Science.gov

Sample records for adrenocorticotropic hormone release

  1. Adrenocorticotropic Hormone Suppresses Gonadotropin-Stimulated Estradiol Release from Zebrafish Ovarian Follicles

    PubMed Central

    Alsop, Derek; Ings, Jennifer S.; Vijayan, Mathilakath M.

    2009-01-01

    While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mL−1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity. PMID:19649243

  2. [Neurotropic action of adrenocorticotropic hormone].

    PubMed

    Louis, J C; Anglard, P; Vincendon, G

    1986-02-01

    The adrenocorticotropic hormone (ACTH) is produced within the cell body of hypothalamic neurons by proteolytic cleavage of its large precursor molecule, pro-opiomelanocortin. These neurons distribute ACTH-containing nerve endings throughout the central nervous system. ACTH is able to evoke motor and behavioural responses and to modify neuronal metabolism. Since ACTH has been shown to regulate glucose uptake and utilization, its implication in the adaptative response to stress situations, such as cerebral hypoxia, deserves further investigations. PMID:3008142

  3. Pancreatic solitary fibrous tumor causing ectopic adrenocorticotropic hormone syndrome.

    PubMed

    Murakami, Keigo; Nakamura, Yasuhiro; Felizola, Saulo J A; Morimoto, Ryo; Satoh, Fumitoshi; Takanami, Kentaro; Katakami, Hideki; Hirota, Seiichi; Takeda, Yoshiyu; Meguro-Horike, Makiko; Horike, Shin-Ichi; Unno, Michiaki; Sasano, Hironobu

    2016-11-15

    Solitary fibrous tumors occasionally present with hypoglycemia because of the excessive release of insulin-like growth factor II. We report the first case of pancreatic solitary fibrous tumor causing ectopic adrenocorticotropic hormone syndrome. An 82-year-old Japanese man presented with lower limb edema, uncontrolled hypertension, hypokalemia, and baseline hypercortisolism. Distal pancreatectomy was performed after the clinical diagnosis of a neuroendocrine tumor with ectopic secretion of adrenocorticotropic hormone. On histological examination, the tumor showed spindle cells in a fascicular arrangement. The diagnosis of the solitary fibrous tumor was confirmed by the identification of the NAB2-STAT6 fusion gene and positive immuno-histochemical staining for STAT6 and CD34. Using quantitative real-time polymerase chain reaction, mRNA that encoded proopiomelanocortin, precursor of adrenocorticotropic hormone, was detected. Proopiomelanocortin production through the demethylation of the promoter region Domain IV was detected. Pancreatic solitary fibrous tumors represent a new cause of ectopic adrenocorticotropic hormone syndrome. PMID:27585487

  4. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  5. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  6. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  7. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  8. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  9. CXCL10/CXCR3 signaling mediates inhibitory action by interferon-gamma on CRF-stimulated adrenocorticotropic hormone (ACTH) release.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yoshida, Saishu; Higuchi, Masashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-05-01

    Secretion of hormones by the anterior pituitary gland can be stimulated or inhibited by paracrine factors that are produced during inflammatory reactions. The inflammation cytokine interferon-gamma (IFN-γ) is known to inhibit corticotropin-releasing factor (CRF)-stimulated adrenocorticotropin (ACTH) release but its signaling mechanism is not yet known. Using rat anterior pituitary, we previously demonstrated that the CXC chemokine ligand 10 (CXCL10), known as interferon-γ (IFN-γ) inducible protein 10 kDa, is expressed in dendritic cell-like S100β protein-positive (DC-like S100β-positive) cells and that its receptor CXCR3 is expressed in ACTH-producing cells. DC-like S100β-positive cells are a subpopulation of folliculo-stellate cells in the anterior pituitary. In the present study, we examine whether CXCL10/CXCR3 signaling between DC-like S100β-positive cells and ACTH-producing cells mediates inhibition of CRF-activated ACTH-release by IFN-γ, using a CXCR3 antagonist in the primary pituitary cell culture. We found that IFN-γ up-regulated Cxcl10 expression via JAK/STAT signaling and proopiomelanocortin (Pomc) expression, while we reconfirmed that IFN-γ inhibits CRF-stimulated ACTH-release. Next, we used a CXCR3 agonist in primary culture to analyze whether CXCL10 induces Pomc-expression and ACTH-release using a CXCR3 agonist in the primary culture. The CXCR3 agonist significantly stimulated Pomc-expression and inhibited CRF-induced ACTH-release, while ACTH-release in the absence of CRF did not change. Thus, the present study leads us to an assumption that CXCL10/CXCR3 signaling mediates inhibition of the CRF-stimulated ACTH-release by IFN-γ. Our findings bring us to an assumption that CXCL10 from DC-like S100β-positive cells acts as a local modulator of ACTH-release during inflammation.

  10. Nicotine self-administration diminishes stress-induced norepinephrine secretion but augments adrenergic-responsiveness in the hypothalamic paraventricular nucleus and enhances adrenocorticotropic hormone and corticosterone release

    PubMed Central

    Yu, Guoliang; Sharp, Burt M.

    2010-01-01

    Chronic nicotine self-administration augments the thalamo-pituitary-adrenal (HPA) responses to stress. Altered neuropeptide expression within corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) contributes to this enhanced HPA response to stress. Herein, we determined the role of norepinephrine, a primary regulator of CRF neurons, in the responses to footshock during nicotine self-administration. On day 12-15 of self-administration, microdialysis showed nicotine reduced PVN norepinephrine release by footshock (<50% of saline). Yet, the reduction in footshock-induced adrenocorticotropic hormone (ACTH) and corticosterone secretion due to intra-PVN prazosin (α1 adrenergic antagonist) was significantly greater in rats self-administering nicotine (2-fold) than saline. Additionally, PVN phenylephrine (α1 agonist) stimulated ACTH and corticosterone release to a similar extent in unstressed rats self-administering nicotine or saline. Nicotine self-administration also decreased footshock-induced c-Fos expression in the nucleus of the solitary tract (NTS)-A2/C2 catecholaminergic neurons that project to the PVN. Therefore, footshock-induced NTS activation and PVN norepinephrine input are both attenuated by nicotine self-administration, yet PVN CRF neurons are more responsive to α1 stimulation, but only during stress. This plasticity in noradrenergic regulation of PVN CRF neurons provides a new mechanism contributing to the HPA sensitization to stress by nicotine self-administration and smoking. PMID:20028457

  11. Adrenocorticotropic hormone analog use for podocytopathies

    PubMed Central

    Filippone, Edward J; Dopson, Shirley J; Rivers, Denise M; Monk, Rebeca D; Udani, Suneel M; Jafari, Golriz; Huang, Solomon C; Melhem, Arafat; Assioun, Bassim; Schmitz, Paul G

    2016-01-01

    Background Adrenocorticotropic hormone is being increasingly studied for treatment of various glomerulopathies, most notably membranous nephropathy. Less data are available regarding its use in idiopathic nephrotic syndrome (INS) secondary to minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). We report here our experience with H.P. Acthar® Gel (repository corticotropin injection) as first-line or subsequent therapy in patients with INS. Methods Data were taken from three patients with MCD and ten patients with FSGS from around the US, who were treated with Acthar Gel as initial or subsequent therapy. Treatment was solely at the discretion of the primary nephrologist without a specific protocol. A complete response (CR) was defined as final urine protein-to-creatinine ratio <500 mg/g and a partial response (PR) as 50% decrease without rise of serum creatinine. Side effects and tolerability were noted. Results All three patients with MCD received Acthar Gel as second-line or later immunosuppressive (IS) therapy and all responded (one CR and two PRs). Two of the ten patients with FSGS received Acthar Gel as first-line IS therapy, while the other eight had failed multiple agents. Four of the ten patients with FSGS had responses, including two CRs and two PRs. The three patients with MCD tolerated therapy well without side effects. Five patients with FSGS tolerated therapy well, while five had various steroid-like side effects, resulting in therapy discontinuation in two patients. Conclusion Acthar Gel is a viable alternative IS agent for treatment of INS in patients intolerant or resistant to conventional therapy. More data are needed to better define its appropriate place. PMID:27418857

  12. Peripheral blood corticotropin-releasing factor, adrenocorticotropic hormone and cytokine (Interleukin Beta, Interleukin 6, tumor necrosis factor alpha) levels after high- and low-dose total-body irradiation in humans

    SciTech Connect

    Girinsky, T.A.; Pallardy, M.; Comoy, E.; Benassi, T.; Roger, R.; Ganem, G.; Socie, G.; Cossett, J.M.; Magdelenat, H.

    1994-09-01

    Total-body irradiation (TBI) induces an increase in levels of granulocytes and cortisol in blood. To explore the underlying mechanisms, we studied 26 patients who had TBI prior to bone marrow transplantation. Our findings suggest that only a high dose of TBI (10 Gy) was capable of activating the hypothalamopituitary area since corticotropin-releasing factor and blood adrenocorticotropic hormone levels increased at the end of the TBI. There was a concomitant increase in the levels of interleukin 6 and tumor necrosis factor in blood, suggesting that these cytokines might activate the hypothalamo-pituitary adrenal axis. Interleukin 1 was not detected. Since vascular injury is a common after radiation treatment, it is possible that interleukin 6 was secreted by endothelial cells. The exact mechanisms of the production of cyctokines induced by ionizing radiation remain to be determined. 25 refs., 1 fig.

  13. The effect of adrenocorticotropic hormone on inflammation due to tuberculin hypersensitivity and turpentine and on circulating antibody levels.

    PubMed

    OSGOOD, C K; FAVOUR, C B

    1951-11-01

    The treatment with adrenocorticotropic hormone of guinea pigs sensitized with heat-killed tubercle bacilli caused suppression of their skin reactivity to tuberculin. Similar animals treated with saline did not show this change. Normal guinea pigs treated with adrenocorticotropic hormone showed suppression of inflammation, but not necrosis, produced by intracutaneous oil of turpentine. There was slight, but probably not significant, diminution of inflammation during saline administration. Tuberculin complement-fixing antibody titers were not altered by either adrenocorticotropic hormone or saline administration. Adrenocorticotropic hormone produced marked eosinopenia and lymphopenia in guinea pigs.

  14. THE EFFECT OF ADRENOCORTICOTROPIC HORMONE ON INFLAMMATION DUE TO TUBERCULIN HYPERSENSITIVITY AND TURPENTINE AND ON CIRCULATING ANTIBODY LEVELS

    PubMed Central

    Osgood, Charles K.; Favour, Cutting B.

    1951-01-01

    The treatment with adrenocorticotropic hormone of guinea pigs sensitized with heat-killed tubercle bacilli caused suppression of their skin reactivity to tuberculin. Similar animals treated with saline did not show this change. Normal guinea pigs treated with adrenocorticotropic hormone showed suppression of inflammation, but not necrosis, produced by intracutaneous oil of turpentine. There was slight, but probably not significant, diminution of inflammation during saline administration. Tuberculin complement-fixing antibody titers were not altered by either adrenocorticotropic hormone or saline administration. Adrenocorticotropic hormone produced marked eosinopenia and lymphopenia in guinea pigs. PMID:14888823

  15. Vigabatrin Therapy for Infantile Spasms in a Case of Cardiofaciocutaneous Syndrome with Cardiac Hypertrophy Developing during Adrenocorticotropic Hormone Treatment.

    PubMed

    Hatori, Takayuki; Sugiyama, Yohei; Yamashita, Shinichiro; Hirakubo, Yuka; Nonaka, Kazuhito; Ichihashi, Ko

    2016-01-01

    In a patient with cardiofaciocutaneous syndrome complicated by intractable infantile spasms (West syndrome), cardiac hypertrophy developed during adrenocorticotropic hormone treatment. Various types of antiepileptic drugs, intravenous immunoglobulin, thyrotropin releasing hormone, and a ketogenic diet were ineffective in this case. However, vigabatrin both decreased clinical seizures and improved electroencephalogram findings. Although vigabatrin has not been approved for use in Japan, the results in the present case suggest that this drug should be considered as an alternative therapy for cases of infantile spasms associated with syndromes involving cardiomyopathy or its potential risk factors, such as cardiofaciocutaneous syndrome. PMID:27680485

  16. Generalised hyperpigmentation caused by ectopic adrenocorticotropic hormone syndrome with recurrent thymic neuroendocrine carcinoma.

    PubMed

    Moon, Hye-Rim; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan

    2015-05-01

    Ectopic adrenocorticotropic hormone (ACTH) syndrome is a rare cause of generalised hyperpigmentation. The clinical features are due to the excessive ectopic secretion of adenocorticotropin by diverse neuroendocrine or non-endocrine tumours. Here, we describe a rare case of ectopic ACTH syndrome developing from recurring thymic neuroendocrine carcinoma, which first presented as generalised hyperpigmentation.

  17. Glucocorticosteroid concentrations in feces and hair of captive caribou and reindeer following adrenocorticotropic hormone challenge.

    PubMed

    Ashley, N T; Barboza, P S; Macbeth, B J; Janz, D M; Cattet, M R L; Booth, R K; Wasser, S K

    2011-07-01

    Climate change and industrial development are contributing to synchronous declines in Rangifer populations across the Arctic. Chronic stress has been implicated as a proximate factor associated with decline in free-ranging populations, but its role in Rangifer is unspecified. Analysis of glucocorticosteroid (GC) concentration in feces, and more recently in hair, is a non-invasive method for monitoring stress in wildlife. Adrenocorticotropic hormone (ACTH) released from the pituitary gland stimulates GC release from the adrenals and can be administered to reflect adrenal activation. In this study, we assessed concentrations of GC metabolites in feces and cortisol in hair of Alaskan caribou (Rangifer tarandus granti) and reindeer (R. t. tarandus) following ACTH treatment. We predicted that ACTH challenge would increase concentrations of fecal GCs, but not hair cortisol because steroid deposited into the hair shaft occurs over an extended period of time (months) and is likely insensitive to acute adrenal stimulation. Adult caribou (n=10; mean age, 6.5 years old) exhibited a peak increase in fecal GCs 8h following a 2 IU/kg dose of ACTH compared to pre-injection concentrations. In contrast, sub-adult reindeer (n=10, 0.8 years old) elicited a diminished response to the same dose. Quadrupling the dose (8 IU/kg) prolonged the fecal GC response in female reindeer, but male reindeer were unresponsive. Hair cortisol was unaffected by a single ACTH challenge. Further investigation is required to ascertain whether subspecific differences in adrenal sensitivity are attributed to age or sex differences, or historical selective pressures from semi-domestication and/or sedentary life cycle in reindeer.

  18. Effect of adrenocorticotropic hormone (ACTH) and insulin on the phagocytic capacity of Tetrahymena.

    PubMed

    Köhidai, L; Lovas, B; Csaba, G

    1995-06-01

    Adrenocorticotropic hormone (ACTH) and insulin negatively influenced the phagocytic activity of Tetrahymena. The two hormones had diverse effects after 4 hr of treatments on no-test-particle containing, "0-cells". At this time the number of "0 cells" was significantly lower in the ACTH-treated groups, while in the insulin-treated groups there was an increase of "0-cells" compared to the control and to the results of the starting experiment. Considering previous results, when small molecular weight hormones, if did at all, positively influenced phagocytosis in Tetrahymena, the experiments call the attention to the differences caused by the size of the signal molecules. In the light of the literary data on hormone effects to phagocytosis in mammals and men, the similarity of the effects in species being very far from each other in evolution, could be concluded.

  19. The central anorexigenic mechanism of adrenocorticotropic hormone involves the caudal hypothalamus in chicks.

    PubMed

    Shipp, Steven L; Yi, Jiaqing; Dridi, Sami; Gilbert, Elizabeth R; Cline, Mark A

    2015-10-01

    Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2-5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX

  20. Early hyperbaric oxygen therapy inhibits aquaporin 4 and adrenocorticotropic hormone expression in the pituitary gland of rabbits with blast-induced craniocerebral injury★

    PubMed Central

    Huo, Jian; Liu, Jiachuan; Wang, Jinbiao; Zhang, Yongming; Wang, Chunlin; Yang, Yanyan; Sun, Wenjiang; Xu, Shaonian

    2012-01-01

    In the present study, rabbits were treated with hyperbaric oxygen for 1 hour after detonator-blast- induced craniocerebral injury. Immunohistochemistry showed significantly reduced aquaporin 4 expression and adrenocorticotropic hormone expression in the pituitary gland of rabbits with craniocerebral injury. Aquaporin 4 expression was positively correlated with adrenocorticotropic hormone expression. These findings indicate that early hyperbaric oxygen therapy may suppress adrenocorticotropic hormone secretion by inhibiting aquaporin 4 expression. PMID:25624795

  1. Early hyperbaric oxygen therapy inhibits aquaporin 4 and adrenocorticotropic hormone expression in the pituitary gland of rabbits with blast-induced craniocerebral injury.

    PubMed

    Huo, Jian; Liu, Jiachuan; Wang, Jinbiao; Zhang, Yongming; Wang, Chunlin; Yang, Yanyan; Sun, Wenjiang; Xu, Shaonian

    2012-08-01

    In the present study, rabbits were treated with hyperbaric oxygen for 1 hour after detonator-blast- induced craniocerebral injury. Immunohistochemistry showed significantly reduced aquaporin 4 expression and adrenocorticotropic hormone expression in the pituitary gland of rabbits with craniocerebral injury. Aquaporin 4 expression was positively correlated with adrenocorticotropic hormone expression. These findings indicate that early hyperbaric oxygen therapy may suppress adrenocorticotropic hormone secretion by inhibiting aquaporin 4 expression.

  2. Structure and ultrastructure of adrenocorticotropic hormone cells in goats in anoestrus, gestation and milk production.

    PubMed

    Navarro, J A; Gómez, M A; Sánchez, J; Gómez, S; Bernabé, A

    1991-01-01

    The structural and ultrastructural characteristics of adrenocorticotropic hormone cells in adult female goats in anoestrus, gestation and milk production were studied with an immunohistochemical method (peroxidase-antiperoxidase). Only one cellular type has been identified and is characterized by numerous secretory granules of different electron density and an average diameter of 275 nm. During pregnancy these cells increase in number and size, and there is a frequent presence of vacuoles. During lactation the number of size of the cells decreases but without reaching the state observed in anoestrus and the involution of the cytoplasmic vacuolizations which appear in pregnancy.

  3. Severe Hypokalaemia, Hypertension, and Intestinal Perforation in Ectopic Adrenocorticotropic Hormone Syndrome.

    PubMed

    Kaya, Tezcan; Karacaer, Cengiz; Açikgöz, Seyyid Bilal; Aydemir, Yusuf; Tamer, Ali

    2016-01-01

    Ectopic adrenocorticotropic hormone (ACTH) syndrome is a rare cause of the Cushing's syndrome. The occurrence of the ectopic ACTH syndrome presenting with severe hypokalaemia, metabolic alkalosis, and hypertension has been highlighted in case reports. However, presentation with lower gastrointestinal perforation is not known. We report the case of a 70-year-old male patient with severe hypokalaemia, metabolic alkalosis, hypertension, and colonic perforation as manifestations of an ACTH-secreting small cell lung carcinoma. Ectopic ACTH syndrome should be kept in mind as a cause of hypokalaemia, hypertension, and intestinal perforation in patients with lung carcinoma. PMID:26894113

  4. Quantifying Pituitary-Adrenal Dynamics and Deconvolution of Concurrent Cortisol and Adrenocorticotropic Hormone Data by Compressed Sensing

    PubMed Central

    Faghih, Rose T.; Dahleh, Munther A.; Adler, Gail K.; Klerman, Elizabeth B.; Brown, Emery N.

    2015-01-01

    Pulsatile release of cortisol from the adrenal glands is governed by pulsatile release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. In return, cortisol has a negative feedback effect on ACTH release. Simultaneous recording of ACTH and cortisol is not typical, and determining the number, timing, and amplitudes of pulsatile events from simultaneously recorded data is challenging because of several factors: (I) stimulator ACTH pulse activity, (II) kinematics of ACTH and cortisol, (III) the sampling interval, and (IV) the measurement error. We model ACTH and cortisol secretion simultaneously using a linear differential equations model with Gaussian errors and sparse pulsatile events as inputs to the model. We propose a novel framework for recovering pulses and parameters underlying the interactions between ACTH and cortisol. We recover the timing and amplitudes of pulses using compressed sensing, and employ generalized cross validation for determining the number of pulses. We analyze serum ACTH and cortisol levels sampled at 10-minute intervals over 24 hours from 10 healthy women. We recover physiologically plausible timing and amplitudes for these pulses and model the feedback effect of cortisol. We recover 15 to 18 pulses over 24 hours, which is highly consistent with the results of another cortisol data analysis approach. Modeling the interactions between ACTH and cortisol allows for accurate quantification of pulsatile events, and normal and pathological states. This could lay the basis for a more physiologically-based approach for administering cortisol therapeutically. The proposed approach can be adapted to deconvolve other pairs of hormones with similar interactions. PMID:25935025

  5. NFKB2 mutation in common variable immunodeficiency and isolated adrenocorticotropic hormone deficiency

    PubMed Central

    Shi, Chuan; Wang, Fen; Tong, Anli; Zhang, Xiao-Qian; Song, Hong-Mei; Liu, Zheng-Yin; Lyu, Wei; Liu, Yue-Hua; Xia, Wei-Bo

    2016-01-01

    Abstract Background Common variable immunodeficiency (CVID) with central adrenal insufficiency is a recently defined clinical syndrome caused by mutations in the nuclear factor kappa-B subunit 2 (NFKB2) gene. We present the first case of NFKB2 mutation in Asian population. Methods and Results An 18-year-old Chinese female with adrenocorticotropic hormone (ACTH) deficiency was admitted due to adrenal crisis and pneumonia. She had a history of recurrent respiratory infections since childhood and ectodermal abnormalities were noted during physical examination. Immunologic tests revealed panhypogammaglobulinemia and deficient natural killer (NK)-cell function. DNA sequencing of NFKB2 identified a heterozygous nonsense mutation (c.2563 A>T, p.855: Lys>∗) in the patient but not her parents. Conclusion Clinicians should be alert to comorbidities of adrenal insufficiency and ectodermal dysplasia in CVID patients as these might suggest a rare hereditary syndrome caused by NFKB2 mutation. PMID:27749582

  6. Neuroendocrine carcinoma of the ampulla of Vater causing ectopic adrenocorticotropic hormone-dependent Cushing's syndrome

    PubMed Central

    KATO, AKIHISA; HAYASHI, KAZUKI; NAITOH, ITARU; SENO, KYOJI; OKADA, YUKIKO; BAN, TESSHIN; KONDO, HIROMU; NISHI, YUJI; UMEMURA, SHUICHIRO; HORI, YASUKI; NATSUME, MAKOTO; JOH, TAKASHI

    2016-01-01

    Ectopic adrenocorticotropic hormone (ACTH) is rarely secreted by neuroendocrine tumors. Although neuroendocrine tumors may occur at any site in the gastrointestinal system, they very rarely occur in the ampulla of Vater and have a poor prognosis. The present study described the first Cushing's syndrome as a result of ectopic ACTH arising from the ampulla of Vater neuroendocrine carcinoma. A 69-year-old female was admitted with clinical features of Cushing's syndrome, confirmed biochemically by hypokalemia, and elevated levels of ACTH and cortisol. In further investigations, a tumor of the ampulla of Vater and liver metastases were detected. Pathological analysis of the biopsy confirmed a neuroendocrine carcinoma, which was immunohistochemically positive for chromogranin A, synaptophysin, cluster of differentiation 56 and ACTH. Therefore, the present study diagnosed a functional and metastatic neuroendocrine carcinoma of the ampulla of Vater with ectopic ACTH production causing Cushing's syndrome. The patient succumbed to mortality 4 months later, despite administration of combined chemotherapy with irinotecan and cisplatin. PMID:27330779

  7. Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature

    PubMed Central

    PU, JIUJUN; WANG, ZHIMING; ZHOU, HUI; ZHONG, AILING; JIN, KAI; RUAN, LUNLIANG; YANG, GANG

    2016-01-01

    Only a few cases of double or multiple pituitary adenomas have previously been reported in the literature; however, isolated double adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas are even more rare. The present study reports a rare case of a 50-year-old female patient who presented with typical clinical features of Cushing's disease and was diagnosed with isolated double ACTH-secreting pituitary adenomas. Endocrinological examination revealed an ACTH-producing pituitary adenoma, and preoperative magnetic resonance imaging (MRI) demonstrated a microadenoma with a lower intensity on the right side of the pituitary gland. The patient underwent endoscopic endonasal transsphenoidal surgery, which revealed another pituitary tumor in the left side of the pituitary gland. The two, clearly separated, pituitary adenomas identified in the same gland were completely resected. Immunohistochemistry and pathology revealed that the clearly separated double pituitary adenomas were positive for ACTH, thyroid-stimulating, growth and prolactin hormones. Postoperatively, the levels of ACTH and cortisol hormone decreased rapidly. The case reported in the present study is considerably rare, due to the presence of a second pituitary adenoma in the same gland, which was not detected by preoperative MRI scan, but was noticed during surgery. Intraoperative evaluation may be important in the identification of double or multiple pituitary adenomas. PMID:27347184

  8. Metabolic responses to adrenocorticotropic hormone (ACTH) vary with life-history stage in adult male northern elephant seals.

    PubMed

    Ensminger, David C; Somo, Derek A; Houser, Dorian S; Crocker, Daniel E

    2014-08-01

    Strong individual and life-history variation in serum glucocorticoids has been documented in many wildlife species. Less is known about variation in hypothalamic-pituitary-adrenal (HPA) axis responsiveness and its impact on metabolism. We challenged 18 free-ranging adult male northern elephant seals (NES) with an intramuscular injection of slow-release adrenocorticotropic hormone (ACTH) over 3 sample periods: early in the breeding season, after 70+ days of the breeding fast, and during peak molt. Subjects were blood sampled every 30 min for 2h post-injection. Breeding animals were recaptured and sampled at 48 h. In response to the ACTH injection, cortisol increased 4-6-fold in all groups, and remained elevated at 48 h in early breeding subjects. ACTH was a strong secretagogue for aldosterone, causing a 3-8-fold increase in concentration. Cortisol and aldosterone responses did not vary between groups but were correlated within individuals. The ACTH challenge produced elevations in plasma glucose during late breeding and molting, suppressed testosterone and thyroid hormone at 48 h in early breeding, and increased plasma non-esterified fatty acids and ketoacids during molting. These data suggest that sensitivity of the HPA axis is maintained but the metabolic impacts of cortisol and feedback inhibition of the axis vary with life history stage. Strong impacts on testosterone and thyroid hormone suggest the importance of maintaining low cortisol levels during the breeding fast. These data suggest that metabolic adaptations to extended fasting in NES include alterations in tissue responses to hormones that mitigate deleterious impacts of acute or moderately sustained stress responses.

  9. Metabolic responses to adrenocorticotropic hormone (ACTH) vary with life-history stage in adult male northern elephant seals.

    PubMed

    Ensminger, David C; Somo, Derek A; Houser, Dorian S; Crocker, Daniel E

    2014-08-01

    Strong individual and life-history variation in serum glucocorticoids has been documented in many wildlife species. Less is known about variation in hypothalamic-pituitary-adrenal (HPA) axis responsiveness and its impact on metabolism. We challenged 18 free-ranging adult male northern elephant seals (NES) with an intramuscular injection of slow-release adrenocorticotropic hormone (ACTH) over 3 sample periods: early in the breeding season, after 70+ days of the breeding fast, and during peak molt. Subjects were blood sampled every 30 min for 2h post-injection. Breeding animals were recaptured and sampled at 48 h. In response to the ACTH injection, cortisol increased 4-6-fold in all groups, and remained elevated at 48 h in early breeding subjects. ACTH was a strong secretagogue for aldosterone, causing a 3-8-fold increase in concentration. Cortisol and aldosterone responses did not vary between groups but were correlated within individuals. The ACTH challenge produced elevations in plasma glucose during late breeding and molting, suppressed testosterone and thyroid hormone at 48 h in early breeding, and increased plasma non-esterified fatty acids and ketoacids during molting. These data suggest that sensitivity of the HPA axis is maintained but the metabolic impacts of cortisol and feedback inhibition of the axis vary with life history stage. Strong impacts on testosterone and thyroid hormone suggest the importance of maintaining low cortisol levels during the breeding fast. These data suggest that metabolic adaptations to extended fasting in NES include alterations in tissue responses to hormones that mitigate deleterious impacts of acute or moderately sustained stress responses. PMID:24798580

  10. [A Case of an Adrenocorticotropic Hormone-Producing Pituitary Adenoma Removed via Electromagnetic-Guided Neuroendoscopy].

    PubMed

    Tomita, Yusuke; Kurozumi, Kazuhiko; Terasaka, Tomohiro; Inagaki, Kenichi; Otsuka, Fumio; Date, Isao

    2016-06-01

    The use of navigation systems is safe and reliable for neurological surgery. We performed endoscopic transsphenoidal surgery to totally resect an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma associated with oculomotor nerve palsy. A 70-year-old woman developed right ptosis 4 months before admission. She developed anisocoria 2 months later and was referred to the department of neurology from clinic. Brain magnetic resonance imaging(MRI)showed an intrasellar tumor that partially invaded the right cavernous sinus, and she was then referred to our department. She exhibited a round face ("moon face") and central obesity. Laboratory test results showed a high urinary cortisol level and high serum ACTH level, and neither the serum cortisol nor ACTH level was suppressed by a low-dose dexamethasone test. We performed transsphenoidal surgery using high-dimensional endoscopy under electromagnetic navigation. The tumor invading the cavernous sinus was visualized via endoscopy and confirmed on navigation using a flexible needle probe. Postoperative MRI showed total removal of the tumor, and the serum ACTH level recovered to the normal range. The patient's right oculomotor palsy resolved within 1 week postoperatively. In summary, electromagnetic navigation was useful for total resection of a pituitary tumor invading the cavernous sinus, contributing to normalization of the ACTH level and improvement in neurological symptoms.

  11. [A Case of an Adrenocorticotropic Hormone-Producing Pituitary Adenoma Removed via Electromagnetic-Guided Neuroendoscopy].

    PubMed

    Tomita, Yusuke; Kurozumi, Kazuhiko; Terasaka, Tomohiro; Inagaki, Kenichi; Otsuka, Fumio; Date, Isao

    2016-06-01

    The use of navigation systems is safe and reliable for neurological surgery. We performed endoscopic transsphenoidal surgery to totally resect an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma associated with oculomotor nerve palsy. A 70-year-old woman developed right ptosis 4 months before admission. She developed anisocoria 2 months later and was referred to the department of neurology from clinic. Brain magnetic resonance imaging(MRI)showed an intrasellar tumor that partially invaded the right cavernous sinus, and she was then referred to our department. She exhibited a round face ("moon face") and central obesity. Laboratory test results showed a high urinary cortisol level and high serum ACTH level, and neither the serum cortisol nor ACTH level was suppressed by a low-dose dexamethasone test. We performed transsphenoidal surgery using high-dimensional endoscopy under electromagnetic navigation. The tumor invading the cavernous sinus was visualized via endoscopy and confirmed on navigation using a flexible needle probe. Postoperative MRI showed total removal of the tumor, and the serum ACTH level recovered to the normal range. The patient's right oculomotor palsy resolved within 1 week postoperatively. In summary, electromagnetic navigation was useful for total resection of a pituitary tumor invading the cavernous sinus, contributing to normalization of the ACTH level and improvement in neurological symptoms. PMID:27270145

  12. Comparison of Ultraviolet Photodissociation and Collision Induced Dissociation of Adrenocorticotropic Hormone Peptides

    NASA Astrophysics Data System (ADS)

    Robotham, Scott A.; Brodbelt, Jennifer S.

    2015-09-01

    In an effort to better characterize the fragmentation pathways promoted by ultraviolet photoexcitation in comparison to collision induced dissociation (CID), six adrenocorticotropic hormone (ACTH) peptides in a range of charge states were subjected to 266 nm ultraviolet photodissociation (UVPD), 193 nm UVPD, and CID. Similar fragment ions and distributions were observed for 266 nm UVPD and 193 nm UVPD for all peptides investigated. While both UVPD and CID led to preferential cleavage of the Y-S bond for all ACTH peptides [except ACTH (1-39)], UVPD was far less dependent on charge state and location of basic sites for the production of C-terminal and N-terminal ions. For ACTH (1-16), ACTH (1-17), ACTH (1-24), and ACTH (1-39), changes in the distributions of fragment ion types ( a, b, c, x, y, z, and collectively N-terminal ions versus C-terminal ions) showed only minor changes upon UVPD for all charge states. In contrast, CID displayed significant changes in the fragment ion type distributions as a function of charge state, an outcome consistent with the dependence on the number and location of mobile protons that is not prominent for UVPD. Sequence coverages obtained by UVPD showed less dependence on charge state than those determined by CID, with the latter showing a consistent decrease in coverage as charge state increased.

  13. Adrenocorticotropic hormone gel in the treatment of systemic lupus erythematosus: A retrospective study of patients.

    PubMed Central

    Li, Xiao; Golubovsky, Josh; Hui-Yuen, Joyce; Shah, Ummara; Olech, Ewa; Lomeo, Rosalia; Singh, Vijay; Busch, Howard; Strandberg, Mary Jane; Strandberg, Kayla; Horowitz, Leslie; Askanase, Anca

    2016-01-01

    Objectives: Acthar Gel is a long-acting formulation of adrenocorticotropic hormone (ACTH) with anti-inflammatory effects thought to be mediated in part through melanocortin receptor activation. This study was initiated to understand the role of Acthar Gel in SLE treatment in rheumatology practices. Methods: This is a retrospective case series of nine adult female patients treated with Acthar Gel for at least six months at five academic centers. Treating physicians completed a one-page questionnaire on lupus medications, disease activity, and outcomes. Clinical response was defined using SLEDAI 2K and improvement in the clinical manifestation(s) being treated. Results: The most common clinical SLE manifestations/indications requiring therapy with Acthar Gel were arthritis, rash, and inability to taper corticosteroids. The mean SLEDAI 2K score at baseline was 5.8 ± 5.0 (range 0-16). Six patients were concomitantly treated with corticosteroids (mean dose 18.3mg/day). All patients were on background SLE medications including immunosuppressives. Seven of nine patients had an overall improvement, with a decrease in SLEDAI 2K from 5.8 ± 5.0 at baseline to 3.5 ± 2.7 (range 0-8); four of five patients had improvement or resolution in arthritis, and one of two patients had resolution of inflammatory rash. Four patients discontinued corticosteroids and one patient tapered below 50% of the initial dose by 3 months of treatment with Acthar Gel. No adverse events were reported. Conclusions: This study suggests a role for Acthar Gel as an alternative to corticosteroids in the treatment of SLE. Acthar Gel appears to be safe and well-tolerated after 6 months of treatment, with a significant reduction in disease activity. PMID:27158444

  14. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle.

    PubMed

    González-de-la-Vara, Marcela del Rosario; Valdez, Ricardo Arturo; Lemus-Ramirez, Vicente; Vázquez-Chagoyán, Juan Carlos; Villa-Godoy, Alejandro; Romano, Marta C

    2011-07-01

    Dairy cattle suffer stress from management and production; contemporary farming tries to improve animal welfare and reduce stress. Therefore, the assessment of long-term hypothalamic-pituitary-adrenal function using non-invasive techniques is useful. The aims in this study were: to measure cortisol concentration in cow and calves hair by radioimmunoassay (RIA), to test cortisol accumulation in bovine hair after adrenocorticotropic hormone (ACTH) challenges, and determine the influence of hair color on cortisol concentrations. Fifteen Holstein heifers were allotted to 3 groups (n = 5 each): in control group (C), just the hair was sampled; in the saline solution group (SS), IV saline solution was administered on days 0, 7, and 14; and the ACTH group was challenged 3 times with ACTH (0.15 UI per kg of body weight) on days 0, 7, and 14. Serum samples from the SS and ACTH groups were obtained 0, 60 and 90 min post-injection. Serum cortisol concentration was greater 60 and 90 min after injection with ACTH. Hair was clipped on days 0, 14, 28, and 44. Hair cortisol was methanol extracted and measured by RIA. Hair cortisol was preserved for 11 mo. Hair cortisol concentrations in the ACTH group were greater than in the saline and control groups on days 14 and 28, but not on day 44. Concentrations were greater in calves than in cows and greater in white hair than in black hair. Cortisol accumulated in bovine hair after ACTH challenges, but the concentration was affected by both age and hair color. If hair color effects are taken into account, assessing cortisol concentration in hair is a potentially useful non-invasive method for assessing stress in cattle.

  15. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle

    PubMed Central

    del Rosario González-de-la-Vara, Marcela; Valdez, Ricardo Arturo; Lemus-Ramirez, Vicente; Vázquez-Chagoyán, Juan Carlos; Villa-Godoy, Alejandro; Romano, Marta C.

    2011-01-01

    Dairy cattle suffer stress from management and production; contemporary farming tries to improve animal welfare and reduce stress. Therefore, the assessment of long-term hypothalamic-pituitary-adrenal function using non-invasive techniques is useful. The aims in this study were: to measure cortisol concentration in cow and calves hair by radioimmunoassay (RIA), to test cortisol accumulation in bovine hair after adrenocorticotropic hormone (ACTH) challenges, and determine the influence of hair color on cortisol concentrations. Fifteen Holstein heifers were allotted to 3 groups (n = 5 each): in control group (C), just the hair was sampled; in the saline solution group (SS), IV saline solution was administered on days 0, 7, and 14; and the ACTH group was challenged 3 times with ACTH (0.15 UI per kg of body weight) on days 0, 7, and 14. Serum samples from the SS and ACTH groups were obtained 0, 60 and 90 min post-injection. Serum cortisol concentration was greater 60 and 90 min after injection with ACTH. Hair was clipped on days 0, 14, 28, and 44. Hair cortisol was methanol extracted and measured by RIA. Hair cortisol was preserved for 11 mo. Hair cortisol concentrations in the ACTH group were greater than in the saline and control groups on days 14 and 28, but not on day 44. Concentrations were greater in calves than in cows and greater in white hair than in black hair. Cortisol accumulated in bovine hair after ACTH challenges, but the concentration was affected by both age and hair color. If hair color effects are taken into account, assessing cortisol concentration in hair is a potentially useful non-invasive method for assessing stress in cattle. PMID:22210998

  16. Limited Diagnostic Utility of Plasma Adrenocorticotropic Hormone for Differentiation between Adrenal Cushing Syndrome and Cushing Disease

    PubMed Central

    Hong, A Ram; Kim, Jung Hee; Hong, Eun Shil; Kim, I Kyeong; Park, Kyeong Seon; Ahn, Chang Ho; Kim, Sang Wan; Shin, Chan Soo

    2015-01-01

    Background Measurement of the plasma adrenocorticotropic hormone (ACTH) level has been recommended as the first diagnostic test for differentiating between ACTH-independent Cushing syndrome (CS) and ACTH-dependent CS. When plasma ACTH values are inconclusive, a differential diagnosis of CS can be made based upon measurement of the serum dehydroepiandrosterone sulfate (DHEA-S) level and results of the high-dose dexamethasone suppression test (HDST). The aim of this study was to assess the utility of plasma ACTH to differentiate adrenal CS from Cushing' disease (CD) and compare it with that of the HDST results and serum DHEA-S level. Methods We performed a retrospective, multicenter study from January 2000 to May 2012 involving 92 patients with endogenous CS. The levels of plasma ACTH, serum cortisol, 24-hour urine free cortisol (UFC) after the HDST, and serum DHEA-S were measured. Results Fifty-seven patients had adrenal CS and 35 patients had CD. The area under the curve of plasma ACTH, serum DHEA-S, percentage suppression of serum cortisol, and UFC after HDST were 0.954, 0.841, 0.950, and 0.997, respectively (all P<0.001). The cut-off values for plasma ACTH, percentage suppression of serum cortisol, and UFC after HDST were 5.3 pmol/L, 33.3%, and 61.6%, respectively. The sensitivity and specificity of plasma ACTH measurement were 84.2% and 94.3%, those of serum cortisol were 95.8% and 90.6%, and those of UFC after the HDST were 97.9% and 96.7%, respectively. Conclusion Significant overlap in plasma ACTH levels was seen between patients with adrenal CS and those with CD. The HDST may be useful in differentiating between these forms of the disease, especially when the plasma ACTH level alone is not conclusive. PMID:26248856

  17. Isolated Adrenocorticotropic Hormone or Thyrotropin Deficiency Following Mild Traumatic Brain Injury: Three Cases with Long-Term Follow-Up

    PubMed Central

    Baek, Cho-Ok; Kim, Yu Ji; Kim, Ji Hye

    2015-01-01

    Few studies have examined the clinical features and long-term outcomes of isolated pituitary hormone deficiencies after traumatic brain injury (TBI). Such deficiencies typically present at time intervals after TBI, especially after mild injuries such as concussions, which makes their diagnosis difficult without careful history taking. It is necessary to improve diagnosis and prevent life threatening or morbid conditions such as those that may occur in deficiencies of adrenocorticotropic hormone (ACTH) or thyroid-stimulating hormone (as known as thyrotropin, TSH), the two most important pituitary hormones in hypopituitarism treatment. Here, we report two cases of isolated ACTH deficiency and one case of isolated TSH deficiency. These patients presented at different time points after concussion and underwent long-term follow-ups. PMID:27169080

  18. Adrenocorticotropic hormone and cortisol levels in relation to inflammatory response and disease severity in children with meningococcal disease.

    PubMed

    van Woensel, J B; Biezeveld, M H; Alders, A M; Eerenberg, A J; Endert, E; Hack, E C; von Rosenstiel, I A; Kuijpers, T W

    2001-12-15

    This prospective observational study investigated the relationship of the hypothalamic-pituitary-adrenal axis to inflammatory markers and to disease severity in children with meningococcal disease. In total, 32 children were studied: 10 with distinct meningococcal meningitis (MM), 10 with MM and septic shock, and 12 with fulminant meningococcal septicemia (FMS). Levels of adrenocorticotropic hormone (ACTH) and interleukin (IL)-6, IL-8, and IL-10 were lowest in the MM group and dramatically elevated in the FMS group. Cortisol and C-reactive protein levels were highest in the MM group and relatively low in the FMS group. Levels of ACTH and inflammatory markers decreased within the first 24 h of admission, but cortisol levels did not fluctuate. Cortisol was significantly inversely correlated with IL-6, IL-8, and IL-10 (P < or =.04). These results suggest that the adrenal reserve in children is insufficient to handle the extreme conditions and stress associated with severe meningococcal disease.

  19. Cyclic AMP in female mouse brain is altered by the adrenocorticotropic hormone(4-9) analogue organon 2766.

    PubMed

    Schneider, D R; Felt, B T; Murphy, S; Goldman, H

    1981-09-01

    Cyclic AMP content was determined in 12 brain regions of young adult female mice at 30 min and at 24 h following an intraperitoneal injection of the tri-substituted adrenocorticotropic hormone(4-9) [ACTH(4-9)] analogue Organon 2766 [ORG 2766]. Animals were killed by focused 3.5 kW microwave radiation applied for 350 ms. Unlike previously reported responses in male mice, at 30 min post-injection there were no detectable differences in cyclic AMP content between the placebo and ORG 2766-treated animals. By contrast, 24 h after injection, the content of cyclic AMP was changed significantly in 8 of the 12 brain regions examined: medulla-pons, septal area, thalamus, hypothalamus, hippocampus, olfactory bulb, and parietal and occipital cortices. In most of the regions examined, differences consisted of 50% or greater reductions of tissue cyclic AMP content. The changes were unrelated to the estrus cycle of these animals.

  20. Unusual suspects: pulmonary opportunistic infections masquerading as tumor metastasis in a patient with adrenocorticotropic hormone-producing pancreatic neuroendocrine cancer.

    PubMed

    Chowdry, Rajasree P; Bhimani, Chandar; Delgado, Maria A; Lee, Daniel J; Dayamani, Priya; Sica, Gabriel L; Owonikoko, Taofeek K

    2012-11-01

    Pancreatic neuroendocrine tumors (p-NETs) are a rare group of neoplasms but with increasing incidence. The atypical complications that arise in the setting of functional endocrine tumors are underreported and therefore have not received sufficient attention and the necessary mention in the oncology literature. The clinical implications of these complications pose management challenges starting with the difficulty in establishing diagnosis, accurate staging and optimal treatment of the primary process. We present the case of a middle-aged woman diagnosed with adrenocorticotropic hormone-producing carcinoma arising from the pancreas whose case was complicated by excessive uncontrolled hypercortisolism and reactivation of pulmonary opportunistic infections that confounded her management. We believe that this case illustration will be of value to practicing oncologists and other groups of physicians who are called upon to participate in the multidisciplinary treatment of these relatively rare but highly challenging cases. PMID:23118805

  1. Unusual suspects: pulmonary opportunistic infections masquerading as tumor metastasis in a patient with adrenocorticotropic hormone-producing pancreatic neuroendocrine cancer

    PubMed Central

    Chowdry, Rajasree P.; Bhimani, Chandar; Delgado, Maria A.; Lee, Daniel J.; Dayamani, Priya; Sica, Gabriel L.

    2012-01-01

    Pancreatic neuroendocrine tumors (p-NETs) are a rare group of neoplasms but with increasing incidence. The atypical complications that arise in the setting of functional endocrine tumors are underreported and therefore have not received sufficient attention and the necessary mention in the oncology literature. The clinical implications of these complications pose management challenges starting with the difficulty in establishing diagnosis, accurate staging and optimal treatment of the primary process. We present the case of a middle-aged woman diagnosed with adrenocorticotropic hormone-producing carcinoma arising from the pancreas whose case was complicated by excessive uncontrolled hypercortisolism and reactivation of pulmonary opportunistic infections that confounded her management. We believe that this case illustration will be of value to practicing oncologists and other groups of physicians who are called upon to participate in the multidisciplinary treatment of these relatively rare but highly challenging cases. PMID:23118805

  2. Effects of bupropion and pramipexole on cell proliferation in the hippocampus of adrenocorticotropic hormone-treated rats.

    PubMed

    Onoue, Yuka; Kuwatsuka, Keiko; Miyazaki, Ikuko; Asanuma, Masato; Kitamura, Yoshihisa; Sendo, Toshiaki

    2014-01-01

    The dopamine reuptake inhibitor bupropion and dopamine D2/3 receptor agonist pramipexole have been clinically proven to improve both depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of the dopamine nerve system in this effect. Bupropion and pramipexole significantly decreased the duration of immobility in normal and ACTH-treated rats. We previously demonstrated that the chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation and neurogenesis. In this study, we used the mitotic marker 5-bromo-2'-deoxyridine to investigate the effects of bupropion and pramipexole on cell proliferation in the subgranular zone of the hippocampal dentate gyrus following chronic treatment with ACTH. The ACTH treatment for 14 d decreased adult hippocampal cell proliferation. The chronic administration of bupropion for 14 d blocked the loss of cell proliferation resulting from the chronic treatment with ACTH, whereas pramipexole did not. The administration of bupropion may have treatment-resistant antidepressive properties, which may be partly attributed to the normalization of hippocampal cell proliferation.

