Science.gov

Sample records for adrenocortical cell growth

  1. Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

    PubMed

    Schwafertz, Carolin; Schinner, Sven; Kühn, Markus C; Haase, Matthias; Asmus, Amelie; Mülders-Opgenoorth, Birgit; Ansurudeen, Ishrath; Hornsby, Peter J; Morawietz, Henning; Oetjen, Elke; Schott, Matthias; Willenberg, Holger S

    2017-02-05

    Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.

  2. Differential effects of transforming growth factor type beta on the growth and function of adrenocortical cells in vitro.

    PubMed Central

    Hotta, M; Baird, A

    1986-01-01

    Transforming growth factor type beta (TGF-beta) suppresses basal as well as corticotropin (ACTH)-stimulated steroid formation by bovine adrenocortical cells in culture. The effect is dose dependent and is not accompanied by any change in adrenocortical cell growth. The minimum effective dose of TGF-beta is 4 X 10(-13) M (10 pg/ml), and maximal inhibition is observed at a concentration of 4 X 10(-11) M (1 ng/ml). A 16- to 20-hr incubation with TGF-beta is required to decrease steroidogenesis, and 12-18 hr are required before cells treated with TGF-beta recover complete responsiveness to corticotropin. Increases in cAMP mediated by corticotropin, forskolin, and isobutylmethylxanthine are not modified by the addition of TGF-beta; thus adenylate cyclase activity is unaffected by TGF-beta. Although TGF-beta inhibits the formation of all of the delta 4-steroids measured (including cortisol, corticosterone, aldosterone, and androstenedione), its effect can be completely reversed by the addition of 25-hydroxycholesterol, pregnenolone, or progesterone to the cells. In contrast, the addition of low density lipoprotein has no effect suggesting that TGF-beta targets the conversion of cholesterol precursors to cholesterol. The results demonstrate a highly potent effect of TGF-beta on the differentiated function of the adrenocortical cell. The inhibition of steroidogenesis can be dissociated from any effect on cell proliferation, and it occurs distal to the formation of cAMP but proximal to the formation of cholesterol. The results suggest that in the adrenal, TGF-beta or TGF-beta-like proteins may be playing an important role in modifying the differentiated state of the adrenocortical cell. PMID:3020557

  3. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  4. Inhibition of Human Adrenocortical Cancer Cell Growth by Temozolomide in Vitro and the Role of the MGMT Gene

    PubMed Central

    Creemers, S. G.; van Koetsveld, P. M.; van den Dungen, E. S. R.; Korpershoek, E.; van Kemenade, F. J.; Franssen, G. J. H.; de Herder, W. W.; Feelders, R. A.

    2016-01-01

    Context: Treatment of patients with adrenocortical carcinomas (ACC) with mitotane and/or chemotherapy is often associated with toxicity and poor tumor response. New therapeutic options are urgently needed. Objective: The objectives of the study were to evaluate the therapeutic possibilities of temozolomide (TMZ) in ACC cells and to assess the potential predictive role of the DNA repair gene O6-Methylguanine-DNA methyltransferase (MGMT) in adrenocortical tumors. Methods: Three human ACC cell lines and eight primary ACC cultures were used to assess effects of TMZ in vitro. In the cell lines, 11 normal adrenals, 16 adrenocortical adenomas, and 29 ACC, MGMT promoter methylation and expression were determined. Results: IC50 values of TMZ on cell growth were 39 μM, 38 μM, and 44 μM for H295R, HAC15, and SW13, respectively. TMZ induced apoptosis and provoked cytotoxic and cytostatic effects by reducing the surviving fraction of ACC colonies and the colony size. TMZ thereby induced cell cycle arrests in ACC cell lines. TMZ and mitotane both inhibited growth of ACC cells cultured as three-dimensional spheroids. TMZ inhibited cell amount in five of eight primary ACC cultures and induced apoptosis in seven of eight primary ACC cultures. In ACC cell lines and adrenal tissues, MGMT promoter methylation was low. In ACCs, methylation was inversely correlated with MGMT mRNA expression. MGMT protein expression was not correlated with MGMT methylation. Conclusions: For the first time, we show the therapeutic potential of temozolomide for ACC, offering an urgently needed potential alternative for patients not responding to mitotane alone or with etoposide, doxorubicin, and cisplatin. (Pre-)clinical studies are warranted to assess efficacy in vivo. PMID:27603910

  5. Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma.

    PubMed

    Phan, Liem M; Fuentes-Mattei, Enrique; Wu, Weixin; Velazquez-Torres, Guermarie; Sircar, Kanishka; Wood, Christopher G; Hai, Tao; Jimenez, Camilo; Cote, Gilbert J; Ozsari, Levent; Hofmann, Marie-Claude; Zheng, Siyuan; Verhaak, Roeland; Pagliaro, Lance; Cortez, Maria Angelica; Lee, Mong-Hong; Yeung, Sai-Ching J; Habra, Mouhammed Amir

    2015-10-01

    Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited response to chemotherapy. Hepatocyte growth factor (HGF) and its receptor cMET augment cancer growth and resistance to chemotherapy, but their role in adrenocortical carcinoma has not been examined. In this study, we investigated the association between HGF/cMET expression and cancer hallmarks of adrenocortical carcinoma. Transcriptomic and immunohistochemical analyses indicated that increased HGF/cMET expression in human adrenocortical carcinoma samples was positively associated with cancer-related biologic processes, including proliferation and angiogenesis, and negatively correlated with apoptosis. Accordingly, treatment of adrenocortical carcinoma cells with exogenous HGF resulted in increased cell proliferation in vitro and in vivo while short hairpin RNA-mediated knockdown or pharmacologic inhibition of cMET suppressed cell proliferation and tumor growth. Moreover, exposure of cells to mitotane, cisplatin, or radiation rapidly induced pro-cMET expression and was associated with an enrichment of genes (e.g., CYP450 family) related to therapy resistance, further implicating cMET in the anticancer drug response. Together, these data suggest an important role for HGF/cMET signaling in adrenocortical carcinoma growth and resistance to commonly used treatments. Targeting cMET, alone or in combination with other drugs, could provide a breakthrough in the management of this aggressive cancer.

  6. Comparison of the Effects of PRKAR1A and PRKAR2B Depletion on Signaling Pathways, Cell Growth, and Cell Cycle Control of Adrenocortical Cells

    PubMed Central

    Basso, F.; Rocchetti, F.; Rodriguez, S.; Nesterova, M.; Cormier, F.; Stratakis, C.; Ragazzon, B.; Bertherat, J.; Rizk-Rabin, M.

    2016-01-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation in the abundance of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. Nonetheless, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. PMID:25268545

  7. Thrombospondins selectively activate one of the two latent forms of transforming growth factor-beta present in adrenocortical cell-conditioned medium.

    PubMed

    Souchelnitskiy, S; Chambaz, E M; Feige, J J

    1995-11-01

    Transforming growth factor-beta (TGF beta) has been shown previously to be a potent inhibitor of bovine adrenocortical cell steroidogenic functions. However, it is present in the culture medium of these cells in a latent form. In this study, we analyzed in detail the biochemical composition of this latent TGF beta. Two distinct complexes could be separated chromatographically by gel filtration on Sephacryl S-300, and their composition was studied using immunochemical methods. The results indicate that one form (peak I) is a complex between alpha 2-macroglobulin (alpha 2M) and either the unprocessed TGF beta precursor or the mature form of TGF beta. In a major fraction of this complex, TGF beta is covalently linked to alpha 2 M, whereas in a minor fraction, it is noncovalently bound and, therefore, activatable. The second form of latent TGF beta (peak II) is a complex among latent TGF beta-binding protein (LTBP), latency-associated protein, and mature TGF beta and a complex between LTBP and unprocessed TGF beta. We investigated the ability of thrombospondins (TSP1 and TSP2) to activate these latent forms of TGF beta. TSP1 and TSP2 were equally potent at activating the LTBP-latency-associated protein-TGF beta complex in the absence of cell contact, but were ineffective on the alpha 2M-TGF beta complex. Therefore, TGF beta may act as an autocrine regulator of adrenocortical steroidogenic functions. Its activity appears to be controlled by TSPs, the local production of which is regulated by systemic ACTH.

  8. Cerebellin in the rat adrenal gland: gene expression and effects of CER and [des-Ser1]CER on the secretion and growth of cultured adrenocortical cells.

    PubMed

    Rucinski, Marcin; Albertin, Giovanna; Spinazzi, Raffaella; Ziolkowska, Agnieszka; Nussdorfer, Gastone G; Malendowicz, Ludwick K

    2005-03-01

    Cerebellin (CER) is a regulatory peptide, originally isolated from rat cerebellum, which derives from the cleavage of precerebellin (Cbln), three types of which (Cbln1-3) have been identified in humans and rats. CER is also expressed in several extra-cerebellar tissues, including adrenal gland, and evidence has been provided that CER exerts a modulatory action on human and rat adrenal gland. Hence, we have investigated the expression of Cbln1-3 mRNAs and CER protein-immunoreactivity (IR) in the various zones of rat adrenal glands, and the effects of CER and its metabolite [des-Ser(1)]CER (des-CER) on the secretion and growth of cultured rat adrenocortical cells. Reverse transcription-polymerase chain reaction showed high and low expression of Cbln2 mRNA in zona glomerulosa (ZG) and zona fasciculata-reticularis, respectively. Cbln1 was not expressed, and Cbln3 mRNA was detected only in ZG. No Cbln expression was found in adrenal medulla. Immunocytochemistry demonstrated the presence of CER-IR exclusively in the adrenal cortex, the reaction being more intense in ZG. As expected, ACTH (10(-8) M) markedly enhanced corticosterone secretion and lowered proliferation rate of cultured adrenocortical cells. CER was ineffective, while des-CER exerted an ACTH-like effect, but only at the lowest concentration (10(-10) M). Taken together, these findings allow us to conclude that CER is expressed in rat adrenal cortex, and to suggest that CER conversion to des-CER by endopeptidases is needed for CER to exert its autocrine-paracrine regulatory functions.

  9. Interferon-β is a potent inhibitor of cell growth and cortisol production in vitro and sensitizes human adrenocortical carcinoma cells to mitotane.

    PubMed

    van Koetsveld, Peter M; Vitale, Giovanni; Feelders, Richard A; Waaijers, Marlijn; Sprij-Mooij, Diana M; de Krijger, Ronald R; Speel, Ernst-Jan M; Hofland, Johannes; Lamberts, Steven W J; de Herder, Wouter W; Hofland, Leo J

    2013-06-01

    Adrenocortical carcinoma (ACC) is an aggressive tumor with very poor prognosis. Novel medical treatment opportunities are required. We investigated the effects of interferon-β (IFN-β), alone or in combination with mitotane, on cell growth and cortisol secretion in primary cultures of 13 human ACCs, three adrenal hyperplasias, three adrenal adenomas, and in two ACC cell lines. Moreover, the interrelationship between the effects of IGF2 and IFN-β was evaluated. Mitotane inhibited cell total DNA content/well (representing cell number) in 7/11 (IC50: 38±9.2 μM) and cortisol secretion in 5/5 ACC cultures (IC50: 4.5±0.1 μM). IFN-β reduced cell number in 10/11 (IC50: 83±18 IU/ml) and cortisol secretion in 5/5 ACC cultures (IC50: 7.3±1.5 IU/ml). The effect of IFN-β on cell number included the induction of apoptosis. IFN-β strongly inhibited mRNA expression of STAR, CYP11A1, CYP17A1, and CYP11B1. Mitotane and IFN-β induced an additive inhibitory effect on cell number and cortisol secretion. IGF2 (10 nM) inhibited apoptosis and increased cell number and cortisol secretion. These effects were counteracted by IFN-β treatment. Finally, IFN-β inhibited IGF2 secretion and mRNA expression. In conclusion, IFN-β is a potent inhibitor of ACC cell growth in human primary ACC cultures, partially mediated by an inhibition of the effects of IGF2, as well as its production. The increased sensitivity of ACC cells to mitotane induced by treatment with IFN-β may open the opportunity for combined treatment regimens with lower mitotane doses. The inhibition of the expression of steroidogenic enzymes by IFN-β is a novel mechanism that may explain its inhibitory effect on cortisol production.

  10. Preproorexin and orexin receptors are expressed in cortisol-secreting adrenocortical adenomas, and orexins stimulate in vitro cortisol secretion and growth of tumor cells.

    PubMed

    Spinazzi, R; Rucinski, M; Neri, G; Malendowicz, L K; Nussdorfer, G G

    2005-06-01

    Orexins A and B are hypothalamic peptides that originate from the proteolytic cleavage of preproorexin and act through two subtypes of receptors, named OX1-R and OX2-R. OX1-R almost exclusively binds orexin-A, whereas OX2-R is nonselective for both orexins. We previously found that orexin-A, via the OX1-R, stimulates cortisol secretion from dispersed human adrenocortical cells. In this study, we demonstrate that six of eight cortisol-secreting adenomas expressed preproorexin mRNA, and seven of 10 adenomas contained measurable amounts of orexin-A but not orexin-B. Normal adrenal cortexes neither expressed preproorexin nor contained orexins. All adenomas expressed OX1-R and OX2-R mRNAs, and real-time PCR showed that the expression of both receptors was up-regulated in adenomas, compared with normal adrenal cortex. Orexin-A concentration-dependently raised basal cortisol secretion from freshly dispersed normal and adenomatous cells, minimal and maximal effective concentrations being 10(-10) and 10(-8) m, and the peptide efficacy (percent increase elicited by 10(-8) m orexin-A) was significantly higher in adenomas than in the normal adrenal cortex. Orexin-B was ineffective, thereby indicating that orexin secretagogue action is mediated by the OX1-R. In contrast, both orexins (10(-8) m) raised the proliferative activity of cultured normal and adenomatous cells, suggesting that this effect is mediated by OX2-R or both receptor subtypes. Collectively, our findings allow us to conclude that the orexin system is overexpressed in cortisol-secreting adenomas and suggest that orexin-A may act as an autocrine-paracrine regulator of the secretory activity and growth of some of these adrenal tumors.

  11. Transforming growth factor beta 1: an autocrine regulator of adrenocortical steroidogenesis.

    PubMed

    Feige, J J; Cochet, C; Savona, C; Shi, D L; Keramidas, M; Defaye, G; Chambaz, E M

    1991-01-01

    Transforming growth factor beta 1 (TGF beta 1) is a member of a large family of structurally related regulatory polypeptides which comprises both functionally similar (TGF beta 1, TGF beta 2, TGF beta 3, TGF beta 4 and TGF beta 5) and functionally distinct proteins. In the past few years, TGF beta 1 has emerged as a multifunctional protein. One of its remarkable properties is its capacity to negatively modulate the differentiated, steroidogenic adrenocortical functions. We present here a review of the results from our recent work related to the effects of TGF beta 1 on bovine adrenocortical cell (zona fasciculata-reticularis) functions. We identified the steroid 17 alpha-hydroxylase (P-450 17 alpha) biosynthetic enzyme and the angiotensin II receptor as major targets whose expression are negatively regulated by TGF beta 1 in these cells. We characterized TGF beta 1 receptors at the surface of adrenocortical cells (mainly type I and type III receptors) and observed that their number is increased under ACTH treatment. Furthermore, we could detect the presence of immunoreactive TGF beta 1 in the bovine adrenal cortex whereas it was undetectable in the adrenal medulla and in the capsule. We also observed that adrenocortical cells secrete TGF beta 1 under a latent form together with large amounts of alpha 2-macroglobulin, a protease inhibitor known to be implied in the latency of TGF beta in serum. Taken together, these observations led us to a working hypothesis, proposing TGF beta 1 as an autocrine and/or paracrine regulator of adrenocortical steroidogenic functions. This concept points out the physiological activation of the latent TGF beta 1 complex as the important limiting step controlling its action in the adrenal cortex.

  12. Acute self-suppression of corticosteroidogenesis in isolated adrenocortical cells.

    PubMed

    Carsia, R V; Malamed, S

    1979-10-01

    The relation between steroidogenesis induced by ACTH and that induced by exogenous concentrations of glucocorticoids was studied in isolated adrenocortical cells. Exogenous corticosterone and cortisol, in concentrations within the production capacity of the adrenal gland, suppressed steroidogenesis induced by ACTH in rat and beef cells, respectively. The precursors pregnenolone and progesterone enhanced steroidogenesis in both rat and beef cells. Aldosterone in rat cells and 17 beta-estradiol in rat and beef cells had little if any effect on steroidogenesis. Either suppression or stimulation by exogenous steroids was acute, that is, after 2-h incubation for rat cells and 1-h incubation for beef cells. A direct suppressive action of end product glucocorticoids is indicated. This observed self-suppression of adrenocortical cells suggests the existence of a mechanism for the find adjustment of steroidogenesis that operates in addition to the classical control exerted by the anterior pituitary.

  13. Glucocorticoid control of steroidogenesis in isolated rat adrenocortical cells.

    PubMed

    Carsia, R V; Malamed, S

    1983-08-17

    The role of end-product glucocorticoids in the regulation of corticosteroidogenesis in isolated adrenocortical cells was investigated. Trypsin-isolated cells from male rat adrenal glands were incubated with or without corticotropin (ACTH) and with or without corticosterone. Endogenous corticosterone production was determined by radioimmunoassay at the end of incubation. Cessation of ACTH-induced corticosterone production was apparent after 2-4 h of incubation. The suppression occurred later with lower cell concentrations. Corticosterone production was partially restored after washing the suppressed cells. Supernatant fluid from suppressed cell suspensions also suppressed steroidogenesis of a fresh population of cells. However, the suppressing property of the supernatant fluid was abolished after the removal of corticosterone by charcoal-dextran treatment, suggesting that corticosterone or other steroids caused the suppression. Exogenous corticosterone induced suppression over a wide range of ACTH concentrations, but did not change the half-maximal steroidogenic concentration of ACTH, indicating that the suppression does not change the sensitivity of the cells to ACTH. Suppression occurred within 30-60 min after corticosterone had been added to the incubation medium either at the start of incubation or while steroidogenesis was in progress. Suppression varied directly with the concentration of exogenous corticosterone. These data indicate that glucocorticoids can directly and acutely suppress corticosteroidogenesis and thus control adrenocortical function in concert with other regulators such as ACTH and Ca2+.

  14. Global gene expression response to telomerase in bovine adrenocortical cells

    SciTech Connect

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H. . E-mail: bettsd@uoguelph.ca

    2005-09-30

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state.

  15. Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells

    SciTech Connect

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Masuelli, Laura; Marchese, Rodolfo; Misiti, Silvia; De Venanzi, Agostino; Poggi, Maurizio; Toscano, Vincenzo; Stigliano, Antonio

    2011-06-10

    Thiazolidinediones, specific peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-{gamma}-inhibitor, showed that rosiglitazone acts through both PPAR-{gamma}-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-{gamma}. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPK{alpha} and beclin-1. The autophagy seems to be independent of PPAR-{gamma} activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.

  16. Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: Relationship with cell proliferation

    SciTech Connect

    Mantovani, G.; Lania, A.G.; Bondioni, S.; Peverelli, E.; Pedroni, C.; Ferrero, S.; Pellegrini, C.; Vicentini, L.; Arnaldi, G.; Bosari, S.; Beck-Peccoz, P.; Spada, A.

    2008-01-01

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n = 16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n = 5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.

  17. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  18. PEROXISOMES IN INNER ADRENOCORTICAL CELLS OF FETAL AND ADULT GUINEA PIGS

    PubMed Central

    Black, Virginia H.; Bogart, Bruce I.

    1973-01-01

    Abundant membrane-bounded granules, 0.1–0.45 µm in diameter, occur among the elements of the smooth-surfaced endoplasmic reticulum in zona fasciculata and zona reticularis adrenocortical cells of guinea pigs. Acid phosphatase cannot be cytochemically demonstrated in them, and they are therefore distinct from lysosomes. Incubation in medium containing 3,3'-diaminobenzidine results in dense staining of the granules, identifying them as peroxisomes. These small peroxisomes increase in number as fetal adrenocortical cells differentiate, and they appear to arise from dilated regions of endoplasmic reticulum. They maintain interconnections with the smooth endoplasmic reticulum and with one another. PMID:4633170

  19. Loss of sensitivity to ACTH of adrenocortical cells isolated from maturing domestic fowl.

    PubMed

    Carsia, R V; Scanes, C G; Malamed, S

    1985-07-01

    Maturation of domestic fowl corticosteroidogenesis was evaluated using purified adrenocortical cells. Basal corticosterone production decreased steadily from 2 days to 26 weeks after hatching. However, maximally stimulated corticosterone production was not changed. In contrast, the half-maximal steroidogenic concentrations (ED50 values or effective doses for 50% maximal effect) of ACTH analogs increased approximately 40 times by 26 weeks, but the ED50 values of 8-bromo-cyclic AMP and pregnenolone were not changed. This suggests that adrenocortical cell sensitivity to ACTH decreases with maturation of the domestic fowl.

  20. Properties of calcium and potassium currents of clonal adrenocortical cells

    PubMed Central

    1989-01-01

    The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately - 50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half- time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time- dependent transformation characterized by a large increase in amplitude and in activation kinetics. PMID:2539432

  1. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  2. Adrenocortical endocrine disruption.

    PubMed

    Harvey, Philip W

    2016-01-01

    in vivo ACTH challenge test to prove adrenocortical competency, and the H295R cell line to examine molecular mechanisms of steroidogenic pathway toxicity, are discussed. Finally, because of the central role of the adrenal in the physiologically adaptive stress response, the distinguishing features of stress, compared with adrenocortical toxicity, are discussed with reference to the evidence required to claim that adrenal hypertrophy results from stress rather than adrenocortical enzyme inhibition which is a serious adverse toxicological finding. This article is part of a special issue entitled 'Endocrine disruptors and steroids'.

  3. Aging of the rat adrenocortical cell: response to ACTH and cyclic AMP in vitro.

    PubMed

    Malamed, S; Carsia, R V

    1983-03-01

    To study intrinsic age-related changes in adrenocortical steroid production, cells isolated from rats of different ages (3 to 24 months) were used. Acute (2 hour) corticosterone production in response to stimulation by adrenocorticotrophic hormone (ACTH) and adenosine 3':5'-cyclic monophosphate (cAMP) was measured by radioimmunoassay. With age, adrenocortical cells lose much of their ability to produce corticosterone in the absence or presence of ACTH or cAMP. The loss is progressive from 6 to 24 months of age. Analysis of the data suggests that from 6 to 12 months, an intracellular steroidogenic lesion develops; in addition there may be a loss in ACTH receptors on the plasma membrane. After 12 months these defects increase and are accompanied by a decrease in receptor sensitivity to ACTH.

  4. Isolated adrenocortical cells of the domestic fowl (Gallus domesticus): steroidogenic and ultrastructural properties.

    PubMed

    Carsia, R V; Scanes, C G; Malamed, S

    1985-02-01

    Isolated adrenocortical cells from White Leghorn chickens (Gallus domesticus) were compared to those from rats (Rattus norvegicus). Cells were prepared from collagenase-dispersed adrenal glands of sexually mature male animals. Corticosterone was measured by radioimmunoassay after incubation for 2 h with steroidogenic agents. Of the four ACTH analogues used, three were 6-17 times more potent with rat cells than with fowl cells (potencies were indicated by half-maximal steroidogenic concentrations). However, 9-tryptophan (O-nitrophenylsulfenyl) ACTH was 8 times more potent with fowl cells than with rat cells, thus suggesting that ACTH receptor differences exist between the two cell types. In addition, cAMP analogues were 10 times more potent with rat cells than with fowl cells suggesting that fowl corticosteroidogenesis is less dependent on cAMP than is rat corticosteroidogenesis. At equal cell concentrations, rat cells secreted 20-40 times more corticosterone than did chicken cells when they were maximally stimulated. Although rat cells converted 8 times more pregnenolone to corticosterone than did fowl cells, the half-maximal steroidogenic concentration for pregnenolone-supported corticosterone synthesis was the same for both cell types (about 5 microM). This suggests that fowl cells have lower steroidogenic enzyme content rather than lower steroidogenic enzyme activity. An unusual feature seen in the isolated fowl adrenocortical cells was an abundance of intracellular filaments.

  5. Combined steroidogenic characters of fetal adrenal and Leydig cells in childhood adrenocortical carcinoma.

    PubMed

    Fujisawa, Yasuko; Sakaguchi, Kimiyoshi; Ono, Hiroyuki; Yamaguchi, Rie; Kato, Fumiko; Kagami, Masayo; Fukami, Maki; Ogata, Tsutomu

    2016-05-01

    Although childhood adrenocortical carcinomas (c-ACCs) with a TP53 mutation are known to produce androgens, detailed steroidogenic characters have not been clarified. Here, we examined steroid metabolite profiles and expression patterns of steroidogenic genes in a c-ACC removed from the left adrenal position of a 2-year-old Brazilian boy with precocious puberty, using an atrophic left adrenal gland removed at the time of tumorectomy as a control. The c-ACC produced not only abundant dehydroepiandrosterone-sulfate but also a large amount of testosterone via the Δ5 pathway with Δ5-androstenediol rather than Δ4-androstenedione as the primary intermediate metabolite. Furthermore, the c-ACC was associated with elevated expressions of CYP11A1, CYP17A1, POR, HSD17B3, and SULT2A1, a low but similar expression of CYB5A, and reduced expressions of AKR1C3 (HSD17B5) and HSD3B2. Notably, a Leydig cell marker INSL3 was expressed at a low but detectable level in the c-ACC. Furthermore, molecular studies revealed a maternally inherited heterozygous germline TP53 mutation, and several post-zygotic genetic aberrations in the c-ACC including loss of paternally derived chromosome 17 with a wildtype TP53 and loss of maternally inherited chromosome 11 and resultant marked hyperexpression of paternally expressed growth promoting gene IGF2 and drastic hypoexpression of maternally expressed growth suppressing gene CDKN1C. These results imply the presence of combined steroidogenic properties of fetal adrenal and Leydig cells in this patient's c-ACC with a germline TP53 mutation and several postzygotic carcinogenic events.

  6. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer

    PubMed Central

    Grolmusz, Vince Kornél; Karászi, Katalin; Micsik, Tamás; Tóth, Eszter Angéla; Mészáros, Katalin; Karvaly, Gellért; Barna, Gábor; Szabó, Péter Márton; Baghy, Kornélia; Matkó, János; Kovalszky, Ilona; Tóth, Miklós; Rácz, Károly; Igaz, Péter; Patócs, Attila

    2016-01-01

    Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC. Comparative reanalysis of publicly available microarray datasets included three earlier studies comparing transcriptional differences between ACC and benign adrenocortical adenoma (ACA) and one study presenting the cell cycle dependent gene expressional program of human ACC cell line NCI-H295R. Immunohistochemical analysis was performed on ACC samples. In vitro effects of antineoplastic drugs including gemcitabine, mitotane and 9-cis-retinoic acid alone and in combination were tested in the NCI-H295R adrenocortical cell line. Upon the comparative reanalysis, ribonucleotide reductase subunit 2 (RRM2), responsible for the ribonucleotide dezoxyribonucleotide conversion during the S phase of the cell cycle has been validated as cell cycle dependently expressed. Moreover, its expression was associated with the malignancy signature, as well. Immunohistochemical analysis of RRM2 revealed a strong correlation with Ki67 index in ACC. Among the antiproliferative effects of the investigated compounds, gemcitabine showed a strong inhibition of proliferation and an increase of apoptotic events. Additionally, RRM2 has been upregulated upon gemcitabine treatment. Upon our results, RRM2 might be used as a proliferation marker in ACC. RRM2 upregulation upon gemcitabine treatment might contribute to an emerging chemoresistance against gemcitabine, which is in line with its limited therapeutical efficacy in ACC, and which should be overcome for successful clinical applications. PMID:27725909

  7. Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells.

    PubMed

    Hescot, Ségolène; Slama, Abdelhamid; Lombès, Anne; Paci, Angelo; Remy, Hervé; Leboulleux, Sophie; Chadarevian, Rita; Trabado, Séverine; Amazit, Larbi; Young, Jacques; Baudin, Eric; Lombès, Marc

    2013-06-01

    Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane is the most effective medical therapy for adrenocortical carcinoma, but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mt dysfunction has never been established. We examined the functional consequences of mitotane exposure on proliferation, steroidogenesis, and mt respiratory chain, biogenesis and morphology, in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line. Mitotane inhibited cell proliferation in a dose- and a time-dependent manner. At the concentration of 50 μM (14 mg/l), which corresponds to the threshold for therapeutic efficacy, mitotane drastically reduced cortisol and 17-hydroxyprogesterone secretions by 70%. This was accompanied by significant decreases in the expression of genes encoding mt proteins involved in steroidogenesis (STAR, CYP11B1, and CYP11B2). In both H295R and SW13 cells, 50 μM mitotane significantly inhibited (50%) the maximum velocity of the activity of the respiratory chain complex IV (cytochrome c oxidase (COX)). This effect was associated with a drastic reduction in steady-state levels of the whole COX complex as revealed by blue native PAGE and reduced mRNA expression of both mtDNA-encoded COX2 (MT-CO2) and nuclear DNA-encoded COX4 (COX4I1) subunits. In contrast, the activity and expression of respiratory chain complexes II and III were unaffected by mitotane treatment. Lastly, mitotane exposure enhanced mt biogenesis (increase in mtDNA content and PGC1α (PPARGC1A) expression) and triggered fragmentation of the mt network. Altogether, our results provide first evidence that mitotane induced a mt respiratory chain defect in human adrenocortical cells.

  8. Steroid control of steroidogenesis in isolated adrenocortical cells: molecular and species specificity.

    PubMed

    Carsia, R V; Macdonald, G J; Malamed, S

    1983-06-01

    The molecular and species specificity of glucocorticoid suppression of corticosteroidogenesis was investigated in isolated adrenocortical cells. Trypsin-isolated cells from male rat, domestic fowl and bovine adrenal glands were incubated with or without steroidogenic agents and with or without steroids. Glucocorticoids were measured by radioimmunoassay or fluorometric assay after 1-2 h incubation. Glucocorticoids suppressed ACTH-induced steroidogenesis of isolated rat cells with the following relative potencies: corticosterone greater than cortisol = cortisone greater than dexamethasone. The mineralocorticoid, aldosterone did not affect steroidogenesis. Suppression by glucocorticoids was acute (within 1-2 h), and varied directly with the glucocorticoid concentration. Testosterone also suppressed ACTH-induced steroidogenesis. Glucocorticoid-type steroids have equivalent suppressive potencies, thus suggesting that these steroids may induce suppression at least partly by a common mechanism. Although corticosterone caused the greatest suppression, testosterone was more potent. The steroid specificity of suppression of cyclic AMP (cAMP)-induced and ACTH-induced steroidogenesis were similar, suggesting that suppression is not solely the result of interference with ACTH receptor function or the induction of adenylate cyclase activity. Exogenous glucocorticoids also suppressed ACTH-induced steroidogenesis of cells isolated from domestic fowl and beef adrenal glands, thus suggesting that this observed suppression may be a general mechanism of adrenocortical cell autoregulation.

  9. Acute effects of ACTH on dissociated adrenocortical cells: quantitative changes in mitochondria and lipid droplets.

    PubMed

    Zoller, L C; Malamed, S

    1975-08-01

    To study the role of certain organelles in steroidogenesis, dissociated rat adrenocortical cells were incubated for two hours with ACTH at a concentration that induces a high level of steroid production. Sections of ACTH treated and untreated cells were photographed in the electron microscope, and morphometric analysis was undertaken to assess possible ACTH-induced changes in total cell volume, volume density and numerical denisty of lipid droplets and mitochondria. There was no change in total cell volume. Lipid droplet volume density and numerical density decreased. Mitochondrial volume density did not change, but numerical density increased. The decrease in lipid droplet volume density indicates a rapid depletion of cholesterol for steroid production. This depletion is almost entirely due to the disappearance of lipid droplets, rather than to an overall diminution in their size, as shown by the decrease in lipid droplet numerical density. The mitochondrial data suggest that the adrenocortical cell has an adedquate mitochondrial apparatus to respond to acute ACTH stimulation with increased steroid output without an increase inmitochondrial volume.

  10. Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells.

    PubMed

    Gagliano, Teresa; Gentilin, Erica; Benfini, Katiuscia; Di Pasquale, Carmelina; Tassinari, Martina; Falletta, Simona; Feo, Carlo; Tagliati, Federico; Uberti, Ettore Degli; Zatelli, Maria Chiara

    2014-12-01

    Mitotane is currently employed as adjuvant therapy as well as in the medical treatment of adrenocortical carcinoma (ACC), alone or in combination with chemotherapeutic agents. It was previously demonstrated that mitotane potentiates chemotherapeutic drugs cytotoxicity in cancer cells displaying chemoresistance due to P-glycoprotein (P-gp), an efflux pump involved in cancer multidrug resistance. The majority of ACC expresses high levels of P-gp and is highly chemoresistent. The aim of our study was to explore in vitro whether mitotane, at concentrations lower than those currently reached in vivo, may sensitize ACC cells to the cytotoxic effects of doxorubicin and whether this effect is due to a direct action on P-gp. NCI-H295 and SW13 cell lines as well as 4 adrenocortical neoplasia primary cultures were treated with mitotane and doxorubicin, and cell viability was measured by MTT assay. P-gp activity was measured by calcein and P-gp-Glo assays. P-gp expression was evaluated by Western blot. We found that very low mitotane concentrations sensitize ACC cells to the cytotoxic effects of doxorubicin, depending on P-gp expression. In addition, mitotane directly inhibits P-gp detoxifying function, allowing doxorubicin cytotoxic activity. These data provide the basis for the greater efficacy of combination therapy (mitotane plus chemotherapeutic drugs) on ACC patients. Shedding light on mitotane mechanisms of action could result in an improved design of drug therapy for patients with ACC.

  11. Morphofunctional effects of mitotane on mitochondria in human adrenocortical cancer cells.

    PubMed

    Poli, Giada; Guasti, Daniele; Rapizzi, Elena; Fucci, Rossella; Canu, Letizia; Bandini, Alessandra; Cini, Nicoletta; Bani, Daniele; Mannelli, Massimo; Luconi, Michaela

    2013-08-01

    At present, mitotane (MTT) represents the first-line pharmacological approach for the treatment of advanced adrenocortical carcinoma (ACC). Despite clear evidence that the drug can reduce the clinical signs of steroid excess in secreting ACC, the mechanism mediating the possible toxic effect of MTT on tumor cells still remains obscure. This study investigated the intracellular events underlying the toxic effect of MTT by studying qualitative and quantitative alterations in mitochondrial morphology and functions in human adrenocortical cancer cell lines, H295R and SW13. Increasing concentrations of MTT resulted in rapid intracellular accumulation and conversion of the drug. Cytostatic and cytotoxic effects were evident at doses corresponding to the therapeutic window (30-50 μM) through an apoptotic mechanism involving caspase 3/7. Electron microscopic analysis of cell mitochondria displayed MTT-induced dose- and time-dependent alterations in the morphology of the organelle. These alterations were characterized by a marked swelling and a decrease in the number of respiratory cristae, accompanied by a significant depolarization of the mitochondrial membrane potential, finally leading to the disruption of the organelle. A drastic reduction of oxygen consumption was observed due to mitochondrial membrane damage, which was accompanied by a decrease in the levels of VDAC1 integral membrane channel. These findings contribute to better understand the intracellular mechanism of action of MTT in ACC cells, showing that its cytotoxic effect seems to be mainly mediated by an apoptotic process activated by the disruption of mitochondria.

  12. Adrenocortical carcinoma

    MedlinePlus

    ... Adrenocortical carcinoma (ACC) is a cancer of the adrenal glands . The adrenal glands are two triangle-shaped glands. One gland is ... unknown. Symptoms Symptoms of increased cortisol or other adrenal gland hormones may include: Fatty, rounded hump high on ...

  13. Mitotane sensitizes adrenocortical cancer cells to ionizing radiations by involvement of the cyclin B1/CDK complex in G2 arrest and mismatch repair enzymes modulation.

    PubMed

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Misiti, Silvia; Raza, Giorgio; De Paula, Ugo; Marchese, Rodolfo; Brunetti, Ercole; Toscano, Vincenzo; Stigliano, Antonio

    2010-08-01

    Mitotane inhibits steroid synthesis by an action on steroidogenic enzymes, as 11beta-hydroxylase and cholesterol side chain cleavage. It also has a cytotoxic effect on the adrenocortical cells and represents a primary drug used in the adrenocortical carcinoma (ACC). H295R and SW13 cell lines were treated with mitotane 10(-5) M and ionizing radiations (IR) in combination therapy, inducing an irreversible inhibition of cell growth in both adrenocortical cancer cells. As shown in a previous report, mitotane/IR combination treatment induced a cell accumulation in the G2 phase. Here, we report the radiosensitizing properties of mitotane in two different ACC cell lines. The drug reveals the effectiveness to enhance the cytotoxic effects of IR by attenuating DNA repair and interfering on the activation of mitosis promoting factor (MPF), mainly regulated by the degradation of cyclin B1 in the mitotic process. These events may explain the inappropriate activation of cdc2, implicated in G2/M phase arrest and probably induced by the mitotane and IR in the combined treatment. Indeed, treatment with purvalanol, a cdc2-inhibitor prevents cell cycle arrest, triggering the G2/M transition. The observation that mitotane and IR in combination treatment amplifies the activation level of cyclin B/cdc2 complexes contributing to cell cycle arrest, suggests that the MPF could function as a master signal for controlling the temporal order of different mitotic events. Moreover, we report that mitotane interferes in modulation of mismatch repair (MMR) enzymes, revealing radiosensitizing drug ability.

  14. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  15. Adrenocortical hemorrhagic necrosis: the role of catecholamines and retrograde medullary-cell embolism

    SciTech Connect

    Szabo, S.; McComb, D.J.; Kovacs, K.; Huettner, I.

    1981-10-01

    We investigated the pathogenesis of adrenal necrosis using animal models of the disease (induced by administration of acrylonitrile, cysteamine, or pyrazole) and human cases. Results of electron-microscopic and histochemical time-response studies with rat models revealed an early, retrograde embolization of medullary cells and cell fragments in the cortical capillaries that showed prominent endothelial injury. The experimental adrenal lesions were prevented by surgical removal of the medulla one month before administration of adrenocorticolytic chemicals, or by the administration of the alpha-adrenergic antagonist phenoxybenzamine hydrochloride. Histochemical staining for medullary (argyrophil) granules in human cases of adrenal necrosis demonstrated tissue fragments that stained positively for silver in vascular cortical spaces in nine of ten autopsy specimens and in all four surgical cases we reviewed. Thus, catecholamines released from the adrenal medulla and from the retrograde medullary emboli in the cortex may have a role in the pathogenesis of adrenocortical necrosis.

  16. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells.

    PubMed

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B

    2014-08-25

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24 h significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention.

  17. Two different P2Y receptors linked to steroidogenesis in bovine adrenocortical cells.

    PubMed

    Nishi, H

    1999-10-01

    Both extracellular adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) induced corticoid production (steroidogenesis) concentration-dependently in bovine adrenocortical cells (BA cells). Pertussis toxin (PTX, approx. 2 microg/ml) partially inhibited (approx. 55% inhibition) extracellular ATP (100 microM)-induced steroidogenesis in BA cells. However, PTX did not inhibit extracellular UTP (100 microM)-induced steroidogenesis. Both ATP- and UTP-induced steroidogeneses were significantly inhibited by suramin (50-200 microM). These effects were inhibited significantly by reactive blue-2 (more than 100 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (more than 100 microM). Both nucleotides (1-100 microM) induced inositol phosphates accumulation and intracellular Ca2+ mobilization, but PTX did not inhibit them. The RT-PCR procedure identified only P2Y2-receptor mRNA in BA cells. These results suggest that extracellular ATP induces steroidogenesis via a unique P2 receptor linked to PTX-sensitive guanine nucleotide-binding protein (G-protein), while extracellular UTP induces steroidogenesis via P2 receptor linked to PTX-insensitive G-protein. Thus, it was concluded that at least two different P2Y-like receptors linking to steroidogenesis exist in BA cells.

  18. Mouse models of adrenocortical tumors

    PubMed Central

    Basham, Kaitlin J.; Hung, Holly A.; Lerario, Antonio M.; Hammer, Gary D.

    2016-01-01

    The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed. PMID:26678830

  19. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  20. Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane.

    PubMed

    Stigliano, A; Cerquetti, L; Borro, M; Gentile, G; Bucci, B; Misiti, S; Piergrossi, P; Brunetti, E; Simmaco, M; Toscano, V

    2008-03-01

    Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chloro-phenyl) ethane (o,p'-DDD), is a compound that represents the effective agent in the treatment of the adrenocortical carcinoma (ACC), able to block cortisol synthesis. In this type of cancer, the biological mechanism induced by this treatment remains still unknown. In this study, we have already shown a greater impairment in the first steps of the steroidogenesis and recognized a little effect on cell cycle. We also evaluated the variation of proteomic profile of the H295R ACC cell line, either in total cell extract or in mitochondria-enriched fraction after treatment with mitotane. In total cell extracts, triose phosphate isomerase, alpha-enolase, D-3-phosphoglycerate dehydrogenase, peroxiredoxin II and VI, heat shock protein 27, prohibitin, histidine triad nucleotide-binding protein, and profilin-1 showed a different expression. In the mitochondrial fraction, the following proteins appeared to be down regulated: aldolase A, peroxiredoxin I, heterogenous nuclear ribonucleoprotein A2/B1, tubulin-beta isoform II, heat shock cognate 71 kDa protein, and nucleotide diphosphate kinase, whereas adrenodoxin reductase, cathepsin D, and heat shock 70 kDa protein 1A were positively up-regulated. This study represents the first proteomic study on the mitotane effects on ACC. It permits to identify some protein classes affected by the drug involved in energetic metabolism, stress response, cytoskeleton structure, and tumorigenesis.

  1. Upregulation of TLR2 and TLR4 in the human adrenocortical cells differentially modulates adrenal steroidogenesis.

    PubMed

    Kanczkowski, Waldemar; Tymoszuk, Piotr; Chavakis, Triantafyllos; Janitzky, Volker; Weirich, Torsten; Zacharowski, Kai; Ehrhart-Bornstein, Monika; Bornstein, Stefan R

    2011-04-10

    Rapid activation of adrenal steroid release plays a pivotal role in an organism's first line of defense during sepsis. Adrenal gland function is often suppressed in critically ill patients and negatively impacts the overall survival rate. Increasingly, experimental and clinical evidence suggests that Toll-like receptors (TLRs), components of the innate immune system, play a key role in the mediation of systemic responses to invading pathogens during sepsis. In the present study, we aimed to elucidate the effect of TLR2, TLR4 and CD14 upregulation on adrenocortical cell steroidogenesis. We found that TLR4 and CD14 but not TLR2 overexpression in NCI-H295R cells inhibited basal and acute cortisol and aldosterone production. This effect could be partially explained by reduced expression of enzymes involved in the synthesis of latter steroids--CYP11B1 and CYP11B2. Together, these data suggest that TLR upregulation in the steroid producing cells may be involved in the adrenal gland dysfunction during sepsis.

