, Maria; Kalala, Fani; Loules, Gedeon; Kerenidi, Theodora; Barda, Angeliki K; Gourgoulianis, Konstantinos I; Germenis, Anastasios E

    2008-01-01

    Objective Transcription factor forkhead box protein 3 (Foxp3) specifically characterizes the thymically derived naturally occurring regulatory T cells (Tregs). Limited evidence indicates that it is also expressed, albeit to a lesser extent, in tissues other than thymus and spleen, while, very recently, it was shown that Foxp3 is expressed by pancreatic carcinoma. This study was scheduled to investigate whether expression of Foxp3 transcripts and mature protein occurs constitutively in various tumor types. Materials and methods Twenty five tumor cell lines of different tissue origins (lung cancer, colon cancer, breast cancer, melanoma, erythroid leukemia, acute T-cell leukemia) were studied. Detection of Foxp3 mRNA was performed using both conventional RT-PCR and quantitative real-time PCR while protein expression was assessed by immunocytochemistry and flow cytometry, using different antibody clones. Results Foxp3 mRNA as well as Foxp3 protein was detected in all tumor cell lines, albeit in variable levels, not related to the tissue of origin. This expression correlated with the expression levels of IL-10 and TGFb1. Conclusion We offer evidence that Foxp3 expression, characterizes tumor cells of various tissue origins. The biological significance of these findings warrants further investigation in the context of tumor immune escape, and especially under the light of current anti-cancer efforts interfering with Foxp3 expression. PMID:18430198

  17. Sulindac suppresses beta-catenin expression in human cancer cells.

    PubMed

    Han, Anjia; Song, Zibo; Tong, Chang; Hu, Dong; Bi, Xiuli; Augenlicht, Leonard H; Yang, Wancai

    2008-03-31

    Sulindac has been reported to be effective in suppressing tumor growth through the induction of p21WAF1/cip1 in human, animal models of colon cancer and colon cancer cells. In this study, we treated human breast cancer cell line MCF-7 and lung cancer cell line A549 as well as colon cancer cell line SW620 with sulindac to observe the effects of sulindac in other tissue sites. In all cell lines, proliferation was significantly inhibited by sulindac after 24 and 72 h of treatment. Apoptosis was induced by sulindac in both lung cancer cells and colon cancer cells but was not induced in breast cancer cells. Western blots showed that p21 protein level were induced by sulindac in lung cancer cells and colon cancer cells, but not in breast cancer cells. However, the suppression of beta-catenin, a key mediator of Wnt signaling pathway, was seen in all three cell lines with sulindac administration. Further studies revealed that transcriptional activities of beta-catenin were significantly inhibited by sulindac and that the inhibition was sulindac dosage-dependent. The transcriptional targets of beta-catenin, c-myc, cyclin D1 and cdk 4 were also dramatically downregulated. In conclusion, our data demonstrated that the efficacy of sulindac in the inhibition of cell proliferation (rather than the induction of apoptosis) might be through the suppression of beta-catenin pathway in human cancer cells. PMID:18291362

  18. Targeting Lung Cancer Stem Cells with Antipsychological Drug Thioridazine

    PubMed Central

    Yue, Haiying; Huang, Dongning; Qin, Li; Zheng, Zhiyong; Hua, Li; Wang, Guodong; Huang, Jian

    2016-01-01

    Lung cancer stem cells are a subpopulation of cells critical for lung cancer progression, metastasis, and drug resistance. Thioridazine, a classical neurological drug, has been reported with anticancer ability. However, whether thioridazine could inhibit lung cancer stem cells has never been studied. In our current work, we used different dosage of thioridazine to test its effect on lung cancer stem cells sphere formation. The response of lung cancer stem cells to chemotherapy drug with thioridazine treatment was measured. The cell cycle distribution of lung cancer stem cells after thioridazine treatment was detected. The in vivo inhibitory effect of thioridazine was also measured. We found that thioridazine could dramatically inhibit sphere formation of lung cancer stem cells. It sensitized the LCSCs to chemotherapeutic drugs 5-FU and cisplatin. Thioridazine altered the cell cycle distribution of LCSCs and decreased the proportion of G0 phase cells in lung cancer stem cells. Thioridazine inhibited lung cancer stem cells initiated tumors growth in vivo. This study showed that thioridazine could inhibit lung cancer stem cells in vitro and in vivo. It provides a potential drug for lung cancer therapy through targeting lung cancer stem cells. PMID:27556038

  19. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  20. Cancer stem-like cells and thyroid cancer.

    PubMed

    Guo, Zhenying; Hardin, Heather; Lloyd, Ricardo V

    2014-10-01

    Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well-differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well-differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well-differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem-like cell (CSC) model suggests that a small number of cells within a cancer, known as CSCs, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease. This review discusses current studies about thyroid CSCs, the processes of epithelial-to-mesenchymal transition (EMT), and mesenchymal-to-epithelial transition that provide plasticity to CSC growth, in addition to the role of microRNAs in CSC development and regulation. Understanding the biology of CSCs, EMT and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers. PMID:24788702

  1. Proteomic analysis of cancer stem cells in human prostate cancer cells

    SciTech Connect

    Lee, Eun-Kyung; Cho, Hyungdon; Kim, Chan-Wha

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  2. Reactive Oxygen Species in Cancer Stem Cells

    PubMed Central

    Shi, Xiaoke; Zhang, Yan; Zheng, Junheng

    2012-01-01

    Abstract Significance: Reactive oxygen species (ROS), byproducts of aerobic metabolism, are increased in many types of cancer cells. Increased endogenous ROS lead to adaptive changes and may play pivotal roles in tumorigenesis, metastasis, and resistance to radiation and chemotherapy. In contrast, the ROS generated by xenobiotics disturb the redox balance and may selectively kill cancer cells but spare normal cells. Recent Advances: Cancer stem cells (CSCs) are integral parts of pathophysiological mechanisms of tumor progression, metastasis, and chemo/radio resistance. Currently, intracellular ROS in CSCs is an active field of research. Critical Issues: Normal stem cells such as hematopoietic stem cells reside in niches characterized by hypoxia and low ROS, both of which are critical for maintaining the potential for self-renewal and stemness. However, the roles of ROS in CSCs remain poorly understood. Future Directions: Based on the regulation of ROS levels in normal stem cells and CSCs, future research may evaluate the potential therapeutic application of ROS elevation by exogenous xenobiotics to eliminate CSCs. Antioxid. Redox Signal. 16, 1215–1228. PMID:22316005

  3. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  4. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit.

    PubMed

    Calebiro, Davide; Hannawacker, Annette; Lyga, Sandra; Bathon, Kerstin; Zabel, Ulrike; Ronchi, Cristina; Beuschlein, Felix; Reincke, Martin; Lorenz, Kristina; Allolio, Bruno; Kisker, Caroline; Fassnacht, Martin; Lohse, Martin J

    2014-01-01

    We recently identified a high prevalence of mutations affecting the catalytic (Cα) subunit of protein kinase A (PKA) in cortisol-secreting adrenocortical adenomas. The two identified mutations (Leu206Arg and Leu199_Cys200insTrp) are associated with increased PKA catalytic activity, but the underlying mechanisms are highly controversial. Here we utilize a combination of biochemical and optical assays, including fluorescence resonance energy transfer in living cells, to analyze the consequences of the two mutations with respect to the formation of the PKA holoenzyme and its regulation by cAMP. Our results indicate that neither mutant can form a stable PKA complex, due to the location of the mutations at the interface between the catalytic and the regulatory subunits. We conclude that the two mutations cause high basal catalytic activity and lack of regulation by cAMP through interference of complex formation between the regulatory and the catalytic subunits of PKA. PMID:25477193

  5. Lymphatic endothelial cells actively regulate prostate cancer cell invasion.

    PubMed

    Shah, Tariq; Wildes, Flonne; Kakkad, Samata; Artemov, Dmitri; Bhujwalla, Zaver M

    2016-07-01

    Lymphatic vessels serve as the primary route for metastatic spread to lymph nodes. However, it is not clear how interactions between cancer cells and lymphatic endothelial cells (LECs), especially within hypoxic microenvironments, affect the invasion of cancer cells. Here, using an MR compatible cell perfusion assay, we investigated the role of LEC-prostate cancer (PCa) cell interaction in the invasion and degradation of the extracellular matrix (ECM) by two human PCa cell lines, PC-3 and DU-145, under normoxia and hypoxia, and determined the metabolic changes that occurred under these conditions. We observed a significant increase in the invasion of ECM by invasive PC-3 cells, but not poorly invasive DU-145 cells when human dermal lymphatic microvascular endothelial cells (HMVEC-dlys) were present. Enhanced degradation of ECM by PC-3 cells in the presence of HMVEC-dlys identified interactions between HMVEC-dlys and PCa cells influencing cancer cell invasion. The enhanced ECM degradation was partly attributed to increased MMP-9 enzymatic activity in PC-3 cells when HMVEC-dlys were in close proximity. Significantly higher uPAR and MMP-9 expression levels observed in PC-3 cells compared to DU-145 cells may be one mechanism for increased invasion and degradation of matrigel by these cells irrespective of the presence of HMVEC-dlys. Hypoxia significantly decreased invasion by PC-3 cells, but this decrease was significantly attenuated when HMVEC-dlys were present. Significantly higher phosphocholine was observed in invasive PC-3 cells, while higher glycerophosphocholine was observed in DU-145 cells. These metabolites were not altered in the presence of HMVEC-dlys. Significantly increased lipid levels and lipid droplets were observed in PC-3 and DU-145 cells under hypoxia reflecting an adaptive survival response to oxidative stress. These results suggest that in vivo, invasive cells in or near lymphatic endothelial cells are likely to be more invasive and degrade the ECM

  6. Circulating Tumor Cells in Breast Cancer Patients.

    PubMed

    Hall, Carolyn; Valad, Lily; Lucci, Anthony

    2016-01-01

    Breast cancer is the most commonly diagnosed cancer among women, resulting in an estimated 40,000 deaths in 2014.1 Metastasis, a complex, multi-step process, remains the primary cause of death for these patients. Although the mechanisms involved in metastasis have not been fully elucidated, considerable evidence suggests that metastatic spread is mediated by rare cells within the heterogeneous primary tumor that acquire the ability to invade into the bloodstream. In the bloodstream, they can travel to distant sites, sometimes remaining undetected and in a quiescent state for an extended period of time before they establish distant metastases in the bone, lung, liver, or brain. These occult micrometastatic cells (circulating tumor cells, CTCs) are rare, yet their prognostic significance has been demonstrated in both metastatic and non-metastatic breast cancer patients. Because repeated tumor tissue collection is typically not feasible and peripheral blood draws are minimally invasive, serial CTC enumeration might provide "real-time liquid biopsy" snapshots that could be used to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. In addition, characterizing CTCs might aid in the development of novel, personalized therapies aimed at eliminating micrometastases. This review describes current CTC isolation, detection, and characterization strategies in operable breast cancer. PMID:27481009