  3. Primary intracranial neuroendocrine tumor with ectopic adrenocorticotropic hormone syndrome: A rare and complicated case report and literature review

    PubMed Central

    LIU, HAILONG; ZHANG, MINGSHAN; WANG, XUAN; QU, YANMING; ZHANG, HONGWEI; YU, CHUNJIANG

    2016-01-01

    Neuroendocrine tumors (NETs) and ectopic adrenocorticotropic hormone (ACTH) syndrome are frequent in adult patients. However, primary intracranial NETs, exhibiting immunonegativity for ACTH, high serum ACTH level and treated with anterior skull base reconstruction, are rare and complicated. We herein present a case of a primary intracranial NET immunonegative for ACTH, resulting in ectopic ACTH syndrome. A 40-year-old woman presented with intermittent rhinorrhea, rapid weight gain, polydipsia, polyuria, hypertension, dimness, bilateral exophthalmus, diminution of vision in the left eye and pigmentation of the skin of the face and trunk. Computed tomography (CT) and magnetic resonance imaging scans revealed a sizeable enhancing tumor in the anterior cranial fossa, which infiltrated the sphenoid and ethmoid sinuses bilaterally, the left maxillary sinus and the nasal cavity. Abdominal CT scans revealed bilateral adrenal hyperplasia. The biochemical findings included hypokalemia and high glucose, cortisol, plasma ACTH, 24-h urinary free cortisol and testosterone levels. The neoplasm was exposed through a right frontal craniotomy, while anterior skull base reconstruction was performed during surgery. The intracranial surgery achieved gross removal of the tumor; however, part of the tumor remained in the nasal cavity. Histopathological examination of the surgical specimen confirmed the diagnosis of a low-grade small-cell NET, exhibiting immunonegativity for ACTH. A postoperative abdominal CT scan demonstrated bilateral regression of the adrenal gland hyperplasia and the serum ACTH level returned to normal after 16 days. To the best of our knowledge, there are no previous reports of primary intracranial NETs, immunohistochemically negative for ACTH, resulting in ectopic ACTH syndrome. PMID:27330775

  4. Regulation of rat adrenal vasoactive intestinal peptide content: effects of adrenocorticotropic hormone treatment and changes in dietary sodium intake.

    PubMed

    Hinson, J P; Renshaw, D; Carroll, M; Kapas, S

    2001-09-01

    Vasoactive intestinal peptide (VIP) is well established as a paracrine regulator of adrenal function. It is present in nerves supplying the adrenal cortex, although previous studies have found that the amount of VIP in the outer zones of the rat adrenal is not affected by ligating the splanchnic nerve supplying the adrenal gland. The present studies were designed to investigate the mechanisms involved in regulating the VIP content of the rat adrenal gland. This study examined the effects of changes in electrolyte balance and adrenocorticotropic hormone (ACTH) administration on the adrenal content of VIP as measured by radioimmunoassay. Rats on a low sodium diet had a significantly increased capsular/zona glomerulosa immunoreactive VIP (irVIP) level, while rats on a high sodium diet had suppressed levels relative to controls. Changes in dietary sodium did not affect inner zone/medullary VIP content. Administration of ACTH caused a decrease in irVIP levels in the capsular/zona glomerulosa portion of the adrenal gland but had no effect on the inner zone/medulla. Analysis of mRNA encoding VIP revealed a large increase in expression of VIP in the sodium-deplete group compared with the control, with no change in VIP expression in the sodium-loaded group. ACTH treatment was found to significantly decrease VIP mRNA levels in the capsular portion. Neither ACTH treatment nor changes in sodium intake affected inner zones/medullary VIP message. These data suggest that VIP in the capsule and zona glomerulosa region of the adrenal cortex is regulated in response to the physiological status of the animal, with changes in capsular/zona glomerulosa VIP correlating with changes in zona glomerulosa function.

  5. Efficacy and safety of adrenocorticotropic hormone treatment in glomerular diseases: a systematic review and meta-analysis

    PubMed Central

    Kittanamongkolchai, Wonngarm; Cheungpasitporn, Wisit; Zand, Ladan

    2016-01-01

    Background There is growing evidence that adrenocorticotropic hormone (ACTH) may be effective in treating various forms of glomerular diseases. However, the efficacy of treatment and frequency of adverse effects associated with the use of ACTH in glomerular diseases are unknown. A systematic review and meta-analysis of the literature was performed. Methods A literature search was performed using Medline, Embase, Google Scholar and the Cochrane Database of Systematic Reviews from inception through 18 July 2015. Studies assessing the efficacy and safety of ACTH treatment in adults with glomerular diseases were included. Results Of the 343 identified citations, 18 evaluated the drug efficacy and 12 evaluated the adverse effects. The most common glomerular diseases were membranous nephropathy (MN), primary focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). The overall rate of complete remission in MN was 80% at 0–6 months, 69% at >6–12 months, 90% at >12–24 months and 95% beyond 24 months of follow-up. Fifty percent of primary FSGS and MCD patients treated with ACTH were in remission at 6 months, but the relapse rate was high after ACTH discontinuation (17%). Evidence of ACTH efficacy for other glomerular diseases was scarce. Edema was the most commonly reported adverse effect {incidence rate [IR] 0.10 [95% confidence interval (CI) 0.04–0.18]} followed by insomnia [IR 0.08 (95% CI 0.03–0.15)]. The dropout rate due to adverse events was 7%, mostly due to edema and weight gain. Conclusions ACTH is a well-tolerated therapy and is most promising when treating patients with MN. There may be a potential role for ACTH in patients with MCD and FSGS, but data are lacking. PMID:27274822

  6. Dephosphorylation/inactivation of tyrosine hydroxylase at the median eminence of the hypothalamus is required for suckling-induced prolactin and adrenocorticotrop hormone responses.

    PubMed

    Fehér, Pálma; Oláh, Márk; Bodnár, Ibolya; Hechtl, Dániel; Bácskay, Ildikó; Juhász, Béla; Nagy, György M; Vecsernyés, Miklós

    2010-04-29

    We have recently found that dopamine (DA) released from terminals of the hypothalamic neuroendocrine dopamine (NEDA) neurons plays a role not only in prolactin (PRL), but also in adrenocorticotrop hormone (ACTH) secretion, without having any influence on alpha-melanocyte-stimulating hormone (alpha-MSH) release in lactating dams. The aim of our present studies was to further investigate this DAerg regulation of ACTH using consecutively applied physiological stimulation (suckling) and pharmacological inhibition of the rate-limiting enzyme of DA synthesis (tyrosine hydroxylase, TH) by alpha-methyl-p-tyrosine (alpha-MpT) that acutely affect secretion of these pituitary hormones during lactation. Following 4h separation period, two experimental groups were formed. In the first group, lactating rats were assembled with their litters for 60 min prior to alpha-MpT. In the second group, the alpha-MpT was injected first and 60 min later suckling stimulus was applied. Plasma samples were taken in every 15 min during the 90 min experimental period. Concentrations of plasma PRL, ACTH and alpha-MSH were measured by specific RIAs. Both stimuli applied in the first sequence, significantly elevated plasma PRL and ACTH levels in separated lactating dams, without having any effect on alpha-MSH secretion. Suckling applied in the first sequence was able to block the alpha-MpT-induced elevation of ACTH secretion, while PRL response was also significantly attenuated. alpha-MpT pretreatment prevented both PRL and ACTH responses to suckling stimulus. Investigating the dephosphorylation/inactivation of TH in the arcuate nucleus-ME (TIDA) regions, no pTH-immunoreactive perikarya or terminals can be found in continuously suckled dams. In contrast, after 4h separation of the mothers from their litters, pTH-immunoreactivity can be clearly visualized in the external zone of ME. In alpha-MpT pretreated mothers following 4h separation no pTH positive terminals are visible. No changes in the TH

  7. Pre-emptive oral dexmethorphan reduces fentanyl-induced cough as well as immediate postoperative adrenocortico-tropic hormone and growth hormone level

    PubMed Central

    Mukherjee, Avik; Kundu, Asim Kumar; Ghosh, Sudipta; Choudhuri, Rajat; Bandopadhyay, Bijoy Kumar; Dasgupta, Sugata

    2011-01-01

    Background: Fentanyl-induced cough is not always benign and brief and can be remarkably troublesome, spasmodic, and explosive. Dextromethorphan, an opioid derivative with an antitussive action, may be effective in reducing the fentanyl-induced cough. Dextromethorphan, a N-methyl D aspartate receptor antagonist, may have some effect on diminishing the stress response to surgery. This study was undertaken to determine whether preoperative dextromethorphan could effectively attenuate its incidence, severity, and effect on postoperative stress hormone levels. Materials and Methods: Three hundred and twenty patients of American society of anesthesiologists I-II, aged 18–60 years, undergoing elective laparoscopic cholecystectomy or appendicectomy were randomly allocated into two groups (Group C, control; Group D, dextromethorphan) consisting of 160 patients each. Patients in Group D received dextromethorphan 40 mg orally and in Group C received placebo tablets 60 minutes before induction of anesthesia. The incidence of cough was recorded for 1 minute after fentanyl injection and graded as none (0), mild (1–2), moderate (3–5), and severe (>5 cough). Blood samples were collected for estimation of stress hormone levels before surgery and again at 1 hour and 24 hours postoperatively and compared. The appearance of adverse reactions was recorded. Results: The incidence of reflex fentanyl cough was lower in dextromethorphan group (3.9%) in comparison to placebo (59.8%). Five patients developed mild and one moderate cough in the dextromethorphan group. In the control group, 31 patients developed mild, 29 moderate, and 32 severe cough. The stress hormones were significantly higher at 1 hour and 24 hours postoperatively in both groups in comparison to its preoperative values. However, at 1 hour postoperatively, adrenocorticotropic hormone, epinephrine, and growth hormone values were significantly low in the dextromethorphan group (61.5 ± 21.1 pg/ ml, 142.1 ± 11.2 pg

  8. ACTH (Adrenocorticotropic Hormone) Test

    MedlinePlus

    ... disease , also called primary adrenal insufficiency: decreased cortisol production due to adrenal gland damage Secondary adrenal insufficiency: decreased cortisol production because of pituitary dysfunction Hypopituitarism : pituitary dysfunction or ...

  9. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier.

    PubMed

    Shimura, T; Tabata, S; Ohnishi, T; Terasaki, T; Tsuji, A

    1991-08-01

    The binding and internalization of a novel adrenocorticotropic hormone (ACTH) analog having a potent neuromodulating effect, ebiratide (H-Met(O2)-Glu-His-Phe-D-Lys-Phe-NH(CH2)8NH2), by isolated bovine brain capillaries, were examined. Metabolism of [5-125I-His]ebiratide occurred during a 30-min incubation with bovine brain capillaries at 37 degrees C. In the presence of 20 mM EDTA, added to inhibit this metabolism, the medium, after 30 min of incubation, contained 82.3 +/- 0.5% of the unchanged ebiratide. The total binding and acid-resistant binding of [125I]ebiratide increased with time and reached an equilibrium at about 15 min. The total binding and acid-resistant binding at 30 min (as the cell/medium ratios corrected with [14C]sucrose) were 13.07 +/- 0.86 and 5.00 +/- 0.18 microliters/mg of protein, respectively. The acid-resistant binding showed significant dependence on temperature and medium osmolarity. The [125I]ebiratide binding was significantly inhibited by dansylcadaverine, an endocytosis inhibitor. The saturable acid-resistant binding was obtained by the addition of unlabeled ebiratide (100 nM-5 mM), and the maximal internalization capacity (Bmax) at 30 min was 144.2 pmol/mg of protein, with the half-saturation constant (KD) of 62.1 microM. The nonsaturable acid-resistant binding [cell/medium ratio in the presence of the unlabeled compound (1 mM or more)] was 2.2 microliters/mg of protein. The acid-resistant binding was significantly inhibited by human ACTH, poly-L-lysine, protamine and E-2078, a basic peptide, but was not inhibited by poly-L-glutamate, insulin or transferrin. These results demonstrate that ebiratide is transported through the blood-brain barrier via a basic peptide-specific absorptive-mediated endocytosis.

  10. Growth Hormone-Releasing Hormone in Diabetes

    PubMed Central

    Fridlyand, Leonid E.; Tamarina, Natalia A.; Schally, Andrew V.; Philipson, Louis H.

    2016-01-01

    Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition, GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in different peripheral tissues and cell types, including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications. PMID:27777568

  11. Efficacy of single serum cortisol reading obtained between 9 AM and 10 AM as an index of adrenal function in children treated with glucocorticoids or synthetic adrenocorticotropic hormone.

    PubMed

    Goto, Masahiro; Shibata, Nao; Hasegawa, Yukihiro

    2016-07-01

    To find a simple method to screen for iatrogenic childhood adrenal insufficiency, we retrospectively examined the results of CRH stimulation tests performed 212 times on 111 subjects (68 males; age at commencement of initial treatment ranged 0.0-19.8 yr; median age, 5.8 yr). Before the commencement of this study, 97 subjects had been treated with glucocorticoids and 14 subjects with West syndrome had been treated with synthetic adrenocorticotropic hormone. Duration of the primary treatment ranged from 15 to 2150 days. CRH stimulation tests were conducted between 09:00 AM and 10:00 AM and peak cortisol values less than 15 µg/dL were considered indicative of adrenal insufficiency. The receiver operating characteristic curve showed that the optimal basal serum cortisol cut-off values when screening for adrenal suppression ranged from 5.35 to 5.80 µg/dL depending on the primary disease. All subjects having a serum cortisol value of less than 2.3 µg/dL had insufficient adrenal function while all subjects having greater than 11 µg/dL had intact adrenal function. We concluded that single serum cortisol values obtained between 09:00 AM and 10:00 AM had the potential to serve as an index of adrenal function in children treated with glucocorticoids or synthetic adrenocorticotropic hormone. PMID:27507908

  12. Efficacy of single serum cortisol reading obtained between 9 AM and 10 AM as an index of adrenal function in children treated with glucocorticoids or synthetic adrenocorticotropic hormone

    PubMed Central

    Goto, Masahiro; Shibata, Nao; Hasegawa, Yukihiro

    2016-01-01

    Abstract. To find a simple method to screen for iatrogenic childhood adrenal insufficiency, we retrospectively examined the results of CRH stimulation tests performed 212 times on 111 subjects (68 males; age at commencement of initial treatment ranged 0.0–19.8 yr; median age, 5.8 yr). Before the commencement of this study, 97 subjects had been treated with glucocorticoids and 14 subjects with West syndrome had been treated with synthetic adrenocorticotropic hormone. Duration of the primary treatment ranged from 15 to 2150 days. CRH stimulation tests were conducted between 09:00 AM and 10:00 AM and peak cortisol values less than 15 µg/dL were considered indicative of adrenal insufficiency. The receiver operating characteristic curve showed that the optimal basal serum cortisol cut-off values when screening for adrenal suppression ranged from 5.35 to 5.80 µg/dL depending on the primary disease. All subjects having a serum cortisol value of less than 2.3 µg/dL had insufficient adrenal function while all subjects having greater than 11 µg/dL had intact adrenal function. We concluded that single serum cortisol values obtained between 09:00 AM and 10:00 AM had the potential to serve as an index of adrenal function in children treated with glucocorticoids or synthetic adrenocorticotropic hormone. PMID:27507908

  13. Effects of benzyl glucoside and chlorogenic acid from Prunus mume on adrenocorticotropic hormone (ACTH) and catecholamine levels in plasma of experimental menopausal model rats.

    PubMed

    Ina, Hiroji; Yamada, Kenji; Matsumoto, Kosai; Miyazaki, Toshio

    2004-01-01

    To investigate the effectiveness of benzyl beta-D-glucopyranoside (BG) and chlorogenic acid (CA), the constituents of the fruit of Prunus mume, for relieving tension in experimental menopausal model rats (M-rats) caused by ether stress, the effects of BG and CA on adrenocorticotropic hormone (ACTH) and catecholamine (adrenaline, noradrenaline, and dopamine) levels were examined in the plasma of M-rats. Caffeic acid, quinic acid, and rosmarinic acid, which are compounds structurally related to CA, were also examined. BG obviously recovered catecholamine levels decreased by ether stress and increased dopamine to high levels. On the other hand, CA significantly decreased the ACTH level increased by ether stress and showed the greatest effect of all compounds. These results suggest that BG and CA may contribute to relieving the tension in M-rats caused by ether stress.

  14. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    SciTech Connect

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A. )

    1988-07-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery.

  15. Inhibition of Ubiquitin-specific Peptidase 8 Suppresses Adrenocorticotropic Hormone Production and Tumorous Corticotroph Cell Growth in AtT20 Cells

    PubMed Central

    Jian, Fang-Fang; Li, Yun-Feng; Chen, Yu-Fan; Jiang, Hong; Chen, Xiao; Zheng, Li-Li; Zhao, Yao; Wang, Wei-Qing; Ning, Guang; Bian, Liu-Guan; Sun, Qing-Fang

    2016-01-01

    Background: Two recent whole-exome sequencing researches identifying somatic mutations in the ubiquitin-specific protease 8 (USP8) gene in pituitary corticotroph adenomas provide exciting advances in this field. These mutations drive increased epidermal growth factor receptor (EGFR) signaling and promote adrenocorticotropic hormone (ACTH) production. This study was to investigate whether the inhibition of USP8 activity could be a strategy for the treatment of Cushing's disease (CD). Methods: The anticancer effect of USP8 inhibitor was determined by testing cell viability, colony formation, apoptosis, and ACTH secretion. The immunoblotting and quantitative reverse transcription polymerase chain reaction were conducted to explore the signaling pathway by USP8 inhibition. Results: Inhibition of USP8-induced degradation of receptor tyrosine kinases including EGFR, EGFR-2 (ERBB2), and Met leading to a suppression of AtT20 cell growth and ACTH secretion. Moreover, treatment with USP8 inhibitor markedly induced AtT20 cells apoptosis. Conclusions: Inhibition of USP8 activity could be an effective strategy for CD. It might provide a novel pharmacological approach for the treatment of CD. PMID:27569239

  16. Seasonal and sex differences in responsiveness to adrenocorticotropic hormone contribute to stress response plasticity in red-sided garter snakes (Thamnophis sirtalis parietalis).

    PubMed

    Dayger, Catherine A; Lutterschmidt, Deborah I

    2016-04-01

    As in many vertebrates, hormonal responses to stress vary seasonally in red-sided garter snakes (Thamnophis sirtalis parietalis). For example, males generally exhibit reduced glucocorticoid responses to a standard stressor during the spring mating season. We asked whether variation in adrenal sensitivity to adrenocorticotropic hormone (ACTH) explains why glucocorticoid responses to capture stress vary with sex, season and body condition in red-sided garter snakes. We measured glucocorticoids at 0, 1 and 4 h after injection with ACTH (0.1 IU g(-1)body mass) or vehicle in males and females during the spring mating season and autumn pre-hibernation period. Because elevated glucocorticoids can influence sex steroids, we also examined androgen and estradiol responses to ACTH. ACTH treatment increased glucocorticoids in both sexes and seasons. Spring-collected males had a smaller integrated glucocorticoid response to ACTH than autumn-collected males. The integrated glucocorticoid response to ACTH differed with sex during the spring, with males having a smaller glucocorticoid response than females. Although integrated glucocorticoid responses to ACTH did not vary with body condition, we observed an interaction among season, sex and body condition. In males, ACTH treatment did not alter androgen levels in either season, but androgen levels decreased during the sampling period. Similar to previous studies, plasma estradiol was low or undetectable during the spring and autumn, and therefore any effect of ACTH treatment on estradiol could not be determined. These data provide support for a mechanism that partly explains how the hypothalamus-pituitary-adrenal (HPA) axis integrates information about season, sex and body condition: namely, variation in adrenal responsiveness to ACTH. PMID:26896543

  17. Blood plasma collected after adrenocorticotropic hormone administration during the preovulatory period in the sow negatively affects in vitro fertilization by disturbing spermatozoa function.

    PubMed

    González, R; Kumaresan, A; Bergqvist, A S; Sjunnesson, Y C B

    2015-04-15

    Successful fertilization is essential for reproduction and might be negatively affected by stressful events, which could alter the environment where fertilization occurs. The aim of the study was to determine whether an altered hormonal profile in blood plasma caused by adrenocorticotropic hormone (ACTH) administration could affect in vitro fertilization in the pig model. In experiment 1, gametes were exposed for 24 hours to plasma from ACTH-treated, non-ACTH-treated sows, or medium with BSA. Fertilization, cleavage, and blastocyst rates were lower in the ACTH group compared with the no ACTH or BSA control groups (P < 0.01). In experiment 2, the exposure of matured oocytes for 1 hour before fertilization to the same treatments did not have an impact on their ability to undergo fertilization or on embryo development. In experiment 3, spermatozoa were incubated for 0, 1, 4, and 24 hours under the same conditions. There was no effect of treatment on sperm viability. The percentage of acrosome-reacted spermatozoa remained higher in the ACTH group compared with the non-ACTH-treated group through the incubation period (P < 0.001). Protein tyrosine phosphorylation (PTP) patterns were also affected by treatment (P < 0.001). The presence of an atypical PTP pattern was higher in the ACTH group at all the analyzed time points compared with the BSA and no ACTH groups (P < 0.001). In conclusion, this altered environment may not affect oocyte competence but might affect the sperm fertilizing ability through alterations in the acrosome reaction and correct sequence of PTP patterns.

  18. Evaluation of Basal Serum Adrenocorticotropic Hormone and Cortisol Levels and Their Relationship with Nonalcoholic Fatty Liver Disease in Male Patients with Idiopathic Hypogonadotropic Hypogonadism

    PubMed Central

    Wang, Wen-Bo; She, Fei; Xie, Li-Fang; Yan, Wen-Hua; Ouyang, Jin-Zhi; Wang, Bao-An; Ma, Hang-Yun; Zang, Li; Mu, Yi-Ming

    2016-01-01

    Background: Prolonged gonadal hormone deficiency in patients with idiopathic hypogonadotropic hypogonadism (IHH) may produce adverse effects on the endocrine homeostasis and metabolism. This study aimed to compare basal serum adrenocorticotropic hormone (ACTH) and cortisol levels between male IHH patients and healthy controls. Moreover, this study compared the basal hypothalamic-pituitary-adrenal (HPA) axis in patients with and without nonalcoholic fatty liver disease (NAFLD), and also evaluated the relationship between basal HPA axis and NAFLD in male IHH patients. Methods: This was a retrospective case-control study involving 75 Chinese male IHH patients (mean age 21.4 ± 3.8 years, range 17–30 years) and 135 healthy controls after matching for gender and age. All subjects underwent physical examination and blood testing for serum testosterone, luteinizing hormone, follicle-stimulating hormone, ACTH, and cortisol and biochemical tests. Results: Higher basal serum ACTH levels (8.25 ± 3.78 pmol/L vs. 6.97 ± 2.81 pmol/L) and lower cortisol levels (366.70 ± 142.48 nmol/L vs. 452.82 ± 141.53 nmol/L) were observed in male IHH patients than healthy subjects (all P <0.05). IHH patients also showed higher metabolism parameters and higher prevalence rate of NAFLD (34.9% vs. 4.4%) than the controls (all P < 0.05). Basal serum ACTH (9.91 ± 4.98 pmol/L vs. 7.60 ± 2.96 pmol/L) and dehydroepiandrosterone sulfate (2123.7 ± 925.8 μg/L vs. 1417.1 ± 498.4 μg/L) levels were significantly higher in IHH patients with NAFLD than those without NAFLD (all P < 0.05). We also found that basal serum ACTH levels were positively correlated with NAFLD (r = 0.289, P <0.05) and triglyceride levels (r = 0.268, P < 0.05) in male IHH patients. Furthermore, NAFLD was independently associated with ACTH levels in male IHH patients by multiple linear regression analysis. Conclusions: The male IHH patients showed higher basal serum ACTH levels and lower cortisol levels than matched healthy

  19. Repeated administrations of adrenocorticotropic hormone during late gestation in pigs: maternal cortisol response and effects on fetal HPA axis and brain neurotransmitter systems.

    PubMed

    Otten, W; Kanitz, E; Tuchscherer, M; Brüssow, K-P; Nürnberg, G

    2008-02-01

    The present study examined the effects of repeated adrenocorticotropic hormone (ACTH) administrations to sows during late gestation on hypothalamic-pituitary-adrenocortical (HPA) axis and brain neurotransmitter systems in their fetuses. ACTH (100 IU per animal, Synacthen Depot, n=6) or saline (n=5) was administered intramuscularly to sows every 2nd day from gestational day (GD) 85 to GD 101. Blood samples were taken from sows repeatedly within 12h after ACTH application on GD 85 and GD 101. On GD 105, fetuses were recovered under general anaesthesia for the collection of blood and brain samples. Plasma cortisol concentrations in sows increased significantly within 2h after ACTH application and returned to control levels after 10h post-application, showing a similar response at the beginning and at the end of the 16-day stimulation period. On GD 101, a significant increase of plasma glucose and insulin concentrations was found in sows after administration of ACTH and after a following feeding time. Number and body weight of fetuses were not affected by the maternal ACTH treatment. Cortisol concentrations in the umbilical vein were significantly decreased in fetuses from ACTH sows and a similar trend was observed in the umbilical artery and in the vena cava cranialis. Glucocorticoid receptor (GR) binding in hippocampus and hypothalamus did not differ between treatments. However, in hippocampus, serotonergic activity was increased in fetuses from ACTH-treated mothers as shown by significantly elevated 5-hydroxytryptamine (5-HT) levels. In conclusion, repeated administrations of ACTH during late gestation resulted in a reproducible cortisol response of sows and reduced cortisol concentrations in the fetal umbilical vein after the treatment period. Although the number of sows used in this experiment was low and differences between treatments were limited these findings indicate that excessive glucocorticoid exposure during gestation alters serotonergic activity in

  20. Opposite regulation of thrombospondin-1 and corticotropin-induced secreted protein/thrombospondin-2 expression by adrenocorticotropic hormone in adrenocortical cells.

    PubMed

    Lafeuillade, B; Pellerin, S; Keramidas, M; Danik, M; Chambaz, E M; Feige, J J

    1996-04-01

    Corticotropin-induced secreted protein (CISP) is a trimeric glycoprotein secreted by primary cultures of bovine adrenortical cells in response to adrenocorticotropic hormone (ACTH). This protein was recently purified in our laboratory, and its N-terminal amino-acid sequence revealed a significant similarity with thrombospondin-2 (TSP2). We report here the nucleotide sequence of a 386 bp RT-PCR fragment specific for CISP. The deduced protein sequence shares 84% identity with the N-terminal portion of mature human TSP2, suggesting that CISP is its bovine counterpart. Northern analysis of adrenocortical cell RNA using the above cDNA fragment as a probe revealed a 6.0 kb CISP/TSP2 mRNA whose abundance was increased nearly fivefold following a 24 h cell treatment with 10(-7) M ACTH. Under the same conditions, the expression of TSP1 mRNA was reduced by tenfold. The protein levels of TSP1 and CISP/TSP2 varied accordingly with their respective mRNA levels, as shown by immunoprecipitation and immunofluorescence experiments. Taken together, these data show that ACTH induces a dramatic shift in the pattern of adrenocortical cell thrombospondin expression from TSP1 to CISP/TSP2. This observation suggests that these two members of the thrombospondin family exert distinct biological functions in the adrenal cortex. This hypothesis is further supported by the observation that anti-CISP antibodies inhibit the maintenance of the morphological changes of bovine adrenocortical cells induced by ACTH, whereas anti-TSP1 antibodies do not. PMID:8698834

  1. Sources of variation in plasma corticosterone and dehydroepiandrosterone in the male northern cardinal (Cardinalis cardinalis): I. Seasonal patterns and effects of stress and adrenocorticotropic hormone.

    PubMed

    Fokidis, H Bobby

    2016-09-01

    The secretion of steroids from the adrenal gland is a classic endocrine response to perturbations that can affect homeostasis. During an acute stress response, glucocorticoids (GC), such as corticosterone (CORT), prepare the metabolic physiology and cognitive abilities of an animal in a manner that promotes survival during changing conditions. Although GC functions during stress are well established, much less is understood concerning how adrenal androgens, namely dehydroepiandrosterone (DHEA) are influenced by stress. I conducted three field studies (one experimental and two descriptive) aimed at identifying how both CORT and DHEA secretion in free-living male northern cardinals (Cardinalis cardinalis), vary during acute stress; across different circulations (brachial vs. jugular); in response to ACTH challenge; and during the annual cycle. As predicted, restraint stress increased plasma CORT, but unexpectedly DHEA levels decreased, but the latter effect was only seen for blood sampled from the jugular vein, and not the brachial. The difference in DHEA between circulations may result from increased neural uptake of DHEA during stress. Injection with exogenous adrenocorticotropic hormone (ACTH) increased CORT concentrations, but failed to alter DHEA levels, thus suggesting ACTH is not a direct regulator of DHEA. Monthly field sampling revealed distinct seasonal patterns to both initial and restraint stress CORT and DHEA levels with distinct differences in the steroid milieu between breeding and non-breeding seasons. These data suggest that the CORT response to stress remains relatively consistent, but DHEA secretion is largely independent of the response by CORT. Although CORT functions have been well-studied in wild animals, little research exists for the role of DHEA and their variable relationship sets the stage for future experimental research addressing steroid stress responses. PMID:27255363

  2. Luteinizing hormone (LH)-releasing hormone agonist reduces serum adrenal androgen levels in prostate cancer patients: implications for the effect of LH on the adrenal glands.

    PubMed

    Nishii, Masahiro; Nomura, Masashi; Sekine, Yoshitaka; Koike, Hidekazu; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Oyama, Tetsunari; Suzuki, Kazuhiro

    2012-01-01

    Recently, adrenal androgens have been targeted as key hormones for the development of castration-resistant prostate cancer therapeutics. Although circulating adrenal androgens originate mainly from the adrenal glands, the testes also supply about 10%. Although widely used in androgen deprivation medical castration therapy, the effect of luteinizing hormone-releasing hormone (LH-RH) agonist on adrenal androgens has not been fully studied. In this study, changes in testicular and adrenal androgen levels were measured and compared to adrenocorticotropic hormone levels. To assess the possible role of LH in the adrenal glands, immunohistochemical studies of the LH receptor in normal adrenal glands were performed. Forty-seven patients with localized or locally progressive prostate cancer were treated with LH-RH agonist with radiotherapy. Six months after initiation of treatment, testosterone, dihydrotestosterone, and estradiol levels were decreased by 90%-95%, and dehydroepiandrosterone-sulfate, dehydroepiandrosterone, and androstenedione levels were significantly decreased by 26%-40%. The suppressive effect of LH-RH agonist at 12 months was maintained. Adrenocorticotropic hormone levels showed an increasing trend at 6 months and a significant increase at 12 months. LH receptors were positively stained in the cortex cells of the reticular layer of the adrenal glands. The long-term LH-RH agonist treatment reduced adrenal-originated adrenal androgens. LH receptors in the adrenal cortex cells of the reticular layer might account for the underlying mechanism of reduced adrenal androgens.

  3. In-vivo blood-brain barrier transport of a novel adrenocorticotropic hormone analogue, ebiratide, demonstrated by brain microdialysis and capillary depletion methods.

    PubMed

    Shimura, T; Tabata, S; Terasaki, T; Deguchi, Y; Tsuji, A

    1992-07-01

    The transport of ebiratide, a novel adrenocorticotropic hormone (ACTH) analogue, [H-Met-(O2)-Glu-His-Phe-D-Lys-Phe-NH(CH2)8-NH2], through the blood-brain barrier was directly demonstrated in-vivo. [125I]Ebiratide (16.9 MBq mL-1) or [14C]sucrose (29.2 MBq mL-1) known to be restrictively transported through the blood-brain barrier was infused into the rat internal carotid artery at a flow rate of 50 microL min-1 for 10 min, and after 15 min infusion the distribution volume of each compound in the brain parenchyma was determined by the capillary depletion method. The distribution volume of [125I]ebiratide was 167.8 +/- 62.2 microL (g brain)-1, which was about seven times higher than that of [14C]sucrose (24.9 +/- 4.0 microL g brain)-1, indicating the uptake of ebiratide into brain parenchymal cells. During the infusion into the internal carotid artery, brain microdialysis was simultaneously performed to directly collect the brain interstitial fluid as the dialysate. Radioactivity was detected in the dialysate during the [125I]ebiratide infusion and HPLC analysis of the dialysate revealed that the intact ebiratide accounted for greater than or equal to 80% total radioactivity. The concentrations of [125I]ebiratide and [14C]sucrose in the brain interstitial fluid were estimated based on the relative recovery obtained in the in-vitro recovery study. The brain interstitial fluid/internal carotid arterial blood concentration ratio for [125I]ebiratide was determined to be 1.47 x 10(-2) +/- 0.17 x 10(-2) and was about eight times higher than that for [14C]sucrose (1.92 x 10(-3) +/- 0.36 x 10(-3)), indicating significant transport of ebiratide to the brain interstitial fluid.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. High-end normal adrenocorticotropic hormone and cortisol levels are associated with specific cardiovascular risk factors in pediatric obesity: a cross-sectional study

    PubMed Central

    2013-01-01

    Background The hypothalamic-pituitary-adrenal (HPA) axis, and in particular cortisol, has been reported to be involved in obesity-associated metabolic disturbances in adults and in selected populations of adolescents. The aim of this study was to investigate the association between morning adrenocorticotropic hormone (ACTH) and cortisol levels and cardiovascular risk factors in overweight or obese Caucasian children and adolescents. Methods This cross-sectional study of 450 obese children and adolescents (aged 4 to 18 years) was performed in a tertiary referral center. ACTH, cortisol, cardiovascular risk factors (fasting and post-challenge glucose, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglycerides, and hypertension) and insulin resistance were evaluated. All analyses were corrected for confounding factors (sex, age, puberty, body mass index), and odds ratios were determined. Results ACTH and cortisol levels were positively associated with systolic and diastolic blood pressure, triglycerides, fasting glucose and insulin resistance. Cortisol, but not ACTH, was also positively associated with LDL-cholesterol. When adjusted for confounding factors, an association between ACTH and 2 h post-oral glucose tolerance test glucose was revealed. After stratification according to cardiovascular risk factors and adjustment for possible confounding factors, ACTH levels were significantly higher in subjects with triglycerides ≥90th percentile (P <0.02) and impaired fasting glucose or glucose tolerance (P <0.001). Higher cortisol levels were found in subjects with blood pressure ≥95th percentile and LDL-cholesterol ≥90th percentile. Overall, the highest tertiles of ACTH (>5.92 pmol/l) and cortisol (>383.5 nmol/l) although within the normal range were associated with increases in cardiovascular risk factors in this population. Conclusions In obese children and adolescents, high morning ACTH and cortisol levels are associated

  5. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development.

    PubMed

    Kiezun, J; Kaminska, B; Jankowski, J; Dusza, L

    2015-01-01

    Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity.

  6. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development.

    PubMed

    Kiezun, J; Kaminska, B; Jankowski, J; Dusza, L

    2015-01-01

    Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity. PMID:25776460

  7. Ectopic acromegaly due to growth hormone releasing hormone.

    PubMed

    Ghazi, Ali A; Amirbaigloo, Alireza; Dezfooli, Azizollah Abbasi; Saadat, Navid; Ghazi, Siavash; Pourafkari, Marina; Tirgari, Farrokh; Dhall, Dheepti; Bannykh, Serguei; Melmed, Shlomo; Cooper, Odelia

    2013-04-01

    Acromegaly secondary to extra-pituitary tumors secreting growth hormone releasing hormone (GHRH) is rarely encountered. We review the literature on ectopic acromegaly and present the index report of ectopic acromegaly secondary to GHRH secretion from a mediastinal paraganglioma. Clinical and pathological manifestations and therapeutic management of 99 patients with ectopic acromegaly are reviewed. Acromegaly secondary to ectopic GHRH secretion is usually caused by a neuroendocrine tumor in the lung and pancreas. We report an additional cause of ectopic acromegaly from a mediastinal paraganglioma. Diagnostic criteria of ectopic GHRH syndrome include biochemical and pathologic tumoral confirmation of GHRH secretion and expression. Management of ectopic acromegaly consists of surgical resection of the primary tumor and biochemical normalization, with possible adjuvant use of somatostatin analogs. The review demonstrates that there are several tumor types, including paragangliomas which may secrete GHRH, leading to acromegaly. Clinical and laboratory manifestations of the syndrome and challenges in diagnosis and management of these rarely encountered patients require early diagnosis and appropriate treatment to prevent long-term morbidity and mortality with ectopic acromegaly. PMID:22983831

  8. Evaluation of gonadotropin responses to synthetic gonadotropin-releasing hormone in girls with idiopathic hypopituitarism.

    PubMed

    Foster, C M; Hopwood, N J; Beitins, I Z; Mendes, T M; Kletter, G B; Kelch, R P

    1992-10-01

    We hypothesized that prepubertal girls with gonadotropin deficiency would produce less follicle-stimulating hormone (FSH) in response to synthetic gonadotropin-releasing hormone (GnRH) than would gonadotropin-sufficient children. To test this hypothesis, we performed 103 GnRH tests serially in 21 children who had idiopathic hypopituitarism with growth hormone deficiency. We tried to predict whether puberty would occur in the 17 girls with bone ages of 8 years or less. Of these 17 girls, 4 failed to have spontaneous secondary sexual characteristics by age 16 1/2 years, and 12 had spontaneous complete pubertal development. One girl had incomplete pubertal maturation with partial gonadotropin deficiency; her results were combined with those of the girls who had no spontaneous pubertal development. With increasing bone age, the girls with complete pubertal development had a decrease in the increment of FSH released in response to GnRH, although basal gonadotropin concentrations did not change. For GnRH tests performed at bone ages of 8 years or less, basal luteinizing hormone (LH) values did not differ between girls with complete puberty and those with absent or incomplete puberty. However, basal FSH and the incremental response of LH and FSH to GnRH were greater in those with complete puberty. Only two girls with prepubertal bone ages at the time of testing, who subsequently had complete puberty, had incremental FSH responses to GnRH that were less than 5 IU/L. Individual incremental LH responses to GnRH did not discriminate well between groups. None of the girls with adrenocorticotropic hormone deficiency, either originally or subsequently, had spontaneous puberty, but 4 of 12 girls with thyrotropin deficiency, either originally or subsequently, had complete puberty. We conclude that a significant increase in GnRH-stimulated FSH suggests that spontaneous pubertal development will occur in girls with idiopathic hypopituitarism. However, a low FSH response to GnRH may

  9. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    PubMed

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor.

  10. Localization of the genes encoding the melanocortin-2 (Adrenocorticotropic hormone) and melanocortin-3 receptors to chromosomes 18p11. 2 and 20q13. 2-q13. 3 by fluorescence in situ hybridization

    SciTech Connect

    Gantz, I.; Tashiro, Takao; Konda, Yoshitaka; Shimoto, Yoshimasa; Miwa, Hiroto; Munzert, G.; Barcroft, C.; Glover, T.; Yamada, Tadataka )

    1993-10-01

    Adrenocorticotropic hormone (ACTH) and [alpha]-, [beta]-, and [gamma]-melanocyte-stimulating hormone (MSH) are products of propiomelanocortin post-translational processing. These compounds are collectively labeled as melanocortins (MC). Aside from their established effects on the regulation of the adrenal cortex (ACTH) and melanocytes ([alpha]-MSH), the melanocortins have been implicated in a broad array of physiological events. Melanocortins mediate their effects through cell membrane receptors belonging to the superfamily of seven transmembrane G-protein-linked receptors. Using the technique of polymerase chain reaction with primers based on conserved areas of the seven transmembrane G-protein-linked receptor family, the authors recently isolated an [open quotes]orphan[close quotes] subfamily of this receptor group. Within the past year, two of these receptors were identified as specific for [alpha]-MSH (MC1) and ACTH (MC2). They have recently described a third melanocortin receptor (MC3) that appears to recognize the core heptapeptide sequence of melanocortins with equal potency and efficacy and identified its presence in the brain, placenta, and gut. Using the FISH technique, they localized the ACTH and the melanocortin-3 receptors to chromosome loci 18p11.2 and 20q12.3-q13.2, respectively. 19 refs., 1 fig.

  11. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons.

    PubMed

    Gouty-Colomer, Laurie-Anne; Méry, Pierre-François; Storme, Emilie; Gavois, Elodie; Robinson, Iain C; Guérineau, Nathalie C; Mollard, Patrice; Desarménien, Michel G

    2010-12-01

    Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion. Here, we describe the unique postnatal development of the electrophysiological properties of GHRH neurons and their regulation by gonadal hormones. Using GHRH-eGFP mice, we demonstrate that already at birth, GHRH neurons receive numerous synaptic inputs and fire large and fast action potentials (APs), consistent with effective GH secretion. Concomitant with the GH secretion peak occurring at puberty, these neurons display modifications of synaptic input properties, decrease in AP duration, and increase in a transient voltage-dependant potassium current. Furthermore, the modulation of both the AP duration and voltage-dependent potassium current are specifically controlled by gonadal hormones because gonadectomy prevented the maturation of these active properties and hormonal treatment restored it. Thus, GHRH neurons undergo specific developmental modulations of their electrical properties over the first six postnatal weeks, in accordance with hormonal demand. Our results highlight the importance of the interaction between the somatotrope and gonadotrope axes during the establishment of adapted neuroendocrine functions.

  12. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    PubMed Central

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-01-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  13. Interactions of growth hormone secretagogues and growth hormone-releasing hormone/somatostatin.

    PubMed

    Tannenbaum, G S; Bowers, C Y

    2001-02-01

    The class of novel synthetic compounds termed growth hormone secretagogues (GHSs) act in the hypothalamus through, as yet, unknown pathways. We performed physiologic and histochemical studies to further understand how the GHS system interacts with the well-established somatostatin (SRIF)/growth hormone-releasing hormone (GHRH) neuroendocrine system for regulating pulsatile GH secretion. Comparison of the GH-releasing activities of the hexapeptide growth hormone-releasing peptide-6 (GHRP-6) and GHRH administered intravenously to conscious adult male rats showed that the pattern of GH responsiveness to GHRP-6 was markedly time-dependent, similar to that observed with GHRH. Immunoneutralization of endogenous SRIF reversed the blunted GH response to GHRP-6 at trough times, suggesting that GHRP-6 neither disrupts nor inhibits the cyclical release of endogenous hypothalamic SRIF. By striking contrast, passive immunization with anti-GHRH serum virtually obliterated the GH responses to GHRP-6, irrespective of the time of administration. These findings suggest that the GHSs do not act by altering SRIF release but, rather, stimulate GH release via GHRH-dependent pathways. Our dual chromogenic and autoradiographic in situ hybridization experiments revealed that a subpopulation of GHRH mRNA-containing neurons in the arcuate (Arc) nucleus and ventromedial nucleus (VMN) of the hypothalamus expressed the GHS receptor (GHS-R) gene. These results provide strong anatomic evidence that GHSs may directly stimulate GHRH release into hypophyseal portal blood, and thereby influence GH secretion, through interaction with the GHS-R on GHRH- containing neurons. Altogether, these findings support the notion that an additional neuroendocrine pathway may exist to regulate pulsatile GH secretion, possibly through the influence of the newly discovered GHS natural peptide, ghrelin. PMID:11322498

  14. Antifertility effects of luteinizing hormone-releasing hormone (LHRH) agonists.

    PubMed

    Labrie, F; Bélanger, A; Kelly, P A; Séguin, C; Cusan, L; Lefebvre, F A; Reeves, J J; Lemay, A; Faure, N; Gourdeau, Y; Raynaud, J P

    1981-01-01

    This paper reviews the mechanisms responsible for the antifertility effects of luteinizing hormone-releasing hormone (LHRH) agonists. Large doses of the LHRH agonist LHRH-EA lead to a marked reduction of testicular and secondary sex organ weight, LH receptor levels, and plasma testosterone concentration. A marked inhibition of basal testicular and testosterone concentrations is obtained after daily administration of the LHRH agonists at doses greater than 10 ng. Treatment with low doses of the LHRH agonist can lead to an increased steroidogenic response to LH. Treatment with low doses of LHRH agonists could stimulate Leydig cell function while high doses are history. A study of the effects of longterm treatment with an LHRH agonsist on spermatogenesis revelaed that testis, prostate, and seminal vesicle weight decreased and plasma LH and FSH levels increased over 12 weeks. Comparison of the effects of increasing doses of LHRH agonist on testicular and ovarian gonadotropin receptors and steroidogenesis in male rats indicates that single or repeated administration of LHRH agonists can lead to loss of testicular LH receptors in the absence of the pituitary gland. The loss of ovarian gonadotropin receptors in female rats is also investigated. Antifertility effects of LHRH ethylamide are accompanied by a marked loss of LH/hCG and FSH receptors in ovarian tissue. The injection of 1,3, or 10 ng LHRH-EA in intact rats has no significant effect on ovarian LH receptor levels. A study of the direct action of LHRH agonists at the ovarian level demonstrates a close relationship between the binding activity of a large series of LHRH agonists and antagonists in the anterior pituitary gland and the ovary. Inhibition of testicular steroidogenesis in man by treatment with a potent LHRH agonist is also demonstrated. Intranasal administration of LHRH ethylamide has luteolytic effects in normal women. Daily administration of LHRH-EA inhibited ovulation in all but 2 of 89 treatment

  15. Luteinizing hormone-releasing hormone induces thyroxine release together with testosterone in the neotenic axolotl Ambystoma mexicanum.

    PubMed

    Jacobs, G F; Kühn, E R

    1988-09-01

    In male neotenic axolotls Ambystoma mexicanum plasma concentrations of thyroxine (T4) and testosterone were increased following intravenous injection of 10 micrograms luteinizing hormone-releasing hormone. A dose of 50 micrograms influenced only plasma T4 levels. This observation suggests for the first time that a hypothalamic hormone is capable of stimulating the thyroidal axis in the neotenic axolotl.