  2. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    PubMed

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  3. Role of ALADIN in Human Adrenocortical Cells for Oxidative Stress Response and Steroidogenesis

    PubMed Central

    Jühlen, Ramona; Idkowiak, Jan; Taylor, Angela E.; Kind, Barbara; Arlt, Wiebke; Huebner, Angela; Koehler, Katrin

    2015-01-01

    Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome. PMID:25867024

  4. Adrenocortical Carcinoma

    PubMed Central

    Kim, Alex C.; Sabolch, Aaron; Raymond, Victoria M.; Kandathil, Asha; Caoili, Elaine M.; Jolly, Shruti; Miller, Barbra S.; Giordano, Thomas J.

    2014-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, often with an unfavorable prognosis. Here we summarize the knowledge about diagnosis, epidemiology, pathophysiology, and therapy of ACC. Over recent years, multidisciplinary clinics have formed and the first international treatment trials have been conducted. This review focuses on evidence gained from recent basic science and clinical research and provides perspectives from the experience of a large multidisciplinary clinic dedicated to the care of patients with ACC. PMID:24423978

  5. Human Adrenocortical Remodeling Leading to Aldosterone-Producing Cell Cluster Generation

    PubMed Central

    Hayashi, Yuichiro; Al-Eyd, Ghaith; Nakagawa, Ken; Morita, Shinya; Kosaka, Takeo; Oya, Mototsugu; Mitani, Fumiko; Suematsu, Makoto; Kabe, Yasuaki

    2016-01-01

    Background. The immunohistochemical detection of aldosterone synthase (CYP11B2) and steroid 11β-hydroxylase (CYP11B1) has enabled the identification of aldosterone-producing cell clusters (APCCs) in the subcapsular portion of the human adult adrenal cortex. We hypothesized that adrenals have layered zonation in early postnatal stages and are remodeled to possess APCCs over time. Purposes. To investigate changes in human adrenocortical zonation with age. Methods. We retrospectively analyzed adrenal tissues prepared from 33 autopsied patients aged between 0 and 50 years. They were immunostained for CYP11B2 and CYP11B1. The percentage of APCC areas over the whole adrenal area (AA/WAA, %) and the number of APCCs (NOA, APCCs/mm2) were calculated by four examiners. Average values were used in statistical analyses. Results. Adrenals under 11 years old had layered zona glomerulosa (ZG) and zona fasciculata (ZF) without apparent APCCs. Some adrenals had an unstained (CYP11B2/CYP11B1-negative) layer between ZG and ZF, resembling the rat undifferentiated cell zone. Average AA/WAA and NOA correlated with age, suggesting that APCC development is associated with aging. Possible APCC-to-APA transitional lesions were incidentally identified in two adult adrenals. Conclusions. The adrenal cortex with layered zonation remodels to possess APCCs over time. APCC generation may be associated with hypertension in adults. PMID:27721827

  6. Contributions of Steroidogenic Factor 1 to the Transcription Landscape of Y1 Mouse Adrenocortical Tumor Cells

    PubMed Central

    Schimmer, Bernard P.; Tsao, Jennivine; Cordova, Martha; Mostafavi, Sara; Morris, Quaid; Scheys, Joshua O.

    2011-01-01

    Summary The contribution of steroidogenic factor 1 (SF–1) to the gene expression profile of Y1 mouse adrenocortical cells was evaluated using short hairpin RNAs to knockdown SF–1. The reduced level of SF–1 RNA was associated with global changes that affected the accumulation of more than 2,000 transcripts. Among the down-regulated transcripts were several with functions in steroidogenesis that were affected to different degrees—i.e., Mc2r >Scarb1 > Star ≥ Hsd3b1 > Cyp11b1. For Star and Cyp11b1, the different levels of expression correlated with the amount of residual SF-1 bound to the proximal promoter regions. The knockdown of SF–1 did not affect the accumulation of Cyp11a1 transcripts even though the amount of SF–1 bound to the proximal promoter of the gene was reduced to background levels. Our results indicate that transcripts with functions in steroidogenesis vary in their dependence on SF–1 for constitutive expression. On a more global scale, SF–1 knockdown affects the accumulation of a large number of transcripts, most of which are not recognizably involved in steroid hormone biosynthesis. PMID:21111771

  7. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  8. The effect of mitotane on viability, steroidogenesis and gene expression in NCI‑H295R adrenocortical cells.

    PubMed

    Lehmann, Tomasz P; Wrzesiński, Tomasz; Jagodziński, Paweł P

    2013-03-01

    Mitotane, also known as o,p'‑DDD or (RS)‑1‑chl-oro‑2‑[2,2‑dichloro‑1‑(4‑chlorophenyl)‑ethyl]‑benzene, is an adrenal cortex-specific cytotoxic drug used in the therapy of adrenocortical carcinoma (ACC). The drug also inhibits steroidogenesis, however, the mechanisms of its anticancer and antisteroidogenic effects remain unknown. At present, data on the impact of mitotane on cell viability and the regulation of genes encoding proteins associated with steroids synthesis in the adrenal cortex, including cortisol and dehydroepiandrosterone sulfate (DHEAS), are limited and contradictory. In the present study, the effect of 24‑h mitotane treatment on viability of the ACC cell line, NCI‑H295R, was analyzed, identifying a decrease in cell viability and an increase in caspase‑3 and ‑7 activities. Mitotane treatment also led to decreased cortisol and DHEAS concentration in the culture media. Concomitantly, mitotane resulted in decreased mRNA levels of two cytochromes P450 (CYP11A1 and CYP17A1), mRNAs encoding proteins involved in the synthesis of cortisol and DHEAS. Mitotane did not affect mRNA levels of cyclin dependent kinase inhibitor 1A (encoding p21) and MYC (encoding cMyc). cMyc and p21 are key transcription factors associated with cell cycle regulation. However, mitotane inhibited expression of transforming growth factor β1 gene, encoding a potent inhibitor of cell proliferation and steroidogenesis. PRKAR1A, a protein kinase A regulatory subunit, is involved in the activation of steroidogenesis. PRKAR1A mRNA levels were reduced following 24‑h treatment with mitotane. Results indicate that mitotane markedly inhibited expression of genes involved in steroidogenesis, secretion of cortisol and DHEAS. Reduced expression of TGFB1 cannot account fully for the effect of mitotane on CYP11A1 and CYP17A1. We hypothesized that reduced viability of NCI‑H295R cells in the presence of mitotane may be a result of apoptosis triggered by increased

  9. A polymorphic form of steroidogenic factor-1 is associated with adrenocorticotropin resistance in y1 mouse adrenocortical tumor cell mutants.

    PubMed

    Frigeri, Claudia; Tsao, Jennivine; Cordova, Martha; Schimmer, Bernard P

    2002-10-01

    ACTH resistance in mutant derivatives of the Y1 mouse adrenocortical tumor cell line results from a defect that affects the activity of steroidogenic factor-1 (SF1), thereby preventing the expression of the melanocortin-2 receptor. In this report, we show that the SF1 genes in ACTH-resistant mutants differ from the gene in ACTH-responsive Y1 cells by two base changes-one that changes an Ala to Ser at codon 172, and one in the third position of codon 3 that does not affect the protein sequence. Furthermore, several of the mutants contain multiple copies of this alternate SF1 gene (SF1(S172)) on acentric chromosome fragments. The SF1(S172) allele represents a polymorphism rather than a spontaneous mutation because the two SF1 alleles can be traced to the hybrid mouse strain (C57L/J x A/HeJ) from which the original adrenal tumor was derived. The SF1(A172) allele also is found in C57Bl/6J and C57Bl/10J mice, whereas the SF1(S172) allele also is found in C3H/HeJ and DBA/2J mice. The two forms of SF1 had only modest differences in activity suggesting that the SF1 polymorphism per se is not directly responsible for ACTH resistance. Our results indicate that the SF1(S172) allele is a marker of ACTH resistance in this family of adrenocortical tumor cells.

  10. Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y-1 cell line: adiponectin regulates steroidogenesis.

    PubMed

    Li, Ping; Sun, Fei; Cao, Huang-Ming; Ma, Qin-Yun; Pan, Chun-Ming; Ma, Jun-Hua; Zhang, Xiao-Na; Jiang, He; Song, Huai-Dong; Chen, Ming-Dao

    2009-12-25

    Obesity is frequently associated with malfunctions of the hypothalamus-pituitary-adrenal (HPA) axis and hyperaldosteronism, but the mechanism underlying this association remains unclear. Since the adrenal glands are embedded in adipose tissue, direct cross-talk between adipose tissue and the adrenal gland has been proposed. A previous study found that adiponectin receptor mRNA was expressed in human adrenal glands and aldosterone-producing adenoma (APA). However, the expression of adiponectin receptors in adrenal glands has not been confirmed at the protein level or in other species. Furthermore, it is unclear whether adiponectin receptors expressed in adrenal cells are functional. We found, for the first time, that adiponectin receptor (AdipoR1 and AdipoR2) mRNA and protein were expressed in mouse adrenal and adrenocortical Y-1 cells. However, adiponectin itself was not expressed in mouse adrenal or Y-1 cells. Furthermore, adiponectin acutely reduced basal levels of corticosterone and aldosterone secretion. ACTH-induced steroid secretion was also inhibited by adiponectin, and this was accompanied by a parallel change in the expression of the key genes involved in steroidogenesis. These findings indicate that adiponectin may take part in the modulation of steroidogenesis. Thus, adiponectin is likely to have physiological and/or pathophysiological significance as an endocrine regulator of adrenocortical function.

  11. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease.

    PubMed

    Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E

    2014-06-01

    Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD.

  12. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  13. GATA4 Is a Critical Regulator of Gonadectomy-Induced Adrenocortical Tumorigenesis in Mice

    PubMed Central

    Krachulec, Justyna; Vetter, Melanie; Schrade, Anja; Löbs, Ann-Kathrin; Bielinska, Malgorzata; Cochran, Rebecca; Kyrönlahti, Antti; Pihlajoki, Marjut; Parviainen, Helka; Jay, Patrick Y.; Heikinheimo, Markku

    2012-01-01

    In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4+/− B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2-cre-mediated deletion of floxed Gata4 (Gata4F) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4F dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation. PMID:22461617

  14. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors

    SciTech Connect

    Gicquel, C.; Schneid, H.; Le Bouc, Y.; Bertagna, X.; Francillard-Leblond, M.; Luton, J.P.; Girard, F.

    1994-06-01

    Little is known about the pathophysiology of sporadic adrenocortical tumors in adults. Because loss of heterozygosity at the 11p15 locus has been described in childhood tumors, particularly in adrenocortical tumors associated with the Beckwith-Wiedemann syndrome, and because insulin-like growth factor-II (IGF-II) is a crucial regulator of fetal adrenal growth, the authors looked for structural analysis at the 11p15 locus and IGF-II gene expression in 23 sporadic adrenocortical adult tumors: 6 carcinomas (5 with Cushing`s syndrome and 1 nonsecreting) and 17 benign adenomas (13 with Cushing`s syndrome, 1 pure androgen secreting, and 3 nonsecreting). Twenty-one patients were informative at the 11p15 locus, and six (four carcinomas and two adenomas) of them (28.5%) exhibited 11p15 structural abnormalities in tumor DNA (five, a uniparental disomy and one, a mosaicism). In a single case that could be further studied, a paternal isodisomy was observed. Very high IGF-II mRNA contents were detected in seven tumors (30%; 5 of the 6 carcinomas and 2 of the 17 adenomas). They were particularly found in tumors with uniparental disomy at the 11p15 locus. Overall, a strong correlation existed between IGF-II mRNA contents and DNA demethylation at the IGF-II locus. These data show that genetic alterations involving the 11p15 locus were highly frequent in malignant tumors, but found only in rare adenomas. These results in combination with evidence for overexpression of IGF-II from the 11p15.5 locus suggest that abnormalities in structure and/or expression of the IGF-II gene play a role as a late event of a multistep process of tumorigenesis. 58 refs., 6 figs., 4 tabs.

  15. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis

    PubMed Central

    Leal, Letícia F.; Bueno, Ana Carolina; Gomes, Débora C.; Abduch, Rafael; de Castro, Margaret; Antonini, Sonir R.

    2015-01-01

    Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC. PMID:26515592

  16. Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells

    PubMed Central

    Matthews, E. K.; Saffran, M.

    1973-01-01

    1. The effects of changes of ionic environment upon corticosteroid production by rabbit adrenal glands have been investigated in vitro using a superfusion technique and on-line steroid analysis by an automated fluorescence method. In some experiments micro-electrode recordings of adrenocortical transmembrane potentials were made concomitantly with measurement of steroid output. 2. Adrenocorticotrophic hormone (ACTH), 10 m-u./ml., induced a sevenfold increase in corticosteroid production rate in normal Krebs solution. 3. The steroidogenic response to ACTH was not impaired after omission of [K]o for 1 hr but was inhibited following exposure to K+-free medium for 3 hr. Increase of [K]o tenfold to 47 mM increased the basal but not the ACTH-stimulated output of corticosteroid whereas raising [K]o twentyfold to 94 mM enhanced both the basal and ACTH-stimulated steroid production rate. In K+-free solution the adrenocortical cells hyperpolarized from - 67 to - 86 mV; subsequently on addition of ACTH they depolarized. Reintroduction of K+ restored the membrane potential. 4. Omission of Ca2+ partially depolarized the cells but only affected the steroidogenic response to ACTH in the presence of EDTA. A threefold increase of [Ca]o, to 7·68 mM, had no effect on either membrane potentials or steroid formation, but increasing [Ca]o tenfold to 25·6 mM partially blocked ACTH action. Increasing [Mg]o twentyfold to 22·6 mM had little effect on ACTH-stimulated corticosteroid output and Sr 2·56 mM, in substitution for Ca2+, supported ACTH action, but La, 0·25 mM, completely blocked the steroidogenic effect of ACTH. 5. Replacement of NaCl, 118 mM by choline chloride, 118 mM, was without effect on ACTH-induced steroidogenesis, whereas LiCl, 118 mM, reduced it by 50%. NaF, 1 and 10 mM, inhibited ACTH-induced steroidogenesis by approximately 60%. 6. Nupercaine, 10-4 M, inhibited the steroid response to ACTH with no effect upon membrane potentials: increasing the nupercaine

  17. Orexin-A regulates cell apoptosis in human H295R adrenocortical cells via orexin receptor type 1 through the AKT signaling pathway.

    PubMed

    Chang, Xiaocen; Zhao, Yuyan; Ju, Shujing; Guo, Lei

    2015-11-01

    Numerous studies have demonstrated the ability of orexin-A to regulate adrenocortical cells through the mitogen-activated protein kinase signaling pathway. In the present study, human H295R adrenocortical cells were exposed to orexin‑A (10‑10-10‑6 M), with orexin receptor type 1 (OX1 receptor) antagonist SB334867 or AKT antagonist PF‑04691502. It was found that orexin‑A stimulated H295R cell proliferation, reduced the pro‑apoptotic activity of caspase‑3 to protect against apoptotic cell death and increased cortisol secretion. Furthermore, phospho‑AKT protein was increased by orexin‑A. SB334867 (10‑6 M) and PF‑04691502 (10‑6 M) abolished the effects of orexin‑A (10‑6 M). These results suggested that the orexin‑A/OX1 receptor axis has a significant pro-survival function in adrenal cells, which is mediated by AKT activation. Further studies investigating the effects of orexin-A-upregulation may further elucidate the diverse biological effects of orexin-A in adrenal cells.

  18. Antiandrogenic mechanisms of pesticides in human LNCaP prostate and H295R adrenocortical carcinoma cells.

    PubMed

    Robitaille, Christina N; Rivest, Patricia; Sanderson, J Thomas

    2015-01-01

    Several pesticides suspected or known to have endocrine disrupting effects were screened for pro- or antiandrogenic properties by determining their effects on proliferation, prostatic-specific antigen (PSA) secretion and androgen receptor (AR) expression, and AR phosphorylation in androgen-dependent LNCaP human prostate cancer cells, as well as on the expression and catalytic activity of the enzyme CYP17 in H295R human adrenocortical carcinoma cells, an in vitro model of steroidogenesis. Effects on SRD5A gene expression were determined in both cell lines. Benomyl, vinclozolin, and prochloraz, but not atrazine, concentration dependently (1-30 μM) decreased dihydrotestosterone (DHT)-stimulated proliferation of LNCaP cells. All pesticides except atrazine decreased DHT-stimulated PSA secretion, AR nuclear accumulation, and AR phosphorylation on serines 81 and 213 in LNCaP cells. Benomyl and prochloraz, but not vinclozolin or atrazine, decreased levels of CYP17 gene and protein expression, as well as catalytic activity in H295R cells. In the case of prochloraz, some of these effects corresponded with cytotoxicity. H295R cells expressed AR protein and SRD5A1, but not SRD5A2 transcripts. SRD5A1 gene expression in H295R cells was increased by 10 nM DHT, whereas in LNCaP cells significant induction was observed by 0.1 nM DHT. AR protein expression in H295R cells was not increased by DHT. Vinclozolin decreased DHT-induced SRD5A1 gene expression in LNCaP, but not H295R cells, indicating a functional difference of AR between the cell lines. In conclusion, pesticides may exert antiandrogenic effects through several mechanisms that are cell type-specific, including AR antagonism and down-regulation or catalytic inhibition of androgen biosynthetic enzymes, such as CYP17 and SRD5A1.

  19. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells.

    PubMed

    van den Dungen, Myrthe W; Rijk, Jeroen C W; Kampman, Ellen; Steegenga, Wilma T; Murk, Albertinka J

    2015-06-01

    Persistent organic pollutants (POPs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorobiphenyl (PCB) 126 and 153, perfluorooctanesulfonic acid (PFOS), hexabromocyclododecane (HBCD), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), tributyltin (TBT), and methylmercury (MeHg) can be accumulated in seafood and then form a main source for human exposure. Some POPs have been associated with changes in steroid hormone levels in both humans and animals. This study describes the in vitro effects of these POPs and mixtures thereof in H295R adrenocortical carcinoma cells. Relative responses for 13 steroid hormones and 7 genes involved in the steroidogenic pathway, and CYP1A1, were analyzed. PFOS induced the most pronounced effects on steroid hormone levels by significantly affecting 9 out of 13 hormone levels measured, with the largest increases found for 17β-estradiol, corticosterone, and cortisol. Furthermore, TCDD, both PCBs, and TBT significantly altered steroidogenesis. Increased steroid hormone levels were accompanied by related increased gene expression levels. The differently expressed genes were MC2R, CYP11B1, CYP11B2, and CYP19A1 and changes in gene expression levels were more sensitive than changes in hormone levels. The POP mixtures tested showed mostly additive effects, especially for DHEA and 17β-estradiol levels. This study shows that some seafood POPs are capable of altering steroidogenesis in H295R cells at concentrations that mixtures might reach in human blood, suggesting that adverse health effects cannot be excluded.

  20. Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells.

    PubMed

    Sbiera, Silviu; Leich, Ellen; Liebisch, Gerhard; Sbiera, Iuliu; Schirbel, Andreas; Wiemer, Laura; Matysik, Silke; Eckhardt, Carolin; Gardill, Felix; Gehl, Annemarie; Kendl, Sabine; Weigand, Isabel; Bala, Margarita; Ronchi, Cristina L; Deutschbein, Timo; Schmitz, Gerd; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin; Kroiss, Matthias

    2015-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer.

  1. Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis)

    SciTech Connect

    Miller, L.L. Hontela, A.

    2011-06-01

    Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na{sub 2}SO{sub 3}) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed to stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC{sub 50} > 2000 mg/L). RT cells were more sensitive (EC{sub 50} = 8.7 mg/L) to selenite than BT cells (EC{sub 50} = 90.4 mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines. - Research Highlights: > We investigated species-specific sensitivity to Se in trout adrenocortical cells. > Selenite

  2. Drug Synergism of Proteasome Inhibitors and Mitotane by Complementary Activation of ER Stress in Adrenocortical Carcinoma Cells.

    PubMed

    Kroiss, Matthias; Sbiera, Silviu; Kendl, Sabine; Kurlbaum, Max; Fassnacht, Martin

    2016-12-01

    Mitotane is the only drug approved for treatment of the orphan disease adrenocortical carcinoma (ACC) and was recently shown to be the first clinically used drug acting through endoplasmic reticulum (ER)-stress induced by toxic lipids. Since mitotane has limited clinical activity as monotherapy, we here study the potential of activating ER-stress through alternative pathways. The single reliable NCI-H295 cell culture model for ACC was used to study the impact MG132, bortezomib (BTZ) and carfilzomib (CFZ) on mRNA and protein expression of ER-stress markers, cell viability and steroid hormone secretion. We found all proteasome inhibitors alone to trigger expression of mRNA (spliced X-box protein 1, XBP1) and protein markers indicative of the inositol-requiring enzyme 1 (IRE1) dependent pathway of ER-stress but not phosphorylation of eukaryotic initiation factor 2α (eIF2α), a marker of the PRKR-like endoplasmic reticulum kinase (PERK)-dependent pathway. Whereas mitotane alone activated both pathways, combination of BTZ and CFZ with low-dose mitotane blocked mitotane-induced eIF2α phosphorylation but increased XBP1-mRNA splicing indicating that proteasome inhibitors can commit signalling towards a single ER-stress pathway in ACC cells. By applying the median effect model of drug combinations using cell viability as a read out, we determined significant drug synergism between mitotane and both BTZ and CFZ. In conclusion, combination of mitotane with activators of ER-stress through the unfolded protein response is synergistic in an ACC cell culture model. Since proteasome inhibitors are readily available clinically, they are attractive candidates to study for ACC treatment in clinical trials in combination with mitotane.

  3. Perfluorinated compounds differentially affect steroidogenesis and viability in the human adrenocortical carcinoma (H295R) in vitro cell assay.

    PubMed

    Kraugerud, Marianne; Zimmer, Karin E; Ropstad, Erik; Verhaegen, Steven

    2011-08-10

    Perfluorinated compounds (PFCs) comprise a large class of man-made chemicals of which some are persistent and present throughout the ecosystem. This raises concerns about potential harmful effects of such PFCs on humans and the environment. In order to investigate the effects of potentially harmful PFCs on steroid hormone production, human adrenocortical H295R cells were exposed to three persistent PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) at six different concentrations (6nM to 600μM) for 48h. Exposure to 600μM PFOS resulted in a dose-responsive increase in oestradiol as well as a smaller dose-responsive increase in progesterone and testosterone secretion measured using radioimmunoassay. The aromatase activity was not significantly altered by PFOS. Only small changes in hormone secretion were detected following exposure to PFOA and PFNA. Gene expression of CYP11A, quantified using qRT-PCR was decreased by all exposure doses of PFOA, whereas HMGR expression was decreased by 60nM PFNA. The viability markedly decreased by exposure to 600μM of PFOA or PFNA, but not PFOS. Flow cytometric analysis demonstrated a significant increase in apoptosis following exposure to PFNA at the highest concentration. We conclude that PFOS is capable of altering steroidogenesis in the H295R in vitro model by a mechanism other than changes in gene expression or activity of aromatase. Additionally, PFCs appear to differentially affect cell viability with induction of cell death via apoptosis at high doses of PFNA.

  4. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells

    PubMed Central

    Toole, Colleen M.; Filer, Dayne L.; Lewis, Kenneth C.; Martin, Matthew T.

    2016-01-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  5. Cytotoxic activity of gemcitabine, alone or in combination with mitotane, in adrenocortical carcinoma cell lines.

    PubMed

    Germano, Antonina; Rapa, Ida; Volante, Marco; Lo Buono, Nicola; Carturan, Sonia; Berruti, Alfredo; Terzolo, Massimo; Papotti, Mauro

    2014-01-25

    We aimed at investigating in vitro the cytotoxic activity (determined using WST-1, apoptosis and cell cycle assays) of gemcitabine, alone or in combination with mitotane, in mitotane-sensitive H295R and mitotane-insensitive SW-13 cells. Results of these experiments were compared with drug-induced modulation of RRM1 gene, the specific target of gemcitabine. In H295R cells, mitotane and gemcitabine combinations showed antagonistic effects and interfered with the gemcitabine-mediated inhibition of the S phase of the cell cycle. By contrast, in SW-13 cells, except when mitotane was sequentially administered prior to gemcitabine, the combination of the two drugs was synergistic. Such opposite effects were associated with opposite expression profiles of the target gene, with significant up-modulation in H295R but not in SW-13 under gemcitabine and mitotane combination treatment.

  6. Adiponectin (15-36) stimulates steroidogenic acute regulatory (StAR) protein expression and cortisol production in human adrenocortical cells: role of AMPK and MAPK kinase pathways.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Brown, James E P; Chen, Jing; Digby, Janet E; Barber, Thomas M; Lehnert, Hendrik; Randeva, Harpal S

    2011-05-01

    Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.

  7. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    PubMed

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

  8. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  9. Adiponectin and adiponectin receptor system in the rat adrenal gland: ontogenetic and physiologic regulation, and its involvement in regulating adrenocortical growth and steroidogenesis.

    PubMed

    Paschke, Lukasz; Zemleduch, Tomasz; Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2010-09-01

    Adiponectin (ADN) is a regulatory peptide secreted mostly by adipose tissue and acting via two receptors: AdipoR1 and AdipoR2. Our aim was to investigate expression of adiponectin system genes in the rat adrenal gland as well as its ontogenetic and physiological control. Furthermore, we examined the effects of acute and prolonged activation of HPA axis on ADN system in adipose tissue. By means of QPCR, ADN and AdipoR1 expression was demonstrated in rat adrenal cortex both at mRNA and protein levels, while AdipoR2 could only be detected at mRNA levels. ADN expression level was significantly upregulated in a developing and regenerating adrenal cortex. Globular domain of adiponectin at 10(-9) M stimulated corticosterone output and BrdU incorporation by cultured rat adrenocortical cells. Moreover, both acute (ACTH and ether stress) and prolonged (ACTH) adrenal stimulation resulted in lowered ADN levels, while expression of AdipoR1 and AdipoR2 was upregulated by the acute treatment. Depending on its site of origin, visceral (VAT) or subcutaneous (SAT) adipose tissue responded differently to alterations in HPA axis. VAT expression of ADN and its receptors remained almost unchanged by experimental manipulations. In SAT, on the other hand, expression of ADN and AdipoR2 was markedly increased by ACTH treatment and stress, while dexamethasone suppressed ADN and AdipoR1 mRNA levels. The results of this study provide new evidence for direct and indirect interactions between adipokines and HPA axis.

  10. Patterns of Children's Adrenocortical Reactivity to Interparental Conflict and Associations with Child Adjustment: A Growth Mixture Modeling Approach

    ERIC Educational Resources Information Center

    Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.

    2013-01-01

    Examining children's physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children's cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol…

  11. Update in adrenocortical carcinoma.

    PubMed

    Fassnacht, Martin; Kroiss, Matthias; Allolio, Bruno

    2013-12-01

    Adrenocortical carcinoma (ACC) is an orphan malignancy that has attracted increasing attention during the last decade. Here we provide an update on advances in the field since our last review published in this journal in 2006. The Wnt/β-catenin pathway and IGF-2 signaling have been confirmed as frequently altered signaling pathways in ACC, but recent data suggest that they are probably not sufficient for malignant transformation. Thus, major players in the pathogenesis are still unknown. For diagnostic workup, comprehensive hormonal assessment and detailed imaging are required because in most ACCs, evidence for autonomous steroid secretion can be found and computed tomography or magnetic resonance imaging (if necessary, combined with functional imaging) can differentiate benign from malignant adrenocortical tumors. Surgery is potentially curative in localized tumors. Thus, we recommend a complete resection including lymphadenectomy by an expert surgeon. The pathology report should demonstrate the adrenocortical origin of the lesion (eg, by steroidogenic factor 1 staining) and provide Weiss score, resection status, and quantitation of the proliferation marker Ki67 to guide further treatment. Even after complete surgery, recurrence is frequent and adjuvant mitotane treatment improves outcome, but uncertainty exists as to whether all patients benefit from this therapy. In advanced ACC, mitotane is still the standard of care. Based on the FIRM-ACT trial, mitotane plus etoposide, doxorubicin, and cisplatin is now the established first-line cytotoxic therapy. However, most patients will experience progress and require salvage therapies. Thus, new treatment concepts are urgently needed. The ongoing international efforts including comprehensive "-omic approaches" and next-generation sequencing will improve our understanding of the pathogenesis and hopefully lead to better therapies.

  12. Degranulation of mast cells located in median eminence in response to compound 48/80 evokes adrenocortical secretion via histamine and CRF in dogs.

    PubMed

    Matsumoto, Itsuro; Inoue, Yasuhisa; Tsuchiya, Katsuhiko; Shimada, Toshio; Aikawa, Tadaomi

    2004-10-01

    The effect of intracerebroventricular infusion of compound 48/80 (C48/80), a mast cell secretagogue, on adrenal cortisol secretion was investigated in dogs under pentobarbital sodium anesthesia. A marked increase in adrenal cortisol secretion was elicited by C48/80 along with a concomitant increase in the plasma levels of cortisol and immunoreactive ACTH, but neither arterial blood pressure and heart rate nor the plasma histamine level altered significantly. Pretreatment with either anti-CRF antiserum or pyrilamine maleate (H(1) histamine-receptor antagonist) significantly attenuated the C48/80-evoked increase in cortisol secretion, but pretreatment with metiamide (H(2)-receptor antagonist) significantly potentiated it. Significant attenuation of the C48/80-evoked increase in cortisol also occurred in dogs given ketotifen, a mast cell stabilizing drug, before pharmacologic challenge. In the pars tuberalis and median eminence (ME), mast cells were highly concentrated in close association with the primary plexus of the hypophysial portal system. Degranulated mast cells were extensively found in the ME of C48/80-treated animals. These results suggest that mast cells located in these regions liberated histamine within the brain as a result of degranulation induced by C48/80 and that this led to activation of the hypothalamic-pituitary-adrenocortical axis.

  13. Mitotane effects in a H295R xenograft model of adjuvant treatment of adrenocortical cancer.

    PubMed

    Lindhe, O; Skogseid, B

    2010-09-01

    Adrenocortical cancer is one of the most aggressive endocrine malignancies. Growth through the capsule or accidental release of cancer cells during surgery frequently results in metastatic disease. We investigated the antitumoral effect of 2 adrenocorticolytic compounds, O, P'-DDD and MeSO2-DDE, in the adrenocortical cell line H295R both in vitro and as a xenograft model in vivo. H295R cells were injected s. c. in nude mice. O, P'-DDD, MeSO2-DDE, or oil (control) was administered i. p., either simultaneously with cell injection at day 0 (mimicking adjuvant treatment), or at day 48 (established tumors). Accumulation of PET tracers [ (11)C]methionine (MET), [ (11)C] metomidate (MTO), 2-deoxy-2-[ (18)F]fluoro-d-glucose (FDG), and [ (18)F]-l-tyrosine (FLT) in the aggregates were assessed +/- drug treatment in vitro. Tumor growth was significantly inhibited when O, P'-DDD was given at the same time as injection of tumor cells. No significant growth inhibition was observed after treatment with O, P'-DDD at day 48. A significant reduction in FLT uptake and an increased FDG uptake, compared to control, were observed following treatment with 15 microM O, P'-DDD (p<0.01) in vitro. MeSO2-DDE (15 microM) treatment gave rise to a reduced MET and an increased FLT uptake (p<0.01). Both compounds reduced the uptake of MTO compared to control (p<0.01). Treatment with O, P'-DDD simultaneously to inoculation of H295R cells in mice, imitating release of cells during surgery, gave a markedly better effect than treatment of established H295R tumors. We suggest that FLT may be a potential PET biomarker when assessing adrenocortical cancer treatment with O,P'-DDD. Further studies in humans are needed to investigate this.

  14. The influence of maternal care and overprotection on youth adrenocortical stress response: a multiphase growth curve analysis.

    PubMed

    Vergara-Lopez, Chrystal; Chaudoir, Stephenie; Bublitz, Margaret; O'Reilly Treter, Maggie; Stroud, Laura

    2016-11-01

    We examined the association between two dimensions of maternal parenting style (care and overprotection) and cortisol response to an acute laboratory-induced stressor in healthy youth. Forty-three participants completed the Parental Bonding Instrument and an adapted version of the Trier Social Stress Test-Child (TSST-C). Nine cortisol samples were collected to investigate heterogeneity in different phases of youth's stress response. Multiphase growth-curve modeling was utilized to create latent factors corresponding to individual differences in cortisol during baseline, reactivity, and recovery to the TSST-C. Youth report of maternal overprotection was associated with lower baseline cortisol levels, and a slower cortisol decline during recovery, controlling for maternal care, puberty, and gender. No additive or interactive effects involving maternal care emerged. These findings suggest that maternal overprotection may exert a unique and important influence on youth's stress response.

  15. Cytotoxic and endocrine-disrupting potential of atrazine, diazinon, endosulfan, and mancozeb in adrenocortical steroidogenic cells of rainbow trout exposed in vitro.

    PubMed

    Bisson, Marjolaine; Hontela, Alice

    2002-04-15

    An in vitro bioassay for detection and quantitative assessment of chemicals with the capacity to disrupt adrenal steroidogenesis has been developed and used to compare the cytotoxic and endocrine-disrupting potential of four pesticides. Enzymatically dispersed adrenocortical cells of rainbow trout (Oncorhynchus mykiss) were exposed in vitro to atrazine, diazinon, endosulfan, and mancozeb, and cortisol secretion in response to ACTH or dibutyryl-cAMP (dbcAMP) and cell viability were determined. The effective concentration, EC50 (concentration that inhibits cortisol secretion by 50%), the median lethal concentration, LC50 (concentration that kills 50% of the cells), and the LC50/EC50 ratio were established for the test pesticides. The pesticides were ranked as follows: EC50, endosulfan < diazinon < mancozeb < atrazine; LC50, diazinon < endosulfan < mancozeb < atrazine, with diazinon as the most cytotoxic. Endosulfan and mancozeb disrupted sites downstream of the cAMP-generating step of the cortisol synthetic pathway while atrazine seemed to act upstream from the cAMP step. The in vitro adrenal bioassay can be used for screening of adrenotoxicants and for mechanistic studies of adrenotoxicity.

  16. Alterations of Phosphodiesterases in Adrenocortical Tumors

    PubMed Central

    Hannah-Shmouni, Fady; Faucz, Fabio R.; Stratakis, Constantine A.

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs. PMID:27625633

  17. Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells.

    PubMed

    Caron-Beaudoin, Élyse; Denison, Michael S; Sanderson, J Thomas

    2016-01-01

    The enzyme aromatase (CYP19; cytochrome P450 19) in humans undergoes highly tissue- and promoter-specific regulation. In hormone-dependent breast cancer, aromatase is over-expressed via several normally inactive promoters (PII, I.3, I.7). Aromatase biosynthesizes estrogens, which stimulate breast cancer cell proliferation. The placenta produces estrogens required for healthy pregnancy and the major placental CYP19 promoter is I.1. Exposure to certain pesticides, such as atrazine, is associated with increased CYP19 expression, but little is known about the effects of neonicotinoid insecticides on CYP19. We developed sensitive and robust RT-qPCR methods to detect the promoter-specific expression of CYP19 in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells, and determined the potential promoter-specific disruption of CYP19 expression by atrazine and the commonly used neonicotinoids imidacloprid, thiacloprid, and thiamethoxam. In H295R cells, atrazine concentration-dependently increased PII- and I.3-mediated CYP19 expression and aromatase catalytic activity. Thiacloprid and thiamethoxam induced PII- and I.3-mediated CYP19 expression and aromatase activity at relatively low concentrations (0.1-1.0 µM), exhibiting non-monotonic concentration-response curves with a decline in gene induction and catalytic activity at higher concentrations. In HUVEC cells, atrazine slightly induced overall (promoter-indistinct) CYP19 expression (30 µM) and aromatase activity (≥ 3 µM), without increasing I.1 promoter activity. None of the neonicotinoids increased CYP19 expression or aromatase activity in HUVEC cells. Considering the importance of promoter-specific (over)expression of CYP19 in disease (breast cancer) or during sensitive developmental periods (pregnancy), our newly developed RT-qPCR methods will be helpful tools in assessing the risk that neonicotinoids and other chemicals may pose to exposed women.

  18. [Adrenocortical tumors--new perspectives].

    PubMed

    Latronico, Ana Claudia; Mendonça, Berenice B de

    2004-10-01

    A high frequency of adrenocortical tumors has been observed in Brazilian children and adults from South and Southwestern regions. The valuable national experience in the management of these tumors have resulted in several and relevant basic and clinical reports. However, the creation of an adrenocortical tumor national registry, the uniformity of approaches and collaborative studies are target to pursue. In this review article, we briefly described the fundamental points which were discussed in two scientific events on adrenocortical tumors: "International Consensus Conference on Treatment of Adrenal Cancer" and "I Simposio de Diagnóstico e Tratamento dos Tumores Adrenocorticais". The task force involving several Brazilian centers will increase the progress in the diagnosis, prognosis and treatment of this devastating disorder.

  19. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells.

  20. Adrenocortical reserves in hyperthyroidism.

    PubMed

    Agbaht, Kemal; Gullu, Sevim

    2014-02-01

    Explicit data regarding the changes in adrenocortical reserves during hyperthyroidism do not exist. We aimed to document the capability (response) of adrenal gland to secrete cortisol and DHEA-S during hyperthyroidism compared to euthyroidism, and to describe factors associated with these responses. A standard-dose (0.25 mg/i.v.) ACTH stimulation test was performed to the same patients before hyperthyroidism treatment, and after attainment of euthyroidism. Baseline cortisol (Cor(0)), DHEA-S (DHEA-S(0)), cortisol binding globulin (CBG), ACTH, calculated free cortisol (by Coolen's equation = CFC), free cortisol index (FCI), 60-min cortisol (Cor(60)), and DHEA-S (DHEA-S(60)), delta cortisol (ΔCor), delta DHEA-S (ΔDHEA-S) responses were evaluated. Forty-one patients [22 females, 49.5 ± 15.2 years old, 32 Graves disease, nine toxic nodular goiter] had similar Cor(0), DHEA-S(0), CFC, FCI, and DHEA-S(60) in hyperthyroid and euthyroid states. Cor(60), ΔCor, and ΔDHEA-S were lower in hyperthyroidism. In four (10 %) patients the peak ACTH-stimulated cortisol values were lower than 18 μg/dL. When the test repeated after attainment of euthyroidism, all of the patients had normal cortisol response. Regression analysis demonstrated an independent association of Cor(60) with free T3 in hyperthyroidism. However, the predictors of CFC, FCI, and DHEA-S levels were serum creatinine levels in hyperthyroidism, and both creatinine and transaminase levels in euthyroidism. ACTH-stimulated peak cortisol, delta cortisol, and delta DHEA-S levels are decreased during hyperthyroidism, probably due to increased turnover. Since about 10 % of the subjects with hyperthyroidism are at risk for adrenal insufficiency, clinicians dealing with Graves' disease should be alert to the possibility of adrenal insufficiency during hyperthyroid stage.

  1. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  2. Adrenocortical Activity and Emotion Regulation.

    ERIC Educational Resources Information Center

    Stansbury, Kathy; Gunnar, Megan R.

    1994-01-01

    This essay argues that the activity of the hypothalamic-pituitary-adrenocortical (HPA) system does not appear to be related to emotion regulation processes in children, although individual differences in emotion processes related to negative emotion temperaments appear to be associated with individual differences in HPA reactivity among normally…

  3. [Adrenocortical carcinoma: Update in 2014].

    PubMed

    Libé, Rossella; Assié, Guillaume

    2014-04-01

    All adrenal masses with atypical characteristics at conventional imaging must be explored as potential adrenocortical cancer. CT scan with delayed contrast media wash-out and/or abdominal MRI including chemical shift and/or wash-out analysis and 18F-FDG PET help to characterize the adrenal mass. Open adrenalectomy is the first step in the treatment of resectables adrenocortical cancer, as potentially curative. It must be complete (R0), without tumoral dissemination. The management of the adrenocortical cancer requires a multidisciplinary approach, including the endocrinologist, oncologist, surgeons, radiologist, nuclear medicine, pathologist, and geneticians in order to guarantee to the patient the best care. At the national level, the French network COMETE (supported by the Institut National du Cancer) and the international level, the European Network for the Study of Adrenal tumors -ENS@T- (supported by ESF and FP7) contribute to improve the clinical management and the understanding of the pathogenesis of the adrenocortical cancers. Recently, a new insight on molecular markers has been done. These approaches will be soon used "in routine".

  4. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples.

    PubMed

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S; Kebebew, Electron

    2015-10-30

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics.

  5. Gene expression and regulation in adrenocortical tumorigenesis.

    PubMed

    Fonseca, Annabelle L; Healy, James; Kunstman, John W; Korah, Reju; Carling, Tobias

    2012-12-27

    Adrenocortical tumors are frequently found in the general population, and may be benign adrenocortical adenomas or malignant adrenocortical carcinomas. Unfortunately the clinical, biochemical and histopathological distinction between benign and malignant adrenocortical tumors may be difficult in the absence of widely invasive or metastatic disease, and hence attention has turned towards a search for molecular markers. The study of rare genetic diseases that are associated with the development of adrenocortical carcinomas has contributed to our understanding of adrenocortical tumorigenesis. In addition, comprehensive genomic hybridization, methylation profiling, and genome wide mRNA and miRNA profiling have led to improvements in our understanding, as well as demonstrated several genes and pathways that may serve as diagnostic or prognostic markers.

  6. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells.

    PubMed

    Sanderson, J Thomas; Hordijk, Joost; Denison, Michael S; Springsteel, Mark F; Nantz, Michael H; van den Berg, Martin

    2004-11-01

    Flavonoids and related structures (e.g., flavones, isoflavones, flavanones, catechins) exert various biological effects, including anticarcinogenic, antioxidant and (anti-)estrogenic effects, and modulation of sex hormone homeostasis. A key enzyme in the synthesis of estrogens from androgens is aromatase (cytochrome P450 19; CYP19). We investigated the effects of various natural and synthetic flavonoids on the catalytic activity and promoter-specific expression of aromatase in H295R human adrenocortical carcinoma cells. Natural flavones were consistently more potent inhibitors than flavanones. IC(50) values for 7-hydroxyflavone, chrysin, and apigenin were 4, 7, and 20 microM, respectively; for the flavanones 7-hydroxyflavanone and naringenin the IC(50) values were 65 and 85 microM, respectively. The steroidal aromatase inhibitor (positive control) 4-hydroxyandrostenedione had an IC(50) of 20 nM. The inhibition by apigenin and naringenin coincided with some degree of cytotoxicity at 100 microM. The natural flavonoid derivative rotenone (IC(50) 0.3 microM) was the most potent aromatase inhibitor tested. Several synthetic flavonoid and structurally related quinolin-4-one analogs inhibited aromatase activity. The most potent inhibitor was 4'-tert-butyl-quinolin-4-one (IC(50) 2 microM), followed by two 2-pyridinyl-substituted alpha-naphthoflavones (IC(50)s 5 and >30 microM). The two 2-pyridinyl-substituted gamma-naphthoflavones consistently produced biphasic concentration-response curves, causing about 1.5-fold aromatase induction at concentrations below 1 microM and inhibition above that level (IC(50)s 7 and >30 microM). The natural flavone quercetin and isoflavone genistein induced aromatase activity 4- and 2.5-fold induction, respectively, at 10 microM. This coincided with increased intracellular cAMP concentrations and increased levels of the cAMP-dependent pII and to a lesser extent 1.3 promoter-specific aromatase transcripts. These results shed light on the

  7. Feminizing Adrenocortical Carcinoma with Distinct Histopathological Findings

    PubMed Central

    Hatano, Masako; Takenaka, Yasuhiro; Inoue, Ikuo; Homma, Keiko; Hasegawa, Tomonobu; Sasano, Hisanobu; Awata, Takuya; Katayama, Shigehiro

    2016-01-01

    We herein present a 60-year-old man with adrenocortical carcinoma who had gynecomastia. An endocrinological examination revealed increased levels of serum estradiol and dehydroepiandrosterone-sulfate (DHEA-S) and reduced levels of free testosterone. Magnetic resonance imaging showed an adrenal tumor with heterogeneous intensity. Iodine-131 adosterol scintigraphy showed an increased uptake at the same site. Because feminizing adrenocortical carcinoma was suspected, right adrenalectomy was performed; the pathological diagnosis was adrenocortical carcinoma. The results of immunostaining indicated a virilizing tumor. Aromatase activity was identified on RT-PCR. As disorganized steroidogenesis is pathologically present in adrenocortical carcinoma, this diagnosis should be made with caution. PMID:27853073

  8. Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription.