  7. New insights into pancreatic cancer stem cells

    PubMed Central

    Rao, Chinthalapally V; Mohammed, Altaf

    2015-01-01

    Pancreatic cancer (PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understanding of pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells (CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on DclK1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC. PMID:25914762

  8. Circulating tumor cells in lung cancer.

    PubMed

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  9. Prolonged Drug Selection of Breast Cancer Cells and Enrichment of Cancer Stem Cell Characteristics

    PubMed Central

    Calcagno, Anna Maria; Salcido, Crystal D.; Gillet, Jean-Pierre; Wu, Chung-Pu; Fostel, Jennifer M.; Mumau, Melanie D.; Gottesman, Michael M.; Varticovski, Lyuba

    2010-01-01

    Background Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem–like cells. Methods Cancer stem cells were defined as CD44+/CD24− cells that could self-renew (ie, generate cells with the tumorigenic CD44+/CD24− phenotype), differentiate, invade, and form tumors in vivo. We used doxorubicin-selected MCF-7/ADR cells, weakly tumorigenic parental MCF-7 cells, and MCF-7/MDR, an MCF-7 subline with forced expression of ABCB1 protein. Cells were examined for cell surface markers and side-population fractions by microarray and flow cytometry, with in vitro invasion assays, and for ability to form mammospheres. Xenograft tumors were generated in mice to examine tumorigenicity (n = 52). The mRNA expression of multidrug resistance genes was examined in putative cancer stem cells and pathway analysis of statistically significantly differentially expressed genes was performed. All statistical tests were two-sided. Results Pathway analysis showed that MCF-7/ADR cells express mRNAs from ABCB1 and other genes also found in breast cancer stem cells (eg, CD44, TGFB1, and SNAI1). MCF-7/ADR cells were highly invasive, formed mammospheres, and were tumorigenic in mice. In contrast to parental MCF-7 cells, more than 30% of MCF-7/ADR cells had a CD44+/CD24− phenotype, could self-renew, and differentiate (ie, produce CD44+/CD24− and CD44+/CD24+ cells) and overexpressed various multidrug resistance–linked genes (including ABCB1, CCNE1, and MMP9). MCF-7/ADR cells were statistically significantly more invasive in Matrigel than parental MCF-7 cells (MCF-7 cells = 0.82 cell per field and MCF-7/ADR = 7.51 cells per field, difference = 6.69 cells per field, 95% confidence interval = 4.82 to 8

  10. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  11. A rare-cell detector for cancer

    PubMed Central

    Krivacic, Robert T.; Ladanyi, Andras; Curry, Douglas N.; Hsieh, H. B.; Kuhn, Peter; Bergsrud, Danielle E.; Kepros, Jane F.; Barbera, Todd; Ho, Michael Y.; Chen, Lan Bo; Lerner, Richard A.; Bruce, Richard H.

    2004-01-01

    Although a reliable method for detection of cancer cells in blood would be an important tool for diagnosis and monitoring of solid tumors in early stages, current technologies cannot reliably detect the extremely low concentrations of these rare cells. The preferred method of detection, automated digital microscopy (ADM), is too slow to scan the large substrate areas. Here we report an approach that uses fiber-optic array scanning technology (FAST), which applies laser-printing techniques to the rare-cell detection problem. With FAST cytometry, laser-printing optics are used to excite 300,000 cells per sec, and emission is collected in an extremely wide field of view, enabling a 500-fold speed-up over ADM with comparable sensitivity and superior specificity. The combination of FAST enrichment and ADM imaging has the performance required for reliable detection of early-stage cancer in blood. PMID:15249663

  12. Omental milky spots in screening gastric cancer stem cells.

    PubMed

    Cao, L; Hu, X; Zhang, Y; Sun, X T

    2011-01-01

    The existence of cancer stem and progenitor cells in solid tumors has been widely postulated. However, neither the cancer stem cells nor the cancer progenitor cells have been definitively identified and functionally characterized. Here we propose a new strategy to identify and isolate gastric cancer stem cells -using omental milky spots to screen gastric cancer stem cells in peritoneal metastasis mouse models of gastric cancer. In this study, we used the property that the macrophages in omental milky spots are cytotoxic against tumor cells and so able to screen and collect cancer stem cells. Our findings suggest that macrophages in omental milky spots have not only cytotoxic properties against tumor cells but also provide a microenvironment within milky spots in which cancer stem cells are capable to survive and grow into micrometastasis. Omental milky spot become a cancer stem cell niche in this situation. Further we studied the omental milky spots for screening gastric cancer cells (OMSS-GCCs) and found that omental milky spot enriched the volume of gastric cancer stem cells. Tumors were consistently generated after an injection of 1×103 OMSS-GCCs. OMSS-GCCs high express CD133 and low express CD324. Omental milky spots are a highly efficient "natural filter" for screening gastric cancer stem cells. PMID:21067262

  13. Apoptotic Death of Cancer Stem Cells for Cancer Therapy

    PubMed Central

    He, Ying-Chun; Zhou, Fang-Liang; Shen, Yi; Liao, Duan-Fang; Cao, Deliang

    2014-01-01

    Cancer stem cells (CSCs) play crucial roles in tumor progression, chemo- and radiotherapy resistance, and recurrence. Recent studies on CSCs have advanced understanding of molecular oncology and development of novel therapeutic strategies. This review article updates the hypothesis and paradigm of CSCs with a focus on major signaling pathways and effectors that regulate CSC apoptosis. Selective CSC apoptotic inducers are introduced and their therapeutic potentials are discussed. These include synthetic and natural compounds, antibodies and recombinant proteins, and oligonucleotides. PMID:24823879

  14. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  15. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    PubMed

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after <4 weeks of treatment. In vitro treatment of PANC1 cells showed reduced tumor engraftment in nude mice, concomitant with a reduction in the CSC levels. Differences between telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy. PMID:21062983

  16. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  17. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  18. Orthotopic Injection of Pancreatic Cancer Cells.

    PubMed

    Aiello, Nicole M; Rhim, Andrew D; Stanger, Ben Z

    2016-01-01

    Pancreatic ductal adenocarcinoma is an aggressive disease with a 5-yr survival rate of only 5%. The location of the pancreas in the abdomen, where it is obscured by other organs, makes it a difficult tissue to study and manipulate. This protocol describes in detail how to orthotopically inject cancer cells into the pancreas in mice. This technique is particularly useful when the cells must be manipulated in ways that cannot be modeled genetically. PMID:26729902

  19. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  20. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  1. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. PMID:26947806

  2. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    PubMed Central

    Bhummaphan, Narumol; Chanvorachote, Pithi

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs. PMID:26339272

  3. Radiation Therapy and MK-3475 for Patients With Recurrent/Metastatic Head and Neck Cancer, Renal Cell Cancer, Melanoma, and Lung Cancer

    ClinicalTrials.gov

    2016-07-06

    Head and Neck Squamous Cell Carcinoma; Metastatic Renal Cell Cancer; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IV Lung Cancer; Stage IV Skin Melanoma

  4. What Is Kidney Cancer (Renal Cell Carcinoma)?

    MedlinePlus

    ... the key statistics about kidney cancer? What is kidney cancer? Kidney cancer is a cancer that starts ... and spread, see What Is Cancer? About the kidneys To understand more about kidney cancer, it helps ...

  5. Dendritic Cells in the Cancer Microenvironment

    PubMed Central

    Ma, Yang; Shurin, Galina V.; Peiyuan, Zhu; Shurin, Michael R.

    2013-01-01

    The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs) represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer. PMID:23386903

  6. Pharmacogenomic agreement between two cancer cell line data sets.

    PubMed

    2015-12-01

    Large cancer cell line collections broadly capture the genomic diversity of human cancers and provide valuable insight into anti-cancer drug response. Here we show substantial agreement and biological consilience between drug sensitivity measurements and their associated genomic predictors from two publicly available large-scale pharmacogenomics resources: The Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer databases. PMID:26570998

  7. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation.

    PubMed

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-05-18

    The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  8. Ceramide signaling in cancer and stem cells

    PubMed Central

    Bieberich, Erhard

    2008-01-01

    Most of the previous work on the sphingolipid ceramide has been devoted to its function as an apoptosis inducer. Recent studies, however, have shown that in stem cells, ceramide has additional nonapoptotic functions. In this article, ceramide signaling will be reviewed in light of ‘systems interface biology’: as an interconnection of sphingolipid metabolism, membrane biophysics and cell signaling. The focus will be on the metabolic interconversion of ceramide and sphingomyelin or sphingosine-1-phosphate. Lipid rafts and sphingolipid-induced protein scaffolds will be discussed as a membrane interface for lipid-controlled cell signaling. Ceramide/sphingomyelin and ceramide/sphingosine-1-phosphate-interdependent cell-signaling pathways are significant for the regulation of cell polarity, apoptosis and/or proliferation, and as novel pharmacologic targets in cancer and stem cells. PMID:19050750

  9. Principles of cancer cell culture.

    PubMed

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory. PMID:21516394

  10. DAX1 Overexpression in Pediatric Adrenocortical Tumors: A Synergic Role with SF1 in Tumorigenesis.

    PubMed

    de Sousa, G R V; Soares, I C; Faria, A M; Domingues, V B; Wakamatsu, A; Lerario, A M; Alves, V A F; Zerbini, M C N; Mendonca, B B; Fragoso, M C B V; Latronico, A C; Almeida, M Q

    2015-08-01

    DAX1 transcription factor is a key determinant of adrenogonadal development, acting as a repressor of SF1 targets in steroidogenesis. It was recently demonstrated that DAX1 regulates pluripotency and differentiation in murine embryonic stem cells. In this study, we investigated DAX1 expression in adrenocortical tumors (ACTs) and correlated it with SF1 expression and clinical parameters. DAX1 and SF1 protein expression were assessed in 104 ACTs from 34 children (25 clinically benign and 9 malignant) and 70 adults (40 adenomas and 30 carcinomas). DAX1 gene expression was studied in 49 ACTs by quantitative real-time PCR. A strong DAX1 protein expression was demonstrated in 74% (25 out of 34) and 24% (17 out of 70) of pediatric and adult ACTs, respectively (χ(2)=10.1, p=0.002). In the pediatric group, ACTs with a strong DAX1 expression were diagnosed at earlier ages than ACTs with weak expression [median 1.2 (range, 0.5-4.5) vs. 2.2 (0.9-9.4), p=0.038]. DAX1 expression was not associated with functional status in ACTs. Interestingly, a positive correlation was observed between DAX1 and SF1 protein expression in both pediatric and adult ACTs (r=0.55 for each group separately; p<0.0001). In addition, DAX1 gene expression was significantly correlated with SF1 gene expression (p<0.0001, r=0.54). In conclusion, DAX1 strong protein expression was more frequent in pediatric than in adult ACTs. Additionally, DAX1 and SF1 expression positively correlated in ACTs, suggesting that these transcription factors might cooperate in adrenocortical tumorigenesis. PMID:25985323

  11. Lymphocyte Infusion in Treating Patients With Relapsed Cancer After Bone Marrow or Peripheral Stem Cell Transplantation

    ClinicalTrials.gov

    2011-11-28

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  12. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    ClinicalTrials.gov

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  13. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  14. Hazard function for cancer patients and cancer cell dynamics.