  16. Metabolism of growth hormone releasing peptides.

    PubMed

    Thomas, Andreas; Delahaut, Philippe; Krug, Oliver; Schänzer, Wilhelm; Thevis, Mario

    2012-12-01

    New, potentially performance enhancing compounds have frequently been introduced to licit and illicit markets and rapidly distributed via worldwide operating Internet platforms. Developing fast analytical strategies to follow these new trends is one the most challenging issues for modern doping control analysis. Even if reference compounds for the active drugs are readily obtained, their unknown metabolism complicates effective testing strategies. Recently, a new class of small C-terminally amidated peptides comprising four to seven amino acid residues received considerable attention of sports drug testing authorities due to their ability to stimulate growth hormone release from the pituitary. The most promising candidates are the growth hormone releasing peptide (GHRP)-1, -2, -4, -5, -6, hexarelin, alexamorelin, and ipamorelin. With the exemption of GHRP-2, the entity of these peptides represents nonapproved pharmaceuticals; however, via Internet providers, all compounds are readily available. To date, only limited information on the metabolism of these substances is available and merely one metabolite for GHRP-2 is established. Therefore, a comprehensive in vivo (po and iv administration in rats) and in vitro (with human serum and recombinant amidase) study was performed in order to generate information on urinary metabolites potentially useful for routine doping controls. The urine samples from the in vivo experiments were purified by mixed-mode cation-exchange solid-phase extraction and analyzed by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution/high-accuracy mass spectrometry. Combining the high resolution power of a benchtop Orbitrap mass analyzer for the first metabolite screening and the speed of a quadrupole/time-of-flight (Q-TOF) instrument for identification, urinary metabolites were screened by means of a sensitive full scan analysis and subsequently confirmed by high-accuracy product ion scan experiments. Two

  17. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    SciTech Connect

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; Changelian, Armen; Laws, Edward R.; Santagata, Sandro; Agar, Nathalie Y. R.; Van Berkel, Gary J.

    2015-06-18

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.

  18. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    DOE PAGES

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; Changelian, Armen; Laws, Edward R.; Santagata, Sandro; Agar, Nathalie Y. R.; Van Berkel, Gary J.

    2015-06-18

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less

  19. The biology of gonadotropin-releasing hormone and its analogs.

    PubMed

    Glode, L M

    1986-01-01

    Gonadotropin-releasing hormone (GnRH) is one of the hormones involved in the complex hypothalamic-pituitary-gonadal axis which regulates the release of testosterone from the testes or estrogen from the ovaries. The development of GnRH analogs has helped elucidate the mechanism of action of the natural hormone, and provided possible new ways to treat hormonally related conditions including hormone-dependent cancers, precocious puberty, and endometriosis. The effectiveness of GnRH agonists in clinical use lies in their ability, with long-term administration, to suppress sex-hormone production. GnRH antagonists may eventually replace agonists because they are able to reduce hormone levels without the initial, temporary rise caused by agonists.

  20. Glucoreceptors located in different areas mediate the hypoglycemia-induced release of growth hormone, prolactin, and adrenocorticotropin in man.

    PubMed

    Vigas, M; Tatár, P; Jurcovicová, J; Jezová, D

    1990-03-01

    In young male volunteers, the changes in growth hormone (GH), prolactin (PRL), and adrenocorticotropic hormone (ACTH) release in response to insulin injection combined with the infusion of saline, glucose, and fructose were evaluated. Glucose infusion in a dose which prevented insulin hypoglycemia completely abolished endocrine responses. Infusion of fructose, which is known not to cross the blood-brain barrier (BBB), did not influence the GH release during hypoglycemia; however, it inhibited PRL secretion. The ACTH response was slightly attenuated and delayed, while the hypoglycemia-induced rise in cortisol levels was not modified by fructose infusion. These data indicate that the glucoreceptors mediating the signals for a complete counterregulatory neuroendocrine response are not located in a single brain structure. Stimuli for GH release are produced in areas of the central nervous system protected by the BBB, while those for PRL release are presumably present in structures not protected by the BBB. Glucoreceptors triggering ACTH release are located both inside and outside the BBB. PMID:2157998

  1. Sex steroids modulate luteinizing hormone-releasing hormone secretion in a cholinergic cell line from the basal forebrain.

    PubMed

    Martínez-Morales, J R; López-Coviella, I; Hernández-Jiménez, J G; Reyes, R; Bello, A R; Hernández, G; Blusztajn, J K; Alonso, R

    2001-01-01

    The function of a particular neuronal population is in part determined by its neurotransmitter phenotype. We have found that a neuronal-derived septal cell line (SN56), known for its cholinergic properties, also synthesizes and releases luteinizing hormone-releasing hormone. In addition, these cells express the messenger RNAs encoding estrogen and progesterone receptors. The activation of these receptors by their respective ligands cooperatively modulates the depolarization-induced release of luteinizing hormone-releasing hormone in these cells. We have also found that a number of septal neurons in postnatal (1-week-old) mice are immunoreactive to both choline acetyltransferase and luteinizing hormone-releasing hormone. These results indicate that both neurotransmitters, acetylcholine and luteinizing hormone-releasing hormone, may co-exist in septal neurons of the CNS and that they could be modulated by gonadal hormones, and suggest that luteinizing hormone-releasing hormone could be involved in some of the actions of sex steroids on cholinergic neurotransmission.

  2. Luteinizing hormone release and androgen production of avian hybrids in response to luteinizing hormone releasing hormone injection.

    PubMed

    Mathis, G F; Burke, W H; McDougald, L R

    1983-04-01

    The levels of luteinizing hormone (LH) and androgens were measured in sterile avian hybrids. Guinea fowl-chicken and peafowl-guinea fowl hybrids were bled before and after injection with LH- releasing hormone (LHRH). The preinjection LH levels for the guinea fowl-chicken hybrids were below or at the very lower limit of the assay sensitivity and the peafowl-guinea fowl hybrids averaged 1.3 ng/ml. Within 10 min after LHRH injection, LH had increased dramatically in both hybrids and then began to slowly decline. Androgen levels in the guinea fowl-chicken hybrids increased from 16.2 pg/ml to 95.2 pg/ml and continued to increase, reaching 287 pg/ml at the last bleeding 60 min after injection.

  3. Luteinizing hormone release and androgen production of avian hybrids in response to luteinizing hormone releasing hormone injection.

    PubMed

    Mathis, G F; Burke, W H; McDougald, L R

    1983-04-01

    The levels of luteinizing hormone (LH) and androgens were measured in sterile avian hybrids. Guinea fowl-chicken and peafowl-guinea fowl hybrids were bled before and after injection with LH- releasing hormone (LHRH). The preinjection LH levels for the guinea fowl-chicken hybrids were below or at the very lower limit of the assay sensitivity and the peafowl-guinea fowl hybrids averaged 1.3 ng/ml. Within 10 min after LHRH injection, LH had increased dramatically in both hybrids and then began to slowly decline. Androgen levels in the guinea fowl-chicken hybrids increased from 16.2 pg/ml to 95.2 pg/ml and continued to increase, reaching 287 pg/ml at the last bleeding 60 min after injection. PMID:6346309

  4. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats.

    PubMed

    Jin, Jin; Hashizume, Tsutomu

    2015-06-01

    The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH-releasing response to an intravenous (i.v.) injection of GH-releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L-dopa (1 mg/kg BW) in male and female goats under a 16-h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L-dopa treatments completely suppressed GH-releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)-releasing response to an i.v. injection of thyrotropin-releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L-dopa significantly reduced TRH-induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.

  5. Sellar gangliocytoma with adrenocorticotropic and prolactin adenoma.

    PubMed

    Kissiedu, Juliana O; Prayson, Richard A

    2016-02-01

    We report a case of a 60-year-old man who presented with weight gain, headaches, dizziness, erectile dysfunction and decreased libido. He was found to have elevated adrenocorticotropic hormone (ACTH) and prolactin serum levels. The imaging studies revealed a 1.4 cm sella/suprasellar mass which was compressing the optic chiasm. Histologic slides of the lesion showed a pituitary adenoma, marked by a proliferation of biphenotypic appearing cells, associated with a gangliocytoma, and marked by a proliferation of atypical appearing neuronal cells arranged against a glial-appearing background. Pituitary adenoma-gangliocytomas are benign combination tumors that rarely occur in the sellar region. Adenomas in this setting are sometimes functional, and rare patients with mixed adenomas (adenomas secreting more than one hormone) have been reported. To our knowledge, there has been only one other report of a combined ACTH and prolactin-producing adenoma with gangliocytoma, reported in a patient who also had acromegaly. In our patient, the immunohistochemical stains demonstrated that the bulk of the adenoma cells stained with prolactin antibody, and scattered clusters of cells within the adenoma stained positively for ACTH. The adenoma did not stain with antibodies to any of the other anterior pituitary hormones. Postoperatively, the elevated prolactin and ACTH levels returned to normal levels and there was no evidence of residual tumor. Adequate sampling and immunohistochemistry are important in rendering a correct diagnosis and in identifying the hormone status of mixed adenoma-gangliocytomas.

  6. Sellar gangliocytoma with adrenocorticotropic and prolactin adenoma.

    PubMed

    Kissiedu, Juliana O; Prayson, Richard A

    2016-02-01

    We report a case of a 60-year-old man who presented with weight gain, headaches, dizziness, erectile dysfunction and decreased libido. He was found to have elevated adrenocorticotropic hormone (ACTH) and prolactin serum levels. The imaging studies revealed a 1.4 cm sella/suprasellar mass which was compressing the optic chiasm. Histologic slides of the lesion showed a pituitary adenoma, marked by a proliferation of biphenotypic appearing cells, associated with a gangliocytoma, and marked by a proliferation of atypical appearing neuronal cells arranged against a glial-appearing background. Pituitary adenoma-gangliocytomas are benign combination tumors that rarely occur in the sellar region. Adenomas in this setting are sometimes functional, and rare patients with mixed adenomas (adenomas secreting more than one hormone) have been reported. To our knowledge, there has been only one other report of a combined ACTH and prolactin-producing adenoma with gangliocytoma, reported in a patient who also had acromegaly. In our patient, the immunohistochemical stains demonstrated that the bulk of the adenoma cells stained with prolactin antibody, and scattered clusters of cells within the adenoma stained positively for ACTH. The adenoma did not stain with antibodies to any of the other anterior pituitary hormones. Postoperatively, the elevated prolactin and ACTH levels returned to normal levels and there was no evidence of residual tumor. Adequate sampling and immunohistochemistry are important in rendering a correct diagnosis and in identifying the hormone status of mixed adenoma-gangliocytomas. PMID:26314658

  7. Controlled release of a luteinizing hormone-releasing hormone analogue from poly(d,l-lactide-co-glycolide) microspheres.

    PubMed

    Sanders, L M; Kent, J S; McRae, G I; Vickery, B H; Tice, T R; Lewis, D H

    1984-09-01

    The performance in vivo of nafarelin acetate, a potent analogue of luteinizing hormone-releasing hormone, microencapsulated in poly(d,l-lactide-co-glycolide), was evaluated. The influence of polymer composition and molecular weight on the estrus-suppressing activity of the microspheres in female rats was determined. Compound release was shown to be effected by polymer erosion rather than by diffusion. A triphasic release of compound was observed, which was adjusted by altering the critical parameters of the polymer. A mechanism for the release of the compound was proposed. The primary release phase was compound loss by diffusion from the surface of the microspheres. The secondary phase of subeffective rates of release occurred concomitantly with polymer hydrolysis and a decrease in its molecular weight, although it remained insoluble. Dissolution of low-molecular weight fragments and erosion of the bulk of the polymer then initiated the tertiary phase of release of compound. PMID:6238157

  8. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  9. Luteinizing hormone and follicle stimulating hormone-releasing hormone test in patients with hypothalamic-pituitary-gonadal dysfunction.

    PubMed

    Mortimer, C H; Besser, G M; McNeilly, A S; Marshall, J C; Harsoulis, P; Tunbridge, W M; Gomez-Pan, A; Hall, R

    1973-10-13

    A standard intravenous 100 mug luteinizing hormone/follicle stimulating hormone-releasing hormone (LH/FSH-RH) test was used to assess the pituitary gonadotrophin responses in 155 patients with a variety of diseases of the hypothalamic-pituitary-gonadal axis. In all but nine patients there was an increase in circulating levels of either LH or FSH in response to the releasing hormone though 137 (88%) were clinically hypogonadal. It was not possible with this test to distinguish between hypothalamic and pituitary causes of hypogonadotrophic hypogonadism, since a variety of LH and FSH responses emerged within the disease groups. However, primary gonadal failure characteristically resulted in exaggerated gonadotrophin response. The potential therapeutic use of the gonadotrophin releasing decapeptide is suggested in certain patients with hypogonadotrophic hypogonadism.

  10. Ectopic Adrenocorticotropic Hormone and Corticotropin-Releasing Hormone Co-Secreting Tumors in Children and Adolescents Causing Cushing Syndrome: A Diagnostic Dilemma and How to Solve It

    PubMed Central

    Karageorgiadis, Alexander S.; Papadakis, Georgios Z.; Biro, Juliana; Keil, Meg F.; Lyssikatos, Charalampos; Quezado, Martha M.; Merino, Maria; Schrump, David S.; Kebebew, Electron; Patronas, Nicholas J.; Hunter, Maya K.; Alwazeer, Mouhammad R.; Karaviti, Lefkothea P.; Balazs, Andrea E.; Stratakis, Constantine A.

    2015-01-01

    Context: Ectopic ACTH/CRH syndrome is a rare cause of Cushing syndrome (CS), especially in children. The localization, work-up, and management of ACTH/CRH-secreting tumors are discussed. Setting: A retrospective study was conducted of patients under 21 years of age evaluated at the National Institutes of Health (NIH) for CS and diagnosed with ectopic ACTH/CRH-secreting tumors during the period 2009–2014. Patients: Seven patients with ectopic ACTH/CRH CS are included in this study with a median age 13.6 years (range 1–21), and 3 are female. Measurements: Clinical, biochemical, radiological features, treatment, and histological findings are described. Results: Seven patients were found to have ACTH/CRH-secreting tumors, all with neuroendocrine features. The site of the primary lesion varied: pancreas (3), thymus (2), liver (1), right lower pulmonary lobe (1). Patients underwent biochemical evaluation for CS, including diurnal serum cortisol and ACTH levels, urinary free cortisol levels (UFC), and CRH stimulation tests. All patients underwent radiological investigations including MRI, CT, and PET scan; imaging with octreotide and 68 gallium DOTATATE scans were performed in individual cases. Five patients underwent inferior petrosal sinus sampling; 4 patients had sampling for ACTH and CRH levels from additional sites. Three patients underwent trans-sphenoidal surgery (TSS), and 3 patients required bilateral adrenalectomy. Three patients (43%) died due to metastatic disease, demonstrating the high mortality rate. One of the unique findings in these seven patients is that in each case, their neuroendocrine tumors were ultimately proven to be co-secreting ACTH and CRH. This explains the enigmatic presentation, in which 3 patients initially thought to have Cushing's disease (CD) with corresponding pituitary hyperplasia underwent TSS prior to the correct localization of the causative tumor. Conclusions: Ectopic ACTH/CRH co-secreting tumors are extremely rare in children and adolescents. The diagnosis of this condition is frequently missed and is sometimes confused with CD due to the effect of CRH on the pituitary. PMID:25291050

  11. Luteinizing Hormone-Releasing Hormone Distribution in the Anterior Hypothalamus of the Female Rats

    PubMed Central

    Castañeyra-Ruiz, Leandro; González-Marrero, Ibrahim; Castañeyra-Ruiz, Agustín; González-Toledo, Juan M.; Castañeyra-Ruiz, María; de Paz-Carmona, Héctor; Castañeyra-Perdomo, Agustín; Carmona-Calero, Emilia M.

    2013-01-01

    Luteinizing hormone-releasing hormone (LHRH) neurons and fibers are located in the anteroventral hypothalamus, specifically in the preoptic medial area and the organum vasculosum of the lamina terminalis. Most luteinizing hormone-releasing hormone neurons project to the median eminence where they are secreted in the pituitary portal system in order to control the release of gonadotropin. The aim of this study is to provide, using immunohistochemistry and female brain rats, a new description of the luteinizing hormone-releasing hormone fibers and neuron localization in the anterior hypothalamus. The greatest amount of the LHRH immunoreactive material was found in the organum vasculosum of the lamina terminalis that is located around the anterior region of the third ventricle. The intensity of the reaction of LHRH immunoreactive material decreases from cephalic to caudal localization; therefore, the greatest immunoreaction is in the organum vasculosum of the lamina terminalis, followed by the dorsomedial preoptic area, the ventromedial preoptic area, and finally the ventrolateral medial preoptic area, and in fibers surrounding the suprachiasmatic nucleus and subependymal layer on the floor of the third ventricle where the least amount immunoreactive material is found. PMID:25938107

  12. Gonadotropin-releasing hormone analogs: Understanding advantages and limitations.

    PubMed

    Kumar, Pratap; Sharma, Alok

    2014-07-01

    Pituitary stimulation with pulsatile gonadotropin-releasing hormone (GnRH) analogs induces both follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Pituitary gonadotropin secretions are blocked upon desensitization when a continuous GnRH stimulus is provided by means of an agonist or when the pituitary receptors are occupied with a competitive antagonist. GnRH antagonists were not available originally; therefore, prolonged daily injections of agonist with its desensitizing effect were used. Today, single- and multiple-dose injectable antagonists are also available to block the LH surge and thus to cause desensitization. This review provides an overview of the use of GnRH analogs which is potent therapeutic agents that are considerably useful in a variety of clinical indications from the past to the future with some limitations. These indications include management of endometriosis, uterine leiomyomas, hirsutism, dysfunctional uterine bleeding, premenstrual syndrome, assisted reproduction, and some hormone-dependent tumours, other than ovulation induction.

  13. A priming effect of gonadotrophin releasing hormone on luteinizing hormone secretion in the boar.

    PubMed Central

    Liptrap, R M; Doble, E

    1982-01-01

    The possibility that gonadotrophin releasing hormone (GnRH) can prime the anterior pituitary to a second dose of GnRH resulting in a greatly enhanced secretion of luteinizing hormone was examined in three adult boars. Four experiments were conducted: saline injection followed one hour later by a second saline injection (control); 1 microgram of synthetic GnRH injection followed one hour later by saline injection; saline injection followed one hour later by GnRH injection; GnRH injection followed one hour later by a second GnRH injection. Immunoassayable levels of plasma luteinizing hormone resulting from GnRH plus GnRH treatment were significantly greater than the sum obtained when values from GnRH plus saline and saline plus GnRH were added. Testosterone values in plasma reached maximal concentrations about 60 minutes after peak values of luteinizing hormone were achieved. The results suggest that the first dose of GnRH, in addition to stimulating release of luteinizing hormone can also sensitize the gonadotrophs to a second dose of GnRH causing a significantly greater release of luteinizing hormone. PMID:6751507

  14. Algorithmic complexity of growth hormone release in humans.

    PubMed

    Prank, K; Wagner, M; Brabant, G

    1997-01-01

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation.

  15. Algorithmic complexity of growth hormone release in humans

    SciTech Connect

    Prank, K.; Wagner, M.; Brabant, G.

    1996-12-31

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation. 17 refs., 1 fig., 2 tabs.

  16. Alterations in hypothalamus-pituitary-adrenal/thyroid axes and gonadotropin-releasing hormone in the patients with primary insomnia: a clinical research.

    PubMed

    Xia, Lan; Chen, Gui-Hai; Li, Zhi-Hua; Jiang, Song; Shen, Jianhua

    2013-01-01

    The hypothalamus-pituitary-target gland axis is thought to be linked with insomnia, yet there has been a lack of further systematic studies to prove this. This study included 30 patients with primary insomnia (PI), 30 patients with depression-comorbid insomnia (DCI), and 30 healthy controls for exploring the alterations in the hypothalamus-pituitary-adrenal/thyroid axes' hormones and gonadotropin-releasing hormone (GnRH). The Pittsburgh Sleep Quality Index was used to evaluate sleep quality in all subjects. The serum concentrations of corticotrophin-releasing hormone (CRH), thyrotrophin-releasing hormone (TRH), GnRH, adrenocorticotropic hormone (ACTH), thyroid stimulating hormone (TSH), cortisol, total triiodothyronine (TT3), and total thyroxine (TT4) in the morning (between 0730 h and 0800 h) were detected. Compared to the controls, all hormonal levels were elevated in the insomniacs, except ACTH and TSH in the PI group. Compared to the DCI patients, the PI patients had higher levels of CRH, cortisol, TT3, and TT4 but lower levels of TRH, GnRH, and ACTH. Spearman's correlation analysis indicated that CRH, TRH, GnRH, TSH, cortisol, TT4, and TT3 were positively correlated with the severity of insomnia. The linear regression analysis showed that only CRH, GnRH, cortisol, and TT3 were affected by the PSQI scores among all subjects, and only CRH was included in the regression model by the "stepwise" method in the insomnia patients. Our results indicated that PI patients may have over-activity of the hypothalamus-pituitary-adrenal/thyroid axes and an elevated level of GnRH in the morning.

  17. GH responses to growth hormone releasing factor in depression.

    PubMed

    Thomas, R; Beer, R; Harris, B; John, R; Scanlon, M

    1989-01-01

    The growth hormone (GH), thyrotrophin (TSH) and prolactin response to growth hormone releasing factor (GRF) was investigated in 18 patients suffering from major depression with melancholia and in 18 age- and sex-matched normal controls. There was no significant difference in the GH response to GRF stimulation between the patients and controls and in neither subject group was there a demonstrable TSH or prolactin response to GRF. These findings indicate that the pathophysiology underlying the blunted GH response to pharmacological challenge, demonstrated in other studies, must lie at a suprapituitary level.

  18. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone.

    PubMed

    Seeburg, P H; Adelman, J P

    Human reproduction is controlled by the hypothalamic-pituitary-gonadal axis laid down early in fetal development. Luteinizing hormone releasing hormone (LHRH), also termed gonadotropin releasing hormone (GnRH), is a decapeptide and is a key molecule in this control circuit. It is produced by hypothalamic neurones, secreted in a pulsatile manner into the capillary plexus of the median eminence and effects the release of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary. The peptide may have further functions, including behavioural ones, as LHRH or LHRH-like immunoreactivity has been found in gonadal tissue, placenta and the central nervous system, and exogenously administered LHRH is shown to affect behaviour. To investigate the biosynthesis of LHRH, we have now isolated cloned genomic and cDNA sequences encoding the precursor form of LHRH, the existence of which had been suggested from chromatographic studies of hypothalamic and placental extracts. These DNA sequences code for a protein of 92 amino acids in which the LHRH decapeptide is preceded by a signal peptide of 23 amino acids and followed by a Gly-Lys-Arg sequence, as expected for enzymatic cleavage of the decapeptide from its precursor and amidation of the carboxy-terminal of LHRH.

  19. Effect of Chlorotriazine Pesticides on Gonadotrophin Releasing Hormone in the Neuronal GT1-7 Cell Line and Hypothalamic Explants

    EPA Science Inventory

    Gonadotrophin releasing hormone (GnRH) stimulates the release of pituitary luteinizing hormone (LH) and follicle stimulating hormone. These pituitary hormones are necessary for normal reproductive function in both males and females. It is well recognized that disruption of nor...

  20. Active immunization to luteinizing hormone releasing hormone to inhibit the induction of mammary tumors in the rat

    SciTech Connect

    Ravdin, P.M.; Jordan, V.C.

    1988-01-01

    Immunization of female rats with a bovine serum albumin-luteinizing hormone releasing hormone conjugate results in suppression of dimethylbenzanthracene mammary tumor incidence. Tumor incidence was 1.3, and 1.29 tumors per rat in bovine serum albumin alone (n = 10) and unimmunized (n = 18) control groups, but no tumors were found in the bovine serum albumin-luteinizing hormone releasing hormone conjugate immunized animals (n = 10). In a second experiment immunization with bovine serum albumin-luteinizing hormone releasing hormone conjugates reduced tumor incidence to 0.3 tumors per rat (n = 10) from the 1.2 tumors per animal seen in the control animals (n = 10) immunized with bovine serum albumin alone. Bovine serum albumin-luteinizing hormone immunization caused the production of anti-LHRH antibodies, an interruption of estrous cycles, lowered serum estradiol and progesterone levels, and atrophy of the ovaries and uteri. Immunization BSA-hormone conjugates is a novel anti-tumor strategy.

  1. Hormone release from isolated nerve endings of the rat neurohypophysis.

    PubMed Central

    Cazalis, M; Dayanithi, G; Nordmann, J J

    1987-01-01

    1. Isolated neurosecretory nerve endings were prepared from rat neurohypophyses. The amount of vasopressin (AVP) and oxytocin released was measured by radioimmunoassay. 2. The amount of hormone release under resting conditions was not affected by external calcium (Ca2+o). Secretion decreased by ca. 50% when external sodium (Na+o) was replaced by choline or sucrose. 3. Ouabain did not modify the basal AVP release. 4. The Na+ ionophore monensin increased the release of AVP only in the presence of Na+o. This increase was maintained during prolonged exposure to the ionophore and occurred in the presence of Ca2+o only. 5. In the presence of Ca2+o, the amount of evoked hormone release was dependent on the external K+ concentration. Half-maximal activation was achieved with ca. 40 mM-K+. The K+-induced secretion was potentiated in Na+-free solution. 6. Prolonged 100 mM-K+-induced depolarization in the presence of Ca2+o gave rise to a large increase in hormone secretion which decreased with time (t1/2 = 2.5 min). The release could be reactivated after permeabilization of the nerve terminals in the presence of micromolar concentrations of Ca2+. 7. A stepwise paradigm in which Ko+ is incrementally increased to 25, 50, 75 and then 100 mM released more AVP than a prolonged exposure to 100 mM-K+. 8. Veratridine increased the amount of AVP released. This effect was considerably reduced in the absence of Nao+ and abolished in the presence of D600. 9. The depolarization-induced AVP release was blocked by different Ca2+-antagonists. Their effectiveness was nitrendipine = nicardipine greater than Cd2+ greater than Gd3+ greater than Co2+ = Mn2+. 10. The dihydropyridine Bay K 8644 potentiated both the basal and the K+-evoked AVP release. Its maximal effect was obtained with 25-50 mM-Ko+. 11. In conclusion, the isolated neurohypophysial terminals which have both Na+ and Ca2+ channels and release AVP and oxytocin upon depolarization might be an excellent system to study further the

  2. Growth hormone, prolactin and thyrotrophin responses to thyrotrophin-releasing hormone in diabetic patients.

    PubMed Central

    Harrower, A. D.

    1980-01-01

    Growth hormone (GH), prolactin (PRL) and thyrotrophin (TSH) responses to thyrotrophin-releasing hormone (TRH) were studied in 15 insulin-dependent diabetic patients. Basal plasma GH levels were raised above 5 mu./l in 6 patients and following the injection of TRH there was a significant rise in plasma GH levels in 9. The mean rise in plasma GH from basal to peak values was significant in the group as a whole (P < 0.01). Basal PRL and TSH levels were normal and rose normally in response to TRH. GH release may be qualitatively abnormal in some diabetics and any such loss of specificity of GH-releasing mechanisms would further contribute to the raised GH levels found in many diabetics which would be of importance if GH is a factor in the aetiology of diabetic microangiopathy. PMID:6777767

  3. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells.

    PubMed

    Grey, Caleb L; Chang, John P

    2013-06-01

    Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells.

  4. Neuronal influence on hormone release from anglerfish islet cells.

    PubMed

    Milgram, S L; McDonald, J K; Noe, B D

    1991-10-01

    Pancreatic islets in anglerfish (AF) are macroscopic collections of nearly pure endocrine cells that are densely innervated. Immunohistochemical staining for neurotransmitter biosynthetic enzymes revealed noradrenergic and cholinergic innervation of AF islets. An in vitro preparation of perifused dispersed AF islet cells was developed to study nutrient and neural control of islet hormone secretion. Glucose stimulated insulin and somatostatin-14 (SS-14) secretion in a dose-dependent manner, and 16.7 mM glucose inhibited glucagon secretion. In 2 mM glucose, norepinephrine and isoproterenol stimulated glucagon and SS-14 release. Isoproterenol stimulated insulin secretion, and norepinephrine stimulated or inhibited insulin release, depending on the concentration. Clonidine potently inhibited glucose-stimulated insulin secretion but stimulated glucagon release. Methacholine, a muscarinic cholinergic agonist, stimulated insulin, glucagon, and SS-14 release. The control of AF hormone release by neurotransmitter agonists in vitro was similar to that in higher vertebrate species. Therefore we used this tissue preparation to study postsynaptic interactions between glucose and neurotransmitters in islets. PMID:1681734

  5. Responses of ram lambs to active immunization against testosterone and luteinizing hormone-releasing hormone.

    PubMed

    Schanbacher, B D

    1982-03-01

    Active immunization of young ram lambs against testosterone and luteinizing hormone-releasing hormone (LHRH) was shown to block the growth attributes characteristic of intact ram lambs. Testosterone and LHRH-immunized lambs grew at a slower rate and converted feed to live weight gain less efficiently than albumin-immunized controls. Lambs immunized against testosterone and LHRH had high antibody titers for their respective antigens. Moreover, testosterone-immunized lambs had high serum concentrations of luteinizing hormone (LH) and testosterone, whereas LHRH-immunized lambs had low to nondetectable serum concentrations of these hormones. Release of LH and testosterone following the intravenous administration of LHRH (250 ng) was absent in LHRH-immunized lambs, but quantitatively similar for intact and albumin-immunized control lambs. Testosterone-immunized lambs responded as did conventional castrates with a large LH release, but testosterone concentrations were unchanged. These findings are discussed relative to the integrity of the hypothalamic-pituitary-testicular endocrine axis and the importance of gonadotropin support for normal testicular development. These data show that LHRH immunoneutralization effectively retards testicular development and produces a castration effect in young ram lambs.

  6. Central administration of chicken growth hormone-releasing hormone decreases food intake in chicks.

    PubMed

    Tachibana, Tetsuya; Sugimoto, Ikue; Ogino, Madoka; Khan, Md Sakirul Islam; Masuda, Keiko; Ukena, Kazuyoshi; Wang, Yajun

    2015-02-01

    Growth hormone-releasing hormone (GHRH) is well known as a stimulator of growth hormone (GH) secretion. GHRH not only stimulates GH release but also modifies feeding behavior and energy homeostasis in rodents. In chickens (Gallus gallus domesticus), on the other hand, two types of GHRH, namely, chicken GHRH (cGHRH) and cGHRH-like peptide (cGHRH-LP), have been identified. The purpose of the present study was to investigate the effect of central injection of cGHRH and cGHRH-LP on feeding behavior in chicks. Intracerebroventricular (ICV) injection of both cGHRH and cGHRH-LP (0.04 to 1 nmol) significantly decreased food intake without any abnormal behavior in chicks. Furthermore, the feeding-inhibitory effect was not abolished by co-injection of the antagonist for pituitary adenylate cyclase-activating polypeptide (PACAP) or corticotropin-releasing hormone (CRH) receptors, suggesting that the anorexigenic effect of cGHRH and cGHRH-LP might not be related to the PACAP and CRH systems in the brain of chicks. Finally, 24-h food deprivation increased mRNA expression of cGHRH but not cGHRH-LP in the diencephalon. These results suggest that central cGHRH is related to inhibiting feeding behavior and energy homeostasis in chicks.

  7. A therapeutic response to a single diagnostic dose of luteinising hormone-releasing hormone.

    PubMed

    Distiller, L A; Sagel, J; Polakow, E S; Morley, J E

    1975-01-11

    Luteinising hormone-releasing hormone (LH-RH) administration is a useful provocative test for the evaluation of the hypothalamic-pituitary-gonadal axis. Seven cases with oligomenorrhoea or amenorrhoea are reported, in which a single diagnostic injection of LH-RH produced an apparent therapeutic response. Six patients converted to a regular normal menstrual cycle, and 4 of these had evidence of ovulation. The seventh patient conceived. It is postulated that in some cases of hypothalamic menstrual dysfunction the gonadotrophic imbalance may be corrected by a single intravenous dose of LH-RH.

  8. Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5-HT7 receptors.

    PubMed

    Héry, M; François-Bellan, A M; Héry, F; Deprez, P; Becquet, D

    1997-10-01

    Luteinizing hormone-releasing hormone (LHRH release, which serves as the primary drive to the hypothalamic-pituitary gonadal axis, is controlled by many neuromediators. Serotonin has been implicated in this regulation. However, it is unclear whether the central effect of serotonin on LHRH secretion is exerted directly on LHRH neurosecretory neurons or indirectly via multisynaptic pathways. The present studies were undertaken in order to examine whether LHRH secretion from immortalized LHRH cell lines is directly regulated by serotonin and, if so, to identify the receptor subtype involved. 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A/7 receptor agonist, stimulated LHRH release from GT1-1 cells. This effect was blocked by ritanserin, a 5-HT2/7 receptor antagonist, but not by SDZ-216-525, a 5-HT1A antagonist. Basal LHRH release was not affected by the 5-HT2 agonist DOI. Reverse transcription and polymerase chain reaction technique (RT-PCR) was used in order to identify 5-HT1A and 5-HT7 receptor mRNA in immortalized LHRH cell lines. GT1-1 cells express mRNA for the 5-HT7, but not the 5-HT1A receptor subtypes. These results demonstrate a direct stimulatory effect of serotonin on LHRH release via 5-HT7 receptor.

  9. Stimulation of luteinizing hormone-releasing hormone release from perifused hypothalamic fragments by phospholipase A2.

    PubMed

    Nava, L E; Malacara, J M

    1987-10-01

    LHRH release is dependent on the availability of calcium, and prostaglandin E2 is a potent releaser of LHRH. Therefore, we investigated the role of phospholipase A2 (PLA2) on the release of LHRH from the hypothalamus. Four rat hypothalami were perifused with Krebs-Ringer buffer, and after a 60-min preincubation period, PLA2 was applied during 10 min. The LHRH response was determined by RIA of 10-min fractions collected for the next 60 min. PLA2 induced LHRH release in a dose-related manner at amounts of 2, 10, and 50 U. Omission of Ca++ from the medium using EGTA eliminated the PLA2 effect. Indomethacin treatment increased rather than diminished the PLA2 stimulation. Perifusion with melittin, an activator of PLA2, also increased LHRH release. These results are interpreted as a demonstration that PLA2 has a role in the release of LHRH and that a different route of the cyclooxygenase may be involved besides the well known mediation of prostaglandin E2.

  10. Failure of growth hormone-suppressing agents to affect TSH-releasing hormone- and LH-releasing hormone-induced growth hormone release in acromegaly.

    PubMed

    Nakagawa, K; Obara, T

    1977-01-01

    In patients with acromegaly whose basal plasma GH levels were suppressed with 9 mg/day of dexamethasone for 2 days, TRH-(6 cases) and LHRH-(1 case) induced GH release were unaffected when the responses were compared to the basal levels. Phentolamine infusion, 70 mg in 150 min, or hyperglycemia induced by iv infusion of 700 ml of 50% glucose solution also did not suppress TRH-induced GH release in 2 acromegalic patients whose basal GH levels were lowered with these agents alone. These results seem to indicate that dexamethasone does not affect TRH- or LHRH-induced GH release per se, but affects the basal state which determines the absolute level of response. They also support the concept that TRH and LHRH act directly on pituitary tumor cells to release GH in acromegaly.

  11. In vivo pharmacological evaluation of a lactose-conjugated luteinizing hormone releasing hormone analogue.

    PubMed

    Moradi, Shayli Varasteh; Varamini, Pegah; Steyn, Frederik; Toth, Istvan

    2015-11-10

    In the current study, the efficacy and pharmacokinetic profile of lactose-conjugated luteinizing hormone releasing hormone (LHRH) was examined following oral administration in male rats. A rapid and sensitive liquid chromatography/mass spectrometry technique was developed and applied for measuring the concentration of lactose[Q(1)][w(6)]LHRH (compound 1) in rat plasma in order to allow measurement of pharmacokinetic parameters. LH release was evaluated using a sandwich ELISA. Maximum serum concentration (Cmax = 0.11 μg/ml) was reached at 2h (Tmax) following oral administration of the compound at 10mg/kg. The half-life was determined to be 2.6h. The absolute bioavailability of the orally administered compound was found to be 14%, which was a remarkable improvement compared to zero-to-low oral bioavailability of the native peptide. Compound 1 was effective in stimulating LH release at 20mg/kg after oral administration. The method was validated at a linear range of 0.01-20.0 μg/ml and a correlation coefficient of r(2) ≥ 0.999. The accuracy and precision values showed the reliability and reproducibility of the method for evaluation of the pharmacokinetic parameters. These findings showed that the lactose derivative of LHRH has a therapeutic potential to be further developed as an orally active therapeutics for the treatment of hormone-dependent diseases.

  12. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  13. Multitasking in Gonadotropin-Releasing Hormone Neuron Dendrites.

    PubMed

    Iremonger, Karl J; Herbison, Allan E

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) neurons integrate synaptic information in their dendrites in order to precisely control GnRH secretion and hence fertility. Recent discoveries concerning the structure and function of GnRH neuron dendrites have shed new light on the control of GnRH neuron excitability and GnRH secretion. This work suggests that GnRH neurons have a unique projection to the median eminence that possesses both dendritic and axonal properties. We propose that this 'dendron' projection allows GnRH neurons to multitask and integrate information in ways that would not be possible in a classically envisioned axon projection. PMID:25300776

  14. The thyrotropin releasing hormone stimulation test in alcoholism.

    PubMed

    Pienaar, W P; Roberts, M C; Emsley, R A; Aalbers, C; Taljaard, F J

    1995-09-01

    The mechanism for a blunted thyroid stimulating hormone (TSH) response to thyrotropin releasing hormone (TRH) in alcoholics is not known. We performed a combined TRH and gonadoliberin stimulation test on three well-defined groups of nondepressed alcoholic men. Group A comprised patients with acute withdrawal symptoms (n = 28), group B patients abstinent for 5-8 weeks (n = 29) and group C patients who had been abstinent for > 2 years (n = 16). Twenty-two healthy male volunteers were used for comparison. A blunted TSH response to TRH (delta TSH < 5 microU/l) occurred only in groups A (39%) and B (17%). In group A delta TSH showed a significant negative correlation with the severity of withdrawal symptoms and a significant positive correlation with serum magnesium levels. In group B, patients with a family history of alcoholism had significantly lower delta TSH levels than those without such a family history. Groups did not differ with respect to basal and delta prolactin, and TSH responses were not significantly associated with vitamin deficiency, cortisol levels or free thyroid hormone levels. We conclude that TRH stimulation test blunting appears to be related to factors operating in the withdrawal state and improves with continued abstinence. A possible role of genetic factors and serum magnesium needs to be further explored.

  15. Episodic leptin release is independent of luteinizing hormone secretion.

    PubMed

    Sir-Petermann, T; Maliqueo, M; Palomino, A; Vantman, D; Recabarren, S E; Wildt, L

    1999-11-01

    Several studies suggest that leptin modulates hypothalamic-pituitary-gonadal axis functions. Leptin may stimulate release of gonadotrophin releasing hormone (GnRH) from the hypothalamus and of gonadotrophins from the pituitary. A synchronicity of luteinizing hormone (LH) and leptin pulses has been described in healthy women and in patients with polycystic ovarian syndrome, suggesting that leptin may modulate the episodic secretion of LH. However, it has not been established whether LH regulates the episodic secretion of leptin. To further examine LH-leptin interactions, we studied the episodic fluctuations of circulating LH and leptin in two patients with Kallmann's syndrome (KS) before and on day 7 of pulsatile GnRH administration, and compared these with those observed in the early follicular phase of 10 regularly menstruating women divided into two control groups according to the body mass index of each patient. To assess episodic hormone secretion, blood samples were collected at 10 min intervals for 6 h, before and on day 7 of GnRH administration in KS patients, and during days 3-7 of the follicular phase in normally cycling women. LH and leptin concentrations were measured in all samples. For pulse analysis, the cluster algorithm was used. Before treatment, an apulsatile pattern with no endogenous LH pulsations was observed in both KS patients. However, leptin pulses were assessed in both women. During GnRH administration, pulsatile LH activity was achieved in both patients with pulse characteristics similar to those of the respective control group. Serum leptin concentrations and leptin pulsatile patterns were not modified. These results suggest that circulating leptin is probably not modulated by pulsatile GnRH-LH secretion.

  16. Sociosexual stimuli and gonadotropin-releasing hormone/luteinizing hormone secretion in sheep and goats.

    PubMed

    Hawken, P A R; Martin, G B

    2012-08-01

    Sociosexual stimuli have a profound effect on the physiology of all species. Sheep and goats provide an ideal model to study the impact of sociosexual stimuli on the hypothalamic-pituitary-gonadal axis because we can use the robust changes in the pulsatile secretion of luteinizing hormone as a bioassay of gonadotropin-releasing hormone secretion. We can also correlate these changes with neural activity using the immediate early gene c-fos and in real time using changes in electrical activity in the mediobasal hypothalamus of female goats. In this review, we will update our current understanding of the proven and potential mechanisms and mode of action of the male effect in sheep and goats and then briefly compare our understanding of sociosexual stimuli in ungulate species with the "traditional" definition of a pheromone.

  17. Precocious puberty associated with neurofibromatosis and optic gliomas. Treatment with luteinizing hormone releasing hormone analogue.

    PubMed

    Laue, L; Comite, F; Hench, K; Loriaux, D L; Cutler, G B; Pescovitz, O H

    1985-11-01

    Seven children with central precocious puberty and either neurofibromatosis and/or optic gliomas were referred to the National Institutes of Health, Bethesda, Md, for evaluation and treatment with the long-acting luteinizing hormone releasing hormone analogue (LHRHa) D-Trp6-Pro9-NEt-LHRH. Only six of the seven children chose to receive treatment. Four children presented with neurofibromatosis, three of whom also had optic gliomas; the remaining three children had isolated optic gliomas, without other neurocutaneous stigmas. All had central precocious puberty mediated by activation of the hypothalamic-pituitary-gonadal axis. Six months of LHRHa therapy caused suppression of gonadotropin and sex steroid levels, stabilization or regression of secondary sexual characteristics, and decreases in growth velocity and the rate of bone age maturation. We conclude that LHRHa therapy is effective in the treatment of central precocious puberty secondary to neurofibromatosis and/or optic gliomas.

  18. Regulation of hypothalamic somatostatin and growth hormone releasing hormone mRNA levels by inhibin.

    PubMed

    Carro, E; Señarís, R M; Mallo, F; Diéguez, C

    1999-03-20

    Although it is well established that inhibin plays a major role in the regulation of the hypothalamic-pituitary-gonadal axis, its influence in the regulation of other neuroendocrine functions is still poorly understood. Recent results indicate that inhibin suppresses plasma GH levels, but its site of action is yet unknown. Therefore, in the present work we investigated the effects of inhibin on somatostatin and growth hormone releasing hormone (GHRH) mRNA levels in the hypothalamus by 'in situ' hybridization. We found that inhibin administration (4, 12 and 24 h, i.c.v.) led to an increase in somatostatin mRNA levels in the periventricular nucleus, and to a decrease in GHRH mRNA content in the arcuate nucleus of the hypothalamus. These findings indicate that inhibin regulates the hypothalamic levels of somatostatin and GHRH mRNA.

  19. Highly potent antagonists of luteinizing hormone-releasing hormone free of edematogenic effects.

    PubMed Central

    Bajusz, S; Kovacs, M; Gazdag, M; Bokser, L; Karashima, T; Csernus, V J; Janaky, T; Guoth, J; Schally, A V

    1988-01-01

    To eliminate the undesirable edematogenic effect of the luteinizing hormone-releasing hormone (LH-RH) antagonists containing basic D amino acids at position 6, exemplified by [Ac-D-Phe(pCl)1,2,D-Trp3,D-Arg6,D-Ala10]LH-RH [Phe(pCl) indicates 4-chlorophenylalanine], analogs with D-ureidoalkyl amino acids such as D-citrulline (D-Cit) or D-homocitrulline (D-Hci) at position 6 were synthesized and tested in several systems in vitro and in vivo. HPLC analysis revealed that the overall hydrophobicity of the D-Cit/D-Hci6 analogs was similar to that of the basic D-Arg6 antagonists. In vitro, most of the analogs completely inhibited LH-RH-mediated luteinizing hormone release in perfused rat pituitary cell systems at an antagonist to LH-RH molar ratio of 5:1. In vivo, the most active peptides, [Ac-D-Nal(2)1,D-Phe(pCl)2,D-Trp3,D-Cit6,D-Ala10]LH-RH [Nal(2) indicates 3-(2-naphthyl)alanine] and its D-Hci6 analog, caused 100% inhibition of ovulation in cycling rats in doses of 3 micrograms and suppressed the luteinizing hormone level in ovariectomized female rats for 47 hr when administered at doses of 25 micrograms. Characteristically, these peptides did not exert any edematogenic effects even at 1.5 mg/kg. These properties of the D-Cit/D-Hci6 antagonists may make them useful clinically. PMID:3278323

  20. Suppression of meiosis of male germ cells by an antagonist of luteinizing hormone-releasing hormone.

    PubMed Central

    Szende, B; Redding, T W; Schally, A V

    1990-01-01

    Male nude mice were implanted with osmotic minipumps releasing 50 micrograms of a potent antagonist of luteinizing hormone-releasing hormone (LH-RH) per day [N-Ac-[D-Nal(2)1,D-Phe(pCl)2,D-Pal(3)3,D-Cit6,D-Ala10]LH-RH] (SB-75) [Nal(2), 3-(2-naphthyl)alanine; Phe(pCl), 4-chlorophenylalanine; Pal(3), 3-(3-pyridyl)alanine; Cit, citrulline], or they were treated with s.c. injections of SB-75 (25 micrograms twice a day). Another group of nude mice received an injection of microcapsules of the agonist [D-Trp6]LH-RH liberating 25 micrograms/day. One month after the initiation of treatment, the testicular weights were significantly reduced and the blood testosterone values were at castration levels in all treated groups. Histologically, only the testicles of the mice treated with SB-75 released from minipumps showed a significant decrease of meiosis. The most advanced forms of germ cells were spermatogonia in 26%, spermatocytes in 17%, and round spermatids in 35% of the seminiferous tubules. Only 22% of the tubules contained elongated spermatids. The suppression of meiotic activity by this modern LH-RH antagonist can possibly be used for the development of methods for male contraception and for the protection of germ cells against the damage caused by cytotoxic drugs and x-radiation. Images PMID:2405399

  1. Influence of prostaglandins and thyrotropin releasing hormone (TRH) on hormone secretion and growth in wether lambs.

    PubMed

    Davis, S L; Anfinson, M S; Klindt, J; Ohlson, D L

    1977-06-01

    A series of experiments were conducted in ewes and whether (castrate male) lambs to evaluate the influence of prostaglandins on secretion of anabolic hormones and to determine if repeated injections of prostaglandin (PG) F2alpha would chronically influence the secretion of these hormones and perhaps growth rate as well. A single intravenous injection of PGA1 and PGB1 (100 microgram/kg) exerted no significant (P greater than .10) influence on plasma concentrations of prolactin (PRL), growth hormone (GH) or thyrotropin (TSH) in ewes. PGA1, but not PGB1, stimulated an increase in the plasma concentration of insulin. Infusion of PGF2alpha for 5.5 hr into ewes resulted in increased (P less than .05) plasma concentrations of both GH and ARL while TSH and insulin were not significantly influenced. Prostaglandin F2alpha, when injected subcutaneously into wether lambs (10 mg twice weekly) stimulated (P less than .05) plasma GH concentrations after the first injection, but not after 3 weeks of treatment. Changes in plasma PRL or TSH were not observed consistently in the lambs treated chronically with PGF2alpha or TRH. Prostaglandin F2alpha, in the present studies, and PGE1 in previously reported studies (1-3), has been demonstrated to be stimulatory to the secretion of PRL and GH. In contrast, PGA1 and PGB1, which lack an 11-hydroxyl group, failed to influence the secretion of either PRL or GH. It would, therefore, appear that the 11-hydroxyl group is a structural requirement for prostaglandins to influence the secretion of these two hormones in sheep. Treatment with thyrotropin releasing hormone (TRH), alone or in combination with PGF 2alpha, significantly (P less than .05) increased growth rate (average daily gains) while PGF2alpha did not, despite the fact that both compounds exerted similar effects on plasma GH.