    PubMed

    Sewer, Marion B; Nguyen, Viet Q; Huang, Ching-Jung; Tucker, Philip W; Kagawa, Norio; Waterman, Michael R

    2002-04-01

    The first 57 bp upstream of the transcription initiation site of the human CYP17 (hCYP17) gene are essential for both basal and cAMP-dependent transcription. EMSA carried out by incubating H295R adrenocortical cell nuclear extracts with radiolabeled -57/-38 probe from the hCYP17 promoter showed the formation of three DNA-protein complexes. The fastest complex contained steroidogenic factor (SF-1) and p54(nrb)/NonO, the intermediate complex contained p54(nrb)/NonO and polypyrimidine tract-binding protein-associated splicing factor (PSF), and the slowest complex contained an SF-1/PSF/p54(nrb)/NonO complex. (Bu)(2)cAMP treatment resulted in a cAMP-inducible increase in the binding intensity of only the upper complex and also activated hCYP17 gene transcription. SF-1 coimmunoprecipitated with p54(nrb)/NonO, indicating direct interaction between these proteins. Functional assays revealed that PSF represses basal transcription. Further, the repression of hCYP17 promoter-reporter construct luciferase activity resulted from PSF interacting with the corepressor mSin3A. Trichostatin A attenuated the inhibition of basal transcription, suggesting that a histone deacetylase interacts with the SF-1/PSF/p54(nrb)/NonO/mSin3A complex. Our studies lend support to the idea that the balance between transcriptional activation and repression is essential in the control of adrenocortical steroid hormone biosynthesis.

  9. Isolation of rat adrenocortical mitochondria

    SciTech Connect

    Solinas, Paola; Fujioka, Hisashi; Tandler, Bernard; Hoppel, Charles L.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  10. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  11. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells.

    PubMed

    Enyeart, Judith A; Liu, Haiyan; Enyeart, John J

    2010-03-01

    bTREK-1 K(+) channels set the resting membrane potential of bovine adrenal zona fasciculata (AZF) cells and function pivotally in the physiology of cortisol secretion. Adrenocorticotropic hormone controls the function and expression of bTREK-1 channels through signaling mechanisms that may involve cAMP and downstream effectors including protein kinase A (PKA) and exchange protein 2 directly activated by cAMP (Epac2). Using patch-clamp and Northern blot analysis, we explored the regulation of bTREK-1 mRNA and K(+) current expression by cAMP analogs and several of their putative metabolites in bovine AZF cells. At concentrations sufficient to activate both PKA and Epac2, 8-bromoadenosine-cAMP enhanced the expression of both bTREK-1 mRNA and K(+) current. N(6)-Benzoyladenosine-cAMP, which activates PKA but not Epac, also enhanced the expression of bTREK-1 mRNA and K(+) current measured at times from 24 to 96 h. An Epac-selective cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8CPT-2'-OMe-cAMP), potently stimulated bTREK-1 mRNA and K(+) current expression, whereas the nonhydrolyzable Epac activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, Sp-isomer was ineffective. Metabolites of 8CPT-2'-OMe-cAMP, including 8-(4-chlorophenylthio)-2'-O-methyladenosine-5'-O-monophosphate and 8CPT-2'-OMe-adenosine, promoted the expression of bTREK-1 transcripts and ion current with a temporal pattern, potency, and effectiveness resembling that of the parent compound. Likewise, at low concentrations, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP; 30 microM) but not its nonhydrolyzable analog 8-(4-chlorophenylthio)-cAMP, Sp-isomer, enhanced the expression of bTREK-1 mRNA and current. 8CPT-cAMP metabolites, including 8CPT-adenosine and 8CPT-adenine, also increased bTREK-1 expression. These results indicate that cAMP increases the expression of bTREK-1 mRNA and K(+) current through a cAMP-dependent but Epac2-independent mechanism. They further demonstrate that one or more metabolites of 8

  12. Interleukin-6 increases the expression of key proteins associated with steroidogenesis in human NCI-H295R adrenocortical cells.

    PubMed

    Strickland, Janae; McIlmoil, Stephen; Williams, Brice J; Seager, Dennis C; Porter, James P; Judd, Allan M

    2017-03-01

    Mechanisms of interleukin-6 (IL-6)-induced cortisol release (CR) were investigated by exposing H295R cells to IL-6 and determining mRNA/protein expression (PCR/western blots) for steroidogenic enzymes (SE), steroidogenic acute regulatory protein (StAR), steroidogenic factor-1 (SF-1) (enhances SE/StAR expression), activator protein 1 (AP-1) (regulates SE/StAR expression) and adrenal hypoplasia congenita-like protein (DAX-1) (inhibits SE/StAR expression). Promoter activity of StAR (SPA) was measured by a luciferase-coupled promoter. Cortisol release was increased by 10ng/mL IL-6 (24h P<0.01). Proteins/mRNAs (StAR, cholesterol side chain cleavage enzyme, SF-1, AP-1) and SPA were increased by IL-6 (60min 1-50ng/mL IL-6; 5ng/mL IL-6 30-120min P<0.05). Four other SE proteins/mRNAs were also increased by 10ng/mL IL-6 (60min P<0.01). Protein/mRNA for DAX-1 was decreased by IL-6 (60min 1-50ng/mL IL-6; 5ng/mL IL-6 30-120min P<0.01). Phosphorylation of Janus kinase (JAK) and signal transducer and activator of transcription (STAT) was increased by IL-6 (JAK2 60min 1-50ng/mL IL-6; 10ng/mL IL-6 5-60min P<0.05; STAT1 and STAT3 60min 10ng/mL IL-6 P<0.01). Inhibition of JAK/STAT with AG490 (10μM) or piceatannol (50μM) blocked (P<0.01 10ng/mL IL-6vs. IL-6 plus AG490 or piceatannol) IL-6-induced increases in SPA and StAR mRNA. In summary, IL-6-induced CR may be facilitated by increased StAR and SE mediated by increased SF-1 and AP-1, decreased DAX-1, and increased phosphorylation of JAK/STAT.

  13. [Irreversible coma following hypoglycemia in Sheehan syndrome with adrenocortical insufficiency].

    PubMed

    Sas, A M; Meynaar, I A; Laven, J S; Bakker, S L; Feelders, R A

    2003-08-23

    A 24-year-old woman of Somali origin delivered at term after an uncomplicated pregnancy. Post-partum haemorrhage resulted in hypovolaemic shock which was treated by hysterectomy. Five days later she became comatose due to unrecognised hypoglycaemia which caused severe irreversible brain damage and status epilepticus. Treatment in the intensive care unit with artificial respiration, prednisolone, desmopressin, inotropic support, barbiturates and an anaesthetic under EEG guidance was unsuccessful. The patient died 28 days post-partum. The hypoglycaemia was due to a combination of (a) inadequate glucose intake and (b) lack of counter-regulatory mechanisms due to a deficiency of steroids and growth hormone as a result of loss of pituitary function (Sheehan syndrome) together with adrenocortical insufficiency. The combination of Sheehan syndrome and primary adrenocortical insufficiency has not been described previously in the literature.

  14. Lack of long-lasting effects of mitotane adjuvant therapy in a mouse xenograft model of adrenocortical carcinoma.

    PubMed

    Doghman, Mabrouka; Lalli, Enzo

    2013-12-05

    Mitotane is a widely used drug in the therapy of adrenocortical carcinoma (ACC). It is important to set up preclinical protocols to study the possible synergistic effects of its association with new drugs for ACC therapy. We assessed the efficacy of different routes of administration of mitotane (i.p. and oral) in inhibiting growth of H295R ACC cell xenografts in an adjuvant setting. Both formulations of mitotane could inhibit H295R xenografts growth only at short times after carcinoma cells inoculation, even though plasma mitotane levels approached or fell within the therapeutic range in humans. Our results show that mitotane adjuvant therapy is inadequate to antagonize long-term growth of H295R cancer cells xenografts and that care should then be taken in the design of preclinical protocols to evaluate the performance of new drugs in association with mitotane.

  15. Occult Adrenocortical Carcinoma and Unexpected Early Childhood Death.

    PubMed

    Pilla, Mark; Gilbert, John; Moore, Lynette; Byard, Roger W

    2017-01-01

    A four-year-old previously well boy collapsed unexpectedly and was taken immediately to hospital, where he developed seizures and cardiogenic shock with lethal, rapidly progressing multi-organ failure. At autopsy, the height was >90th percentile and there were indications of early virilization. Internally, a friable tumor of the left adrenal gland was identified that had invaded the left renal vein and inferior vena cava. Histology revealed typical features of an adrenocortical carcinoma with aggregated trabeculae of cells containing abundant eosinophilic cytoplasm and large pleomorphic nuclei. There was strong positive cytoplasmic staining for inhibin; mitochondria were shown on electron microscopy to contain prominent electron-dense granules. Death was due to massive pulmonary tumor embolism. Although adrenocortical carcinomas are very rare and are more commonly found in adults, the current case demonstrates that they may also occur in childhood and be responsible for unexpected death by the very unusual mechanism of tumor embolism.

  16. Sphingosine kinase 1 is overexpressed and promotes adrenocortical carcinoma progression

    PubMed Central

    Huang, Jiwei; Kong, Wen; Xue, Wei; Zhu, Yu; Zhang, Jin; Huang, Yiran

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine tumor with a very poor prognosis. Sphingosine kinase 1 (SphK1), an oncogenic kinase, has previously been found to be upregulated in various cancers. However, the role of the SphK1 in ACC has not been investigated. In this study, SphK1 mRNA and protein expression levels as well as clinicopathological significance were evaluated in ACC samples. In vitro siRNA knockdown of SphK1 in two ACC cell lines (H295R and SW13) was used to determine its effect on cellular proliferation and invasion. In addition, we further evaluated the effect of SphK1 antagonist fingolimod (FTY720) in ACC in vitro and in vivo, as a single agent or in combination with mitotane, and attempted to explore its anticarcinogenic mechanisms. Our results show a significant over-expression of SphK1 mRNA and protein expression in the carcinomas compared with adenomas (P < 0.01 for all comparisons). Functionally, konckdown of SphK1 gene expression in ACC cell lines significantly decreased cell proliferation and invasion. FTY720 could result in a decreased cell proliferation and induction of apoptosis, and the combination of mitotane and FTY720 resulted in a greater anti-proliferative effect over single agent treatment in SW13 cells. Furthermore, FTY720 could markedly inhibit tumor growth in ACC xenografts. SphK1 expression is functionally associated to cellular proliferation, apoptosis, invasion and mitotane sensitivity of ACC. Our data suggest that SphK1 might be a potential therapeutic target for the treatment of ACC. PMID:26673009

  17. Feminizing adrenocortical tumors: Literature review

    PubMed Central

    Chentli, Farida; Bekkaye, Ilyes; Azzoug, Said

    2015-01-01

    Feminizing adrenal tumors (FAT) are extremely rare tumors prevailing in males. Clinical manifestations are gynecomastia and/or other hypogonadism features in adults. They are rarer in pediatric population and their main manifestation is peripheral sexual precocity. In women genital bleeding, uterus hypertrophy, high blood pressure and/or abdomen mass may be the only manifestations. On the biological point, estrogen overproduction with or without increase in other adrenal hormones are the main abnormalities. Radiological examination usually shows the tumor, describes its limits and its eventual metastases. Adrenal and endocrine origins are confirmed by biochemical assessments and histology, but that one is unable to distinguish between benign and malignant tumors, except if metastases are already present. Immunostaining using anti-aromatase antibodies is the only tool that distinguishes FAT from other adrenocortical tumors. Abdominal surgery is the best and the first line treatment. For large tumors (≥10 cm), an open access is preferred to coeliosurgery, but for the small ones, or when the surgeon is experienced, endoscopic surgery seems to give excellent results. Surgery can be preceded by adrenolytic agents such as ortho paraprime dichloro diphenyl dichloroethane (Mitotane), ketoconazole or by aromatase inhibitors, but till now there is not any controlled study to compare the benefit of different drugs. New anti-estrogens can be used too, but their results need to be confirmed in malignant tumors resistant to classical chemotherapy and to conventional radiotherapy. Targeted therapy can be used too, as in other adrenocortical tumors, but the results need to be confirmed. PMID:25932386

  18. The combination of insulin-like growth factor receptor 1 (IGF1R) antibody cixutumumab and mitotane as a first-line therapy for patients with recurrent/metastatic adrenocortical carcinoma: a multi-institutional NCI-sponsored trial.

    PubMed

    Lerario, Antonio M; Worden, Francis P; Ramm, Carole A; Hesseltine, Elizabeth A; Hasseltine, Elizabeth A; Stadler, Walter M; Else, Tobias; Shah, Manisha H; Agamah, Edem; Rao, Krishna; Hammer, Gary D

    2014-08-01

    Adrenocortical carcinoma (ACC) is an aggressive malignancy, which lacks an effective systemic treatment. Abnormal activation of insulin-like growth factor receptor 1 (IGF1R) has been frequently observed. Preclinical studies demonstrated that pharmacological inhibition of IGF1R signaling in ACC has antiproliferative effects. A previous phase I trial with an IGF1R inhibitor has demonstrated biological activity against ACC. The objective of this study is to assess the efficacy of the combination of the IGF1R inhibitor cixutumumab (IMC-A12) in association with mitotane as a first-line treatment for advanced/metastatic ACC. We conducted a multicenter, randomized double-arm phase II trial in patients with irresectable recurrent/metastatic ACC. The original protocol included two treatment groups: IMC-A12 + mitotane and mitotane as a single agent, after an initial single-arm phase for safety evaluation with IMC-A12 + mitotane. IMC-A12 was dosed at 10 mg/kg intravenously every 2 weeks. The starting dose for mitotane was 2 g daily, subsequently adjusted according to serum levels/symptoms. The primary endpoint was progression-free survival (PFS) according to RECIST (Response Evaluation Criteria in Solid Tumors). This study was terminated before the randomization phase due to slow accrual and limited efficacy. Twenty patients (13 males, 7 females) with a median age of 50.2 years (range 21.9-79.6) were enrolled for the single-arm phase. Therapeutic effects were observed in 8/20 patients, including one partial response and seven stable diseases. The median PFS was 6 weeks (range 2.66-48). Toxic events included two grade 4 (hyperglycemia and hyponatremia) and one grade 5 (multiorgan failure). Although the regimen demonstrated activity in some patients, the relatively low therapeutic efficacy precluded further studies with this combination of drugs.

  19. p53 Mutations in human adrenocortical neoplasms: Immunohistochemical and molecular studies

    SciTech Connect

    Reincke, M.; Allolio, B.; Travis, W.H.; Linehan, H.M.; Karl, M.; Mastorakos, G.; Chrousos, G.P.

    1994-03-01

    p53 is a recessive tumor suppressor gene located on chromosome 17p. Mutations in the p53 gene play an important role in the tumorigenesis of diverse types of human neoplasms including breast and colon cancers. More than 90% of all mutations discovered in such tumors have been detected in 4 hot spot areas that lie between exons 5 and 8. In contrast to wild-type p53, mutant p53 accumulates intracellularly and can be easily detected by immunohistochemistry. The authors therefore investigated the frequency of p53 mutations in human adrenocortical neoplasms using molecular biology and immunohistochemistry techniques. Five patients with adrenocortical adenomas (5 female; ages 39-72 yr), 11 patients with adrenocortical carcinomas (8 female, 3 male; ages 15-50 yr), and two adrenocortical tumor cell lines were studied. After DNA extraction from frozen tumor tissue or paraffin-embedded material, exons 5 through 8 were amplified using the polymerase chain reaction and directly sequenced by the dideoxy termination method. Immunohistochemistry was performed on paraffin-embedded tumor specimens obtained during adrenalectomy using a monoclonal antibody reacting with both wild-type and mutant p53. Prevalence of mutations was adenomas, 0/5, carcinomas, 3/11, and adrenocortical cell lines, 2/2. Single point mutations were detected in 3 cases (exons 5, 6, and 7, respectively), and rearrangements of exon 7/8 and 8 were found in 2 cases. Immunohistochemistry detected strong nuclear and/or cytoplasmic p53 immunoreactivity in all adrenocortical carcinomas with point mutations of the p53 gene but not in adenomas and carcinomas with the wild-type sequence or with deletion/rearrangement of the p53 gene. They conclude that p53 plays a role in the tumorigenesis of adrenocortical carcinomas but is of less importance to benign adenomas. 27 refs., 3 figs., 2 tabs.

  20. TCGA analysis of adrenocortical carcinoma - TCGA

    Cancer.gov

    In the most comprehensive molecular characterization to date of adrenocortical carcinoma, a rare cancer of the adrenal cortex, researchers extensively analyzed 91 cases for alterations in the tumor genomes.

  1. Retroperitoneoscopic partial adrenalectomy for large adrenocortical oncocytoma.

    PubMed

    Modi, Pranjal; Goel, Rajiv; Kadam, Gaurang

    2007-04-01

    A young woman had mild hypertension, and on evaluation, a large tumor arising from the right adrenal gland was found. The tumor was hormonally inactive. Retroperitoneoscopic partial adrenalectomy was carried out. The histopathology report described adrenocortical oncocytoma.

  2. Adrenocortical carcinoma: An extremely uncommon entity and the role of Immunohistochemistry in its diagnosis

    PubMed Central

    Gogoi, G.; Baruah, Manash P; Borah, P.; Borgohain, M.

    2012-01-01

    Adrenocortcal carcinoma is an extremely uncommon entity with an incidence of two in one millionth population. Here we present a 60 year gentleman with pain in abdomen, nausea, and backache, and weight loss. Contrast enhanced computed tomography (CECT) abdomen revealed a heterogenous well defined mass measuring (15 × 10.3 × 13) cm3 on the left suprarenal region with central necrosis which extended medially up to the midline. Locally, the growth infiltrated the upper pole of left kidney. Initially, the differential diagnosis included that of renal cell carcinoma arising from upper pole of left kidney involving adrenal gland. The patient underwent left radical nephrectomy and left adrenalectomy. Histological evaluation could not differentiate it from of malignant pheochromocytoma, but immunohistochemistry confirmed it as adrenocortical carcinoma. This case highlights the crucial role of immunohistochemistry in establishing the diagnosis like tumors. PMID:23565434

  3. Co-inhibition of EGFR and IGF1R synergistically impacts therapeutically on adrenocortical carcinoma

    PubMed Central

    Lian, Jianpo; Wang, Xiaojing; Ning, Guang; Wang, Weiqing; Zhu, Yu

    2016-01-01

    Purpose Adrenocortical carcinoma (ACC) is a rare tumor with very poor prognosis and no effective treatment. The aim of this study was to explore a novel therapy co-targeting EGFR and IGF1R in vitro and vivo. Methods The expression of EGFR and IGF1R were evaluated in a series of adrenocortical tumors by immunohistochemistry. Cell viability of ACC cell lines H295R and SW13 were determined by MTT assay after treatment with the combination of EGFR inhibitor Erlotinib and IGF1R inhibitor NVP-AEW541. Apoptosis was assessed by flow cytometry. The mechanism within intracellular signaling pathways was analyzed by Western blot. Mice bearing human ACC xenografts were treated with Erlotinib and NVP-AEW541, and the effects on tumour growth were assessed. Results Our results show a significant over-expression of EGFR (66.67%) and IGF1R (80.0%) in ACC. Besides, the co-overexpression of EGFR and IGF1R was seen in 8/15 ACCs, as compared with ACAs (P<0.05). Erlotinib and NVP-AEW541 significantly inhibited cell viability and induced apoptosis by blocking phosphorylation of MEK/ERK and AKT, respectively. Meanwhile, we found that single inhibition of IGF1R induced compensatory activation of MEK/ERK, leading to sustained activation of mTOR, which represent as aggregation of EGFR and IGF1R downstream components. More importantly, the combination of Erlotinib and NVP-AEW541 enhances anti-tumour efficacy compared to treatment with either agent alone or to untreated control in vitro and vivo. Conclusions In conclusion, coinhibition therapy targeting EGFR and IGF1R may be considerable for treatment of ACC in the future. PMID:27105537

  4. Metformin as a new anti-cancer drug in adrenocortical carcinoma

    PubMed Central

    Fucci, Rossella; Santi, Raffaella; Canu, Letizia; Nesi, Gabriella; Mannelli, Massimo; Luconi, Michaela

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare heterogeneous malignancy with poor prognosis. Since radical surgery is the only available treatment, more specific and effective drugs are urgently required. The anti-diabetic drug metformin has been associated with a decreased cancer prevalence and mortality in several solid tumors, prompting its possible use for ACC treatment. This paper evaluates the in vitro and in vivo anti-cancer effects of metformin using the ACC cell model H295R. Metformin treatment significantly reduces cell viability and proliferation in a dose- and time-dependent manner and associates with a significant inhibition of ERK1/2 and mTOR phosphorylation/activation, as well as with stimulation of AMPK activity. Metformin also triggers the apoptotic pathway, shown by the decreased expression of Bcl-2 and HSP27, HSP60 and HSP70, and enhanced membrane exposure of annexin V, resulting in activation of caspase-3 apoptotic effector. Metformin interferes with the proliferative autocrine loop of IGF2/IGF-1R, which supports adrenal cancer growth. Finally, in the ACC xenograft mouse model, obtained by subcutaneous injection of H295R cells, metformin intraperitoneal administration inhibits tumor growth, confirmed by the significant reduction of Ki67%. Our data suggest that metformin inhibits H295R cell growth both in vitro and in vivo. Further preclinical studies are necessary to validate the potential anti-cancer effect of metformin in patients affected by ACC. PMID:27391065

  5. Resveratrol inhibits androgen production of human adrenocortical H295R cells by lowering CYP17 and CYP21 expression and activities.

    PubMed

    Marti, Nesa; Bouchoucha, Nadia; Sauter, Kay-Sara; Flück, Christa E

    2017-01-01

    Resveratrol, a natural compound found in grapes, became very popular for its suggested protective effects against aging. It was reported to have similar positive effects on the human metabolism as caloric restriction. Recently, positive effects of resveratrol on steroid biosynthesis in cell systems and in humans suffering from polycystic ovary syndrome have also been reported, but the exact mechanism of this action remains unknown. Sirtuins seem targeted by resveratrol to mediate its action on energy homeostasis. In this study, we investigated the mechanisms of action of resveratrol on steroidogenesis in human adrenal H295R cells. Resveratrol was found to inhibit protein expression and enzyme activities of CYP17 and CYP21. It did not alter CYP17 and CYP21 mRNA expression, nor protein degradation. Only SIRT3 mRNA expression was found to be altered by resveratrol, but SIRT1, 3 and 5 overexpression did not result in a change in the steroid profile of H295R cells, indicating that resveratrol may not engage sirtuins to modulate steroid production. Previous studies showed that starvation leads to a hyperandrogenic steroid profile in H295R cells through inhibition of PKB/Akt signaling, and that resveratrol inhibits steroidogenesis of rat ovarian theca cells via the PKB/Akt pathway. Therefore, the effect of resveratrol on PKB/Akt signaling was tested in H295R cells and was found to be decreased under starvation growth conditions, but not under normal growth conditions. Overall, these properties of action together with recent clinical findings make resveratrol a candidate for the treatment of hyperandrogenic disorders such as PCOS.

  6. Resveratrol inhibits androgen production of human adrenocortical H295R cells by lowering CYP17 and CYP21 expression and activities

    PubMed Central

    Marti, Nesa; Bouchoucha, Nadia; Sauter, Kay-Sara

    2017-01-01

    Resveratrol, a natural compound found in grapes, became very popular for its suggested protective effects against aging. It was reported to have similar positive effects on the human metabolism as caloric restriction. Recently, positive effects of resveratrol on steroid biosynthesis in cell systems and in humans suffering from polycystic ovary syndrome have also been reported, but the exact mechanism of this action remains unknown. Sirtuins seem targeted by resveratrol to mediate its action on energy homeostasis. In this study, we investigated the mechanisms of action of resveratrol on steroidogenesis in human adrenal H295R cells. Resveratrol was found to inhibit protein expression and enzyme activities of CYP17 and CYP21. It did not alter CYP17 and CYP21 mRNA expression, nor protein degradation. Only SIRT3 mRNA expression was found to be altered by resveratrol, but SIRT1, 3 and 5 overexpression did not result in a change in the steroid profile of H295R cells, indicating that resveratrol may not engage sirtuins to modulate steroid production. Previous studies showed that starvation leads to a hyperandrogenic steroid profile in H295R cells through inhibition of PKB/Akt signaling, and that resveratrol inhibits steroidogenesis of rat ovarian theca cells via the PKB/Akt pathway. Therefore, the effect of resveratrol on PKB/Akt signaling was tested in H295R cells and was found to be decreased under starvation growth conditions, but not under normal growth conditions. Overall, these properties of action together with recent clinical findings make resveratrol a candidate for the treatment of hyperandrogenic disorders such as PCOS. PMID:28323907

  7. Genetics and epigenetics of adrenocortical tumors.

    PubMed

    Lerario, Antonio M; Moraitis, Andreas; Hammer, Gary D

    2014-04-05

    Adrenocortical tumors are common neoplasms. Most are benign, nonfunctional and clinically irrelevant. However, adrenocortical carcinoma is a rare disease with a dismal prognosis and no effective treatment apart from surgical resection. The molecular genetics of adrenocortical tumors remain poorly understood. For decades, molecular studies relied on a small number of samples and were directed to candidate-genes. This approach, based on the elucidation of the genetics of rare genetic syndromes in which adrenocortical tumors are a manifestation, has led to the discovery of major dysfunctional molecular pathways in adrenocortical tumors, such as the IGF pathway, the Wnt pathway and TP53. However, with the advent of high-throughput methodologies and the organization of international consortiums to obtain a larger number of samples and high-quality clinical data, this paradigm is rapidly changing. In the last decade, genome-wide expression profile studies, microRNA profiling and methylation profiling allowed the identification of subgroups of tumors with distinct genetic markers, molecular pathways activation patterns and clinical behavior. As a consequence, molecular classification of tumors has proven to be superior to traditional histological and clinical methods in prognosis prediction. In addition, this knowledge has also allowed the proposal of molecular-targeted approaches to provide better treatment options for advanced disease. This review aims to summarize the most relevant data on the rapidly evolving field of genetics of adrenal disorders.

  8. Mediators in cell growth and differentiation

    SciTech Connect

    Ford, R.J.; Maizel, A.L.

    1985-01-01

    This book contains papers divided among seven sections. The section headings are: Cell Cycle and Control of Cell Growth, Growth Factors for Nonlymphoid Cells, Colony-Stimulating Factors, Stem Cells and Hematopoiesis, Lymphoid Growth Factors, Growth Factors in Neoplasia, Interferon, and Differentiation in Normal and Neoplastic Cells.

  9. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret

    PubMed Central

    Schillebeeckx, Maximiliaan; Pihlajoki, Marjut; Gretzinger, Elisabeth; Yang, Wei; Thol, Franziska; Hiller, Theresa; Löbs, Ann-Kathrin; Röhrig, Theresa; Schrade, Anja; Cochran, Rebecca; Jay, Patrick Y.; Heikinheimo, Markku; Mitra, Robi D.; Wilson, David B.

    2014-01-01

    Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both “male-specific” (Spinlw1) and “female-specific” (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing. PMID:25289806

  10. A morphometric analysis of adrenocortical actin localized by immunoelectron microscopy: the effect of adrenocorticotropin.

    PubMed

    Loesser, K E; Malamed, S

    1987-10-01

    The localization of actin and the effect of ACTH on its concentration was examined in freshly isolated rat adrenocortical cells. Lowicryl K4M-embedded cells were used for the immunoelectron localization of actin; gold was used as a label for immunoreactive sites. Actin was at least 4 times as concentrated at the cortical cytoplasm as in the lipid droplets and at least 5 times as concentrated in the microvilli as in the lipid droplets. ACTH stimulation approximately doubled the concentration of actin in the cortical cytoplasm and increased by 50% the concentration of actin in the microvilli. The microvillar contribution to the cell surface area was 40% higher in ACTH-stimulated cells than it was in unstimulated cells. These results provide quantitative evidence suggesting that actin and the microvilli participate in steroid secretion by the adrenocortical cell.

  11. Resorcylic acid lactone L-783,277 inhibits the growth of the human adrenal cancer cell line H295R in vitro.

    PubMed

    Lawnicka, H; Kowalewicz-Kulbat, M; Sicinska, P; Altmann, K H; Hofmann, T; Stepien, H

    2009-01-01

    The resorcylic acid lactone L-783,277, isolated from a Phoma sp. (ATCC 74403), is a potent and specific inhibitor of MEK (Map kinase kinase) that exerts very interesting pharmacological activities including anti-neoplastic properties. However, the role of this compound in the regulation of endocrine-related cancer cell growth and tumor progression remains unknown. In the present study we have evaluated the effect of L-783,277 on the viability, proliferation and cell cycle of the human adrenocortical carcinoma cell line H295R. L-783,277 inhibited viability (IC50 of 22 microM) and cell proliferation (IC50 of 21 microM) of H295R. At concentrations of 10(-6)-10(-8)M this effect was associated with the accumulation of H295R cells in S-phase, whereas at concentrations of 10(-9)-10(-10)M a prolonged G1-phase and reduced transition into S-phase were observed. Our findings demonstrate for the first time the anti-proliferative action of L-783,277 on the human adrenocortical H295R cell line.

  12. Cytochrome b5 Expression in Gonadectomy-induced Adrenocortical Neoplasms of the Domestic Ferret (Mustela putorius furo)

    PubMed Central

    Wagner, S.; Kiupel, M.; Peterson, R.A.; Heikinheimo, M.; Wilson, D.B.

    2008-01-01

    Whereas the adrenal glands of healthy ferrets produce only limited amounts of androgenic steroids, adrenocortical neoplasms that arise in neutered ferrets typically secrete androgens or their derivative, estrogen. The 17,20-lyase activity of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17) must increase to permit androgen biosynthesis in neoplastic adrenal tissue. We screened ferret adrenocortical tumor specimens for expression of cytochrome b5 (cyt b5), an allosteric regulator that selectively enhances the 17,20-lyase activity of P450c17. Cyt b5 immunoreactivity was evident in 24 of 25 (96 %) adrenocortical adenomas/carcinomas from ferrets with signs of ectopic sex steroid production. Normal adrenocortical cells lacked cyt b5, which may account for the low production of adrenal androgens in healthy ferrets. Other markers characteristic of gonadal somatic cells, such as luteinizing hormone receptor, aromatase, and GATA4, were co-expressed with cyt b5 in some of the tumors. We conclude that cyt b5 is upregulated during gonadectomy-induced adrenocortical neoplasia and is a marker of androgen synthetic potential in these tumors. PMID:18587089

  13. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  14. Expression of neuropeptide hormone receptors in human adrenal tumors and cell lines: antiproliferative effects of peptide analogues.

    PubMed

    Ziegler, C G; Brown, J W; Schally, A V; Erler, A; Gebauer, L; Treszl, A; Young, L; Fishman, L M; Engel, J B; Willenberg, H S; Petersenn, S; Eisenhofer, G; Ehrhart-Bornstein, M; Bornstein, S R

    2009-09-15

    Peptide analogues targeting various neuropeptide receptors have been used effectively in cancer therapy. A hallmark of adrenocortical tumor formation is the aberrant expression of peptide receptors relating to uncontrolled cell proliferation and hormone overproduction. Our microarray results have also demonstrated a differential expression of neuropeptide hormone receptors in tumor subtypes of human pheochromocytoma. In light of these findings, we performed a comprehensive analysis of relevant receptors in both human adrenomedullary and adrenocortical tumors and tested the antiproliferative effects of peptide analogues targeting these receptors. Specifically, we examined the receptor expression of somatostatin-type-2 receptor, growth hormone-releasing hormone (GHRH) receptor or GHRH receptor splice variant-1 (SV-1) and luteinizing hormone-releasing hormone (LHRH) receptor at the mRNA and protein levels in normal human adrenal tissues, adrenocortical and adrenomedullary tumors, and cell lines. Cytotoxic derivatives of somatostatin AN-238 and, to a lesser extent, AN-162, reduced cell numbers of uninduced and NGF-induced adrenomedullary pheochromocytoma cells and adrenocortical cancer cells. Both the splice variant of GHRH receptor SV-1 and the LHRH receptor were also expressed in adrenocortical cancer cell lines but not in the pheochromocytoma cell line. The GHRH receptor antagonist MZ-4-71 and LHRH antagonist Cetrorelix both significantly reduced cell growth in the adrenocortical cancer cell line. In conclusion, the expression of receptors for somatostatin, GHRH, and LHRH in the normal human adrenal and in adrenal tumors, combined with the growth-inhibitory effects of the antitumor peptide analogues, may make possible improved treatment approaches to adrenal tumors.

  15. A case of pediatric virilizing adrenocortical tumor resulting in hypothalamic-pituitary activation and central precocious puberty following surgical removal.

    PubMed

    Miyoshi, Yoko; Oue, Takaharu; Oowari, Mitsugu; Soh, Hideki; Tachibana, Makiko; Kimura, Sadami; Kiyohara, Yuki; Yamada, Hiroyuki; Bessyo, Kazuhiko; Mushiake, Sotaro; Homma, Keiko; Hasegawa, Tomonobu; Sasano, Hironobu; Ozono, Keiichi

    2009-01-01

    We present a 6-year-old boy with a virilizing adrenocortical tumor who initially presented with peripheral precocious puberty. Development of facial acne, pubic hair and a growth spurt were noted at the age of five. A low-pitched voice as well as maturation of external genitalia was noted at the age of six. Both serum and urinary levels of adrenal androgens were elevated. Abdominal computed tomography revealed a large right suprarenal mass and he underwent surgical resection without any complications. The histological diagnosis was adrenocortical carcinoma according to the criteria of Weiss. Following surgical removal of the androgen-producing tumor, the patient subsequently developed hypothalamic-pituitary activation and demonstrated central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist in order to delay further pubertal progression. Clinical follow-up of potential secondary effects of excess hormone secretion after removal is important in some pediatric patients with virilizing adrenocortical tumor.

  16. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  17. Blockade of T-type voltage-dependent Ca2+ channels by benidipine, a dihydropyridine calcium channel blocker, inhibits aldosterone production in human adrenocortical cell line NCI-H295R.

    PubMed

    Akizuki, Osamu; Inayoshi, Atsushi; Kitayama, Tetsuya; Yao, Kozo; Shirakura, Shiro; Sasaki, Katsutoshi; Kusaka, Hideaki; Matsubara, Masahiro

    2008-04-28

    Benidipine, a long-lasting dihydropyridine calcium channel blocker, is used for treatment of hypertension and angina. Benidipine exerts pleiotropic pharmacological features, such as renoprotective and cardioprotective effects. In pathophysiological conditions, the antidiuretic hormone aldosterone causes development of renal and cardiovascular diseases. In adrenal glomerulosa cells, aldosterone is produced in response to extracellular potassium, which is mainly mediated by T-type voltage-dependent Ca2+ channels. More recently, it has been demonstrated that benidipine inhibits T-type Ca2+ channels in addition to L-type Ca2+ channels. Therefore, effect of calcium channel blockers, including benidipine, on aldosterone production and T-type Ca2+ channels using human adrenocortical cell line NCI-H295R was investigated. Benidipine efficiently inhibited KCl-induced aldosterone production at low concentration (3 and 10 nM), with inhibitory activity more potent than other calcium channel blockers. Patch clamp analysis indicated that benidipine concentration-dependently inhibited T-type Ca2+ currents at 10, 100 and 1000 nM. As for examined calcium channel blockers, inhibitory activity for T-type Ca2+ currents was well correlated with aldosterone production. L-type specific calcium channel blockers calciseptine and nifedipine showed no effect in both assays. These results indicate that inhibition of T-type Ca2+ channels is responsible for inhibition of aldosterone production in NCI-H295R cells. Benidipine efficiently inhibited KCl-induced upregulation of 11-beta-hydroxylase mRNA and aldosterone synthase mRNA as well as KCl-induced Ca2+ influx, indicating it as the most likely inhibition mechanism. Benidipine partially inhibited angiotensin II-induced aldosterone production, plus showed additive effects when used in combination with the angiotensin II type I receptor blocker valsartan. Benidipine also partially inhibited angiotensin II-induced upregulation of the above m

  18. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295r adrenocortical carcinoma cells

    SciTech Connect

    Letcher, Robert J. . E-mail: robert.letcher@ec.gc.ca; Sanderson, J. Thomas; Bokkers, Abraham; Giesy, John P.; Berg, Martin van den

    2005-12-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 {mu}M) compared with 8% for BPA relative to the maximum induction by 17{beta}-estradiol (E2, 1 {mu}M). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 {mu}M, virtually 100% inhibition of vtg at 20 {mu}M, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 {mu}M). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 {mu}M, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 {mu}M), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 {mu}M. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 {mu}M) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 {mu}M) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At

  19. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295R adrenocortical carcinoma cells.

    PubMed

    Letcher, Robert J; Sanderson, J Thomas; Bokkers, Abraham; Giesy, John P; van den Berg, Martin

    2005-12-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 microM) compared with 8% for BPA relative to the maximum induction by 17beta-estradiol (E2, 1 microM). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 microM, virtually 100% inhibition of vtg at 20 microM, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 microM). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 microM, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 microM), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 microM. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 microM) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 microM) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At

  20. Celecoxib reduces glucocorticoids in vitro and in a mouse model with adrenocortical hyperplasia

    PubMed Central

    Liu, Sisi; Saloustros, Emmanouil; Berthon, Annabel; Starost, Matthew F.; Sahut-Barnola, Isabelle; Salpea, Paraskevi; Szarek, Eva; Faucz, Fabio R.; Martinez, Antoine; Stratakis, Constantine A.

    2015-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to adrenocorticotropin hormone (ACTH) - independent Cushing’s syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP–dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase-2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with Celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1,500 mg/kg Celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, Celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, Celecoxib caused histological changes that reversed, at least in part, BAH and this was associated with a reduction of corticosterone levels. PMID:26438728

  1. Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment

    PubMed Central

    Qin, Liang; Xu, Tianyuan; Xia, Leilei; Wang, Xianjin; Zhang, Xiang; Zhang, Xiaohua; Zhu, Zhaowei; Zhong, Shan; Wang, Chuandong; Shen, Zhoujun

    2016-01-01

    Background It has been demonstrated that chloroquine (CQ) enhances the efficacy of chemotherapy. However, little is known about whether CQ could enhance the efficacy of cisplatin (DDP) in the treatment of adrenocortical carcinoma (ACC). In this study, we explore the efficacy and mechanism by which CQ affects DDP sensitivity in human ACC in vitro and in vivo. Methods The autophagic gene Beclin-1 expression was detected by immunohistochemistry, and the protein levels were analyzed using immunoblotting assays of ACC tissues and normal adrenal cortex tissues. The ACC SW13 cells were treated with DDP and/or CQ. The cell viability assay was performed using the MTT method. Qualitative autophagy detection was performed by monodansylcadaverine staining of autophagic vacuoles. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to count cell apoptosis by flow cytometry. The autophagy-related protein (Beclin-1, LC3, and p62) and apoptosis relative protein (Bax and Bcl-2) levels were evaluated with Western blot analysis. Furthermore, a murine model of nude BALB/c mice bearing SW13 cell xenografts was established to evaluate the efficacy of concomitant therapy. Results The expression of the autophagic gene Beclin-1 was significantly downregulated in ACC tissues compared to normal adrenal cortex tissues. The Beclin-1 protein level in ACC tissues was lower than that in normal adrenal cortex tissues (P<0.05). In vitro concomitant therapy (DDP and CQ) was more effective in restraining SW13 cell proliferation. DDP could promote cell apoptosis and induce autophagy in SW13 cells. Concomitant therapy further promoted cell apoptosis by inhibiting autophagy. In vivo, we found that concomitant therapy was more potent than DDP monotherapy in inhibiting the growth of xenografted tumors and prolonging the survival of tumor-bearing mice. Conclusion The antitumor ability of DDP was related to autophagy activity, and the concomitant therapy (DDP and CQ) could be an

  2. Laparoscopic Adrenalectomy for Large Adrenocortical Carcinoma

    PubMed Central

    al Qadhi, Hani; al Wahaibi, Khalifa; Rizvi, Syed G.

    2015-01-01

    Background: Adrenocortical cancer (ACC) is a rare disease that is difficult to treat. Laparoscopic adrenalectomy (LA) is performed, even for large adrenocortical carcinomas. However, the oncological effectiveness of LA remains unclear. This review presents the current knowledge of the feasibility and oncological effectiveness of laparoscopic surgery for ACC, with an analysis of data for outcomes and other parameters. Database: A systematic review of the literature was performed by searching the PubMed and Medline databases for all relevant articles in English, published between January 1992 and August 2014 on LA for adrenocortical carcinoma. Discussion: The search resulted in retrieval of 29 studies, of which 10 addressed the outcome of LA versus open adrenalectomy (OA) and included 844 patients eligible for this review. Among these, 206 patients had undergone LA approaches, and 638 patients had undergone OA. Among the 10 studies that compared the outcomes obtained with LA and OA for ACC, 5 noted no statistically significant difference between the 2 groups in the oncological outcomes of recurrence and disease-free survival, whereas the remaining 5 reported inferior outcomes in the LA group. Using a paired t test for statistical analysis, except for tumor size, we found no significant difference in local recurrence, peritoneal carcinomatosis, positive resection margin, and time to recurrence between the LA and OA groups. The overall mean tumor size in patients undergoing LA and OA was 7.1 and 11.2 cm, respectively (P = .0003), and the mean overall recurrence was 61.5 and 57.9%, respectively. The outcome of LA is believed to depend to a large extent on the size and stage of the lesion (I and II being favorable) and the surgical expertise in the center where the patient undergoes the operation. However, the present review shows no difference in the outcome between the 2 approaches across all stages. A poor outcome is likely to result from inadequate surgery

  3. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line.