    PubMed

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-01

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data. PMID:18634801

  15. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics

    PubMed Central

    Tanase, Cristiana Pistol; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Enciu, Ana-Maria; Calenic, Bogdan; Cruceru, Maria Linda; Albulescu, Radu

    2014-01-01

    Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs. PMID:25152582

  16. Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics.

    PubMed

    Tanase, Cristiana Pistol; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Enciu, Ana-Maria; Calenic, Bogdan; Cruceru, Maria Linda; Albulescu, Radu

    2014-08-21

    Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs. PMID:25152582

  17. Targeting telomerase-expressing cancer cells

    PubMed Central

    Ouellette, Michel M; Wright, Woodring E; Shay, Jerry W

    2011-01-01

    Abstract The role of telomeres and telomerase as a target for cancer therapeutics is an area of continuing interest. This review is intended to provide an update on the field, pointing to areas in which our knowledge remains deficient and exploring the details of the most promising areas being advanced into clinical trials. Topics that will be covered include the role of dysfunctional telomeres in cellular aging and how replicative senescence provides an initial barrier to the emergence of immortalized cells, a hallmark of cancer. As an important translational theme, this review will consider possibilities for selectively targeting telomeres and telomerase to enhance cancer therapy. The role of telomerase as an immunotherapy, as a gene therapy approach using telomerase promoter driven oncolytic viruses and as a small oligonucleotide targeted therapy (Imetelstat) will be discussed. PMID:21332640

  18. Treating Cancer with Genetically Engineered T Cells

    PubMed Central

    Park, Tristen S.; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    Administration of ex-vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) have been shown to mediate durable regression of melanoma tumors. However, the generation of TIL is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments. PMID:21663987

  19. Targeting telomerase-expressing cancer cells.

    PubMed

    Ouellette, Michel M; Wright, Woodring E; Shay, Jerry W

    2011-07-01

    The role of telomeres and telomerase as a target for cancer therapeutics is an area of continuing interest. This review is intended to provide an update on the field, pointing to areas in which our knowledge remains deficient and exploring the details of the most promising areas being advanced into clinical trials. Topics that will be covered include the role of dysfunctional telomeres in cellular aging and how replicative senescence provides an initial barrier to the emergence of immortalized cells, a hallmark of cancer. As an important translational theme, this review will consider possibilities for selectively targeting telomeres and telomerase to enhance cancer therapy. The role of telomerase as an immunotherapy, as a gene therapy approach using telomerase promoter driven oncolytic viruses and as a small oligonucleotide targeted therapy (Imetelstat) will be discussed. PMID:21332640

  20. Hypoxia and metabolic adaptation of cancer cells

    PubMed Central

    Eales, K L; Hollinshead, K E R; Tennant, D A

    2016-01-01

    Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype. PMID:26807645

  1. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  2. Permanently Blocked Stem Cells Derived from Breast Cancer Cell Lines

    PubMed Central

    Sajithlal, Gangadharan B.; Rothermund, Kristi; Zhang, Fang; Dabbs, David J.; Latimer, Jean J.; Grant, Stephen G.; Prochownik, Edward V.

    2016-01-01

    Cancer stem cells (CSCs) are thought to be resistant to standard chemotherapeutic drugs and the inimical conditions of the tumor microenvironment. Obtaining CSCs in sufficient quantities and maintaining their undifferentiated state have been major hurdles to their further characterization and to the identification of new pharmaceuticals that preferentially target these cells. We describe here the tagging of CSC-like populations from four human breast cancer cell lines with green fluorescent protein (GFP) under the control of the Oct3/4 stem cell-specific promoter. As expected, GFP was expressed by the CSC-enriched populations. An unanticipated result, however, was that these cells remained blocked in a CSC-like state and tended to be resistant to chemotherapeutic drugs as well as acidotic and hypoxic conditions. These CSC-like cells possessed several other in vitro attributes of CSCs and were able to reproducibly generate tumors in immuno-compromised mice from as few as 100 cells. Moreover, the tumors derived from these cells were comprised almost exclusively of pure CSCs. The ability of the Oct3/4 promoter to block CSC differentiation underscores its potential general utility for obtaining highly purified CSC populations, although the mechanism by which it does so remains undefined and subject to further study. Nonetheless, such stable cell lines should be extremely valuable tools for studying basic questions pertaining to CSC biology and for the initial identification of novel CSC-specific chemotherapeutic agents, which can then be verified in primary CSCs. PMID:20506227

  3. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    PubMed

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy. PMID:26916018

  4. Melanoma Cancer Stem Cells: Markers and Functions

    PubMed Central

    Parmiani, Giorgio

    2016-01-01

    The discovery of cancer stem cells (CSCs) in human solid tumors has allowed a better understanding of the biology and neoplastic transformation of normal melanocytes, and the possible mechanisms by which melanoma cells acquire tumorigenicity. In this review I summarize the literature findings on the potential biomarkers of melanoma CSCs, their presence in the melanoma cell populations, the interaction with the immune system (with both T and NK cells) and the role of melanoma CSCs in the clinics. Given the extraordinary progress in the therapy of melanoma caused by immune checkpoint antibodies blockade, I discuss how these antibodies can work by the activation of melanoma infiltrating T cells specifically recognizing neo-antigens expressed even by melanoma CSCs. This is the mechanism that can induce a regression of the metastatic melanomas. PMID:26978405

  5. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  6. AB241. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P

    PubMed Central

    Huang, Bin; Wang, Dao-Hu; Chen, Jun-Xing; Qiu, Shao-Peng

    2016-01-01

    Background Although cancers are widely considered to be maintained by stem cells, the existence of stem cells in renal cell carcinoma (RCC) has seldom been reported, in part due to the lack of unique surface markers. We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Methods We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Results Flow cytometry analysis revealed that 769P, a human clear cell RCC cell line, contained the largest amount of SP cells among five cell lines. These 769P SP cells possessed characteristics of proliferation, self-renewal, and differentiation, as well as strong resistance to chemotherapy and radiotherapy that were possibly related to the ABCB1 transporter. In vivo experiments with serial tumor transplantation in mice also showed that 769P SP cells formed tumors in NOD/SCID mice. Conclusions Taken together, these results indicate that 769P SP cells have the properties of cancer stem cells, which may play important roles in tumorigenesis and therapy-resistance of RCC.

  7. Targeting cancer stem cells using immunologic approaches

    PubMed Central

    Pan, Qin; Li, Qiao; Liu, Shuang; Ning, Ning; Zhang, Xiaolian; Xu, Yingxin; Chang, Alfred E.; Wicha, Max S.

    2015-01-01

    Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies which specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using NK cells and γδT cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocommpetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133 and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell e.g. myeloid derived suppressor cells, and cytokines e.g. IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, et.al) may provide additional novel strategies to enhance the immunological targeting of CSCs. PMID:25873269

  8. Ewing's sarcoma cancer stem cell targeted therapy.

    PubMed

    Todorova, Roumiana

    2014-01-01

    Ewing`s sarcoma (ES) family of tumors (ESFTs) are round cell tumors of bone and soft tissues, afflicting children and young adults. This review summarizes the present findings about ES cancer stem cell (CSC) targeted therapy: prognostic factors, chromosomal translocations, initiation, epigenetic mechanisms, candidate cell of ES origin (Mesenchymal stem cells (MSCs) and Neural crest stem cells (NCSCs)). The ES CSC model, histopathogenesis, histogenesis, pathogenesis, ES mediated Hematopoietic stem progenitor cells (HSPCs) senescence are also discussed. ESFTs therapy is reviewed concerning CSCs, radiotherapy, risk of subsequent neoplasms, stem cell (SC) support, promising therapeutic targets for ES CSCs (CSC markers, immune targeting, RNAi phenotyping screens, proposed new drugs), candidate EWS-FLI1 target genes and further directions (including human embryonic stem cells (hESCs)). Bone marrow-derived human MSCs are permissive for EWS-FLI1 expression with transition to ESFT-like cellular phenotype. ESFTs are genetically related to NCSC, permissive for EWS-FLI1 expression and susceptible to oncogene-induced immortalization. Primitive neuroectodermal features and MSC origin of ESFTs provide a basis of immune targeting. The microRNAs profile of ES CSCs is shared by ESCs and CSCs from divergent tumor types. Successful reprogramming of differentiated human somatic cells into a pluripotent state allows creation of patient- and disease-specific SCs. The functional role of endogenous EWS at stem cell level on both senescence and tumorigenesis is a link between cancer and aging. The regulatory mechanisms of oncogenic activity of EWS fusions could provide new prognostic biomarkers, therapeutic opportunities and tumor-specific anticancer agents against ESFTs. PMID:24294922

  9. Cancer stem cells, metabolism, and therapeutic significance.

    PubMed

    Yang, Mengqi; Liu, Panpan; Huang, Peng

    2016-05-01

    Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs. PMID:26864589

  10. Sialylation: an Avenue to Target Cancer Cells.

    PubMed

    Vajaria, Bhairavi N; Patel, Kinjal R; Begum, Rasheedunnisa; Patel, Prabhudas S

    2016-07-01

    Tumorigenesis and metastasis are frequently associated with altered structure and expression of oligosaccharides on cell surface glycoproteins and glycolipids. The expression of sialylated glycoconjugates has been shown to change during development, differentiation, disease and oncogenic transformation. Abnormal sialylation in cancer cell is a distinctive feature associated with malignant properties including invasiveness and metastatic potential. The alterations in sialylation is accompanied by changes in sialic acid, sialidase activity, sialyltransferase (ST) activity or sialoproteins. The present review summarizes the reports on alterations of sialic acid, linkage specific STs and sialoproteins, sialidase activity together with different subtypes of ST and sialidases mRNA expressions in various cancers like lung, breast, oral, cervical, ovarian, pancreatic etc. Sialic acids are widely distributed in nature as terminal sugars of oligosaccharides attached to proteins or lipids. The increase shedding of sialic acid observed in malignant tumors may be due to different types of sialidases. The amount of sialic acid is governed by levels of sialidases and STs. Various types of STs are also involved in formation of different types sialylated tumor associated carbohydrate antigens which plays important role in metastasis. The alterations associated with sialylation aids in early diagnosis, prognosis and post treatment monitoring in various cancers. Recently newer drugs targeting different interplays of sialylation have been developed, which might have profound effect in inhibiting sialylation and thus cancer metastasis and infiltration. PMID:26685886

  11. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  12. Cancer cell adaptation to chemotherapy

    PubMed Central

    Di Nicolantonio, Federica; Mercer, Stuart J; Knight, Louise A; Gabriel, Francis G; Whitehouse, Pauline A; Sharma, Sanjay; Fernando, Augusta; Glaysher, Sharon; Di Palma, Silvana; Johnson, Penny; Somers, Shaw S; Toh, Simon; Higgins, Bernie; Lamont, Alan; Gulliford, Tim; Hurren, Jeremy; Yiangou, Constantinos; Cree, Ian A