  2. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.

    PubMed

    Messager, Sophie; Chatzidaki, Emmanouella E; Ma, Dan; Hendrick, Alan G; Zahn, Dirk; Dixon, John; Thresher, Rosemary R; Malinge, Isabelle; Lomet, Didier; Carlton, Mark B L; Colledge, William H; Caraty, Alain; Aparicio, Samuel A J R

    2005-02-01

    We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54-/- mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54-/- mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54-/- mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.

  3. Abnormal luteinizing hormone response patterns to synthetic gonadotrophin releasing hormone in patients with polycystic ovarian syndrome.

    PubMed

    Katz, M; Carr, P J

    1976-08-01

    Basal gonadotrophin and sex steroid levels and responses to an intravenous injection of 100 mug gonadotrophin releasing hormone (Gn-RH) have been studied in 15 patients with polycystic ovaries. Mean basal LH concentration was raised and an excessive, exaggerated and prolonged response was observed after Gn-RH treatment, but patients could further be subdivided into two functional groups on the basis of their basal LH values and LH response patterns. Evidence was also produced which suggested a breakdown in the negative feedback mechanism in these patients.

  4. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    SciTech Connect

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  5. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice

    PubMed Central

    Sun, Liou Y; Spong, Adam; Swindell, William R; Fang, Yimin; Hill, Cristal; Huber, Joshua A; Boehm, Jacob D; Westbrook, Reyhan; Salvatori, Roberto; Bartke, Andrzej

    2013-01-01

    We examine the impact of targeted disruption of growth hormone-releasing hormone (GHRH) in mice on longevity and the putative mechanisms of delayed aging. GHRH knockout mice are remarkably long-lived, exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of growth hormone. While these effects overlap with those of caloric restriction, we show that the effects of caloric restriction (CR) and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity. DOI: http://dx.doi.org/10.7554/eLife.01098.001 PMID:24175087

  6. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  7. Molecular mechanisms of gonadotropin-releasing hormone receptor gene regulation.

    PubMed

    Norwitz, E R; Jeong, K H; Chin, W W

    1999-01-01

    GnRH plays a critical role in regulating mammalian reproductive development and function. At the level of the anterior pituitary, GnRH binds to the GnRH receptor (GnRHR) on the cell surface of pituitary gonadotropes. Here, it activates intracellular signal transduction pathways to effect both the synthesis and intermittent release of the gonadotropins LH and FSH. These hormones then enter the systemic circulation to regulate gonadal function, including steroid hormone synthesis and gametogenesis. The response of pituitary gonadotropes to GnRH correlates directly with the concentration of GnRHR on the cell surface, which is mediated, at least in part, at the level of gene expression. A number of endocrine, paracrine, and autocrine factors are known to regulate GnRHR gene expression. This article reviews in detail the role of the GnRHR in the hypothalamic-pituitary-gonadal axis and the factors mediating expression of this gene. A better understanding of the molecular mechanisms that regulate transcription of the GnRHR gene will further our knowledge about the role of this receptor in mammalian reproductive physiology in health and disease.

  8. Gonadotropin response to gonadotropin releasing hormone in acute schizophrenia.

    PubMed

    Cantalamessa, L; Catania, A; Silva, A; Orsatti, A; Baldini, M; Mosca, G; Zanussi, C; Cazzullo, C L

    1984-01-01

    To evaluate hypothalamic-pituitary-gonadal axis in acute schizophrenia, plasma FSH and LH concentrations were estimated both in basal conditions and after stimulation with gonadotropin releasing hormone (GnRH, 200 micrograms i.v.) in 14 young male patients with acute schizophrenia and in a age-matched group of 14 healthy male controls. Basal plasma PRL and testosterone levels were also measured. The mean basal levels of LH and FSH were slightly lower in schizophrenics, while the mean testosterone and prolactin levels were similar in the two groups. The FSH response to GnRH was significantly reduced in patients with acute schizophrenia, while the response of LH was similar in schizophrenics and in the controls. The possible significance of these findings is discussed in the contest of the complex neuroendocrine regulation of gonadotropin secretion and the overactivity of dopaminergic systems in acute schizophrenia.

  9. Growth-hormone-releasing factor immunoreactivity in human endocrine tumors.

    PubMed Central

    Bostwick, D. G.; Quan, R.; Hoffman, A. R.; Webber, R. J.; Chang, J. K.; Bensch, K. G.

    1984-01-01

    Seventy-three human tumors and adjacent nonneoplastic tissues were analyzed immunohistochemically for the presence of growth-hormone-releasing factor (GRF). Four of 9 pancreatic endocrine tumors, 2 of 3 appendiceal carcinoids, and 1 of 5 cecal carcinoids were immunoreactive for GRF. One of the GRF-containing pancreatic tumors was associated with acromegaly. Histologically, the growth patterns of these tumors were variable, and the distribution of immunoreactive cells was patchy and irregular. There were no normal cells that contained GRF. These results indicate that GRF production by human tumors is more common than previously thought, although clinical acromegaly may not be apparent in patients who harbor such neoplasms. Images Figure 1 PMID:6093542

  10. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  11. PLGA microsphere-mediated growth hormone release hormone expression induces intergenerational growth.

    PubMed

    Ren, Xiao-Hui; Zhang, Yong-Liang; Luo, Hu-Ying; Li, Hong-Yi; Liu, Song-Cai; Zhang, Ming-Jun; Ouyang, Song-Ying; Xi, Qian-Yun; Jiang, Qing-Yan

    2009-01-01

    To improve animal growth, growth hormone-releasing hormone (GHRH) expression vectors that maintain constant GHRH expression can be directly injected into muscles. To deliver the GHRH expression vectors, biodegradable microspheres have been used as a sustained release system. Although administering GHRH through microspheres is a common practice, the intergenerational effects of this delivery system are unknown. To investigate the intergenerational effects of polylactic-co-glycolic acid (PLGA) encapsulated plasmid-mediated GHRH supplements, pCMV-Rep-GHRH microspheres were injected into pregnant mice. Growth and expression of GHRH were measured in the offspring. RT-PCR and immunohistochemistry reveal GHRH expression 3-21 days post-injection. The proportion of GH-positive cells in the GHRH treated offspring was 48.2% higher than in the control group (P < 0.01). The GHRH treated offspring were 6.15% (P < 0.05) larger than the control offspring. At day 49 post-injection, IGF-I serum levels were significantly higher in the treatment group than in the control group. This study confirms that intramuscular expression of GHRH mediated by PLGA microspheres significantly enhances intergenerational growth.

  12. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  13. Growth hormone-releasing factor (GRF) induced growth hormone advances puberty in female buffaloes.

    PubMed

    Haldar, A; Prakash, B S

    2006-05-01

    Exogenous bovine growth hormone-releasing factor (bGRF) at the dose rate of 10 microg/100 kg body weight was administered intravenously (i.v.) to six Murrah buffalo heifers as treatment group, while another six buffalo heifers served as control group which received the vehicle (0.9% NaCl solution) at an interval of 15 days for a period of 9 months to study the effect of bGRF on puberty onset associated with temporal hormonal changes in peri-pubertal buffalo heifers. Blood samples were collected at 3-day interval from all the animals during the experimental period and plasma harvested was assayed for growth hormonal (GH), luteinizing hormone (LH) and progesterone. The day that plasma progesterone was greater than 1.0 ng/ml for three consecutive sampling days was defined as the day of puberty. Exogenous bGRF administration increased (P = 0.02) plasma GH concentration in treatment group over control group during the treatment of bGRF as well as during the peri-pubertal period. Plasma progesterone concentrations increased transiently earlier (P = 0.05) by 58.5 days in bGRF-treated buffaloes than that in the control group. However, plasma LH concentrations were unaffected by the treatment of bGRF (P = 0.48). Both plasma GH and LH in the buffalo heifers increased (P < 0.01) over time preceding puberty and the higher hormonal concentrations were maintained during the onset of puberty, and thereafter, the concentrations of both the hormones declined (P < 0.05) after puberty. GH and LH were positively correlated both before puberty (r = +0.59 and +0.63; P < 0.05 for control and treatment group, respectively) and after puberty (r = +0.42 and +0.46; P < 0.05 for control and treatment group, respectively) indicating the interaction and/or close relationship of GH and LH in the mechanism of puberty in buffalo species. PMID:16011881

  14. Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes

    PubMed Central

    Romero, Maritza J.; Lucas, Rudolf; Dou, Huijuan; Sridhar, Supriya; Czikora, Istvan; Mosieri, Eby M.; Rick, Ferenc G.; Block, Norman L.; Sridhar, Subbaramiah; Fulton, David; Weintraub, Neal L.; Bagi, Zsolt; Schally, Andrew V.

    2016-01-01

    Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1–dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications. PMID:26831066

  15. Heme oxygenase-derived carbon monoxide modulates gonadotropin-releasing hormone release in immortalized hypothalamic neurons.

    PubMed

    Errico, Stefania; Shohreh, Rugia; Barone, Eugenio; Pusateri, Angela; Mores, Nadia; Mancuso, Cesare

    2010-03-01

    Heme oxygenase (HO), the main enzyme deputed to heme metabolism, has been identified as two main isoforms called HO-1 and HO-2 both present in the central nervous system. Heme oxygenase has been shown to regulate the hypothalamic release of neuropeptides such as corticotrophin-releasing hormone and arginin-vasopressin. The aim of this study was to investigate and further characterize the presence of HO in gonadotropin-releasing hormone (GnRH) secreting hypothalamic neurons, GT1-7 and the role of HO by-products on GnRH secretion. The pulsatile release of GnRH from scattered hypothalamic neurons is the key regulator of mammalian fertility in the central nervous system. GT1-7 cells are immortalized hypothalamic neurons, characterized by spontaneous electrical activity and pulsatile GnRH release, resembling the central control pathway of the hypothalamic pituitary gonadal axis (HPG) in mammals. Hemin, the substrate of HO, significantly stimulated HO activity in static cultures, causing a rapid increase in GnRH release. Neither biliverdin nor bilirubin were able to mimic this rapid stimulatory effect, which was instead caused by carbon monoxide. Evidence of a possible involvement of prostaglandin E(2) in the HO by-product modulated GnRH secretion was reported. The hemin-evoked effect on GT1-7 neurons suggests a direct activity of HO by-products on the hypothalamic neuropeptide secretion, and claims for a possible role of CO in both the modulation of gonadotropin secretion and crosstalk among HPG and stress axis within the mammalian hypothalamus.

  16. Controlled release of thyrotropin releasing hormone from microspheres: evaluation of release profiles and pharmacokinetics after subcutaneous administration.

    PubMed

    Heya, T; Mikura, Y; Nagai, A; Miura, Y; Futo, T; Tomida, Y; Shimizu, H; Toguchi, H

    1994-06-01

    The drug-release kinetics of thyrotropin releasing hormone (TRH) containing copoly(dl-lactic/glycolic acid) (PLGA) microspheres were evaluated both in vitro and in vivo. The drug was encapsulated in PLGA using an in-water drying method through a water in oil in water emulsion. The drug release from the PLGA microspheres in vitro correlated well with that in vivo, and pseudo-zero-order release kinetics were observed. The pharmacokinetics of TRH following administration of this controlled-release parenteral dosage form have been also examined in rats. Following a transient increase in the plasma level due to an initial burst, steady-state plasma levels were observed. The duration of drug release estimated from the plasma level was comparable with the results in the in vitro and in vivo release studies. The steady-state plasma levels correlated well with the levels predicted from the pharmacokinetic parameters following a single subcutaneous or intravenous injection of TRH solution. The results of this study confirm the previously reported in vivo sustained release of TRH achieved with this drug-delivery system. PMID:9120809

  17. Interleukin 1. alpha. inhibits prostaglandin E sub 2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    SciTech Connect

    Rettori, V.; McCann, S.M. ); Gimeno, M.F. ); Karara, A. ); Gonzalez, M.C. )

    1991-04-01

    Interleukin 1{alpha} (IL-1{alpha}), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1{alpha} into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1{alpha} caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1{alpha} (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E{sub 2} into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1{alpha} reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1{alpha} suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E{sub 2}-mediated release of LHRH.

  18. Gonadotropin-releasing hormone: gene evolution, expression, and regulation.

    PubMed

    Belsham, Denise D; Lovejoy, David A

    2005-01-01

    The gonadotropin-releasing hormone (GnRH) gene is a superb example of the diverse regulation that is required to maintain the function of an evolutionarily conserved and fundamental gene. Because reproductive capacity is critical to the survival of the species, physiological homeostasis dictates optimal conditions for reproductive success, and any perturbation from this balance may affect GnRH expression. These disturbances may include alterations in signals dictated by stress, nutritional imbalance, body weight, and neurological problems; therefore, changes in other neuroendocrine systems may directly influence the hypothalamic-pituitary-gonadal axis through direct regulation of GnRH. Thus, to maintain optimal reproductive capacity, the regulation of the GnRH gene is tightly constrained by a number of diverse signaling pathways and neuromodulators. In this review, we summarize what is currently known of GnRH gene structure, the location and function of the two isoforms of the GnRH gene, some of the many hormones and neuromodulators found to affect GnRH expression, and the molecular mechanisms responsible for the regulation of the GnRH gene. We also discuss the latest models used to study the transcriptional regulation of the GnRH gene, from cell models to evolving in vivo technologies. Although we have come a long way in the last two decades toward uncovering the intricacies behind the control of the GnRH neuron, there remain vast distances to cover before direct therapeutic manipulation of the GnRH gene to control reproductive competence is possible.

  19. Pituitary responsiveness to luteinizing-hormone-releasing hormone in different reproductive disorders. A review.

    PubMed

    Vasquez, J M; Greenblatt, R B

    1985-08-01

    As a result of the use of synthetic luteinizing-hormone-releasing hormone (LHRH) (and its analogs), significant advances in modern clinical practice are being realized. We studied the use of LHRH as a test for pituitary reserve for gonadotropin secretion in different reproductive disorders. Synthetic LHRH was used as a diagnostic test for discriminating pituitary from hypothalamic disorders. After appropriate LHRH priming of the pituitary, LHRH was used to document hypothalamic dysfunction in patients with Kallmann's syndrome who had normal gonadotropin responsiveness to LHRH. The gonadotropin responsiveness to 100 micrograms of LHRH was impaired or absent in patients with panhypopituitarism, craniopharyngiomas, hemochromatosis and acromegaly accompanied by abnormal lactation. In women with gonadal dysgenesis, the absence of gonadal steroid feedback exacerbated the pituitary responsiveness to LHRH. Women with hyperprolactinemia are also known to have a blunted gonadotropin response to endogenous and exogenous LHRH. An experimental rat model was developed in our laboratory to study the site of prolactin action on gonadotropin secretion. LHRH challenge tests during perphenazine-induced hyperprolactinemia in rats indicated that prolactin may decrease pituitary sensitivity to LHRH. Additional experiments indicated that the increased progesterone produced in these hyperprolactinemic (pseudopregnant) rats was probably responsible for the decreased pituitary responsiveness to LHRH. Further studies will be necessary to determine whether prolactin, which can alter ovarian steroidogenesis in vitro, interferes with ovulation directly in addition to affecting the hypothalamic-pituitary axis.

  20. [Hormonal response following the use of gonadotropin-releasing hormone, estradiol and gestil in sheep].

    PubMed

    Batzhargalin, E

    1985-01-01

    Studies were carried out in an anestral season with three ovariectomized and four intact sheep to establish the function of the hypothalamic-pituitary-ovarian axis. It was found that following three-fold injections with GnRH (250 ng, 250 ng, and 40 micrograms) at 2-hour intervals an immediate rise of the luteinizing hormone in the peripheral blood followed, tending to increase further with each injection. The concentration of this hormone after treatment with 17-beta-estradiol at the rate of 20 micrograms was first suppressed below the initial level up to the 8-12th hour, followed by a peak in its release between the 12th and the 24th hour. At stimulation with gonadotropic preparations the ovaries in the intact sheep responded with the gradual rise of the 17-beta-estradiol level, reaching a maximum at the 18th hour following injection, while in the ovariectomized animals there were no essential changes with the treatment during the experimental period. Data made it reasonable to believe that the application of these preparations might be useful in testing the functional state of the hypothalamic-pituitary-ovarian axis in sheep.

  1. Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis

    PubMed Central

    Tao, Quanwei; Ma, Qunchao; Chen, Huiqiang; Wang, Jian'an

    2016-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues. PMID:27774107

  2. Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH).

    PubMed

    Obayemi, J D; Dozie-Nwachukwu, S; Danyuo, Y; Odusanya, O S; Anuku, N; Malatesta, K; Soboyejo, W O

    2015-01-01

    This paper presents the results of an experimental study of the biosynthesis of magnetite nanoparticles (BMNPs) with particle sizes between 10 nm and 60 nm. The biocompatible magnetic nanoparticles are produced from Magnetospirillum magneticum (M.M.) bacteria that respond to magnetic fields. M.M. bacteria were cultured and used to synthesize magnetite nanoparticles. This was done in an enriched magnetic spirillum growth medium (EMSGM) at different pH levels. The nanoparticle concentrations were characterized with UV-Visible (UV-Vis) spectroscopy, while the particle shapes were elucidated via transmission electron microscopy (TEM). The structure of the particles was studied using X-ray diffraction (XRD), while the hydrodynamic radii, particle size distributions and polydispersity of the nanoparticles were characterized using dynamic light scattering (DLS). Carbodiimide reduction was also used to functionalize the BMNPs with a molecular recognition unit (luteinizing hormone releasing hormone, LHRH) that attaches specifically to receptors that are over-expressed on the surfaces of most breast cancer cell types. The resulting nanoparticles were examined using Fourier Transform Infrared (FTIR) spectroscopy and quantitative image analysis. The implications of the results are then discussed for the potential development of magnetic nanoparticles for the specific targeting and treatment of breast cancer.

  3. Effects of Growth Hormone Releasing Hormone on Visceral Fat, Metabolic and Cardiovascular Indices in Human Studies

    PubMed Central

    Stanley, Takara L.; Grinspoon, Steven K.

    2014-01-01

    Increased visceral adipose tissue (VAT) is associated with reductions in endogenous GH secretion, possibly as a result of hyperinsulinemia, increased circulating free fatty acid, increased somatostatin tone, and reduced ghrelin. Reduced GH may, in turn, further exacerbate visceral fat accumulation because of decreased hormone sensitive lipolysis in this depot. Data from multiple populations demonstrate that both reduced GH and increased VAT appear to contribute independently to dyslipidemia, increased systemic inflammation, and increased cardiovascular risk. The reductions in GH in states of visceral adiposity are characterized by reduced basal and pulsatile GH secretion with intact pulse frequency. Treatment with GH releasing hormone (GHRH) provides a means to reverse these abnormalities, increasing endogenous basal and pulsatile GH secretion without altering pulse frequency. This review describes data from HIV-infected individuals and individuals with general obesity showing that treatment with GHRH significantly reduces visceral fat, ameliorates dyslipidemia, and reduces markers of cardiovascular risk. Further research is needed regarding long term efficacy and safety of this treatment modality. PMID:25555516

  4. Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle

    PubMed Central

    Cheong, Hyun Sub; Yoon, Du-Hak; Kim, Lyoung Hyo; Park, Byung Lae; Choi, Yoo Hyun; Chung, Eui Ryong; Cho, Yong Min; Park, Eng Woo; Cheong, Il-Cheong; Oh, Sung-Jong; Yi, Sung-Gon; Park, Taesung; Shin, Hyoung Doo

    2006-01-01

    Background Cold carcass weight (CW) and longissimus muscle area (EMA) are the major quantitative traits in beef cattle. In this study, we found several polymorphisms of growth hormone-releasing hormone (GHRH) gene and examined the association of polymorphisms with carcass traits (CW and EMA) in Korean native cattle (Hanwoo). Results By direct DNA sequencing in 24 unrelated Korean cattle, we identified 12 single nucleotide polymorphisms within the 9 kb full gene region, including the 1.5 kb promoter region. Among them, six polymorphic sites were selected for genotyping in our beef cattle (n = 428) and five marker haplotypes (frequency > 0.1) were identified. Statistical analysis revealed that -4241A>T showed significant associations with CW and EMA. Conclusion Our findings suggest that polymorphisms in GHRH might be one of the important genetic factors that influence carcass yield in beef cattle. Sequence variation/haplotype information identified in this study would provide valuable information for the production of a commercial line of beef cattle. PMID:16749938

  5. Effects of aging on pituitary and testicular luteinizing hormone-releasing hormone receptors in the rat.

    PubMed

    Limonta, P; Dondi, D; Maggi, R; Martini, L; Piva, F

    1988-01-01

    Aging exerts profound influences on the function of the hypothalamic-pituitary-testicular-axis. This work has been performed in order to verify whether, in male rats, the decreased secretion of LH and testosterone (T) occurring in old animals is reflected by modifications of luteinizing hormone-releasing hormone (LHRH) receptors at the level of the anterior pituitary and of the testes. To this purpose, the affinity constant (Ka) and the maximal binding capacity (Bmax) for the LHRH analog [D-Ser(tBu)6]des-Gly10-LHRH-N-ethylamide were evaluated, by means of a receptor binding assay, in membrane preparations derived from the anterior pituitary and testicular Leydig cells of male rats of 3 and 19 months of age. Serum levels of LH and T were measured by specific RIAs. The results obtained show that, in aged male rats, the concentration of pituitary LHRH receptors is significantly lower than that found in young animals. On the other hand, the concentration of LHRH binding sites is significantly increased on the membranes of Leydig cells of old rats. In no instance the Ka for the LHRH analog is significantly affected. Serum levels of LH and T are significantly lower in old than in young male rats. In conclusion, these results suggest that the reduced secretion of LH in old male rats may be linked, at least partially, to a decrease of the number of pituitary LHRH receptors. The impaired production of testosterone occurring in aged rats is accompanied by a significant increase of the number of testicular LHRH receptors, indicating that also the intratesticular mechanisms controlling testosterone release undergo significant alterations with aging.

  6. Response to luteinizing releasing hormone, thyrotrophic releasing hormone, and human chorionic gonadotropin administration in healthy men at different risks for prostatic cancer and in prostatic cancer patients.

    PubMed

    Hill, P; Wynder, E L; Garbaczewski, L; Garnes, H; Walker, A R

    1982-05-01

    A comparative study of the pituitary and testicular response to luteinizing releasing hormone (LHRH), thyrotrophic releasing hormone (TRH), and human chorionic gonadotrophin (HCG) administration was carried out in (a) low-risk young South African black men and high-risk North American black men for prostatic cancer and (b) healthy elderly South African men and South African black men with prostatic cancer. A comparable HCG response occurred in young South African and North American black men, while a greater release of prolactin, but a lesser release of luteinizing hormone in response to LHRH:TRH occurred in South African black men. The response to HCG was comparable in elderly and young South African black men, although the prolactin release in response to TRH was greater in elderly men. A more prolonged release of luteinizing hormone was evident in men with prostatic cancer. Higher estradiol and estrone but lower androstenedione levels occurred in men with prostatic cancer. Data suggest that, in the elderly South African black men with prostatic cancer, estrogen metabolism is modified and that either the estrogen level or the higher estrogen:androgen levels modify the pituitary response to LHRH:TRH. A Western diet enhanced the changes in hormone profiles evident in black South African men with prostatic cancer. PMID:6802486

  7. Sympathomimetic pressor responses to thyrotropin-releasing hormone in rats

    SciTech Connect

    Mattila, J.; Bunag, R.D.

    1986-07-01

    Cardiovascular responses to centrally administered thyrotropin-releasing hormone (TRH) were studied in urethan-anesthetized rats to allow continuous recording of attendant changes in sympathetic nerve activity. Intracerebroventricular infusions of TRH consistently increased not only blood pressure and heart rate, but also spike frequency in splanchnic, renal, or cervical sympathetic nerves. Parasympathetic inhibition seemed unlikely because TRH responses were unaltered by cholinergic blockade with atropine, and efferent vagal nerve firing, instead of being reduced, was actually increased by TRH. An increased secretion of endogenous vasopressin also appeared unlikely, since TRH responses were essentially unaffected by either hypophysectomy or pretreatment with a vasopressin antagonist. Inasmuch as pharmacological ganglion blockade with pentolinium eliminated increases in splanchnic nerve firing but reduced the attendant tachycardia by only 50%, residual tachycardia after ganglion blockade was considered partly due to persistent sympathetic cardioaccelerator tone. On the other hand, because pressor responses to TRH were always accompanied by increased sympathetic nerve firing and were completely abolished after pentolinium-induced ganglioplegia, they were attributed solely to sympathetic hyperactivity.

  8. Gonadotrophin releasing hormone antagonist in IVF/ICSI

    PubMed Central

    MS, Kamath; AM, Mangalraj; KM, Muthukumar; K, George

    2008-01-01

    OBJECTIVE: To study the efficacy of gonadotrophin releasing hormone (GnRH) antagonist in In-vitro-fertilization/Intracytoplasmic sperm injection (IVF/ICSI) cycles. TYPE OF STUDY: Observational study. SETTING: Reproductive Medicine Unit, Christian Medical College Hospital, Vellore, Tamil Nadu. MATERIALS AND METHODS: GnRH antagonists were introduced into our practice in November 2005. Fifty-two women undergoing the antagonist protocol were studied and information gathered regarding patient profile, treatment parameters (total gonadotrophin dosage, duration of treatment, and oocyte yield), and outcomes in terms of embryological parameters (cleavage rates, implantation rates) and clinical pregnancy. These parameters were compared with 121 women undergoing the standard long protocol. The costs between the two groups were also compared. MAIN OUTCOME: Clinical pregnancy rate. RESULTS: The clinical pregnancy rate per embryo transfer in the antagonist group was 31.7% which was comparable to the clinical pregnancy rate in women undergoing the standard long protocol (30.63%). The costs between the two groups were comparable. CONCLUSIONS: GnRH antagonist protocol was found to be effective and comparable to the standard long protocol regimen. In addition it was simple, convenient, and patient friendly. PMID:19562061

  9. Thyrotropin-releasing hormone (TRH) reverses hyperglycemia in rat

    SciTech Connect

    Luo Luguang Luo, John Z.Q. Jackson, Ivor M.D.

    2008-09-12

    Hyperglycemia in thyrotropin-releasing hormone (TRH) null mice indicates that TRH is involved in the regulation of glucose homeostasis. Further, TRH levels in the pancreas peak during the stages of late embryonic and early neonatal {beta} cell development. These observations are consistent in linking TRH to islet cell proliferation and differentiation. In this study, we examined the effect of TRH administration in damaged pancreatic rat (streptozotocin, STZ) to determine whether TRH could improve damaged pancreatic {beta} cells function. We hypothesize that TRH is able to reverse STZ-induced hyperglycemia by increasing pancreatic islet insulin content, preventing apoptosis, and potentially induce islet regeneration. It was found that following intra-peritoneal (ip) injection, TRH (10 {mu}g/kg body weight (bwt)) reverses STZ (65 mg/kg bwt)-induced hyperglycemia (TRH given 3 days after STZ injection). Increased circulating insulin levels and insulin content in extracted pancreas suggests that TRH reversed STZ-induced hyperglycemia through improving pancreatic islet {beta} cell function. Further studies show a significantly lower level of apoptosis in islets treated with TRH as well as the presence of proliferation marker nestin and Brdu, suggesting that the TRH has the potential to prevent apoptosis and stimulate islet proliferation.

  10. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  11. Pheromonal stimulation of spawning release of gametes by gonadotropin releasing hormone in the chiton, Mopalia sp.

    PubMed

    Gorbman, Aubrey; Whiteley, Arthur; Kavanaugh, Scott

    2003-03-01

    The chiton Mopalia sp., a mollusc, was exposed to various dilutions of gonadotropin releasing hormone (GnRH) in sea water to determine whether this peptide is capable of acting as a pheromone that could stimulate release of ripe gametes (spawning). Two of the peptides, lamprey GnRH-1 and tunicate GnRH-2, had this action at a higher concentration (1.0 mg/L) but dilutions to 50 microg/L no longer were effective. Three other GnRHs: lamprey GnRH-3, tunicate GnRH-1, and a modified chicken GnRH-2, had no such action under the same test conditions. Since the spawning response could be produced by some GnRHs and not by others, it would appear that some kind of molecular recognition is involved, possibly by specific binding to a receptor. In earlier preliminary experiments tunicate GnRH-2 rapidly stimulated gamete release in a hemichordate, Saccoglossus. Thus it is suggested that GnRHs, in at least some invertebrates, may function as pheromones, serving to stimulate simultaneous spawning of individuals in a population of animals, and in this way assure more successful fertilization in species that must release their gametes into the water in which they live.

  12. The heart: a novel gonadotrophin-releasing hormone target.

    PubMed

    Dong, F; Skinner, D C; Wu, T John; Ren, J

    2011-05-01

    Gonadotrophin-releasing hormone (GnRH) is a hypothalamic hormone transported by the hypophyseal portal bloodstream to the pituitary gland, where it binds to GnRH receptors. However, GnRH receptors are expressed in multiple extrapituitary tissues, although their physiological relevance is not fully understood. GnRH agonists are employed extensively in steroid deprivation therapy, especially to suppress testosterone in prostate cancer. Because GnRH agonist treatment is associated with increased coronary heart disease and myocardial infarction, we investigated the impact of GnRH on cardiomyocyte contractile function. Cardiomyocytes were isolated from mouse hearts and mechanical and intracellular Ca(2+) properties were evaluated, including peak shortening amplitude (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90) ), maximal velocity of shortening/relengthening (± dLdt), electrically-stimulated rise in Fura-2 fluorescence intensity (ΔFFI) and Ca(2+) decay. GnRH (1 ng/ml) increased PS, ± dL/dt, resting FFI and ΔFFI, and prolonged TPS, TR(90) and Ca(2+) decay time, whereas 1 pg/ml GnRH affected all these cardiomyocyte variables, except TPS, resting FFI and ΔFFI. A concentration of 1 fg/ml GnRH and the GnRH cleavage product, GnRH-[1-5] (300 pg/ml), had no effect on any cardiomyocyte parameter. The 1 pg/ml GnRH-elicited responses were attenuated by the GnRH receptor antagonist cetrorelix (10 μm), the protein kinase A (PKA) inhibitor H89 (1 μm) but not the protein kinase C inhibitor chelerythrine chloride (1 μm). These data revealed that GnRH is capable of regulating cardiac contractile function via a GnRH receptor/PKA-dependent mechanism. If present in the human heart, dysfunction of such a system may play an important role in cardiac pathology observed in men treated with GnRH agonists for prostate cancer. PMID:21332841

  13. The Effects of Gonadotrophin Releasing Hormone Administration in Early Postpartum Dairy Cows on Hormone Concentrations, Ovarian Activity and Reproductive Performance: A Review

    PubMed Central

    Leslie, K. E.

    1983-01-01

    Gonadotrophin releasing hormones have become widely used hormonal compounds in veterinary medicine, particularly with respect to bovine reproduction. The character and physiological actions of gonadotrophin releasing hormone are briefly reviewed and its clinical applications are summarized. The endocrinological research concerned with the use of gonadotrophin releasing hormone in the early postpartum period is discussed. Field trials which have been conducted to assess the effects of postpartum gonadotrophin releasing hormone administration on reproductive performance have varied widely in both design and interpretation of results. These experiments are reviewed, including the clinical trials using normal cows as well as those on cows with retained placenta. PMID:17422245

  14. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human uveal melanoma

    PubMed Central

    Schally, Andrew V.; Block, Norman L; Dezso, Balazs; Olah, Gabor; Rozsa, Bernadett; Fodor, Klara; Buglyo, Armin; Gardi, Janos; Berta, Andras; Halmos, Gabor

    2013-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with a very high mortality rate due to frequent liver metastases. Consequently, the therapy of uveal melanoma remains a major clinical challenge and new treatment approaches are needed. For improving diagnosis and designing a rational and effective therapy, it is essential to elucidate molecular characteristics of this malignancy. The aim of this study therefore was to evaluate as a potential therapeutic target the expression of luteinizing hormone-releasing hormone (LHRH) receptor in human uveal melanoma. The expression of LHRH ligand and LHRH receptor transcript forms was studied in 39 human uveal melanoma specimens by RT-PCR using gene specific primers. The binding charachteristics of receptors for LHRH on 10 samples were determined by ligand competition assays. The presence of LHRH receptor protein was further evaluated by immunohistochemistry. The expression of mRNA for type I LHRH receptor was detected in 18 of 39 (46%) of tissue specimens. mRNA for LHRH-I ligand could be detected in 27 of 39 (69%) of the samples. Seven of 10 samples investigated showed high affinity LHRH-I receptors. The specific presence of full length LHRH receptor protein was further confirmed by immunohistochemistry. A high percentage of uveal melanomas express mRNA and protein for type-I LHRH receptors. Our results support the merit of further investigation of LHRH receptors in human ophthalmological tumors. Since diverse analogs of LHRH are in clinical trials or are already used for the treatment of various cancers, these analogs could be considered for the LHRH receptor-based treatment of uveal melanoma. PMID:24077773

  15. Adrenarche and skeletal maturation during luteinizing hormone releasing hormone analogue suppression of gonadarche.

    PubMed Central

    Wierman, M E; Beardsworth, D E; Crawford, J D; Crigler, J F; Mansfield, M J; Bode, H H; Boepple, P A; Kushner, D C; Crowley, W F

    1986-01-01

    During puberty the effects of adrenal androgens upon skeletal maturation are obscured by the influence of gonadal steroids. Suppression of gonadarche with an analogue of luteinizing hormone releasing hormone (LHRHa) affords an opportunity to examine the onset and progression of adrenarche in the absence of pubertal levels of gonadal steroids in a controlled fashion and to explore the relationship between adrenal androgens and the rate of epiphyseal maturation. In 29 children with central precocious puberty, gonadarche was suppressed with LHRHa administration for 1-4 yr. During LHRHa exposure, dehydroepiandrosterone sulfate (DHAS) levels, as an index of adrenal maturation, were constant or increased in an age-expected manner. The change in bone age for change in chronologic age decreased from 1.7 +/- 0.1 to 0.49 +/- 0.05 (P = 0.00005), indicating that the LHRHa-induced return to a prepubertal gonadal steroid environment was associated with a slowing of skeletal maturation. DHAS levels were correlated with the rate of skeletal advancement before (r = 0.57, P = 0.001) and during 12 to 48 mo of exposure to LHRHa (r = 0.52, P = 0.003). A negative correlation of DHAS values with subsequent increases in predicted mature height was observed (r = -0.49, P = 0.007). Thus, in children with central precocious puberty, adrenarche progressed normally during LHRHa suppression of gonadarche. In children with the onset of progression of adrenarche during maintenance of a prepubertal gonadal steroid milieu, there was less evidence than in preadrenarchal children of a restraint upon skeletal maturation. These data suggest that adrenal androgens contribute importantly to epiphyseal advancement during childhood. PMID:2935557

  16. Corticotropin Releasing Hormone and Imaging, Rethinking the Stress Axis

    PubMed Central

    Contoreggi, Carlo

    2015-01-01

    The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems has surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we’ve seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and pharmacology

  17. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  18. NMDA receptors in the medial zona incerta stimulate luteinizing hormone and prolactin release.

    PubMed

    Bregonzio, Claudia; Moreno, Griselda N; Cabrera, Ricardo J; Donoso, Alfredo O

    2004-06-01

    1. The aim of the present work is to demonstrate the interaction between the glutamatergic/NMDA and dopaminergic systems in the medial zona incerta on the control of luteinizing hormone and prolactin secretion and the influence of reproductive hormones. 2. Proestrus and ovariectomized rats were primed with estrogen and progesterone to induce high or low levels of luteinizing hormone and prolactin. 2-Amino-7-phosphonoheptanoic acid, an NMDA receptor antagonist, and dopamine were injected in the medial zona incerta. Blood samples were withdrawn every hour between 1,600 and 2,000 hours or 2,200 hours via intracardiac catheter from conscious rats. Additional groups of animals injected with the NMDA receptor antagonist were killed 1 or 4 h after injection. Dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were measured in different hypothalamic regions. 3. 2-Amino-7-phosphonoheptanoic acid blocked the ovulatory luteinizing hormone surge in proestrus rats. 2-Amino-7-phosphonoheptanoic acid also blocked the increase in luteinizing hormone induced by ovarian hormones in ovariectomized rats, an effect that was partially reversed by dopamine injection. Conversely, the increased release of luteinizing hormone and prolactin induced by dopamine was prevented by 2-amino-7-phosphonoheptanoic acid. We found that the NMDA antagonist injection decreased the dopaminergic activity--as evaluated by the 3,4-dihydroxyphenylacetic acid/dopamine ratio--in the medio basal hypothalamus and increased in the preoptic area. 4. Our results show an stimulatory role of NMDA receptors on the ovulatory luteinizing hormone release and on luteinizing hormone release induced by sexual hormones and demonstrate that the stimulatory effect of dopamine on luteinizing hormone and prolactin is mediated by the NMDA receptors. These results suggest a close interaction between the glutamatergic and dopaminergic incertohypothalamic systems on the control of luteinizing hormone and prolactin release

  19. Effects of luteinizing hormone-releasing hormone and arginine-vasotocin on the sperm-release response of Günther's Toadlet, Pseudophryne guentheri

    PubMed Central

    2010-01-01

    Background Luteinizing hormone-releasing hormone (LHRH) is an exogenous hormone commonly used to induce spermiation in anuran amphibians. Over the past few decades, the LHRH dose administered to individuals and the frequency of injection has been highly variable. The sperm-release responses reported have been correspondingly diverse, highlighting a need to quantify dose-response relationships on a species-specific basis. This study on the Australian anuran Pseudophryne guentheri first evaluated the spermiation response of males administered one of five LHRHa doses, and second, determined whether AVT administered in combination with the optimal LHRHa dose improved sperm-release. Methods Male toadlets were administered a single dose of 0, 1, 2, 4 or 8 micrograms/g body weight of LHRHa. A 4 micrograms/g dose of AVT was administered alone or in combination with 2 micrograms/g LHRHa. Spermiation responses were evaluated at 3, 7 and 12 h post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Results LHRHa administration was highly effective at inducing spermiation in P. guentheri, with 100% of hormone-treated males producing sperm during the experimental period. The number of sperm released in response to 2 micrograms/g LHRHa was greater than all other doses administered and sperm viability was highest in the 1 microgram/g treatment. The administration of AVT alone or in combination with LHRHa resulted in the release of significantly lower sperm numbers. Conclusion Overall, results from this study suggest that in P. guentheri, LHRHa is effective at inducing spermiation, but that AVT inhibits sperm-release. PMID:21059269

  20. Single-Cell Phenotypic Characterization of Human Pituitary GHomas and Non-Functioning Adenomas Based on Hormone Content and Calcium Responses to Hypothalamic Releasing Hormones.

    PubMed

    Senovilla, Laura; Núñez, Lucía; de Campos, José María; de Luis, Daniel A; Romero, Enrique; García-Sancho, Javier; Villalobos, Carlos

    2015-01-01

    Human pituitary tumors are generally benign adenomas causing considerable morbidity due to excess hormone secretion, hypopituitarism, and other tumor mass effects. Pituitary tumors are highly heterogeneous and difficult to type, often containing mixed cell phenotypes. We have used calcium imaging followed by multiple immunocytochemistry to type growth hormone secreting (GHomas) and non-functioning pituitary adenomas (NFPAs). Individual cells were typed for stored hormones and calcium responses to classic hypothalamic releasing hormones (HRHs). We found that GHomas contained growth hormone cells either lacking responses to HRHs or responding to all four HRHs. However, most GHoma cells were polyhormonal cells responsive to both thyrotropin-releasing hormone (TRH) and GH-releasing hormone. NFPAs were also highly heterogeneous. Some of them contained ACTH cells lacking responses to HRHs or polyhormonal gonadotropes responsive to LHRH and TRH. However, most NFPAs were made of cells storing no hormone and responded only to TRH. These results may provide new insights on the ontogeny of GHomas and NFPAs.

  1. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  2. Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages.

    PubMed Central

    Brix, K; Herzog, V

    1994-01-01

    Thyroglobulin appears in the circulation of vertebrates at species-specific concentrations. We have observed that the clearance of thyroglobulin from the circulation occurs in the liver by macrophages. Here we show that the thyroid hormones T3 and T4 were released by incubation of mouse macrophages (J774) with thyroglobulin. Thyroid hormone release was a fast process, with an initial rate of approximately 20 pmol T4/mg per min and approximately 0.6 pmol T3/mg per min, indicating that macrophages preferentially release T4. The bulk of released thyroid hormones appeared after 5 min of incubation of macrophages with thyroglobulin, whereas degradation of the protein was detectable only after several hours. During internalization of thyroglobulin, endocytic vesicles and endosomes were reached at 5 min and lysosomes at 60 min. T4 release started extracellularly by secreted proteases and continued along the endocytic pathway of thyroglobulin, whereas T3 release occurred mainly intracellularly when thyroglobulin had reached the lysosomes. This shows that the release of both hormones occurred at distinct cellular sites. Our in vitro observations suggest that macrophages in situ represent an extrathyroidal source for thyroid hormones from circulating thyroglobulin. Images PMID:8163643

  3. Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory.

    PubMed

    Thornton, P L; Ingram, R L; Sonntag, W E

    2000-02-01

    The age-related decline in growth hormone is one of the most robust endocrine markers of biological aging and has been hypothesized to contribute to the physiological deficits observed in aged animals. However, there have been few studies of the impact of this hormonal decline on brain aging. In this study, the effect of long-term subcutaneous administration of [D-Ala2]-growth hormone-releasing hormone (GHRH) on one measure of brain function, memory, was investigated. Animals were injected daily with 2.3 microg of [D-Ala2]-GHRH or saline from 9 to 30 months of age, and the spatial learning and reference memory of animals were assessed by using the Morris water maze and compared with those of 6-month-old animals. Results indicated that spatial memory decreased with age and that chronic [D-Ala2]-GHRH prevented this age-related decrement (24% improvement in the annulus-40 time and 23% improvement in the number of platform crossings compared with saline treated, age-matched controls; p < .05 each). No changes were noted in sensorimotor performance. [D-Ala2]-GHRH attenuated the age-related decline in plasma concentrations of insulinlike growth factor-1 (IGF-1) (p <.05). These data suggest that growth hormone and IGF-1 have important effects on brain function, that the decline in growth hormone and IGF-1 with age contributes to impairments in reference memory, and that these changes can be reversed by the chronic administration of GHRH.

  4. Outcome of growth hormone therapy in children with growth hormone deficiency showing an inadequate response to growth hormone-releasing hormone.

    PubMed

    Saenger, P; Pescovitz, O H; Bercu, B B; Murray, F T; Landy, H; Brentzel, J; O'Dea, L; Hanson, B; Howard, C; Reiter, E O

    2001-06-01

    Saizen (recombinant growth hormone [GH]), 0.2 mg/(kg x wk), was given in an open-label fashion for an average of 51 mo to 27 children with presumed idiopathic GH deficiency who had withdrawn from a trial of Geref (recombinant GH-releasing hormone [GHRH] 1-29) because of inadequate height velocity (HV) (25 children), the onset of puberty (1 child), or injection site reactions (1 child). Measurements were made every 3-12 mo of a number of auxologic variables, including HV, height standard deviation score, and bone age. The children in the study showed excellent responses to Saizen. Moreover, first-year growth during Saizen therapy was inversely correlated with the GH response to provocative GHRH testing carried out 6 and 12 mo after the initiation of Geref treatment. These findings indicate that GH is effective in accelerating growth in GH-deficient children who do not show or maintain a satisfactory response to treatment with GHRH. In addition, they suggest that the initial response to GH therapy used in this way can be predicted by means of provoc-ative testing.

  5. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  6. Differential Activation in Amygdala and Plasma Noradrenaline during Colorectal Distention by Administration of Corticotropin-Releasing Hormone between Healthy Individuals and Patients with Irritable Bowel Syndrome

    PubMed Central

    Tanaka, Yukari; Kanazawa, Motoyori; Kano, Michiko; Morishita, Joe; Hamaguchi, Toyohiro; Van Oudenhove, Lukas; Ly, Huynh Giao; Dupont, Patrick; Tack, Jan; Yamaguchi, Takuhiro; Yanai, Kazuhiko; Tashiro, Manabu; Fukudo, Shin

    2016-01-01

    Irritable bowel syndrome (IBS) often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET) was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg) or saline (1:1) was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH), serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline) and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls) by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals. PMID:27448273

  7. Differential Activation in Amygdala and Plasma Noradrenaline during Colorectal Distention by Administration of Corticotropin-Releasing Hormone between Healthy Individuals and Patients with Irritable Bowel Syndrome.

    PubMed

    Tanaka, Yukari; Kanazawa, Motoyori; Kano, Michiko; Morishita, Joe; Hamaguchi, Toyohiro; Van Oudenhove, Lukas; Ly, Huynh Giao; Dupont, Patrick; Tack, Jan; Yamaguchi, Takuhiro; Yanai, Kazuhiko; Tashiro, Manabu; Fukudo, Shin

    2016-01-01

    Irritable bowel syndrome (IBS) often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET) was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg) or saline (1:1) was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH), serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline) and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls) by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals. PMID:27448273

  8. A ligand-specific action of chelated copper on hypothalamic neurons: stimulation of the release of luteinizing hormone-releasing hormone from median eminence explants.

    PubMed Central

    Barnea, A; Colombani-Vidal, M

    1984-01-01

    We have previously shown that chelated copper stimulates the release of luteinizing hormone-releasing hormone (LHRH) from isolated hypothalamic granules. In this study, we wished to ascertain if chelated copper acts on hypothalamic neurons to stimulate LHRH release and, if so, what is the ligand specificity of this interaction. An in vitro system of explants of the median eminence area (MEA) was established and characterized. MEA explants were exposed for 15 min to 50 microM copper, and then they were incubated for 75 min in copper-free medium. Copper led to a transient increase in the rate of LHRH release; the maximal rate was attained 15 min after transfer of the MEA to copper-free medium. In addition, we found that copper complexed to histidine (Cu-His), but not ionic copper, stimulated LHRH release, the magnitude of which was dependent on the dose of Cu-His. The chelator specificity for Cu complex action was such that Cu-His stimulated LHRH release 4.9-fold and Cu-Cys stimulated release 2.5-fold, whereas neither Cu-Thr, Cu-Gly-His-Lys, Cu-bovine serum albumin, nor ceruloplasmin stimulated LHRH release. Based on these results and those of others indicating that the concentration of copper in hypothalamic axonal terminals is 1-2 orders of magnitude greater than plasma, we propose that copper released in the vicinity of the LHRH neurons interacts with specific sites on the LHRH axonal terminals, which leads to release of the peptide. PMID:6390443

  9. Gender, neuroendocrine-immune interactions and neuron-glial plasticity. Role of luteinizing hormone-releasing hormone (LHRH).