    PubMed

    Mele, Pablo G; Duarte, Alejandra; Paz, Cristina; Capponi, Alessandro; Podestá, Ernesto J

    2012-07-01

    Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.

  4. The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

    PubMed Central

    2016-01-01

    Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and 17β-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases (3β-HSD2 and 17β-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and 100 μg/mL) showed a significant decrease in 17β-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and 17β-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/ Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and 17β-HSD1, and lead to a decrease in 17β-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer. PMID:27188280

  5. Adrenocortical suppression in highland chick embryos is restored during incubation at sea level.

    PubMed

    Salinas, Carlos E; Villena, Mercedes; Blanco, Carlos E; Giussani, Dino A

    2011-01-01

    By combining the chick embryo model with incubation at high altitude, this study tested the hypothesis that development at high altitude is related to a fetal origin of adrenocortical but not adrenomedullary suppression and that hypoxia is the mechanism underlying the relationship. Fertilized eggs from sea-level or high altitude hens were incubated at sea level or high altitude. Fertilized eggs from sea-level hens were also incubated at altitude with oxygen supplementation. At day 20 of incubation, embryonic blood was taken for measurement of plasma corticotropin, corticosterone, and Po(2). Following biometry, the adrenal glands were collected and frozen for measurement of catecholamine content. Development of chick embryos at high altitude led to pronounced adrenocortical blunting, but an increase in adrenal catecholamine content. These effects were similar whether the fertilized eggs were laid by sea-level or high altitude hens. The effects of high altitude on the stress axes were completely prevented by incubation at high altitude with oxygen supplementation. When chick embryos from high altitude hens were incubated at sea level, plasma hormones and adrenal catecholamine content were partially restored toward levels measured in sea-level chick embryos. There was a significant correlation between adrenocortical blunting and elevated adrenal catecholamine content with both asymmetric growth restriction and fetal hypoxia. The data support the hypothesis tested and provide evidence to isolate the direct contribution of developmental hypoxia to alterations in the stress system.

  6. ACTH-Independent Cushing’s Syndrome with Bilateral Micronodular Adrenal Hyperplasia and Ectopic Adrenocortical Adenoma

    PubMed Central

    Louiset, Estelle; Gobet, Françoise; Libé, Rossella; Horvath, Anelia; Renouf, Sylvie; Cariou, Juliette; Rothenbuhler, Anya; Bertherat, Jérôme; Clauser, Eric; Grise, Philippe; Stratakis, Constantine A.; Kuhn, Jean-Marc; Lefebvre, Hervé

    2010-01-01

    Context: Bilateral micronodular adrenal hyperplasia and ectopic adrenocortical adenoma are two rare causes of ACTH-independent Cushing’s syndrome. Objective: The aim of the study was to evaluate a 35-yr-old woman with ACTH-independent hypercortisolism associated with both micronodular adrenal hyperplasia and ectopic pararenal adrenocortical adenoma. Design and Setting: In vivo and in vitro studies were performed in a University Hospital Department and academic research laboratories. Intervention: Mutations of the PRKAR1A, PDE8B, and PDE11A genes were searched for in leukocytes and adrenocortical tissues. The ability of adrenal and adenoma tissues to synthesize cortisol was investigated by immunohistochemistry, quantitative PCR, and/or cell culture studies. Main Outcome Measure: Detection of 17α-hydroxylase and 21-hydroxylase immunoreactivities, quantification of CYP11B1 mRNA in adrenal and adenoma tissues, and measurement of cortisol levels in supernatants by radioimmunological assays were the main outcomes. Results: Histological examination of the adrenals revealed nonpigmented micronodular cortical hyperplasia associated with relative atrophy of internodular cortex. No genomic and/or somatic adrenal mutations of the PRKAR1A, PDE8B, and PDE11A genes were detected. 17α-Hydroxylase and 21-hydroxylase immunoreactivities as well as CYP11B1 mRNA were detected in adrenal and adenoma tissues. ACTH and dexamethasone activated cortisol secretion from adenoma cells. The stimulatory action of dexamethasone was mediated by a nongenomic effect involving the protein kinase A pathway. Conclusion: This case suggests that unknown molecular defects can favor both micronodular adrenal hyperplasia and ectopic adrenocortical adenoma associated with Cushing’s syndrome. PMID:19915020

  7. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  8. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    SciTech Connect

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-05-15

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21, 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.

  9. sHDL Nanoparticles: A Novel Therapeutic Strategy for Adrenocortical Carcinomas

    PubMed Central

    Subramanian, Chitra; Kuai, Rui; Zhu, Qing; White, Peter; Moon, James; Schwendeman, Anna; Cohen, Mark S.

    2015-01-01

    Background Chemotherapeutic strategies for adrenocortical carcinoma (ACC) carry significant toxicities. Cholesterol is critical for ACC cell growth and steroidogenesis and ACC cells over-express scavenger receptor BI (SR-BI) that uptakes cholesterol from circulating high-density lipoprotein (HDL). We hypothesize that cholesterol-free synthetic-HDL nanoparticles (sHDL) will deplete cholesterol and synergize with chemotherapeutics to achieve enhanced anticancer effects at lower (less toxic) drug levels. Methods Anti proliferative efficacy of ACC cells for the combinations of sHDL with chemotherapeutics was tested by cell-Titer Glo. Cortisol levels were measured from the culture media. Effect on steroidogenesis was measured by RT-PCR. Induction of apoptosis was evaluated by flow cytometry. Results Combination-Index (CI) for sHDL and either etoposide(E), cisplatin(P) or mitotane(M) demonstrated synergy (CI<1) for anti-proliferation. sHDL alone or in combination with chemo drugs was able to reduce cortisol production by 70-90% compared to cisplatin alone or controls (p<0.01). RT-PCR indicated significant inhibition of steroidogenic enzymes for sHDL (p<0.01 vs. no sHDL). Combination therapy with sHDL increased apoptosis by 30-50% compared to drug or sHDL alone (p<0.03) confirmed by mitochondrial potential decrease. Conclusion sHDL can act synergistically and lower the amount of M/E/P needed for anticancer efficacy in ACC in part due to cholesterol starvation. This novel treatment strategy warrants further investigation translationally. PMID:26582501

  10. Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma.

    PubMed

    de Sousa, Gabriela Resende Vieira; Ribeiro, Tamaya C; Faria, Andre M; Mariani, Beatriz M P; Lerario, Antonio M; Zerbini, Maria Claudia N; Soares, Iberê C; Wakamatsu, Alda; Alves, Venancio A F; Mendonca, Berenice B; Fragoso, Maria Candida B V; Latronico, Ana Claudia; Almeida, Madson Q

    2015-09-08

    Low DICER1 expression was associated with poor outcome in several cancers. Recently, hot-spot DICER1 mutations were found in ovarian tumors, and TARBP2 truncating mutations in tumor cell lines with microsatellite instability. In this study, we assessed DICER1 e TRBP protein expression in 154 adult adrenocortical tumors (75 adenomas and 79 carcinomas). Expression of DICER1 and TARBP2 gene was assessed in a subgroup of 61 tumors. Additionally, we investigated mutations in metal biding sites located at the RNase IIIb domain of DICER1 and in the exon 5 of TARBP2 in 61 tumors. A strong DICER1 expression was demonstrated in 32% of adenomas and in 51% of carcinomas (p = 0.028). Similarly, DICER1 gene overexpression was more frequent in carcinomas (60%) than in adenomas (23%, p = 0.006). But, among adrenocortical carcinomas, a weak DICER1 expression was significantly more frequent in metastatic than in non-metastatic adrenocortical carcinomas (66% vs. 31%; p = 0.002). Additionally, a weak DICER1 expression was significantly correlated with a reduced overall (p = 0.004) and disease-free (p = 0.005) survival. In the multivariate analysis, a weak DICER1 expression (p = 0.048) remained as independent predictor of recurrence. Regarding TARBP2 gene, its protein and gene expression did not correlate with histopathological and clinical parameters. No variant was identified in hot spot areas of DICER1 and TARBP2. In conclusion, a weak DICER1 protein expression was associated with reduced disease-free and overall survival and was a predictor of recurrence in adrenocortical carcinomas.

  11. Morphological changes in the pituitary-adrenocortical axis in natives of La Paz

    NASA Astrophysics Data System (ADS)

    Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime

    1991-03-01

    Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.

  12. Stochastic Gompertz model of tumour cell growth.

    PubMed

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  13. Temperature and adrenocortical responses in rhesus monkeys exposed to microwaves

    SciTech Connect

    Lotz, W.G.; Podgorski, R.P.

    1982-12-01

    To determine if the endocrine response to microwave exposure was similar in a primate to that reported for other animals, rectal temperature and plasma levels of cortisol, thyroxine (T4), and growth hormone (GH) were measured in rhesus monkeys exposed to 1.29-GHz microwave radiation. Exposures were carried out under far-field conditions with the monkey restrained in a chair. Incident power densities of 0, 20, 28, and 38 mW/sq cm were used, with corresponding specific absorption rates of 0, 2.1, 3.0, and 4.1 W/kg. Blood samples were taken hourly via an indwelling jugular venous catheter over a 24-h period before, during, and after an 8-h exposure. Rectal temperature increased an average of 0.5, 0.7, and 1.7 C for the three intensities used. No changes in T4 or GH were observed. Cortisol levels were increased during exposure to 38 mW/sq cm. It was concluded that the temperature and adrenocortical responses to microwave exposure of the rhesus monkey are similar to the corresponding responses of other animals.

  14. The challenge of developmental therapeutics for adrenocortical carcinoma

    PubMed Central

    Costa, Ricardo; Carneiro, Benedito A.; Tavora, Fabio; Pai, Sachin G.; Kaplan, Jason B.; Chae, Young Kwang; Chandra, Sunandana; Kopp, Peter A.; Giles, Francis J.

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare disease with an estimated incidence of only 0.7 new cases per million per year. Approximately 30-70% of the patients present with advanced disease with very poor prognosis and without effective therapeutic options. In the recent years, unprecedented progresses in cancer biology and genomics have fostered the development of numerous targeted therapies for various malignancies. Immunotherapy has also transformed the treatment landscape of malignancies such as melanoma, among others. However, these advances have not brought meaningful benefits for patients with ACC. Extensive genomic analyses of ACC have revealed numerous signal transduction pathway aberrations (e.g., insulin growth factor receptor and Wnt/β-catenin pathways) that play a central role in pathophysiology. These molecular alterations have been explored as potential therapeutic targets for drug development. This manuscript summarizes recent discoveries in ACC biology, reviews the results of early clinical studies with targeted therapies, and provides the rationale for emerging treatment strategies such as immunotherapy. PMID:27102148

  15. Network analysis reveals potential markers for pediatric adrenocortical carcinoma

    PubMed Central

    Kulshrestha, Anurag; Suman, Shikha; Ranjan, Rakesh

    2016-01-01

    Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings. PMID:27555782

  16. Maternal Dietary Restriction During the Periconceptional Period in Normal-Weight or Obese Ewes Results in Adrenocortical Hypertrophy, an Up-Regulation of the JAK/STAT and Down-Regulation of the IGF1R Signaling Pathways in the Adrenal of the Postnatal Lamb

    PubMed Central

    Zhang, Song; Morrison, Janna L.; Gill, Amreet; Rattanatray, Leewen; MacLaughlin, Severence M.; Kleemann, David; Walker, Simon K.

    2013-01-01

    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth. PMID:24108072

  17. Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation

    PubMed Central

    Hantel, Constanze; Shapiro, Igor; Poli, Giada; Chiapponi, Costanza; Bidlingmaier, Martin; Reincke, Martin; Luconi, Michaela; Jung, Sara; Beuschlein, Felix

    2016-01-01

    In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC. PMID:27764813

  18. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  19. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  20. Mitotane treatment for adrenocortical carcinoma: an overview.

    PubMed

    De Francia, S; Ardito, A; Daffara, F; Zaggia, B; Germano, A; Berruti, A; Di Carlo, F

    2012-03-01

    Adrenocortical carcinoma (ACC) is a rare aggressive endocrine neoplasm characterized by a 5-year survival of less than 50%. Due to the widespread use of imaging techniques in clinics, ACC is increasingly recognized as an incidentally discovered tumor. Mostly characterized by poor prognosis, ACC is often diagnosed at an advanced stage of disease. Early diagnosis is uncommon; when diagnosed, ACCs are usually large and have invaded adjacent organs, even if metastatic spread to distant sites can be absent. Complete surgical resection is the only potentially curative treatment for patients with localized disease; however, due to a recurrence rate of 50-70% after apparent radical surgery, there is a strong rationale for a concomitant systemic treatment. Adrenolytic therapy with mitotane (o,p›-DDD), administered alone or in combination with others antineoplastic agents, is the primary treatment for patients with advanced ACC and is increasingly used also in an adjuvant setting, even if controversy exists on this issue due to the limitations of the available literature. Despite being in use for many years, the rarity of ACC precluded the organization of randomized trials; thus, many areas of uncertainty and controversy remain regarding the role of this old drug in the clinical management of patients with ACC. The purpose of this paper is to review the current evidence on mitotane treatment in patients with advanced disease and in ACC patients after complete surgical resection as adjuvant treatment.

  1. Aging effects on oxidative phosphorylation in rat adrenocortical mitochondria.

    PubMed

    Solinas, Paola; Fujioka, Hisashi; Radivoyevitch, Tomas; Tandler, Bernard; Hoppel, Charles L

    2014-06-01

    Does aging in itself lead to alteration in adrenocortical mitochondrial oxidative phosphorylation? Mitochondria from Fischer 344 (F344) rats (6 and 24 months old), Brown Norway rats (6 and 32 months old) and F344-Brown Norway hybrid rats (6 and 30 months old) were compared. Mitochondria were isolated from extirpated adrenal cortex. The yields of mitochondria were quantitatively similar in all rat strains irrespective of age. In order to assess the activity of each mitochondrial complex, several different substrates were tested and the rate of oxidative phosphorylation measured. Aging does not affect mitochondrial activity except in the F344 rat adrenal cortex where the maximal ADP-stimulated oxidative phosphorylation decreased with age. We hypothesize that impaired synthesis of steroid hormones by the adrenal cortex with age in F344 rats might be due to decreased adrenocortical mitochondrial oxidative phosphorylation. We conclude that aging results in adrenocortical mitochondria effects that are non-uniform across different rat strains.

  2. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  3. ACAT-selective and nonselective DGAT1 inhibition: adrenocortical effects--a cross-species comparison.

    PubMed

    Floettmann, Jan Eike; Buckett, Linda K; Turnbull, Andrew V; Smith, Tim; Hallberg, Carina; Birch, Alan; Lees, David; Jones, Huw B

    2013-01-01

    Acyl-coenzyme A: cholesterol O-Acyltransferase (ACAT) and Acyl-coenzyme A: diacylglycerol O-acyltransferase (DGAT) enzymes play important roles in synthesizing neutral lipids, and inhibitors of these enzymes have been investigated as potential treatments for diabetes and other metabolic diseases. Administration of a Acyl-coenzyme A: diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor with very limited cellular selectivity over ACAT resulted in significant adrenocortical degenerative changes in dogs. These changes included macrosteatotic vacuolation associated with adrenocyte cell death in the zonae glomerulosa and fasciculata and minimal to substantial mixed inflammatory cell infiltration and were similar to those described previously for some ACAT inhibitors in dogs. In the mouse, similar but only transient adrenocortical degenerative changes were seen as well as a distinctive nondegenerative reduction in cortical fine vacuolation. In the marmoset, only the distinctive nondegenerative reduction in cortical fine vacuolation was observed, suggesting that the dog, followed by the mouse, is the most sensitive species for cortical degeneration. Biochemical analysis of adrenal cholesterol and cholesteryl ester indicated that the distinctive reduction in cortical fine vacuolation correlated with a significant reduction in cholesteryl ester in the mouse and marmoset, whereas no significant reduction in cholestryl ester, but an increase in free cholesterol was observed in dogs. Administration of a DGAT1 inhibitor with markedly improved selectivity over ACAT to the marmoset and the mouse resulted in no adrenal pathology at exposures sufficient to cause substantial DGAT1 but not ACAT inhibition, thereby implicating ACAT rather than DGAT1 inhibition as the probable cause of the observed adrenal changes. Recognizing that the distinctive nondegenerative reduction in cortical fine vacuolation in the mouse could be used as a histopathological biomarker for an in vivo model of

  4. How is Adrenocortical Cancer being Managed in the UK?

    PubMed Central

    Aspinall, Sebastian R; Imisairi, AH; Bliss, RD; Scott-Coombes, D; Harrison, BJ; Lennard, TWJ

    2009-01-01

    INTRODUCTION Adrenocortical carcinomas are rare. This case series is reported to give an overview of how adrenocortical carcinoma is currently managed in the UK. PATIENTS AND METHODS A retrospective review was made of case notes from patients with adrenocortical carcinomas presenting to the authors (TWJL, RDB, BJH, and DS-C) over the past 10 years in Newcastle, Sheffield and Cardiff. RESULTS Newcastle treated twelve, Sheffield eleven and Cardiff seven cases. The median follow-up was 25.5 months (range, 1–102 months). All tumours were greater than 5 cm in diameter. The majority presented with symptoms of hormone excess. Adrenalectomy was performed in 83% – this was radical in 30% and followed by excision of recurrence in 13%. Adjuvant mitotane was given in 64% of patients, in combination with cytotoxic chemotherapy in 20%. One-third of patients did not receive any adjuvant therapy. There was no significant difference in survival between the three centres. The majority of patients (57%) died during the period of follow-up of this study. The median survival was 37 months (range, 2–102 months). CONCLUSIONS The size of tumour, stage and mode of presentation, age and overall survival of patients in this study are comparable to published series of adrenocortical carcinomas from major endocrine surgical centres world-wide. Despite controversies about benefits, adjuvant mitotane was used in the majority of cases, whereas cytotoxic chemotherapy was only used in the minority. The exact role of adjuvant therapy in the management of adrenocortical carcinoma is not as well established as for other more common malignancies. Establishing a database for adrenocortical carcinomas in the UK would contribute to our understanding of the management of this disease. PMID:19558758

  5. Chronic effects of mercuric chloride ingestion on rat adrenocortical function

    SciTech Connect

    Agrawal, R.; Chansouria, J.P.N. )

    1989-09-01

    Mercurial contamination of environment has increased. Mercury accumulates in various organs and adversely affects their functions. Some of the most prominent toxic effects of inorganic mercury compounds include neurotoxicity, hepatotoxicity and nephrotoxicity. Besides this, mercury has also been reported to affect various endocrine glands like pituitary, thyroid, gonadal and adrenal glands. There have been no reports on the toxic effects of chronic oral administration of varying doses of mercuric chloride on adrenocortical function in albino rats. The present work was undertaken to study the adrenocortical response to chronic oral administration of mercuric chloride of varying dose and duration in albino rats.

  6. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  7. Cell metabolism: an essential link between cell growth and apoptosis

    PubMed Central

    Mason, Emily F.; Rathmell, Jeffrey C.

    2010-01-01

    Growth factor-stimulated or cancerous cells require sufficient nutrients to meet the metabolic demands of cell growth and division. If nutrients are insufficient, metabolic checkpoints are triggered that lead to cell cycle arrest and the activation of the intrinsic apoptotic cascade through a process dependent on the Bcl-2 family of proteins. Given the connections between metabolism and apoptosis, the notion of targeting metabolism to induce cell death in cancer cells has recently garnered much attention. However, the signaling pathways by which metabolic stresses induce apoptosis have not as of yet been fully elucidated. Thus, the best approach to this promising therapeutic avenue remains unclear. This review will discuss the intricate links between metabolism, growth, and intrinsic apoptosis and will consider ways in which manipulation of metabolism might be exploited to promote apoptotic cell death in cancer cells. PMID:20816705

  8. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment

    PubMed Central

    Libé, Rossella

    2015-01-01

    Adrenocortical carticnoma (ACC) is a rare malignancy with an incidence of 0.7–2.0 cases/million habitants/year. The diagnosis of malignancy relies on careful investigations of clinical, biological, and imaging features before surgery and pathological examination after tumor removal. Most patients present with steroid hormone excess or abdominal mass effects, but 15% of patients with ACC is initially diagnosed incidentally. After the diagnosis, in order to assess the ACC prognosis and establish an adequate basis for treatment decisions different tools are proposed. The stage classification proposed by the European Network for the Study of Adrenal Tumors (ENSAT) is recommended. Pathology reports define the Weiss score, the resection status and the proliferative index, including the mitotic count and the Ki67 index. As far as the treatment is concerned, in case of tumor limited to the adrenal gland, the complete resection of the tumor is the first option. Most patients benefit from adjuvant mitotane treatment. In metastatic disease, mitotane is the cornerstone of initial treatment, and cytotoxic drugs should be added in case of progression. Recently, the First International Randomized (FIRM-ACT) Trial in metastatic ACC reported the association between mitotane and etoposide/doxorubicin/cisplatin (EDP) as the new standard in first line treatment of ACC. In last years, new targeted therapies, including the IGF-1 receptor inhibitors, have been investigated, but their efficacy remains limited. Thus, new treatment concepts are urgently needed. The ongoing “omic approaches” and next-generation sequencing will improve our understanding of the pathogenesis and hopefully will lead to better therapies. PMID:26191527

  9. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    PubMed

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  10. Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis.

    PubMed

    Stojadinovic, Alexander; Brennan, Murray F; Hoos, Axel; Omeroglu, Atilla; Leung, Denis H Y; Dudas, Maria E; Nissan, Aviram; Cordon-Cardo, Carlos; Ghossein, Ronald A

    2003-08-01

    We compared histomorphological features and molecular expression profiles of adrenocortical adenomas (ACAd) and carcinomas (ACCa). A critical histopathological review (mean, 11 slides per patient) was conducted of 37 ACAd and 67 ACCa. Paraffin-embedded tissue cores of ACAd (n = 33) and ACCa (n = 38) were arrayed in triplicate on tissue microarrays. Expression profiles of p53, mdm-2, p21, Bcl-2, cyclin D1, p27, and Ki-67 were investigated by immunohistochemistry and correlated with histopathology and patient outcome using standard statistical methodology. Median follow-up period was 5 years. Tumor necrosis, atypical mitoses, and >1 mitosis per 50 high-power fields were factors that were highly specific for ACCa (P <.001). Number (0 to 4) of unfavorable markers [Ki-67 (+), p21 (+), p27 (+), mdm-2(-)] expressed was significantly associated with mitotic activity and morphologic index (i.e., number of adverse morphologic features) and highly predictive of malignancy (P <.001). Ki-67 overexpression occurred in 0 ACAd and 36% ACCa (P <.001) and was significantly associated with mitotic rate and unfavorable morphologic index (P <.001). Tumor necrosis, atypical mitoses, >5 mitoses per 50 high-power fields, sinusoidal invasion, histologic index of >5, and presence of more than two unfavorable molecular markers were associated significantly with metastasis in ACCa. Well-established histopathologic criteria and Ki-67 can specifically distinguish ACCAd from ACCa. Tumor cell proliferation (Ki-67) correlates with mitotic activity and morphologic index. Tumor morphology is a better predictor of metastatic risk in ACCa than current immunohistochemistry-detected cell cycle regulatory and proliferation-associated proteins.

  11. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  12. Control of cell cycle and cell growth by molecular chaperones.

    PubMed

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  13. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    PubMed Central

    Longatto-Filho, Adhemar; Faria, André M.; Fragoso, Maria C. B. V.; Lovisolo, Silvana M.; Lerário, Antonio M.; Almeida, Madson Q.

    2015-01-01

    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients' clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis. PMID:26587828

  14. Multi-column chromatography of urinary steriods and adrenocortical dysfunction.

    PubMed

    Sayegh, J F; Vestergaard, P

    1978-01-01

    The potential of the multi-column assay for urinary neutral steroids in work with samples from patients with adrenocortical pathology is demonstrated through analyses performed on urine samples from Cushing and congenital adrenal hyperplasia cases, after modification of the routine methodology to include the quantitation of additional steroids of particular importance for pathological samples.

  15. Stress, reproduction, and adrenocortical modulation in amphibians and reptiles.

    PubMed

    Moore, Ignacio T; Jessop, Tim S

    2003-01-01

    While the hypothalamo-pituitary-adrenocortical (HPA) response to stress appears to be conserved in vertebrates, the manner in which it is activated and its actions vary. We examine two trends in the stress biology literature that have been addressed in amphibian and reptilian species: (1). variable interactions among stress, corticosterone, and reproduction and (2). adrenocortical modulation. In the first topic we examine context-dependent interactions among stress, corticosterone, and reproduction. An increasing number of studies report positive associations between reproduction and corticosterone that contradict the generalization that stress inhibits reproduction. Moderately elevated levels of stress hormones appear to facilitate reproduction by mobilizing energy stores. In contrast, pronounced activation of the HPA axis and extremely elevated levels of stress hormones appear to inhibit reproduction. Much of these contrasting effects of stress and reproduction can be explained by expanding the Energetics-Hormone Vocalization Model, proposed for anuran calling behavior, to other taxa. In the second topic, a number of amphibians and reptiles modulate their HPA stress response. Adrenocortical modulation can occur at multiple levels and due to a variety of factors. However, we have little information as to the physiological basis for the variability. We suggest that several ecologically based ideas, such as variability in the length of the breeding season and lifetime reproductive opportunities, can be used to explain the utility of adrenocortical modulation in these taxa.

  16. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia

    PubMed Central

    Villares Fragoso, Maria Candida Barisson; Wanichi, Ingrid Quevedo; Cavalcante, Isadora Pontes; Mariani, Beatriz Marinho de Paula

    2016-01-01

    Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune–Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1–3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia. PMID:27512387

  17. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia.

    PubMed

    Villares Fragoso, Maria Candida Barisson; Wanichi, Ingrid Quevedo; Cavalcante, Isadora Pontes; Mariani, Beatriz Marinho de Paula

    2016-01-01

    Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune-Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1-3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia.

  18. The cell biology of bone growth.

    PubMed

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  19. Adrenocortical cancer (ACC) - literature overview and own experience.

    PubMed

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers.

  20. Bacterial cell curvature through mechanical control of cell growth

    PubMed Central

    Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668

  1. Monocarboxylate transporter 8 in neuronal cell growth.

    PubMed

    James, S R; Franklyn, J A; Reaves, B J; Smith, V E; Chan, S Y; Barrett, T G; Kilby, M D; McCabe, C J

    2009-04-01

    Thyroid hormones are essential for the normal growth and development of the fetus, and even small alterations in maternal thyroid hormone status during early pregnancy may be associated with neurodevelopmental abnormalities in childhood. Mutations in the novel and specific thyroid hormone transporter monocarboxylate transporter 8 (MCT8) have been associated with severe neurodevelopmental impairment. However, the mechanism by which MCT8 influences neural development remains poorly defined. We have therefore investigated the effect of wild-type (WT) MCT8, and the previously reported L471P mutant, on the growth and function of human neuronal precursor NT2 cells as well as MCT8-null JEG-3 cells. HA-tagged WT MCT8 correctly localized to the plasma membrane in NT2 cells and increased T(3) uptake in both cell types. In contrast, L471P MCT8 was largely retained in the endoplasmic reticulum and displayed no T(3) transport activity. Transient overexpression of WT and mutant MCT8 proteins failed to induce endoplasmic reticular stress or apoptosis. However, MCT8 overexpression significantly repressed cell proliferation in each cell type in both the presence and absence of the active thyroid hormone T(3) and in a dose-dependent manner. In contrast, L471P MCT8 showed no such influence. Finally, small interfering RNA depletion of endogenous MCT8 resulted in increased cell survival and decreased T(3) uptake. Given that T(3) stimulated proliferation in embryonic neuronal NT2 cells, whereas MCT8 repressed cell growth, these data suggest an entirely novel role for MCT8 in addition to T(3) transport, mediated through the modulation of cell proliferation in the developing brain.

  2. Cell metabolism: Growth and environment. Volume I

    SciTech Connect

    Subramanian, T.A.V.

    1986-01-01

    This book describes: Protein metabolism in relation to secondary biosynthesis; nucleic acid metabolism in relation to growth; the spatial organization of secondary metabolism in microbial and plant cells; aflatoxin bioysynthesis; role of oxygenases in the metabolism of phenolic compounds; regulation of secondary metabolism by trace metals; and index.

  3. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL(-1) levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL(-1) ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL(-1) .

  4. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones.

    PubMed

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-11-16

    BACKGROUND The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11b-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. MATERIAL AND METHODS Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. RESULTS Hill's equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57-0.0247×(CDEX-4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. CONCLUSIONS Combined use of DEX and ETO reduced ETO's inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones.

  5. Feminizing adrenocortical adenoma presenting as heterosexual precocious puberty: report of one case.

    PubMed

    Hsiao, Hui-Pin; Chao, Mei-Chyn; Lin, Chao-Yu; Chen, Hsiu-Lin; Chen, Shiu-Lin; Chiou, Shyh-Shin; Chen, Bai-Hsiun

    2005-01-01

    We report on a case of a 2 2/12-year-old boy with heterosexual precocious puberty secondary to a feminizing adrenocortical adenoma. The boy, with no previous history of disease or treatment, presented with bilateral gynecomastia and pubic hair development (Tanner III breasts and Tanner II pubic hair). Plasma estradiol and testosterone were 410.9 pg/ml and 126.2 ng/dl respectively. Basal plasma LH and FSH levels were within the normal range. Bolus i.v. injection of GnRH showed unresponsiveness of LH and FSH. Abdominal echography and abdominal magnetic resonance imaging revealed a well-defined mass at the left suprarenal region (measuring 4.0 x 2.7 x 3.6 cm in size). After removal of the adrenal tumor, the estradiol and testosterone levels fell to normal in 2 weeks. The gynecomastia and pubic hair regressed with time. The pathology of the tumor showed compact pattern with polygonal cells containing moderate eosinophilic cytoplasm without mitotic figure. These findings were consistent with an adrenocortical adenoma secreting estradiol and testosterone as the cause of the patient's heterosexual precocious puberty.

  6. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  7. Laparoscopic bilateral partial adrenalectomy for adrenocortical adenomas causing Cushing's syndrome: report of a case.

    PubMed

    Inoue, Tomoko; Ishiguro, Kiyosuke; Suda, Takako; Ito, Norimasa; Suzuki, Yoshimasa; Taniguchi, Yuji; Ohgi, Shigetsugu

    2006-01-01

    Laparoscopic total adrenalectomy has become a standard technique for small adrenal tumors; however, bilateral adrenalectomy results in postoperative adrenal insufficiency, necessitating lifelong steroid replacement. To preserve adrenocortical function in a 41-year-old woman with bilateral adrenocortical adenoma (BAA) causing Cushing's syndrome, we performed laparoscopic bilateral partial adrenalectomy. We based our preoperative diagnosis of bilateral adrenocortical tumors causing Cushing's syndrome on the results of endocrinological investigations and imaging findings. Thus, we performed lateral transperitoneal laparoscopic bilateral partial adrenalectomy, preserving the adrenal glands, which were normal. Pathological examination of both tumors confirmed the diagnosis of adrenocortical adenoma. The patient had no postoperative complications, and her adrenocortical function was normal without steroid replacement at her 10-month follow-up. This report shows that Cushing's syndrome resulting from bilateral adenomas can be effectively treated by laparoscopic bilateral partial adrenalectomy as a minimally invasive, adrenocortical-preserving operation.

  8. Elastic Deformations During Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  9. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  10. New enzymes involved in the mechanism of action of epidermal growth factor in a clonal strain of Leydig tumor cells.

    PubMed

    Castilla, Rocío; Gadaleta, Mariana; Castillo, Ana Fernanda; Duarte, Alejandra; Neuman, Isabel; Paz, Cristina; Cornejo Maciel, Fabiana; Podestá, Ernesto J

    2008-07-01

    The studies presented herein were designed to investigate the effect of mouse epidermal growth factor (mEGF) on arachidonic acid (AA) release in a clonal strain of cultured murine Leydig cells (designed MA-10). In MA-10 cells, mEGF promotes AA release and metabolism to lipoxygenated products to induce the steroidogenic acute regulatory (StAR) protein. However, the mechanism by which mEGF releases AA in these cells is not totally elucidated. We show that mEGF produces an increment in the mitochondrial AA content in a short-term incubation (30 min). This AA is released by the action of a mitochondrial acyl-CoA thioesterase (Acot2), as demonstrated in experiments in which Acot2 was down or overexpressed. This AA in turn regulates the StAR protein expression, indirect evidence of its metabolism to lipoxygenated products. We also show that mEGF induces the expression (mRNA and protein) of Acot2 and an acyl-CoA synthetase that provides the substrate, arachidonyl-CoA, to Acot2. This effect is also observed in another steroidogenic cell line, the adrenocortical Y1 cells. Taken together, our results show that: 1) mEGF can induce the generation of AA in a specific compartment of the cells, i.e. the mitochondria; 2) mEGF can up-regulate acyl-CoA synthetase and Acot2 mRNA and protein levels; and 3) mEGF-stimulated intramitochondrial AA release leads to StAR protein induction.

  11. Budding yeast colony growth study based on circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  12. Proepithelin Regulates Prostate Cancer Cell Biology by Promoting Cell Growth, Migration, and Anchorage-Independent Growth

    PubMed Central

    Monami, Giada; Emiliozzi, Velia; Bitto, Alessandro; Lovat, Francesca; Xu, Shi-Qiong; Goldoni, Silvia; Fassan, Matteo; Serrero, Ginette; Gomella, Leonard G.; Baffa, Raffaele; Iozzo, Renato V.; Morrione, Andrea

    2009-01-01

    The growth factor proepithelin has recently emerged as an important regulator of transformation in several physiological and pathological systems. In this study, we determined the biological roles of proepithelin in prostate cancer cells using purified human recombinant proepithelin as well as proepithelin-depletion strategies. Proepithelin promoted the migration of androgen-dependent and -independent human prostate cancer cells; androgen-independent DU145 cells were the more responsive. In these cells, proepithelin additionally stimulated wound closure, invasion, and promotion of cell growth in vitro. These effects required the activation of both the Akt and mitogen-activated protein kinase pathways. We have analyzed proepithelin expression levels in different available prostate cancer microarray studies using the Oncomine database and found a statistically significant increase in proepithelin mRNA expression levels in prostate cancers compared with nonneoplastic controls. Notably, depletion of endogenous proepithelin by siRNA and antisense strategies impaired the ability of DU145 cells to grow and migrate after serum withdrawal and inhibited anchorage-independent growth. Our results provide the first evidence for a role of proepithelin in stimulating the migration, invasion, proliferation, and anchorage-independent growth of prostate cancer cells. This study supports the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and initial progression of prostate cancer. Furthermore, proepithelin may prove to be a useful clinical marker for the diagnosis of prostate tumors. PMID:19179604

  13. Metabolism, cell growth and the bacterial cell cycle

    PubMed Central

    Wang, Jue D.; Levin, Petra A.

    2010-01-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the ‘wild’. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division. PMID:19806155

  14. Gallium-67 uptake by a benign adrenocortical adenoma

    SciTech Connect

    Jackson, J.A.; Naul, L.G.; Montgomery, J.L.; Carpentier, W.R.; Roberts, J.W.

    1988-08-01

    A 55-yr-old man presented with an atypical relapsing meningitis and was found to have intense unilateral adrenal uptake by /sup 67/Ga imaging. Computed tomography showed a 4-cm right adrenal mass which was hypointense on the T1-weighted images and mildly hyperintense on the T2-weighted images of a magnetic resonance (MR) scan. At surgery, a coincidental benign adrenocortical adenoma was found. Because /sup 67/Ga uptake is usually associated with inflammatory or malignant lesions and malignant adrenal lesions are hyperintense on T2-weighted MR images, these findings contributed to diagnostic uncertainty in this patient. Thus, a nonhyperfunctional adrenocortical adenoma may be associated with abnormal /sup 67/Ga uptake and atypical MR findings.

  15. Pubertal outcome in a female with virilizing adrenocortical carcinoma

    PubMed Central

    Breidbart, Emily; Cameo, Tamara; Garvin, James H.; Hibshoosh, Hanina

    2016-01-01

    Adrenocortical tumors are neoplasms that rarely occur in pediatric patients. Adrenocortical carcinoma (ACC) is even more uncommon, and is an aggressive malignancy with 5-year survival of 55% in a registry series. There is a lack of information on long-term endocrine outcome in survivors. We describe a 10-year follow-up in a patient who presented at 3 years 5 months with a 1-year history of axillary odor and 6 months’ history of pubic hair development with an increased clitoral size. Androgen levels were increased and a pelvic sonogram revealed a suprarenal mass of the left kidney. The tumor was successfully removed. At 6 years 11 months, androgen levels increased again. Workup for tumor recurrence was negative and the findings likely represented early adrenarche. The patient had menarche at an appropriate time and attained a height appropriate for her family. PMID:26812773

  16. Plurihormonal Cosecretion by a Case of Adrenocortical Oncocytic Neoplasm

    PubMed Central

    Corrales, J. J.; Robles-Lázaro, C.; Sánchez-Marcos, A. I.; González-Sánchez, M. C.; Antúnez-Plaza, P.; Miralles, J. M.

    2016-01-01

    Adrenocortical oncocytic neoplasms (oncocytomas) are extremely rare; only approximately 159 cases have been described so far. The majority are nonfunctional and benign. We describe an unusual case of a functional oncocytoma secreting an excess of glucocorticoids (cortisol) and androgens (androstenedione and DHEAS), a pattern of plurihormonal cosecretion previously not reported in men, presenting with endocrine manifestations of Cushing's syndrome. The neoplasm was considered to be of uncertain malignant potential (borderline) according to the Lin-Weiss-Bisceglia criteria. PMID:27413559

  17. Chylous ascites after resection of giant adrenocortical carcinoma

    PubMed Central

    Karakoyun, Rojbin; Demirci, Erkan; Alikanoglu, Arsenal Sezgin

    2016-01-01

    Postoperative chylous ascites (PCA) is a rare clinical state that occurs during abdominal surgery. Despite its rarity, the need to diagnose and treat PCA is increasing in importance with the increased number of wide resections and lymph node dissections being performed and the serious consequences of treatment. Here we describe the PCA complications we observed after resection for treating a case of giant adrenocortical carcinoma and we have the brief review of the PCA complication. PMID:28149812

  18. Adrenocortical carcinoma: modern management and evolving treatment strategies

    PubMed Central

    McDuffie, Lucas A; Aufforth, Rachel D

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare cancer with a poor prognosis. Unlike many other cancers, there has been little improvement in patient outcome over the past several decades. However, as scientific advancements are made and our understanding of the molecular genetics involved in ACC improve then progress may be achieved in this devastating disease. This review focuses on recent literature published in the field of ACC from 2010 to 2015 with an emphasis on improving diagnosis, staging and treatment for ACC. PMID:27213037

  19. [Adrenalectomy for preservation of adrenocortical function. Indication and results].

    PubMed

    Walz, M K

    2009-02-01

    The standard procedure for adrenal tumors is total adrenalectomy. In order to preserve adrenocortical function, partial adrenalectomy has become an accepted and proven option in bilateral hereditary pheochromocytomas. For this at least one third of one gland has to be maintained. In unilateral adrenal tumors, partial adrenalectomy has mainly been used in Conn's syndrome. Studies demonstrate results identical to those of total adrenalectomy. All other adrenal tumors are exceptional indications for partial adrenalectomy.

  20. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome.

    PubMed

    Carney, J Aidan; Young, William F; Stratakis, Constantine A

    2011-09-01

    McCune-Albright syndrome (polyostotic fibrous dysplasia, café-au-lait skin spots, and precocious puberty) is a genetically mosaic disorder with populations of mutant and normal cells in affected organs. Cushing syndrome, a rare feature of the condition, usually affects infants and is the result of corticotropin-independent primary bilateral adrenal disease, usually interpreted as nodular adrenocortical hyperplasia. In this study of 9 patients with Cushing syndrome and McCune-Albright syndrome, light microscopy revealed a characteristic bimorphic pattern of diffuse and nodular hyperplasia and a distinctive form of cortical atrophy with apparent zona glomerulosa hyperplasia in 8 patients, all very young. The pattern could be explained by the presence of a mosaic distribution of mutant and normal cells in the adrenal glands. The findings are different from those in inherited or other forms of genetically caused Cushing syndrome. The ninth patient, aged 17 years, had an adrenal adenoma and diffuse cortical hyperplasia in each adrenal gland.

  1. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  2. FNC efficiently inhibits mantle cell lymphoma growth.

    PubMed

    Zhang, Yan; Zhang, Rong; Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC.

  3. FNC efficiently inhibits mantle cell lymphoma growth

    PubMed Central

    Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC. PMID:28333959

  4. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  5. Outcomes of Adjuvant Mitotane after Resection of Adrenocortical Carcinoma: A 13-Institution Study by the US Adrenocortical Carcinoma Group

    PubMed Central

    Postlewait, Lauren M; Ethun, Cecilia G; Tran, Thuy B; Prescott, Jason D; Pawlik, Timothy M; Wang, Tracy S; Glenn, Jason; Hatzaras, Ioannis; Shenoy, Rivfka; Phay, John E; Keplinger, Kara; Fields, Ryan C; Jin, Linda X; Weber, Sharon M; Salem, Ahmed; Sicklick, Jason K; Gad, Shady; Yopp, Adam C; Mansour, John C; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C; Kiernan, Colleen M; Votanopoulos, Konstantinos I; Levine, Edward A; Staley, Charles A; Poultsides, George A; Maithel, Shishir K

    2016-01-01

    BACKGROUND Current treatment guidelines recommend adjuvant mitotane after resection of adrenocortical carcinoma with high-risk features (eg, tumor rupture, positive margins, positive lymph nodes, high grade, elevated mitotic index, and advanced stage). Limited data exist on the outcomes associated with these practice guidelines. STUDY DESIGN Patients who underwent resection of adrenocortical carcinoma from 1993 to 2014 at the 13 academic institutions of the US Adrenocortical Carcinoma Group were included. Factors associated with mitotane administration were determined. Primary end points were recurrence-free survival (RFS) and overall survival (OS). RESULTS Of 207 patients, 88 (43%) received adjuvant mitotane. Receipt of mitotane was associated with hormonal secretion (58% vs 32%; p = 0.001), advanced TNM stage (stage IV: 42% vs 23%; p = 0.021), adjuvant chemotherapy (37% vs 5%; p < 0.001), and adjuvant radiation (17% vs 5%; p = 0.01), but was not associated with tumor rupture, margin status, or N-stage. Median follow-up was 44 months. Adjuvant mitotane was associated with decreased RFS (10.0 vs 27.9 months; p = 0.007) and OS (31.7 vs 58.9 months; p = 0.006). On multivariable analysis, mitotane was not independently associated with RFS or OS, and margin status, advanced TNM stage, and receipt of chemotherapy were associated with survival. After excluding all patients who received chemotherapy, adjuvant mitotane remained associated with decreased RFS and similar OS; multivariable analyses again showed no association with recurrence or survival. Stage-specific analyses in both cohorts revealed no association between adjuvant mitotane and improved RFS or OS. CONCLUSIONS When accounting for stage and adverse tumor and treatment-related factors, adjuvant mitotane after resection of adrenocortical carcinoma is not associated with improved RFS or OS. Current guidelines should be revisited and prospective trials are needed. PMID:26775162

  6. Pregnancy in a patient with adrenocortical carcinoma during treatment with Mitotane - a case report.

    PubMed

    Baszko-Błaszyk, Daria; Ochmańska, Katarzyna; Waśko, Ryszard; Sowiński, Jerzy

    2011-01-01

    We present the case of a female patient with virilising adrenocortical carcinoma treated surgically who conceived during adjuvant treatment with mitotane. We discuss the frequently erroneous routine treatment with oral hormonal contraception without thorough differential diagnosis in female patients with oligo-/amenorrhea and subsequent delay in the proper diagnosis of adrenocortical carcinoma.