    2005-01-01

    Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Methods Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. Results In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. Conclusion This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of

  13. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

    PubMed Central

    Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O'Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason

    2013-01-01

    Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model. PMID:24104479

  14. Clinical significance of T cell metabolic reprogramming in cancer.

    PubMed

    Herbel, Christoph; Patsoukis, Nikolaos; Bardhan, Kankana; Seth, Pankaj; Weaver, Jessica D; Boussiotis, Vassiliki A

    2016-12-01

    Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy. PMID:27510264

  15. Targeting cancer cell metabolism in pancreatic adenocarcinoma

    PubMed Central

    Cohen, Romain; Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Faivre, Sandrine; de Gramont, Armand; Raymond, Eric

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided. PMID:26164081

  16. Genomics of Squamous Cell Lung Cancer

    PubMed Central

    Rooney, Melissa; Devarakonda, Siddhartha

    2013-01-01

    Approximately 30% of patients with non-small cell lung cancer have the squamous cell carcinoma (SQCC) histological subtype. Although targeted therapies have improved outcomes in patients with adenocarcinoma, no agents are currently approved specifically for use in SQCC. The Cancer Genome Atlas (TCGA) recently published the results of comprehensive genomic analyses of tumor samples from 178 patients with SQCC of the lung. In this review, we briefly discuss key molecular aberrations reported by TCGA and other investigators and their potential therapeutic implications. Carefully designed preclinical and clinical studies based on these large-scale genomic analyses are critical to improve the outcomes of patients with SQCC of lung in the near future. PMID:23728941

  17. Cancer stem cells in haematological malignancies

    PubMed Central

    Golab, Jakub

    2015-01-01

    At least several types of human haematological malignancies can now be seen as ‘stem-cell diseases’. The best-studied in this context is acute myeloid leukaemia (AML). It has been shown that these diseases are driven by a pool of ‘leukaemia stem cells (LSC)’, which remain in the quiescent state, have the capacity to survive and self-renew, and are responsible for the recurrence of cancer after classical chemotherapy. It has been understood that LSC must be eliminated in order to cure patients suffering from haematological cancers. Recent advances in LSC research have allowed for description of LSC phenotype and identification of potential targets for anti-LSC therapies. This concise review summarises the current view on LSC biology and targeted approaches against LSC. PMID:25691816

  18. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  19. Mutations in ribosomal proteins: Apoptosis, cell competition, and cancer.

    PubMed

    Baker, Nicholas E; Kale, Abhijit

    2016-01-01

    Mutations affecting multiple ribosomal proteins are implicated in cancer. Using genetic mosaics in the fruit fly Drosophila, we describe 3 apoptotic mechanisms that affect Rp/Rp homozygous mutant cells, Rp/+ heterozygous cells, or Rp/+ heterozygous cells in competition with nearby wild type cells, and discuss how apoptosis might be related to cancer predisposition. PMID:27308545

  20. Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Fernández-Luna, José L; Flahaut, Emmanuel; Rodríguez-Fernández, Lidia; Villegas, Juan C; González, Jesús; Fanarraga, Mónica L

    2015-08-01

    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells. PMID:26097131

  1. Hepatic cancer stem cells may arise from adult ductal progenitors

    PubMed Central

    Nikolaou, Kostas C; Talianidis, Iannis

    2016-01-01

    Cancer stem cells (CSCs) are defined as cells within tumors that can self-renew and differentiate into heterogeneous lineages of cancerous cells. The origin of CSCs is not well understood. Recent evidence suggests that CSCs in hepatocellular carcinoma could be generated via oncogenic transformation and partial differentiation of adult hepatic ductal progenitor cells.

  2. Mutations in ribosomal proteins: Apoptosis, cell competition, and cancer

    PubMed Central

    Baker, Nicholas E.; Kale, Abhijit

    2016-01-01

    Mutations affecting multiple ribosomal proteins are implicated in cancer. Using genetic mosaics in the fruit fly Drosophila, we describe 3 apoptotic mechanisms that affect Rp/Rp homozygous mutant cells, Rp/+ heterozygous cells, or Rp/+ heterozygous cells in competition with nearby wild type cells, and discuss how apoptosis might be related to cancer predisposition. PMID:27308545

  3. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    PubMed Central

    Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie

    2015-01-01

    Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design

  4. Hypoxia-Inducible Factors in Cancer Stem Cells and Inflammation

    PubMed Central

    Peng, Gong; Liu, Yang

    2015-01-01

    Hypoxia-inducible factors (HIF) mediate metabolic switch in cells in hypoxic environments, including those in both normal and malignant tissues with limited supplies of oxygen. Paradoxically, recent studies have shown that cancer stem cells and activated immune effector cells exhibit high HIF activity in normoxic environments and that HIF activity is critical in maintenance of cancer stem cells as well as differentiation and function of inflammatory cells. Since inflammation and cancer stem cells are two major barriers to effective cancer therapy, targeting HIF may provide a new approach for the ultimate challenges. PMID:25857287

  5. Bilateral Adrenocortical Masses Producing Aldosterone and Cortisol Independently

    PubMed Central

    Lee, Seung-Eun; Lee, You-Bin; Seok, Hyeri; Shin, In Seub; Eun, Yeong Hee; Kim, Jung-Han; Oh, Young Lyun

    2015-01-01

    A 31-year-old woman was referred to our hospital with symptoms of hypertension and bilateral adrenocortical masses with no feature of Cushing syndrome. The serum aldosterone/renin ratio was elevated and the saline loading test showed no suppression of the plasma aldosterone level, consistent with a diagnosis of primary hyperaldosteronism. Overnight and low-dose dexamethasone suppression tests showed no suppression of serum cortisol, indicating a secondary diagnosis of subclinical Cushing syndrome. Adrenal vein sampling during the low-dose dexamethasone suppression test demonstrated excess secretion of cortisol from the left adrenal mass. A partial right adrenalectomy was performed, resulting in normalization of blood pressure, hypokalemia, and high aldosterone level, implying that the right adrenal mass was the main cause of the hyperaldosteronism. A total adrenalectomy for the left adrenal mass was later performed, resulting in a normalization of cortisol level. The final diagnosis was bilateral adrenocortical adenomas, which were secreting aldosterone and cortisol independently. This case is the first report of a concurrent cortisol-producing left adrenal adenoma and an aldosterone-producing right adrenal adenoma in Korea, as demonstrated by adrenal vein sampling and sequential removal of adrenal masses. PMID:26248855

  6. Postnatal foraging demands alter adrenocortical activity and psychosocial development.

    PubMed

    Lyons, D M; Kim, S; Schatzberg, A F; Levine, S

    1998-05-01

    Mother squirrel monkeys stop carrying infants at earlier ages in high-demand (HD) conditions where food is difficult to find relative to low-demand (LD) conditions. To characterize these transitions in psychosocial development, from 10- to 21-weeks postpartum we collected measures of behavior, adrenocortical activity, and social transactions coded for initiator (mother or infant), goal (make-contact or break-contact), and outcome (success or failure). Make-contact attempts were most often initiated by HD infants, but mothers often opposed these attempts and less than 50% were successful. Break-contact attempts were most often initiated by LD infants, but mothers often opposed these attempts and fewer LD than HD infant break-contact attempts were successful. Plasma levels of cortisol were significantly higher in HD than LD mothers, but differences in adrenocortical activity were less consistent in their infants. HD and LD infants also spent similar amounts of time nursing on their mothers and feeding on solid foods. By rescheduling some transitions in development (carry-->self-transport), and not others (nursing-->self-feeding), mothers may have partially protected infants from the immediate impact of an otherwise stressful foraging task. PMID:9589217

  7. Bilateral Adrenocortical Masses Producing Aldosterone and Cortisol Independently.

    PubMed

    Lee, Seung Eun; Kim, Jae Hyeon; Lee, You Bin; Seok, Hyeri; Shin, In Seub; Eun, Yeong Hee; Kim, Jung Han; Oh, Young Lyun

    2015-12-01

    A 31-year-old woman was referred to our hospital with symptoms of hypertension and bilateral adrenocortical masses with no feature of Cushing syndrome. The serum aldosterone/renin ratio was elevated and the saline loading test showed no suppression of the plasma aldosterone level, consistent with a diagnosis of primary hyperaldosteronism. Overnight and low-dose dexamethasone suppression tests showed no suppression of serum cortisol, indicating a secondary diagnosis of subclinical Cushing syndrome. Adrenal vein sampling during the low-dose dexamethasone suppression test demonstrated excess secretion of cortisol from the left adrenal mass. A partial right adrenalectomy was performed, resulting in normalization of blood pressure, hypokalemia, and high aldosterone level, implying that the right adrenal mass was the main cause of the hyperaldosteronism. A total adrenalectomy for the left adrenal mass was later performed, resulting in a normalization of cortisol level. The final diagnosis was bilateral adrenocortical adenomas, which were secreting aldosterone and cortisol independently. This case is the first report of a concurrent cortisol-producing left adrenal adenoma and an aldosterone-producing right adrenal adenoma in Korea, as demonstrated by adrenal vein sampling and sequential removal of adrenal masses. PMID:26248855

  8. [Effect of Conditioned Medium from Endothelial Cells on Cancer Stem Cell Phenotype of Hepatoma Cells].

    PubMed

    Feng, Chuan; Yang, Xianjiong; Sun, Jinghui; Luo, Qing; Song, Guanbin

    2015-10-01

    In this study, we aimed to investigate the influences of conditioned medium from human umbilical vein endothelial cells (HUVEC) on cancer stem cell phenotype of human hepatoma cells. HUVEC and human hepatoma cells (MHCC97H) were cultured, respectively, and then the MHCC97H cells were co-cultured with conditioned medium from HUVEC (EC-CM) with Transwell system. Anti-cancer drug sensitivity, colony-formation, migration/invasion ability, expression of cancer stem cell marker and sphere formation were performed to determine the cancer stem cell phenotype in MHCC97H cells. We found that MHCC97H cells co-cultured with EC-CM exhibited significantly higher colony-formation ability and lower sensitivity of anti-cancer drugs 5-FU and Cis. Transwell assay showed that treatment with EC-CM obviously increased migration and invasion of MHCC97H cells. Moreover, increased sphere forming capability and expression of CD133 in MHCC97H cells were observed after co-cultured with EC-CM. These results suggested that EC-CM could promote cancer stem cell phenotype of hepatoma cells. PMID:26964312

  9. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells

    PubMed Central

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-01-01

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325

  10. Targeting the sumoylation pathway in cancer stem cells

    PubMed Central

    Bogachek, Maria V; De Andrade, James P; Weigel, Ronald J

    2014-01-01

    Cancer stem cells (CSCs) represent a subset of tumor cells with tumor-initiating potential. We recently demonstrated that inhibition of the sumoylation pathway cleared the CSC population and repressed the outgrowth of basal breast cancer xenografts. Targeting the sumoylation pathway offers a novel treatment strategy for basal breast cancer. PMID:27308355

  11. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acquisition of metastatic ability by prostatic cancer cells is the most lethal aspect of prostatic cancer progression. (-)-Gossypol, a polyphenolic compound present in cottonseeds, possesses anti-proliferation and pro-apoptotic effects in various cancer cells. In this study, the differences betwee...