    PubMed

    Marchetti, B; Gallo, F; Farinella, Z; Tirolo, C; Testa, N; Caniglia, S; Morale, M C

    2000-01-01

    Signals generated by the hypothalamic-pitutary-gonadal (HPG) axis powerfully modulate immune system function. This article summarizes some aspects of the impact of gender in neuroendocrine immunomodulation. Emphasis is given to the astroglial cell compartment, defined as a key actor in neuroendocrine immune communications. In the brain, the principal hormones of the HPG axis directly interact with astroglial cells. Thus, luteinizing hormone releasing hormone, LHRH, influences hypothalamic astrocyte development and growth, and hypothalamic astrocytes direct LHRH neuron differentiation. Hormonally induced changes in neuron-glial plasticity may dictate major changes in CNS output, and thus actively participate in sex dimorphic immune responses. The impact of gender in neuroimmunomodulation is further underlined by the sex dimorphism in the expression of genes encoding for neuroendocrine hormones and their receptors within the thymus, and by the potent modulation exerted by circulating sex steroids during development and immunization. The central role of glucocorticoids in the interactive communication between neuroendocrine and immune systems, and the impact of gender on hypothalamic-pituitary-adrenocortical (HPA) axis modulation is underscored in transgenic mice expressing a glucocorticoid receptor antisense RNA.

  10. Efficacy and Safety of Sustained-Release Recombinant Human Growth Hormone in Korean Adults with Growth Hormone Deficiency

    PubMed Central

    Kim, Youngsook; Hong, Jae Won; Chung, Yoon-Sok; Kim, Sung-Woon; Cho, Yong-Wook; Kim, Jin Hwa; Kim, Byung-Joon

    2014-01-01

    Purpose The administration of recombinant human growth hormone in adults with growth hormone deficiency has been known to improve metabolic impairment and quality of life. Patients, however, have to tolerate daily injections of growth hormone. The efficacy, safety, and compliance of weekly administered sustained-release recombinant human growth hormone (SR-rhGH, Declage™) supplement in patients with growth hormone deficiency were evaluated. Materials and Methods This trial is 12-week prospective, single-arm, open-label trial. Men and women aged ≥20 years with diagnosed growth hormone deficiency (caused by pituitary tumor, trauma and other pituitary diseases) were eligible for this study. Each subject was given 2 mg (6 IU) of SR-rhGH once a week, subcutaneously for 12 weeks. Efficacy and safety at baseline and within 30 days after the 12th injection were assessed and compared. Score of Assessment of Growth Hormone Deficiency in Adults (AGHDA score) for quality of life and serum IGF-1 level. Results The IGF-1 level of 108.67±74.03 ng/mL was increased to 129.01±68.37 ng/mL (p=0.0111) and the AGHDA QoL score was decreased from 9.80±6.51 to 7.55±5.76 (p<0.0001) at week 12 compared with those at baseline. Adverse events included pain, swelling, erythema, and warmth sensation at the administration site, but many adverse events gradually disappeared during the investigation. Conclusion Weekly administered SR-rhGH for 12 weeks effectively increased IGF-1 level and improved the quality of life in patients with GH deficiency without serious adverse events. PMID:24954335

  11. Glucagon-like peptide-1 stimulates luteinizing hormone-releasing hormone secretion in a rodent hypothalamic neuronal cell line.

    PubMed Central

    Beak, S A; Heath, M M; Small, C J; Morgan, D G; Ghatei, M A; Taylor, A D; Buckingham, J C; Bloom, S R; Smith, D M

    1998-01-01

    To examine the influence of the putative satiety factor (GLP-1) on the hypothalamo-pituitary-gonadal axis, we used GT1-7 cells as a model of neuronal luteinizing hormone- releasing hormone (LHRH) release. GLP-1 caused a concentration-dependent increase in LHRH release from GT1-7 cells. Specific, saturable GLP-1 binding sites were demonstrated on these cells. The binding of [125I]GLP-1 was time-dependent and consistent with a single binding site (Kd = 0.07+/-0.016 nM; binding capacity = 160+/-11 fmol/mg protein). The specific GLP-1 receptor agonists, exendin-3 and exendin-4, also showed high affinity (Ki = 0.3+/-0.05 and 0.32+/-0.06 nM, respectively) as did the antagonist exendin-(9-39) (Ki = 0.98+/-0.24 nM). At concentrations that increased LHRH release, GLP-1 (0.5-10 nM) also caused an increase in intracellular cAMP in GT1-7 cells (10 nM GLP-1: 7.66+/-0.4 vs. control: 0.23+/-0.02 nmol/mg protein; P < 0.001). Intracerebroventricular injection of GLP-1 at a single concentration (10 microg) produced a prompt increase in the plasma luteinizing hormone concentration in male rats (GLP-1: 1.09+/-0.11 vs. saline: 0.69+/-0.06 ng/ml; P < 0.005). GLP-1 levels in the hypothalami of 48-h-fasted male rats showed a decrease, indicating a possible association of the satiety factor with the low luteinizing hormone levels in animals with a negative energy balance. PMID:9502775

  12. Developmental changes in hypothalamic Kiss1 expression during activation of the pulsatile release of luteinising hormone in maturing ewe lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onset of puberty is characterized by a marked increase in the frequency of release of gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH). The KISS1 gene plays a critical role in pubertal development and its product, kisspeptin, stimulates GnRH and LH release. In the study reported h...

  13. Role of thyrotropin-releasing hormone in prolactin-producing cell models.

    PubMed

    Kanasaki, Haruhiko; Oride, Aki; Mijiddorj, Tselmeg; Kyo, Satoru

    2015-12-01

    Thyrotropin-releasing hormone (TRH) is a hypothalamic hypophysiotropic neuropeptide that was named for its ability to stimulate the release of thyroid-stimulating hormone in mammals. It later became apparent that it exerts a number of species-dependent hypophysiotropic activities that regulate other pituitary hormones. TRH also regulates the synthesis and release of prolactin, although whether it is a physiological regulator of prolactin that remains unclear. Occupation of the Gq protein-coupled TRH receptor in the prolactin-producing lactotroph increases the turnover of inositol, which in turn activates the protein kinase C pathway and the release of Ca(2+) from storage sites. TRH-induced signaling events also include the activation of extracellular signal-regulated kinase (ERK) and induction of MAP kinase phosphatase, an inactivator of activated ERK. TRH stimulates prolactin synthesis through the activation of ERK, whereas prolactin release occurs via elevation of intracellular Ca(2+). We have been investigating the role of TRH in a pituitary prolactin-producing cell model. Rat pituitary somatolactotroph GH3 cells, which produce and release both prolactin and growth hormone (GH), are widely used as a model for the study of prolactin- and GH-secreting cells. In this review, we describe the general action of TRH as a hypophysiotropic factor in vertebrates and focus on the role of TRH in prolactin synthesis using GH3 cells.

  14. Ontogeny and pituitary regulation of testicular growth hormone-releasing hormone-like messenger ribonucleic acid.

    PubMed

    Berry, S A; Pescovitz, O H

    1990-09-01

    The testis is rich in central nervous system-type neuropeptides, including a GH-releasing hormone (GHRH)-like substance. We examined the ontogeny and pituitary regulation of testicular GHRH-like mRNA (t-GHRH mRNA) and compared this to expression of insulin-like growth factor-I (IGF-I) and IGF-II mRNA in developing testis. t-GHRH mRNA was measured by dot blot hybridization and quantitated using a hypothalamic GHRH cRNA standard. t-GHRH mRNA was not detectable in Northern blots in fetal testis on day 19 of gestation, but was present in low but detectable amounts in testicular dot blots on day 2 of life (0.44 pg/micrograms total RNA). Levels of the RNA increased beginning on day 21 (1.72 +/- 0.23 pg/micrograms total RNA) and reached adult levels by day 30 (4.96 +/- 0.84 pg/micrograms total RNA). The GHRH species on Northern analysis was about 1750 nucleotides at all ages examined; there was a larger species of about 3350 nucleotides seen on days 65 and 90. There was no correlation between the ontogeny of t-GHRH mRNA and either IGF-I or IGF-II mRNAs, which were maximally expressed in the testes of day 2 animals and decreased with age. To examine the influence of the pituitary gland on t-GHRH mRNA, levels of the mRNA were measured in the tests of hypophysectomized animals and age-matched controls. In animals hypophysectomized on day 21 and killed on day 42 and in animals hypophysectomized on day 42 and killed on day 63, there was marked diminution of t-GHRH mRNA (19 +/- 5% and 9 +/- 2% of age-matched controls, respectively). In contrast, in animals hypophysectomized on day 65 and killed on either day 80 or 90, there was a much smaller difference in levels of t-GHRH mRNA compared to values in control animals (73 +/- 20%). This was unlike the effect of hypophysectomy on testicular IGF-I mRNA, where uniform diminution was seen in all three groups. Because GH is important in the regulation of hypothalamic GHRH mRNA, we examined the effects of administration of recombinant

  15. In vitro effect of. Delta. sup 9 -tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E sub 2

    SciTech Connect

    Rettori, V.; Aguila, M.C.; McCann, S.M. ); Gimeno, M.F.; Franchi, A.M. )

    1990-12-01

    Previous in vivo studies have shown that {Delta}{sup 9}-tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were deigned to determine the mechanism of these effects. Various doses of THC were incubated with either stalk median eminence fragments (MEs) or mediobasal hypothalamic (MBH) fragments in vitro. Although THC (10 nM) did not alter basal release of LH-releasing hormone (LHRH) from MEs in vitro, it completely blocked the stimulatory action of dopamine or nonrepinephrine on LHRH release. The effective doses to block LHRH release were associated with a blockade of synthesis and release of prostaglandin E{sub 2} (PGE{sub 2}) from MBH in vitro. In contrast to the suppressive effect of THC on LHRH release, somatostatin release from MEs was enhanced in a dose-related manner with a minimal effective dose of 1 nM. Since PGE{sub 2} suppresses somatostatin release, this enhancement may also be related to the suppressive effect of THC on PGE{sub 2} synthesis and release. The authors speculate that these actions are mediated by the recently discovered THC receptors in the tissue. The results indicate that the suppressive effect of THC on LH release is mediated by a blockade of LHRH release, whereas the suppressive effect of the compound on growth hormone release is mediated, at least in part, by a stimulation of somatostatin release.

  16. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis.

    PubMed

    Skinner, D C; Albertson, A J; Navratil, A; Smith, A; Mignot, M; Talbott, H; Scanlan-Blake, N

    2009-03-01

    Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.

  17. Pituitary and testicular response to luteinizing hormone releasing hormone in normal and sulpiride-induced hyperprolactinaemic men.

    PubMed

    Nakano, R; Yagi, S; Nishi, T

    1988-05-01

    Pituitary and testicular response to an intravenous infusion of 480 micrograms luteinizing hormone releasing hormone (LHRH) for 8 hours (1 microgram/min) was investigated in 8 male volunteers in normal and hyperprolactinaemic state. Eight normal men were given 150 mg of sulpiride daily for 14 days. Serum prolactin (PRL) levels were elevated significantly, but basal serum levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not change following daily oral administration of sulpiride in 8 normal men. Eight men showed biphasic LH response to LHRH infusion in both normal and hyperprolactinaemic state, and there was a rather exaggerated response in serum LH concentration in hyperprolactinaemic state. Serum FSH response to LHRH was similar in normal and hyperprolactinaemic state. Although slight increase in serum testosterone concentration was observed during LHRH infusion in normal and hyperprolactinaemic state, the statistical difference was not significant. The result of the present study suggests that the function of the hypothalamic-pituitary-testicular axis, as measured by serum gonadotrophin and testosterone responses, is well reserved.

  18. Intimate associations between the endogenous opiate systems and the growth hormone-releasing hormone system in the human hypothalamus.

    PubMed

    Olsen, J; Peroski, M; Kiczek, M; Grignol, G; Merchenthaler, I; Dudas, B

    2014-01-31

    Although it is a general consensus that opioids modulate growth, the mechanism of this phenomenon is largely unknown. Since endogenous opiates use the same receptor family as morphine, these peptides may be one of the key regulators of growth in humans by impacting growth hormone (GH) secretion, either directly, or indirectly, via growth hormone-releasing hormone (GHRH) release. However, the exact mechanism of this regulation has not been elucidated yet. In the present study we identified close juxtapositions between the enkephalinergic/endorphinergic/dynorphinergic axonal varicosities and GHRH-immunoreactive (IR) perikarya in the human hypothalamus. Due to the long post mortem period electron microscopy could not be utilized to detect the presence of synapses between the enkephalinergic/endorphinergic/dynorphinergic and GHRH neurons. Therefore, we used light microscopic double-label immunocytochemistry to identify putative juxtapositions between these systems. Our findings revealed that the majority of the GHRH-IR perikarya formed intimate associations with enkephalinergic axonal varicosities in the infundibular nucleus/median eminence, while endorphinergic-GHRH juxtapositions were much less frequent. In contrast, no significant dynorphinergic-GHRH associations were detected. The density of the abutting enkephalinergic fibers on the surface of the GHRH perikarya suggests that these juxtapositions may be functional synapses and may represent the morphological substrate of the impact of enkephalin on growth. The small number of GHRH neurons innervated by the endorphin and dynorphin systems indicates significant differences between the regulatory roles of endogenous opiates on growth in humans. PMID:24239719

  19. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners.

    PubMed

    MacConnie, S E; Barkan, A; Lampman, R M; Schork, M A; Beitins, I Z

    1986-08-14

    Hypogonadotropic hypogonadism due to a deficiency in hypothalamic gonadotropin-releasing hormone is common in female athletes ("hypothalamic amenorrhea"). It is not known, however, whether a similar phenomenon occurs in male athletes. We investigated the integrity of the hypothalamic-pituitary-gonadal axis in six highly trained male marathon runners (who were running 125 to 200 km per week). The mean (+/- SEM) frequency of spontaneous luteinizing hormone pulses was diminished in the runners, as compared with healthy controls (2.2 +/- 0.48 vs. 3.6 +/- 0.24 pulses per eight hours, P less than 0.05). The amplitude of the pulses was also low in the runners (0.9 +/- 0.24 vs. 1.6 +/- 0.15 mlU per milliliter; P less than 0.05), and the responses of luteinizing hormone to gradually increasing doses of exogenous gonadotropin-releasing hormone were decreased. Plasma testosterone levels were similar in the two groups and increased equally in response to an intramuscular injection of 2000 units of human chorionic gonadotropin. During short-term intense physical exercise (a treadmill run at 72 percent of maximal oxygen consumption for two hours), the plasma gonadotropin levels in the athletes remained stable, but significant elevations in plasma levels of cortisol, prolactin, and testosterone occurred. We conclude that highly trained male athletes, like their female counterparts, may have a deficiency of hypothalamic gonadotropin-releasing hormone. This condition may be caused by the prolonged, repetitive elevations of gonadal steroids and other hormones known to suppress gonadotropin-releasing hormone secretion that are elicited by their daily exercise.

  20. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    SciTech Connect

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10/sup 5//well). Cells treated with GnRH Ca/sup + +/ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca/sup + +/-free media prevented the action of GnRH. GnRH caused a rapid efflux of /sup 45/Ca/sup + +/. Both GnRH-stimulated /sup 45/Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect /sup 45/Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE/sub 2/ and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca/sup + +/ does not regulate LH release; (2) GnRH elevates intracellular Ca/sup + +/ by opening both voltage sensitive and receptor mediated Ca/sup + +/ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release.

  1. Atrazine inhibits pulsatile luteinizing hormone release without altering pituitary sensitivity to a gonadotropin-releasing hormone receptor agonist in female Wistar rats.

    PubMed

    Foradori, Chad D; Hinds, Laura R; Hanneman, William H; Legare, Marie E; Clay, Colin M; Handa, Robert J

    2009-07-01

    Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-tri-azine] is one of the most commonly used herbicides in the United States. Atrazine has been shown to suppress luteinizing hormone (LH) release and can lead to a prolongation of the estrous cycle in the rat. The objectives of this study were to examine the effects of atrazine on normal tonic release of LH and to elucidate the site of action of atrazine in the hypothalamic-pituitary-gonadal axis. Episodic release of gonadotropin-releasing hormone (GnRH) and the corresponding release of LH from the anterior pituitary gland are required for normal reproductive function. To determine if atrazine affects pulsatile LH release, ovariectomized adult female Wistar rats were administered atrazine (50, 100, or 200 mg/kg of body weight daily by gavage) or vehicle control for 4 days. On the final day of atrazine treatment, blood samples were obtained using an indwelling right atrial cannula. In the group receiving 200 mg/kg, there was a significant reduction in LH pulse frequency and a concomitant increase in pulse amplitude. To determine if the effects of atrazine on LH release were due to changes at the level of the pituitary, animals were passively immunized against endogenous GnRH, treated with atrazine, and challenged with a GnRH receptor agonist. Atrazine failed to alter pituitary sensitivity to the GnRH receptor agonist at any dose used. Taken together, these findings demonstrate that high doses of atrazine affect the GnRH pulse generator in the brain and not at the level of gonadotrophs in the pituitary.

  2. Space weightlessness and hormonal changes in human subjects and experimental animals

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.

    1982-01-01

    Data from spaceflight and bed rest studies are briefly described and the difficulties in interpreting these results are discussed. Growth hormone, prolactin, adrenocorticotropic hormone, cortisol, insulin, aldosterone, and other hormones are addressed.

  3. Acute Effect of Manganese on Hypothalamic Luteinizing Hormone Releasing Hormone Secretion in Adult Male Rats: Involvement of Specific Neurotransmitter Systems

    PubMed Central

    Prestifilippo, Juan Pablo; Fernández-Solari, Javier; De Laurentiis, Andrea; Mohn, Claudia Ester; de la Cal, Carolina; Reynoso, Roxana; Dees, W. Les; Rettori, Valeria

    2008-01-01

    Manganese chloride (MnCl2) is capable of stimulating luteinizing hormone releasing hormone (LHRH) secretion in adult male Sprague-Dawley rats through the activation of the hypothalamic nitric oxide/cyclic guanosine monophosphate (cGMP)/protein kinase G pathway. The present study aimed to determine the involvement of specific neurotransmitters involved in this action. Our results indicate that dopamine, but not glutamic acid and prostaglandinds, mediates the MnCl2 stimulated secretion of LHRH from medial basal hypothalami in vitro, as well as increases the activity of nitric oxide synthase. Furthermore, a biphasic response was observed in that gamma aminobutyric acid (GABA) release was also increased, which acts to attenuate the MnCl2 action to stimulate LHRH secretion. Although it is clear that manganese (Mn+2) can acutely induce LHRH secretion in adult males, we suggest that the additional action of MnCl2 to release GABA, a LHRH inhibitor, may ultimately contribute to suppressed reproductive function observed in adult animals following exposure to high chromic levels of Mn+2. PMID:18603625

  4. Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells.

    PubMed

    Zimmer, Bastian; Piao, Jinghua; Ramnarine, Kiran; Tomishima, Mark J; Tabar, Viviane; Studer, Lorenz

    2016-06-14

    Human pluripotent stem cells (hPSCs) provide an unlimited cell source for regenerative medicine. Hormone-producing cells are particularly suitable for cell therapy, and hypopituitarism, a defect in pituitary gland function, represents a promising therapeutic target. Previous studies have derived pituitary lineages from mouse and human ESCs using 3D organoid cultures that mimic the complex events underlying pituitary gland development in vivo. Instead of relying on unknown cellular signals, we present a simple and efficient strategy to derive human pituitary lineages from hPSCs using monolayer culture conditions suitable for cell manufacturing. We demonstrate that purified placode cells can be directed into pituitary fates using defined signals. hPSC-derived pituitary cells show basal and stimulus-induced hormone release in vitro and engraftment and hormone release in vivo after transplantation into a murine model of hypopituitarism. This work lays the foundation for future cell therapy applications in patients with hypopituitarism.

  5. Insulin Augments Gonadotropin-Releasing Hormone Induction of Translation in LβT2 Cells

    PubMed Central

    Navratil, Amy M.; Song, Hyunjin; Hernandez, Jeniffer B.; Cherrington, Brian D.; Santos, Sharon J.; Low, Janine M.; Do, Minh-Ha T.; Lawson, Mark A.

    2009-01-01

    Summary The integrated signaling of insulin and gonadotropin-releasing hormone in the pituitary gonadotropes may have a profound bearing on reproductive function, although the cross-receptor signaling mechanisms are unclear. We demonstrate that the insulin receptor is constitutively localized to non-caveolar lipid raft microdomains in the pituitary gonadotrope cell line LβT2. The localization to rafts is consistent with similar localization of the GnRH receptor. Insulin receptor phosphorylation occurs in raft domains and activates the downstream signaling targets Insulin Receptor Substrate1 and Akt/Protein Kinase B. Although insulin alone does not strongly activate the extracellular signal-regulated kinase second messenger cascade, co-stimulation potentiates the phosphorylation of the extracellular signal-regulated kinase by gonadotropin-releasing hormone. The co-stimulatory effect of insulin and gonadotropin-releasing hormone is also evident in increased activation of cap-dependent translation. In contrast, co-stimulation attenuates Akt/Protein Kinase B activation. Our results show that both gonadotropin-releasing hormone and insulin are capable of mutually altering their respective regulatory signaling cascades. We suggest that this provides a mechanism to integrate neuropeptide and energy homeostatic signals to modulate reproductive function. PMID:19632296

  6. Bovine acute-phase response following different doses of corticotrophin-releasing hormone challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourteen weaned Angus steers (BW = 191 ± 2.1 kg, age = 167 ± 4.7 d) fitted with an indwelling jugular catheter and a rectal temperature (RT) monitoring device were ranked by BW and assigned to receive 1 of 3 treatments (i.v.): 1) 0.1 ug of bovine corticotrophin-release hormone (CRH)/kg of BW (CRH1; ...

  7. Trifluoperazine inhibits thyrotropin-releasing hormone-stimulated TSH secretion.

    PubMed

    Zofková, I; BednárJ

    1986-09-01

    In previous work changes of the thyrotropic secretion after administration of some substances affecting the calcium content in the cytosol were demonstrated. The object of the present investigation was to assess the hormonal response to the administration of trifluoperazine, a psychopharmaceutical preparation, the main mechanism of its action being the inactivation of the cytosol receptor for the calcium signal - calmodulin. The poor utilization of intracellular calcium of the secretory cell is then the factor which inhibits secretion proper. The thyrotropic secretory reserve (delta TSH) was assessed in the same subjects before and after trifluoperazine administration by the TRH test as the difference of values at rest and TRH-stimulated TSH levels during the 20th, 30th, 40th and 60th minute following intravenous administration of 200 micrograms TRH. It was revealed that this calmodulin antagonist administered for one week in amounts of 6-12 mg per day by mouth significantly inhibits the secretory response of TSH to TRH in healthy subjects during the 20th and 40th min. (P less than 0.05). The reproducibility of the TRH test repeated in a group of subjects not treated with trifluoperazine, however, under equal conditions and after the same time intervals as in the experiment with trifluoperazine was very satisfactory and thus physiological inhibition caused by repeated TRH administration could be ruled out. The inhibition of the secretory TSH response to TRH can be therefore considered the consequence of the direct effect of trifluoperazine on the thyrotropic secretory mechanism. Trifluoperazine significantly reduced serum calcium levels and raised phosphate levels, while it did not affect the blood levels of magnesium.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Ionic channels and hormone release from peptidergic nerve terminals.

    PubMed

    Lemos, J R; Nordmann, J J

    1986-09-01

    Although there is considerable evidence that depolarization of nerve cell terminals leads to the entry of Ca2+ and to the secretion of neurohormones and neurotransmitters, the details of how ionic currents control the release of neuroactive substances from nerve terminals are unknown. The small size of most nerve terminals has precluded direct analysis of membrane ionic currents and their influence on secretion. We now report that it is possible, using patch-clamp techniques, to study stimulus--secretion coupling in isolated peptidergic nerve terminals. Sinus gland terminals from Cardisoma are easily isolated following collagenase treatment and appear morphologically and electrically very similar to non-dissociated nerve endings. We have observed two types of single-channel currents not previously described. The first ('f') channel is activated by intracellular Na+ and the second ('s') by intracellular Ca2+. Both show little selectivity between Na+ and K+. In symmetrical K+, these cation channels have mean conductances of 69 and 213 pS, respectively. Furthermore, at least three types of Ca2+ channels can be reconstituted from nerve terminal membranes prepared from sinus glands. Nerve terminals can also be isolated from the rat neural lobe. These neurosecretosomes release oxytocin and vasopressin, in response to membrane depolarization, only in the presence of external Ca2+. The depolarization of the nerve endings is associated with an increase in intracellular free Ca2+ concentration and this increase, measured using a fluorescent indicator, is abolished by Ca2+ channel blockers. Channels similar in their properties to the f and s channels also exist in rat neural lobe endings. Since these channels have not been found in other neurones or neuronal structures they may be unique to peptidergic nerve terminals.

  9. Regulation of Gonadotropin-Releasing Hormone Secretion by Cannabinoids

    PubMed Central

    GAMMON, C. MICHAEL; FREEMAN, G. MARK; XIE, WEIHUA; PETERSEN, SANDRA L.; WETSEL, WILLIAM C.

    2005-01-01

    Cannabinoids (CBs) exert untoward effects on reproduction by reducing LH secretion and suppressing gonadal function. Recent evidence suggests these effects are due primarily to hypothalamic dysfunction; however, the mechanism is obscure. Using immortalized hypothalamic GnRH neurons, we find these cells produce and secrete at least two different endocannabinoids. Following release, 2-arachidonyl monoacylglycerol and anandamide are rapidly transported into GnRH neurons and are degraded to other lipids by fatty-acid amide hydrolase. The immortalized GnRH neurons also possess CB1 and CB2 receptors that are coupled to Gi/Go proteins whose activation leads to inhibition of GnRH secretion. In perifusion experiments, CBs block pulsatile release of GnRH. When a CB receptor agonist is delivered into the third ventricle of adult female mice, estrous cycles are prolonged by at least 2 days. Although in situ hybridization experiments suggest either that GnRH neurons in vivo do not possess CB1 receptors or that they are very low, transcripts are localized in close proximity to these neurons. Inasmuch as GnRH neurons in vivo possess G protein receptors that are coupled to phospholipase C and increased intracellular Ca2+, these same neurons should also be able to synthesize endocannabinoids. These lipids, in turn, could bind to CB receptors on neighboring cells and perhaps, GnRH neurons, to exert feedback control over GnRH function. This network could serve as a novel mechanism for regulating GnRH secretion where reproductive functions as diverse as the onset of puberty, timing of ovulation, duration of lactational infertility, and initiation/persistence of menopause may be affected. PMID:16020480

  10. A 66-bp deletion in growth hormone releasing hormone gene 5'-flanking region with largemouth bass recessive embryonic lethal.

    PubMed

    Ma, D M; Han, L Q; Bai, J J; Li, S J; Fan, J J; Yu, L Y; Quan, Y C

    2014-06-01

    Growth hormone releasing hormone (GHRH) regulates the secretion of growth hormone (GH) in the pituitary gland. A 66-bp deletion (c.-923_-858del) was detected in the 5'-flanking sequence of the largemouth bass (Micropterus salmoides) GHRH gene. In two cultured random populations of adult individuals (A: n = 170 and B: n = 150), the genotype ratios of +/+:+/- were 2.5:1 and 2.8:1 respectively. Only one -/- fish was detected. A Largemouth bass family was constructed with two heterozygous individuals (+/-) as parents. The genotype ratio of +/+:+/-:-/- in the filial generation embryos was 1:1.6:0.1 at the neurula and 1:2:0 at hatched larvae stages. This indicated that the 66-bp deletion was a recessive lethal site and that homozygous individuals (-/-) died off in embryonic development. The growth traits (body weight, body length and body depth) were measured, and the GHRH mRNA expression levels in brain tissue were detected using real-time PCR. The effects of genotype (+/-) on growth traits and GHRH mRNA expression were not significant. Although the cause of death was not clear, the results hint that the 66-bp deletion site in GHRH 5'-flanking sequence significantly affects the livability in largemouth bass embryonic development. PMID:24697798

  11. A 66-bp deletion in growth hormone releasing hormone gene 5'-flanking region with largemouth bass recessive embryonic lethal.

    PubMed

    Ma, D M; Han, L Q; Bai, J J; Li, S J; Fan, J J; Yu, L Y; Quan, Y C

    2014-06-01

    Growth hormone releasing hormone (GHRH) regulates the secretion of growth hormone (GH) in the pituitary gland. A 66-bp deletion (c.-923_-858del) was detected in the 5'-flanking sequence of the largemouth bass (Micropterus salmoides) GHRH gene. In two cultured random populations of adult individuals (A: n = 170 and B: n = 150), the genotype ratios of +/+:+/- were 2.5:1 and 2.8:1 respectively. Only one -/- fish was detected. A Largemouth bass family was constructed with two heterozygous individuals (+/-) as parents. The genotype ratio of +/+:+/-:-/- in the filial generation embryos was 1:1.6:0.1 at the neurula and 1:2:0 at hatched larvae stages. This indicated that the 66-bp deletion was a recessive lethal site and that homozygous individuals (-/-) died off in embryonic development. The growth traits (body weight, body length and body depth) were measured, and the GHRH mRNA expression levels in brain tissue were detected using real-time PCR. The effects of genotype (+/-) on growth traits and GHRH mRNA expression were not significant. Although the cause of death was not clear, the results hint that the 66-bp deletion site in GHRH 5'-flanking sequence significantly affects the livability in largemouth bass embryonic development.

  12. Orchidectomy selectively increases follicle-stimulating hormone secretion in gonadotropin-releasing hormone antagonist-treated male rats.

    PubMed

    Tena-Sempere, M; Pinilla, L; Aguilar, E

    1995-03-01

    The pituitary component of the feedback mechanisms exerted by testicular factors on gonadotropin secretion was analyzed in adult male rats treated with a potent gonadotropin-releasing hormone (GnRH) antagonist. In order to discriminate between androgens and testicular peptides, groups of males were orchidectomized (to eliminate androgens and non-androgenic testicular factors) or injected with ethylene dimethane sulfonate (EDS), a selective toxin for Leydig cells (to eliminate selectively androgens) and treated for 15 days with vehicle or the GnRH antagonist Ac-D-pClPhe-D-pClPhe-D-Trp-Ser-Tyr-D-Arg-Leu-Arg-Pro-D-Ala-+ ++NH2CH3COOH (Org.30276, 5 mg/kg/72 hours). Serum concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured 7 and 14 days after the beginning of treatment. We found that: in males treated with GnRH antagonist, orchidectomy or EDS treatment did not induce any increase in LH secretion; and orchidectomy, but not EDS treatment, increased FSH secretion in GnRH-treated males. The present results show that negative feedback of testicular factors on LH secretion is mediated completely through changes in GnRH actions. In contrast, a part of the inhibitory action of the testis on FSH secretion is exerted directly at the pituitary level. It can be hypothesized that non-Leydig cell testicular factor(s) inputs at different levels of the hypothalamic-pituitary axis in controlling LH and FSH secretion.

  13. New insights on the role of luteinizing hormone releasing hormone agonists in premenopausal early breast cancer patients.

    PubMed

    Del Mastro, Lucia; Rossi, Giovanni; Lambertini, Matteo; Poggio, Francesca; Pronzato, Paolo

    2016-01-01

    Luteinising hormone releasing hormone agonists (LH-RHa) are effective in the treatment of advanced endocrine-sensitive breast cancer in premenopausal patients, but their role in the adjuvant setting has remained controversial for a long time. Tamoxifen for 5 years has been traditionally considered the standard endocrine therapy for premenopausal patients and this is still valid for many patients. However, the recently reported SOFT trial has suggested that adding ovarian function suppression (OFS) to tamoxifen could improve DFS in women at sufficient risk to warrant adjuvant chemotherapy and who remained premenopausal after this therapy. The administration of an aromatase inhibitor plus OFS represents an additional therapeutic option for hormone-receptor positive premenopausal breast cancer patients, according to the combined analysis of the SOFT and TEXT trials. Temporary ovarian suppression induced by LH-RHa has been recognized as an effective strategy to preserve ovarian function from the toxic effects of chemotherapy and is now recommended in young breast cancer patients with endocrine-insensitive tumors. In this review, we discuss recent data on the role of LH-RHa in combination with tamoxifen or with an aromatase inhibitor, and we comment on its role as a strategy to preserve ovarian function in young patients candidates for adjuvant or neo-adjuvant chemotherapy.

  14. Gonadotrophin releasing hormone-based vaccine, an effective candidate for prostate cancer and other hormone-sensitive neoplasms.

    PubMed

    Junco, Jesús A; Basalto, Roberto; Fuentes, Franklin; Bover, Eddy; Reyes, Osvaldo; Pimentel, Eulogio; Calzada, Lesvia; Castro, Maria D; Arteaga, Niurka; López, Yovisleidis; Hernández, Héctor; Bringas, Ricardo; Garay, Hilda; Peschke, Peter; Bertot, José; Guillén, Gerardo

    2008-01-01

    Prostate growth, development, functions, and neoplastic transformation is androgen dependent. Estrogens have similar effects in the ovary and breast. Previous studies using gonadotrophin releasing hormone (GnRH/LHRH) vaccines have shown the usefulness of immunization against this hormone in prostate (PC) and breast cancer (BC). We have synthesized a peptide mutated at position 6 and attached to the 830-844 tetanic toxoid (TT) helper T cell sequence in the same synthesis process. After repeated pig immunizations, we have demonstrated a vaccine that significantly decreased testes size (p < 0.001), prostate (p < 0.01), seminal vesicles (p < 0.01), and testosterone (T) castration [0.05 nM ml(-1) (p < 0. 01)]. Similar results were obtained in adult male and female healthy dogs and Macaca fascicularis models. These data indicate that this GnRHm1-TT vaccine is safe and able to induce significant tumor growth inhibition in the Dunning R3327-H rat androgen responsive prostate tumor model. In these rats, the immunization induced high anti-GnRH titers concomitant with T castration reduction (p < 0.01) in 90% of the animals tested. In addition, 70% of the responders exhibited tumor growth inhibition (p = 0.02) and a survival rate approximately three times longer that those of untreated rats. These data indicate that GnRHm1-TT vaccine may be a potential candidate in the treatment of PC, BC, and other hormone-dependent cancers. PMID:18497085

  15. Gonadotrophin releasing hormone-based vaccine, an effective candidate for prostate cancer and other hormone-sensitive neoplasms.

    PubMed

    Junco, Jesús A; Basalto, Roberto; Fuentes, Franklin; Bover, Eddy; Reyes, Osvaldo; Pimentel, Eulogio; Calzada, Lesvia; Castro, Maria D; Arteaga, Niurka; López, Yovisleidis; Hernández, Héctor; Bringas, Ricardo; Garay, Hilda; Peschke, Peter; Bertot, José; Guillén, Gerardo

    2008-01-01

    Prostate growth, development, functions, and neoplastic transformation is androgen dependent. Estrogens have similar effects in the ovary and breast. Previous studies using gonadotrophin releasing hormone (GnRH/LHRH) vaccines have shown the usefulness of immunization against this hormone in prostate (PC) and breast cancer (BC). We have synthesized a peptide mutated at position 6 and attached to the 830-844 tetanic toxoid (TT) helper T cell sequence in the same synthesis process. After repeated pig immunizations, we have demonstrated a vaccine that significantly decreased testes size (p < 0.001), prostate (p < 0.01), seminal vesicles (p < 0.01), and testosterone (T) castration [0.05 nM ml(-1) (p < 0. 01)]. Similar results were obtained in adult male and female healthy dogs and Macaca fascicularis models. These data indicate that this GnRHm1-TT vaccine is safe and able to induce significant tumor growth inhibition in the Dunning R3327-H rat androgen responsive prostate tumor model. In these rats, the immunization induced high anti-GnRH titers concomitant with T castration reduction (p < 0.01) in 90% of the animals tested. In addition, 70% of the responders exhibited tumor growth inhibition (p = 0.02) and a survival rate approximately three times longer that those of untreated rats. These data indicate that GnRHm1-TT vaccine may be a potential candidate in the treatment of PC, BC, and other hormone-dependent cancers.

  16. Growth hormone response to a growth hormone-releasing hormone stimulation test in a population-based study following cranial irradiation of childhood brain tumors.

    PubMed

    Schmiegelow, M; Lassen, S; Poulsen, H S; Feldt-Rasmussen, U; Schmiegelow, K; Hertz, H; Müller, J

    2000-01-01

    Children with brain tumors are at high risk of developing growth hormone deficiency (GHD) after cranial irradiation (CI) if the hypothalamus/pituitary (HP) axis falls within the fields of irradiation. The biological effective dose (BED) of irradiation to the HP region was determined, since BED gives a means of expressing the biological effect of various irradiation treatment schedules in a uniform way. Hypothalamic versus pituitary damage as cause of GHD was distinguished in 62 patients by comparing the growth hormone (GH) peak response to an insulin tolerance test (ITT)/arginine stimulation test and the GH response to a growth hormone-releasing hormone (GHRH) stimulation test. Peak GH response to a GHRH test was significantly higher (median 7.3 mU/l; range: 0.5--79.0 mU/l) than that of an ITT/arginine test (median 4.7 mU/l; range: 0.01--75.0 mU/l) (p = 0.017). Peak GH after a GHRH test was significantly inversely correlated to follow-up time (r(s) = -0.46, p < 0.0001) and to BED (R(s) = -0.28, p = 0.03), and both were found to be of significance in a multivariante regression analysis. We speculate that a significant number of patients developed hypothalamic radiation-induced damage to the GHRH secreting neurons, and secondary to this the pituitary gland developed decreased responsiveness to GHRH following CI in childhood.

  17. Active immunization of gilts against gonadotropin-releasing hormone: effects on secretion of gonadotropins, reproductive function, and responses to agonists of gonadotropin-releasing hormone.

    PubMed

    Esbenshade, K L; Britt, J H

    1985-10-01

    Sexually mature gilts were actively immunized against gonadotropin-releasing hormone (GnRH) by conjugating GnRH to bovine serum albumin, emulsifying the conjugate in Freund's adjuvant, and giving the emulsion as a primary immunization at Week 0 and as booster immunizations at Weeks 10 and 14. Antibody titers were evident by 2 wk after primary immunization and increased markedly in response to booster immunizations. Active immunization against GnRH caused gonadotropins to decline to nondetectable levels, gonadal steroids to decline to basal levels, and the gilts to become acyclic. Prolactin concentrations in peripheral circulation were unaffected by immunization against GnRH. The endocrine status of the hypothalamic-pituitary-ovarian axis was examined by giving GnRH and two agonists to GnRH and by ovariectomy. An i.v. injection of 100 micrograms GnRH caused release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in control animals, but not in gilts immunized against GnRH. In contrast, administration of 5 micrograms D-(Ala6, des-Gly-NH2(10] ethylamide or 5 micrograms D-(Ser-t-But6, des-Gly-NH2(10] ethylamide resulted in immediate release of LH and FSH in both control and GnRH-immunized gilts. Circulating concentrations of LH and FSH increased after ovariectomy in the controls, but remained at nondetectable levels in gilts immunized against GnRH. Prolactin concentrations did not change in response to ovariectomy. We conclude that cyclic gilts can be actively immunized against GnRH and that this causes cessation of estrous cycles and inhibits secretion of LH, FSH, and gonadal steroids.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty.

    PubMed

    Judge, D M; Kulin, H E; Page, R; Santen, R; Trapukdi, S

    1977-01-01

    The presence of a hypothalamic hamartoma and precocious puberty in a 19-month-old boy provided an opportunity to study their relation. Excised tissue had the ultrastructural characteristics of an independent neuroendocrine unit -- i.e., neurons containing neurosecretory granules and blood vessels with fenestrated endothelium and double basement membranes. Immunofluorescence studies using specific antibody to luteinizing-hormone-releasing factor showed antigenicity to the factor in the hamartoma. The testicular-hypothalamic-pituitary axis was tested. Clomiphene unresponsiveness suggested a lack of maturation of central-nervous-system events characteristic of normal puberty. The negative feedback system between gonad and brain was intact but partially resistant to steroid suppression. These studies suggest that hypothalamic hamartomas may cause precocious puberty by autonomous production and release of luteinizing-hormone-releasing factor into vessels that communicate with the pituitary portal blood system.

  19. [Effect of gastrectomy on release of gut hormones].

    PubMed

    Misumi, A; Harada, K; Mizumoto, S; Yoshinaka, I; Maeda, M; Nakashima, Y; Ogawa, M

    1991-09-01

    We investigated the effect of gastrectomy on the digestive system in 87 postoperative long-term survivors under test meal or egg yolk load. After test meal, gastrin and secretin responses were decreased in each of groups of proximal gastrectomy (PG), distal gastrectomy with Billroth-I (DG-B1), that with Billroth-II (DG-B2), total gastrectomy with interposition (TG-I), and that with Roux-Y (TG-RY). However, sufficient acid-secretors after partial gastrectomy showed secretin responses comparable to controls. Furthermore, cases of total gastrectomy given betain-hydrochloride with test meal increased secretin responses. Serum glucose response was higher in the TG-RY group while insulin response was high in the TG-RY and DG-B2 groups, compared with controls. GLI response was high in all groups compared with controls. Postgastrectomy gallstone occurred in 11.6%. Yolk-induced contraction of the gallbladder was decreased, and CCK release increased, for several years postoperatively. Gallbladder contraction with CCK was reduced for one year postoperatively. The contraction was reduced in persons with gallstone than those without it. This study shows that the digestive function after gastrectomy depends on acidification and duodenal passage of food, and that reduced contraction with CCK plays an important role in hypokinesis of the gallbladder. PMID:1944181

  20. Highly potent analogues of luteinizing hormone-releasing hormone containing D-phenylalanine nitrogen mustard in position 6

    SciTech Connect

    Bajusz, S.; Janaky, T.; Csernus, V.J.; Bokser, L.; Fekete, M.; Srkalovic, G.; Redding, T.W.; Schally, A.V. )

    1989-08-01

    The nitrogen mustard derivatives of 4-phenylbutyric acid and L-phenylalanine, called chlorambucil (Chl) and melphalan (Mel), respectively, have been incorporated into several peptide hormones, including luteinizing hormone-releasing hormone (LH-RH). The alkylating analogues of LH-RH were prepared by linking Chl, as an N-acyl moiety, to the complete amino acid sequence of agonistic and antagonistic analogues. These compounds, in particular the antagonistic analogues, showed much lower potency than their congeners carrying other acyl groups. To obtain highly potent alkylating analogues of LH-RH, the D enantiomer of Mel was incorporated into position 6 of the native hormone and some of its antagonistic analogues. Of the peptides prepared, (D-Mel{sup 6})LH-RH (SB-05) and (Ac-D-Nal(2){sup 1},D-Phe(pCl){sup 2},D-Pal(3){sup 3},Arg{sup 5},D-Mel{sup 6},D-Ala{sup 10})LH-RH (SB-86, where Nal(2) is 3-(2-naphthyl)alanine and Pal(3) is 3-(3-pyridyl)alanine) possessed the expected high agonistic and antagonistic activities, respectively, and also showed high affinities for the membrane receptors of rat pituitary cells, human breast cancer cells, human prostate cancer cells, and rat Dunning R-3327 prostate tumor cells. These two analogues exerted cytotoxic effects on human and rat mammary cancer cells in vitro. Thus these two D-Mel{sup 6} analogues seem to be particularly suitable for the study of how alkylating analogues of LH-RH could interfere with intracellular events in certain cancer cells.

  1. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man.

    PubMed

    Holsboer, F; von Bardeleben, U; Steiger, A

    1988-07-01

    Corticotropin-releasing hormone (CRH) plays a key role in coordinating neuroendocrine, metabolic and behavioral responses in stress and affective disorders. To further investigate the effects of enhanced pituitary-adrenocortical activity upon sleep-related phenomena we administered four intravenous injections of 50 micrograms human (h)-CRH or saline to 11 normal males at 10 p.m., 11 p.m., 12 p.m. and 1 a.m. and measured plasma levels of cortisol and growth hormone (GH) as well as sleep EEG recordings throughout the night. Treatment with h-CRH resulted in a significant increase of mean (+/- SEM) cortisol secretion between 11 p.m. and 3 a.m. (h-CRH: 100.6 +/- 9.5 ng/ml; saline: 39.0 +/- 1.5 ng/ml; p less than 0.01). This initial cortisol increase after repeated h-CRH stimulations was followed by a period of attenuated plasma cortisol between 3 and 7 a.m. (h-CRH: 70.3 +/- 7.0 ng/ml; saline: 115.5 +/- 8.0 ng/ml; p less than 0.01). Cortisol surges after h-CRH were associated with a significant blunting of sleep-related GH release expressed as areas under concentration curves (h-CRH: 1.245 +/- 0.32 ng/ml/min.10(3); saline: 2.462 +/- 0.92 ng/ml/min.10(3), p less than 0.01). In addition to these hormonal effects, h-CRH induced a decrease of REM and slow wave sleep (stages III and IV) while the amount of more shallow sleep (stages I and II) increased. These effects upon sleep structure were more pronounced during the second part of the night.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Gonadotropin-releasing hormone-stimulated gonadotropin levels in women with premenstrual dysphoria.

    PubMed

    Smith, M J; Schmidt, P J; Su, T P; Rubinow, D R

    2004-12-01

    Despite consistent evidence that premenstrual dysphoria (PMD) is not characterized by abnormalities in basal ovarian hormone secretion, the possibility remains that PMD is associated with an abnormality in the regulation of the hypothalamic-pituitary-ovarian (HPO) axis. We studied HPO axis regulation in 11 women with prospectively confirmed PMD and 20 asymptomatic controls, during both the follicular and luteal phases of the menstrual cycle. Plasma levels of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), were obtained before and after stimulation with gonadotropin-releasing hormone (GnRH) (100 microg intravenously). Potential diagnostic- and menstrual cycle phase-related diferences in basal and plasma hormone levels were analyzed by repeated-measures analysis of variance. No significant differences were observed between women with PMD and controls in either basal or stimulated levels of FSH and LH. Stimulated FSH was significantly increased and stimulated LH was significantly decreased during the follicular compared with the luteal phase in both women with PMD and controls. These data are consistent with prior findings of normal basal reproductive hormone levels in women with PMD. Our data suggest the absence in women with PMD of an abnormality of dynamic ovarian function as measured by GnRH stimulation.