  7. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors

    PubMed Central

    Berthon, Annabel S.; Szarek, Eva; Stratakis, Constantine A.

    2015-01-01

    Cyclic-AMP (cAMP)-dependent protein kinase (PKA) is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS) from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH). More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα), were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C) recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA's role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway. PMID:26042218

  8. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  9. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  10. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  11. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  12. Controlling mechanisms in directional growth of aggregated archaeal cells.

    PubMed

    Milkevych, Viktor; Batstone, Damien J

    2014-12-28

    Members of the family Methanosarcinaceae are important archaeal representatives due to their broad functionality, ubiquitous presence, and functionality in harsh environments. A key characteristic is their multicellular (packet) morphology represented by aggregates of spatially confined cells. This morphology is driven by directed growth of cells in confinement with sequential variation in growth direction. To further understand why spatially confined Methanosarcina cells (and in general, confined prokaryotes) change their direction of growth during consecutive growth-division stages, and how a particular cell senses its wall topology and responds to changes on it a theoretical model for stress dependent growth of aggregated archaeal cells was developed. The model utilizes a confined elastic shell representation of aggregated archaeal cell and is derived based on a work-energy principle. The growth law takes into account the fine structure of archaeal cell wall, polymeric nature of methanochondroitin layer, molecular-biochemical processes and is based on thermodynamic laws. The developed model has been applied to three typical configurations of aggregated cell in 3D. The developed model predicted a geometry response with delayed growth of aggregated archaeal cells explained from mechanistic principles, as well as continuous changes in direction of growth during the consecutive growth-division stages. This means that cell wall topology sensing and growth anisotropy can be predicted using simple cellular mechanisms without the need for dedicated cellular machinery.

  13. Growth in Cushing syndrome.

    PubMed

    Voutilainen, R; Leisti, S; Perheentupa, J

    1985-07-01

    Pre- and post-operative growth was analysed in eight children with Cushing syndrome. Six children had Cushing's disease; three of them were treated by bilateral adrenalectomy and three by transphenoidal pituitary adenectomy. One child had an adrenocortical adenoma and another primary adrenocortical nodular dysplasia. The typical cushingoid habitus was not always present during hypercortisolism. In contrast, abnormal deceleration of longitudinal growth and increase in relative weight were constant. The slowing of growth started 0.2-5.1 years before diagnosis. In four children these changes concurred. In three others the excessive weight gain preceded the slowing of growth, by 2.5-7.0 years. In one patient the deceleration appeared first; this was a girl with concomitant coeliac disease. This pattern of growth change occurring before (normal slowing of growth in) late puberty should raise the possibility of hypercortisolism. There was a suggestion of a better growth recovery in Cushing disease after pituitary adenectomy than after bilateral adrenalectomy.

  14. First Case Report of a Sporadic Adrenocortical Carcinoma With Gastric Metastasis and a Synchronous Gastrointestinal Stromal Tumor of the Stomach.

    PubMed

    Kovecsi, Attila; Jung, Ioan; Bara, Tivadar; Bara, Tivadar; Azamfirei, Leonard; Kovacs, Zsolt; Gurzu, Simona

    2015-09-01

    Adrenocortical carcinoma is a rare tumor with high aggresivity that can associate systemic metastases. A 71-year-old man was hospitalized for gastric cancer. The abdominal computed tomography also revealed a tumor above the right kidney. Total gastrectomy and right adrenalectomy were performed. The encapsulated tumor of the adrenal gland weighed 560 grams and presented diffuse tumor architecture under microscope, with capsular, sinusoidal, and vascular invasion. The large tumor cells had a polygonal shape, with slight basophilic, eosinophilic, or vacuolated cytoplasm, pleomorphic nuclei, and a high mitotic rate. In the stomach, the protruded tumor was covered by normal mucosa; under microscope, the tumor cells were observed only in the submucosal layer. In primary adrenal tumor and gastric metastasis the tumor cells were marked by vimentin, inhibin, synaptophysin, neuron-specific enolase, and calretinin. Based on these criteria, the diagnosis of adrenocortical carcinoma (ACC) with gastric metastasis and no lymph node metastases was established. A synchronous 10 × 10-mm-sized gastrointestinal stromal tumor (GIST) of the stomach, without mitoses, was also identified. So far, as we know, this is the 15th case of ever reported synchronous/metachronous sporadic ACCs; the ACC-related gastric metastases either synchronous ACC and GIST, has not been reported in the literature previously.

  15. THE TOPOGRAPHY OF TIP GROWTH IN A PLANT CELL

    PubMed Central

    Castle, Edward S.

    1958-01-01

    Tips of young Phycomyces sporangiophores were dusted with starch grains, and growth photographically recorded. Rates of longitudinal displacement from the cell tip of individual markers were determined, also corresponding rates of change of cell diameter. From these the magnitude and spatial distribution of "relative elemental growth rates" along both longitudinal and circumferential axes of the cell were obtained. Growth rates in these two directions are functions of distance from the cell apex, and have different spatial distributions. In particular, rates of growth in cell circumference are complexly patterned. Relative elemental growth rates in length and in girth are approximately equal and maximal at the cell's apex, with a value of 2.4 mm. mm.–1 hr.–1. The characteristic shape of the tip is maintained constant in the face of its changing substance and position. This shape reflects a steady state of the cell's constituent growth patterns. At every point the growing membrane simultaneously expands in the two dimensions of its surface. The degree of polarization or directional preference of growth is measured by the ratio of longitudinal to circumferential relative elemental growth rate at any point. The ratio is not constant, but changes with position along the tip. This fact does not support the idea that membrane growth is based upon a quantal "growth event." Possible causal factors in oriented membrane growth are discussed. PMID:13525674

  16. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    PubMed Central

    2010-01-01

    Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC. PMID:20214829

  17. Bilateral Adrenocortical Masses Producing Aldosterone and Cortisol Independently

    PubMed Central

    Lee, Seung-Eun; Lee, You-Bin; Seok, Hyeri; Shin, In Seub; Eun, Yeong Hee; Kim, Jung-Han; Oh, Young Lyun

    2015-01-01

    A 31-year-old woman was referred to our hospital with symptoms of hypertension and bilateral adrenocortical masses with no feature of Cushing syndrome. The serum aldosterone/renin ratio was elevated and the saline loading test showed no suppression of the plasma aldosterone level, consistent with a diagnosis of primary hyperaldosteronism. Overnight and low-dose dexamethasone suppression tests showed no suppression of serum cortisol, indicating a secondary diagnosis of subclinical Cushing syndrome. Adrenal vein sampling during the low-dose dexamethasone suppression test demonstrated excess secretion of cortisol from the left adrenal mass. A partial right adrenalectomy was performed, resulting in normalization of blood pressure, hypokalemia, and high aldosterone level, implying that the right adrenal mass was the main cause of the hyperaldosteronism. A total adrenalectomy for the left adrenal mass was later performed, resulting in a normalization of cortisol level. The final diagnosis was bilateral adrenocortical adenomas, which were secreting aldosterone and cortisol independently. This case is the first report of a concurrent cortisol-producing left adrenal adenoma and an aldosterone-producing right adrenal adenoma in Korea, as demonstrated by adrenal vein sampling and sequential removal of adrenal masses. PMID:26248855

  18. Bestatin inhibits cell growth, cell division, and spore cell differentiation in Dictyostelium discoideum.

    PubMed

    Poloz, Yekaterina; Catalano, Andrew; O'Day, Danton H

    2012-04-01

    Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.

  19. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  20. Deformation of Platonic foam cells: effect on growth rate.

    PubMed

    Evans, Myfanwy E; Zirkelbach, Johannes; Schröder-Turk, Gerd E; Kraynik, Andrew M; Mecke, Klaus

    2012-06-01

    The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.

  1. Deformation of Platonic foam cells: Effect on growth rate

    NASA Astrophysics Data System (ADS)

    Evans, Myfanwy E.; Zirkelbach, Johannes; Schröder-Turk, Gerd E.; Kraynik, Andrew M.; Mecke, Klaus

    2012-06-01

    The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.

  2. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  3. Analysis of circulating microRNAs in adrenocortical tumors.

    PubMed

    Szabó, Diana Rita; Luconi, Michaela; Szabó, Peter M; Tóth, Miklós; Szücs, Nikolette; Horányi, János; Nagy, Zoltán; Mannelli, Massimo; Patócs, Attila; Rácz, Károly; Igaz, Peter

    2014-03-01

    Differential diagnosis of adrenocortical adenoma (ACA) and carcinoma is of pivotal clinical relevance, as the prognosis and clinical management of benign and malignant adrenocortical tumors (ACTs) is entirely different. Circulating microRNAs (miRNAs) are promising biomarker candidates of malignancy in several tumors; however, there are still numerous technical problems associated with their analysis. The objective of our study was to investigate circulating miRNAs in ACTs and to evaluate their potential applicability as biomarkers of malignancy. We have also addressed technical questions including the choice of profiling and reference gene used. A total of 25 preoperative plasma samples obtained from patients with ACAs and carcinomas were studied by microarray and quantitative real-time PCR. None of the three miRNAs (hsa-miR-192, hsa-mir-197 and hsa-miR-1281) found as differentially expressed in plasma samples in our microarray screening could be validated by quantitative real-time PCR. In contrast, of the selected eight miRNAs reported in the literature as differentially expressed in ACT tissues, five (hsa-miR-100, hsa-miR-181b, hsa-miR-184, hsa-miR-210 and hsa-miR-483-5p) showed a statistically significant overexpression in adrenocortical cancer vs adenoma when normalized on hsa-miR-16 as a reference gene. Receiver operator characteristic analysis of data revealed that the combination of dCThsa-miR-210 - dCThsa-miR-181b and dCThsa-miR-100/dCThsa-miR-181b showed the highest diagnostic accuracy (area under curve 0.87 and 0.85, respectively). In conclusion, we have found significant differences in expression of circulating miRNAs between ACAs and carcinomas, but their diagnostic accuracy is not yet high enough for clinical application. Further studies on larger cohorts of patients are needed to assess the diagnostic and prognostic potential application of circulating miRNA markers.

  4. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.

  5. Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma.

    PubMed

    Kroiss, Matthias; Quinkler, Marcus; Lutz, Werner K; Allolio, Bruno; Fassnacht, Martin

    2011-11-01

    Mitotane [1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane, (o,p'-DDD)] is the only drug approved for the treatment for adrenocortical carcinoma (ACC) and has also been used for various forms of glucocorticoid excess. Through still largely unknown mechanisms, mitotane inhibits adrenal steroid synthesis and adrenocortical cell proliferation. Mitotane increases hepatic metabolism of cortisol, and an increased replacement dose of glucocorticoids is standard of care during mitotane treatment. Recently, sunitinib, a multityrosine kinase inhibitor (TKI), has been found to be rapidly metabolized by CYP3A4 during mitotane treatment, indicating clinically relevant drug interactions with mitotane. We here summarize the current evidence concerning mitotane-induced changes in hepatic monooxygenase expression, list drugs potentially affected by mitotane-related CYP3A4 induction and suggest alternatives. For example, using standard doses of macrolide antibiotics is unlikely to reach sufficient plasma levels, making fluoroquinolones in many cases a superior choice. Similarly, statins such as simvastatin are metabolized by CYP3A4, whereas others like pravastatin are not. Importantly, in the past, several clinical trials using cytotoxic drugs but also targeted therapies in ACC yielded disappointing results. This lack of antineoplastic activity may be explained in part by insufficient drug exposure owing to enhanced drug metabolism induced by mitotane. Thus, induction of CYP3A4 by mitotane needs to be considered in the design of future clinical trials in ACC.

  6. Connecting chromosome replication with cell growth in bacteria.

    PubMed

    Murray, Heath

    2016-12-01

    For bacteria to proliferate they must duplicate their genetic material so that it can be passed to their progeny. This requires that DNA replication is coordinated with cell growth and division. In the natural environment bacterial growth is dynamic and strongly influenced by changes in nutrient availability. Recent studies have found that bacteria utilize a range of regulatory systems, many of them species-specific, to coordinate DNA replication with cell growth. This variability likely reflects the diverse lifestyles of different bacterial types.

  7. Role of Fetuin-A in Breast Tumor Cell Growth

    DTIC Science & Technology

    2009-03-01

    Growth PRINCIPAL INVESTIGATOR: Josiah Ochieng, Ph.D. CONTRACTING ORGANIZATION: Meharry Medical College Nashville, TN 37208...COVERED (From - To) 4. TITLE AND SUBTITLE Role of fetuin-A in Breast Tumor Cell Growth 5a. CONTRACT NUMBER W81XWH-07-1-0254 5b. GRANT NUMBER...hypothesis of this grant is that fetuin-A is a major serum derived growth factor for breast carcinoma cells and creates a favorable environment for the

  8. Can Insulin Production Suppress β Cell Growth?

    PubMed

    De Vas, Matias; Ferrer, Jorge

    2016-01-12

    While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation.

  9. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  10. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  11. Complex Glycerol Kinase Deficiency and Adrenocortical Insufficiency in Two Neonates

    PubMed Central

    Korkut, Sabriye; Baştuğ, Osman; Raygada, Margarita; Hatipoğlu, Nihal; Kurtoğlu, Selim; Kendirci, Mustafa; Lyssikatos, Charalampos; Stratakis, Constantine A.

    2016-01-01

    Contiguous gene deletions of chromosome Xp21 can lead to glycerol kinase deficiency and severe adrenocortical insufficiency (AI) in a male newborn among other problems. We describe our experience with two such patients who presented with dysmorphic facies, AI, and pseudo-hypertriglyceridemia. Both infants had normal serum 17-hidroxyprogesterone levels, and adrenal glands could not be observed with ultrasonography. Creatine kinase and triglyceride levels were measured to elucidate the etiology of adrenal hypoplasia and were above normal limits in both cases. Both patients required steroid and salt supplementation. They were both found to have Xp21.2 deletions (DMD, NR0B1, GK, IL1RAPL1). We conclude that AI in the context of other genetic abnormalities should prompt chromosomal investigations in the absence of another unifying explanation. PMID:27087023

  12. Complex Glycerol Kinase Deficiency and Adrenocortical Insufficiency in Two Neonates.

    PubMed

    Korkut, Sabriye; Baştuğ, Osman; Raygada, Margarita; Hatipoğlu, Nihal; Kurtoğlu, Selim; Kendirci, Mustafa; Lyssikatos, Charalampos; Stratakis, Constantine A

    2016-12-01

    Contiguous gene deletions of chromosome Xp21 can lead to glycerol kinase deficiency and severe adrenocortical insufficiency (AI) in a male newborn among other problems. We describe our experience with two such patients who presented with dysmorphic facies, AI, and pseudo-hypertriglyceridemia. Both infants had normal serum 17-hidroxyprogesterone levels, and adrenal glands could not be observed with ultrasonography. Creatine kinase and triglyceride levels were measured to elucidate the etiology of adrenal hypoplasia and were above normal limits in both cases. Both patients required steroid and salt supplementation. They were both found to have Xp21.2 deletions (DMD, NR0B1, GK, IL1RAPL1). We conclude that AI in the context of other genetic abnormalities should prompt chromosomal investigations in the absence of another unifying explanation.

  13. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer

    PubMed Central

    Legendre, Christophe R.; Demeure, Michael J.; Whitsett, Timothy G.; Gooden, Gerald C.; Bussey, Kimberly J.; Jung, Sungwon; Waibhav, Tembe; Kim, Seungchan; Salhia, Bodour

    2016-01-01

    Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors. PMID:26963385

  14. Virilizing Adrenocortical Carcinoma Advancing to Central Precocious Puberty after Surgery

    PubMed Central

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han

    2015-01-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery. PMID:26019766

  15. Virilizing adrenocortical carcinoma advancing to central precocious puberty after surgery.

    PubMed

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han; Lee, Dae-Yeol

    2015-05-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery.

  16. An endocrinologist's view on relative adrenocortical insufficiency in rheumatoid arthritis.

    PubMed

    Imrich, Richard; Vlcek, Miroslav; Aldag, Jean C; Kerlik, Jana; Radikova, Zofia; Rovensky, Jozef; Vigas, Milan; Masi, Alfonse T

    2010-04-01

    The concept of relative adrenal insufficiency (RAI) has been originally introduced to describe a situation in which critically ill patients, without any prior risk or evidence for adrenal insufficiency, have total serum cortisol levels inadequate for the severity of patients' illness. The concept provided a framework for other disease states, in which higher than normal adrenal function could be expected, such as in chronic inflammation. An intense research in RAI field highlighted some new methodological aspects that significantly improved assessment of adrenal function in chronic illness. Measurement of salivary cortisol may provide additional information on locally available cortisol in target tissues. Low levels of dehydroepiandrosterone (DHEAS) for given age and gender were confirmed as a simple and reliable indicator of decreased adrenal function, even in subjects with normal baseline cortisol or normal corticotropin-stimulated cortisol response. Combined lower DHEAS and lower baseline cortisol levels could be an example of hypocompetence of adrenocortical function, yet clinically not apparent.

  17. Current and Emerging Therapeutic Options in Adrenocortical Cancer Treatment

    PubMed Central

    Stigliano, Antonio; Cerquetti, Lidia; Sampaoli, Camilla; Bucci, Barbara; Toscano, Vincenzo

    2012-01-01

    Adrenocortical carcinoma (ACC) is a very rare endocrine tumour, with variable prognosis, depending on tumour stage and time of diagnosis. The overall survival is five years from detection. Radical surgery is considered the therapy of choice in the first stages of ACC. However postoperative disease-free survival at 5 years is only around 30% and recurrence rates are frequent. o,p'DDD (ortho-, para'-, dichloro-, diphenyl-, dichloroethane, or mitotane), an adrenolytic drug with significant toxicity and unpredictable therapeutic response, is used in the treatment of ACC. Unfortunately, treatment for this aggressive cancer is still ineffective. Over the past years, the growing interest in ACC has contributed to the development of therapeutic strategies in order to contrast the neoplastic spread. In this paper we discuss the most promising therapies which can be used in this endocrine neoplasia. PMID:22934112

  18. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target.

  19. Actual 10-Year Survivors Following Resection of Adrenocortical Carcinoma

    PubMed Central

    Tran, Thuy B.; Postlewait, Lauren M.; Maithel, Shishir K.; Prescott, Jason D.; Wang, Tracy S.; Glenn, Jason; Phay, John E.; Keplinger, Kara; Fields, Ryan C.; Jin, Linda X.; Weber, Sharon M.; Salem, Ahmed; Sicklick, Jason K.; Gad, Shady; Yopp, Adam C.; Mansour, John C.; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C.; Kiernan, Colleen M.; Votanopoulos, Konstantinos I.; Levine, Edward A.; Hatzaras, Ioannis; Shenoy, Rivfka; Pawlik, Timothy M.; Norton, Jeffrey A.; Poultsides, George A.

    2017-01-01

    Background Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options beyond surgical resection. The characteristics of actual long-term survivors following surgical resection for ACC have not been previously reported. Method Patients who underwent resection for ACC at one of 13 academic institutions participating in the US Adrenocortical Carcinoma Group from 1993 to 2014 were analyzed. Patients were stratified into four groups: early mortality (died within 2 years), late mortality (died within 2–5 years), actual 5-year survivor (survived at least 5 years), and actual 10-year survivor (survived at least 10 years). Patients with less than 5 years of follow-up were excluded. Results Among the 180 patients available for analysis, there were 49 actual 5-year survivors (27%) and 12 actual 10-year survivors (7%). Patients who experienced early mortality had higher rates of cortisol-secreting tumors, nodal metastasis, synchronous distant metastasis, and R1 or R2 resections (all P < 0.05). The need for multi-visceral resection, perioperative blood transfusion, and adjuvant therapy correlated with early mortality. However, nodal involvement, distant metastasis, and R1 resection did not preclude patients from becoming actual 10-year survivors. Ten of twelve actual 10-year survivors were women, and of the seven 10-year survivors who experienced disease recurrence, five had undergone repeat surgery to resect the recurrence. Conclusion Surgery for ACC can offer a 1 in 4 chance of actual 5-year survival and a 1 in 15 chance of actual 10-year survival. Long-term survival was often achieved with repeat resection for local or distant recurrence, further underscoring the important role of surgery in managing patients with ACC. PMID:27633419

  20. Lymphadenectomy for Adrenocortical Carcinoma: Is There a Therapeutic Benefit?

    PubMed Central

    Gerry, Jon M.; Tran, Thuy B.; Postlewait, Lauren M.; Maithel, Shishir K.; Prescott, Jason D.; Wang, Tracy S.; Glenn, Jason A.; Phay, John E.; Keplinger, Kara; Fields, Ryan C.; Jin, Linda X.; Weber, Sharon M.; Salem, Ahmed; Sicklick, Jason K.; Gad, Shady; Yopp, Adam C.; Mansour, John C.; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C.; Kiernan, Colleen M.; Votanopoulos, Konstantinos I.; Levine, Edward A.; Hatzaras, Ioannis; Shenoy, Rivfka; Pawlik, Timothy M.; Norton, Jeffrey A.; Poultsides, George A.

    2017-01-01

    Background Lymph node metastasis is an established predictor of poor outcome for adrenocortical carcinoma (ACC); however, routine lymphadenectomy during surgical resection of ACC is not widely performed and its therapeutic role remains unclear. Methods Patients undergoing margin-negative resection for localized ACC were identified from a multi-institutional database. Patients were stratified into 2 groups based on the surgeon’s effort or not to perform a lymphadenectomy as documented in the operative note. Clinical, pathologic, and outcome data were compared between the 2 groups. Results Of 120 patients who met inclusion criteria from 1993 to 2014, 32 (27 %) underwent lymphadenectomy. Factors associated with lymphadenectomy were tumor size (12 vs. 9.5 cm; p = .007), palpable mass at presentation (26 vs. 12 %; p = .07), suspicious lymph nodes on preoperative imaging (44 vs. 7 %; p < .001), and need for multivisceral resection (78 vs. 36 %; p <.001). Median number of lymph nodes harvested was higher in the lymphadenectomy group (5.5 vs. 0; p < .001). In-hospital mortality (0 vs. 1.3 %; p =.72) and grade 3/4 complication rates (0 vs. 12 %; p = .061) were not significantly different. Patients who underwent lymphadenectomy had improved overall survival (5-year 76 vs. 59 %; p = .041). The benefit of lymphadenectomy on overall survival persisted on multivariate analysis (HR = 0.17; p = .006) controlling for adverse preoperative and intraoperative factors associated with lymphadenectomy, such as tumor size, palpable mass, irregular tumor edges, suspicious nodes on imaging, and multivisceral resection. Conclusions In this multicenter study of adrenocortical carcinoma patients undergoing R0 resection, the surgeon’s effort to dissect peritumoral lymph nodes was independently associated with improved overall survival. PMID:27590329

  1. Noninvasive monitoring of adrenocortical function in captive jaguars (Panthera onca).

    PubMed

    Conforti, Valéria A; Morato, Ronaldo G; Augusto, Anderson M; de Oliveira e Sousa, Lúcio; de Avila, David M; Brown, Janine L; Reeves, Jerry J

    2012-01-01

    Jaguars are threatened with extinction throughout their range. A sustainable captive population can serve as a hedge against extinction, but only if they are healthy and reproduce. Understanding how jaguars respond to stressors may help improve the captive environment and enhance their wellbeing. Thus, our objectives were to: (1) conduct an adrenocorticotrophic hormone (ACTH) challenge to validate a cortisol radioimmunoassay (RIA) for noninvasive monitoring of adrenocortical function in jaguars; (2) investigate the relationship between fecal corticoid (FCM) and androgen metabolite (FAM) concentrations in males during the ACTH challenge; and (3) establish a range of physiological concentrations of FCMs for the proposed protocol. Seven jaguars (3 M, 4 F) received 500 IU/animal of ACTH. Pre- and post-ACTH fecal samples were assayed for corticoid (M and F) and androgen metabolites (M) by RIA. Concentrations of FCMs increased (P80.01) after ACTH injection (pre-ACTH: 0.90 ± 0.12 µg/g dry feces; post-ACTH: 2.55 ± 0.25 µg/g). Considering pre- and post-ACTH samples, FCM concentrations were higher (P80.01) in males (2.15 ± 0.20 µg/g) than in females (1.30 ± 0.20 µg/g), but the magnitude of the response to ACTH was comparable (P>0.05) between genders. After ACTH injection, FAMs increased in two (of 3) males; in one male, FCMs and FAMs were positively correlated (0.60; P80.01). Excretion of FCMs was assessed in 16 jaguars (7 M, 9 F) and found to be highly variable (range, 80.11-1.56 µg/g). In conclusion, this study presents a cortisol RIA for monitoring adrenocortical function in jaguars noninvasively.

  2. Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

    PubMed

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A

    2009-02-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.

  3. Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth

    PubMed Central

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L.; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A.

    2008-01-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression. PMID:19155301

  4. Antizyme (AZ) regulates intestinal cell growth independently of polyamines

    PubMed Central

    Ray, Ramesh M.; Bhattacharya, Sujoy; Bavaria, Mitul N.; Viar, Mary Jane; Johnson, Leonard R.

    2014-01-01

    Since antizyme (AZ) is known to inhibit cell proliferation and to increase apoptosis, the question arises as to whether these effects occur independently of polyamines. Intestinal epithelial cells (IEC-6) were grown in control medium and medium containing 5mM difluoromethylornithine (DFMO) to inhibit ODC, DFMO + 5μM spermidine (SPD), DFMO+ 5μM spermine (SPM), or DFMO+ 10 μM putrescine (PUT) for 4 days and various parameters of growth were measured along with AZ levels. Cell counts were significantly decreased and mean doubling times were significantly increased by DFMO. Putrescine restored growth in the presence of DFMO. However, both SPD and SPM when added with DFMO caused a much greater inhibition of growth than did DFMO alone, and both of these polyamines caused a dramatic increase in AZ. The addition of SPD or SPM to media containing DFMO + PUT significantly inhibited growth and caused a significant increase in AZ. IEC-6 cells transfected with AZ-siRNA grew more than twice as rapidly as either control cells or those incubated with DFMO, indicating that removal of AZ increases growth in cells in which polyamine synthesis is inhibited as well as in control cells. In a separate experiment the addition of SPD increased AZ levels and inhibited growth of cells incubated with DFMO by 50%. The addition of 10 mM asparagine (ASN) prevented the increase in AZ and restored growth to control levels. These results show that cell growth in the presence or absence of ODC activity and in the presence or absence of polyamines depends only on the levels of AZ. Therefore, the effects of AZ on cell growth are independent of polyamines. PMID:24930035

  5. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  6. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

    PubMed Central

    Yamagishi, Jumpei F; Saito, Nen; Kaneko, Kunihiko

    2016-01-01

    As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with

  7. Laying the groundwork for growth: Cell-cell and cell-ECM interactions in cardiovascular development.

    PubMed

    Bowers, Stephanie L K; Baudino, Troy A

    2010-03-01

    Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell-cell and cell-ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders.

  8. Microtubules Growth Rate Alteration in Human Endothelial Cells

    PubMed Central

    Alieva, Irina B.; Zemskov, Evgeny A.; Kireev, Igor I.; Gorshkov, Boris A.; Wiseman, Dean A.; Black, Stephen M.; Verin, Alexander D.

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC) and “fast” (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules. PMID:20445745

  9. Microtubules growth rate alteration in human endothelial cells.

    PubMed

    Alieva, Irina B; Zemskov, Evgeny A; Kireev, Igor I; Gorshkov, Boris A; Wiseman, Dean A; Black, Stephen M; Verin, Alexander D

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with "normal" (similar to those in monolayer EC) and "fast" (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  10. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  11. Growth rate and cell size: a re-examination of the growth law.

    PubMed

    Vadia, Stephen; Levin, Petra Anne

    2015-04-01

    Research into the mechanisms regulating bacterial cell size has its origins in a single paper published over 50 years ago. In it Schaechter and colleagues made the observation that the chemical composition and size of a bacterial cell is a function of growth rate, independent of the medium used to achieve that growth rate, a finding that is colloquially referred to as 'the growth law'. Recent findings hint at unforeseen complexity in the growth law, and suggest that nutrients rather than growth rate are the primary arbiter of size. The emerging picture suggests that size is a complex, multifactorial phenomenon mediated through the varied impacts of central carbon metabolism on cell cycle progression and biosynthetic capacity.

  12. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  13. Using bacterial cell growth to template catalytic asymmetry.

    PubMed

    Kaehr, Bryan; Brinker, C Jeffrey

    2010-08-07

    We report an approach to position gold nanoparticle catalysts for metal reduction asymmetrically on a biological template (E. coli) by exploiting the polarity of the bacterial cell envelope undergoing growth and division.

  14. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  15. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  16. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  17. Adaptation to optimal cell growth through self-organized criticality.

    PubMed

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells.

  18. TOR and paradigm change: cell growth is controlled.

    PubMed

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  19. TOR and paradigm change: cell growth is controlled

    PubMed Central

    Hall, Michael N.

    2016-01-01

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. PMID:27634743

  20. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    SciTech Connect

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-15

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor {alpha} (TNF{alpha})-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNF{alpha}-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect.

  1. S-Fms signalobody enhances myeloid cell growth and migration.

    PubMed

    Kawahara, Masahiro; Hitomi, Azusa; Nagamune, Teruyuki

    2014-07-01

    Since receptor tyrosine kinases (RTKs) control various cell fates in many types of cells, mimicry of RTK functions is promising for artificial control of cell fates. We have previously developed single-chain Fv (scFv)/receptor chimeras named signalobodies that can mimic receptor signaling in response to a specific antigen. While the RTK-based signalobodies enabled us to control cell growth and migration, further extension of applicability in another cell type would underlie the impact of the RTK-based signalobodies. In this study, we applied the scFv-c-Fms (S-Fms) signalobody in a murine myeloid progenitor cell line, FDC-P1. S-Fms transduced a fluorescein-conjugated BSA (BSA-FL)-dependent growth signal and activated downstream signaling molecules including MEK, ERK, Akt, and STAT3, which are major constituents of Ras/MAPK, PI3K/Akt, and JAK/STAT signaling pathways. In addition, S-Fms transduced a migration signal as demonstrated by the transwell-based migration assay. Direct real-time observation of the cells further confirmed that FDC/S-Fms cells underwent directional cell migration toward a positive gradient of BSA-FL. These results demonstrated the utility of the S-Fms signalobody for controlling growth and migration of myeloid cells. Further extension of our approach includes economical large-scale production of practically relevant blood cells as well as artificial control of cell migration for tissue regeneration and immune response.

  2. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  3. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  4. Intercellular propagation of individually programmed growth bursts in FRTL-5 cells. Implications for interpreting growth factor actions

    SciTech Connect

    Derwahl, M.; Studer, H.; Huber, G.; Gerber, H.; Peter, H.J. )

    1990-11-01

    Five methods are commonly used to quantify FRTL-5 cells' and other thyrocytes' growth in vitro and the impact of growth inhibiting or stimulating maneuvers: Total cell count, mitotic index, DNA measurement, total (3H)thymidine incorporation, and the fraction of (3H)thymidine labeled cells. All of them assess cell growth as though all cells were homogeneous with an identical response to growth factors. We demonstrate here that this assumption is not valid. Rather, some intrinsically growth-prone cells appear to pass a growth signal to neighboring cells so that variably sized colonies of synchronized cells within each cluster growing from monodispersed cells are formed. This is true for FRTL-5 cells growing in vitro in monolayers and in three-dimensional, collagen embedded spheroids. The pattern is the same when cell suspensions or collagen-embedded spheroids are implanted onto nude mice. Patches with alternating high and low growth become particularly prominent in the large tumor-like organoids grown from monodispersed cells in nude mice. The pattern much reminds of similar observations in growing intact thyroids. Since there is no significant correlation between the fraction of (3H)thymidine labeled cells and the size of two- or three-dimensional clusters in any experiment, growth of signal-spreading cells is assumed to occur in leaps and bounds. Growth velocity in each subclone of a cell population depends on the mean interval between bursts of replications and on the number of cells synchronized by cell-to-cell diffusion of the growth signal emanating from one dividing cell. Thus, growth-promoting and growth-inhibiting factors may not only act on the mean interval between successive growth bursts, but they may also change cell-to-cell spreading of growth signals.

  5. Simultaneous optical measurements of cell motility and growth.

    PubMed

    Sridharan, Shamira; Mir, Mustafa; Popescu, Gabriel

    2011-10-01

    It has recently been shown that spatial light interference microscopy (SLIM) developed in our laboratory can be used to quantify the dry mass growth of single cells with femtogram sensitivity [M. Mir et al., Proc. Nat. Acad. Sci. 108, 32 (2011)]. Here we show that it is possible to measure the motility of single cells in conjunction with the dry mass measurements. Specifically the effect of poly-L-lysine substrate on the dry mass growth of Drosophila S2 cells is studied. By measuring the mean square displacement of single cells and clusters it is shown that cells that adhere better to the surface are unable to grow. Using such a technique it is possible to measure both growth and morphogenesis, two of the cornerstones of developmental biology.

  6. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress.

    PubMed

    Ziegler, D R; Cass, W A; Herman, J P

    1999-05-01

    The locus coeruleus (LC) is a key brainstem region involved in arousal and is highly responsive to alerting/stressful stimuli, including those that activate the hypothalamic-pituitary-adrenocortical (HPA) axis. It is currently unclear whether the LC exerts any regulatory influence on the HPA axis and, consequently, on neuroendocrine responses to stress. The present studies were designed to test the hypothesis that the LC promotes HPA axis responses to acute and chronic stress. Adult male rats received bilateral (6-hydroxydopamine) lesions of the LC that produced severe cell loss in the LC and 80% depletion of noradrenaline in medial prefrontal cortex. Notably, lesions did not affect dopamine-beta-hydroxylase protein content in the parvocellular paraventricular nucleus (PVN), indicating a lack of collateral damage to other ascending noradrenergic pathways. LC lesions significantly reduced peak adrenocorticotropic hormone (ACTH) and corticosterone responses to 30 min acute restraint stress. However, LC lesions did not significantly attenuate neuroendocrine or other physiological responses to a 4-week chronic variable stress regimen. LC lesions did not substantially affect basal concentrations of plasma corticosterone or corticotropin-releasing hormone mRNA expression in the hypothalamic paraventricular nucleus following chronic stress. We conclude that the LC is a HPA-excitatory brain region, promoting neuroendocrine and physiological responses primarily to acute stress. However, a potential role for the LC in the induction of HPA axis hyperactivity following chronic stress can not be ruled out.

  7. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    PubMed Central

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  8. Molecular mobility of scaffolds' biopolymers influences cell growth.

    PubMed

    Podlipec, Rok; Gorgieva, Selestina; Jurašin, Darija; Urbančič, Iztok; Kokol, Vanja; Strancar, Janez

    2014-09-24

    Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

  9. Hormonal modulation of brain tumour growth: a cell culture study.

    PubMed

    Gibelli, N; Zibera, C; Butti, G; Assietti, R; Sica, G; Scerrati, M; Iacopino, F; Roselli, R; Paoletti, P; Robustelli della Cuna, G

    1989-01-01

    Tissue samples derived from two neuroepithelial tumours and five meningiomas were obtained at surgery from seven patients and cultured in order to study the effect of dexamethasone (DEX) and testosterone acetate (TA) on cell proliferation. Glucocorticoid and androgen receptors (GR, AR) were determined both on tissue samples (7 cases) and on five out of the seven cell cultures obtained by tumours. GR and AR were present respectively in 5 and in 4 out of the tumour specimens assayed and in 4/5 and 2/3 of the tested cell cultures. DEX activity on cell growth was tested on six cell cultures. Four of them showed a significant growth inhibition at the highest drug concentration. On the contrary, a significant growth stimulation was observed in four out of the five cultures, where GR were present, using low hormone concentrations. Treatment with pharmacological doses of TA caused a significant cytotoxicity in all the tested cultures. Low TA concentrations inhibited cell growth in one out of the two cell cultures which contained AR, but were ineffective in cultures lacking AR. Our preliminary results suggest a possible role in growth regulation by DEX and TA in intracranial tumours, on the basis of the presence of specific hormone receptors.

  10. Dual control of cell growth by somatomedins and platelet-derived growth factor.

    PubMed Central

    Stiles, C D; Capone, G T; Scher, C D; Antoniades, H N; Van Wyk, J J; Pledger, W J

    1979-01-01

    Quiescent BALB/c 3T3 cells exposed briefly to a platelet-derived growth factor (PDGF) become "competent" to replicate their DNA but do not "progress" into S phase unless incubated with growth factors contained in platelet-poor plasma. Plasma from hypophysectomized rats is deficient in progression activity; it does not stimulate PDGF-treated competent cells to synthesize DNA, demonstrating that somatomedin C is required for progression. Various growth factors were tested for progression activity and competence activity by using BALB/c 3T3 tissue culture assays. Multiplication stimulating activity and other members of the somatomedin family of growth factors are (like somatomedin C) potent mediators of progression. Other mitogenic agents, such as fibroblast growth factor, are (like PDGF) potent inducers of competence. Growth factors with potent progression activity have little or no competence activity and vice versa. In contrast, simian virus 40 provides both competence and progression activity. Coordinate control of BALB/c 3T3 cell growth in vitro by competence factors and somatomedins may be a specific example of a common pattern of growth regulation in animal tissues. PMID:312500

  11. Regulation of rat ovarian cell growth and steroid secretion

    PubMed Central

    Johnson, CC; Dawson, WE; Turner, JT; Wyche, JH

    1980-01-01

    A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin. PMID:6995465

  12. Oxygen modulates growth of human cells at physiologic partial pressures

    PubMed Central

    1984-01-01

    We have examined the growth of human diploid fibroblasts (WI-38 and IMR90) as a function of initial seeding density and oxygen tension. Cells at young and mid-passage levels were subcultivated in Dulbecco's modified Eagle's medium with 10% fetal bovine serum at 0.005, 0.01, 0.03, 0.1, 0.3, 1, and 2 X 10(4) cells/cm2. Flasks were equilibrated before and after seeding with 1 of 10 gas mixtures containing the desired oxygen tension (9-591 mm Hg) and placed in incubators that measure and maintain a preset oxygen tension. The partial pressure of oxygen (PO2) in media of all flasks was determined at harvest. Cells were shielded from light of wavelength less than 500 nm. Cell growth varied inversely with oxygen tension and seeding density. At 50 cells/cm2, growth was maximal at PO2 9 and 16 mm Hg. Growth was progressively inhibited as the oxygen tension was increased. The population doubling increase at 14 d was 8.6 for PO2 9 and 16 mm Hg, 5.8 for PO2 42 mm Hg, 3.8 for PO2 78 mm Hg, 3.8 for PO2 104 mm Hg, and 3 for PO2 138 mm Hg. As the seeding density was increased, the differences in growth at PO2 less than 140 mm Hg were progressively minimized, such that at seeding densities of 10(4) cells/cm2 there was little difference in the rate of exponential growth or the final saturation density of cells cultivated between PO2 9 and 96 mm Hg. At all seeding densities tested, growth was progressively inhibited when the PO2 was increased greater than 140 mm Hg. The seeding density dependence of oxygen's influence on cellular growth is not explained by oxygen consumption of higher density cultures. Oxygen acts directly on the cells and not by destroying some essential medium component. We have found that oxygen regulates the growth of human cells under pressures of oxygen physiologic to humans, and that oxygen toxicity contributes to the seeding density dependence of cellular growth commonly seen in cell culture. PMID:6736869

  13. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  14. Partial KCNQ1OT1 hypomethylation: A disguised familial Beckwith–Wiedemann syndrome as a sporadic adrenocortical tumor

    PubMed Central

    H'mida Ben-Brahim, Dorra; Hammami, Sabeur; Haddaji Mastouri, Marwa; Trabelsi, Saoussen; Chourabi, Maroua; Sassi, Sihem; Mougou, Soumaya; Gribaa, Moez; Zakhama, Abdelfattah; Guédiche, Mohamed Neji; Saad, Ali

    2014-01-01

    Beckwith–Wiedemann syndrome has a wide spectrum of complications such as embryonal tumors, namely adrenocortical tumor. Tumor predisposition is one of the most challenging manifestations of this syndrome. A 45-day old female with a family history of adrenocortical tumor presented with adrenocortical tumor. The case raised suspicion of a hereditary Beckwith–Wiedemann syndrome, therefore molecular analysis was undertaken. The results revealed partial KCNQ1OT1 hypomethylation in the infant's blood DNA which was associated with a complete loss of methylation in the infant's adrenocortical tumor tissue. It is unique for familial Beckwith–Wiedemann syndrome caused by KCNQ1OT1 partial hypomethylation to manifest solely through adrenocortical tumor. Incomplete penetrance and specific tissue mosaicism could provide explanations to this novel hereditary Beckwith–Wiedemann syndrome presentation. PMID:26937341

  15. A study of cell electrophoresis as a means of purifying growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne

    1983-01-01

    Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.