  12. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    PubMed

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  13. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    PubMed Central

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  14. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    PubMed

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients. PMID:26483336

  15. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  16. Microrheology of keratin networks in cancer cells

    NASA Astrophysics Data System (ADS)

    Paust, T.; Paschke, S.; Beil, M.; Marti, O.

    2013-12-01

    Microrheology is a valuable tool to determine viscoelastic properties of polymer networks. For this purpose measurements with embedded tracer beads inside the extracted network of pancreatic cancer cells were performed. Observing the beads motion with a CCD-high-speed-camera leads to the dynamic shear modulus. The complex shear modulus is divided into real and imaginary parts which give insight into the mechanical properties of the cell. The dependency on the distance of the embedded beads to the rim of the nucleus shows a tendency for a deceasing storage modulus. We draw conclusions on the network topology of the keratin network types based on the mechanical behavior.

  17. Microrheology of keratin networks in cancer cells.

    PubMed

    Paust, T; Paschke, S; Beil, M; Marti, O

    2013-12-01

    Microrheology is a valuable tool to determine viscoelastic properties of polymer networks. For this purpose measurements with embedded tracer beads inside the extracted network of pancreatic cancer cells were performed. Observing the beads motion with a CCD-high-speed-camera leads to the dynamic shear modulus. The complex shear modulus is divided into real and imaginary parts which give insight into the mechanical properties of the cell. The dependency on the distance of the embedded beads to the rim of the nucleus shows a tendency for a decreasing storage modulus. We draw conclusions on the network topology of the keratin network types based on the mechanical behavior. PMID:24305115

  18. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  19. Cancer Cell Invasion: Treatment and Monitoring Opportunities in Nanomedicine

    PubMed Central

    Veiseh, Omid; Kievit, Forrest; Ellenbogen, Richard G.; Zhang, Miqin

    2011-01-01

    Cell invasion is an intrinsic cellular pathway whereby cells respond to extracellular stimuli to migrate through and modulate the structure of their extracellular matrix (ECM) in order to develop, repair, and protect the body’s tissues. In cancer cells this process can become aberrantly regulated and lead to cancer metastasis. This cellular pathway contributes to the vast majority of cancer related fatalities, and therefore has been identified as a critical therapeutic target. Researchers have identified numerous potential molecular therapeutic targets of cancer cell invasion, yet delivery of therapies remains a major hurdle. Nanomedicine is a rapidly emerging technology which may offer a potential solution for tackling cancer metastasis by improving the specificity and potency of therapeutics delivered to invasive cancer cells. In this review we examine the biology of cancer cell invasion, its role in cancer progression and metastasis, molecular targets of cell invasion, and therapeutic inhibitors of cell invasion. We then discuss how the field of nanomedicine can be applied to monitor and treat cancer cell invasion. We aim to provide a perspective on how the advances in cancer biology and the field of nanomedicine can be combined to offer new solutions for treating cancer metastasis. PMID:21295093

  20. Biomarkers to Target Heterogeneous Breast Cancer Stem Cells

    PubMed Central

    Hwang-Verslues, Wendy W.; Lee, Wen-Hwa; Lee, Eva Y.-H.P.

    2012-01-01

    Breast cancer is the most common cancer and the second leading cause of death in U.S. women. Due to early detection and advanced treatment, the breast cancer death rate has been declining since 1990. However, disease recurrence is still the major obstacle in moving from therapy to truly curative treatments. Recent evidence has indicated that breast cancer recurrence is often caused by a subpopulation of breast cancer cells. This subset of cancer cells, usually referred to as breast cancer stem cells (BCSCs), exhibits stem cell phenotypes. They can self-renew and asymmetrically divide to more differentiated cancer cells. These cells are also highly resistant to conventional therapeutic reagents. Therefore, identifying and characterizing these BCSC subpopulations within the larger population of breast cancer cells is essential for developing new strategies to treat breast cancer and prevent recurrence. In this review article, we discuss the current proposed model for the origin of tumor heterogeneity, summarize the recent findings of cell surface and cytoplasmic markers for BCSC identification, review the regulatory mechanisms by which BCSCs maintain or non-cancer stem cells acquire BCSC characteristics, describe the proposed strategies to eliminate BCSCs, and highlight the current limitations and challenges to translate basic BCSC research to clinical application including establishment of clinical biomarkers and therapeutic treatments specifically targeting BCSCs. PMID:24977105

  1. Cell-ECM Interactions During Cancer Invasion

    NASA Astrophysics Data System (ADS)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  2. Cloning of human lung cancer cells.

    PubMed Central

    Walls, G. A.; Twentyman, P. R.

    1985-01-01

    We have carried out a comparison of two different methods for cloning human lung cancer cells. The method of Courtenay & Mills (1978) generally gave higher plating efficiencies (PE) than the method of Carney et al. (1980). The number of colonies increased with incubation time in both methods and the weekly medium replenishment in the Courtenay method was advantageous for longer incubation times of several weeks. In the Courtenay method, the use of August rat red blood cells (RBC) and low oxygen tension were both found to be necessary factors for maximum plating efficiency. The usefulness of heavily irradiated feeder cells in improving PE is less certain; each cell type may have its own requirement. PMID:3904799

  3. Cell kinetics of head and neck cancers.

    PubMed

    Kotelnikov, V M; Coon JS, I V; Haleem, A; Taylor S, I V; Hutchinson, J; Panje, W; Caldarelli, D D; Griem, K; Preisler, H D

    1995-05-01

    We measured the tumor cell proliferative rate in 26 patients with head and neck cancer, 22 of which were squamous cell carcinomas (SCCs). Patients received sequential infusions of iododeoxyuridine and bromodeoxyuridine, after which the tumor was biopsied and studied. The percentage of labeled cells [labeling index (LI)] in well-differentiated SCCs was 20.4 +/- 2.7% (mean +/- SE) and 23.8 +/- 2.1% in moderately differentiated SCCs (P = 0.135). The LIs of two poorly differentiated SCCs were 39.4 and 55.9%. The LI was 2.5% in a high-grade lymphoepithelioma and 24.8% in a malignant lymphoma. In one well-differentiated and one poorly differentiated mucoepidermoid tumor, the LIs were 3.0% and 29.1%, respectively. S-phase duration time measurements ranged from 5.1-21.5 h (12.8 +/- 1.5). The calculated potential doubling times ranged from 18.8-84.5 h (47.3 +/- 6.7). The duration of G2 was between 90 and 180 min. To track the fate of labeled cells, in four patients a repeat biopsy was obtained 7-14 days after the iododeoxyuridine/bromodeoxyuridine infusion. These patients did not receive treatment between the biopsies. Due to the dilution of the label, most labeled cells in the second biopsy demonstrated a "fragmented" pattern resulting from repeated cell divisions. In two patients, however, 25% of cells in the second biopsy had undiluted label, suggesting that these cells had not divided after incorporating iododeoxyuridine/bromodeoxyuridine. On Day 7 labeled cells migrated to keratinized parts of tumors and to necrotic foci. Thus, the arrest of cell cycle transition, tumor cell differentiation, and cell death may be major routes of tumor cell loss from the proliferative compartment. This may explain the difference between very short potential doubling times and the actual rate of tumor growth. PMID:9816012

  4. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    PubMed

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  5. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    PubMed Central

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  6. General Information about Non-Small Cell Lung Cancer

    MedlinePlus

    ... most patients with non-small cell lung cancer, current treatments do not cure the cancer. If lung ... professional versions have detailed information written in technical language. The patient versions are written in easy-to- ...

  7. Epigenetic regulation in adult stem cells and cancers

    PubMed Central

    2013-01-01

    Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells. PMID:24172544

  8. Can Nanomedicines Kill Cancer Stem Cells?

    PubMed Central

    Zhao, Yi; Alakhova, Daria Y.; Kabanov, Alexander V.

    2014-01-01

    Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs. PMID:24120657

  9. Direct targeting of cancer cells: a multiparameter approach.

    PubMed

    Heinrich, Eileen L; Welty, Lily Anne Y; Banner, Lisa R; Oppenheimer, Steven B

    2005-01-01

    Lectins have been widely used in cell surface studies and in the development of potential anticancer drugs. Many past studies that have examined lectin toxicity have only evaluated the effects on cancer cells, not their non-cancer counterparts. In addition, few past studies have evaluated the relationship between lectin-cell binding and lectin toxicity on both cell types. Here we examine these parameters in one study: lectin-cell binding and lectin toxicity with both cancer cells and their normal counterparts. We found that the human colon cancer cell line CCL-220/Colo320DM bound to agarose beads derivatized with Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA), while the non-cancer human colon cell line CRL-1459/CCD-18Co did not. When these lectins were tested for their effects on cell viability in culture, both cell lines were affected by the lectins but at 6, 48 and 72 h incubation times, PHA-L was most toxic to the cancer cell line in a concentration dependent manner. At 48 h incubation, WGA was more toxic to the cancer cell line. The results suggest that it may be possible to develop lectin protocols that selectively target cancer cells for death. In any case, examination of both malignant cells and their non-malignant counterparts, analysis of their binding characteristics to immobilized lectins, and examination of the toxicity of free lectins in culture, provides a multiparameter model for obtaining more comprehensive information than from more limited approaches. PMID:16181664

  10. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-05-26

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  11. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  12. Targeting Cell Survival Proteins for Cancer Cell Death.

    PubMed

    Pandey, Manoj K; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N; Amin, Shantu G; Aggarwal, Bharat B

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  13. Murine Lung Cancer Induces Generalized T Cell Exhaustion

    PubMed Central

    Mittal, Rohit; Chen, Ching-Wen; Lyons, John D; Margoles, Lindsay M; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L

    2015-01-01

    Background Cancer is known to modulate tumor-specific immune responses by establishing a micro-environment that leads to the upregulation of T cell inhibitory receptors, resulting in the progressive loss of function and eventual death of tumor-specific T cells. However, the ability of cancer to impact the functionality of the immune system on a systemic level is much less well characterized. Because cancer is known to predispose patients to infectious complications including sepsis, we hypothesized that the presence of cancer alters pathogen-directed immune responses on a systemic level. Materials and Methods We assessed systemic T cell coinhibitory receptor expression, cytokine production, and apoptosis in mice with established subcutaneous lung cancer tumors and in unmanipulated mice without cancer. Results Results indicated that the frequencies of PD-1+, BTLA+, and 2B4+ cells in both the CD4+ and CD8+ T cell compartments were increased in mice with localized cancer relative to non-cancer controls, and the frequencies of both CD4+ and CD8+ T cells expressing multiple different inhibitory receptors was increased in cancer animals relative to non-cancer controls. Additionally, 2B4+CD8+ T cells in cancer mice exhibited reduced IL-2 and IFN-γ, while BTLA+CD8+ T cells in cancer mice exhibited reduced IL-2 and TNF. Conversely, CD4+ T cells in cancer animals demonstrated an increase in the frequency of Annexin V+ apoptotic cells. Conclusion Taken together, these data suggest that the presence of cancer induces systemic T cell exhaustion and generalized immune suppression. PMID:25748104

  14. Personalized chemotherapy profiling using cancer cell lines from selectable mice

    PubMed Central

    Kamiyama, Hirohiko; Rauenzahn, Sherri; Shim, Joong Sup; Karikari, Collins A.; Feldmann, Georg; Hua, Li; Kamiyama, Mihoko; Schuler, F. William; Lin, Ming-Tseh; Beaty, Robert M.; Karanam, Balasubramanyam; Liang, Hong; Mullendore, Michael E.; Mo, Guanglan; Hidalgo, Manuel; Jaffee, Elizabeth; Hruban, Ralph H.; Jinnah, H. A.; Roden, Richard B. S.; Jimeno, Antonio; Liu, Jun O.; Maitra, Anirban; Eshleman, James R.