  3. Luteinizing hormone releasing factor activity in peripheral blood from women during the midcycle luteinizing hormone ovulatory surge.

    PubMed

    Malacara, J M; Seyler Le, J; Reichlin, S

    1972-01-01

    Luteinizing hormone (LH) releasing activity was measured in the plas ma of normal women at different stages of menstrual cycle. For the bioassay in rats, 40 ml of plasma were serially extracted with increasing concentrations of methanol. The supernatants were dried and assayed for LH releasing factor (LRF) activity in ovariectomized-estroge n-progesterone-thyroxine treated rats, the end point being the increase in radioimmunoassayable rat LH. 15 samples obtained during the pre- or postovulatory period had low but detectable releasing effects when compared to saline controls (p less than .025). 6 out of 36 specimens obtained between Days 12-16 revealed LRF activity which exceeded the mean of nonovulatory responses by more than 3 standard deviations (SDs) (p less than .01). 4 of the 6 samples with high LRF activity had LH elevations greater than 3 SDs in the same specimens. Plasma LH was a function of plasma LRF as determined by Pearson's coefficient of correlation (r = .419, p less than .004). These results support the view that in the human, the ovulatory LH surge is triggered by estrogen stimulation of hypothlamic LRF release.

  4. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    PubMed Central

    Vamvakopoulos, Nicholas V.

    1995-01-01

    This review higlghts key aspects of corticotropin releasing hormone (CRH) biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h) CRH gene: (1) a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2) a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system. PMID:18475634

  5. Differential involvement of signaling pathways in the regulation of growth hormone release by somatostatin and growth hormone-releasing hormone in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Wang, Bin; Qin, Chaobin; Zhang, Cong; Jia, Jirong; Sun, Caiyun; Li, Wensheng

    2014-02-15

    Somatostatin is the most effective inhibitor of GH release, and GHRH was recently identified as one of the primary GH-releasing factors in teleosts. In this study, we analyzed the possible intracellular transduction pathways that are involved in the mechanisms induced by SRIF and GHRH to regulate GH release. Using a pharmacological approach, the blockade of the PLC/IP/PKC pathway reversed the SRIF-induced inhibition of GH release but did not affect the GHRH-induced stimulation of GH release. Furthermore, SRIF reduced the GH release induced by two PKC activators. Inhibitors of the AC/cAMP/PKA pathway reversed both the SRIF- and GHRH-induced effects on GH release. Moreover, the GH release evoked by forskolin and 8-Br-cAMP were completely abolished by SRIF. The blockade of the NOS/NO pathway attenuated the GHRH-induced GH release but had minimal effects on the inhibitory actions of SRIF. In addition, inhibitors of the sGC/cGMP pathway did not modify the SRIF- or GHRH-induced regulation of GH release. Taken together, these findings indicate that the SRIF-induced inhibition of GH release is mediated by both the PLC/IP/PKC and the AC/cAMP/PKA pathways and not by the NOS/NO/sGC/cGMP pathway. In contrast, the GHRH-induced stimulation of GH secretion is mediated by both the AC/cAMP/PKA and the NOS/NO pathways and is independent of the sGC/cGMP pathway and the PLC/IP/PKC system.

  6. Secretion of growth hormone-releasing hormone in patients with idiopathic pituitary dwarfism and acromegaly.

    PubMed

    Yamasaki, R; Saito, H; Kameyama, K; Hosoi, E; Saito, S

    1988-03-01

    The plasma levels of immunoreactive-GHRH in patients with idiopathic pituitary dwarfism and acromegaly were studied in the basal state and during various tests by a sensitive and specific RIA. The fasting plasma GHRH level in 22 patients with idiopathic pituitary dwarfism was 6.3 +/- 2.3 ng/l (mean +/- SD), which was significantly lower than that in normal children (9.8 +/- 2.8 ng/l, N = 21), and eight of them had undetectable concentrations (less than 4.0 ng/l). Little or no response of plasma GHRH to oral administration of L-dopa was observed in 7 of 10 pituitary dwarfs, and 3 of the 7 patients showed a response of plasma GH to iv administration of GHRH (1 microgram/kg). These findings suggest that one of the causes of idiopathic pituitary dwarfism is insufficient GHRH release from the hypothalamus. The fasting plasma GHRH level in 14 patients with acromegaly and one patient with gigantism was 8.0 +/- 3.9 ng/l, which was slightly lower than that in normal adults (10.4 +/- 4.1 ng/l, N = 72). One acromegalic patient with multiple endocrine neoplasia type I had a high level of plasma GHRH (270 ng/l) with no change in response to L-dopa and TRH test. In 3 untreated patients with acromegaly L-dopa did not induce any response of plasma GHRH in spite of inconsistent GH release, and in 4 patients with acromegaly, TRH evoked no response of plasma GHRH in spite of a marked GH release, suggesting that the GH responses are not mediated by hypothalamic GHRH.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2898191

  7. Single-Cell Phenotypic Characterization of Human Pituitary GHomas and Non-Functioning Adenomas Based on Hormone Content and Calcium Responses to Hypothalamic Releasing Hormones

    PubMed Central

    Senovilla, Laura; Núñez, Lucía; de Campos, José María; de Luis, Daniel A.; Romero, Enrique; García-Sancho, Javier; Villalobos, Carlos

    2015-01-01

    Human pituitary tumors are generally benign adenomas causing considerable morbidity due to excess hormone secretion, hypopituitarism, and other tumor mass effects. Pituitary tumors are highly heterogeneous and difficult to type, often containing mixed cell phenotypes. We have used calcium imaging followed by multiple immunocytochemistry to type growth hormone secreting (GHomas) and non-functioning pituitary adenomas (NFPAs). Individual cells were typed for stored hormones and calcium responses to classic hypothalamic releasing hormones (HRHs). We found that GHomas contained growth hormone cells either lacking responses to HRHs or responding to all four HRHs. However, most GHoma cells were polyhormonal cells responsive to both thyrotropin-releasing hormone (TRH) and GH-releasing hormone. NFPAs were also highly heterogeneous. Some of them contained ACTH cells lacking responses to HRHs or polyhormonal gonadotropes responsive to LHRH and TRH. However, most NFPAs were made of cells storing no hormone and responded only to TRH. These results may provide new insights on the ontogeny of GHomas and NFPAs. PMID:26106585

  8. Nesfatin-1, corticotropin-releasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior.

    PubMed

    Gotoh, Koro; Masaki, Takayuki; Chiba, Seiichi; Ando, Hisae; Shimasaki, Takanobu; Mitsutomi, Kimihiko; Fujiwara, Kansuke; Katsuragi, Isao; Kakuma, Tetsuya; Sakata, Toshiie; Yoshimatsu, Hironobu

    2013-01-01

    Nesfatin-1, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), and hypothalamic neuronal histamine act as anorexigenics in the hypothalamus. We examined interactions among nesfatin-1, CRH, TRH, and histamine in the regulation of feeding behavior in rodents. We investigated whether the anorectic effect of nesfatin-1, α-fluoromethyl histidine (FMH; a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine), a CRH antagonist, or anti-TRH antibody affects the anorectic effect of nesfatin-1, whether nesfatin-1 increases CRH and TRH contents and histamine turnover in the hypothalamus, and whether histamine increases nesfatin-1 content in the hypothalamus. We also investigated whether nesfatin-1 decreases food intake in mice with targeted disruption of the histamine H1 receptor (H1KO mice) and if the H1 receptor (H1-R) co-localizes in nesfatin-1 neurons. Nesfatin-1-suppressed feeding was partially attenuated in rats administered with FMH, a CRH antagonist, or anti-TRH antibody, and in H1KO mice. Nesfatin-1 increased CRH and TRH levels and histamine turnover, whereas histamine increased nesfatin-1 in the hypothalamus. Immunohistochemical analysis revealed H1-R expression on nesfatin-1 neurons in the paraventricular nucleus of the hypothalamus. These results indicate that CRH, TRH, and hypothalamic neuronal histamine mediate the suppressive effects of nesfatin-1 on feeding behavior.

  9. Alterations in local cerebral glucose metabolism and endogenous thyrotropin-releasing hormone levels in rolling mouse Nagoya and effect of thyrotropin-releasing hormone tartrate.

    PubMed

    Nakayama, T; Nagai, Y

    1996-11-01

    To identify the brain region(s) responsible for the expression of ataxic gaits in an ataxic mutant mouse model, Rolling mouse Nagoya (RMN), changes in local cerebral glucose metabolism in various brain regions and the effect of thyrotropin-releasing hormone tartrate (TRH-T), together with alterations in endogenous thyrotropin-releasing hormone (TRH) levels in the brains of RMN, were investigated. Ataxic mice [RMN (rol/rol)] showed significant decreases in glucose metabolism in regions of the diencephalon: thalamic dorsomedial nucleus, lateral geniculate body and superior colliculus; brain stem: substantia nigra, raphe nucleus and vestibular nucleus; and cerebellar nucleus as compared with normal controls [RMN (+/+)]. When RMN (rol/rol) was treated with TRH-T (10 mg/kg, equivalent to 7 mg/kg free TRH), glucose metabolism was significantly increased in these regions. These results suggest that these regions may be responsible for ataxia. We also found that TRH levels in the cerebellum and brain stem of RMN (rol/rol) were significantly higher than those of RMN (+/+). These results suggest that ataxic symptoms in RMN (rol/rol) may relate to the abnormal metabolism of TRH and energy metabolism in the cerebellum and/or brain stem and that exogenously given TRH normalizes them.

  10. Localization of luteinizing hormone-releasing hormone in rat hypothalamus using radioimmunoassay.

    PubMed Central

    King, J C; Williams, T H; Arimura, A A

    1975-01-01

    Radioimmunoassays for LH-RH were performed on frozen rat brain sections cut serially in coronal, parasagittal and horizontal planes. In some of the assays, samples were pooled from corresponding areas in different animals. A clear pattern of distribution of LH-RH rich regions emerged. Two prominent components - a caudal high curve and a rostral smaller hump - were observed, and their variable characteristics discussed. The high curve represents the arcuate-medium eminence (ME) region. Our data suggest that this region is not homogeneous, and three different subdivisions of this arcuate-ME region can be distinguished on the basis of LH-RH content. High values were obtained consistently in the arcuate-ME region, except for females in the late afternoon of dioestrus day 2, at which stage the levels in this region dropped until they were little more than base line. The rostral hump of high LH-RH activity varies both in position and amplitude. These variations are associated with (1) the sex of the animal and (2) the stage of the female cycle. In males this hump appeared in the region of the suprachiasmatic nucleus, while in dioestrous females it appeared in the medial preoptic area, rostral to the male location. Some changes in LH-RH levels are thought to be related to the stage in the female sex cycle. During the afternoon of dioestrus, the caudal high curve representing the arcuate-ME region shrank, whereas the rostral smaller hump (preoptic region) showed much higher levels. Some feed-back take-off may occur from the LH-RH released by the arcuate-ME region. Instead of synthesizing its own LH-RH, the preoptic area may concentrate some of the LH-RH released from the arcuate-ME region, thereafter initiating sexual behaviour as suggested by Moss & McCann (1973). PMID:1104548

  11. Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins.

    PubMed

    Qi, Xiaoqiang; Loiseau, François; Chan, Wee Lee; Yan, Yahui; Wei, Zhenquan; Milroy, Lech-Gustav; Myers, Rebecca M; Ley, Steven V; Read, Randy J; Carrell, Robin W; Zhou, Aiwu

    2011-05-01

    The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature.

  12. The luteinizing hormone response to luteinizing hormone-releasing hormone, prostaglandin E2 and naloxone is modulated by divergent sensitivity to testosterone feedback.

    PubMed

    Schweiger, U; Pirke, K M

    1985-11-01

    Testosterone (T) levels necessary to suppress LH secretion are reduced in starvation, and increased feedback sensitivity to T is therefore postulated. The luteinizing hormone (LH) response to naloxone (Nal) is more easily suppressed by starvation than is its response to prostaglandin E2 (PGE2) and to luteinizing hormone-releasing hormone (LRH). If the divergent suppressibility is due to altered feedback sensitivity in starvation, it should be feasible to reproduce this phenomenon in normally nourished rats by increasing T levels. Adult male Wistar rats were castrated and implanted with silicone capsules (0-2.6 cm) filled with T. Indwelling jugular cannulae were implanted. On days 4 to 8 post operation rats were injected iv with LRH (25-400 ng/kg body weight), PGE2 (0.05-1.0 mg/kg body weight) or Nal (0.5-50 mg/kg body weight). Blood samples were drawn before and 10, 20 and 30 min after injection. Results show that the response to Nal was already suppressed at medium T levels. The LH response to PGE2 was diminished to a greater extent than the response to LRH but was never completely suppressed by increasing steroid levels. These data are compatible with the hypothesis that steroid feedback sensitivity augments with increasing levels of regulation of the hypothalamic-pituitary-gonadal axis.

  13. Treatment of canine pyometra with the gonadotropin-releasing hormone antagonist acyline: a case series.

    PubMed

    Batista, Pablo R; Blanco, Paula G; Gobello, Cristina

    2015-03-01

    To describe the effect of the third-generation gonadotropin-releasing hormone antagonist acyline in the treatment of 4 diestrous bitches with the cystic endometrial hyperplasia-pyometra complex. The 4 bitches were treated with 330 μg/kg of subcutaneous acyline on day 0 and antibiotics, and followed up for 2 weeks. One closed-cervix case showed cervical dilatation 36 hours after treatment, and all the 4 animals showed resolution of clinical signs starting on day 3 posttreatment. Ultrasonographic uterine diameters and luminal contents decreased in the bitches having high progesterone serum concentrations before treatment but not in those with low levels. Serum progesterone importantly decreased from high to basal concentrations in the 3 "ultrasonographically cured" animals. No local or systemic side effects related to the treatment were observed. The gonadotropin-releasing hormone antagonist acyline may have a promising place for the medical treatment of cystic endometrial hyperplasia-pyometra complex in dogs. PMID:26041594

  14. Luteinizing hormone-releasing hormone analogues--the rationale for adjuvant use in premenopausal women with early breast cancer.

    PubMed

    Jonat, W

    1998-09-01

    Current standard adjuvant therapies for early breast cancer include tamoxifen and chemotherapy, depending on the disease prognosis and menopausal status. Luteinizing hormone-releasing hormone (LHRH) analogues offer a different approach to the management of early breast cancer in pre- and perimenopausal women. The most widely studied LHRH analogue is goserelin. It acts on the hypothalamic-pituitary axis to suppress ovarian function, decreasing luteinizing hormone and oestradiol levels to post-menopausal values. Pooled data from 228 premenopausal and perimenopausal patients with advanced breast cancer enrolled in 29 studies worldwide demonstrated an objective response rate for goserelin, 3.6 mg, of 36.4%, with a median duration of response of 44 weeks. These results fall well within the ranges of reported response rates for ovarian ablation and for tamoxifen in similar patient populations. By virtue of its mode of action, goserelin does not stimulate the ovaries and is unlikely to have detrimental effects on the endometrium. In addition, given that goserelin has no oestrogen agonist-like effects, unlike tamoxifen, there is no potential for tumour stimulation in those patients becoming resistant to treatment. Goserelin is generally well tolerated, and the main side-effects are related to ovarian suppression, which is potentially reversible. Preliminary results in premenopausal women with early breast cancer indicate that endocrine treatment with goserelin plus tamoxifen may be as effective as standard combination chemotherapy (cyclophosphamide-methotrexate-5-fluorouracil), but has significantly less acute toxicity. A number of large, randomized trials are now in progress to assess the potential role of goserelin as adjuvant therapy for early breast cancer.

  15. Central stimulation of hormone release and the proliferative response of lymphocytes in humans.

    PubMed

    Juránková, E; Jezová, D; Vigas, M

    1995-01-01

    The central nervous system (CNS) may communicate with the immune system by direct innervation of lymphoid organs and/or by neurotransmitters and changes in neuroendocrine functioning and hormone release. The consequences of selective transient changes in circulating hormones on immune functioning in humans have not yet been studied. To address this problem, the authors evaluated the lymphoproliferative responses to optimal and suboptimal concentrations of phytohemagglutinin (PHA) and pokeweek mitogen (PWM) under selective enhancement of circulating growth hormone, prolactin, or norepinephrine. The authors failed to demonstrate any effect of elevated growth hormone levels after clonidine challenge on the lymphoproliferative response to mitogens. Similarly, the results did not show any effect of elevated prolactin concentrations induced by domperidone administration on the immune test. Exposure of volunteers to cold resulted in elevation of plasma norepinephrine levels without changes in growth hormone, epinephrine, or cortisol secretion. Cold exposure induced elevation of plasma norepinephrine and reduction of the lymphoproliferative response to the suboptimal dosage of PHA. The reduction was significant 180 and 240 min after exposure. These results are indicative of a relationship between norepinephrine and immunity. PMID:8534322

  16. Epilepsy and reproductive disorders: the role of the gonadotropin-releasing hormone network.

    PubMed

    Fawley, Jessica A; Pouliot, Wendy A; Dudek, F Edward

    2006-05-01

    Individuals with temporal lobe epilepsy have an increased incidence of reproductive dysfunction. The comorbidity may be due to the acute effects of the seizures, the chronic effects of the epilepsy, and/or the use of antiepileptic drugs on the gonadotropin-releasing hormone network and the hypothalamic-pituitary-gonadal axis. This review provides a brief overview of evidence from experimental animal and clinical studies exploring the basis for epilepsy-associated reproductive abnormalities.

  17. Effect of gonadotropin-releasing hormone analogue on thermal nociception in mice.

    PubMed

    Bobyntsev, I I; Sever'yanova, L A; Kryukov, A A

    2006-02-01

    Intraperitoneal treatment with an analogue of gonadotropin-releasing hormone in doses of 0.004-450 microg/kg produced an analgesic effect on male mice in the hot plate test. Castration significantly elevated the nociceptive thresholds. In castrated mice the effects of the test peptide were less pronounced and had an algesic nature. Our results indicate that these effects depend on functional activity of the hypothalamic-pituitary-gonadal axis.

  18. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice

    PubMed Central

    Banks, William A.; Morley, John E.; Farr, Susan A.; Price, Tulin O.; Ercal, Nuran; Vidaurre, Irving; Schally, Andrew V.

    2010-01-01

    Both deficiency and excess of growth hormone (GH) are associated with increased mortality and morbidity. GH replacement in otherwise healthy subjects leads to complications, whereas individuals with isolated GH deficiency such as Laron dwarfs show increased life span. Here, we determined the effects of treatment with the GH-releasing hormone (GHRH) receptor antagonist MZ-5-156 on aging in SAMP8 mice, a strain that develops with aging cognitive deficits and has a shortened life expectancy. Starting at age 10 mo, mice received daily s.c. injections of 10 μg/mouse of MZ-5-156. Mice treated for 4 mo with MZ-5-156 showed increased telomerase activity, improvement in some measures of oxidative stress in brain, and improved pole balance, but no change in muscle strength. MZ-5-156 improved cognition after 2 mo and 4 mo, but not after 7 mo of treatment (ages 12, 14 mo, and 17 mo, respectively). Mean life expectancy increased by 8 wk with no increase in maximal life span, and tumor incidence decreased from 10 to 1.7%. These results show that treatment with a GHRH antagonist has positive effects on some aspects of aging, including an increase in telomerase activity. PMID:21135231

  19. Semaphorin 4D regulates gonadotropin hormone-releasing hormone-1 neuronal migration through PlexinB1-Met complex.

    PubMed

    Giacobini, Paolo; Messina, Andrea; Morello, Francesca; Ferraris, Nicoletta; Corso, Simona; Penachioni, Junia; Giordano, Silvia; Tamagnone, Luca; Fasolo, Aldo

    2008-11-01

    In mammals, reproduction is dependent on specific neurons secreting the neuropeptide gonadotropin hormone-releasing hormone-1 (GnRH-1). These cells originate during embryonic development in the olfactory placode and migrate into the forebrain, where they become integral members of the hypothalamic-pituitary-gonadal axis. This migratory process is regulated by a wide range of guidance cues, which allow GnRH-1 cells to travel over long distances to reach their appropriate destinations. The Semaphorin4D (Sema4D) receptor, PlexinB1, is highly expressed in the developing olfactory placode, but its function in this context is still unknown. Here, we demonstrate that PlexinB1-deficient mice exhibit a migratory defect of GnRH-1 neurons, resulting in reduction of this cell population in the adult brain. Moreover, Sema4D promotes directional migration in GnRH-1 cells by coupling PlexinB1 with activation of the Met tyrosine kinase (hepatocyte growth factor receptor). This work identifies a function for PlexinB1 during brain development and provides evidence that Sema4D controls migration of GnRH-1 neurons.

  20. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    PubMed

    Tam, Janice K V; Chow, Billy K C; Lee, Leo T O

    2013-01-01

    The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2) in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2) in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2) was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2) had the highest expression in brain, and interestingly, X. laevis(GHRHR2) also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2), which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  1. Administration of Luteinizing Hormone Releasing Hormone Agonist for Synchronization of Estrus and Generation of Pseudopregnancy for Embryo Transfer in Rats

    PubMed Central

    Borjeson, Tiffany M; Pang, Jassia; Fox, James G; García, Alexis

    2014-01-01

    In the past decade, the use of genetically engineered rats has increased exponentially; therefore, the ability to perform embryo transfer (ET) in rats to rederive, reanimate, or create mutant rat lines is increasingly important. However, the successful generation of pseudopregnant female rats for ET represents a limiting factor. We here evaluated the subcutaneous administration of 40 µg luteinizing hormone releasing hormone agonist (LHRHa) for estrus synchronization during the development and implementation of a rat ET program. Our first experiment assessed endogenous estrus cycling patterns by examining vaginal cytology without administration of LHRHa in 5-wk-old peripubertal Sprague–Dawley female rats. These rats then received LHRHa at approximately 7 wk of age; 57% of the rats were synchronized in proestrus or estrus as assessed by vaginal cytology 96 h later. In a second experiment, 8-wk-old virgin, unmanipulated Sprague–Dawley female rats received LHRHa; 55% were synchronized in proestrus or estrus 96 h later. Copulatory plugs were confirmed in 28% and 82% of the rats that had been synchronized in the first and second experiments, respectively, and mated with vasectomized male rats. Embryo transfer surgery was performed, and live pups were born from both fresh and cryopreserved transgenic rat embryos. Our results indicate that subcutaneous administration of 40 µg LHRHa followed by examination of vaginal cytology 96 h later is an effective technique to generate multiple pseudopregnant recipient rats for use in an ET program. PMID:24827564

  2. Distribution of luteinizing hormone-releasing hormone in the upper brainstem and diencephalon of the cat: an immunocytochemical study.

    PubMed

    Belda, M; Coveñas, R; Narváez, J A; Aguirre, J A; Tramu, G

    2000-03-01

    The distribution of luteinizing hormone-releasing hormone (LH-RH)-immunostained cell bodies and fibres was studied in the brainstem and diencephalon of the cat using an indirect immunoperoxidase technique. The brainstem and the thalamus were devoid of immunostained cell bodies, whereas in the hypothalamus immunopositive perikarya were observed in the supraoptic nucleus, the anterior hypothalamus, the preoptic region and in the arcuate nucleus. Our findings also showed that the hypothalamus is richer in immunostained fibres, and that in this region such fibres are more widely distributed than in the thalamus and upper brainstem. No immunopositive fibres were observed in the lower brainstem. Our results point to a more widespread distribution of LH-RH-immunostained perikarya in the cat hypothalamus than that previously reported in the cat; a similar distribution to that found in the rat, and a more restricted distribution than in primates. Additionally, our study shows a more widespread distribution of immunostained fibres in the cat brainstem and diencephalon than that previously described for other mammals. In this context, our results describe for the first time in the mammals central nervous system fibres containing LH-RH located in the stria medullaris of the thalamus, the supramammillary decussation, the laterodorsal and lateroposterior thalamic nuclei, the nucleus reuniens, the supraoptic nucleus, and the optic chiasm. Thus, our findings reveal that LH-RH-immunostained structures are widely distributed in the upper brainstem and in the diencephalon of the cat, suggesting that the peptide may be involved in several physiological functions.

  3. Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists?: Preliminary observations

    SciTech Connect

    Ataya, K.; Pydyn, E.; Ramahi-Ataya

    1995-03-01

    With the advent of cancer therapy, increasing numbers of cancer patients are achieving long term survival. Impaired ovarian function after radiation therapy has been reported in several studies. Some investigators have suggested that luteinizing hormone-releasing hormone agonists (LHRHa) can prevent radiation-induced ovarian injury in rodents. Adult female rhesus monkeys were given either vehicle or Leuprolide acetate before, during, and after radiation. Radiation was given in a dose of 200 rads/day for a total of 4000 rads to the ovaries. Frequent serum samples were assayed for estradiol (E{sub 2}) and FSH. Ovariectomy was performed later. Ovaries were processed and serially sectioned. Follicle count and size distribution were determined. Shortly after radiation started, E{sub 2} dropped to low levels, at which it remained, whereas serum FSH level, which was low before radiation, rose soon after starting radiation. In monkeys treated with a combination of LHRHa and radiation, FSH started rising soon after the LHRHa-loaded minipump was removed (after the end of radiation). Serum E{sub 2} increased after the end of LHRHa treatment in the non-irradiated monkey, but not in the irradiated monkey. Follicle counts were not preserved in the LHRHa-treated monkeys that received radiation. The data demonstrated no protective effect of LHRHa treatment against radiation-induced ovarian injury in this rhesus monkey model. 58 refs., 2 figs., 1 tab.

  4. Older individuals heterozygous for a growth hormone-releasing hormone receptor gene mutation are shorter than normal subjects.

    PubMed

    Aguiar-Oliveira, Manuel H; Cardoso-Filho, Marco A; Pereira, Rossana M C; Oliveira, Carla R P; Souza, Anita H O; Santos, Elenilde G; Campos, Viviane C; Valença, Eugênia H O; de Oliveira, Francielle T; Oliveira-Neto, Luiz A; Gois-Junior, Miburge B; Oliveira-Santos, Alecia A; Salvatori, Roberto

    2015-06-01

    Growth hormone (GH)-releasing hormone (GHRH) is the most important stimulus for GH secretion by the pituitary gland. Subjects homozygous for GHRH receptor (GHRHR) gene (GHRHR) inactivating mutations have severe GH deficiency, resulting in severe short stature if not treated. We previously reported that young adults heterozygous for the c.57+1G>A null GHRHR mutation (MUT/N) have reduced weight and body mass index (BMI) but normal stature. Here we have studied whether older MUT/N have an additional phenotype. In a cross-sectional study, we measured height, weight and blood pressure, and calculated BMI in two groups (young, 20-40 years of age) and old (60-80 years) of individuals heterozygous for the same GHRHR mutation, and compared with a large number of individuals of normal genotype residing in the same geographical area. Standard deviation score (SDS) of weight was lower, and BMI had a trend toward reduction in young heterozygous compared with young normals, without significant difference in stature. Conversely, SDS of height was lower in older heterozygous individuals than in controls, corresponding to a reduction of 4.2 cm. These data show a reduced stature in older subjects heterozygous for the c.57+1G>A GHRHR mutation, indicating different effects of heterozygosis through lifespan. PMID:25761575

  5. Administration of luteinizing hormone releasing hormone agonist for synchronization of estrus and generation of pseudopregnancy for embryo transfer in rats.

    PubMed

    Borjeson, Tiffany M; Pang, Jassia; Fox, James G; García, Alexis

    2014-05-01

    In the past decade, the use of genetically engineered rats has increased exponentially; therefore, the ability to perform embryo transfer (ET) in rats to rederive, reanimate, or create mutant rat lines is increasingly important. However, the successful generation of pseudopregnant female rats for ET represents a limiting factor. We here evaluated the subcutaneous administration of 40 μg luteinizing hormone releasing hormone agonist (LHRHa) for estrus synchronization during the development and implementation of a rat ET program. Our first experiment assessed endogenous estrus cycling patterns by examining vaginal cytology without administration of LHRHa in 5-wk-old peripubertal Sprague-Dawley female rats. These rats then received LHRHa at approximately 7 wk of age; 57% of the rats were synchronized in proestrus or estrus as assessed by vaginal cytology 96 h later. In a second experiment, 8-wk-old virgin, unmanipulated Sprague-Dawley female rats received LHRHa; 55% were synchronized in proestrus or estrus 96 h later. Copulatory plugs were confirmed in 28% and 82% of the rats that had been synchronized in the first and second experiments, respectively, and mated with vasectomized male rats. Embryo transfer surgery was performed, and live pups were born from both fresh and cryopreserved transgenic rat embryos. Our results indicate that subcutaneous administration of 40 μg LHRHa followed by examination of vaginal cytology 96 h later is an effective technique to generate multiple pseudopregnant recipient rats for use in an ET program.

  6. Effect of a long-lasting gonadotrophin hormone-releasing hormone agonist in six cases of severe male paraphilia.

    PubMed

    Thibaut, F; Cordier, B; Kuhn, J M

    1993-06-01

    Six men with severe paraphilia had been treated with depot gonadotrophin luteinizing releasing hormone analogue (GnRHa) (triptorelin 3.75 mg per month intramuscularly). In 5 cases, the treatment ended their deviant sexual behavior and markedly decreased their sexual fantasies and activities without further significant side effects than those related to hypoandrogenism. This clinical improvement was parallel to the gradual decrease of plasma testosterone level to castration values within the first month. The beneficial effect of this treatment had been maintained at follow-up varying from 7 months to 3 years. One patient interrupted the treatment at the end of the first year and relapsed within 10 weeks. GnRHa treatment, which leads to reversible castration, may constitute a promising treatment of paraphilic behavior and may favor the possibility of concurrent psychotherapy.

  7. Porcine ovarian inhibin preparations sensitize cultured ovine gonadotrophs to luteinizing hormone-releasing hormone.

    PubMed

    Huang, E S; Miller, W L

    1984-08-01

    Treatment of ovine pituitary cell cultures with an acetone powder of porcine follicular fluid (APPFF; 50 micrograms/ml) decreased FSH secretion 60%, did not alter basal LH secretion, but increased by 2- to 3-fold the effectiveness of LHRH or D-Lys6-LHRH (10(-8) M) in releasing LH. Chromatography of APPFF on Matrex Gel Red A (MGRA) yielded a protein fraction (MGRA-IV) in which both FSH-inhibiting and LHRH-enhancing activities were enriched 8-fold. Both activities were destroyed by trypsin, but both were highly resistant to heat. The apparent mol wt of the active substance(s) was greater than 10,000. The LHRH-enhancing effect of MGRA-IV was reversible and declined, with an apparent half-life of 7 h, when MGRA-IV treatment was discontinued. There was too little estrogen in either APPFF or MGRA-IV to account for any of the activities. These results demonstrate that porcine follicular fluid contains LHRH-enhancing activity along with classical inhibin activity and that both activities may be linked in one molecule. These dual activities may be important in a number of species.

  8. Modulation of long-term memory and extinction responses induced by growth hormone (GH) and growth hormone releasing hormone (GHRH) in rats.

    PubMed

    Schneider-Rivas, S; Rivas-Arancibia, S; Vázquez-Pereyra, F; Vázquez-Sandoval, R; Borgonio-Pérez, G

    1995-01-01

    The purpose of this work is to study the participation of growth hormone (GH) and growth hormone releasing hormone (GHRH) in the modulation of long-term memory and the extinction response of a passive avoidance task in rats. However, the effect on memory vary according to the age of the animals due to plasma levels of either hormone being modified during the aging process. Male Wistar rats were divided according to age into two experimental blocks (young rats 3 months old and aged rats 24 months old at the start of the experiment) where each block received the same treatment. Each experimental block was then divided randomly into three groups where two were experimental and the other served as control. The animals were then submitted to a one-trial passive avoidance conditioning and tested for memory retention 24 hrs after as well as twice a week until the extinction response occurred. The control group received an isotonic saline solution and the other two groups received 0.8 U.I. of GH or 4 mcg of GHRH respectively. All substances were in a 0.08 ml volume and applied 24 hrs before training as well as 24 hrs before each retention session. The results indicate that GH and GHRH modulate long-term memory as well as the extinction response and in either case the response seems to vary with age. GH and GHRH facilitates long-term memory in young rats but not in aged rats. Finally, whereas GH delays the extinction response in both groups, GHRH retards the extinction only in aged rats.

  9. Electrical synapses connect a network of gonadotropin releasing hormone neurons in a cichlid fish

    PubMed Central

    Ma, Yunyong; Hu, Caroline K.; Huguenard, John R.; Fernald, Russell D.

    2015-01-01

    Initiating and regulating vertebrate reproduction requires pulsatile release of gonadotropin-releasing hormone (GnRH1) from the hypothalamus. Coordinated GnRH1 release, not simply elevated absolute levels, effects the release of pituitary gonadotropins that drive steroid production in the gonads. However, the mechanisms underlying synchronization of GnRH1 neurons are unknown. Control of synchronicity by gap junctions between GnRH1 neurons has been proposed but not previously found. We recorded simultaneously from pairs of transgenically labeled GnRH1 neurons in adult male Astatotilapia burtoni cichlid fish. We report that GnRH1 neurons are strongly and uniformly interconnected by electrical synapses that can drive spiking in connected cells and can be reversibly blocked by meclofenamic acid. Our results suggest that electrical synapses could promote coordinated spike firing in a cellular assemblage of GnRH1 neurons to produce the pulsatile output necessary for activation of the pituitary and reproduction. PMID:25775522

  10. Pituitary response to thyrotropin releasing hormone in children with overweight and obesity.

    PubMed

    Rijks, Jesse; Penders, Bas; Dorenbos, Elke; Straetemans, Saartje; Gerver, Willem-Jan; Vreugdenhil, Anita

    2016-01-01

    Thyroid stimulating hormone (TSH) concentrations in the high normal range are common in children with overweight and obesity, and associated with increased cardiovascular disease risk. Prior studies aiming at unravelling the mechanisms underlying these high TSH concentrations mainly focused on factors promoting thyrotropin releasing hormone (TRH) production as a cause for high TSH concentrations. However, it is unknown whether TSH release of the pituitary in response to TRH is affected in children with overweight and obesity. Here we describe TSH release of the pituitary in response to exogenous TRH in 73 euthyroid children (39% males) with overweight or (morbid) obesity. Baseline TSH concentrations (0.9-5.5 mU/L) were not associated with BMI z score, whereas these concentrations were positively associated with TSH concentrations 20 minutes after TRH administration (r(2) = 0.484, p < 0.001) and the TSH incremental area under the curve during the TRH stimulation test (r(2) = 0.307, p < 0.001). These results suggest that pituitary TSH release in response to TRH stimulation might be an important factor contributing to high normal serum TSH concentrations, which is a regular finding in children with overweight and obesity. The clinical significance and the intermediate factors contributing to pituitary TSH release need to be elucidated in future studies. PMID:27485208

  11. Pituitary response to thyrotropin releasing hormone in children with overweight and obesity

    PubMed Central

    Rijks, Jesse; Penders, Bas; Dorenbos, Elke; Straetemans, Saartje; Gerver, Willem-Jan; Vreugdenhil, Anita

    2016-01-01

    Thyroid stimulating hormone (TSH) concentrations in the high normal range are common in children with overweight and obesity, and associated with increased cardiovascular disease risk. Prior studies aiming at unravelling the mechanisms underlying these high TSH concentrations mainly focused on factors promoting thyrotropin releasing hormone (TRH) production as a cause for high TSH concentrations. However, it is unknown whether TSH release of the pituitary in response to TRH is affected in children with overweight and obesity. Here we describe TSH release of the pituitary in response to exogenous TRH in 73 euthyroid children (39% males) with overweight or (morbid) obesity. Baseline TSH concentrations (0.9–5.5 mU/L) were not associated with BMI z score, whereas these concentrations were positively associated with TSH concentrations 20 minutes after TRH administration (r2 = 0.484, p < 0.001) and the TSH incremental area under the curve during the TRH stimulation test (r2 = 0.307, p < 0.001). These results suggest that pituitary TSH release in response to TRH stimulation might be an important factor contributing to high normal serum TSH concentrations, which is a regular finding in children with overweight and obesity. The clinical significance and the intermediate factors contributing to pituitary TSH release need to be elucidated in future studies. PMID:27485208

  12. Review: Melatonin stimulates the synthesis and release of gonadotropin-inhibitory hormone in birds.

    PubMed

    Chowdhury, Vishwajit S; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2013-01-15

    Gonadotropin-inhibitory hormone (GnIH), a neuropeptide that inhibits gonadotropin synthesis and release, was first identified in the quail hypothalamus. To understand the physiological role of GnIH, this review will demonstrate the mechanisms that regulate GnIH synthesis and release. Pinealectomy (Px) combined with orbital enucleation (Ex) decreased the synthesis of GnIH precursor mRNA and content of mature GnIH peptide in the diencephalon. Melatonin administration to Px plus Ex birds caused a dose-dependent increase in the synthesis of GnIH precursor mRNA and production of mature peptide. A melatonin receptor subtype, Mel(1c,) was expressed in GnIH-immunoreactive neurons, suggesting direct action of melatonin on GnIH neurons. Melatonin administration further increased GnIH release in a dose-dependent manner from hypothalamic explants in vitro. GnIH mRNA expression and GnIH release during the dark period were greater than those during the light period in explants from quail exposed to long-day photoperiods. Conversely, plasma luteinizing hormone (LH) concentration decreased during the dark period. This review summarizes that melatonin appears to act on GnIH neurons in stimulating not only GnIH synthesis but also its release, thus inhibiting plasma LH concentration in birds.

  13. Impaired thyrotrophin secretion following the administration of thyrotrophin-releasing hormone in type II diabetes mellitus.

    PubMed Central

    Small, M.; Cohen, H. N.; MacLean, J. A.; Beastall, G. H.; MacCuish, A. C.

    1986-01-01

    Serum thyrotrophin has been measured before and after the intravenous administration of 200 micrograms of thyrotrophin-releasing hormone in 91 white subjects (33 stable diabetic patients and 58 healthy controls), none of whom had any clinical evidence of thyroid or pituitary dysfunction. Seven of the diabetic subjects failed to achieve a rise of serum thyrotrophin of greater than 2 mU/l above basal concentrations, as compared with only one of the control subjects (P = 0.006). The difference in response between diabetics and controls was confined to patients with Type II (non-insulin-dependent) diabetes: thus 5 of 13 Type II patients and 2 of 20 Type I (insulin-dependent) patients failed to show a normal response to thyrotrophin releasing hormone injection. No significant effect of glycaemic control on thyrotrophin responses was noted. These results suggest that Type II diabetes mellitus may be a cause of impaired thyrotrophin secretion in patients with no clinical evidence of pituitary disease. The mechanism for this impaired pituitary hormone release remains to be clarified. PMID:3095820

  14. Effects of theophylline infusion on the growth hormone (GH) and prolactin response to GH-releasing hormone administration in acromegaly.

    PubMed

    Losa, M; Alba-Lopez, J; Schopohl, J; Sobiesczcyk, S; Chiodini, P G; Müller, O A; von Werder, K

    1988-10-01

    Since theophylline has been shown to blunt the GH response to growth hormone-releasing hormone (GHRH) in normal subjects, we investigated whether the same effect of theophylline administration could be reproduced in patients with active acromegaly. Ten acromegalic patients received on two different days 100 micrograms GHRH iv alone and the same GHRH dose during a constant infusion of theophylline (3.56 mg/min), beginning 2 h before GHRH administration. In the whole group theophylline did not affect basal GH secretion significantly (from a mean of 44.6 +/- 14.4 at 0 min to 41.8 +/- 13.5 ng/ml at 120 min). However, the amount of GH released after GHRH stimulation was lower when theophylline was concomitantly infused (7525 +/- 3709 ng min/ml vs. 12038 +/- 6337 ng min/ml; p less than 0.05). The inhibitory effect of theophylline was not homogeneous, since either marked or minimal reductions of the GHRH-stimulated GH secretion occurred. Serum PRL levels increased after GHRH administration in 6 patients and theophylline infusion had no influence upon this response. Peak GHRH levels were not different in both studies (14.9 +/- 1.7 and 17.1 +/- 4.0 ng/ml, respectively). Free fatty acid levels rose progressively during theophylline administration (from 0.66 +/- 0.10 at 0 min to 1.04 +/- 0.10 mEq/l at 240 min) and were significantly higher than after GHRH stimulation alone from 180 min up to the end of the test. Our results demonstrate that in active acromegaly theophylline blunts the GH response to GHRH, though this effect is not uniformly seen in all patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Effects of ionizing radiation and pretreatment with (D-Leu6,des-Gly10) luteinizing hormone-releasing hormone ethylamide on developing rat ovarian follicles

    SciTech Connect

    Jarrell, J.; YoungLai, E.V.; McMahon, A.; Barr, R.; O'Connell, G.; Belbeck, L.

    1987-10-01

    To assess the effects of a gonadotropin-releasing hormone agonist, (D-Leu6,des-Gly10) luteinizing hormone-releasing hormone ethylamide, in ameliorating the damage caused by ionizing radiation, gonadotropin-releasing hormone agonist was administered to rats from day 22 to 37 of age in doses of 0.1, 0.4, and 1.0 microgram/day or vehicle and the rats were sacrificed on day 44 of age. There were no effects on estradiol, progesterone, luteinizing, or follicle-stimulating hormone, nor an effect on ovarian follicle numbers or development. In separate experiments, rats treated with gonadotropin-releasing hormone agonist in doses of 0.04, 0.1, 0.4, or 1.0 microgram/day were either irradiated or sham irradiated on day 30 and all groups sacrificed on day 44 of age. Irradiation produced a reduction in ovarian weight and an increase in ovarian follicular atresia. Pretreatment with the agonist prevented the reduction in ovarian weight and numbers of primordial and preantral follicles but not healthy or atretic antral follicles. Such putative radioprotection should be tested on actual reproductive performance.

  16. Effects of female pheromones on gonadotropin-releasing hormone gene expression and luteinizing hormone release in male wild-type and oestrogen receptor-alpha knockout mice.

    PubMed

    Gore, A C; Wersinger, S R; Rissman, E F

    2000-12-01

    Pheromones are an important class of environmental cues that affect the hypothalamic-pituitary-gonadal axis in a variety of vertebrate species, including humans. When male mice contact female-soiled bedding, or urine, they display a reflexive luteinizing hormone (LH) surge within 30 min. Aside from the requirement that males have gonads to show this response, the physiological mechanisms that underlie this pituitary response are unknown. In this experiment, we asked if female pheromones acted at the level of gonadotropin-releasing hormone (GnRH) gene expression to affect this hormone response. In addition, we also examined the contribution of one of the oestrogen receptors (ERalpha) by studying this neuroendocrine reflex in wild-type and oestrogen receptor-alpha knockout (ERalphaKO) males. Both ERalphaKO and wild-type males showed the expected LH surge, 45 and 90 min after contact with female pheromones. Males housed in clean bedding or bedding soiled by another adult male did not display the LH elevation. Interestingly, this dramatic change in LH concentrations was not accompanied by any alterations in GnRH mRNA expression or levels of primary transcript in the preoptic area-anterior hypothalamus. The one exception to this was a significant increase in GnRH mRNA expression in tissue collected from wild-type males exposed to bedding from another male. This is particularly intriguing since LH was not elevated in these males. These data replicate and extend our previous finding that ERalphaKO males do exhibit an LH surge in response to female pheromones. Thus, this neuroendocrine response is regulated by a steroid receptor other than ERalpha and does not require alterations in GnRH mRNA expression.

  17. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    Daily oscillations characterize the release of nearly every hormone. The circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, generates circadian, approximately 24-hour rhythms in many physiologic functions. However, the observed hormonal oscillations do not simply reflect the output of this internal clock. Instead, daily hormonal profiles are the product of a complex interaction between the output of the circadian pacemaker, periodic changes in behavior, light exposure, neuroendocrine feedback mechanisms, gender, age, and the timing of sleep and wakefulness. The interaction of these factors can affect hormonal secretory pulse frequency and amplitude, with each endocrine system differentially affected by these factors. This chapter examines recent advances in understanding the effects on endocrine rhythms of a number of these factors. Sleep exerts a profound effect on endocrine secretion. Sleep is a dynamic process that is characterized by periodic changes in electrophysiologic activity. These electrophysiologic changes, which are used to mark the state and depth of sleep, are associated with periodic, short-term variations in hormonal levels. The secretion of hormones such as renin and human growth hormone are strongly influenced by sleep or wake state, while melatonin and cortisol levels are relatively unaffected by sleep or wake state. In addition, sleep is associated with changes in posture, behavior, and light exposure, each of which is known to affect endocrine secretion. Furthermore, the tight concordance of habitual sleep and wake times with certain circadian phases has made it difficult to distinguish sleep and circadian effects on these hormones. Specific protocols, designed to extract circadian and sleep information semi-independently, have been developed and have yielded important insights into the effects of these regulatory processes. These results may help to account for changes in endocrine rhythms observed in circadian

  18. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  19. Emerging functions of gonadotropin-releasing hormone II in mammalian physiology and behaviour.

    PubMed

    Kauffman, A S

    2004-09-01

    Gonadotropin-releasing hormone (GnRH) is the central neuroendocrine regulator of the hypothalamic-pituitary-gonadal axis. Multiple structural variants of GnRH are present in vertebrates. The first isoform isolated in the mammalian brain (GnRH I) was shown to regulate the release of pituitary gonadotropins. Recently, a second form has been discovered in mammals (GnRH II), both in the brain and periphery. Although it is unlikely to be a primary regulator of gonadotropin release, the highly conserved GnRH II variant appears to have a wide array of physiological functions. In the periphery, GnRH I and II have similar roles in regulating cell proliferation and mediating hormonal secretion from the ovary and placenta in an autocrine/paracrine manner. In the brain, GnRH I and II apparently modulate mammalian reproductive behaviours in different but complementary ways: GnRH I stimulates luteinizing hormone/follicle-stimulating hormone secretion (and thus gonadal steroids) and promotes sexual behaviour in ad libitum fed animals. By contrast, GnRH II acts as a permissive regulator of female reproductive behaviour based on energy status, as well as a modifier of short-term food intake. GnRH II has also been implicated in the regulation of calcium and potassium channels in nervous systems of amphibians, functions which may also be present in mammals. Increasing evidence suggests that the effects of GnRH II in both the periphery and brain may be mediated by GnRH receptor subtypes distinct from the type-1 GnRH receptor. It is likely that this evolutionarily conserved peptide has been co-opted over evolutionary time to possess multiple regulatory functions in a broad range of biological aspects, including, but not limited to, reproduction. Here, the proposed actions of both neural and peripheral GnRH II in affecting physiology and behaviour are summarized, and an outline of critical directions for future research is proposed.