  16. ROS Regulation of Polar Growth in Plant Cells1[OPEN

    PubMed Central

    Mangano, Silvina; Juárez, Silvina Paola Denita

    2016-01-01

    Root hair cells and pollen tubes, like fungal hyphae, possess a typical tip or polar cell expansion with growth limited to the apical dome. Cell expansion needs to be carefully regulated to produce a correct shape and size. Polar cell growth is sustained by oscillatory feedback loops comprising three main components that together play an important role regulating this process. One of the main components are reactive oxygen species (ROS) that, together with calcium ions (Ca2+) and pH, sustain polar growth over time. Apoplastic ROS homeostasis controlled by NADPH oxidases as well as by secreted type III peroxidases has a great impact on cell wall properties during cell expansion. Polar growth needs to balance a focused secretion of new materials in an extending but still rigid cell wall in order to contain turgor pressure. In this review, we discuss the gaps in our understanding of how ROS impact on the oscillatory Ca2+ and pH signatures that, coordinately, allow root hair cells and pollen tubes to expand in a controlled manner to several hundred times their original size toward specific signals. PMID:27208283

  17. Brain Metastasis in Patients With Adrenocortical Carcinoma: A Clinical Series

    PubMed Central

    Tageja, Nishant; Rosenberg, Avi; Mahalingam, Sowmya; Quezado, Martha; Velarde, Margarita; Edgerly, Maureen; Fojo, Tito

    2015-01-01

    Introduction: Adrenocortical carcinoma (ACC) is a heterogeneous and rare disease. At presentation or at the time of a recurrence, the disease commonly spreads to the liver, lungs, lymph nodes, and bones. The brain has only rarely been reported as a site of metastases. Objective: The aims of this report were to describe the clinical characteristics of patients with ACC who developed brain metastasis and were evaluated at the National Cancer Institute. Methods: We describe the history and clinical presentation of six patients with ACC and metastatic disease in the brain. Images of the six patients and pathology slides were reviewed when available. Results: The median age at the time of the diagnosis of ACC was 42 years. The median time from the initial diagnosis until the presentation of brain metastasis was 43 months. As a group the patients had previously received multiples lines of chemotherapy (median of three), and they presented with one to three metastatic brain lesions. Four patients underwent metastasectomy, one had radiosurgery, and one had both modalities. Two patients are still alive, three died, between 2 and 14 months after the diagnosis of brain metastases, and one was lost to follow-up. Conclusion: Patients with advanced ACC can rarely present with metastasis to the brain, most often long after the initial diagnosis. Timely diagnosis of brain metastasis with appropriate intervention after discussion in a multidisciplinary meeting can improve the prognosis in this particular scenario. PMID:25412413

  18. Outcomes after resection of cortisol-secreting adrenocortical carcinoma

    PubMed Central

    Margonis, Georgios Antonios; Kim, Yuhree; Tran, Thuy B.; Postlewait, Lauren M.; Maithel, Shishir K.; Wang, Tracy S.; Glenn, Jason A.; Hatzaras, Ioannis; Shenoy, Rivfka; Phay, John E.; Keplinger, Kara; Fields, Ryan C.; Jin, Linda X.; Weber, Sharon M.; Salem, Ahmed; Sicklick, Jason K.; Gad, Shady; Yopp, Adam C.; Mansour, John C.; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C.; Kiernan, Colleen M.; Votanopoulos, Konstantinos I.; Levine, Edward A.; Poultsides, George A.; Pawlik, Timothy M.

    2016-01-01

    BACKGROUND We sought to define the impact of cortisol-secreting status on outcomes after surgical resection of adrenocortical carcinoma (ACC). METHODS The U.S ACC group database was queried to identify patients who underwent ACC resection between 1993 and 2014. The short-term and long-term outcomes were assessed. RESULTS The incidence of all functional and cortisol-secreting tumors was 40.6% and 22.6%, respectively. On multivariable analysis, cortisol secretion remained associated with an increased risk of postoperative complications (odds ratio = 2.25, 95 % confidence interval = 1.04 to 4.88; P = .04). At a median follow-up of 17.6 months, 118 patients (50.4%) had developed a recurrence. On multivariable analysis, after adjusting for patient and disease-related factors cortisol secretion independently predicted shorter recurrence-free survival (Hazard ratio = 2.05, 95% confidence interval = 1.16 to 3.60; P = .01). CONCLUSIONS Cortisol secretion was associated with an increased risk of postoperative morbidity. Recurrence remains high among patients with ACC after surgery; cortisol secretion was independently associated with a shorter recurrence-free survival. Tailoring postoperative surveillance of ACC patients based on their cortisol secreting status may be important. PMID:26810939

  19. Familial Adrenocortical Carcinoma in Association With Lynch Syndrome

    PubMed Central

    Challis, Benjamin G.; Kandasamy, Narayanan; Powlson, Andrew S.; Koulouri, Olympia; Annamalai, Anand Kumar; Happerfield, Lisa; Marker, Alison J.; Arends, Mark J.; Nik-Zainal, Serena

    2016-01-01

    Context: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Although the majority of childhood ACC arises in the context of inherited cancer susceptibility syndromes, it remains less clear whether a hereditary tumor predisposition exists for the development of ACC in adults. Here, we report the first occurrence of familial ACC in a kindred with Lynch syndrome resulting from a pathogenic germline MSH2 mutation. Case: A 54-year-old female with a history of ovarian and colorectal malignancy was found to have an ACC. A detailed family history revealed her mother had died of ACC and her sister had previously been diagnosed with endometrial and colorectal cancers. A unifying diagnosis of Lynch syndrome was considered, and immunohistochemical analyses demonstrated loss of MSH2 and MSH6 expression in both AACs (proband and her mother) and in the endometrial carcinoma of her sister. Subsequent genetic screening confirmed the presence of a germline MSH2 mutation (resulting in deletions of exons 1–3) in the proband and her sister. Conclusion: Our findings provide strong support for the recent proposal that ACC should be considered a Lynch syndrome-associated tumor and included in the Amsterdam II clinical diagnostic criteria. We also suggest that screening for ACC should be considered in cancer surveillance strategies directed at individuals with germline mutations in DNA mismatch repair genes. PMID:27144940

  20. In vitro melanoma cell growth after preenucleation radiation therapy

    SciTech Connect

    Kenneally, C.Z.; Farber, M.G.; Smith, M.E.; Devineni, R.

    1988-02-01

    The in vitro efficacy of 20 Gy (2000 rad) of external beam irradiation delivered to patients with choroidal melanomas prior to enucleation was investigated in 11 patients whose tumors were grown in cell culture. Phase-contrast microscopy was used to compare growth patterns between irradiated and nonirradiated tumors. Cell types were determined by histologic stains, and electron microscopy identified intracytoplasmic melanin. Irradiated melanomas did not grow and did not attach to culture flasks, thus demonstrating that preenucleation irradiation alters the in vitro growth of melanoma cells.

  1. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  2. The relation between growth phases, cell volume changes and metabolism of adherent cells during cultivation.

    PubMed

    Rehberg, M; Ritter, J B; Genzel, Y; Flockerzi, D; Reichl, U

    2013-04-15

    In biotechnology, mathematical models often consider changes in cell numbers as well as in metabolite conversion to describe different cell growth phases. It has been frequently observed that the cell number is only a delayed indicator of cell growth compared to the biomass, which challenges the principle structure of corresponding models. Here, we evaluate adherent cell growth phases in terms of cell number and biomass increase on the basis of detailed experimental data of three independent cultivations for Madin Darby canine kidney cells. We develop a model linking cell numbers and mean cell diameters to estimate cell volume changes during growth without the need for diameter distribution measurements. It simultaneously describes the delay between cell number and cell volume increase, cell-specific volume changes and the transition from growth to maintenance metabolism while taking different pre-culture conditions, which affect the cell diameter, into account. In addition, inspection of metabolite uptake and release rates reveals that glucose is mainly used for generation of cellular energy and glutamine is not required for cellular maintenance. Finally, we conclude that changes in cell number, cell diameter and metabolite uptake during cultivation contribute to the understanding of the time course of intracellular metabolites during the cultivation process.

  3. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  4. Inhibition of Nb2 T-lymphoma cell growth by transforming growth factor-beta.

    PubMed Central

    Rayhel, E J; Prentice, D A; Tabor, P S; Flurkey, W H; Geib, R W; Laherty, R F; Schnitzer, S B; Chen, R; Hughes, J P

    1988-01-01

    Transforming growth factor-beta (TGF-beta) inhibits proliferation of Nb2 cells, a rat T lymphoma, in response to lactogens and interleukin-2. Prostaglandins may play an important role in the pathway through which TGF-beta exerts its inhibitory actions, because prostaglandin E2 also inhibits proliferation of Nb2 cells, and indomethacin, an inhibitor of prostaglandin synthesis, reverses the inhibitory effects of TGF-beta on Nb2 cell proliferation. PMID:3262338

  5. Interparental Aggression and Adolescent Adjustment: The Role of Emotional Insecurity and Adrenocortical Activity.

    PubMed

    Bergman, Kathleen N; Cummings, E Mark; Davies, Patrick T

    2014-10-01

    Adolescents exposed to interparental aggression are at increased risk for developing adjustment problems. The present study explored intervening variables in these pathways in a community sample that included 266 adolescents between 12 and 16 years old (M = 13.82; 52.5% boys, 47.5% girls). A moderated mediation model examined the moderating role of adrenocortical reactivity on the meditational capacity of their emotional insecurity in this context. Information from multiple reporters and adolescents' adrenocortical response to conflict were obtained during laboratory sessions attended by mothers, fathers and their adolescent child. A direct relationship was found between marital aggression and adolescents' internalizing behavior problems. Adolescents' emotional insecurity mediated the relationship between marital aggression and adolescents' depression and anxiety. Adrenocortical reactivity moderated the pathway between emotional insecurity and adolescent adjustment. The implications for further understanding the psychological and physiological effects of adolescents' exposure to interparental aggression and violence are discussed.

  6. Modeling Intrinsic Heterogeneity and Growth of Cancer Cells

    PubMed Central

    Greene, James M.; Levy, Doron; Fung, King L.; Silva de Souza, Paloma; Gottesman, Michael M.; Lavi, Orit

    2014-01-01

    Intratumoral heterogeneity has been found to be a major cause of drug resistance. Cell-to-cell variation increases as a result of cancer-related alterations, which are acquired by stochastic events and further induced by environmental signals. However, most cellular mechanisms include natural fluctuations that are closely regulated, and thus lead to asynchronization of the cells, which causes intrinsic heterogeneity in a given population. Here, we derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. These models are designed to predict variations in growth as a function of the intrinsic heterogeneity emerging from the durations of the cell-cycle and apoptosis, and also include cellular density dependencies. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations when the number of cells is large. This essential step in cancer growth modeling will allow us to revisit the mechanisms of multi-drug resistance by examining spatiotemporal differences of cell growth while administering a drug among the different sub-populations in a single tumor, as well as the evolution of those mechanisms as a function of the resistance level. PMID:25457229

  7. Modeling intrinsic heterogeneity and growth of cancer cells.

    PubMed

    Greene, James M; Levy, Doron; Fung, King Leung; Souza, Paloma S; Gottesman, Michael M; Lavi, Orit

    2015-02-21

    Intratumoral heterogeneity has been found to be a major cause of drug resistance. Cell-to-cell variation increases as a result of cancer-related alterations, which are acquired by stochastic events and further induced by environmental signals. However, most cellular mechanisms include natural fluctuations that are closely regulated, and thus lead to asynchronization of the cells, which causes intrinsic heterogeneity in a given population. Here, we derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. These models are designed to predict variations in growth as a function of the intrinsic heterogeneity emerging from the durations of the cell-cycle and apoptosis, and also include cellular density dependencies. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations when the number of cells is large. This essential step in cancer growth modeling will allow us to revisit the mechanisms of multidrug resistance by examining spatiotemporal differences of cell growth while administering a drug among the different sub-populations in a single tumor, as well as the evolution of those mechanisms as a function of the resistance level.

  8. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    PubMed

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  9. Autocrine growth inhibition by transforming growth factor β-1 (TGFβ-1) in human neuroendocrine tumour cells

    PubMed Central

    Wimmel, A; Wiedenmann, B; Rosewicz, S

    2003-01-01

    Background and aim: The role of transforming growth factor β-1 (TGFβ-1) in neuroendocrine tumour biology is currently unknown. We therefore examined the expression and biological significance of TGFβ signalling components in neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) tract. Methods: Expression of TGFβ-1 and its receptors, Smads and Smad regulated proteins, was examined in surgically resected NET specimens and human NET cell lines by immunohistochemistry, reverse transcriptase-polymerase chain reaction, immunoblotting, and ELISA. Activation of TGFβ-1 dependent promoters was tested by transactivation assays. Growth regulation was evaluated by cell numbers, soft agar assays, and cell cycle analysis using flow cytometry. The role of endogenous TGFβ was assessed by a TGFβ neutralising antibody and stable transfection of a dominant negative TGFβR II receptor construct. Results: Coexpression of TGFβ-1 and its receptors TGFβR I and TGFβR II was detected in 67% of human NETs and in all three NET cell lines examined. NET cell lines expressed the TGFβ signal transducers Smad 2, 3, and 4. In two of the three cell lines, TGFβ-1 treatment resulted in transactivation of a TGFβ responsive reporter construct as well as inhibition of c-myc and induction of p21(WAF1) expression. TGFβ-1 inhibited anchorage dependent and independent growth in a time and dose dependent manner in TGFβ-1 responsive cell lines. TGFβ-1 mediated growth inhibition was due to G1 arrest without evidence of induction of apoptosis. Functional inactivation of endogenous TGFβ revealed the existence of an autocrine antiproliferative loop in NET cells. Conclusions: Neuroendocrine tumour cells of the gastroenteropancreatic tract are subject to paracrine and autocrine growth inhibition by TGFβ-1, which may account in part for the low proliferative index of this tumour entity. PMID:12912863

  10. Ectopic Adrenocortical Tissue in the Spermatic Cord in a 44-Year-old Man☆

    PubMed Central

    Müllhaupt, Gautier; Mordasini, Livio; Gramann, Tobias; Ertel, Vera; Schmid, Hans-Peter; Abt, Dominik

    2014-01-01

    We report on a 44-year-old man who underwent microsurgical inguinal repair for symptomatic varicocele. As an incidental finding during surgery, a yellowish tumor (9 × 5 × 4 mm) was found in the spermatic cord. Histologic examination revealed ectopic adrenocortical tissue. Ectopic adrenocortical tissue in the spermatic cord is known to appear in children and adolescents but is extremely rare in adults. Surgical removal of the tissue is recommended, although malignant transformation or functional hormonal disorders are very unlikely. PMID:26958477

  11. Liposomal polychemotherapy improves adrenocortical carcinoma treatment in a preclinical rodent model.

    PubMed

    Hantel, Constanze; Jung, Sara; Mussack, Thomas; Reincke, Martin; Beuschlein, Felix

    2014-06-01

    Owing to high relapse rates and early metastatic spread, prognosis in adrenocortical carcinoma (ACC) patients remains poor, highlighting the importance of developing new treatment alternatives for them. Recently, polychemotherapy regimens including etoposide, doxorubicin, and cisplatin together with mitotane (EDP-M) have been defined as the standard treatment for late-stage disease patients. Nevertheless, the administration of conventional cytostatic drugs is associated with severe and dose-limiting side effects. In an attempt to optimize existing clinical treatment regimens, in this study, we investigated the therapeutic efficacy of EDP-M in comparison with that of a paclitaxel-modified scheme (paclitaxel, doxorubicin, cisplatin plus mitotane (PDP-M)) in preclinical in vitro and in vivo models. In addition, based on an extraordinary uptake phenomenon of liposomes in ACC cells, we further evaluated liposomal variants of these protocols (etoposide, liposomal doxorubicin, liposomal cisplatin plus mitotane (LEDP-M) and nab-paclitaxel, liposomal doxorubicin, liposomal cisplatin plus mitotane (LPDP-M)). In vitro, PDP-M was more potent in the induction of apoptosis and inhibition of cell viability as well as cell proliferation than EDP-M. Following the administration of a single therapeutic cycle, we further demonstrated that LEDP-M and LPDP-M exerted significant antitumoral effects in vivo, which were not as evident upon EDP-M and PDP-M treatments. These results were confirmed in a long-term experiment, in which the highest and sustained antitumoral effects were observed for LEDP-M. In summary, liposomal cytostatic substances could represent a promising option that deserves testing in appropriate clinical protocols for the treatment of ACC patients.

  12. Mechanical Behavior of Cells within a Cell-Based Model of Wheat Leaf Growth

    PubMed Central

    Zubairova, Ulyana; Nikolaev, Sergey; Penenko, Aleksey; Podkolodnyy, Nikolay; Golushko, Sergey; Afonnikov, Dmitry; Kolchanov, Nikolay

    2016-01-01

    Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth. PMID:28018409

  13. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  14. The cell growth suppressor, mir-126, targets IRS-1.

    PubMed

    Zhang, Jin; Du, Ying-ying; Lin, Yi-feng; Chen, Ya-ting; Yang, Lu; Wang, Hui-jun; Ma, Duan

    2008-12-05

    miRNAs are a family of approximately 22-nuleotide-long noncoding RNAs involved in the formation and progress of tumors. Since traditional methods for the detection of miRNAs expression have many disadvantages, we developed a simple method called polyA RT PCR. With this method, we detected a series of miRNAs and found that mir-126 is one of the miRNAs underexpressed in breast cancer cells. Flow cytometry analysis showed that mir-126 inhibited cell cycle progression from G1/G0 to S. Further studies revealed that mir-126 targeted IRS-1 at the translation level. Knocking down of IRS-1 suppresses cell growth in HEK293 and breast cancer cell MCF-7, which recapitulates the effects of mir-126. In conclusion, we developed a simple method for high-throughput screening of miRNAs and found that mir-126, a cell growth suppressor, targets IRS-1.

  15. The MRL proteins: adapting cell adhesion, migration and growth.

    PubMed

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  16. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  17. The use of immunohistochemical expression of SF-1 and EMA in distinguishing adrenocortical tumors from renal neoplasms.

    PubMed

    Enriquez, Miriam L; Lal, Priti; Ziober, Amy; Wang, Liping; Tomaszewski, John E; Bing, Zhanyong

    2012-03-01

    Steroidogenic factor -1 (SF-1) is an orphan member of the nuclear hormone receptor superfamily, and is considered to play an important role in the differentiation of steroidogenic tissues. In this study, we compared the immunohistochemical stains of SF-1 and epithelial membrane antigen (EMA) in non-neoplastic adrenal tissue, and adrenal and renal tumors using tissue microarrays (TMAs). The adrenal tissue array included 19 cases of normal adrenal cortex, 22 cases of adrenal adenoma, and 20 cases of adrenal cortical carcinoma. The renal tissue array included 20 cases of each of the following types of renal cell carcinoma: clear cell, papillary, and chromophobe. In addition, 20 cases of renal oncocytoma were also included in the study. SF-1 showed positive staining in all cases (100%) of normal adrenal cortex and adrenal cortical adenoma, and in 18 (90%) cases of adrenocortical carcinoma. In renal tumors, SF-1 showed negative stains in all of oncocytoma, papillary, and chromophobe renal cell carcinoma. Only 3 out of 20 cases of clear cell renal cell carcinoma showed weak positivity in approximately 10% of tumor cells. EMA stained positively in 85%, 95%, 100%, and 95% of clear cell, papillary, chromophobe renal cell carcinomas, and oncocytomas, respectively. EMA was completely negative in the adrenal TMAs. In conclusion, SF-1 and EMA may be helpful in the differentiation of adrenal tumors from renal tumors in difficult cases.

  18. Hormonal Control of Breast Cancer Cell Growth

    DTIC Science & Technology

    1997-09-01

    the ICE/ced-3 protease necessary for mammalian apoptosis . Nature , 376: 37-43, 1995. 55. Tewari, M., Quan, L.T., O’Rourke, K., Desnoyers, S., Zeng, Z...61. Enari, M., Hug, H. and Nagata, S. Involvement of an ICE-like protease in Fas- mediated apoptosis . Nature , 375: 78-81, 1995. 62. Liebermann, D.A...inhibition is the activation of genes controlling programmed cell death (PCD), leading to apoptosis , as it has been shown in other systems (24-26,42,43

  19. Hematopoietic Stem Cell and Its Growth Factor

    DTIC Science & Technology

    1988-02-16

    that both K15 and H5 were selectively retained by mature eosinophiles but not by other granulocytes. These results were obtained by the isolation of...Platelets M143 > 90% 40-60% neg neg neg K15 neutrophils: >90% >95% neg neg neg eosinophils : + H4 weakly + >90% neg neg + + H5 5-15% >95% 10-20% neg...down a band at 130KD from platelets and a complex of 140- 150KD/90-94KD from HEL cells. Because of the unusual reactivity and the possibility that the

  20. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  1. Mesenchymal stem cell therapy for injured growth plate.

    PubMed

    Shukrimi, Awang B; Afizah, Mohd H; Schmitt, Jacqueline F; Hui, James H P

    2013-01-01

    The growth plate has a limited self-healing capacity. Fractures sustained to the growth plate of young children could cause growth disturbances like angular deformity or growth arrest. Established therapies for injured physis only address related complications. Mesenchymal stem cells (MSCs) are multipotent cells which are capable of differentiating into various cells of the musculoskeletal system. Various MSC types have been tested for physeal regeneration, through in vivo lapine, porcine and ovine models, for the duration of 4-16 weeks. The created defect sizes ranged from 7-50% of the growth plate area, to simulate clinically-encountered cases. In vitro models have also been investigated, as a means to screen potential treatments. The effects of MSCs gathered from these models have revealed its function in the prevention of bone bridge formation, with the subsequent development of organized physeal repair tissue. Possible influential factors like the number of implanted MSCs, preconditioned state, growth factors, chondrocyte-MSC interaction and scaffolds are discussed. Possible further studies to optimize physeal repair based on MSC therapy in articular cartilage are also included.

  2. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate.

    PubMed

    Ohlsson, C; Nilsson, A; Isaksson, O; Lindahl, A

    1992-10-15

    To study the effect of locally infused growth hormone (GH) or insulin-like growth factor I(IGF-I) on slowly cycling cells in the germinal cell layer of the tibial growth plate, osmotic minipumps delivering 14.3 microCi of [3H]thymidine per day were implanted s.c. into hypophysectomized rats, and GH (1 microgram) or IGF-I (10 micrograms) was injected daily through a cannula implanted in the proximal tibia. The opposite leg served as a control. After 12 days of treatment, the osmotic minipumps were removed, and three rats in each group were given GH (20 micrograms/day, s.c.) for an additional 14 days to chase the labeled cells out of the proliferative layers. Labeled cells remained in the germinal layer, in the perichondrial ring, and on the surface of the articular cartilage close to the epiphyseal plate. GH administered together with labeled thymidine significantly increased the number of labeled cells in the germinal cell layer compared to that in the control leg (ratio = 1.95 +/- 0.13), whereas IGF-I showed no stimulatory effect (ratio = 0.96 +/- 0.04). Therefore GH but not IGF-I stimulates the multiplication of the slowly cycling (label-retaining) cells in the germinal layer of the epiphyseal plate. IGF-I acts only on the proliferation of the resulting chondrocytes.

  3. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  4. Replicating vesicles as models of primitive cell growth and division.

    PubMed

    Hanczyc, Martin M; Szostak, Jack W

    2004-12-01

    Primitive cells, lacking the complex bio-machinery present in modern cells, would have had to rely on the self-organizing properties of their components and on interactions with their environment to achieve basic cellular functions such as growth and division. Many bilayer-membrane vesicles, depending on their composition and environment, can exhibit complex morphological changes such as growth, fusion, fission, budding, internal vesicle assembly and vesicle-surface interactions. The rich dynamic properties of these vesicles provide interesting models of how primitive cellular replication might have occurred in response to purely physical and chemical forces.

  5. Microcrystalline silicon growth for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Leung, D. C.; Fang, P. H.

    1984-01-01

    A single source of evaporation with B mixed with highly doped Si is used instead of the coevaporation of separate Si and B sources to reduce possible carbon contamination. The results of both the heterojunction or heteroface structures, however, are similar when evaporation is used. The best Voc of the heterojunction is about 460mV and no improvement in Voc in the heteroface structure is observed. Slight Voc degradation occurred. A study of the p m-Si/p c-Si structure showed a negative Voc in many cases. The interface properties between the two materials are such that instead of repelling minority carriers from the substrate carrier, collection actually occurred. Another study of cells made in the part of substrates not covered by n-Si results in performance lower than the controls. This indicates possible substrate degradation in the process.

  6. Hair cortisol measurement in mitotane-treated adrenocortical cancer patients.

    PubMed

    Manenschijn, L; Quinkler, M; van Rossum, E F C

    2014-04-01

    The only approved drug for the treatment of adrenocortical cancer (ACC) is mitotane. Mitotane is adrenolytic and therefore, hydrocortisone replacement therapy is necessary. Since mitotane increases cortisol binding globulin (CBG) and induces CYP3A4 activity, high doses of hydrocortisone are thought to be required. Evaluation of hydrocortisone therapy in mitotane-treated patients has been difficult since there is no good marker to evaluate hydrocortisone therapy. Measurement of cortisol in scalp hair is a novel method that offers the opportunity to measure long-term cortisol levels. Our aim was to evaluate whether hair cortisol measurements could be useful in evaluating recent hydrocortisone treatment in mitotane-treated ACC patients. Hair cortisol levels were measured in 15 mitotane-treated ACC patients on hydrocortisone substitution and 96 healthy individuals. Cortisol levels were measured in 3 cm hair segments, corresponding to a period of 3 months. Hair cortisol levels were higher in ACC patients compared to healthy individuals (p<0.0001). Seven ACC patients (47%) had hair cortisol levels above the reference range. None of the patients had hair cortisol levels below normal. In contrast to hydrocortisone doses (β=0.03, p=0.93), hair cortisol levels were associated with BMI (β=0.53, p=0.042). There was no correlation between hair cortisol levels and hydrocortisone doses (β=0.41, p=0.13). Almost half of the ACC patients had high hair cortisol levels, suggesting long-term over-substitution of hydrocortisone in some of the patients, whereas none of the patients was under-substituted. Hair cortisol measurements might be useful in long-term monitoring hydrocortisone treatment in mitotane-treated ACC patients.

  7. Pituitary follicular cells produce basic fibroblast growth factor

    SciTech Connect

    Ferrara, N.; Schweigerer, L.; Neufeld, G.; Mitchell, R.; Gospodarowicz, D.

    1987-08-01

    Cultured monolayers of bovine pituitary follicular cells, which transport ions, contain high amounts of mitogenic activity for endothelial cells which, on the basis of gene expression analysis, heparin-Sepharose elution profile, bioassay, immunoblotting, radioimmunoassay, and radioreceptor assay, has been identified as basic fibroblast growth factor (bFGF). These data indicate that follicular cells may be a major source of bFGF in the pituitary gland. Considering that bFGF has been proposed to play a role in paracrine regulation of pituitary hormone secretion, the data also suggest that these cells may exert important local regulatory functions.

  8. Cell longevity and sustained primary growth in palm stems.

    PubMed

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  9. Netrin-4 regulates angiogenic responses and tumor cell growth

    SciTech Connect

    Nacht, Mariana; St Martin, Thia B.; Byrne, Ann; Klinger, Katherine W.; Teicher, Beverly A.; Madden, Stephen L. Jiang, Yide

    2009-03-10

    Netrin-4 is a 628 amino acid basement membrane component that promotes neurite elongation at low concentrations but inhibits neurite extension at high concentrations. There is a growing body of literature suggesting that several molecules, including netrins, are regulators of both neuronal and vascular growth. It is believed that molecules that guide neural growth and development are also involved in regulating morphogenesis of the vascular tree. Further, netrins have recently been implicated in controlling epithelial cell branching morphogenesis in the breast, lung and pancreas. Characterization of purified netrin-4 in in vitro angiogenesis assays demonstrated that netrin-4 markedly inhibits HMVEC migration and tube formation. Moreover, netrin-4 inhibits proliferation of a variety of human tumor cells in vitro. Netrin-4 has only modest effects on proliferation of endothelial and other non-transformed cells. Netrin-4 treatment results in phosphorylation changes of proteins that are known to control cell growth. Specifically, Phospho-Akt-1, Phospho-Jnk-2, and Phospho-c-Jun are reduced in tumor cells that have been treated with netrin-4. Together, these data suggest a potential role for netrin-4 in regulating tumor growth.

  10. Altered tumor cell growth and tumorigenicity in models of microgravity

    NASA Astrophysics Data System (ADS)

    Yamauchi, K.; Taga, M.; Furian, L.; Odle, J.; Sundaresan, A.; Pellis, N.; Andrassy, R.; Kulkarni, A.

    Spaceflight environment and microgravity (MG) causes immune dysfunction and is a major health risk to humans, especially during long-term space missions. The effects of microgravity environment on tumor growth and carcinogenesis are yet unknown. Hence, we investigated the effects of simulated MG (SMG) on tumor growth and tumorigenicity using in vivo and in vitro models. B16 melanoma cells were cultured in static flask (FL) and rotating wall vessel bioreactors (BIO) to measure growth and properties, melanin production and apoptosis. BIO cultures had 50% decreased growth (p<0.01), increased doubling time and a 150% increase in melanin production (p<0.05). Flow cytometric analysis showed increased apoptosis in BIO. When BIO cultured melanoma cells were inoculated sc in mice there was a significant increase in tumorigenicity as compared to FL cells. Thus SMG may have supported &selected highly tumorigenic cells and it is pos sible that in addition to decreased immune function MG may alter tumor cell characteristics and invasiveness. Thus it is important to study effects of microgravity environment and its stressors using experimental tumors and SMG to understand and evaluate carcinogenic responses to true microgravity. Further studies on carcinogenic events and their mechanisms will allow us develop and formulate countermeasures and protect space travelers. Additional results will be presented. (Supported by NASA NCC8-168 grant, ADK)

  11. Steroidogenic enzyme profile in an androgen-secreting adrenocortical oncocytoma associated with hirsustism

    PubMed Central

    Tetsi Nomigni, Milène; Ouzounian, Sophie; Benoit, Alice; Vadrot, Jacqueline; Tissier, Frédérique; Renouf, Sylvie; Lefebvre, Hervé; Christin-Maitre, Sophie; Louiset, Estelle

    2015-01-01

    Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH. PMID:26034121

  12. Steroidogenic enzyme profile in an androgen-secreting adrenocortical oncocytoma associated with hirsustism.

    PubMed

    Tetsi Nomigni, Milène; Ouzounian, Sophie; Benoit, Alice; Vadrot, Jacqueline; Tissier, Frédérique; Renouf, Sylvie; Lefebvre, Hervé; Christin-Maitre, Sophie; Louiset, Estelle

    2015-06-01

    Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH.

  13. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    PubMed Central

    Triplett, Ashley R.

    2014-01-01

    For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport. PMID:25237603

  14. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  15. Soliton growth-signal transduction in topologically quantized T cells

    NASA Astrophysics Data System (ADS)

    Matsson, Leif

    1993-09-01

    A model for growth-signal transduction of the T cell and its growth factor, interleukin-2, is presented. It is obtained as a generalization of the usual rate equation and is founded on the observation that a definite number of receptor occupations must take place in order to promote transition to the S phase and subsequent DNA replication. The generalized rate equation is identified as the equation of motion of a Lagrangian field theory of Ginzburg-Landau (Goldstone) type. However it is not an ad hoc model but is a microscopic theory of the interaction of interleukin-2 and its receptor. The topological quantum number of the model is related to the observed definite number of receptor occupations required to elicit growth-signal transduction. Individual receptor quanta, up to this limit, are subjected to a type of Bose condensation. This collective excitation constitutes the growth signal in the form of a topological kink soliton which is then launched by the next potential receptor occupation that makes the interaction repulsive. The model provides a possible long-absent explanation of the triggering mechanism for growth-signal transduction by means of the ambivalent interaction, which switches sign after a definite number of receptor occupations. Moreover, it offers an explanation of how Nature screens out fractional signals in the growth-signal-transduction process of T cells. Although the model is derived for assumed point-like cells and certain other restrictions, the obtained dose-response curves are in striking agreement with proliferation data from studies of both the leukemic T cell line MLA-144 from gibbon ape and normal human T cells in, and without, the presence of monoclonal anti-Tac antibodies.

  16. Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma

    PubMed Central

    Alvaro, Domenico; Barbaro, Barbara; Franchitto, Antonio; Onori, Paolo; Glaser, Shannon S.; Alpini, Gianfranco; Francis, Heather; Marucci, Luca; Sterpetti, Paola; Ginanni-Corradini, Stefano; Onetti Muda, Andrea; Dostal, David E.; De Santis, Adriano; Attili, Adolfo F.; Benedetti, Antonio; Gaudio, Eugenio

    2006-01-01

    We investigated the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF-1), and IGF-1R (receptor) in human cholangiocarcinoma and cholangiocarcinoma cell lines (HuH-28, TFK-1, Mz-ChA-1), evaluating the role of estrogens and IGF-1 in the modulation of neoplastic cell growth. ER-α, ER-β, IGF-1, and IGF-1R were expressed (immunohistochemistry) in all biopsies (18 of 18) of intrahepatic cholangiocarcinoma. ER-α was expressed (Western blot) only by the HuH-28 cell line (intrahepatic cholangiocarcinoma), whereas ER-β, IGF-1, and IGF-1R were expressed in the three cell lines examined. In serum-deprived HuH-28 cells, serum readmission induced stimulation of cell proliferation that was inhibited by ER and IGF-1R antagonists. 17β-Estradiol and IGF-1 stimulated proliferation of HuH-28 cells to a similar extent to that of MCF7 (breast cancer) but greater than that of TFK-1 and Mz-ChA-1, inhibiting apoptosis and exerting additive effects. These effects of 17β-estradiol and IGF-1 were associated with enhanced protein expression of ER-α, phosphorylated (p)-ERK1/2 and pAKT but with decreased expression of ER-β. Finally, transfection of IGF-1R anti-sense oligonucleotides in HuH-28 cells markedly decreased cell proliferation. In conclusion, human intrahepatic cholangiocarcinomas express receptors for estrogens and IGF-1, which cooperate in the modulation of cell growth and apoptosis. Modulation of ER and IGF-1R could represent a strategy for the management of cholangiocarcinoma. PMID:16936263

  17. Implications of Stem Cell Growth Regulation for Breast Cancer

    DTIC Science & Technology

    2007-06-01

    during development and maintenance of the gland could determine the growth potential, differentiation and senescence of the mammary epithelial cell...described the fractions of mature and stem/progenitor cells in developing and adult mammary gland, that took into account well-understood biological...aging and senescence of the mammary population. Mice with a null mutation in syndecan-1 (Sdc1) resist tumor development in a number of different

  18. FH535 inhibited migration and growth of breast cancer cells.

    PubMed

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  19. Metabolic pathways promoting cancer cell survival and growth.

    PubMed

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  20. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    SciTech Connect

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  1. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  2. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    PubMed

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  3. Emotional and Adrenocortical Regulation in Early Adolescence: Prediction by Attachment Security and Disorganization in Infancy

    ERIC Educational Resources Information Center

    Spangler, Gottfried; Zimmermann, Peter

    2014-01-01

    The aim of the present study was to examine differences in emotion expression and emotion regulation in emotion-eliciting situations in early adolescence from a bio-psycho-social perspective, specifically investigating the influence of early mother-infant attachment and attachment disorganization on behavioural and adrenocortical responses. The…

  4. Reciprocal Influences among Adrenocortical Activation, Psychosocial Processes, and the Behavioral Adjustment of Clinic-Referred Children.

    ERIC Educational Resources Information Center

    Granger, Douglas A.; And Others

    1996-01-01

    Assessed children's adjustment at clinic intake and six months later, and sampled children's saliva before and after a conflict-oriented parent-child interaction. Increases in salivary cortisol predicted children's internalizing problem behaviors and anxiety disorders at follow-up. High adrenocortical reactivity at intake and follow-up was…

  5. The Relations between Bullying Exposures in Middle Childhood, Anxiety, and Adrenocortical Activity

    ERIC Educational Resources Information Center

    Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo; Hibel, Leah C.; Granger, Douglas A.

    2010-01-01

    This exploratory study investigated how exposure to bullying at school in middle childhood is associated with student anxiety levels and adrenocortical activity at a time preceding lunch when anxiety about potential bullying would potentially be higher. Ninety-one sixth-grade students (55 female and 36 male) reported being exposed one or more…

  6. Drinking-induced changes in fowl adrenocortical activity: effect of visual and non-visual stimuli.

    PubMed

    Harvey, S; Klandorf, H; Lam, S K

    1985-02-01

    The deprivation of drinking water for 30 h resulted in increased corticosterone concentrations in the plasma of 8- to 10-week-old chickens. When water-deprived birds were allowed to drink ad libitum the corticosterone concentration declined within 45 min, to the level in hydrated controls, and remained suppressed thereafter. Similar reductions in the corticosterone concentrations were also observed in water-deprived chicks which were allowed to drink for only 5 min, 1 min or 5 s. The involvement of visual stimuli in mediating this adrenocortical response was demonstrated by a comparable decline in the corticosterone concentration in water-deprived birds which were presented with water but not allowed access to it. Non-visual stimuli also appeared to be causally involved in the adrenocortical suppression after drinking, since the intraperitoneal injection of tap water (40 ml per bird) also resulted in a lowering of the corticosterone level. However, in the absence of appropriate reinforcement from metabolic stimuli, a rebound in the corticosterone concentration was observed in birds prevented from drinking, in birds unable to satiate their thirst and in birds rehydrated (orally or intraperitoneally) without feeding. These results demonstrate adrenocortical suppression in water-deprived chickens after free access to food and water and the involvement of visual and non-visual stimuli in mediating this response. The maintenance of adrenocortical suppression is dependent upon metabolic stimuli associated with food and water intake.

  7. The Effects of Morning Naps, Car Trips, and Maternal Separation on Adrenocortical Activity in Human Infants.

    ERIC Educational Resources Information Center

    Larson, Mary C.; And Others

    1991-01-01

    Three studies examined adrenocortical activity in infants. Morning naps were associated with decreases in salivary cortisol. Riding for 40 minutes in a car lowered salivary cortisol concentrations. Thirty minutes of maternal separation in the laboratory resulted in higher salivary cortisol concentrations than did 30 minutes of play with the mother…

  8. Evening Activities as a Potential Confound in Research on the Adrenocortical System in Children

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Gunnar, Megan R.

    2004-01-01

    The relation among children's evening activities, behavioral characteristics, and activity of the hypothalamic-pituitary-adrenocortical axis was assessed in normally developing children ages 7 to 10 years. Salivary cortisol at bedtime was compared on evenings when children had structured activities outside of the home with unstructured evenings at…

  9. Adrenocortical responses to repeated parachute jumping and subsequent h-CRH challenge in inexperienced healthy subjects.

    PubMed

    Deinzer, R; Kirschbaum, C; Gresele, C; Hellhammer, D H

    1997-04-01

    The present study examined the adrenocortical response to 3 consecutive parachute jumps and a poststress h-CRH challenge. Fifteen participants in a parachute-jumping course took saliva samples for later cortisol analysis every 20 min throughout the day, when they accomplished their very first 3 parachute jumps and throughout a control day. The effects of an h-CRH challenge on salivary cortisol were assessed in the evening of the jumping day and on a control day. Parachute jumping induced 3 distinct highly significant adrenocortical responses. The respective cortisol increases for the first, second, and third jump were 39.4 +/- 26.5 nmol/1, 31.4 +/- 21.4 nmol/l, and 16.5 +/- 11.9 nmol/l. Cortisol responses to the first and second jump did not differ but the response to the third jump was significantly reduced [t(13) = 3.11; p = 0.008]. Two groups of subjects were identified, "decreasers," whose response decreased from one to the other jump, and "increasers," whose response remained unchanged or increased. The magnitude of the preceding cortisol response of decreasers exceeded that of increasers significantly by about 30 nmol. The mean adrenocortical effects of the poststress h-CRH challenge and the time-matched challenge on a control day did not differ although, in 4 subjects, the poststress adrenocortical response to h-CRH was completely suppressed.

  10. Regulation of skeletal muscle stem cells by fibroblast growth factors.

    PubMed

    Pawlikowski, Bradley; Vogler, Thomas Orion; Gadek, Katherine; Olwin, Bradley B

    2017-03-01

    Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics, 2017. © 2017 Wiley Periodicals, Inc.

  11. Modeling the effect of insulin-like growth factor-1 on human cell growth.

    PubMed

    Phillips, Gemma M A; Shorten, Paul R; Wake, Graeme C; Guan, Jian

    2015-01-01

    Insulin-like growth factor-1 (IGF-1) plays a key role in human growth and development. The interactions of IGF-1 with IGF-1 receptors and IGF-1 binding proteins (IGFBPs) regulate IGF-1 function. Recent research suggests that a metabolite of IGF-1, cyclo-glycyl-proline (cGP), has a role in regulating IGF-1 homeostasis. A component of this interaction is believed to be the competitive binding of IGF-1 and cGP to IGFBPs. In this paper we describe a mathematical model of the interaction between IGF-1 and cGP on human cell growth. The model can be used to understand the interaction between IGF-1, IGFBPs, cGP and IGF-1 receptors along with the kinetics of cell growth. An explicit model of the known interactions between IGF-1, cGP, IGFBPs, IGF-1 receptors explained a large portion of the variance in cell growth (R(2) = 0.83). An implicit model of the interactions between IGF-1, cGP, IGFBPs, IGF-1 receptors that included a hypothesized feedback of cGP on IGF-1 receptors explained nonlinear features of interaction between IGF-1 and cGP not described by the explicit model (R(2) = 0.84). The model also explained the effect of IGFBP antibody on the interaction between cGP and IGF-1 (R(2) = 0.78). This demonstrates that the competitive binding of IGF-1 and cGP to IGFBPs plays a large role in the interaction between IGF-1 and cGP, but that other factors potentially play a role in the interaction between cGP and IGF-1. These models can be used to predict the complex interaction between IGF-1 and cGP on human cell growth and form a basis for further research in this field.

  12. Identifying Francisella tularensis genes required for growth in host cells.

    PubMed

    Brunton, J; Steele, S; Miller, C; Lovullo, E; Taft-Benz, S; Kawula, T

    2015-08-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence.

  13. How to Foster an Understanding of Growth and Cell Division

    ERIC Educational Resources Information Center

    Kruger, Dirk; Fleige, Jennifer; Riemeier, Tanja

    2006-01-01

    The study presents the frequencies of students' conceptions of growth and cell division before and after one hour of instruction. The investigation supplements qualitative results by directing attention to those conceptions which might occur most frequently to students: teachers can then concentrate their preparation on practical requirements. A…

  14. Fluoxetine regulates cell growth inhibition of interferon-α.

    PubMed

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  15. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  16. Monitoring of lung tumour cell growth in artificial membranes.

    PubMed

    Yang, Ying; Sulé-Suso, Josep; El Haj, Alicia J; Hoban, Paul R; Wang, Ruikang

    2004-10-15

    Morbidity of many tumour types is associated with invasion of tumour cells through the basement membrane and subsequent metastasis to vital organs. Tumour invasion is frequently detected late on as many patients present with advanced disease. The method of detecting invasion is through conventional histological staining techniques, which are time consuming and require processing of the sample. This can affect interpretation of the results. In this study, a new imaging technique, optical coherence tomography (OCT), was used to monitor lung tumour cell growth in two artificial membranes composed of either collagen type I or Matrigel. In parallel, standard histological section analysis was performed to validate the accuracy of the monitoring by OCT. Cross-sectional images from OCT revealed that lung tumour cells infiltrated only when low cell seeding density (5 x 10(5)) and low collagen concentration (1.5 mg/ml) were combined. The cells could be easily differentiated from the artificial membranes and appeared as either a brighter layer on the top of the membrane or brighter foci embedded within the darker membrane. These cell-membrane morphologies matched remarkably to the standard histological section images. Our results suggest that OCT has a great potential to become a useful tool for fast and robust imaging of cell growth in vivo and as a potential assessment of cell invasion.