    2013-01-01

    Purpose High-throughput chemosensitivity testing of low-passage cancer cell lines can be used to prioritize agents for personalized chemotherapy. However, generating cell lines from primary cancers is difficult, because contaminating stromal cells overgrow the malignant cells. Experimental Design We produced a series of hypoxanthine phosphoribosyl transferase (hprt)-null immunodeficient mice. During growth of human cancers in these mice, hprt-null murine stromal cells replace their human counterparts. Results Pancreatic and ovarian cancers explanted from these mice were grown in selection media to produce pure human cancer cell lines. We screened one cell line with a 3,131-drug panel and identified seventy-seven FDA approved drugs with activity, including two novel drugs to which the cell line was uniquely sensitive. Xenografts of this carcinoma were selectively responsive to both drugs. Conclusion Chemotherapy can be personalized using patient-specific cell lines derived in biochemically selectable mice. PMID:23340293

  15. RASSF4 is downregulated in nonsmall cell lung cancer and inhibits cancer cell proliferation and invasion.

    PubMed

    Han, Yong; Dong, Qianze; Hao, Jie; Fu, Lin; Han, Xu; Zheng, Xiaoying; Wang, Enhua

    2016-04-01

    RASSF4 has been implicated as a tumor suppressor in several human cancers. Its clinical significance and biological characteristics in human nonsmall cell lung cancer (NSCLC) have not been explored yet. In this study, we explored expression pattern of RASSF4 in 89 NSCLC specimens. The results showed that RASSF4 was downregulated in 36/89 NSCLC tissues compared with normal tissue. RASSF4 downregulation significantly associated with advanced TNM stage, positive nodal status, and poor prognosis. We examined RASSF4 protein expression in normal lung epithelial cell line and lung cancer lines. We found that RASSF4 expression was downregulated in four of seven lung cancer cell lines compared with normal bronchial epithelial cells. RASSF4 plasmid transfection was performed in H460 and A549 cell lines. RASSF4 overexpression inhibited proliferation, colony formation, and invading ability. In addition, we identified that RASSF4 could inhibit cell cycle progression with downregulation of cyclin D1. Expression of invasion-related protein MMP2, MMP9 was also decreased. In conclusion, the present study suggested that RASSF4 serves as an important tumor suppressor in NSCLC. PMID:26526576

  16. Niche construction game cancer cells play

    NASA Astrophysics Data System (ADS)

    Bergman, Aviv; Gligorijevic, Bojana

    2015-10-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  17. Solid cancers after allogeneic hematopoietic cell transplantation

    PubMed Central

    Curtis, Rochelle E.; Socié, Gérard; Sobocinski, Kathleen A.; Gilbert, Ethel; Landgren, Ola; Travis, Lois B.; Travis, William D.; Flowers, Mary E. D.; Friedman, Debra L.; Horowitz, Mary M.; Wingard, John R.; Deeg, H. Joachim

    2009-01-01

    Transplant recipients have been reported to have an increased risk of solid cancers but most studies are small and have limited ability to evaluate the interaction of host, disease, and treatment-related factors. In the largest study to date to evaluate risk factors for solid cancers, we studied a multi-institutional cohort of 28 874 allogeneic transplant recipients with 189 solid malignancies. Overall, patients developed new solid cancers at twice the rate expected based on general population rates (observed-to-expected ratio 2.1; 95% confidence interval 1.8-2.5), with the risk increasing over time (P trend < .001); the risk reached 3-fold among patients followed for 15 years or more after transplantation. New findings showed that the risk of developing a non–squamous cell carcinoma (non-SCC) following conditioning radiation was highly dependent on age at exposure. Among patients irradiated at ages under 30 years, the relative risk of non-SCC was 9 times that of nonirradiated patients, while the comparable risk for older patients was 1.1 (P interaction < .01). Chronic graft-versus-host disease and male sex were the main determinants for risk of SCC. These data indicate that allogeneic transplant survivors, particularly those irradiated at young ages, face increased risks of solid cancers, supporting strategies to promote lifelong surveillance among these patients. PMID:18971419

  18. Gemcitabine induces cell senescence in human pancreatic cancer cell lines.

    PubMed

    Song, Yao; Baba, Tomohisa; Mukaida, Naofumi

    2016-08-26

    Patients with pancreatic ductal adenocarcinoma (PDAC) commonly require chemotherapy because they frequently develop metastatic disease or locally advanced tumors. Gemcitabine, an analogue of cytosine arabinoside, is commonly used for PDAC treatment. We observed that gemcitabine induced senescence phenotypes characterized by enhanced senescence-associated β-galactosidase (SA β-Gal) staining and increased expression of senescence-associated molecules in two human pancreatic cancer cell lines, Miapaca-2 and Panc-1, which exhibit resistance to gemcitabine but not L3.pl cells with a high sensitivity to gemcitabine. Gemcitabine-induced cell senescence can be inhibited by reactive oxygen species inhibitor, N-acetyl cysteine. Although gemcitabine also enhanced CXCL8 expression, anti-CXCL8 antibody failed to reduce gemcitabine-induced increases in SA β-Gal-positive cell numbers. These observations would indicate that cell senescence can proceed independently of CXCL8 expression, a characteristic feature of senescence-associated secretion phenotype. PMID:27311854

  19. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    ClinicalTrials.gov

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer

  20. Human Cytochrome P450 2W1 Is Not Expressed in Adrenal Cortex and Is Only Rarely Expressed in Adrenocortical Carcinomas.

    PubMed

    Nolé, Paola; Duijndam, Britt; Stenman, Adam; Juhlin, C Christofer; Kozyra, Mikael; Larsson, Catharina; Ingelman-Sundberg, Magnus; Johansson, Inger

    2016-01-01

    Human cytochome P450 2W1 (CYP2W1) enzyme is expressed in fetal colon and in colon tumors. The level of expression is higher in colon metastases than in the parent tumors and the enzyme is a possible drug target for treatment of colorectal cancer, as demonstrated in mouse xenograft studies. A previous study published in this journal reported that CYP2W1 is highly expressed in normal and transformed adrenal tissue. However, adrenal expression of CYP2W1 protein was not seen in previous studies in our research group. To clarify this inconsistency, we have used qRT-PCR and Western blotting with CYP2W1-specific antibodies to probe a panel of 27 adrenocortical carcinomas and 35 normal adrenal cortex samples. CYP2W1 mRNA expression is seen in all samples. However, significant CYP2W1 protein expression was found in only one tumor sample (a testosterone-producing adrenocortical carcinoma) and not in any normal tissue. Differences in the specificity of the CYP2W1 antibodies used in the two studies may explain the apparent discrepancy. We conclude that normal adrenal tissue lacks P450 2W1 enzyme expression; also, adrenocortical carcinomas generally do not express the enzyme. This information thus underline the colon cancer specificity of CYP2W1 enzyme expression and has implications for the development of anti-colon cancer therapies based on CYP2W1 as a drug target, since 2W1-dependent bioactivation of prodrugs for CYP2W1 will not take place in normal adrenal tissue or other non-transformed tissues. PMID:27598485

  1. Pemetrexed (Alimta) in small cell lung cancer.

    PubMed

    Socinski, Mark A

    2005-04-01

    Small cell lung cancer (SCLC) comprises approximately 13% of all lung cancers. In limited stage (LS)-SCLC, combined-modality therapy represents the standard of care. Therapy should be approached curatively in fit patients with a good performance status because 5-year survival rates approach 26% in aggressively treated patients. In contrast, cure is not possible in extensive stage (ES)-SCLC with median 2-year survival rates with current therapy remaining at less than 10%. Pemetrexed (Alimta; Eli Lilly and Co, Indianapolis, IN) is a novel, multi-targeted antifolate that inhibits several folate-dependent enzymes involved in purine and pyrimidine synthesis, and is active as a single-agent or in combination with a platinum in both non-small cell lung cancer and malignant pleural mesothelioma. Pemetrexed/platinum combinations appear active in ES-SCLC based on objective response rates observed in a randomized phase II trial. However, no survival data is yet available from this trial. The toxicity profile of both cisplatin and carboplatin in combination with pemetrexed was extremely favorable, as was the ability to deliver full doses of each of the component drugs. Given the limited options available for patients in the relapsed setting, the activity of single-agent pemetrexed is interesting. Also, preliminary data indicates that full doses of carboplatin/pemetrexed can be administered with thoracic radiation therapy, supporting a future clinical trial initiative in LS-SCLC. PMID:15818532

  2. CD133: A cancer stem cells marker, is used in colorectal cancers

    PubMed Central

    Ren, Fei; Sheng, Wei-Qi; Du, Xiang

    2013-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide. A model of cancer development involving cancer stem cells has been put forward because it provides a possible explanation of tumor hierarchy. Cancer stem cells are characterized by their proliferation, tumorigenesis, differentiation, and self-renewal capacities, and chemoradiotherapy resistance. Due to the role of cancer stem cells in tumor initiation and treatment failure, studies of cancer stem cell markers, such as CD133, have been of great interest. CD133, a five-transmembrane glycoprotein, is widely used as a marker to identify and isolate colorectal cancer stem cells. This marker has been investigated to better understand the characteristics and functions of cancer stem cells. Moreover, it can also be used to predict tumor progression, patient survival, chemoradiotherapy resistance and other clinical parameters. In this review, we discuss the use of CD133 in the identification of colorectal cancer stem cell, which is currently controversial. Although the function of CD133 is as yet unclear, we have discussed several possible functions and associated mechanisms that may partially explain the role of CD133 in colorectal cancers. In addition, we focus on the prognostic value of CD133 in colorectal cancers. Finally, we predict that CD133 may be used as a possible target for colorectal cancer treatment. PMID:23674867

  3. microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma

    PubMed Central

    Gill, Anthony J.; Weiss, Jocelyn; Mugridge, Nancy; Kim, Edward; Feeney, Alex L.; Ip, Julian C.; Reid, Glen; Clarke, Stephen; Soon, Patsy S.H.; Robinson, Bruce G.; Brahmbhatt, Himanshu; MacDiarmid, Jennifer A.; Sidhu, Stan B.