  20. Gonadotropin-releasing hormone and its receptor in normal and malignant cells.

    PubMed

    Harrison, G S; Wierman, M E; Nett, T M; Glode, L M

    2004-12-01

    Gonadotropin-releasing hormone (GnRH) is the hypothalamic factor that mediates reproductive competence. Intermittent GnRH secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. LH and FSH then stimulate sex steroid hormone synthesis and gametogenesis in the gonads to ensure reproductive competence. The pituitary requires pulsatile stimulation by GnRH to synthesize and release the gonadotropins LH and FSH. Clinically, native GnRH is used in a pump delivery system to create an episodic delivery pattern to restore hormonal defects in patients with hypogonadotropic hypogonadism. Agonists of GnRH are delivered in a continuous mode to turn off reproductive function by inhibiting gonadotropin production, thus lowering sex steroid production, resulting in medical castration. They have been used in endocrine disorders such as precocious puberty, endometriosis and leiomyomata, but are also studied extensively in hormone-dependent malignancies. The detection of GnRH and its receptor in other tissues, including the breast, ovary, endometrium, placenta and prostate suggested that GnRH agonists and antagonists may also have direct actions at peripheral targets. This paper reviews the current data concerning differential control of GnRH and GnRH receptor expression and signaling in the hypothalamic-pituitary axis and extrapituitary tissues. Using these data as a backdrop, we then review the literature about the action of GnRH in cancer cells, the utility of GnRH analogs in various malignancies and then update the research in novel therapies targeted to the GnRH receptor in cancer cells to promote anti-proliferative effects and control of tumor burden.

  1. Indirect assessment of pulsatile gonadotropin-releasing hormone release in agonadal prepubertal rhesus monkeys (Macaca mulatta).

    PubMed

    Suter, K J; Pohl, C R; Plant, T M

    1999-01-01

    The major purpose of this study was to characterize the open-loop frequency of pulsatile GnRH release in the female rhesus monkey at an age (15-20 months) when the prepubertal restraint on the hypothalamic-pituitary axis is maximally imposed. Additionally, evidence for pulsatile GnRH release in agonadal males of comparable age was also sought. Episodic LH secretion from the pituitary was used as an indirect index of GnRH discharges. In order to maximize the sensitivity of this in situ bioassay, the responsiveness of the pituitary gonadotrophs was usually first heightened by an i.v. intermittent infusion of the synthetic peptide. Monkeys (five females, three males) were castrated between 9 and 14 months of age, implanted with indwelling venous catheters, fitted with nylon jackets and housed in specialized cages that permitted remote access to the venous circulation with minimal restraint and without interruption of the light-darkness cycle. In females, LH secretion was generally assessed at 20-day intervals during alternate nighttime (1900-0200 h) and daytime (0700-1400 h) windows. In males, LH was assessed less frequently and only at night. The mean frequency of pulsatile LH release in agonadal prepubertal females was 4 pulses/7 h during the night and 2 pulses/7 h during the day. These findings indicate that, prior to puberty in the female monkey, the GnRH pulse generator operates at a relatively slow frequency and is subjected to diurnal modulation. In males, evidence for robust pulsatile GnRH release was not observed. The striking difference in activity of the GnRH pulse generator in agonadal prepubertal male and female monkeys reinforces the view that the ontogeny of the hypothalamic drive to the pituitary-gonadal axis in higher primates, including man, is sexually differentiated.

  2. Exogenous action of 5-lipoxygenase by its metabolites on luteinizing hormone release in rat pituitary cells.

    PubMed

    Przylipiak, A; Kiesel, L; Habenicht, A J; Przylipiak, M; Runnebaum, B

    1990-02-12

    The stimulatory effect of exogenously administered potato 5-lipoxygenase (0.1-0.3 U/2 ml) on luteinizing hormone (LH) release was demonstrated in rat anterior pituitary cells in a superfusion system. Nordihydroguaiaretic acid (NDGA), an inhibitor of 5-lipoxygenase, abolished the effect of the enzyme on LH secretion. The secretory effect on LH after 5-lipoxygenase administration was biphasic and dependent on Ca2+ indicating that 5-lipoxygenase affects LH release through its oxygenation reaction. Another series of experiments demonstrated that activation of 5-lipoxygenase, expressed as production of leukotriene (LT) B4 and C4 (728 +/- 127 pg/10(6) cells and 178 +/- 23 pg/10(6) cells, respectively) occurs in rat pituitary cells after addition of Ca2+ ionophore A23187. However, LTB4 and LTC4 were not formed by pituitary cells that had previously been desensitized by gonadotropin-releasing hormone (GnRH), the physiological ligand of LH release. These results are consistent with a role of 5-lipoxygenase metabolites in the mechanism of GnRH-induced LH secretion. PMID:2157615

  3. Novel microfabricated device to measure hormone/neurotransmitter release with millisecond temporal resolution

    NASA Astrophysics Data System (ADS)

    Gillis, Kevin D.; Chen, Peng; Xu, Bai; Tokranova, Natalya; Feng, Xiaojun; Castracane, James

    2002-06-01

    We are developing a novel readout for secretion of hormones and neurotransmitter on micro/nanofabricated chips. Traditional biochemical assays of signaling molecules secreted from cells are slow, cumbersome and have at best, a temporal resolution of several seconds. On the other hand, electrochemical measurement of hormone or transmitter secretion can obtain millisecond temporal resolution if the diffusion distance between the release site on the cell and the working electrode is within 1 micron. Carbon fiber microelectrodes can have millisecond time resolution, but can only measure release form a small fraction of the cell surface. We have fabricated arrays of Au electrodes in wells micromachined on the surface of silicon microchips. Each well/microelectrode roughly conforms to the shape of a single cell in order to capture release forma large fraction of the surface area of each cell with minimal diffusional delays. This paper will present details of the microfabrication process flow as well a initial results demonstrating millisecond-resolution measurement of catecholamine secretion form adrenal chromaffin cells. Our goal for this project is to develop enabling technology for massively parallel systems on a chip such as cell-based biosensors to detect neurotoxins and high-throughput assays of drugs that affect neurotransmitter release.

  4. Effects of long-term growth hormone-releasing factor administration on plasma growth hormone, luteinizing hormone and progesterone profiles in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2004-10-01

    To investigate the effects of long-term growth hormone-releasing factor (GRF) administration on plasma growth hormone (GH), LH and progesterone and body weight gain in growing buffalo calves, 12 female Murrah buffaloes within the age group of 6-8 months of age were divided into two groups (treatment and control groups) of six each in such a way so that average body weights between the groups did not differ (p > 0.05). Control buffaloes were not given any hormonal treatment and treatment group buffaloes were treated with synthetic bovine GRF [bGRF (1-44)-NH(2)] at the rate of 10 microg/100 kg body weight intravenously at an interval of 15 days from week 6 (5-week pre-treatment period) till 18 injections were completed (week 6-42 treatment period) and thereafter, effect of exogenous GRF were observed for 10-week post-treatment period. Jugular blood samples were drawn twice a week at 3-4-day intervals for plasma GH, LH and progesterone quantification. Body weight of all animals was recorded twice a week. During pre-treatment period, mean plasma GH, LH and progesterone did not differ (p > 0.05) between the groups. But during treatment as well as post-treatment period, mean plasma GH levels were found to be significantly (p < 0.01) higher in treatment than control group of buffaloes. Administration of GRF for longer term sustained a higher level of plasma GH even after cessation of treatment. GRF-treated buffaloes attained higher (p < 0.01) body weight than the controls. Repeated GRF administration for long-term significantly (p < 0.01) increased plasma LH and progesterone. In conclusion, repeated long-term exogenous GRF administration induces and even enhances GH release without any sign of refractoriness. GRF may, therefore, be used to induce daily GH release without loss of responsiveness over an extended period of time in young growing female buffaloes and it may assist these animals to grow faster. PMID:15367266

  5. Distribution and regulation by oestrogen of fully processed and variant transcripts of gonadotropin releasing hormone I and gonadotropin releasing hormone receptor mRNAs in the male chicken.

    PubMed

    Sun, Y M; Dunn, I C; Baines, E; Talbot, R T; Illing, N; Millar, R P; Sharp, P J

    2001-01-01

    The aim of this study was to increase understanding of the occurrence and regulation of chicken gonadotropin releasing hormone I (cGnRH I) and chicken gonadotropin releasing hormone receptor (cGnRH-R) mRNA variants in the hypothalamic-pituitary-testicular axis (HPTA). The study was carried out in the cockerel. Fully processed cGnRH I mRNA (cGnRH Ia) and a variant transcript (cGnRH Ib) with a retained intron 1 were observed in the preoptic/anterior hypothalamus (POA), the basal hypothalamus, anterior pituitary gland, and testes. Fully processed cGnRH-R mRNA (cGnRH-Ra) and a variant transcript (cGnRH-Rb) with a deletion were detected in the same tissues. In juvenile cockerels, concentrations of cGnRH Ia and b in the POA increased after castration, and this was prevented by oestrogen treatment. In the anterior pituitary gland, the concentration of cGnRH-Ra increased after castration and this was reversed by oestrogen treatment. In intact adult cockerels, oestrogen treatment depressed plasma luteinizing hormone but did not affect concentrations of cGnRH I and cGnRH-R mRNAs in the POA, basal hypothalamus, and anterior pituitary gland, suggesting that locally produced oestrogen, by aromatization, may exert maximal suppression on cGnRH I and GnRH-R mRNAs. In intact adult cockerels, the concentrations of cGnRH Ia and b in the testis, but not cGnRH-Ra and b, were depressed by oestrogen treatment. It was concluded that fully processed and variant cGnRH I and cGnRH-R mRNAs occur in all components of the HPTA. Oestrogen appears to play a role in the regulation of cGnRH Ia and b in the POA and testes, and of cGnRH-Ra in the POA and anterior pituitary gland.

  6. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2.

    PubMed

    Debaveye, Yves; Ellger, Björn; Mebis, Liese; Van Herck, Erik; Coopmans, Willy; Darras, Veerle; Van den Berghe, Greet

    2005-12-01

    Prolonged critical illness is characterized by reduced pulsatile TSH secretion, causing reduced thyroid hormone release and profound changes in thyroid hormone metabolism, resulting in low circulating T(3) and elevated rT(3) levels. To further unravel the underlying mechanisms, we investigated the effects of exogenous TRH and GH-releasing peptide-2 (GHRP-2) in an in vivo model of prolonged critical illness. Burn-injured, parenterally fed rabbits were randomized to receive 4-d treatment with saline, 60 microg/kg.h GHRP-2, 60 microg/kg.h TRH, or 60 microg/kg.h TRH plus 60 microg/kg.h GHRP-2 started on d 4 of the illness (n = 8/group). The activities of the deiodinase 1 (D1), D2, and D3 in snap-frozen liver, kidney, and muscle as well as their impact on circulating thyroid hormone levels were studied. Compared with healthy controls, hepatic D1 activity in the saline-treated, ill animals was significantly down-regulated (P = 0.02), and D3 activity tended to be up-regulated (P = 0.06). Infusion of TRH and TRH plus GHRP-2 restored the catalytic activity of D1 (P = 0.02) and increased T(3) levels back within physiological range (P = 0.008). D3 activity was normalized by all three interventions, but only addition of GHRP-2 to TRH prevented the rise in rT(3) seen with TRH alone (P = 0.02). Liver D1 and D3 activity were correlated (respectively, positively and negatively) with the changes in circulating T(3) (r = 0.84 and r = -0.65) and the T(3)/rT(3) ratio (r = 0.71 and r = -0.60). We conclude that D1 activity during critical illness is suppressed and related to the alterations within the thyrotropic axis, whereas D3 activity tends to be increased and under the joint control of the somatotropic and thyrotropic axes. PMID:16150898

  7. Interrelationship between feeding level and the metabolic hormones leptin, ghrelin and obestatin in control of chicken egg laying and release of ovarian hormones.

    PubMed

    Sirotkin, Alexander V; Grossmann, Roland

    2015-06-01

    The aim of the present experiment is to examine the role of nutritional status, metabolic hormones and their interrelationships in the control of chicken ovarian ovulatory and secretory activity. For this purpose, we identified the effect of food restriction, administration of leptin, ghrelin 1-18, obestatin and combinations of food restriction with these hormones for 3days on chicken ovulation (egg laying) rate and ovarian hormone release. The release of progesterone (P), testosterone (T), estradiol (E) and arginine-vasotocin (AVT) by isolated and cultured ovarian fragments was determined by EIA. It was observed that food restriction significantly reduced the egg-laying rate, T, E and AVT release and promoted P output by ovarian fragments. Leptin, administrated to ad libitum-fed chickens, did not change these parameters besides promoting E release. Nevertheless, administration of leptin was able to prevent the effect of food restriction on ovulation, T and E (but not P or AVT) release. Ghrelin 1-18 administration to ad libitum-fed birds did not affect the measured parameters besides a reduction in P release. Ghrelin 1-18 administration prevented the food restriction-induced decrease in ovarian T, E and AVT, but it did not change P output or egg laying. Obestatin administrated to control chicken promoted their ovarian P, E and inhibited ovarian AVT release but did not affect egg laying. It was able to promote the effect of food restriction on P, T and AVT, but not E release or egg laying. Our results (1) confirm an inhibitory effect of food restriction on chicken ovulation rate; (2) shows that food restriction-induced reduction in egg laying is associated with a decrease in ovarian T, E and AVT and an increase in ovarian P release; (3) confirm the involvement of metabolic hormones leptin, ghrelin and obestatin in the control of chicken ovarian hormones output; and (4) the ability of metabolic hormones to mimic/antagonize or prevent/promote the effects of food

  8. Increased prolactin secretion and thyrotrophin response to thyrotrophin releasing hormone in Klinefelter's syndrome.

    PubMed

    Kumanov, P

    1995-01-01

    The reports published thus far on prolactin and thyrotrophin secretion in patients with Klinefelter's syndrome are controversial. The aim of the present study was to investigate the interrelation between prolactin on one hand, and hormones of the hypothalamic-pituitary-gonadal axis and thyrotrophin, on the other, in males with Klinefelter's syndrome. Fifteen patients with Klinefelter's syndrome, aged between 17 and 43 years, and 15 healthy males, aged 22-35 years, were studied. Mean +/- SD basal serum prolactin levels were 529.6 +/- 174.6 mU l-1 in the patients, and 270.1 +/- 113.0 mU l-1 in the control group (P < 0.001). Following 200 micrograms thyrotrophin releasing hormone, an enhanced prolactin response was seen in the males with Klinefelter's syndrome. There was no evidence of any of the well-known causes of hyperprolactinaemia. The response of thyrotrophin to thyrotrophin releasing hormone was more pronounced in Klinefelter patients in comparison with controls. Presumably, in Klinefelter's syndrome both alterations--of prolactin and thyrotrophin secretion--may be caused by decrease of testosterone levels or they could reflect a disturbance in neuroendocrine regulation with some neurotransmitter imbalance.

  9. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid.

    PubMed Central

    Lin, L L; Lin, A Y; Knopf, J L

    1992-01-01

    Cytosolic phospholipase A2 (cPLA2) binds to natural membrane vesicles in a Ca(2+)-dependent fashion, resulting in the selective release of arachidonic acid, thus implicating cPLA2 in the hormonally regulated production of eicosanoids. Here we report that the treatment of Chinese hamster ovary (CHO) cells overexpressing cPLA2 with ATP or thrombin resulted in an increased release of arachidonic acid as compared with parental CHO cells, demonstrating the hormonal coupling of cPLA2. In contrast, CHO cells overexpressing a secreted form of mammalian PLA2 (sPLA2-II) failed to show any increased hormonal responsiveness. Interestingly, we have noted that the activation of cPLA2 with a wide variety of agents stimulates the phosphorylation of cPLA2 on serine residues. Pretreatment of cells with staurosporin blocked the ATP-mediated phosphorylation of cPLA2 and strongly inhibited the activation of the enzyme. Increased cPLA2 activity was also observed in lysates prepared from ATP-treated cells and was sensitive to phosphatase treatment. These results suggest that in addition to Ca2+, the phosphorylation of cPLA2 plays an important role in the agonist-induced activation of cPLA2. Images PMID:1631101

  10. Luteinizing hormone releasing factor in rat hypophysial portal blood collected during electrical stimulation of the hypothalamus

    PubMed Central

    Harris, G. W.; Ruf, K. B.

    1970-01-01

    1. Ovulation was induced in Nembutal-blocked pro-oestrous rats by electrical stimulation of the hypothalamus. 2. The same type of electrical stimulation was applied during the collection of hypophysial portal blood. 3. Pooled hypophysial portal plasma from donors in pro-oestrus, oestrus and met-oestrus was assayed for ovarian ascorbic acid depleting (OAAD) activity. 4. Electrical stimulation of the hypothalamus increased the OAAD activity, believed to be due to luteinizing hormone releasing factor (LRF), in pro-oestrus and met-oestrus, but not in oestrus. 5. It is concluded that the hypothalamic nerve fibres responsible for releasing LRF into the hypophysial portal vessels are depleted of their store of this releasing factor, or are refractory to electrical stimulation, during oestrus. PMID:5499765

  11. Ethanol-induced alterations in the posttranslational processing, but not secretion of luteinizing hormone-releasing hormone in vitro.

    PubMed

    Uddin, S; Wilson, T; Emanuele, M A; Williams, D; Kelley, M R; Emanuele, N

    1996-05-01

    The effects of ethanol (EtOH) on the male hypothalamic pituitary reproductive axis are multiple and varied. Although direct gonadal toxicity has been reported, hypothalamic-pituitary perturbations have also been noted. The difficulty of sampling the hypothalamus has made direct investigation of EtOH-induced alterations on luteinizing hormone-releasing hormone (LHRH) fraught with interpretation problems. To circumvent this, we have conducted a series of experiments exploring the effect of 200 mg% EtOH in vitro on GT1-7 cells, a newly developed LHRH secreting neural cell line. Cell lines were treated with EtOH-containing or EtOH-free media for 2, 6, 24, or 48 hr. EtOH caused no significant change in LHRH secretion at any time point, although there was a trend to increased secretion after 2 hr EtOH exposure when compared with control. Significantly increased total (i.e., cellular plus secreted) pro-LHRH coupled with significantly reduced cellular LHRH after 6 hr only of EtOH exposure suggested that EtOH caused a transient decrease in processing from bioinactive pro-LHRH to bioactive LHRH. However, even at this time point, LHRH secretion from these EtOH-exposed cells was no different than from control cells. Steady-state LHRH mRNA levels were not changed by EtOH at any time point. These findings are concordant with previous in vitro data using hypothalamic tissue that has similarly demonstrated no effect of EtOH on LHRH secretion. Taken together with the in vivo demonstration that EtOH reduces hypothalamic-pituitary portal blood levels of LHRH, these data indicate that EtOH exerts its effect either at an extrahypothalamic locus and/or on non-LHRH-producing cells within the hypothalamus.

  12. Potentiation of the gonadotoxicity of Cytoxan in the dog by adjuvant treatment with a luteinizing hormone-releasing hormone agonist.

    PubMed

    Goodpasture, J C; Bergstrom, K; Vickery, B H

    1988-04-15

    This study evaluates the effect on spermatogenesis of coadministration of Cytoxan (cyclophosphamide) and nafarelin, a luteinizing hormone-releasing hormone agonist. Nafarelin causes complete aspermatogenesis in dogs by interrupting the hypothalamic-pituitary-gonadal axis, which might protect against the testicular cytotoxicity associated with cyclophosphamide. The four treatment groups, each consisting of 2 mature male beagle dogs, were (a) no drug; (b) cyclophosphamide (p.o. 3x weekly for 43 and 48 wk for a total dose of 582 and 709 mg/kg, with dose varying according to weekly hematological profile); (c) nafarelin (2 micrograms/kg s.c. daily for 48 and 52 wk); and (d) cyclophosphamide plus nafarelin [same schedule as above with cyclophosphamide (570 and 698 mg/kg total dose) starting 7 wk after beginning nafarelin]. Plasma testosterone, spermatogenesis, and ejaculate volume were completely suppressed by nafarelin prior to starting cyclophosphamide. By 2 wk after cessation of treatment (posttreatment, PT), plasma testosterone reached normal levels, and at 5 wk PT ejaculates appeared which reached normal volumes 2 to 3 wk later. Normally motile ejaculated spermatozoa were noted at 6 to 8 wk PT in nafarelin-only-treated animals; normal sperm numbers were reached at 14 wk PT. The animals receiving cyclophosphamide plus nafarelin were azoospermic for the entire 65-wk PT period, and at 65 wk PT no germinal cells were found upon evaluation of testicular histology. Sperm numbers in cyclophosphamide-only-treated animals began to rise 10-11 wk PT and reached 150 x 10(6) sperm/ejaculate at approximately 65 wk PT (contemporaneous control dogs had sperm numbers of approximately 300-600 x 10(6)/ejaculate). Spermatogenesis in these cyclophosphamide-only-treated animals was normal in most seminiferous tubules at this time. The addition of nafarelin to cyclophosphamide treatment thus exacerbated the deleterious effects of cyclophosphamide on the testes, suggesting caution for use

  13. Treatment of nitrosamine-induced pancreatic tumors in hamsters with analogs of somatostatin and luteinizing hormone-releasing hormone

    SciTech Connect

    Paz-Bouza, J.I.; Redding, T.W.; Schally, A.V.

    1987-02-01

    Pancreatic ductal adenocarcinoma was induced in female Syrian golden hamsters by injecting N-nitrosobis(2-oxopropyl)amine (BOP) once a week at a dose of 10 mg per kg of body weight for 18 weeks. Hamsters were then treated with somatostatin analog (RC-160) or with (6-D-tryptophan)luteinizing hormone-releasing hormone ((D-Trp/sup 6/)LH-RH) delayed delivery systems. After 18 weeks of BOP administration, the hamsters were divided into three groups of 10-20 animals each. Group I consisted of untreated controls, group II was injected with RC-160, and group III was injected with (D-Trp/sub 2/)LH-RH. A striking decrease in tumor weight and volume was obtained in animals treated with (D-Trp/sup 6/)LH-RH or with the somatostatin analog RC-160. After 45 days of treatment with either analog, the survival rate was significantly higher in groups II and III (70%), as compared with the control group (35%). The studies, done by light microscopy, high-resolution microscopy, and electron microscopy, showed a decrease in the total number of cancer cells and changes in the epithelium, connective tissue, and cellular organelles in groups II and III treated with the hypothalamic analogs as compared to controls. These results in female hamsters with induced ductal pancreatic tumors confirm and extend the authors findings, obtained in male animals with transplanted tumors, that (D-Trp/sub 6/)LH-RH and somatostatin analogs inhibit the growth of pancreatic cancers.

  14. Agonists of growth hormone-releasing hormone stimulate self-renewal of cardiac stem cells and promote their survival.

    PubMed

    Florea, Victoria; Majid, Sonia S; Kanashiro-Takeuchi, Rosemeire M; Cai, Ren-Zhi; Block, Norman L; Schally, Andrew V; Hare, Joshua M; Rodrigues, Claudia O

    2014-12-01

    The beneficial effects of agonists of growth hormone-releasing hormone receptor (GHRH-R) in heart failure models are associated with an increase in the number of ckit(+) cardiac stem cells (CSCs). The goal of the present study was to determine the presence of GHRH-R in CSCs, the effect of GHRH-R agonists on their proliferation and survival, and the mechanisms involved. We investigated the expression of GHRH-R in CSCs of different species and the effect of GHRH-R agonists on their cell proliferation and survival. GHRH-R is expressed in ckit(+) CSCs isolated from mouse, rat, and pig. Treatment of porcine CSCs with the GHRH-R agonist JI-38 significantly increased the rate of cell division. Similar results were observed with other GHRH-R agonists, MR-356 and MR-409. JI-38 exerted a protective effect on survival of porcine CSCs under conditions of oxidative stress induced by exposure to hydrogen peroxide. Treatment with JI-38 before exposure to peroxide significantly reduced cell death. A similar effect was observed with MR-356. Addition of GHRH-R agonists to porcine CSCs induced activation of ERK and AKT pathways as determined by increased expression of phospho-ERK and phospho-AKT. Inhibitors of ERK and AKT pathways completely reversed the effect of GHRH-R agonists on CSC proliferation. Our findings extend the observations of the expression of GHRH-R by CSCs and demonstrate that GHRH-R agonists have a direct effect on proliferation and survival of CSCs. These results support the therapeutic use of GHRH-R agonists for stimulating endogenous mechanisms for myocardial repair or for preconditioning of stem cells before transplantation.

  15. Growth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and -independent prostate cancers

    PubMed Central

    Letsch, Markus; Schally, Andrew V.; Busto, Rebeca; Bajo, Ana M.; Varga, Jozsef L.

    2003-01-01

    The antiproliferative effects of an antagonist of growth hormone-releasing hormone (GHRH) JV-1-38 were evaluated in nude mice bearing s.c. xenografts of LNCaP and MDA-PCa-2b human androgen-sensitive and DU-145 androgen-independent prostate cancers. In the androgen-sensitive models, JV-1-38 greatly potentiated the antitumor effect of androgen deprivation induced by surgical castration, but was ineffective when given alone. Thus, in castrated animals bearing MDA-PCa-2b cancers, the administration of JV-1-38 for 35 days virtually arrested tumor growth (94% inhibition vs. intact control, P < 0.01; and 75% vs. castrated control, P < 0.05). The growth of LNCaP tumors was also powerfully suppressed by JV-1-38 combined with castration (83% inhibition vs. intact control, P < 0.01; and 68% vs. castrated control, P < 0.05). However, in androgen-independent DU-145 cancers, JV-1-38 alone could inhibit tumor growth by 57% (P < 0.05) after 45 days. In animals bearing MDA-PCa-2b and LNCaP tumors, the reduction in serum prostate-specific antigen levels, after therapy with JV-1-38, paralleled the decrease in tumor volume. Inhibition of MDA-PCa-2b and DU-145 cancers was associated with the reduction in the expression of mRNA and protein levels of vascular endothelial growth factor. The mRNA expression for GHRH receptor splice variants was found in all these models of prostate cancer. Our results demonstrate that GHRH antagonists inhibit androgen-independent prostate cancers and, after combination with androgen deprivation, also androgen-sensitive tumors. Thus, the therapy with GHRH antagonist could be considered for the management of both androgen-dependent or -independent prostate cancers. PMID:12538852

  16. The expression of growth hormone-releasing hormone (GHRH) and splice variants of its receptor in human gastroenteropancreatic carcinomas

    PubMed Central

    Busto, Rebeca; Schally, Andrew V.; Varga, Jozsef L.; Garcia-Fernandez, M. Olga; Groot, Kate; Armatis, Patricia; Szepeshazi, Karoly

    2002-01-01

    Splice variants (SVs) of receptors for growth hormone-releasing hormone (GHRH) have been found in primary human prostate cancers and diverse human cancer cell lines. GHRH antagonists inhibit growth of various experimental human cancers, including pancreatic and colorectal, xenografted into nude mice or cultured in vitro, and their antiproliferative action could be mediated in part through SVs of GHRH receptors. In this study we examined the expression of mRNA for GHRH and for SVs of its receptors in tumors of human pancreatic, colorectal, and gastric cancer cell lines grown in nude mice. mRNA for both GHRH and SV1 isoform of GHRH receptors was expressed in tumors of pancreatic (SW1990, PANC-1, MIA PaCa-2, Capan-1, Capan-2, and CFPAC1), colonic (COLO 320DM and HT-29), and gastric (NCI-N87, HS746T, and AGS) cancer cell lines; mRNA for SV2 was also present in Capan-1, Capan-2, CFPAC1, HT-29, and NCI-N87 tumors. In proliferation studies in vitro, the growth of pancreatic, colonic, and gastric cancer cells was stimulated by GHRH(1–29)NH2 and inhibited by GHRH antagonist JV-1–38. The stimulation of some gastroenteropancreatic cancer cells by GHRH was followed by an increase in cAMP production, and GHRH antagonist JV-1–38 competitively inhibited this effect. Our study indicates the presence of an autocrine/paracrine stimulatory loop based on GHRH and SV1 of GHRH receptors in human pancreatic, colorectal, and gastric cancers. The finding of SV1 receptor in human cancers provides an approach to an antitumor therapy based on the blockade of this receptor by specific GHRH antagonists. PMID:12186980

  17. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer.

    PubMed

    Muñoz-Moreno, Laura; Arenas, M Isabel; Schally, Andrew V; Fernández-Martínez, Ana B; Zarka, Elías; González-Santander, Marta; Carmena, María J; Vacas, Eva; Prieto, Juan C; Bajo, Ana M

    2013-02-15

    New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.

  18. Placental Corticotropin-Releasing Hormone Mediates the Association Between Prenatal Social Support and Postpartum Depression

    PubMed Central

    Hahn-Holbrook, Jennifer; Schetter, Christine Dunkel; Arora, Chander; Hobel, Calvin J.

    2013-01-01

    Three decades of research point to both biological and psychological risk factors for postpartum depression, but very little research integrates the two. This study bridged this gap by testing whether prenatal social support predicted depressive symptoms at 8 weeks postpartum in a multiethnic sample of 210 women and whether the stress hormone placental corticotropin-releasing hormone (pCRH), measured at 19, 29, and 37 weeks’ gestation, mediated this relationship. We found that prenatal family support predicted significantly fewer depressive symptoms postpartum and more gradual increases in pCRH from 29 to 37 weeks’ gestation. Furthermore, steeper increases in pCRH during this same period predicted more depressive symptoms postpartum. Finally, these changes in pCRH in late pregnancy mediated the relationship between prenatal family support and postpartum depressive symptoms. These results suggest that social and biological risk factors for postpartum depressive symptoms are intertwined and move us closer to an integrated biopsychosocial understanding of postpartum depression. PMID:23997996

  19. Short-term use of gonadotropin-releasing hormone agonist (leuprolide) for in vitro fertilization.

    PubMed

    Katayama, K P; Roesler, M; Gunnarson, C; Stehlik, E; Jagusch, S

    1988-12-01

    A common problem encountered by in vitro fertilization (IVF) programs is the premature occurrence of the spontaneous luteinizing hormone (LH) surge during ovarian stimulation cycles. Administration of gonadotropin-releasing hormone agonists (GnRH-a) for 2 to 3 weeks produces a state of hypogonadotropic hypogonadism, thus allowing ovarian stimulation to proceed uncomplicated by a spontaneous LH surge. We have elected to treat seven patients with GnRH-a in a "short-term" protocol, with GnRH-a initiated on cycle day 3 along with exogenous gonadotropins. In this series, we found that the spontaneous LH surge was abolished, while ovarian responsiveness seemed to be improved. These results suggest that the initial surge of gonadotropins elicited by GnRH-a administration may enhance ovarian stimulation and that spontaneous LH surge is blocked when GnRH-a and exogenous gonadotropins are initiated concomitantly.

  20. Expression of growth hormone (GH)-releasing factor gene in GH-producing pituitary adenoma.

    PubMed

    Wakabayashi, I; Inokuchi, K; Hasegawa, O; Sugihara, H; Minami, S

    1992-02-01

    Pituitary cells synthesize various neuropeptides that influence pituitary hormone secretion. GH-releasing factor (GRF) may also be produced by normal or pituitary tumor cells. We examined GRF gene expression in pituitary tumors. Standard techniques for the analysis of GRF gene expression did not appear to be suitable. Highly sensitive reverse transcription coupled to polymerase chain reaction was used. Specimens of pituitary adenoma were obtained by transsphenoidal adenomectomy from six patients with acromegaly and three patients with no clinical evidence of pituitary hormone overproduction; non-functioning adenoma. Pituitary glands were collected at autopsy from three patients who died from nonendocrine disorders. A specific GRF gene transcript was detected in five out of six GH-producing pituitary adenomas, whereas this was not found in three separate specimens of nonfunctioning pituitary adenoma or anterior and posterior pituitary tissue. The data suggest that GRF is synthesized as an intrinsic product in human GH-producing pituitary adenoma.

  1. Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction

    PubMed Central

    Czikora, Istvan; Sridhar, Supriya; Gorshkov, Boris; Alieva, Irina B.; Kasa, Anita; Gonzales, Joyce; Potapenko, Olena; Umapathy, Nagavedi S.; Pillich, Helena; Rick, Ferenc G.; Block, Norman L.; Verin, Alexander D.; Chakraborty, Trinad; Matthay, Michael A.; Schally, Andrew V.; Lucas, Rudolf

    2014-01-01

    Rationale: Antibiotic treatment of patients infected with G− or G+ bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Methods: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. Results: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. Conclusions: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the

  2. Physiological role of somatostatin-mediated autofeedback regulation for growth hormone: importance of growth hormone in triggering somatostatin release during a trough period of pulsatile growth hormone release in conscious male rats.

    PubMed

    Sato, M; Chihara, K; Kita, T; Kashio, Y; Okimura, Y; Kitajima, N; Fujita, T

    1989-08-01

    In mammals including human, it is generally accepted that growth hormone (GH) can regulate its own secretion through an autofeedback mechanism in which somatostatin (SRIF) may be involved. To explore a physiological role of SRIF-mediated GH autoregulation, the effect of exogenous human GH administration on plasma rat GH response to [D-Ala2, Nle27]-human GH-releasing hormone-(1-28)-agmatine (hGHRH-analog), which does not crossreact with anti-rat GH-releasing hormone gamma-globulin (GHRH-Ab), was examined in conscious male rats treated with GHRH-Ab in the absence and presence of anti-SRIF gamma-globulin (SRIF-Ab). Enhanced SRIF release during a trough period of natural pulsatile GH secretion, suggested by the blunted GH response to exogenous hGHRH-analog, no longer occurred when major GH secretory bursts were abolished by GHRH-Ab treatment. On the other hand, when hGH was administered in GHRH-Ab-treated rats so as to simulate the quantity and dynamic change of GH in hypophysial portal circulation in rats exhibiting pulsatile GH secretion, hGHRH-analog-induced GH rises were significantly suppressed during the period corresponding to a GH trough. This suppression was completely prevented by simultaneous treatment with SRIF-Ab. Furthermore, administration of bovine GH, but not ovine prolactin, resulted in significant suppression of hGHRH-analog-provoked GH rises. These findings suggest that enhanced SRIF release during a trough period of spontaneous GH secretory rhythm is induced by the preceding GH secretory burst, and also suggest a possible role for SRIF-mediated GH autoregulation in a physiological state.

  3. Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration.

    PubMed

    Wang, Liyun; Chadwick, Wayne; Park, Sung-Soo; Zhou, Yu; Silver, Nathan; Martin, Bronwen; Maudsley, Stuart

    2010-11-01

    Receptors for hormones of the hypothalamic-pituitary-gonadal axis are expressed throughout the brain. Age-related decline in gonadal reproductive hormones cause imbalances of this axis and many hormones in this axis have been functionally linked to neurodegenerative pathophysiology. Gonadotropin-releasing hormone (GnRH) plays a vital role in both central and peripheral reproductive regulation. GnRH has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in GnRH actions at non-pituitary peripheral targets. GnRH ligands and receptors are found throughout the brain where they may act to control multiple higher functions such as learning and memory function and feeding behavior. The actions of GnRH in mammals are mediated by the activation of a unique rhodopsin-like G protein-coupled receptor that does not possess a cytoplasmic carboxyl terminal sequence. Activation of this receptor appears to mediate a wide variety of signaling mechanisms that show diversity in different tissues. Epidemiological support for a role of GnRH in central functions is evidenced by a reduction in neurodegenerative disease after GnRH agonist therapy. It has previously been considered that these effects were not via direct GnRH action in the brain, however recent data has pointed to a direct central action of these ligands outside the pituitary. We have therefore summarized the evidence supporting a central direct role of GnRH ligands and receptors in controlling central nervous physiology and pathophysiology.

  4. Childhood lead toxicity and impaired release of thyrotropin-stimulating hormone

    SciTech Connect

    Huseman, C.A.; Moriarty, C.M.; Angle, C.R.

    1987-04-01

    Decreased stature of children is epidemiologically associated with increased blood lead independent of multiple socioeconomic and nutritional variables. Since endocrine dysfunction occurs in adult lead workers, they studied two girls, 2 years of age, before and after calcium disodium edetate chelation for blood leads (PbB) of 19-72 ..mu..g/dl. The height of both children had crossed from the 50th to below the 10th percentile during the course of chronic lead toxicity. Basal free T/sub 4/, T/sub 4/, T/sub 3/, cortisol, somatomedin C, and sex steroids were normal. A decrease in the growth hormone response and elevation of basal prolcatin and gonadotropins were noted in one. Both children demonstrated blunted thyrotropin-stimulating hormone (TSH) responses to thyrotropin-releasing hormone (TRH) in six of seven challenges. This prompted in vitro studies of cultured cells from rat pituitarities. After incubation of pituitary cells with 0.1-10 ..mu..M Pb/sup 2 +/ for 2 hr, followed by the addition of TRH, there was a dose-dependent inhibition of TSH release Lead did not interfere with the assay of TSH. To investigate the interaction of lead and calcium, /sup 45/Ca/sup 2 +/ kinetic analyses were done on rat pituitary slices after 1 hr incubation with 1.0 ..mu..M lead. The impaired late efflux was consistent with a decrease in the size and exchangeability of the tightly bound pool of intracellular microsomal or mitochondrial calcium. The rat pituitary cell model provides a model for the decreased TSH release of lead poisoning, supports the biological plausibility of a neuroendocrine effect on growth, and suggests that interference with calcium-mediated intracellular responses is a basic mechanism of lead toxicity.

  5. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain.

  6. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain. PMID:25200132

  7. Activin A regulation of gonadotropin-releasing hormone synthesis and release in vitro.

    PubMed

    MacConell, L A; Lawson, M A; Mellon, P L; Roberts, V J

    1999-10-01

    Activin is essential for the regulation of normal mammalian reproductive function at both the pituitary and gonadal levels. However, its central actions in the control of the hypothalamic-pituitary-gonadal axis remain largely unexplored. The present study aims to determine whether activin could regulate the reproductive axis at the level of the hypothalamus, through control of the GnRH neuroendocrine system. Using the GnRH-secreting GT1-7 neuronal cell line as a model system, we demonstrate expression of mRNAs encoding activin receptor types I, IB, and II. We examined the effects of activin A on GnRH protein secretion and mRNA levels in GT1-7 cells. Treatment with rh-activin A regulated both GnRH protein secretion and GnRH mRNA expression in the GT1-7 cells in a time-dependent fashion. Using transient transfection assays, we explored a potential transcriptional basis for these changes. Activin A increased reporter gene activity driven by minimal GnRH enhancer and promoter elements, suggesting that activin may regulate GnRH gene expression at the level of transcription. Lastly, activin A treatment of male rat hypothalami, in vitro, increased GnRH protein secretion. Collectively, molecular and physiological evidence support the presence of an activin system which might act at a hypothalamic site to regulate mammalian reproduction via activation of GnRH synthesis and release.

  8. Topography and associations of leu-enkephalin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon.

    PubMed

    Dudás, Bertalan; Merchenthaler, István

    2003-04-01

    Although several studies indicated that leu-enkephalin controls gonadal function, the morphological substrate of this modulation is unknown. To reveal potential interaction sites between leu-enkephalin and LH-releasing hormone (LHRH) in the hypothalamus, the distribution and connections of leu-enkephalin-immunoreactive (IR) and LHRH-IR systems were examined in the human diencephalon using double-label immunohistochemistry. First the leu-enkephalin-IR and LHRH-IR neural elements were mapped, then the maps of the two different neurotransmitter systems were superimposed unveiling the overlapping areas. The putative juxtapositions between leu-enkephalin-IR and LHRH-IR structures were revealed with double label immunocytochemistry. Close contacts were detected in the medial preoptic area and in the infundibulum/median eminence. In these areas, diaminobenzidine-silver-intensified, black leu-enkephalin-IR fibers abutted fusiform, brown, diaminobenzidine-labeled LHRH neurons often forming multiple contacts. Examination of semithin sections of these close associations with the aid of oil immersion revealed no cleft between the contacting LHRH-IR and leu-enkephalin-IR elements. Our findings indicate that the juxtapositions between LHRH-IR and leu enkephalin-IR neurons may be functional synapses forming the morphological substrate of the leu-enkephalin-modulated LHRH secretion in the human diencephalon. Moreover, the wide distribution of leu-enkephalin-IR elements suggests leu-enkephalin control of other diencephalic functions as well.

  9. Ghrelin-induced growth hormone release from goldfish pituitary cells is nitric oxide dependent.

    PubMed

    Grey, Caleb L; Chang, John P

    2012-11-01

    Ghrelin (GRLN) is an important neuroendocrine regulator of growth hormone (GH) release in vertebrates. Previous studies show goldfish (g)GRLN(19)-induced GH from the goldfish pituitary involves voltage sensitive Ca(2+) channels, increases in intracellular Ca(2+) and the PKC signalling pathway. We set out to examine the role of the nitric oxide (NO) pathway in gGLRN(19)-induced GH release from primary cultures of goldfish pituitary cells using pharmacological regulators in cell column perifusion systems. The NO scavenger PTIO abolished gGRLN(19)-induced GH release and co-treatment with the NO donor SNP and GRLN did not produce additive GH release responses. Nitric oxide synthase (NOS) inhibitors 1400 W and 7-Ni abolished GRLN-induced GH release while treatment with another NOS inhibitor, AGH, had no significant effect. Taken together, these results demonstrate that the NOS/NO is an integral component of gGRLN(19)-induced signalling within the goldfish pituitary cells, and given the relative specificity of AGH for inducible NOS and endothelial NOS isoforms, suggests that neuronal NOS is the likely NOS isoform utilized in goldfish somatotropes by this physiological regulator.

  10. Parathyroid hormone stimulates juxtaglomerular cell cAMP accumulation without stimulating renin release

    PubMed Central

    Atchison, Douglas K.; Harding, Pamela; Cecilia Ortiz-Capisano, M.; Peterson, Edward L.

    2012-01-01

    Parathyroid hormone (PTH) is positively coupled to the generation of cAMP via its actions on the PTH1R and PTH2R receptors. Renin secretion from juxtaglomerular (JG) cells is stimulated by elevated intracellular cAMP, and every stimulus that increases renin secretion is thought to do so via increasing cAMP. Thus we hypothesized that PTH increases renin release from primary cultures of mouse JG cells by elevating intracellular cAMP via the PTH1R receptor. We found PTH1R, but not PTH2R, mRNA expressed in JG cells. While PTH increased JG cell cAMP content from (log10 means ± SE) 3.27 ± 0.06 to 3.92 ± 0.12 fmol/mg protein (P < 0.001), it did not affect renin release. The PTH1R-specific agonist, parathyroid hormone-related protein (PTHrP), also increased JG cell cAMP from 3.13 ± 0.09 to 3.93 ± 0.09 fmol/mg protein (P < 0.001), again without effect on renin release. PTH2R receptor agonists had no effect on cAMP or renin release. PTHrP increased cAMP in the presence of both low and high extracellular calcium from 3.31 ± 0.17 to 3.83 ± 0.20 fmol/mg protein (P < 0.01) and from 3.29 ± 0.18 to 3.63 ± 0.22 fmol/mg protein (P < 0.05), respectively, with no effect on renin release. PTHrP increased JG cell cAMP in the presence of adenylyl cyclase-V inhibition from 2.85 ± 0.17 to 3.44 ± 0.14 fmol/mg protein (P < 0.001) without affecting renin release. As a positive control, forskolin increased JG cell cAMP from 3.39 ± 0.13 to 4.48 ± 0.07 fmol/mg protein (P < 0.01) and renin release from 2.96 ± 0.10 to 3.29 ± 0.08 ng ANG I·mg prot−1·h−1 (P < 0.01). Thus PTH increases JG cell cAMP via non-calcium-sensitive adenylate cyclases without affecting renin release. These data suggest compartmentalization of cAMP signaling in JG cells. PMID:22896038

  11. Parathyroid hormone stimulates juxtaglomerular cell cAMP accumulation without stimulating renin release.

    PubMed

    Atchison, Douglas K; Harding, Pamela; Cecilia Ortiz-Capisano, M; Peterson, Edward L; Beierwaltes, William H

    2012-10-15

    Parathyroid hormone (PTH) is positively coupled to the generation of cAMP via its actions on the PTH1R and PTH2R receptors. Renin secretion from juxtaglomerular (JG) cells is stimulated by elevated intracellular cAMP, and every stimulus that increases renin secretion is thought to do so via increasing cAMP. Thus we hypothesized that PTH increases renin release from primary cultures of mouse JG cells by elevating intracellular cAMP via the PTH1R receptor. We found PTH1R, but not PTH2R, mRNA expressed in JG cells. While PTH increased JG cell cAMP content from (log(10) means ± SE) 3.27 ± 0.06 to 3.92 ± 0.12 fmol/mg protein (P < 0.001), it did not affect renin release. The PTH1R-specific agonist, parathyroid hormone-related protein (PTHrP), also increased JG cell cAMP from 3.13 ± 0.09 to 3.93 ± 0.09 fmol/mg protein (P < 0.001), again without effect on renin release. PTH2R receptor agonists had no effect on cAMP or renin release. PTHrP increased cAMP in the presence of both low and high extracellular calcium from 3.31 ± 0.17 to 3.83 ± 0.20 fmol/mg protein (P < 0.01) and from 3.29 ± 0.18 to 3.63 ± 0.22 fmol/mg protein (P < 0.05), respectively, with no effect on renin release. PTHrP increased JG cell cAMP in the presence of adenylyl cyclase-V inhibition from 2.85 ± 0.17 to 3.44 ± 0.14 fmol/mg protein (P < 0.001) without affecting renin release. As a positive control, forskolin increased JG cell cAMP from 3.39 ± 0.13 to 4.48 ± 0.07 fmol/mg protein (P < 0.01) and renin release from 2.96 ± 0.10 to 3.29 ± 0.08 ng ANG I·mg prot(-1)·h(-1) (P < 0.01). Thus PTH increases JG cell cAMP via non-calcium-sensitive adenylate cyclases without affecting renin release. These data suggest compartmentalization of cAMP signaling in JG cells.

  12. Identification of the growth hormone-releasing hormone analogue [Pro1, Val14]-hGHRH with an incomplete C-term amidation in a confiscated product.

    PubMed

    Esposito, Simone; Deventer, Koen; Van Eenoo, Peter

    2014-01-01

    In this work, a modified version of the 44 amino acid human growth hormone-releasing hormone (hGHRH(1-44)) containing an N-terminal proline extension, a valine residue in position 14, and a C-terminus amidation (sequence: PYADAIFTNSYRKVVLGQLSARKLLQDIMSRQQGESNQERGARARL-NH2 ) has been identified in a confiscated product by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Investigation of the product suggests also an incomplete C-term amidation. Similarly to other hGHRH analogues, available in black markets, this peptide can potentially be used as performance-enhancing drug due to its growth hormone releasing activity and therefore it should be considered as a prohibited substance in sport. Additionally, the presence of partially amidated molecule reveals the poor pharmaceutical quality of the preparation, an aspect which represents a big concern for public health as well.