  17. Electrical impedance characterization of cell growth on interdigitated microelectrode array.

    PubMed

    Lee, Gi Hyun; Pyun, Jae-Chul; Cho, Sungbo

    2014-11-01

    Electrical cell-substrate impedance sensing is a method for label-free and real-time monitoring of biological cells, which has been increasingly employed in the diagnostic and pharmaceutical industries. In this study, we fabricated an interdigitated electrode (IDE) array, which consists of 10 fingers, with a length of 1.2 mm, width of 50 μm, spacing of 50 μm, and thickness of 75 nm. The impedance spectra of the fabricated IDE were measured without or with cells in the frequency range of 100 Hz to 100 kHz using a lock-in amplifier based system and characterized by equivalent circuit modelling. Regarding the total impedance as a series resistance (R) and capacitance (C) model, R and C parameters were traced at a selected frequency during cell growth. It was able to monitor cell adherence and proliferation dependent on the behaviours and characteristics of cells on the fabricated IDE array by monitoring RC parameters. The degree of changes in RC value during cell growth was dependent on the type of cells used.

  18. Cell growth and function on calcium phosphate reinforced chitosan scaffolds.

    PubMed

    Zhang, Yong; Zhang, Miqin

    2004-03-01

    Macroporous chitosan scaffolds reinforced by calcium phosphate powders such as hydroxyapatite (HA) or calcium phosphate invert glass were fabricated using a thermally induced phase separation technique. Human osteoblast-like MG63 cells were cultured on the composite scaffolds for up to 11 days, and the cell growth and function were analyzed. The cell growth is much faster on the chitosan/HA scaffolds incorporated with the glass (CHG) than on the chitosan/HA scaffold without the glass (CH). The total protein content of cells were quantified and increased over time on both composites (CH, CHG) but was significantly higher on CHG after 7 days of culture. The cells on CHG also expressed significantly higher amount of alkaline phosphatase at days 7 and 11 and osteocalcin at day 7 than those on CH. The results suggested that the addition of glass in chitosan/hydroxyapatite composite scaffolds might enhance the proliferation and osteoblastic phenotype expression of MG63 cells. However, the chitosan-matrix scaffolds did not show higher phenotype expression of MG63 cells, in comparison with the TCPS plate, probably due to the degradation of chitosan and release of acidic byproducts. Larger amount of soluble calcium phosphate invert glasses should be added into the scaffolds to prevent chitosan from fast degradation that may affect the differentiation of osteoblast cells.

  19. Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis

    PubMed Central

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing

    2014-01-01

    Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576

  20. Growth and development after hematopoietic cell transplant in children.

    PubMed

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  1. Targeting glutamine transport to suppress melanoma cell growth.

    PubMed

    Wang, Qian; Beaumont, Kimberley A; Otte, Nicholas J; Font, Josep; Bailey, Charles G; van Geldermalsen, Michelle; Sharp, Danae M; Tiffen, Jessamy C; Ryan, Renae M; Jormakka, Mika; Haass, Nikolas K; Rasko, John E J; Holst, Jeff

    2014-09-01

    Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.

  2. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells

    PubMed Central

    Wang, Lixia; Hou, Yingying; Yin, Xuyuan; Su, Jingna; Zhao, Zhe; Ye, Xiantao; Zhou, Xiuxia; Zhou, Li; Wang, Zhiwei

    2016-01-01

    Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma. PMID:27626499

  3. Suppressing The Growth Of Dendrites In Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  4. Molecular Profiling of Refractory Adrenocortical Cancers and Predictive Biomarkers to Therapy

    PubMed Central

    Millis, Sherri Z.; Ejadi, Samuel; Demeure, Michael J.

    2015-01-01

    PURPOSE Current first-line chemotherapy for patients with metastatic adrenocortical cancer (ACC) includes doxorubicin, etoposide, cisplatin, and mitotane with a reported response rate of only 23.2%. New therapeutic leads for patients with refractory tumors are needed; there is no standard second-line treatment. METHODS Samples from 135 ACC tumors were analyzed by immunohistochemistry, in situ hybridization (FISH or CISH), and/or gene sequencing at a single commercial reference laboratory (Caris Life Sciences) to identify markers associated with drug sensitivity and resistance. RESULTS Overexpression of proteins related to demonstrated chemotherapy sensitivity or resistance included topoisomerase 1, progesterone receptor, and topoisomerase 2-alpha in 46%, 63%, and 42% of cases, respectively. Loss of excision repair cross-complementary group 1 (ERCC1), phosophatase and tensin homolog, O(6)-methylguanine-methyltransferase, and ribonucleotide reductase M1 (RRM1) was identified in 56%, 59%, 71%, and 58% of cases, respectively. Other aberrations included overexpression of programmed death-ligand 1 or programmed cell death protein 1 tumor-infiltrating lymphocytes in >40% of cases. In all, 35% of cases had a mutation in the canonical Wnt signaling pathway (either CTNNB1 or APC) and 48% had a mutation in TP53. No other genomic alterations were identified. CONCLUSION Biomarker alterations in ACC may be used to direct therapies, including recommendations for and potential resistance of some patients to traditional chemotherapies, which may explain the low response rate in the unselected population. Limited outcomes data support the use of mitotane and platinum therapies for patients with low levels of the proteins RRM1 and ERCC1. PMID:26715866

  5. Two-dimensional diffusion limited system for cell growth

    SciTech Connect

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs.

  6. Automated inference procedure for the determination of cell growth parameters

    NASA Astrophysics Data System (ADS)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  7. Nonislet Cell Tumor Hypoglycemia in a Patient with Adrenal Cortical Carcinoma

    PubMed Central

    Lee, Seung-Eun; Oh, Young Lyun; Kim, Seokhwi; Park, Sun Hee

    2016-01-01

    Nonislet cell tumor hypoglycemia (NICTH) is a rare but serious paraneoplastic syndrome in which a tumor secretes incompletely processed precursors of insulin-like growth factor-II (IGF-II), causing hypoglycemia. Here, we report an exceptional case of NICTH caused by nonfunctioning adrenocortical carcinoma in a 39-year-old male with recurrent hypoglycemia. The patient's serum IGF-II/IGF-I ratio had increased to 27.8. The serum level of the IGF-II/IGF-I ratio was normalized after removal of the tumor, and the hypoglycemic attacks no longer occurred after the operation. PMID:27957352

  8. Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production.

    PubMed

    Yoon, Sung Kwan; Hong, Jong Kwang; Choo, Seung Ho; Song, Ji Yong; Park, Hong Woo; Lee, Gyun Min

    2006-04-20

    Recombinant Chinese hamster ovary (rCHO) cells producing erythropoietin (EPO) and rCHO cells producing follicle-stimulating hormone (FSH) showed a significant increase in specific productivity (q) when grown at 32 degrees C compared to 37 degrees C. However, low culture temperature suppressed cell growth, and therefore, did not increase volumetric productivity as much as q. In an attempt to increase the volumetric productivity through improvement of hypothermic growth, EPO producing rCHO (CHO-EPO) cells and FSH producing rCHO (CHO-FSH) cells were adapted at 32 degrees C in a repeated batch mode using spinner flasks. Cell growth of both CHO-EPO and CHO-FSH gradually improved during adaptation at 32 degrees C. Specific growth rates of CHO-EPO and CHO-FSH cells at 32 degrees C, through adaptation, were increased by 73% and 20%, respectively. During adaptation at 32 degrees C, mRNA levels of cold-inducible RNA-binding protein (CIRP) of both rCHO cell lines did not change significantly, suggesting that CIRP expression may not be the only cause for growth suppression at low culture temperature. Unlike cell growth, the recombinant protein production of both rCHO cell lines was not increased during adaptation due to decreased specific productivities. The specific EPO productivity and specific FSH productivity were decreased by 49% and 22%, respectively. Southern blot analyses showed that the decreased specific productivities were not due to the loss of foreign gene copies. Taken together, improvement of hypothermic cell growth by adaptation does not appear to be applicable for enhanced recombinant protein production, since specific productivity decreases during adaptation to the low culture temperature.

  9. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  10. Ponicidin Inhibits Monocytic Leukemia Cell Growth by Induction of Apoptosis

    PubMed Central

    Liu, Jia-Jun; Zhang, Yong; Guang, Wei-Bin; Yang, Hong-Zhi; Lin, Dong-Jun; Xiao, Ruo-Zhi

    2008-01-01

    In this study two monocytic leukemia cell lines, U937 and THP-1 cells, were used to investigate the anti-proliferation effects caused by ponicidin. Cell viability was measured by an MTT assay. Cell apoptosis was assessed by flow cytometry as well as DNA fragmentation analysis. Cell morphology was observed using an inverted microscope and Hoechst 33258 staining. RT-PCR and Western blot analysis were used to detect survivin as well as Bax and Bcl-2 expressions after the cells were treated with different concentrations of ponicidin. The results revealed that ponicidin could inhibit the growth of U937 and THP-1 cells significantly by induction of apoptosis. The suppression was in both time- and dose-dependent manner. Marked morphological changes of cell apoptosis were observed clearly after the cells were treated with ponicidin for 48∼72 h. RT-PCR and Western blot analysis demonstrated that both survivin and Bcl-2 expressions were down-regulated remarkably while Bax expression remained constant before and after apoptosis occurred. We therefore conclude that ponicidin has significant anti-proliferation effects by inducing apoptosis on leukemia cells in vitro, downregulation of survivin as well as Bcl-2 expressions may be the important apoptosis inducing mechanisms. The results suggest that ponicidin may serve as potential therapeutic agent for leukemia. PMID:19330074

  11. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  12. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces.

    PubMed

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George; Roy, Shuvo

    2002-12-15

    Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone-marrow-derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on smooth PDMS surfaces and on PDMS post microtextures that were 6 microm high and 5, 10, 20, and 40 microm in diameter, respectively. Glass tissue-culture dishes were used as controls. The number of viable cells was determined, and an alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces. Cells on the smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions, with cell process lengths of up to 80 microm. In contrast, cells on the PDMS post microtextures grew as sparsely distributed networks of cells, with processes, occasionally up to 300 microm, that appeared to interact with the posts. Cell counts revealed that there were fewer (50%) CTPs on the smooth PDMS surface than were on the glass control surfaces. However, there were consistently more (>144%) CTPs on the PDMS post textures than on the controls. In particular, the 10-microm-in-diameter posts (268%) exhibited a significantly (p < 0.05) greater cell number than did the smooth PDMS.

  13. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  14. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    PubMed Central

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  15. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  16. Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics

    PubMed Central

    Molina, Ignacio; Theodoropoulos, Constantinos

    2014-01-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  17. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  18. Probabilistic Model of Microbial Cell Growth, Division, and Mortality ▿

    PubMed Central

    Horowitz, Joseph; Normand, Mark D.; Corradini, Maria G.; Peleg, Micha

    2010-01-01

    After a short time interval of length δt during microbial growth, an individual cell can be found to be divided with probability Pd(t)δt, dead with probability Pm(t)δt, or alive but undivided with the probability 1 − [Pd(t) + Pm(t)]δt, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat's properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population's size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data. PMID:19915038

  19. Mathematical Modeling of Tumor Cell Growth and Immune System Interactions

    NASA Astrophysics Data System (ADS)

    Rihan, Fathalla A.; Safan, Muntaser; Abdeen, Mohamed A.; Abdel-Rahman, Duaa H.

    In this paper, we provide a family of ordinary and delay differential equations to describe the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells, and the rate of influx of IL2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor-dormancy.

  20. Growth Patterns in Children with Sickle Cell Anemia during Puberty

    PubMed Central

    Rhodes, Melissa; Akohoue, Sylvie A.; Shankar, Sadhna M.; Fleming, Irma; An, Angel; Yu, Chung; Acra, Sari; Buchowski, Maciej S.

    2009-01-01

    Background Previous studies of children with homozygous sickle cell anemia (SCA) show impaired growth and maturation. The correlation of this suboptimal growth with metabolic and hematological factors during puberty is poorly understood. Procedure We studied a group of pre-adolescent children with SCA (19 males, 14 females) and healthy controls (16 males, 15 females) matched for race, sex, body size, and pubertal development. Height, weight, body mass index (BMI), and body composition changes were longitudinally assessed over a 2-year period and compared between the groups and with Z scores based on US growth charts. These changes were correlated with hemoglobin concentration and with energy expenditure measured using indirect whole-room calorimetry. Results Children with SCA progressed through puberty slower than control children. While, after 2 years, pubertal males with SCA were shorter, their annual increases in weight were not different from controls. The mean fat free mass (FFM) increments were significantly less in males and females with SCA than in control children. In males with SCA, growth in height declined over time and was significantly slower than in matched controls (p<0.05). Conclusion Growth delays were present during puberty in children with SCA. Decreased growth velocity in children with SCA was independently associated with decreased hemoglobin concentration and increased total energy expenditure. PMID:19544390

  1. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

    PubMed Central

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer. PMID:28176967

  2. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  3. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  4. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  5. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    PubMed Central

    Biskup, Edyta; Manfé, Valentina; Kamstrup, Maria R.; Gniadecki, Robert

    2010-01-01

    We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa), Sézary syndrome (SeAx), and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK). Mac1 and Mac2a had the highest growth rate (doubling time 18–28 h, >90% cycling cells) whereas SeAx was proliferating slowly (doubling time 55 h, approximately 35% cycling cells). Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma. PMID:25386244

  6. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  7. Yes is a central mediator of cell growth in malignant mesothelioma cells.

    PubMed

    Sato, Ayami; Sekine, Miki; Virgona, Nantiga; Ota, Masako; Yano, Tomohiro

    2012-11-01

    The constitutive activation of the Src family kinases (SFKs) has been established as a poor prognostic factor in malignant mesothelioma (MM), however, the family member(s) which contribute to the malignancy have not been defined. This study aimed to identify the SFK member(s) contributing to cell growth using RNA interference in various MM cell lines. Silencing of Yes but not of c-Src or Fyn in MM cells leads to cell growth suppression. This suppressive effect caused by Yes silencing mainly depends on G1 cell cycle arrest and partly the induction of apoptosis. Also, the knockout of Yes induces the inactivation of β-catenin signaling and subsequently decreases the levels of cyclin D necessary for G1-S transition in the cell cycle. In addition, Yes knockout has less effect on cell growth suppression in β-catenin-deficient H28 MM cells compared to other MM cells which express the catenin. Overall, we conclude that Yes is a central mediator for MM cell growth that is not shared with other SFKs such as c-Src.

  8. High (18)F-FDG uptake by the remaining adrenal gland four months after surgery and initiation of mitotane treatment in two patients with adrenocortical carcinoma.

    PubMed

    Mpanaka, Ioanna; Lyra, Vassiliki D; Kaltsas, Gregory; Chatziioannou, Sofia N

    2011-01-01

    Two men, one 42 and the other 35 years old were both subjected to adrenalectomy for adrenocortical carcinoma (ACC). Adjuvant treatment with mitotane [o,p΄-dichloro-diphenyl-dichloroethane, (o,p΄-DDD)], was initiated following surgery. Mitotane is the only agent available at present for treatment in ACC because of a late-onset specific adrenocortical cell toxicity. Both patients underwent a (18)F-FDG-PET/CT scan, which revealed 4 months after starting treatment with mitotane significantly high (18)F-FDG uptake in the contralateral adrenal gland. Both patients underwent magnetic resonance imaging, while one had a laparotomy, because of an abcess at the site of previous adrenalectomy. No metastasis or size increase of the remaining adrenal glands were found suggesting that their hypermetabolic state could be attributed to mitotane treatment. Beside its cytotoxic delayed-effect, mitotane has an early -onset effect on steroid metabolism. In conclusion, an abnormal high (18)F-FDG uptake was observed in the contralateral adrenal gland in both our adrenalectomized ACC patients, 4 months after starting mitotane treatment, probably related to mitotane's effect on steroid metabolism, not yet fully understood.

  9. AP-2α inhibits hepatocellular carcinoma cell growth and migration.

    PubMed

    Huang, Wenhuan; Chen, Cheng; Liang, Zhongheng; Qiu, Junlu; Li, Xinxin; Hu, Xiang; Xiang, Shuanglin; Ding, Xiaofeng; Zhang, Jian

    2016-03-01

    Transcription factor AP-2α is involved in many types of human cancers, but its role in hepatocellular carcinogenesis is largely unknown. In this study, we found that expression of AP-2α was low in 40% of human hepatocellular cancers compared with adjacent normal tissues by immunohistochemical analysis. Moreover, AP-2α expression was low or absent in hepatocellular cancer cell lines (HepG2, Hep3B, SMMC-7721 and MHHC 97-H). Human liver cancer cell lines SMMC-7721 and Hep3B stably overexpressing AP-2α were established by lentiviral infection and puromycin screening, and the ectopic expression of AP-2α was able to inhibit hepatocellular cancer cell growth and proliferation by cell viability, MTT assay and liquid colony formation in vitro and in vivo. Furthermore, AP-2α overexpression decreased liver cancer cell migration and invasion as assessed by wound healing and Transwell assays, increasing the sensitivity of liver cancer cells to cisplatin analyzed by MTT assays. Also AP-2α overexpression suppressed the sphere formation and renewed the ability of cancer stem cells. Finally, we found that AP-2α is epigenetically modified and modulates the levels of phosphorylated extracellular signal-regulated protein kinase (ERK), β-catenin, p53, EMT, and CD133 expression in liver cancer cell lines. These results suggested that AP-2α expression is low in human hepatocellular cancers by regulating multiple signaling to affect hepatocellular cancer cell growth and migration. Therefore, AP-2α might represent a novel potential target in human hepatocellular cancer therapy.

  10. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.

    PubMed

    Hodik, V; Mett, A; Halevy, O

    1997-10-01

    Chicken growth hormone (cGH) has been shown to affect chicken skeletal muscle satellite cell proliferation and differentiation in vitro. This study describes the interactions of cGH with basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). Both cGH and bFGF induced cGH receptor (cGH-R) gene expression as well as that of the avian FGF receptor, FREK, when added at low concentrations to satellite cells. bFGF caused a rapid induction of cGH-R mRNA. Combinations of low levels of bFGF and cGH caused a further increase in receptor mRNA expression levels, relative to that caused by each peptide alone, and their effect on DNA synthesis was synergistic. However, combinations of cGH and bFGF at high concentrations decreased cGH-R and FREK mRNA levels and DNA synthesis in a dose-dependent manner. These results imply that the mutual effects of bFGF and cGH on satellite cell proliferation are receptor-mediated and that each peptide regulates both receptors gene expression. IGF-I induced DNA synthesis in satellite cells but did not affect cGH-R gene expression at any of the concentrations tested. Coincubation of 3.5 ng/ml cGH and various concentrations of IGF-I did not significantly change DNA synthesis relative to the effect of cGH alone. However, combinations with high levels of cGH abolished it. Similar time-course (up to 6 hr) induction of DNA synthesis in serum-starved cells was observed in the presence of cGH or IGF-I, suggesting that cGH affects satellite cell proliferation in an IGF-I-independent manner.

  11. Effects of space flight exposure on cell growth, tumorigenicity and gene expression in cancer cells

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Li, Yuehui; Zhang, Zhijie; Luo, Chen; Tong, Yongqing; Zhou, Guohua; Xie, Pingli; Hu, Jinyue; Li, Guancheng

    2008-12-01

    It is well recognized that harsh outer space environment, consisting of microgravity and radiation, poses significant health risks for human cells. To investigate potential effects of the space environment exposure on cancer cells we examined the biological changes in Caski cells carried by the "Shen Zhou IV" spaceship. After exposure for 7 days in spaceflight, 1440 survival subclonal cell lines were established and 4 cell lines were screened. 44F10 and 17E3 were selected because of their increased cell proliferation and tumorigenesis, while 48A9 and 31F2 had slower cytological events. Experiments with cell proliferation assay, flow cytometry, soft agar assay, tumorigenesis assay and DNA microarray analysis have shown that selected cell lines presented multiple biological changes in cell morphology, cell growth, tumorigenicity and gene expression. These results suggest that space environment exposure can make significant biological impact on cancer cells and provide an entry point to find the immunological target of tumorigenesis.

  12. Inferring time derivatives including cell growth rates using Gaussian processes

    PubMed Central

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B.N.; Vogel, Jackie; Pilizota, Teuta

    2016-01-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable. PMID:27941811

  13. Inferring time derivatives including cell growth rates using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  14. 5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation?

    PubMed

    de Krijger, Ronald E; Bertherat, Jérôme

    2016-02-01

    For the clinician, despite its rarity, adrenocortical cancer is a heterogeneous tumor both in term of steroid excess and tumor evolution. For patient management, it is crucial to have an accurate vision of this heterogeneity, in order to use a correct tumor classification. Pathology is the best way to classify operated adrenocortical tumors: to recognize their adrenocortical nature and to differentiate benign from malignant tumors. Among malignant tumors pathology also aims at prognosis assessment. Although progress has being made for prognosis assessment, there is still a need for improvement. Recent studies have established the value of Ki67 for adrenocortical cancer (ACC) prognostication, aiming also at standardization to reduce variability. The use of genomics to study adrenocortical tumors gives a very new insight in their pathogenesis and molecular classification. Genomics studies of ACC give now a clear description of the mRNA (transcriptome) and miRNA expression profile, as well as chromosomal and methylation alterations. Exome sequencing also established firmly the list of the main ACC driver genes. Interestingly, genomics study of ACC also revealed subtypes of malignant tumors with different pattern of molecular alterations, associated with different outcome. This leads to a new vision of adrenocortical tumors classification based on molecular analysis. Interestingly, these molecular classifications meet also the results of pathological analysis. This opens new perspectives on the development and use of various molecular tools to classify, along with pathological analysis, ACC, and guides patient management at the area of precision medicine.

  15. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells.

    PubMed

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-28

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states.

  16. AMPK Regulation of Cell Growth, Apoptosis, Autophagy, and Bioenergetics.

    PubMed

    Paz, Marina Villanueva; Cotán, David; Maraver, Juan Garrido; Oropesa-Ávila, Manuel; de la Mata, Mario; Pavón, Ana Delgado; de Lavera, Isabel; Gómez, Elizabet Alcocer; Córdoba, Mónica Álvarez; Alcázar, José A Sánchez

    2016-01-01

    In eukaryotic cells, AMP-activated protein kinase (AMPK) generally promotes catabolic pathways that produce ATP and at the same time inhibits anabolic pathways involved in different processes that consume ATP. As an energy sensor, AMPK is involved in the main cellular functions implicated in cell fate, such as cell growth and autophagy.Recently, AMPK has been connected with apoptosis regulation, although the molecular mechanism by which AMPK induces and/or inhibits cell death is not clear.This chapter reviews the essential role of AMPK in signaling pathways that respond to cellular stress and damage, highlighting the complex and reciprocal regulation between AMPK and their targets and effectors. The therapeutic implications of the role of AMPK in different pathologies such as diabetes, cancer, or mitochondrial dysfunctions are still controversial, and it is necessary to further investigate the molecular mechanisms underlying AMPK activation.

  17. Large-cell Monte Carlo renormalization of irreversible growth processes

    NASA Technical Reports Server (NTRS)

    Nakanishi, H.; Family, F.

    1985-01-01

    Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.

  18. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  19. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    SciTech Connect

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  20. The lack of antitumor effects of o,p'DDA excludes its role as an active metabolite of mitotane for adrenocortical carcinoma treatment.

    PubMed

    Hescot, Ségolène; Paci, Angelo; Seck, Atmane; Slama, Abdelhamid; Viengchareun, Say; Trabado, Séverine; Brailly-Tabard, Sylvie; Al Ghuzlan, Abir; Young, Jacques; Baudin, Eric; Lombès, Marc

    2014-10-01

    Mitotane (o,p'DDD) is the most effective treatment of advanced adrenocortical carcinoma (ACC) but its mechanism of action remains unknown. Previous studies suggested that o,p'DDA may represent the active metabolite of mitotane. We aimed at reevaluating the potential role and pharmacological effects of o,p'DDA. Functional consequences of o,p'DDA exposure were studied on proliferation, steroidogenesis, and mitochondrial respiratory chain in human H295R and SW13 adrenocortical cells. Mitotane and its metabolites were quantified using high-performance liquid chromatography combined to an ultraviolet detection in these cells treated with o,p'DDD or o,p'DDA and in human adrenal tissues. Dose-response curves up to 300 μM showed that, as opposed to o,p'DDD, o,p'DDA did not inhibit cell proliferation nor alter respiratory chain complex IV activity, gene expression nor induce mitochondrial biogenesis, oxidative stress, or apoptosis. However, whereas mitotane drastically decreased expression of genes involved in steroidogenesis, o,p'DDA slightly reduced expression of some steroidogenic enzymes and exerts weak anti-secretory effects only at high doses. While o,p'DDD concentration was significantly reduced by 40 % in H295R cell supernatants after 48 h incubation, o,p'DDA levels remained unchanged suggesting that o,p'DDA was not efficiently transported into the cells. o,p'DDA was not detected in cell homogenates or supernatants after 48 h exposure to o,p'DDD, consistent with the absence of o,p'DDA production in these models. Finally, unlike o'p'DDD, we found that o,p'DDA content was undetectable in two ACC and one normal adrenal gland of mitotane-treated patients, suggesting a lack of cellular uptake and in situ production. Our results demonstrate that o,p'DDD, but not o,p'DDA, induces functional alterations in adrenal cells.

  1. Genomic imprinting in development, growth, behavior and stem cells.

    PubMed

    Plasschaert, Robert N; Bartolomei, Marisa S

    2014-05-01

    Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.

  2. Hugl-1 inhibits glioma cell growth in intracranial model.

    PubMed

    Liu, Xuejiao; Lu, Dong; Ma, Peng; Liu, Huaqiang; Cao, Yuewen; Sang, Ben; Zhu, Xianlong; Shi, Qiong; Hu, Jinxia; Yu, Rutong; Zhou, Xiuping

    2015-10-01

    Drosophila lethal (2) giant larvae (lgl) has been reported as a tumor suppressor and could regulate the Drosophila hippo signaling. Human giant larvae-1(Hugl-1), one human homologue of Drosophila lgl, also has been reported to be involved in the development of some human cancers. However, whether Hugl-1 is associated with the pathogenesis of malignant gliomas remains poorly understood. In the present work, we examined the effect of Hugl-1 on glioma cell growth both in vitro and in vivo. Firstly, we found that Hugl-1 protein levels decreased in the human glioma tissues, suggesting that Hugl-1 is involved in glioma progression. Unfortunately, either stably or transiently over-expressing Hugl-1 did not affect glioma cell proliferation in vitro. In addition, Hugl-1 over-expression did not regulate hippo signaling pathway. Interestingly, over-expression of Hugl-1 not only inhibited gliomagenesis but also markedly inhibited cell proliferation and promoted the apoptosis of U251 cells in an orthotopic model of nude mice. Taken together, this study provides the evidence that Hugl-1 inhibits glioma cell growth in intracranial model of nude mice, suggesting that Hugl-1 might be a potential tumor target for glioma therapy.

  3. Biphasic modulation of cell growth by recombinant human galectin-1.

    PubMed

    Adams, L; Scott, G K; Weinberg, C S

    1996-06-13

    Human soluble galactose-binding lectin (galectin-1) has been expressed as an Escherichia coli fusion protein, following the amplification by polymerase chain reaction of cDNA prepared from a human osteosarcoma cell line. The fusion protein is a functional beta-galactoside-binding lectin, as is the recombinant galectin when purified from the cleaved fusion protein. The recombinant galectin has a biphasic effect on cell proliferation. Unlike the fusion protein, it functions as a human cell growth inhibitor, confirming earlier findings with natural human galectin-1, though it is less effective than the natural galectin. This reaction is not significantly inhibited by lactose, and is thus largely independent of the beta-galactoside-binding site. At lower concentrations, recombinant galectin-1 is mitogenic, this activity being susceptible to inhibition by lactose, and thus attributable to the beta-galactoside-binding ability of the protein. Some tumour cells are susceptible to the growth-inhibitory effect, and the galectin-1 gene is expressed in both normal and tumour cells.

  4. Polyamines in Relation to Growth in Carrot Cell Cultures 1

    PubMed Central

    Fallon, Kevin M.; Phillips, Richard

    1988-01-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed. PMID:16666271

  5. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  6. Stochastic modeling of cell growth with symmetric or asymmetric division

    NASA Astrophysics Data System (ADS)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  7. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells

    NASA Astrophysics Data System (ADS)

    Huergo, M. A. C.; Pasquale, M. A.; González, P. H.; Bolzán, A. E.; Arvia, A. J.

    2012-01-01

    The two-dimensional (2D) growth dynamics of HeLa (cervix cancer) cell colonies was studied following both their growth front and the pattern morphology evolutions utilizing large population colonies exhibiting linearly and radially spreading fronts. In both cases, the colony profile fractal dimension was df=1.20±0.05 and the growth fronts displaced at the constant velocity 0.90±0.05 μm min-1. Colonies showed changes in both cell morphology and average size. As time increased, the formation of large cells at the colony front was observed. Accordingly, the heterogeneity of the colony increased and local driving forces that set in began to influence the dynamics of the colony front. The dynamic scaling analysis of rough colony fronts resulted in a roughness exponent α = 0.50±0.05, a growth exponent β = 0.32±0.04, and a dynamic exponent z=1.5±0.2. The validity of this set of scaling exponents extended from a lower cutoff lc≈60 μm upward, and the exponents agreed with those predicted by the standard Kardar-Parisi-Zhang continuous equation. HeLa data were compared with those previously reported for Vero cell colonies. The value of df and the Kardar-Parisi-Zhang-type 2D front growth dynamics were similar for colonies of both cell lines. This indicates that the cell colony growth dynamics is independent of the genetic background and the tumorigenic nature of the cells. However, one can distinguish some differences between both cell lines during the growth of colonies that may result from specific cooperative effects and the nature of each biosystem.

  8. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    PubMed Central

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  9. On the difference between SERS spectra of cell growth media and whole bacterial cells

    PubMed Central

    Premasiri, W. Ranjith; Gebregziabher, Yoseph; Ziegler, Lawrence D.

    2013-01-01

    It has been recently suggested [N. E. Marotta and L. A. Bottomley, Appl. Spectrosc. 64, 2010, 601-06] that previously reported SERS spectra of vegetative bacterial cells are due to residual cell growth media that were not properly removed from samples of the lab cultured microorganism suspensions. SERS spectra of several commonly used cell growth media are similar to those of bacterial cells as shown here and reported elsewhere. However, a multivariate data analysis approach shows that SERS spectra of different bacterial species grown in the same growth media exhibit different characteristic vibrational spectra, SERS spectra of the same organism grown in different media display the same SERS spectrum, and SERS spectra of growth media do not cluster near the SERS spectra of washed bacteria. Furthermore, a bacterial SERS spectrum grown in a minimal medium, which uses inorganics for a nitrogen source and displays virtually no SERS features, exhibits a characteristic bacterial SERS spectrum. We use multivariate analysis to show how successive water washing and centrifugation cycles remove cell growth media and result in a robust bacterial SERS spectrum in contrast to the previous study attributing bacterial SERS signals to growth media. PMID:21513591

  10. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    PubMed

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  11. Models of lipid droplets growth and fission in adipocyte cells

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the catabolism

  12. Methyl-donor nutrients inhibit breast cancer cell growth.

    PubMed

    Park, Chung S; Cho, Kyongshin; Bae, Dong R; Joo, Nam E; Kim, Hyung H; Mabasa, Lawrence; Fowler, Andrea W

    2008-01-01

    Lipotropes (methyl group containing nutrients, including methionine, choline, folate, and vitamin B(12)) are dietary methyl donors and cofactors that are involved in one-carbon metabolism, which is important for genomic DNA methylation reactions and nucleic acid synthesis. One-carbon metabolism provides methyl groups for all biological methylation pathways and is highly dependent on dietary supplementation of methyl nutrients. Nutrition is an important determinant of breast cancer risk and tumor behavior, and dietary intervention may be an effective approach to prevent breast cancer. Apoptosis is important for the regulation of homeostasis and tumorigenesis. The anti-apoptotic protein Bcl-2 may be a regulatory target in cancer therapy; controlling or modulating its expression may be a therapeutic strategy against breast cancer. In this study, the effects of lipotrope supplementation on the growth and death of human breast cancer cell lines T47D and MCF-7 were examined and found to inhibit growth of both T47D and MCF-7 cells. Furthermore, the ratios of apoptotic cells to the total number of cells were approximately 44% and 34% higher in the lipotrope-supplemented treatments of T47D and MCF-7 cancer cells, respectively, compared with the control treatments. More importantly, Bcl-2 protein expression was decreased by approximately 25% from lipotrope supplementation in T47D cells, suggesting that lipotropes can induce breast cancer cell death by direct downregulation of Bcl-2 protein expression. Cancer treatment failure is often correlated with Bcl-2 protein upregulation. These data may be useful in the development of effective nutritional strategies to prevent and reduce breast cancer in humans.

  13. Spontaneous Calcium Oscillations Regulate Human Cardiac Progenitor Cell Growth

    PubMed Central

    Ferreira-Martins, João; Rondon-Clavo, Carlos; Tugal, Derin; Korn, Justin A; Rizzi, Roberto; Padin-Iruegas, Maria Elena; Ottolenghi, Sergio; De Angelis, Antonella; Urbanek, Konrad; Iwata, Noriko; D’Amario, Domenico; Hosoda, Toru; Leri, Annarosa; Kajstura, Jan; Anversa, Piero; Rota, Marcello

    2009-01-01

    Rationale The adult heart possesses a pool of progenitor cells stored in myocardial niches but the mechanisms involved in the activation of this cell compartment are currently unknown. Objective Ca2+ promotes cell growth raising the possibility that changes in intracellular Ca2+ initiate division of c-kit-positive human cardiac progenitor cells (hCPCs) and determine their fate. Methods and Results Ca2+ oscillations were identified in hCPCs and these events occurred independently from coupling with cardiomyocytes or the presence of extracellular Ca2+. These findings were confirmed in the heart of transgenic mice in which EGFP was under the control of the c-kit-promoter. Ca2+ oscillations in hCPCs were regulated by the release of Ca2+ from the ER through activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and the re-uptake of Ca2+ by the sarco/endoplasmic reticulum Ca2+ pump (SERCA). IP3Rs and SERCA were highly expressed in hCPCs while ryanodine receptors were not detected. Although Na+-Ca2+ exchanger, store-operated Ca2+-channels and plasma membrane Ca2+-pump were present and functional in hCPCs, they had no direct effects on Ca2+ oscillations. Conversely, Ca2+ oscillations and their frequency markedly increased with ATP and histamine which activated purinoceptors and histamine-1 receptors highly expressed in hCPCs. Importantly, Ca2+ oscillations in hCPCs were coupled with the entry of cells into the cell cycle and BrdUrd incorporation. Induction of Ca2+ oscillations in hCPCs prior to their intramyocardial delivery to infarcted hearts was associated with enhanced engraftment and expansion of these cells promoting the generation of a large myocyte progeny. Conclusion IP3R-mediated Ca2+ mobilization control hCPC growth and their regenerative potential. PMID:19745162

  14. Growth, Cell Division, and Fragmentation in a Species of Flexibacter

    PubMed Central

    Poos, Jocelyn C.; Turner, F. Rudolf; White, David; Simon, Gary D.; Bacon, Karen; Russell, Carl T.

    1972-01-01

    Flexibacter FS-1, a gram-negative gliding bacterium was grown in liquid culture as long (over 100-μm) filaments. The filaments possessed a triple-track wall which resembled that found in other gram-negative bacteria. Although phase-contrast microscopy indicated that the long filaments were nonseptate, electron microscopy revealed three or four septa along the length of each filament. The septa contained lysozyme-sensitive, electron-opaque material, presumed to be peptidoglycan, sandwiched between cell membranes. The outer triple track wall was not part of the septum. Mesosomes were seen in various areas of the cell and frequently were observed attached to septa in different stages of completion. Studies of the organism in slide culture revealed that individual filaments grew in an exponential fashion and divided in the middle despite the long length and multiseptate condition. When the temperature of a liquid culture growing exponentially with a generation time of 90 minutes was shifted from 30 to 35 C, the filaments fragmented into three or four shorter cells within 120 min. The short cells continued to grow exponentially at 35 C at approximately the same rate as at 30 C. When the culture was shifted back to 30 C, the cells immediately stopped dividing and began to elongate. After a period of 2 to 3 hr, cell division resumed. It is suggested that the shift-up in temperature induced the completion of the cross wall (centripetal growth of the triple-track wall) and cell separation at the sites of previously formed septa, whereas the shift-down in temperature caused a transient inhibition of cross-wall formation but not of growth. Fragmentation was inhibited by sodium azide but took place despite the inhibition of protein synthesis by chloramphenicol or the inhibition of deoxyribonucleic acid synthesis by mitomycin C. Images PMID:4118297

  15. Rat Prolactinoma cell growth regulation by Epidermal Growth Factor receptor ligands

    PubMed Central

    Vlotides, George; Siegel, Emily; Donangelo, Ines; Gutman, Shiri; Ren, Song-Guang; Melmed, Shlomo

    2008-01-01

    Epidermal growth factor (EGF) regulates pituitary development, hormone synthesis and cell proliferation. Although ErbB receptor family members are expressed in pituitary tumors, effects of EGF signaling on pituitary tumors are not known. Immunoprecipitation and Western blot confirmed EGFR and p185c-neu protein expression in GH3 lacto-somatotroph but not in ACTH-secreting AtT20 pituitary tumor cells. EGF (5 nM) selectively enhanced baseline (~ 4-fold) and serum-induced (> 6-fold) PRL mRNA levels, while gefitinib, an EGFR antagonist, suppressed serum-induced cell proliferation and Pttg1 expression, blocked PRL gene expression, and reversed EGF-mediated somatotroph-lactotroph phenotype switching. Downstream EGFR signaling by ERK, but not PI3K or PKC, mediated the gefitinib-response. Tumors in athymic mice implanted sc with GH3 cells resulted in weight gain accompanied by increased serum PRL, GH and IGF-I levels. Gefitinib decreased tumor volumes and peripheral hormone levels by ~ 30% and restored normal mouse body weight patterns. Mice treated with gefitinib exhibited decreased tumor tissue ERK1/2 phosphorylation and downregulated tumor PRL and Pttg1 mRNA abundance. These results show that EGFR inhibition controls tumor growth and PRL secretion in experimental lacto-somatotroph tumors. EGFR inhibitors could therefore be useful for control of PRL secretion and tumor load in prolactinomas resistant to dopaminergic treatment, or for those prolactinomas undergoing rare malignant transformation. PMID:18676863

  16. LM cell growth and membrane lipid adaptation to sterol structure.

    PubMed

    Rujanavech, C; Silbert, D F

    1986-06-05

    Using a sterol auxotroph of the LM cell mouse fibroblast, we demonstrate that relatively few cholesterol analogues can substitute for cholesterol as a growth factor. The auxotroph grows normally on desmosterol and trans-22-dehydrocholesterol and at reduced rates on dihydrocholesterol, campesterol, and 22,23-dihydrobrassicasterol. It does not grow with beta-sitosterol, stigmasterol, ergosterol, or cis-22-dehydrocholesterol when the sterol is present as sole supplement but does grow at normal rates when the analogue is supplied with suboptimal amounts of cholesterol. Two contrasting types of membrane lipid changes are observed in cells grown on cholesterol analogues. In cells grown with dihydrocholesterol, a marked increase in desaturation and elongation of fatty acids is noted. Conversely, when cells are grown with cis-22-dehydrocholesterol, desaturation and elongation of fatty acids are severely curtailed. Cells grown on alkyl sterols respond like cells grown on cis-22-dehydrocholesterol but in a less pronounced fashion. The effects of sterol substitution in mammalian cells versus in lower eukaryotes are compared, and an explanation for the secondary changes in fatty acid composition in terms of phospholipid phase behavior is suggested.

  17. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    SciTech Connect

    L'Hote, Corine G.M. . E-mail: Corine.LHote@cancer.org.uk; Knowles, Margaret A.

    2005-04-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.

  18. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth

    PubMed Central

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-01-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  19. Berberine inhibits cell growth and mediates caspase-independent cell death in human pancreatic cancer cells.

    PubMed

    Pinto-Garcia, Lina; Efferth, Thomas; Torres, Amada; Hoheisel, Jörg D; Youns, Mahmoud

    2010-08-01

    Pancreatic cancer is one of the most aggressive human malignancies with an increasing incidence worldwide. In addition to the poor survival rates, combinations using gemcitabine as a backbone have failed to show any benefit beyond monotherapy. These facts underscore an urgent need for novel therapeutic options and motivated us to study the effect of berberine on pancreatic cancer cells. Here, we undertook an mRNA-based gene expression profiling study in order to get deeper insight into the molecular targets mediating the growth inhibitory effects of berberine on pancreatic cancer cells compared to normal ones. Twenty-four hours after treatment, berberine showed preferential selectivity toward pancreatic cancer cells compared to normal ones. Moreover, expression profiling and Ingenuity pathway analysis results showed that the cytotoxicity of berberine was accompanied with an activation of BRCA1-mediated DNA damage response, G1/S and G2/M cell cycle checkpoint regulation, and P53 signalling pathways. The activation of these signalling pathways might be explained by the fact that berberine intercalates DNA and induces DNA strand break through inhibition of topoisomerases and induction of DNA lesions.

  20. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    PubMed

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (P<0.05). The inhibitory effect of salinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (P<0.05). Salinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (P<0.05). Therefore, the present study indicated that salinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  1. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells.

    PubMed

    Stojkovic, Petra; Lako, Majlinda; Stewart, Rebecca; Przyborski, Stefan; Armstrong, Lyle; Evans, Jerome; Murdoch, Alison; Strachan, Tom; Stojkovic, Miodrag

    2005-03-01

    Human embryonic stem cells (hESCs) have great potential as a source of cells for therapeutic uses, but their culture requires the support of mouse or human cells, either directly as a feeder cell layer or indirectly as a source of conditioned medium in feeder-free culture systems. Unfortunately, the risks of cross-transfer of pathogens from xenogeneic or allogeneic feeders or cell by-products limit their medical applications. In addition, not all human feeders support the growth of hESCs equally well, and ethical concerns have been raised regarding the derivation of feeder cells from aborted human fetuses. We report here the culture of hESCs on a novel feeder cell system, comprising fibroblast-like cells derived from the spontaneous differentiation of hESCs. Isogenicity of the hESCs and hESC-derived fibroblasts was confirmed by micro satellite analysis. The nature of the hESC-derived fibroblasts was identified by the expression of specific markers. This feeder system permits continuous growth of undifferentiated and pluripotent hESCs, as demonstrated by the expression of specific hESC markers, by the formation of teratomas after injection of hESCs into severely combined immunodeficient mice, and by in vitro differentiation of hESCs into differentiated cells of ectodermal, endodermal, and mesodermal origin. Feeder cells derived from hESCs offers a potentially more secure autogeneic and genotypically homogenous system for the growth of undifferentiated hESCs.