    2015-01-01

    Adrenocortical carcinoma (ACC) has a poor prognosis with significant unmet clinical need due to late diagnosis, high rates of recurrence/metastasis and poor response to conventional treatment. Replacing tumor suppressor microRNAs (miRNAs) offer a novel therapy, however systemic delivery remains challenging. A number of miRNAs have been described to be under-expressed in ACC however it is not known if they form a part of ACC pathogenesis. Here we report that microRNA-7–5p (miR-7) reduces cell proliferation in vitro and induces G1 cell cycle arrest. Systemic miR-7 administration in a targeted, clinically safe delivery vesicle (EGFREDVTM nanocells) reduces ACC xenograft growth originating from both ACC cell lines and primary ACC cells. Mechanistically, miR-7 targets Raf-1 proto-oncogene serine/threonine kinase (RAF1) and mechanistic target of rapamycin (MTOR). Additionally, miR-7 therapy in vivo leads to inhibition of cyclin dependent kinase 1 (CDK1). In patient ACC samples, CDK1 is overexpressed and miR-7 expression inversely related. In summary, miR-7 inhibits multiple oncogenic pathways and reduces ACC growth when systemically delivered using EDVTM nanoparticles. This data is the first study in ACC investigating the possibility of miRNAs replacement as a novel therapy. PMID:26452132

  4. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules. PMID:19460850

  5. A Phase I Study of LJM716 in Squamous Cell Carcinoma of Head and Neck, or HER2+ Breast Cancer or Gastric Cancer

    ClinicalTrials.gov

    2014-04-21

    HER2 + Breast Cancer, HER2 + Gastric Cancer, Squamous Cell Carcinoma of Head and Neck, Esophageal Squamous Cell Carcinoma; HER2 + Breast Cancer; HER2 + Gastric Cancer; Squamous Cell Carcinoma of Head and Neck; Esophageal Squamous Cell Carcinoma

  6. The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma

    PubMed Central

    Özata, Deniz M; Caramuta, Stefano; Velázquez-Fernández, David; Akçakaya, Pinar; Xie, Hong; Höög, Anders; Zedenius, Jan; Bäckdahl, Martin; Larsson, Catharina; Lui, Weng-Onn

    2011-01-01

    Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC. PMID:21859927

  7. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    PubMed

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types. PMID:27259361

  8. Transcription profiles of non-immortalized breast cancer cell lines

    PubMed Central

    Fernandez-Cobo, Mariana; Holland, James F; Pogo, Beatriz GT

    2006-01-01

    Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research. PMID

  9. Anticipating designer drug-resistant cancer cells.

    PubMed

    Frangione, Mark L; Lockhart, John H; Morton, Daniel T; Pava, Libia M; Blanck, George

    2015-07-01

    Successful use of anticancer designer drugs is likely to depend on simultaneous combinations of these drugs to minimize the development of resistant cancer cells. Considering the knowledge base of cancer signaling pathways, mechanisms of designer drug resistance should be anticipated, and early clinical trials could be designed to include arms that combine new drugs specifically with currently US Food and Drug Administration (FDA)-approved drugs expected to blunt alternative signaling pathways. In this review, we indicate examples of alternative signal pathways for recent anticancer drugs, and the use of original, Python-based software to systematically identify signaling pathways that could facilitate resistance to drugs targeting a particular protein. Pathway alternatives can be assessed at http://www.alternativesignalingpathways.com, developed with this review article. PMID:25697478

  10. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2016-02-08

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  11. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  12. Targeting the cancer cell cycle by cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  13. Milk stimulates growth of prostate cancer cells in culture.

    PubMed

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes. PMID:22043817

  14. Knockdown of cathepsin L sensitizes ovarian cancer cells to chemotherapy

    PubMed Central

    ZHANG, HONGMEI; ZHANG, LUOSHENG; WEI, LIXIA; GAO, XINGWANG; TANG, LI; GONG, WEI; MIN, NA; ZHANG, LI; YUAN, YAWEI

    2016-01-01

    Ovarian cancer is a leading gynecological malignancy associated with high mortality. The development of acquired drug resistance is the primary cause of chemotherapy failure in the treatment of ovarian cancer. To examine the mechanism underlying paclitaxel resistance in ovarian cancer and attempt to reverse it, the present study induced a TAX-resistant ovarian cancer cell line, SKOV3/TAX. Cathepsin L (CTSL) has been found to be overexpressed in ovarian cancer. The aim of the present study was to investigate the possible involvement of CTSL in the development of TAX resistance in ovarian cancer. CTSL expression was knocked down in SKOV3 ovarian cancer cells and their phenotypic changes were analyzed. The effects of silenced CTSL on the resistant cell line were investigated by proliferation and apoptosis analysis compared with control SKOV3 cells. CTSL was more highly expressed in SKOV3/TAX cells compared with SKOV3 cells. Paclitaxel treatment downregulated the expression of CTSL in SKOV-3 but not in the paclitaxel-resistant SKOV3/TAX cells. CTSL small hairpin RNA (shRNA) knockdown significantly potentiated apoptosis induced by paclitaxel compared with SKOV3/TAX cells transfected with control shRNA, suggesting that CTSL contributes to paclitaxel resistance in ovarian cancer cells and that CTSL silencing can enhance paclitaxel-mediated cell apoptosis. Thus, CTSL should be explored as a candidate of therapeutic target for modulating paclitaxel sensitivity in ovarian cancer. PMID:27313771

  15. Method for restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    2000-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  16. NK Cell Phenotypic Modulation in Lung Cancer Environment

    PubMed Central

    Hao, Jun-Wei; Li, Yang; Liu, Bin; Yu, Yan; Shi, Fu-Dong; Zhou, Qing-Hua

    2014-01-01

    Background Nature killer (NK) cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment. Materials and methods Our study analyzed the change about NK cells surface markers (NK cells receptors) through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse. Results We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently. Conclusions The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy. PMID:25299645

  17. Use of Cancer Stem Cells to Investigate the Pathogenesis of Colitis-associated Cancer

    PubMed Central

    Davies, Julie M.; Santaolalla, Rebeca

    2016-01-01

    Abstract: Colitis-associated cancer (CAC) can develop in patients with inflammatory bowel disease with long-term uncontrolled inflammation. The mutational history and tumor microenvironment observed in CAC patients is distinct from that observed in sporadic colon cancer and suggests a different etiology. Recently, much attention has been focused on understanding the cellular origin of cancer and the cancer stem cells, which is key to growth and progression. Cancer stem cells are often chemo-resistant making them attractive targets for improving patient outcomes. New techniques have rapidly been evolving allowing for a better understanding of the normal intestinal stem cell function and behavior in the niche. Use of these new technologies will be crucial to understanding cancer stem cells in both sporadic and CAC. In this review, we will explore emerging methods related to the study of normal and cancer stem cells in the intestine, and examine potential avenues of investigation and application to understanding the pathogenesis of CAC. PMID:26963566

  18. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells.

    PubMed

    Yongsanguanchai, Nuttida; Pongrakhananon, Varisa; Mutirangura, Apiwat; Rojanasakul, Yon; Chanvorachote, Pithi

    2015-01-15

    Even though tremendous advances have been made in the treatment of cancers during the past decades, the success rate among patients with cancer is still dismal, largely because of problems associated with chemo/radioresistance and relapse. Emerging evidence has indicated that cancer stem cells (CSCs) are behind the resistance and recurrence problems, but our understanding of their regulation is limited. Rapid reversible changes of CSC-like cells within tumors may result from the effect of biological mediators found in the tumor microenvironment. Here we show how nitric oxide (NO), a key cellular modulator whose level is elevated in many tumors, affects CSC-like phenotypes of human non-small cell lung carcinoma H292 and H460 cells. Exposure of NO gradually altered the cell morphology toward mesenchymal stem-like shape. NO exposure promoted CSC-like phenotype, indicated by increased expression of known CSC markers, CD133 and ALDH1A1, in the exposed cells. These effects of NO on stemness were reversible after cessation of the NO treatment for 7 days. Furthermore, such effect was reproducible using another NO donor, S-nitroso-N-acetylpenicillamine. Importantly, inhibition of NO by the known NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5 tetramethylimidazoline-1-oxy-3-oxide strongly inhibited CSC-like aggressive cellular behavior and marker expression. Last, we unveiled the underlying mechanism of NO action through the activation of caveolin-1 (Cav-1), which is upregulated by NO and is responsible for the aggressive behavior of the cells, including anoikis resistance, anchorage-independent cell growth, and increased cell migration and invasion. These findings indicate a novel role of NO in CSC regulation and its importance in aggressive cancer behaviors through Cav-1 upregulation. PMID:25411331

  19. Liver cancer stem cell markers: Progression and therapeutic implications.

    PubMed

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-04-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  20. Liver cancer stem cell markers: Progression and therapeutic implications

    PubMed Central

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  1. Mesenchymal stem cell secretome and regenerative therapy after cancer

    PubMed Central

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T.; Donnenberg, Vera S.; Donnenberg, Albert D.

    2013-01-01

    Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bidirectional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus

  2. Targeting cancer stem cells: emerging role of Nanog transcription factor

    PubMed Central

    Wang, Mong-Lien; Chiou, Shih-Hwa; Wu, Cheng-Wen

    2013-01-01

    The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the therapeutic efficacy of targeting Nanog as a cancer treatment method, current animal experiments using siNanog or shNanog have shown the promising therapeutic potential of Nanog targeting in several types of cancer. PMID:24043946

  3. Pediatric Adrenocortical Tumors: What They Can Tell Us on Adrenal Development and Comparison with Adult Adrenal Tumors

    PubMed Central

    Lalli, Enzo; Figueiredo, Bonald C.

    2015-01-01

    Adrenocortical tumors (ACT) in children are very rare and are most frequently diagnosed in the context of the Li-Fraumeni syndrome, a multiple cancer syndrome linked to germline mutations of the tumor suppressor gene TP53 with loss of heterozygosity in the tumors. A peak of children ACT incidence is present in the states of southern Brazil, where they are linked to the high prevalence in the population of a specific TP53 mutation (R337H). Children ACT have specific features distinguishing them from adult tumors in their pathogenetic mechanisms, genomic profiles, and prognosis. Epidemiological and molecular evidence suggests that in most cases they are derived from the fetal adrenal. PMID:25741319

  4. Squamous Cell Lung Cancer: From Tumor Genomics to Cancer Therapeutics

    PubMed Central

    Gandara, David R.; Hammerman, Peter S.; Sos, Martin L.; Lara, Primo N.; Hirsch, Fred R.

    2016-01-01

    Squamous cell lung cancer (SCC) represents an area of unmet need in lung cancer research. For the last several years, therapeutic progress in SCC has lagged behind the now more common NSCLC histologic subtype of adenocarcinoma. However, recent efforts to define the complex biology underlying SCC have begun to bear fruit in a multitude of ways, including characterization of previously unknown genomic and signaling pathways, delineation of new potentially actionable molecular targets, and subsequent development of a large number of agents directed against unique SCC-associated molecular abnormalities. For the first time, SCC-specific prognostic gene signatures and predictive biomarkers of new therapeutic agents are emerging. In addition, recent and ongoing clinical trials, including the Lung-MAP master protocol, have been designed to facilitate approval of targeted therapy-biomarker combinations. In this comprehensive review we describe the current status of SCC therapeutics, recent advances in the understanding of SCC biology and prognostic gene signatures, and the development of innovative new clinical trials, all of which offer new hope for patients with advanced SCC. PMID:25979930

  5. The role of myeloid cells in cancer therapies.

    PubMed

    Engblom, Camilla; Pfirschke, Christina; Pittet, Mikael J

    2016-07-01

    Recent clinical trials have demonstrated the ability to durably control cancer in some patients by manipulating T lymphocytes. These immunotherapies are revolutionizing cancer treatment but benefit only a minority of patients. It is thus a crucial time for clinicians, cancer scientists and immunologists to determine the next steps in shifting cancer treatment towards better cancer control. This Review describes recent advances in our understanding of tumour-associated myeloid cells. These cells remain less studied than T lymphocytes but have attracted particular attention because their presence in tumours is often linked to altered patient survival. Also, experimental studies indicate that myeloid cells modulate key cancer-associated activities, including immune evasion, and affect virtually all types of cancer therapy. Consequently, targeting myeloid cells could overcome limitations of current treatment options. PMID:27339708

  6. Targeted therapy for squamous cell lung cancer

    PubMed Central

    Liao, Rachel G.; Watanabe, Hideo; Meyerson, Matthew; Hammerman, Peter S.

    2013-01-01

    SUMMARY Lung squamous cell carcinoma (SqCC) is the second most common subtype of non-small-cell lung cancer and leads to 40,000–50,000 deaths per year in the USA. Management of non-small-cell lung cancer has dramatically changed over the past decade with the introduction of targeted therapeutic agents for genotypically selected individuals with lung adenocarcinoma. These agents lead to improved outcomes, and it has now become the standard of care to perform routine molecular genotyping of lung adenocarcinomas. By contrast, progress in lung SqCC has been modest, and there has yet to be a successful demonstration of targeted therapy in this disease. Here, we review exciting work from ongoing genomic characterization and biomarker validation efforts that have nominated several likely therapeutic targets in lung SqCCs. These studies suggest that targeted therapies are likely to be successful in the treatment of lung SqCCs and should be further explored in both preclinical models and in clinical trials. PMID:23956794

  7. Cell death and deubiquitinases: perspectives in cancer.

    PubMed

    Bhattacharya, Seemana; Ghosh, Mrinal Kanti

    2014-01-01

    The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes. PMID:25121098

  8. Natural Products That Target Cancer Stem Cells.

    PubMed

    Moselhy, Jim; Srinivasan, Sowmyalakshmi; Ankem, Murali K; Damodaran, Chendil

    2015-11-01

    The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate. PMID:26503998

  9. Cell Death and Deubiquitinases: Perspectives in Cancer

    PubMed Central

    Bhattacharya, Seemana

    2014-01-01

    The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes. PMID:25121098

  10. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control

    PubMed Central

    Blaylock, Russell L.

    2015-01-01

    Since President Nixon officially declared a war on cancer with the National Cancer Act, billions of dollars have been spent on research in hopes of finding a cure for cancer. Recent reviews have pointed out that over the ensuing 42 years, cancer death rates have barely changed for the major cancers. Recently, several researchers have questioned the prevailing cancer paradigm based on recent discoveries concerning the mechanism of carcinogenesis and the origins of cancer. Over the past decade we have learned a great deal concerning both of these central issues. Cell signaling has taken center stage, particularly as regards the links between chronic inflammation and cancer development. It is now evident that the common factor among a great number of carcinogenic agents is activation of genes controlling inflammation cell-signaling pathways and that these signals control all aspects of the cancer process. Of these pathways, the most important and common to all cancers is the NFκB and STAT3 pathways. The second discovery of critical importance is that mutated stem cells appear to be in charge of the cancer process. Most chemotherapy agents and radiotherapy kill daughter cells of the cancer stem cell, many of which are not tumorigenic themselves. Most cancer stem cells are completely resistant to conventional treatments, which explain dormancy and the poor cure rate with metastatic tumors. A growing number of studies are finding that several polyphenol extracts can kill cancer stem cells as well as daughter cells and can enhance the effectiveness and safety of conventional treatments. These new discoveries provide the clinician with a whole new set of targets for cancer control and cure. PMID:26097771

  11. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells. PMID:25318762

  12. An endocrinologist's view on relative adrenocortical insufficiency in rheumatoid arthritis.

    PubMed

    Imrich, Richard; Vlcek, Miroslav; Aldag, Jean C; Kerlik, Jana; Radikova, Zofia; Rovensky, Jozef; Vigas, Milan; Masi, Alfonse T

    2010-04-01

    The concept of relative adrenal insufficiency (RAI) has been originally introduced to describe a situation in which critically ill patients, without any prior risk or evidence for adrenal insufficiency, have total serum cortisol levels inadequate for the severity of patients' illness. The concept provided a framework for other disease states, in which higher than normal adrenal function could be expected, such as in chronic inflammation. An intense research in RAI field highlighted some new methodological aspects that significantly improved assessment of adrenal function in chronic illness. Measurement of salivary cortisol may provide additional information on locally available cortisol in target tissues. Low levels of dehydroepiandrosterone (DHEAS) for given age and gender were confirmed as a simple and reliable indicator of decreased adrenal function, even in subjects with normal baseline cortisol or normal corticotropin-stimulated cortisol response. Combined lower DHEAS and lower baseline cortisol levels could be an example of hypocompetence of adrenocortical function, yet clinically not apparent. PMID:20398019

  13. Virilizing adrenocortical carcinoma advancing to central precocious puberty after surgery.

    PubMed

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han; Lee, Dae-Yeol

    2015-05-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery. PMID:26019766

  14. Renal cell cancer and exposure to gasoline: a review.

    PubMed Central

    McLaughlin, J K

    1993-01-01

    A review of the epidemiology of renal cell cancer is presented. Risk factors for renal cell cancer such as cigarette smoking, obesity, diet, and use of analgesics and prescription diuretics are examined. Although uncommon, occupational risk factors are also reviewed. Studies examining gasoline exposure and renal cell cancer are evaluated, including investigations recently presented at a meeting on this topic. Overall, most studies find no link between gasoline exposure and renal cell cancer; moreover, the experimental evidence that initiated the health concern is no longer considered relevant to humans. Positive associations, however, reported in two recent studies prevent a firm conclusion of no risk for this exposure. PMID:8020434

  15. Stem Cell Transplantation in Treating Patients With Hematologic Cancer

    ClinicalTrials.gov

    2012-05-31

    Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Precancerous/Nonmalignant Condition; Small Intestine Cancer

  16. Metformin and cancer stem cells: old drug, new targets.

    PubMed

    Bednar, Filip; Simeone, Diane M

    2012-03-01

    In this issue of the journal, Bao and colleagues report (beginning on page 355) that the antidiabetic drug metformin targets pancreatic cancer stem cells through, at least partially, the modulation of miRNA expression and subsequent regulation of stem cell renewal and signaling factors. In this Perspective, we briefly discuss the cancer stem cell hypothesis, its clinical relevance, and how targeting the mTOR pathway may yield an avenue for disrupting the cancer stem cell compartment and thus yield long-term therapeutic benefit in multiple cancers. PMID:22389436

  17. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines

    PubMed Central

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-01-01

    AIM: To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. METHODS: A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44+CD271+ expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. RESULTS: The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44+CD271+ cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE-150 stem

  18. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    PubMed Central

    Chen, Jianchu; Li, Zhaoliang; Chen, Allen Y.; Ye, Xingqian; Luo, Haitao; Rankin, Gary O.; Chen, Yi Charlie

    2013-01-01

    Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 μM for baicalin and 25–40 μM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 μM for baicalin and 68 μM for baicalein. Baicalin decreased expression of VEGF (20 μM), cMyc (80 μM), and NFkB (20 μM); baicalein decreased expression of VEGF (10 μM), HIF-1α (20 μM), cMyc (20 μM), and NFkB (40 μM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers. PMID:23502466

  19. Methylation of IGF2 regulatory regions to diagnose adrenocortical carcinomas.

    PubMed

    Creemers, S G; van Koetsveld, P M; van Kemenade, F J; Papathomas, T G; Franssen, G J H; Dogan, F; Eekhoff, E M W; van der Valk, P; de Herder, W W; Janssen, J A M J L; Feelders, R A; Hofland, L J

    2016-09-01

    Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. Discrimination of ACCs from adrenocortical adenomas (ACAs) is challenging on both imaging and histopathological grounds. High IGF2 expression is associated with malignancy, but shows large variability. In this study, we investigate whether specific methylation patterns of IGF2 regulatory regions could serve as a valuable biomarker in distinguishing ACCs from ACAs. Pyrosequencing was used to analyse methylation percentages in DMR0, DMR2, imprinting control region (ICR) (consisting of CTCF3 and CTCF6) and the H19 promoter. Expression of IGF2 and H19 mRNA was assessed by real-time quantitative PCR. Analyses were performed in 24 ACCs, 14 ACAs and 11 normal adrenals. Using receiver operating characteristic (ROC) analysis, we evaluated which regions showed the best predictive value for diagnosis of ACC and determined the diagnostic accuracy of these regions. In ACCs, the DMR0, CTCF3, CTCF6 and the H19 promoter were positively correlated with IGF2 mRNA expression (P<0.05). Methylation in the most discriminating regions distinguished ACCs from ACAs with a sensitivity of 96%, specificity of 100% and an area under the curve (AUC) of 0.997±0.005. Our findings were validated in an independent cohort of 9 ACCs and 13 ACAs, resulting in a sensitivity of 89% and a specificity of 92%. Thus, methylation patterns of IGF2 regulatory regions can discriminate ACCs from ACAs with high diagnostic accuracy. This proposed test may become the first objective diagnostic tool to assess malignancy in adrenal tumours and facilitate the choice of therapeutic strategies in this group of patients. PMID:27535174

  20. Aptamer-Mediated Delivery of Chemotherapy to Pancreatic Cancer Cells

    PubMed Central

    Ray, Partha; Cheek, Marcus A.; Sharaf, Mariam L.; Li, Na; Ellington, Andrew D.; Sullenger, Bruce A.; Shaw, Barbara Ramsay

    2012-01-01

    Gemcitabine is a nucleoside analog that is currently the best available single-agent chemotherapeutic drug for pancreatic cancer. However, efficacy is limited by our inability to deliver sufficient active metabolite into cancer cells without toxic effects on normal tissues. Targeted delivery of gemcitabine into cancer cells could maximize effectiveness and concurrently minimize toxic side effects by reducing uptake into normal cells. Most pancreatic cancers overexpress epidermal growth factor receptor (EGFR), a trans-membrane receptor tyrosine kinase. We utilized a nuclease resistant RNA aptamer that binds and is internalized by EGFR on pancreatic cancer cells to deliver gemcitabine-containing polymers into EGFR-expressing cells and inhibit cell proliferation in vitro. This approach to cell type–specific therapy can be adapted to other targets and to other types of therapeutic cargo. PMID:23030589