  2. Hydroxyurea and Growth in Young Children With Sickle Cell Disease

    PubMed Central

    Houston, Patricia E.; Wang, Winfred C.; Iyer, Rathi V.; Goldsmith, Jonathan; Casella, James F.; Reed, Caroline K.; Rogers, Zora R.; Waclawiw, Myron A.; Thompson, Bruce

    2014-01-01

    BACKGROUND: Growth impairment is a known complication of sickle cell disease. Effects of hydroxyurea (HU) on growth in very young children are not known. METHODS: Height, weight, BMI, and head circumference (HC) were compared with World Health Organization (WHO) standards in BABY HUG, a multicenter, randomized, double-blinded, placebo-controlled 2-year clinical trial of HU in 193 children 9 to 18 months of age. Anthropometric data were closely monitored and converted to z scores by using WHO standardized algorithms for descriptive analyses. The treatment and placebo groups were compared longitudinally by using a mixed model analysis. RESULTS: At entry, the z scores of BABY HUG children were higher than WHO norms. After 2 years of HU or placebo treatment, there were no significant differences between the groups, except for the mean HC z scores at study exit (HU: +0.8 versus placebo: +1.0, P = .05). Baseline z scores were the best predictors of z scores at study exit. The absolute neutrophil count, absolute reticulocyte count, and total white blood cell count had significant negative correlations with growth measures. CONCLUSIONS: Both groups had normal or near normal anthropometric measures during the study. The HC z scores at study entry and exit were slightly greater than WHO norms. Higher baseline white blood cell count, absolute reticulocyte count, and absolute neutrophil count were associated with poorer growth. The significance of the slightly lower HC in the treatment group at study exit is not clear. Trends toward normalization of weight and height and effects on HC will be monitored in ongoing BABY HUG follow-up studies. PMID:25157002

  3. Effects of flavonoids on the growth and cell cycle of cancer cells.

    PubMed

    Choi, S U; Ryu, S Y; Yoon, S K; Jung, N P; Park, S H; Kim, K H; Choi, E J; Lee, C O

    1999-01-01

    In this study, we investigated the cytotoxicities of flavone (F01), 3-hydroxyflavone (F02), 6- hydroxyflavone (F03), 7-hydroxyflavone (F04), 3,6-dihydroxyflavone (F05), 5,7-dihydroxyflavone (F06) and 5,6,7-trihydroxyflavone (F07) to human cancer cells including P- glycoprotein (Pgp)-expressing HCT15 cells and its multidrug resistant subline, HCT15/CL02 cells. We also examined the effects of those flavonoids on the cell cycle of these cancer cells. HCT15/CL02 cells did not reveal resistance to all the flavonoids tested in comparison with HCT15 cells. In cell cycle analysis, all the flavonoids tested, except F01 and F04, reduced the G0/G1 population of SF295 cells at growth inhibitory concentrations, and increased G2/M (F02, F03 and F06) or S (F05 and F07) populations. In addition, F02 and F03 decreased the G2/M and G0/G1 population, and increased the S and G2/M population in HCT15 cells, respectively. Meanwhile, in HCT15/CL02 cells, F02 and F03 decreased the G0/G1 populations and increased the S population. In conclusion, we deemed that the flavonoids tested had diverse cytotoxic mechanisms, and exerted their cell growth inhibitory or killing activity by distinctive ways in different cells.

  4. MicroRNA-221 promotes human non-small cell lung cancer cell H460 growth.

    PubMed

    Xu, Yiming; Zhong, Chongjun; Ding, Shengguang; Huang, Haitao; Shen, Zhenya

    2015-01-01

    MicroRNA (miRNA-221) has been reported to be a regulator of cell proliferation. Here we intended to investigate the role of miRNA-221 in regulating the growth of human non-small cell lung cancer cell line H460. H460 cells were transfected with miRNA-221 mimics/inhibitors or their respective negative controls. Real-time quantitative PCRs (qRT-PCRs) were used to confirm the effects of miRNA-221 mimics and inhibitors in H460 cells while Cell Counting Kit 8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to access the cell viability and proliferation. P27 and P57, as putative targets of miRNA-221, were determined by qRT-PCRs in H460 cells. We found that overexpression of miRNA-221 led to increased proliferative rate and cell viability in H460 cells while down-regulation of miRNA-221 decreased those effects. P27 but not P57 was identified as a potential target gene of miRNA-221 in H460 as P27 was negatively regulated by miRNA-221 in the protein level. In conclusion, this study suggests that miRNA-221 controls human non-small cell lung cancer cell H460 growth potentially by targeting P57. Inhibition of miRNA-221 represents a novel potential treatment for human non-small cell lung cancer.

  5. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  6. Cell and molecular biology of epidermal growth factor receptor.

    PubMed

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  7. A genetic and molecular update on adrenocortical causes of Cushing syndrome.

    PubMed

    Lodish, Maya; Stratakis, Constantine A

    2016-05-01

    Primary adrenal Cushing syndrome is the result of cortisol hypersecretion mainly by adenomas and, rarely, by bilateral micronodular or macronodular adrenocortical hyperplasia. cAMP-dependent protein kinase A (PKA) signalling is the major activator of cortisol secretion in the adrenal cortex. Many adenomas and hyperplasias associated with primary hypercortisolism carry somatic or germline mutations in genes that encode constituents of the cAMP-PKA pathway. In this Review, we discuss Cushing syndrome and its linkage to dysregulated cAMP-PKA signalling, with a focus on genetic findings in the past few years. In addition, we discuss the presence of germline inactivating mutations in ARMC5 in patients with primary bilateral macronodular adrenocortical hyperplasia. This finding has implications for genetic counselling of affected patients; hitherto, most patients with this form of adrenal hyperplasia and Cushing syndrome were thought to have a sporadic and not a familial disorder.

  8. Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco bright yellow-2 cell cultures.

    PubMed

    Horemans, Nele; Potters, Geert; De Wilde, Leen; Caubergs, Roland J

    2003-09-01

    Recently, ascorbate (ASC) concentration and the activity of a number of enzymes from the ASC metabolism have been proven to correlate with differences in growth or cell cycle progression. Here, a possible correlation between growth and the activity of a plasma membrane dehydroascorbate (DHA) transporter was investigated. Protoplasts were isolated from a tobacco (Nicotiana tabacum) Bright Yellow-2 cell culture at different intervals after inoculation and the activity of DHA transport was tested with (14)C-labeled ASC. Ferricyanide (1 mM) or dithiothreitol (1 mM) was included in the test to keep the external (14)C-ASC in its oxidized respectively reduced form. Differential uptake activity was observed, correlating with growth phases of the cell culture. Uptake of DHA in cells showed a peak in exponential growth phase, whereas uptake in the presence of dithiothreitol did not. The enhanced DHA uptake was not due to higher endogenous ASC levels that are normally present in exponential phase because preloading of protoplasts of different ages did not affect DHA uptake. Preloading was achieved by incubating cells before protoplastation for 4 h in a medium supplemented with 1 mM DHA. In addition to testing cells at different growth phases, uptake of DHA into the cells was also followed during the cell cycle. An increase in uptake activity was observed during M phase and the M/G1 transition. These experiments are the first to show that DHA transport activity into plant cells differs with cell growth. The relevance of the data to the action of DHA and ASC in cell growth will be discussed.

  9. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential

    PubMed Central

    Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-01-01

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  10. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential.

    PubMed

    Shenouda, Mina; Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-06-13

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  11. Caudatin Inhibits Human Glioma Cells Growth Through Triggering DNA Damage-Mediated Cell Cycle Arrest.

    PubMed

    Fu, Xiao-yan; Zhang, Shuai; Wang, Kun; Yang, Ming-feng; Fan, Cun-dong; Sun, Bao-liang

    2015-10-01

    Caudatin, one of the species of C-21 steroidal glycosides mainly isolated from the root of Cynanchum bungei Decne, exhibits potent anticancer activities. However, the mechanism remains poorly defined. In the present study, the growth inhibitory effect and mechanism of caudatin on human glioma cells were evaluated in vitro. The results revealed that caudatin time- and dose-dependently inhibited U251 and U87 cells growth. Flow cytometry analysis indicated that caudatin-induced growth inhibition against U251 and U87 cells was mainly achieved by the induction of G0/G1 and S-phase cell cycle arrest through triggering DNA damage, as convinced by the up-regulation of p53, p21, and histone phosphorylation, as well as the down-regulation of cyclin D1. Moreover, caudatin treatment also triggered the activation of ERK and inactivation of AKT pathway. LY294002 (an AKT inhibitor) addition enhanced caudation-induced AKT inhibition, indicating that caudatin inhibited U251 cells growth in an AKT-dependent manner. Taken together, these results indicate that caudatin may act as a novel cytostatic reagent against human glioma cells through the induction of DNA damage-mediated cell cycle arrest with the involvement of modulating MAPK and AKT pathways.

  12. Identification of a Novel TP53 Germline Mutation E285V in a Rare Case of Pediatric Adrenocortical Carcinoma and Choroid Plexus Carcinoma

    PubMed Central

    Russell-Swetek, Aubrey; West, Alina N.; Mintern, Jane E.; Jenkins, Jesse; Rodriguez-Galindo, Carlos; Ribeiro, Raul; Zambetti, Gerard P.

    2012-01-01

    Pediatric choroid plexus carcinomas (CPC) and adrenocortical carcinomas (ACC) are exceedingly rare tumors, each occurring at an annual rate of 0.3 cases per million children or less. Although both tumor types are associated with Li-Fraumeni Syndrome (LFS), the penetrance of germline TP53 mutations in CPC remains to be established. We report here a young boy without a family history of cancer who presented with CPC and subsequently ACC. Genetic testing revealed a novel de novo germline TP53 mutation (E285V). Neither tumor underwent loss of heterozygosity. Consistent with this observation, functional analyses demonstrated that E285V acts as a dominant-negative mutant that is defective in regulating target gene expression, growth suppression and apoptosis. These results further strengthen the association between germline TP53 mutations and childhood CPC, even when occurring in the absence of familial tumor susceptibility. PMID:18762572

  13. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    PubMed

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model.

  14. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  15. ERRα metabolic nuclear receptor controls growth of colon cancer cells.

    PubMed

    Bernatchez, Gérald; Giroux, Véronique; Lassalle, Thomas; Carpentier, André C; Rivard, Nathalie; Carrier, Julie C

    2013-10-01

    The estrogen-related receptor alpha (ERRα) is a nuclear receptor that acts primarily as a regulator of metabolic processes, particularly in tissues subjected to high-energy demand. In addition to its control of energy metabolism and mitochondrial biogenesis, ERRα has recently been associated with cancer progression. Notably, increased expression of ERRα has been shown in several cancerous tissues, including breast, ovary and colon. However, additional studies are required to gain insight into the action of ERRα in cancer biology, particularly in non-endocrine-related cancers. Therefore, using a short hairpin RNA-mediated approach, we investigated whether ERRα is required for the rapid growth of colon cancer cells and to maintain their neoplastic metabolic state. Results show that silencing ERRα significantly impaired colon cancer cell proliferation and colony formation in vitro as well as their in vivo tumorigenic capacity. A pronounced delay in G1-to-S cell cycle phase transition was observed in ERRα-depleted cells in association with reduced cyclin-dependent kinase 2 activity and hyperphosphorylated state of the retinoblastoma protein along with disturbed expression of several cell cycle regulators, including p15 and p27. Interestingly, ERRα-depleted HCT116 cells also displayed significant reduction in expression of a large set of key genes to glycolysis, tricarboxylic acid cycle and lipid synthesis. Furthermore, using (14)C isotope tracer analysis, ERRα depletion in colon cancer cells resulted in reduced glucose incorporation and glucose-mediated lipogenesis in these cells. These findings suggest that ERRα coordinates colon cancer cell proliferation and tumorigenic capacity with energy metabolism. Thus, ERRα could represent a promising therapeutic target in colon cancer.

  16. Paediatric Nonfunctioning Adrenocortical Carcinoma with Extension up to Right-Side Heart: Cardiac Surgery Approach.

    PubMed

    Iezzi, Federica; Quarti, Andrea; Surace, Chiara; Pozzi, Marco

    2016-01-01

    Adrenocortical carcinoma is a rare malignancy. Due to late diagnosis and no adequate effective adjuvant treatment, prognosis remains poor. Only approximately 30% of these malignancies are confined to the adrenal gland when they are diagnosed, as these tumors tend to be found years after their genesis. Cardiac involvement of adrenal carcinoma is very rare. We report a rare case of a 7-year-old female with right adrenal cortical carcinoma, involving the right-side heart.

  17. Acanthosis Nigricans Associated with an Adrenocortical Tumor in a Pediatric Patient

    PubMed Central

    Dimitriadi, Filippina Filia; Barrows, Frank; Mostoufi-Moab, Sogol

    2013-01-01

    Malignant acanthosis nigricans (AN) is a rare paraneoplastic syndrome seen primarily in adults with an underlying diagnosis of gastrointestinal adenocarcinoma. Malignant AN is characterized by hyperpigmentation and velvety hyperplasia of the epidermis. This condition is generally not associated with tumors in pediatric populations or in the adrenal gland. We present a case of malignant AN in a pediatric patient with a nonmalignant, functional adrenocortical tumor. PMID:23819073

  18. Acanthosis nigricans associated with an adrenocortical tumor in a pediatric patient.

    PubMed

    Isaacoff, Elizabeth; Dimitriadi, Filippina Filia; Barrows, Frank; Pawel, Bruce; Mattei, Peter; Mostoufi-Moab, Sogol

    2013-01-01

    Malignant acanthosis nigricans (AN) is a rare paraneoplastic syndrome seen primarily in adults with an underlying diagnosis of gastrointestinal adenocarcinoma. Malignant AN is characterized by hyperpigmentation and velvety hyperplasia of the epidermis. This condition is generally not associated with tumors in pediatric populations or in the adrenal gland. We present a case of malignant AN in a pediatric patient with a nonmalignant, functional adrenocortical tumor.

  19. Paediatric Nonfunctioning Adrenocortical Carcinoma with Extension up to Right-Side Heart: Cardiac Surgery Approach

    PubMed Central

    Quarti, Andrea; Surace, Chiara; Pozzi, Marco

    2016-01-01

    Adrenocortical carcinoma is a rare malignancy. Due to late diagnosis and no adequate effective adjuvant treatment, prognosis remains poor. Only approximately 30% of these malignancies are confined to the adrenal gland when they are diagnosed, as these tumors tend to be found years after their genesis. Cardiac involvement of adrenal carcinoma is very rare. We report a rare case of a 7-year-old female with right adrenal cortical carcinoma, involving the right-side heart. PMID:27493811

  20. Classification and surgical treatment for 180 cases of adrenocortical hyperplastic disease

    PubMed Central

    Zhang, Yushi; Li, Hanzhong

    2015-01-01

    Objective: To review and discuss the diagnostic and surgical therapeutic methods of adrenocortical hyperplastic disease. Methods: A retrospective analysis was done to 180 adrenocortical hyperplasia patients (74 males, 109 females, aged 6~76 (average 40.1). Studies were done to the relationship between patients’ clinical characteristics, biochemical, endocrinological and imaging examination results, the therapeutic effects. Results: Among all 180 cases, there are 107 Cushing disease (CD), 19 ectopic adrenocorticotropin adrenal hyperplasia (EAAH), 28 adrenocorticotropin independent macronodular adrenal hyperplasia (AIMAH), 4 primary pigmented nodular adrenocortical hyperplasia (PPNAH), and 28 Idiopathic Hyperaldosteronism (IHA). Twenty-four-hour urinary free cortisol (24 h UFC) excretion of CD, EAAH, AIMAH and PPNAH patients were 95.2~535.7 µg (average 287.6 µg), 24.8~808.2 µg (average 307.9 µg), 102.5~3127.0 µg (average 852.5 µg), and 243.8~1124.6 µg (average 564.3 µg). Both low and high-dose dexamethasone suppression tests (DDST) were not suppressed in AIMAH, PPNAH and EAAH groups, but HDDST was suppressed in CD group. CT thin scanning results of 180 patients all showed enlargements in the affected side adrenal gland. Unilateral adrenalectomies were performed in 102 hypercortisolism cases. Local lesion excisions were done to 21 IHA patients. 57 patients had surgeries in both sides of the adrenal glands (39 bilateral total adrenalectomies, 16 total adrenalectomy in one side andsubtotal adrenalectomy in the other, 2 bilateral subtotal adrenalectomies). 106 (59%) patients were followed up for 4~158 (average 32) months. Conclusion: Unilateral adrenalectomy was the first choice for operable adrenocortical hyperplasia patients. The operation mode for the other adrenal gland should be based on the type of hyperplasia and clinical observation. PMID:26770569

  1. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    PubMed

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  2. TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis.

    PubMed

    Wang, Shuren; Ma, Kai; Chen, Lechuang; Zhu, Hongxia; Liang, Shufang; Liu, Mei; Xu, Ningzhi

    2016-10-01

    Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis.

  3. TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis

    PubMed Central

    Wang, Shuren; Ma, Kai; Chen, Lechuang; Zhu, Hongxia; Liang, Shufang; Liu, Mei; Xu, Ningzhi

    2016-01-01

    Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo. Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis. PMID:27515420

  4. Marked transient hypercholesterolemia caused by low-dose mitotane as adjuvant chemotherapy for adrenocortical carcinoma.

    PubMed

    Tada, Hayato; Nohara, Atsushi; Kawashiri, Masa-Aki; Inazu, Akihiro; Mabuchi, Hiroshi; Yamagishi, Masakazu

    2014-01-01

    We herein report a case of marked transient hypercholesterolemia in a man receiving low-dose mitotane as adjuvant chemotherapy for adrenocortical carcinoma.A 58-year-old man without any clinical symptoms or history of hypercholesterolemia was admitted to our hospital to treat an adrenocortical carcinoma detected on general screening using computed tomography. He reported no chest symptom and did not exhibit any established risk factors for coronary artery disease, such as diabetes, obesity, hypertension or relevant family history, with the exception of current smoking, on admission. A stress electrocardiogram showed negative findings. The left adrenal tumor as well as left kidney, spleen and distal portion of the pancreas were subsequently resected using radical surgery. The histopathological findings confirmed the preoperative diagnosis of adrenocortical carcinoma. After the operation, treatment with low-dose mitotane (1g/day) was introduced as adjuvant chemotherapy. Interestingly, the patient developed marked hyper-LDL cholesterolemia at a level equivalent to that of familial hypercholesterolemia (LDL cholesterol level ~ 300 mg/dL) following the introduction of mitotane, without evidence of primary or secondary hypercholesterolemia due to other causes. A coronary angiogram performed to assess the new-onset angina revealed three-vessel disease, which was later revascularized via percutaneous coronary intervention eight months after the start of mitotane therapy. The cholesterol level normalized with the suspension of mitotane. This case suggests that mitotane can cause severe hypercholesterolemia, potentially resulting in coronary atherosclerosis.

  5. Visual and metabolic stimuli cause adrenocortical suppression in fasted chickens during refeeding.

    PubMed

    Harvey, S; Klandorf, H; Pinchasov, Y

    1983-07-01

    Concentrations of corticosterone were determined in the plasma of fasted domestic fowl before and at intervals after refeeding. The deprivation of food markedly increased (p less than 0.001) the level of plasma corticosterone. When refed ad libitum the corticosterone concentration declined (by 70%) within 45 min to the level in fed birds and remained at this concentration thereafter. A similar depression in the corticosterone concentration was observed when fasted birds were merely given the sight of the same diet, although the concentration returned to the fasting level within 60 min of food presentation. Refeeding diets with different metabolic energy contents demonstrated that the duration of the feeding-induced adrenocortical suppression was energy related. In fasted birds the presentation of an inert cellulose diet caused a temporary decline in the corticosterone level. In the absence of visual stimuli the administration (by force feeding) of the inert diet had no effect on the corticosterone concentration, whereas force feeding of metabolizable diets still induced adrenocortical suppression. These results demonstrate that adrenocortical suppression occurs in fasted refed birds and both visual and metabolic stimuli are involved in this response.

  6. Crystal growth within a phase change memory cell.

    PubMed

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  7. Nuclear PI3K signaling in cell growth and tumorigenesis

    PubMed Central

    Davis, William J.; Lehmann, Peter Z.; Li, Weimin

    2015-01-01

    The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis. PMID:25918701

  8. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia.

    PubMed Central

    Law, R E; Meehan, W P; Xi, X P; Graf, K; Wuthrich, D A; Coats, W; Faxon, D; Hsueh, W A

    1996-01-01

    Vascular smooth muscle cell (VSMC) proliferation and migration are responses to arterial injury that are highly important to the processes of restenosis and atherosclerosis. In the arterial balloon injury model in the rat, platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) are induced in the vessel wall and regulate these VSMC activities. Novel insulin sensitizing agents, thiazolidinediones, have been demonstrated to inhibit insulin and epidermal growth factor-induced growth of VSMCs. We hypothesized that these agents might also inhibit the effect of PDGF and bFGF on cultured VSMCs and intimal hyperplasia in vivo. Troglitazone (1 microM), a member of the thiazolidinedione class, produced a near complete inhibition of both bFGF-induced DNA synthesis as measured by bromodeoxyuridine incorporation (6.5+/-3.9 vs. 17.6+/-4.3% cells labeled, P < 0.05) and c-fos induction. This effect was associated with an inhibition (by 73+/-4%, P < 0.01) by troglitazone of the transactivation of the serum response element, which regulates c-fos expression. Inhibition of c-fos induction by troglitazone appeared to occur via a blockade of the MAP kinase pathway at a point downstream of MAP kinase activation by MAP kinase kinase. At this dose, troglitazone also inhibited PDGF-BB-directed migration of VSMC (by 70+/-6%, P < 0.01). These in vitro effects were operative in vivo. Quantitative image analysis revealed that troglitazone-treated rats had 62% (P < 0.001) less neointima/media area ratio 14 d after balloon injury of the aorta compared with injured rats that received no troglitazone. These results suggest troglitazone is a potent inhibitor of VSMC proliferation and migration and, thus, may be a useful agent to prevent restenosis and possibly atherosclerosis. PMID:8878442

  9. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia.

    PubMed

    Penny, Morgan K; Finco, Isabella; Hammer, Gary D

    2017-04-15

    The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis.

  10. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  11. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    PubMed

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  12. Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough.

    PubMed

    Fievet, Anouchka; Ducret, Adrien; Mignot, Tâm; Valette, Odile; Robert, Lydia; Pardoux, Romain; Dolla, Alain R; Aubert, Corinne

    2015-01-01

    Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well-documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle. In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH). This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  13. Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough

    PubMed Central

    Fievet, Anouchka; Ducret, Adrien; Mignot, Tâm; Valette, Odile; Robert, Lydia; Pardoux, Romain; Dolla, Alain R.; Aubert, Corinne

    2015-01-01

    Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well-documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle. In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH). This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells. PMID:26696987

  14. Effects of growth rate on cell extract performance in cell-free protein synthesis.

    PubMed

    Zawada, James; Swartz, James

    2006-07-05

    Cell-free protein synthesis is a useful research tool and now stands poised to compete with in vivo expression for commercial production of proteins. However, both the extract preparation and protein synthesis procedures must be scaled up. A key challenge is producing the required amount of biomass that also results in highly active cell-free extracts. In this work, we show that the growth rate of the culture dramatically affects extract performance. Extracts prepared from cultures with a specific growth rate of 0.7/h or higher produced approximately 0.9 mg/mL of chloramphenicol acetyl transferase (CAT) in a batch reaction. In contrast, when the source culture growth rate was 0.3/h, the resulting extract produced only 0.5 mg/mL CAT. Examination of the ribosome content in the extracts revealed that the growth rate of the source cells strongly influenced the final ribosome concentration. Polysome analysis of cell-free protein synthesis reactions indicated that about 22% of the total 70S ribosomes are in polysomes for all extracts regardless of growth rate. Furthermore, the overall specific production from the 70S ribosomes is about 22 CAT proteins per ribosome over the course of the reaction in all cases. It appears that rapid culture growth rates are essential for producing a productive extract. However, growth rate does not seem to influence specific ribosome activity. Rather, the increase in extract productivity is a result of a higher ribosome concentration. These results are important for cell-free technology and also suggest an assay for intrinsic in vivo protein synthesis activity.

  15. Chromosome replication, cell growth, division and shape: a personal perspective

    PubMed Central

    Zaritsky, Arieh; Woldringh, Conrad L.

    2015-01-01

    The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as “The Central Dogma in Bacteriology,” is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called “nucleoid complexity,” is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell’s center hence enabling the divisome to assemble and function between segregated daughter nucleoids. PMID:26284044

  16. Reflectin as a Material for Neural Stem Cell Growth

    PubMed Central

    2015-01-01

    Cephalopods possess remarkable camouflage capabilities, which are enabled by their complex skin structure and sophisticated nervous system. Such unique characteristics have in turn inspired the design of novel functional materials and devices. Within this context, recent studies have focused on investigating the self-assembly, optical, and electrical properties of reflectin, a protein that plays a key role in cephalopod structural coloration. Herein, we report the discovery that reflectin constitutes an effective material for the growth of human neural stem/progenitor cells. Our findings may hold relevance both for understanding cephalopod embryogenesis and for developing improved protein-based bioelectronic devices. PMID:26703760

  17. An unusual presentation of Carney complex with diffuse primary pigmented nodular adrenocortical disease on one adrenal gland and a nonpigmented adrenocortical adenoma and focal primary pigmented nodular adrenocortical disease on the other.

    PubMed

    Tung, Shih-Chen; Hwang, Daw-Yang; Yang, Joseph W; Chen, Wei-Jen; Lee, Chien-Te

    2012-01-01

    A 24-year-old female patient with cushingoid appearance was admitted in May 2000. The endocrine studies showed ACTH-independent Cushing's syndrome. A 2-day high-dose dexamethasone suppression test (HDDST) revealed paradoxical increase of 24 h urinary free cortisol (UFC). Abdominal computed tomography demonstrated a left adrenal nodule (3 x 2 cm in diameter). An adrenal scintigram with ¹³¹I-6β-iodomethyl-19-norcholesterol showed uptake of the isotope in the left adrenal gland and non-visualization in the right adrenal gland throughout the examination course. A retroperitoneoscopic left total adrenalectomy was performed in July 2000. The cut surface of the left adrenal was yellow-tan grossly. Microscopically, the left adrenal nodule contained a nonpigmented adrenocortical adenoma (NP) and another focal primary pigmented nodular adrenocortical disease (PPNAD, FP) mixed lesion. The immunohistochemical studies of CYP17 demonstrate positive in NP and FP of the left adrenal gland. Very low baseline morning plasma cortisol (0.97 μg/dL) and subnormal ACTH (8.16 pg/mL) levels were measured 1.5 months after left adrenalectomy. Right adrenal gland recovered its function 6 months after left adrenalectomy. Plasma cortisol could be suppressed to 3.47 μg/dL by overnight low-dose dexamethasone suppression test 65 months after left adrenalectomy. Cushingoid features still did not appear 122 months after left adrenalectomy. In May 2011, this patient was readmitted due to cushingoid characteristics. Paradoxical rise of 24-h UFC to 2-day HDDST was demonstrated. Ultrasonography of thyroid showed bilateral thyroid cysts. Subtotal right adrenalectomy about 80% of right adrenal was performed. Diffuse PPNAD of the right adrenal was proved pathologically. Immunohischemical stain for CYP17 is positive in the right adrenal gland but weaker positive than that in the left adrenal gland. The genetic study of the peripheral blood, left adrenocortical nodule, and right PPNAD all showed p.R16X

  18. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  19. Stromal cell-dependent growth of leukemic cells from murine erythroblastic leukemia.

    PubMed

    Itoh, K; Sasaki, R; Ono, K; Tezuka, H; Sakoda, H; Sawada, H; Hitomi, K; Nakane, H; Uchiyama, T; Uchino, H

    1988-08-01

    Transplantable erythroblastic leukemia was induced by 300-rad irradiation of C3H mice. Conditions for in vitro growth of the leukemic cells were studied. None of interleukin-3, granulocyte/macrophage colony-stimulating factor and erythropoietin could support the growth of the cells in vitro. In contrast, the leukemic cells grew into a stroma-dependent cell line, ELM-D, in close contact with the stromal cell layer of 900-rad-irradiated long-term bone marrow culture. A stroma-independent cell line, termed ELM-I-1, was further established from the non-adherent population in the co-culture of the leukemic cells, ELM-D, with stromal cells. Reverse transcriptase activity was not detectable in ELM-D or ELM-I-1 cells. Studies on binding and cross-linking of 125I-erythropoietin showed that ELM-I-1 cells had erythropoietin receptors, and two major radiolabeled protein products with molecular weights of 120 kDa and 140 kDa were detected on sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing conditions.

  20. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    PubMed

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.

  1. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor.

    PubMed

    Lee, Min; Wu, Benjamin M; Stelzner, Matthias; Reichardt, Holger M; Dunn, James C Y

    2008-08-01

    Intestinal tissue engineering is a potential therapy for patients with short bowel syndrome. Tissue engineering scaffolds that promote smooth muscle cell proliferation and angiogenesis are essential toward the regeneration of functional smooth muscles for peristalsis and motility. Since basic fibroblast growth factor (bFGF) can stimulate smooth muscle proliferation and angiogenesis, the delivery of bFGF was employed to stimulate proliferation and survival of primary intestinal smooth muscle cells. Two methods of local bFGF delivery were examined: the incorporation of bFGF into the collagen coating and the encapsulation of bFGF into poly(D,L-lactic-co-glycolic acid) microspheres. Cell-seeded scaffolds were implanted into the omentum and were retrieved after 4, 14, and 28 days. The seeded cells proliferated from day 4 to day 14 in all implants; however, at 28 days, significantly higher density of implanted cells and blood vessels was observed, when 10 microg of bFGF was incorporated into the collagen coating of scaffolds as compared to scaffolds with either no bFGF or 1 microg of bFGF in collagen. Microsphere encapsulation of 1 microg of bFGF produced similar effects as 10 microg of bFGF mixed in collagen and was more effective than the delivery of 1 microg of bFGF by collagen incorporation. The majority of the implanted cells also expressed alpha-smooth muscle actin. Scaffolds coated with microsphere-encapsulated bFGF and seeded with smooth muscle cells may be a useful platform for the regeneration of the intestinal smooth muscle.

  2. Elastase induces lung epithelial cell autophagy through placental growth factor

    PubMed Central

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  3. Lipid raft involvement in yeast cell growth and death

    PubMed Central

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases. PMID:23087902

  4. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    PubMed

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  5. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  6. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  7. ARNT2 Regulates Tumoral Growth in Oral Squamous Cell Carcinoma

    PubMed Central

    Kimura, Yasushi; Kasamatsu, Atsushi; Nakashima, Dai; Yamatoji, Masanobu; Minakawa, Yasuyuki; Koike, Kazuyuki; Fushimi, Kazuaki; Higo, Morihiro; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2016-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) 2 is a transcriptional factor related to adaptive responses against cellular stress from a xenobiotic substance. Recent evidence indicates ARNT is involved in carcinogenesis and cancer progression; however, little is known about the relevance of ARNT2 in the behavior of oral squamous cell carcinoma (OSCC). In the current study, we evaluated the ARNT2 mRNA and protein expression levels in OSCC in vitro and in vivo and the clinical relationship between ARNT2 expression levels in primary OSCCs and their clinicopathologic status by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry. Using ARNT2 overexpression models, we performed functional analyses to investigate the critical roles of ARNT2 in OSCC. ARNT2 mRNA and protein were down-regulated significantly (P < 0.05 for both comparisons) in nine OSCC-derived cells and primary OSCC (n=100 patients) compared with normal counterparts. In addition to the data from exogenous experiments that ARNT2-overexpressed cells showed decreased cellular proliferation, ARNT2-positive OSCC cases were correlated significantly (P < 0.05) with tumoral size. Since von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase, a negative regulator of hypoxia-inducible factor (HIF1)-α, is a downstream molecule of ARNT2, we speculated that HIF1-α and its downstream molecules would have key functions in cellular growth. Consistent with our hypothesis, overexpressed ARNT2 cells showed down-regulation of HIF1-α, which causes hypofunctioning of glucose transporter 1, leading to decreased cellular growth. Our results proposed for the first time that the ARNT2 level is an indicator of cellular proliferation in OSCCs. Therefore, ARNT2 may be a potential therapeutic target against progression of OSCCs. PMID:27076852

  8. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2

    PubMed Central

    MIYAHARA, Daichi; OISHI, Isao; MAKINO, Ryuichi; KURUMISAWA, Nozomi; NAKAYA, Ryuma; ONO, Tamao; KAGAMI, Hiroshi; TAGAMI, Takahiro

    2015-01-01

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  9. End stage renal disease serum contains a specific renal cell growth factor

    SciTech Connect

    Klotz, L.H.; Kulkarni, C.; Mills, G. )

    1991-01-01

    End stage renal disease (ESRD) kidneys display abnormal growth characterized by a continuum of cystic disease, adenoma and carcinoma. This study evaluates the hypothesis that serum of patients with ESRD contains increased amounts of a growth factor which specifically induces proliferation of renal cells. ESRD sera compared to sera from normal controls induced a two to three-fold increase in the proliferative rate of renal cell carcinoma cell lines and normal kidney explants compared to cell lines from other sites. The increased proliferative activity of ESRD sera on renal cells was paralleled by an increase in cytosolic free calcium. The growth factor activity was encoded by a polypeptide of between 15 and 30 kd. The activity of ESRD sera on renal cells was not mimicked or inhibited by epidermal growth factor, basic fibroblast growth factor and platelet derived growth factor indicating that the renal cell specific growth factor activity in ESRD is different from these factors.

  10. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    SciTech Connect

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  11. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    NASA Astrophysics Data System (ADS)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  12. Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticoid analyses.

    PubMed

    Young, K M; Walker, S L; Lanthier, C; Waddell, W T; Monfort, S L; Brown, J L

    2004-06-01

    Measurement of glucocorticoid metabolites in feces has become an accepted method for the noninvasive evaluation of adrenocortical activity. The objective of this study was to determine if a simple cortisol enzyme immunoassay (EIA) was suitable for monitoring adrenocortical activity in a variety of carnivore species. Performance of the cortisol EIA was gauged by comparison to a corticosterone radioimmunoassay (RIA) that has been used for measuring glucocorticoid metabolites in feces of numerous species. Tests for parallelism and extraction efficiency were used to compare the cortisol EIA and corticosterone RIA across eight species of carnivores (Himalayan black bear, sloth bear, domestic cat, cheetah, clouded leopard, black-footed ferret, slender-tailed meerkat, and red wolf). The biological relevance of immunoreactive glucocorticoid metabolites in feces was established for at least one species of each Carnivora family studied with an adrenocorticotropic hormone (ACTH) challenge. High performance liquid chromatography (HPLC) analysis of fecal extracts for each species revealed (1) the presence of multiple immunoreactive glucocorticoid metabolites in feces, but (2) the two immunoassays measured different metabolites, and (3) there were differences across species in the number and polarities of metabolites identified between assay systems. ACTH challenge studies revealed increases in fecal metabolite concentrations measured by the cortisol EIA and corticosterone RIA of approximately 228-1145% and approximately 231-4150% above pre-treatment baseline, respectively, within 1-2 days of injection. Concentrations of fecal glucocorticoid metabolites measured by the cortisol EIA and corticosterone RIA during longitudinal evaluation (i.e., >50 days) of several species were significantly correlated (P<0.0025, correlation coefficient range 0.383-0.975). Adrenocortical responses to physical and psychological stressors during longitudinal evaluations varied with the type of

  13. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology

    PubMed Central

    Elston, Guy N.; Fujita, Ichiro

    2014-01-01

    Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex. PMID:25161611

  14. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  15. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    PubMed

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  16. Senescence from glioma stem cell differentiation promotes tumor growth

    PubMed Central

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs’ role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. PMID:26775840

  17. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  18. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  19. Control of Cell Wall Extensibility during Pollen Tube Growth

    PubMed Central

    Hepler, Peter K.

    2013-01-01

    In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity. PMID:23770837

  20. Control of cell wall extensibility during pollen tube growth.

    PubMed

    Hepler, Peter K; Rounds, Caleb M; Winship, Lawrence J

    2013-07-01

    In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity.

  1. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.

    PubMed

    Lau, B H; Ruckle, H C; Botolazzo, T; Lui, P D

    1994-01-01

    Tumors are known to produce factors suppressing immune functions. We previously showed that a murine renal cell carcinoma (Renca) suppressed macrophage function in vitro and that this suppression was abolished by co-incubation with extracts of two Chinese medicinal herbs. We now report that these phytochemicals are capable of inhibiting growth of Renca in vivo. BALB/c mice were transplanted intraperitoneally (IP) with 1-2 x 10(5) Renca cells. One day after tumor transplant, mice were randomized into two groups. One group was treated IP, daily for 10 days, with 100 microliters of phytochemicals containing 500 micrograms each of Astragalus membranaceus and Ligustrum lucidum, while the other group received saline as controls. A cure rate of 57% was obtained with these phytochemicals when the initial tumor load was 2 x 10(5), and 100% when the initial tumor load was 1 x 10(5). Additional experiments were performed to investigate the mechanisms involved in this protection. Splenic macrophages from tumor-bearing mice were shown to have depressed chemiluminescent oxidative burst activity, and this depression was restored with phytochemical treatment. Splenocytes from mice transplanted with Renca responded less favorably to interleukin-2 (IL-2) in generating lymphokine-activated killer (LAK) cells; again this depression was restored with phytochemical treatment. Our data suggest that these phytochemicals may have exerted their antitumor effects via augmentation of phagocyte and LAK cell activities.

  2. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  3. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    PubMed Central

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  4. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  5. Cell growth inhibition and DNA incorporation of mitomycin C in cell culture.

    PubMed

    Takahashi, N; Murayama, T; Oda, M; Miyakoshi, M

    1998-01-01

    The present study was performed to clarify the effects of a 4-min exposure of mitomycin C (MMC) on cell growth, the cell cycle and MMC dose incorporated into DNA, using Chang's cultured human conjunctival cells. A low dose of MMC ranging from 0.00025 to 0.004% showed dose-dependent cytotoxicity when cell growth was active. Fifty percent cell viability was found when cells were treated with 0.001% MMC. A flow cytometer showed that 0.001% MMC inhibited the DNA synthetic phase. After 0.04% MMC was exposed to 3 x 10(6) cells and immediately rinsed, DNA was isolated to measure the dose of MMC detected from DNA. The total amount of DNA was 7 micrograms from which 3 micrograms of MMC was detected by high performance liquid chromatography. The above results revealed that the lowest concentration of MMC which caused 50% cell viability and cell cycle inhibition was 0.001% and that MMC was rapidly incorporated into DNA.

  6. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    PubMed

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  7. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors.

    PubMed

    Panjehpour, Mojtaba; Karami-Tehrani, Fatemeh

    2007-01-01

    Adenosine modulates the proliferation, survival, and apoptosis of many different cell types. The present study was performed to investigate the role of adenosine receptors in the human breast cancer cell lines MCF-7 and MDA-MB468. The biological effects of adenosine on the cells were analyzed by adenylyl cyclase and cell viability assay as well as RT-PCR of adenosine receptors. RT-PCR results show the expression of the transcript of all adenosine receptors in both cell lines. By using adenosine and selective adenosine receptor agonists or antagonists, we found that A3 stimulation reduced cell viability, which was abolished by pretreatment with A3 receptor antagonist. Moreover, we demonstrated that adenosine (natural agonist) triggers a cytotoxic signal via A3 receptor activation that was not seen for other subclasses of adenosine receptors. Intracellular cAMP concentration was changed significantly only for A3 and A2B receptor-selective agonists, which indicates the functional form of these receptors on the cell surface. In conclusion, our findings revealed the role of adenosine receptors in breast cancer cell lines on growth modulation role of A3 and functional form of A2B, although its involvement in cell growth modulation was not seen. Theses findings as well as data by others may provide a possible application of adenosine receptor agonists/antagonists in breast malignancies.

  8. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro

    PubMed Central

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-01-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935

  9. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  10. Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.

    PubMed Central

    Kajander, E O; Harvima, R J; Kauppinen, L; Akerman, K K; Martikainen, H; Pajula, R L; Kärenlampi, S O

    1990-01-01

    The effects of selenomethionine (SeMet) on the growth of 17 cultured cell lines were studied. SeMet in the culture medium of three hepatoma cell lines promoted cell growth at subcytotoxic levels (1-20 microM), but the growth of malignant lymphoid and myeloid cells was not stimulated. L-SeMet was cytotoxic to all 17 cell lines when assayed after culture for 3-10 days. A 50% growth inhibition was observed by 30-160 microM-SeMet in a culture medium containing 100 microM-methionine. SeMet cytotoxicity to normal (fibroblasts) and malignant cells was rather similar, excluding specific antineoplastic cytotoxicity. Cytotoxicity was increased by decreasing concentrations of methionine. The DL form of SeMet was less cytotoxic than the L form. L-SeMet was metabolized to a selenium analogue of S-adenosylmethionine approximately as effectively as the natural sulphur analogue methionine in malignant R1.1 lymphoblasts. Concomitantly, S-adenosylmethionine pools were decreased. This occurred early and at cytotoxic SeMet levels. Methionine adenosyltransferase activity was not altered by SeMet treatment. ATP pools were not affected early, and decreases in the synthesis of DNA and protein took place late and were apparently related to cell death. RNA synthesis was slightly stimulated at low cytotoxic SeMet levels by 24 h, but was markedly inhibited after 48 h. The SeMet analogue of S-adenosylmethionine could be effectively utilized in a specific enzymic transmethylation. Neither S-adenosylhomocysteine nor its selenium analogue accumulated in the treated cells. These findings together suggest a direct or indirect involvement of S-adenosylmethionine metabolism in SeMet cytotoxicity, but exclude a gross blockage of transmethylations. PMID:2339986

  11. Thoc1 inhibits cell growth via induction of cell cycle arrest and apoptosis in lung cancer cells.

    PubMed

    Wan, Jianmei; Zou, Shitao; Hu, Mengshang; Zhu, Ran; Xu, Jiaying; Jiao, Yang; Fan, Saijun

    2014-06-01

    THO complex 1 (Thoc1) is a human nuclear matrix protein that binds to the retinoblastoma tumor suppressor retinoblastoma protein (pRb). While some studies suggest that Thoc1 has characteristics of a tumor suppressor protein, whether Thoc1 can inhibit lung cancer cell growth is not clear. In the present study, we observed that Thoc1 is lowly expressed in the lung cancer cell lines SPC-A1 and NCI-H1975. Then, we investigated the potential effects of Thoc1 on lung cancer cell proliferation, cell cycle and apoptosis after stable transfection of these lines with a Thoc1 expression vector. We found that overexpression of Thoc1 can inhibit cell proliferation, induce G2/M cell cycle arrest and promote apoptosis. Further investigation indicated that overexpression of Thoc1 is involved in the inhibition of cell cycle-related proteins cyclin A1 and B1 and of pro-apoptotic factors Bax and caspase-3. In vivo experiments showed that tumors overexpressing Thoc1 display a slower growth rate than the control xenografts and show reduced expression of the protein Ki-67, which localized on the nuclear membrane. Taken together, our data show that in lung cancer cells, Thoc1 inhibits cell growth through induction of cell cycle arrest and apoptosis. These results indicate that Thoc1 may be used as a novel therapeutic target for human lung cancer treatment.

  12. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    PubMed Central

    Busti, Stefano; Coccetti, Paola; Alberghina, Lilia; Vanoni, Marco

    2010-01-01

    Besides being the favorite carbon and energy source for the