  13. Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation.

    PubMed

    Qin, Yong Jie; Chan, Sun On; Chong, Kelvin Kam Lung; Li, Benjamin Fuk Loi; Ng, Tsz Kin; Yip, Yolanda Wong Ying; Chen, Haoyu; Zhang, Mingzhi; Block, Norman L; Cheung, Herman S; Schally, Andrew V; Pang, Chi Pui

    2014-12-23

    Disruptions in immunity and occurrence of inflammation cause many eye diseases. The growth hormone-releasing hormone-growth hormone-insulin-like growth factor-1 (GHRH-GH-IGF1) axis exerts regulatory effects on the immune system. Its involvement in ocular inflammation remains to be investigated. Here we studied this signaling in endotoxin-induced uveitis (EIU) generated by LPS. The increase in GHRH receptor (GHRH-R) protein levels was parallel to the increase in mRNA levels of pituitary-specific transcription factor-1, GHRH-R splice variant 1, GHRH, and GH following LPS insult. Elevation of GHRH-R and GH receptor was localized on the epithelium of the iris and ciliary body, and GHRH-R was confined to the infiltrating macrophages and leukocytes in aqueous humor but not to those in stroma. Treatment with GHRH-R antagonist decreased LPS-stimulated surges of GH and IGF1 in aqueous humor and alleviated inflammation by reducing the infiltration of macrophages and leukocytes and the production of TNF-α, IL-1β, and monocyte chemotactic protein-1. Our results indicate that inflammation in the iris and ciliary body involves the activation of GHRH signaling, which affects the recruitment of immune cells and the production of proinflammatory mediators that contribute to EIU pathogenesis. Moreover, the results suggest that GHRH-R antagonists are potential therapeutic agents for the treatment of acute ocular inflammation. PMID:25489106

  14. [Gonadotropin-releasing hormone (GnRH) in selecting patients for varicocelectomy].

    PubMed

    Segenreich, E; Israilov, S; Shmueli, J; Niv, E; Servadio, C

    1997-03-01

    The gonadotropin-releasing hormone (GnRH) test was performed on 182 patients with various degrees of varicocele before and after low, inguinal, spermatic vein ligation, and on 18 controls. The levels of follicle-stimulating hormone (FSH) and luteinizing hormone, a synthetic GnRH (LH), were evaluated before and 45 minutes after intravenous injection of 100 mcg relisorm L. FSH levels increased more than 2-fold in 118 patients [64.8%] and LH levels increased more than 5-fold in 135 patients [74.1%]). In the control group the increase was less in all cases. Therefore, whenever FSH increased more than 2-fold and LH more than 5-fold, we considered the test positive (pathologic); On this basis the GnRH test was positive in 126 (69.2%) and negative (normal) in 56 (30.7%). Of the 126 with positive tests, only 32 (27.3%) still had a positive result 5-6 months after operation. There was correlation between a positive GnRH test and significant improvement in sperm parameters after varicocelectomy: of the 126 with positive tests before operation, sperm parameters improved in 87 patients (69%), while in the 56 patients with negative tests before operation, in only 7 (12.5%) was there improvement after correction. We conclude that a positive GnRH test indicates impairment of the hypothalamic-pituitary-gonadal axis caused by varicocele and could serve as a marker for surgical intervention with good prediction of outcome.

  15. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  16. Preparation and characterization of luteinising-hormone releasing hormone nanoliposomal microbubbles specifically targeting ovarian cancer cells in vitro.

    PubMed

    Zhang, Jinyi; Liu, Sisun; Zhu, Yuanfang; Zhang, Liping; Li, Wenjuan; Wang, Fen; Huang, Shuying

    2014-07-01

    The aim of the present study was to prepare luteinizing-hormone releasing hormone (LHRH) nanoliposomal microbubbles specifically targeting ovarian cancer cells. The lyophilization/sonication method was used to prepare non-targeting nanoliposomal microbubbles (N-N-Mbs). Using the biotin-avidin bridge method, conjugated LHRH antibodies to N-N-Mbs generated LHRH nanoliposomal microbubbles (LHRH-N-Mbs) specifically targeting ovarian cancer cells. The morphology and physicochemical properties of the microbubbles was detected using an optical microscope and zeta detector. The binding affinity between the secondary antibody and LHRH-N-Mbs or N-N-Mbs was determined by flow cytometry. The binding of LHRH-N-Mb to human ovarian cancer cells (OVCAR-3) was detected by light microscopy. The rounded and uniformly distributed N-N-Mbs and LHRH-N-Mbs were successfully generated. The particle size ranged from 295-468 nm with a mean of 360 nm for N-N-Mbs or 369-618 nm with a mean of 508 nm for LHRH-N-Mbs. There was a significant difference in size between the two groups (P<0.05), although the surface potential of the two microbubbles remained the same (-14.6 mV). Following being kept at room temperature for 14 days, no significant difference in the physicochemical properties of the LHRH-N-Mbs was detected compared with that of freshly prepared microbubbles. The secondary antibody binding rate of LHRH-N-Mbs and N-N-Mbs was 75.6 and 0.83%, respectively. Furthermore, the formation of a rosette-like structure surrounding OVCAR-3 cells was observed after the cells were incubated with LHRH-N-Mbs, whereas pre-incubation with LHRH antibody blocked this rosette formation. In conclusion, LHRH-N-Mbs specifically targeting ovarian cancer cells were successfully prepared through biotin-avidin mediation and the lyophilization/sonication method. The key feature of LHRH-N-Mbs is their small size, stability and high efficiency in targeting human OVCAR-3 cells in vitro. PMID:24805264

  17. Preparation and characterization of luteinising-hormone releasing hormone nanoliposomal microbubbles specifically targeting ovarian cancer cells in vitro.

    PubMed

    Zhang, Jinyi; Liu, Sisun; Zhu, Yuanfang; Zhang, Liping; Li, Wenjuan; Wang, Fen; Huang, Shuying

    2014-07-01

    The aim of the present study was to prepare luteinizing-hormone releasing hormone (LHRH) nanoliposomal microbubbles specifically targeting ovarian cancer cells. The lyophilization/sonication method was used to prepare non-targeting nanoliposomal microbubbles (N-N-Mbs). Using the biotin-avidin bridge method, conjugated LHRH antibodies to N-N-Mbs generated LHRH nanoliposomal microbubbles (LHRH-N-Mbs) specifically targeting ovarian cancer cells. The morphology and physicochemical properties of the microbubbles was detected using an optical microscope and zeta detector. The binding affinity between the secondary antibody and LHRH-N-Mbs or N-N-Mbs was determined by flow cytometry. The binding of LHRH-N-Mb to human ovarian cancer cells (OVCAR-3) was detected by light microscopy. The rounded and uniformly distributed N-N-Mbs and LHRH-N-Mbs were successfully generated. The particle size ranged from 295-468 nm with a mean of 360 nm for N-N-Mbs or 369-618 nm with a mean of 508 nm for LHRH-N-Mbs. There was a significant difference in size between the two groups (P<0.05), although the surface potential of the two microbubbles remained the same (-14.6 mV). Following being kept at room temperature for 14 days, no significant difference in the physicochemical properties of the LHRH-N-Mbs was detected compared with that of freshly prepared microbubbles. The secondary antibody binding rate of LHRH-N-Mbs and N-N-Mbs was 75.6 and 0.83%, respectively. Furthermore, the formation of a rosette-like structure surrounding OVCAR-3 cells was observed after the cells were incubated with LHRH-N-Mbs, whereas pre-incubation with LHRH antibody blocked this rosette formation. In conclusion, LHRH-N-Mbs specifically targeting ovarian cancer cells were successfully prepared through biotin-avidin mediation and the lyophilization/sonication method. The key feature of LHRH-N-Mbs is their small size, stability and high efficiency in targeting human OVCAR-3 cells in vitro.

  18. Hypothalamic gonadotrophin-releasing hormone expression in female monkeys with different sensitivity to stress.

    PubMed

    Centeno, M-L; Sanchez, R L; Cameron, J L; Bethea, C L

    2007-08-01

    Psychosocial stress, combined with mild dieting and moderate exercise, are observed in women seeking treatment for hypothalamic amenorrhea. Using female cynomolgus macaques, we previously reported that the same combination of mild stresses suppressed reproductive hormone secretion and menstrual cycles in some individuals (stress-sensitive, SS), but not in others (highly stress-resilient, HSR). Compared to HSR monkeys, SS monkeys exhibited lower oestradiol and progesterone levels at the midcycle peak and decreased gene expression in the central serotonergic system during nonstressed cycles. Because steroids and serotonin impinge upon the hypothalamic-pituitary-gonadal (HPG) axis, we hypothesised that the differences between SS and HSR monkeys in the sensitivity of the HPG axis to stress may ultimately manifest in differences in the gonadotrophin-releasing hormone (GnRH) system. GnRH in situ hybridisation and immunohistochemistry were performed with hypothalamic sections from SS and HSR animals, euthanised in the early follicular phase of a nonstressed menstrual cycle. Compared to HSR monkeys, SS monkeys exhibited a significantly higher number and density of GnRH cell bodies, as well as a higher number of soma with extremely robust expression of GnRH mRNA, but SS monkeys exhibited a lower density of immunostained GnRH fibres in the median eminence. We suggest that neuronal mechanisms involved in the control of GnRH synthesis, transport and release differ in SS compared to HSR animals.

  19. The hypothalamic-pituitary response in SLE. Regulation of prolactin, growth hormone and cortisol release.

    PubMed

    Rovenský, J; Blazícková, S; Rauová, L; Jezová, D; Koska, J; Lukác, J; Vigas, M

    1998-01-01

    It has been suggested that neuroendocrine regulation plays an important role in the pathogenesis and activation of autoimmune diseases. The aim of this investigation was to clarify the hypothalamic-pituitary response to a well-defined stimulus under standardised conditions in patients with SLE. Plasma concentrations of prolactin (PRL), growth hormone (GH) and cortisol were determined in venous blood drawn through an indwelling cannula during insulin-induced hypoglycaemia (0.1 U/kg b.w., i.v.) in ten patients and in 12 age-, gender- and weight-matched healthy subjects. Basal PRL concentrations were higher in patients vs healthy controls (12 vs 6 ng/ml, P < 0.01), though still within the physiological range. Insulin-induced plasma PRL and GH were significantly increased both in patients and healthy subjects; however, the increments or areas under the curves were not different in the two groups. Plasma cortisol response showed moderate attenuation in patients. Sensitivity of pituitary lactotrothrops to thyrotropin-releasing hormone (TRH) administration (200 microg, i.v.) was the same in patients and control subjects. In SLE patients with low activity of the disease the sensitivity of pituitary PRL release to TRH administration remained unchanged. The hypothalamic response to stress stimulus (hypoglycaemia) was comparable in patients and healthy subjects. PMID:9736325

  20. Oxytocin/vasopressin and gonadotropin-releasing hormone from cephalopods to vertebrates.

    PubMed

    Minakata, Hiroyuki

    2010-07-01

    Recent advances in peptide search methods have revealed two peptide systems that have been conserved through metazoan evolution. Members of the oxytocin/vasopressin-superfamily have been identified from protostomian and deuterostomian animals, indicating that the oxytocin/vasopressin hormonal system represents one of the most ancient systems. In most protostomian animals, a single member of the superfamily shares oxytocin-like and vasopressin-like actions. Co-occurrence of two members has been discovered in modern cephalopods, octopus, and cuttlefish. We propose that cephalopods have developed two peptides in the molluscan evolutionary lineage like vertebrates have established two lineages in the oxytocin/vasopressin superfamily. The existence of gonadotropin-releasing hormone (GnRH) in protostomian animals was initially suggested by immunohistochemical analysis using chordate GnRH antibodies. A peptide with structural features similar to those of chordate GnRHs was originally isolated from octopus, and an identical peptide has been characterized from squid and cuttlefish. Novel forms of GnRH-like molecules from other molluscs, an annelid, arthropods, and nematodes demonstrate somewhat conserved structures at the N-terminal regions; but structures of the C-terminal regions critical to gonadotropin-releasing activity are diverse. These findings may be important for the study of the molecular evolution of GnRH in protostomian animals.

  1. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments.

    PubMed

    Barra de la Tremblaye, P; Plamondon, H

    2016-07-01

    Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke. PMID:27455847

  2. Purification of a high-molecular-weight somatoliberin (growth-hormone-releasing factor) from pig hypothalami.

    PubMed Central

    Sykes, J E; Lowry, P J

    1983-01-01

    Preliminary observations [Sykes & Lowry (1980) J. Endocrinol. 85, 42P-43P] had suggested that the major hypothalamic somatoliberin (growth-hormone-releasing factor) was a larger peptide than the other characterized hypothalamic factors, with an elution position on Sephadex G-50 between those of neurophysin and corticotropin. The present paper reports the isolation and preliminary characterization of pig hypothalamic somatoliberin. Acid extracts of pig stalk median eminence were purified by gel filtration and preparative and analytical high-pressure liquid chromatography to yield a preparation that was specific in the release of somatotropin (growth hormone) in vitro, giving a steep dose--response curve at doses in the range 0.20-3.0 ng. Amino acid analysis revealed a non-cysteine-containing peptide with a high number of glutamate (or glutamine) and aspartate (or asparagine) residues. The peptide had about 56-57 amino acid residues and an apparent molecular weight of 6400, in keeping with its elution position on a column of Sephadex G-50. PMID:6409074

  3. Growth hormone modulation of arginine-induced glucagon release: studies of isolated growth hormone deficiency and acromegaly.

    PubMed

    Seino, Y; Taminato, T; Goto, Y; Inoue, Y; Kadowaki, S; Hattori, M; Mori, K; Kato, Y; Matsukura, S; Imura, H

    1978-12-01

    Plasma glucagon and insulin responses to L-arginine were compared in normal controls and patients with isolated growth hormone deficiency and acromegaly. Patients with isolated growth hormone deficiency were characterized by high plasma glucagon response and low plasma insulin response, whereas acromegalic patients showed exaggerated plasma glucagon response and almost normal insulin response. These results suggest that growth hormone is probably required for optimum function of the islets, and since hyperglucagonaemia was observed in both growth hormone deficiency and acromegaly, metabolic disturbances stemming from the respective primary diseases may affect glucagon secretion.

  4. Biochemical and functional aspects of gonadotrophin-releasing hormone and gonadotrophins.

    PubMed

    Ulloa-Aguirre, A; Timossi, C

    2000-01-01

    Reproductive function in mammals is governed by the hypothalamic-pituitary-gonadal axis, which conforms a functional unit. Sexual maturation and the subsequent development of reproductive competence depend on the precise and coordinated function of this axis. The components of the reproductive axis communicate each other through endocrine signals. The hypothalamus synthesizes gonadotrophin-releasing hormone or GnRH, which in turn stimulates synthesis and secretion of the pituitary gonadotrophins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The ovarian follicles and the interstitial and Sertoli cells of the testis are the targets for these pituitary signals. Under gonadotrophic stimulation, the gonads produce and secrete several steroid and non-steroid (polypeptide) factors, which in turn regulate in different ways the function of the hypothalamic-pituitary axis. An episodic and pulsatile mode of secretion of hormonal signals characterize (as in other endocrine systems) the function of the reproductive axis, particularly that of the hypothalamic-pituitary unit. The target cell response, and consequently the harmonic function of the corresponding gland, will depend on the adequate dynamics of this pulsatile secretion. The function of each component of the reproductive axis is strongly influenced by locally-produced signals acting either in a paracrine or autocrine manner; these particular signals represent fine-tuning regulation systems that eventually amplify or restrain the magnitude of response to a particular endocrine signal, providing additional mechanisms for tissue homeostasis and a better functional plasticity of the target gland. The design and rational use of novel therapeutic strategies for an optimal exogenously-controlled reproductive function largely depend on the detailed knowledge of the hypothalamic-pituitary-gonadal axis function and the structure and mechanism of action of those factors and signals involved in its regulation.

  5. Influence of thyrotrophin-releasing hormone on thermoregulation in newborn lambs.

    PubMed

    Bird, J A; Clarke, L; Symonds, M E

    1998-01-01

    This study examined the effect of thyrotrophin-releasing hormone (TRH) administration on thermoregulation in the newborn. Twin lambs were either delivered near-term by caesarean section or born vaginally at term. Colonic temperature, O2 consumption, CO2 production, breathing and heart rates, plus plasma thyroid hormone and nonesterified fatty acid (NEFA) concentrations and thermogenic activity (i.e. GDP binding) of brown adipose tissue (BAT) were measured. In caesarean section delivered lambs colonic temperature decreased rapidly after birth, a response that was greater in the group designated for TRH treatment, in which colonic temperature fell to below 36.0 degrees C at 80 min of life, prior to TRH administration. At this age colonic temperature had been restored to a mean of 38.70 degrees C in controls. TRH had no influence on the composition or thermogenic activity of BAT. The incidence of shivering was not influenced by TRH, but treated lambs maintained a higher rate of O2 consumption and ventilation compared with controls after colonic temperature had been restored to 38.56 degrees C. TRH appeared to promote fat oxidation as O2 consumption remained unchanged and CO2 production declined by a greater rate in treated lambs, resulting in a lower respiratory quotient compared to controls. Heart rate and plasma concentrations of NEFA increased following TRH administration although this did not result in values greater than controls. Normothermic lambs born vaginally had BAT with a greater thermogenic activity, higher plasma thyroid hormone and NEFA concentrations compared with caesarean section delivered lambs, but a thermogenic response was not observed to TRH despite a rise in thyroid hormone concentrations. In conclusion, TRH can improve thermoregulation, an effect that could be linked to an increase in fat oxidation.

  6. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence

    PubMed Central

    Kakizawa, Keisuke; Watanabe, Miho; Mutoh, Hiroki; Okawa, Yuta; Yamashita, Miho; Yanagawa, Yuchio; Itoi, Keiichi; Suda, Takafumi; Oki, Yutaka; Fukuda, Atsuo

    2016-01-01

    Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)–containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67+/GFP), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na+-K+-2Cl− cotransporter (NKCC1), but not the K+-Cl− cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl− concentrations ([Cl−]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca2+) levels in the CRH neuron terminals but decreased the Ca2+ levels in their somata. In addition, the increases in Ca2+ concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME. PMID:27540587

  7. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence.

    PubMed

    Kakizawa, Keisuke; Watanabe, Miho; Mutoh, Hiroki; Okawa, Yuta; Yamashita, Miho; Yanagawa, Yuchio; Itoi, Keiichi; Suda, Takafumi; Oki, Yutaka; Fukuda, Atsuo

    2016-08-01

    Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME. PMID:27540587

  8. Feedlot performance, carcass characteristics, hormones, and metabolites in steers actively immunized against growth hormone-releasing factor.

    PubMed

    Harvey, R W; Armstrong, J D; Heimer, E P; Campbell, R M

    1993-11-01

    Large-framed Simmental and Charolais steers were actively immunized against growth hormone-releasing factor (GRF) to evaluate the effect on growth, carcass characteristics (especially intramuscular fat deposition), and concentrations of somatotropin (ST) and IGF-I. Primary immunizations of 1.5 mg of GRF-(1-29)-Gly-Gly-Cys-NH2 conjugated to 1.5 mg of human serum albumin (GRFi, n = 12) or 1.5 mg of human serum albumin (HSAi, n = 12) were given at approximately 10 mo of age. Booster immunizations of .5 mg of the appropriate antigen were given at d 49 and 125. Weights of steers administered GRFi were less (P < .05) than those given HSAi at 126 d (34.6 kg) or at 262 d (48.2 kg) after treatment. Carcass weights were 28.2 kg less (P < .01) for GRFi than for HSAi steers. Dry matter intake was not affected by immunization treatment, whereas feed efficiency was reduced in GRFi steers. Marbling scores were higher (P < .05) for HSAi than for GRFi steers but similar percentages (83.3) of both treatments graded Low Choice or higher. Rib sections of GRFi steers contained more fat (31.2 vs 25.0%) and less lean (63.3 vs 68.4%) than those of HSAi steers (P < .05). A breed x treatment interaction was observed for percentage of fat within the trimmed longissimus muscle (P < .05); percentage of fat was similar for Charolais and Simmental steers when immunized against HSAi but was higher for Simmental than for Charolais when immunized against GRFi.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  10. Relaxin-3 stimulates the neuro-endocrine stress axis via corticotrophin-releasing hormone.

    PubMed

    McGowan, B M; Minnion, J S; Murphy, K G; Roy, D; Stanley, S A; Dhillo, W S; Gardiner, J V; Ghatei, M A; Bloom, S R

    2014-05-01

    Relaxin-3 is a member of the insulin superfamily. It is expressed in the nucleus incertus of the brainstem, which has projections to the hypothalamus. Relaxin-3 binds with high affinity to RXFP1 and RXFP3. RXFP3 is expressed within the hypothalamic paraventricular nucleus (PVN), an area central to the stress response. The physiological function of relaxin-3 is unknown but previous work suggests a role in appetite control, stimulation of the hypothalamic-pituitary-gonadal axis and stress. Central administration of relaxin-3 induces c-fos expression in the PVN and increases plasma ACTH levels in rats. The aim of this study was to investigate the effect of central administration of human relaxin-3 (H3) on the hypothalamic-pituitary-adrenal (HPA) axis in male rodents in vivo and in vitro. Intracerebroventricular (i.c.v) administration of H3 (5 nmol) significantly increased plasma corticosterone at 30 min following injection compared with vehicle. Intra-PVN administration of H3 (1.8-1620 pmol) significantly increased plasma ACTH at 1620 pmol H3 and corticosterone at 180-1620 pmol H3 at 30 min following injection compared with vehicle. The stress hormone prolactin was also significantly raised at 15 min post-injection compared with vehicle. Treatment of hypothalamic explants with H3 (10-1000 nM) stimulated the release of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), but H3 had no effect on the release of ACTH from in vitro pituitary fragments. These results suggest that relaxin-3 may regulate the HPA axis, via hypothalamic CRH and AVP neurons. Relaxin-3 may act as a central signal linking nutritional status, reproductive function and stress.

  11. L‐arginine promotes gut hormone release and reduces food intake in rodents

    PubMed Central

    Alamshah, A.; McGavigan, A. K.; Spreckley, E.; Kinsey‐Jones, J. S.; Amin, A.; Tough, I. R.; O'Hara, H. C.; Moolla, A.; Banks, K.; France, R.; Hyberg, G.; Norton, M.; Cheong, W.; Lehmann, A.; Bloom, S. R.; Cox, H. M.

    2016-01-01

    Aims To investigate the anorectic effect of L‐arginine (L‐Arg) in rodents. Methods We investigated the effects of L‐Arg on food intake, and the role of the anorectic gut hormones glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY), the G‐protein‐coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. Results Oral gavage of L‐Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet‐induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L‐Arg stimulated GLP‐1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP‐1 and PYY receptors did not influence the anorectic effect of L‐Arg. L‐Arg‐mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L‐Arg suppressed food intake in rats. Conclusions L‐Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L‐Arg is unlikely to be mediated by GLP‐1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L‐Arg suppressed food intake in rats, suggesting that L‐Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L‐Arg suppresses food intake and its utility in the treatment of obesity. PMID:26863991

  12. Expression of gonadotropin-releasing hormone receptor and effect of gonadotropin-releasing hormone analogue on proliferation of cultured gastric smooth muscle cells of rats

    PubMed Central

    Chen, Lei; He, Hong-Xuan; Sun, Xu-De; Zhao, Jing; Liu, Li-Hong; Huang, Wei-Quan; Zhang, Rong-Qing

    2004-01-01

    AIM: To investigate the expression of gonadotropin-releasing hormone (GnRH) receptor and the effects of GnRH analog (alarelin) on proliferation of cultured gastric smooth muscle cells (GSMC) of rats. METHODS: Immunohistochemical ABC methods and in situ hybridization methods were used to dectect protein and mRNA expression of GnRH receptor in GSMC, respectively. Techniques of cell culture, OD value of MTT test, measure of 3H-TdR incorporation, average fluorescent values of proliferating cell nuclear antigen (PCNA) and flow cytometric DNA analysis were used in the experiment. RESULTS: The cultured GSMC of rats showed immunoreactivity for GnRH receptor; positive staining was located in cytoplasm. GnRH receptor mRNA hybridized signals were also detected in cytoplasm. When alarelin (10-9, 10-7, 10-5 mol/L) was administered into the medium and incubated for 24 h, OD value of MTT, 3H-TdR incorporation and average fluorescent values of PCNA all decreased significantly as compared with the control group (P < 0.05). The maximum inhibitory effect on cell proliferation was achieved a concentration of 10-5 mol/L and it acted in a dose-dependent manner. Flow cytometric DNA analysis revealed that alarelin could significantly enhance ratio of G1 phase and decrease ratio of S phase of GSMC of rats (P < 0.05).The maximum inhibitory effect on ratio of S phase was at the concentration of 10-5 mol/L and also acted in a dose-dependent manner. CONCLUSION: Our data suggest that GnRH receptor can be expressed by GSMC of rats. GnRH analogue can directly inhibit proliferation and DNA synthesis of rat GSMC through GnRH receptors. PMID:15188505

  13. Fish oil enhances intestinal barrier function and inhibits corticotropin-releasing hormone/corticotropin-releasing hormone receptor 1 signalling pathway in weaned pigs after lipopolysaccharide challenge.

    PubMed

    Zhu, Huiling; Liu, Yulan; Chen, Shaokui; Wang, Xiuying; Pi, Dingan; Leng, Weibo; Chen, Feng; Zhang, Jing; Kang, Ping

    2016-06-01

    Stress induces injury in intestinal barrier function in piglets. Long-chain n-3 PUFA have been shown to exhibit potential immunomodulatory and barrier protective effects in animal models and clinical trials. In addition, corticotropin-releasing hormone (CRH)/CRH receptor (CRHR) signalling pathways play an important role in stress-induced alterations of intestinal barrier function. We hypothesised that fish oil could affect intestinal barrier function and CRH/CRHR signalling pathways. In total, thirty-two weaned pigs were allocated to one of four treatments. The experiment consisted of a 2×2 factorial design, and the main factors included immunological challenge (saline or lipopolysaccharide (LPS)) and diet (5 % maize oil or 5 % fish oil). On d 19 of the trial, piglets were treated with saline or LPS. At 4 h after injection, all pigs were killed, and the mesenteric lymph nodes (MLN), liver, spleen and intestinal samples were collected. Fish oil decreased bacterial translocation incidence and the number of translocated micro-organisms in the MLN. Fish oil increased intestinal claudin-1 protein relative concentration and villus height, as well as improved the intestinal morphology. In addition, fish oil supplementation increased intestinal intraepithelial lymphocyte number and prevented elevations in intestinal mast cell and neutrophil numbers induced by LPS challenge. Moreover, fish oil tended to decrease the mRNA expression of intestinal CRHR1, CRH and glucocorticoid receptors. These results suggest that fish oil supplementation improves intestinal barrier function and inhibits CRH/CRHR1 signalling pathway and mast cell tissue density. PMID:27080003

  14. Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour

    PubMed Central

    Beurel, Eléonore; Nemeroff, Charles B.

    2014-01-01

    Stress mediates the activation of a variety of systems ranging from inflammatory to behavioral responses. In this review we focus on two neuropeptide systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and their roles in regulating stress responses. Both peptides have been demonstrated to be involved in anxiogenic and depressive effects, actions mediated in part through their regulation of the hypothalamic-pituitary-adrenal axis and the release of adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP, drugs modifying the stress-associated detrimental actions of CRF and AVP are under development, particularly drugs antagonizing CRF and AVP receptors for therapy in depression. PMID:24659554

  15. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    PubMed

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  16. Use of gonadotrophin-releasing hormone agonists in controlled ovarian hyperstimulation for in vitro fertilization.

    PubMed

    Muasher, S J

    1992-01-01

    The aim of ovarian hyperstimulation for in vitro fertilization (IVF) is the recruitment of multiple fertilizable healthy oocytes. Transfer of multiple embryos yields a better success rate than single-embryo transfers. Moreover, cryopreservation of excess pre-embryos allows patients an added opportunity to achieve a pregnancy without undergoing a repeat stimulated cycle. In the last 4 years, gonadotrophin-releasing hormone (Gn-RH) agonists have been used widely as adjuncts to gonadotrophins for ovarian hyperstimulation. Advantages of Gn-RH agonist use include prevention of a premature luteinising hormone (LH) surge, suppression of endogenous basal LH levels and recruitment of a larger cohort of follicles. Gn-RH agonists can be used in a long (suppression) or a short (stimulatory, flare-up) protocol. In our clinic, the use of Gn-RH agonist suppression (starting in the mid-luteal phase) prior to ovarian hyperstimulation was demonstrated to be extremely beneficial in intermediate and high responder patients but not in low responders (defined endocrinologically as patients with a basal follicle-stimulating hormone [FSH]: LH ratio of 1:1 and a basal LH:FSH ratio of greater than or equal to 1.5, respectively). We have not been able to demonstrate any beneficial effects from the use of Gn-RH agonist suppression in low responder patients (defined endocrinologically as patients with a basal FSH greater than or equal to 15 mIU/ml). In such low responder patients, the use of a 'flare-up' Gn-RH agonist protocol (Gn-RH agonist starting on day 2 of the cycle, followed by gonadotrophins on day 4 of the cycle), taking advantage of the initial agonistic stimulatory effect of Gn-RH agonists on endogenous FSH and LH secretion, has provided significant improvements in stimulation characteristics and better pregnancy results. It should be emphasised that comparisons of results cannot be attempted due to the selective use of each protocol in different patient populations.

  17. Medical hypophysectomy: I. Dose-response using a gonadotropin-releasing hormone antagonist.

    PubMed

    Kenigsberg, D; Littman, B A; Hodgen, G D

    1984-07-01

    The hypothalamic-pituitary-ovarian axis can be "dissected" in a nonsurgical and reversible fashion by the administration of a potent gonadotropin-releasing hormone (GnRH) antagonist. We created a transient, functional lesion at the level of the pituitary gonadotrope by using a potent GnRH antagonist ([ Ac- pClPhe1 , pClDPhe2 , DTrp3 , DArg6 , DAla10 ]-GnRH). In long-term castrate cynomolgus monkeys, doses of 0.05 to 2.0 mg/kg/day intramuscularly were administered for a total of 32 days. At doses up to 0.2 mg/kg/day, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in circulation were only moderately suppressed; these subjects responded to an estradiol challenge by manifesting an LH elevation or surge within 48 hours. At doses of 0.5 to 1.0 mg/kg/day, FSH and LH secretion was suppressed to or below the limits of assay detection within 7 days, remaining in a severely hypogonadotropic state for the remainder of the treatment interval. Using 2 mg/kg/day, estradiol-positive feedback for midcycle-like LH/FSH surges was fully inhibited. This suppression of gonadotropin secretion was rapidly reversible, in that circulating gonadotropin levels had returned to pretreatment castrate levels within 60 days after termination of GnRH antagonist treatments. These findings suggest that potent GnRH antagonists can effectively create a hypogonadotropic milieu without the initial enhancement of gonadotropin secretion that occurs during initiation of GnRH agonist therapy. "Medical hypophysectomy" through GnRH antagonist administration may permit a more direct and controlled approach to gonadal therapies such as ovulation induction.

  18. Thyrotropin-Releasing Hormone is not Required for Thyrotropin Secretion in the Perinatal Rat

    PubMed Central

    Theodoropoulos, Theodor; Braverman, Lewis E.; Vagenakis, Apostolos G.

    1979-01-01

    To determine the role of thyrotropin-releasing hormone (TRH) in the regulation of thyroid-stimulating hormone (TSH) secretion in the perinatal period, a physiological approach of neutralizing circulating TRH in the fetal and early neonatal rat was employed. TRH-antiserum (TRH-AS) raised in rabbits and administered daily to low iodine-propylthiouracil (LID-PTU)-fed pregnant rats from days 12 to 19 of gestation markedly impaired the rise in serum TSH to LID-PTU when compared with normal rabbit serum-treated controls. In contrast, fetal serum TSH was unaffected by TRH-AS. The binding capacity of TRH-AS in the fetal serum (111 ng/ml) far exceeded circulating TRH in the fetus. Similarly, acute TRH-AS administration to the pregnant rat fed LID-PTU markedly decreased the serum TSH concentration in the mother, but not in the fetus, 60 min after TRH-AS administration. Chronic TRH-AS administration to neonatal rats whose nursing mothers were fed LID-PTU was in-effective in decreasing the elevated serum TSH in the neonate through day 8 of life, whereas a slight but significant decrease in serum TSH was observed on day 10. Chronic daily TRH-AS administration to neonatal rats through day 10 of life had no effect on the later development of the hypothalamic-pituitary-thyroid axis. These findings suggest that TRH does not participate in TSH regulation during the perinatal life in the rat and that thyroid hormones are probably the main regulators of TSH secretion during this period. Placental TRH is not important in regulating TSH secretion in the fetal rat. Furthermore, TRH “deprivation” during neonatal life does not prevent normal later development of the hypothalamic-pituitary-thyroid axis. PMID:108290

  19. Usefulness of the thyrotropin-releasing hormone test in pre-clinical acromegaly.

    PubMed

    Kageyama, Kazunori; Moriyama, Takako; Sakihara, Satoru; Takayasu, Shinobu; Nigawara, Takeshi; Suda, Toshihiro

    2005-08-01

    Acromegaly is caused primarily by pituitary growth hormone (GH)-secreting tumors. It is usually recognized because of characteristic manifestations, and diagnosed clinically. However, there exists a mild stage of acromegaly, which poses a diagnostic problem due to the absence of typical clinical manifestations. Here we present four patients with pre-clinical acromegaly, who showed minimal acromegaloid features with elevated levels of insulin-like growth factor-I. Basal GH levels were within normal levels in 3 of 4 cases, while insulin-like growth factor-I levels were elevated above normal in all cases. Plasma GH levels were elevated in response to thyrotropin-releasing hormone (TRH) in all cases, indicating a diagnostic value of the TRH stimulation test. In contrast, an oral glucose tolerance test was not useful for the diagnosis, because of the low GH levels (less than 1 ng/ml) and/or secondary to diabetes mellitus. In response to a dopamine agonist, GH levels were increased in the two cases, whereas GH levels were decreased or remained unchanged in the other two cases. We therefore suggest that the TRH stimulation test would be helpful to examine the presence of pre-clinical acromegaly. Diagnosis of the early stages of acromegaly is important to prevent progression to overt acromegaly. PMID:15997199

  20. The effects of estradiol on gonadotropin-releasing hormone neurons in the developing mouse brain.

    PubMed

    Grober, M S; Winterstein, G M; Ghazanfar, A A; Eroschenko, V P

    1998-12-01

    The hypothalamic-pituitary-gonadal (HPG) axis plays a critical role in the control of reproduction. Two key hormonal components of the HPG axis are gonadal steroids and gonadotropin-releasing hormone (GnRH). Gonadal steroids are known to organize the development of neural substrates which control adult reproductive behavior; GnRH is required for normal reproductive structure and function. The possibility that gonadal steroids may produce organizational changes in the pattern of GnRH staining observed in the brain is investigated through the use of injections of estradiol to neonatal mice and subsequent GnRH immunocytochemistry at 2 months of age. Our results indicate that the number of GnRH-immunoreactive (GnRH-ir) cells is normally lower in females than males. Estradiol did not affect the number of GnRH-ir cells in females, but significantly increased the number of GnRH-ir cells in males, suggesting that early exposure to estradiol results in masculinization of the GnRH axis of males.

  1. Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1.

    PubMed

    Brayman, Melissa J; Pepa, Patricia A; Mellon, Pamela L

    2012-11-01

    Gonadotropin-releasing hormone (GnRH) plays a major role in the hypothalamic-pituitary-gonadal (HPG) axis, and synthesis and secretion of GnRH are regulated by gonadal steroid hormones. Disruptions in androgen levels are involved in a number of reproductive defects, including hypogonadotropic hypogonadism and polycystic ovarian syndrome. Androgens down-regulate GnRH mRNA synthesis in vivo and in vitro via an androgen receptor (AR)-dependent mechanism. Methyltrienolone (R1881), a synthetic AR agonist, represses GnRH expression through multiple sites in the proximal promoter. In this study, we show AR also represses GnRH transcription via the major enhancer (GnRH-E1). A multimer of the -1800/-1766 region was repressed by R1881 treatment. Mutation of two bases, -1792 and -1791, resulted in decreased basal activity and a loss of AR-mediated repression. AR bound to the -1796/-1791 sequence in electrophoretic mobility shift assays, indicating a direct interaction with DNA or other transcription factors in this region. We conclude that AR repression of GnRH-E1 acts via multiple AR-responsive regions, including the site at -1792/-1791.

  2. Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1.

    PubMed

    Brayman, Melissa J; Pepa, Patricia A; Mellon, Pamela L

    2012-11-01

    Gonadotropin-releasing hormone (GnRH) plays a major role in the hypothalamic-pituitary-gonadal (HPG) axis, and synthesis and secretion of GnRH are regulated by gonadal steroid hormones. Disruptions in androgen levels are involved in a number of reproductive defects, including hypogonadotropic hypogonadism and polycystic ovarian syndrome. Androgens down-regulate GnRH mRNA synthesis in vivo and in vitro via an androgen receptor (AR)-dependent mechanism. Methyltrienolone (R1881), a synthetic AR agonist, represses GnRH expression through multiple sites in the proximal promoter. In this study, we show AR also represses GnRH transcription via the major enhancer (GnRH-E1). A multimer of the -1800/-1766 region was repressed by R1881 treatment. Mutation of two bases, -1792 and -1791, resulted in decreased basal activity and a loss of AR-mediated repression. AR bound to the -1796/-1791 sequence in electrophoretic mobility shift assays, indicating a direct interaction with DNA or other transcription factors in this region. We conclude that AR repression of GnRH-E1 acts via multiple AR-responsive regions, including the site at -1792/-1791. PMID:22877652

  3. A novel neuropeptide in suppressing luteinizing hormone release in goldfish, Carassius auratus.

    PubMed

    Liu, Yun; Li, Shuisheng; Qi, Xing; Zhou, Wenyi; Liu, Xiaochun; Lin, Haoran; Zhang, Yong; Cheng, Christopher H K

    2013-07-15

    The fish reproductive axis is regulated by many neuroendocrine factors. However, factors involved in the suppression of this axis are largely uncharacterized. In this study, we describe a novel neuropeptide derived from the spexin precursor acting as a negative factor to suppress the reproductive axis in teleost. The cDNA sequences of the spexin precursors have been cloned from both zebrafish and goldfish. A 14-aa mature peptide with the C-terminal amidated (spexin-14a: NWTPQAMLYLKGTQ-NH2) is conceivably generated by processing of the spexin precursors in both species. Spexin is mainly expressed in the brain and ovary of zebrafish and spexin-14a-ir cells are located in several brain regions of goldfish. Functionally, goldfish spexin-14a could significantly suppress luteinizing hormone (LH) release in cultured goldfish pituitary cells. Moreover, intraperitoneal injection of spexin-14a could effectively suppress serum LH level. The mRNA expression of spexin is lower in the breeding season and hypothalamic expression of spexin is regulated by gonadal hormones. These results constitute the first report on the novel role of spexin in the negative regulation of the reproductive axis in teleost.

  4. A simple pharmacokinetic model linking plasma progesterone concentrations with the hormone released from bovine intravaginal inserts.

    PubMed

    Mariano, R N; Turino, L N; Cabrera, M I; Scándolo, D E; Maciel, M G; Grau, R J A

    2010-10-01

    On the basis of pharmacokinetic modeling, this study provides some insights into predicting in vivo plasma progesterone concentrations when using bovine intravaginal inserts for systemic progesterone delivery. More significantly, this contribution is the first attempt to build a simple pharmacokinetic model that links plasma progesterone concentrations with the hormone released from bovine intravaginal inserts. After evaluating three rival pharmacokinetic models and considering some phenomena involved in the intravaginal administration of progesterone, a primary pharmacokinetic model having a good data fitting capability with only two adjustable parameters is proposed to the above mentioned task. Kinetic parameters are given for lactating Holstein dairy cows with two levels of daily milk yields; and non-pregnant, non-lactating Holstein-Friesian cattle. Model predictions indicate the occurrence of a preferential distribution of the intravaginally administered progesterone dose through a first uterine pass effect.

  5. Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Quintanar, J Luis; Salinas, Eva; Quintanar-Stephano, Andrés

    2011-02-01

    It has been reported that the spinal cord possesses Gonadotropin-releasing hormone (GnRH) receptor and that GnRH has neurotrophic properties. Experimental autoimmune encephalomyelitis (EAE) causes neurodegeneration in spinal cord. Thus, the present study was designed to determine whether administration of GnRH reduces the severity of EAE. The clinical signs of locomotion, axonal morphometry and neurofilaments (NFs) expression were evaluated. Clinical signs remained significantly lower in EAE rats with GnRH administration compared to animals without treatment. Morphometric analysis, there were more axons of larger areas in the spinal cord of EAE+GnRH group compared to EAE animals. Western blot analysis demonstrated that GnRH administration significantly increased the expression of NFs of 68, 160 and 200kDa in the spinal cord of EAE animals. Our results indicate that GnRH administration reduces the severity of EAE in the rat.

  6. Effect of thyrotrophin releasing hormone on opiate receptors of the rat brain

    SciTech Connect

    Balashov, A.M.; Shchurin, M.R.

    1987-01-01

    It has recently been shown that the hypothalamic thyrotropin releasing hormone (TRH) has the properties of a morphine antagonist, blocking its inhibitory action on respiration and, to a lesser degree, its analgesic action. This suggests that the antagonistic effects of TRH are mediated through its interaction with opiate receptors. The aim of this paper is to study this hypothesis experimentally. Tritium-labelled enkephalins in conjunction with scintillation spectroscopy were used to assess the receptor binding behavior. The results indicate the existence of interconnections between the opiate systems and TRH. Although it is too early to reach definite conclusions on the mechanisms of this mutual influence and its physiological significance it can be tentatively suggested that TRH abolishes the pharmacological effects of morphine by modulating the functional state of opiate reception.

  7. [Can fertility in cattle be improved by administration of Gonadotropin releasing hormone (GnRH)?].

    PubMed

    Mijten, P; de Kruif, A

    1993-04-15

    In this article a review is given of the results obtained with gonadotrophin releasing hormone (GnRH) in the treatment of repeat breeder cows, cows used for embryo transfer and of cows in the early post partum period. It is concluded that the results of GnRh administration to repeat breeders is very variable. It is quite sure that the positive effect of GnRH, if any is so low that from an economic point of view, treatment, can not be advised. The usefulness of administration of GnRH to embryo-transfer cows is very doubtful. There are as many publications with positive as with negative results. The administration of GnRH in the early post partum period can not be recommended. With this 'therapy' conflicting results have been obtained and occasionally negative side effects have emerged. PMID:8484178

  8. [Effect of trimebutine on the plasma postprandial release of gastrointestinal hormones in the dog].

    PubMed

    Poitras, P; Hondé, C; Goyer, R; Junien, J L; Pascaud, X; Greenberg, G R

    1987-01-01

    The injection of trimebutine induces in the dog an increase of plasma motilin during the fasting period as well as after a meal. We studied the effect of trimebutine on several gastrointestinal hormones released into the circulation by the ingestion of a meal. The intravenous administration of trimebutine (10 mg/kg/h) in 4 dogs abolished the postprandial increase in plasma gastrin, pancreatic polypeptide, insulin, glucagon and GIP. Trimebutine could therefore, by its effects on various regulatory peptides, influence several digestive functions. Its mode of action could probably involves complex mechanisms, including paradoxical effects. The possibility that motilin is a mediator of the trimebutine effect on small bowel smooth muscle is discussed. PMID:3301510

  9. Regulation of the Hypothalamic Thyrotropin Releasing Hormone (TRH) Neuron by Neuronal and Peripheral Inputs

    PubMed Central

    Nillni, Eduardo A.

    2010-01-01

    The hypothalamic pituitary thyroid (HPT) axis plays a critical role in mediating changes in metabolism and thermogenesis. Thus, the central regulation of the thyroid axis by Thyrotropin Releasing Hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) is of key importance for the normal function of the axis under different physiological conditions including cold stress and changes in nutritional status. Before the TRH peptide becomes biologically active, a series of tightly regulated processes occur including the proper folding of the prohormone for targeting to the secretory pathway, its post-translational processing, and targeting of the processed peptides to the secretory granules near the plasma membrane of the cell ready for secretion. Multiple inputs coming from the periphery or from neurons present in different areas of the brain including the hypothalamus are responsible for the activation or inhibition of the TRH neuron and in turn affect the output of TRH and the set point of the axis. PMID:20074584

  10. Testosterone response to a gonadotrophin-releasing hormone agonist in Hawaiian monk seals (Monachus schauinslandi).

    PubMed

    Atkinson, S; Gilmartin, W G; Lasley, B L

    1993-01-01

    Adult male Hawaiian monk seals were administered a gonadotrophin-releasing hormone (GnRH) agonist to determine its effectiveness in reducing the testicular production of testosterone. Blood samples were collected from four treated seals and two control seals at weekly intervals for 10 weeks and again at the beginning of the following breeding season. The GnRH-agonist had an initial, brief, stimulating effect on circulating testosterone, but this was followed by an inhibitory effect that lasted for 7 to 8 weeks. The plasma concentrations of testosterone were within normal ranges by the following spring. These results demonstrate a reversible form of long-term androgen suppression, which may have applicability in a variety of wildlife management programmes. PMID:8464023

  11. Lack of linkage between the corticotropin-releasing hormone (CRH) gene and bipolar affective disorder.

    PubMed

    Stratakis, C A; Sarlis, N J; Berrettini, W H; Badner, J A; Chrousos, G P; Gershon, E S; Detera-Wadleigh, S D

    1997-01-01

    Corticotropin-releasing hormone (CRH) plays a key role in the regulation of the stress response. Abnormalities in CRH secretion have been documented in both the depression and manic phases of bipolar disorder (BPD). In the present study, we investigated genetic linkage between the CRH gene and BPD in 22 pedigrees. A highly informative, short tandem repeat (STR) polymorphism adjacent to the CRH gene on human chromosomal region 8q13 was used to examine linkage. Affected sibling pair (ASP) and the likelihood-based disequilibrium tests revealed nonsignificant values. We conclude that the CRH gene is not linked to BPD; if genes involved in the regulation of stress response are indeed linked to BPD, the search should be directed towards those that regulate CRH secretion or its effects on target tissues.

  12. Gonadotropin-Releasing Hormone Stimulate Aldosterone Production in a Subset of Aldosterone-Producing Adenoma.

    PubMed

    Kishimoto, Rui; Oki, Kenji; Yoneda, Masayasu; Gomez-Sanchez, Celso E; Ohno, Haruya; Kobuke, Kazuhiro; Itcho, Kiyotaka; Kohno, Nobuoki

    2016-05-01

    We aimed to detect novel genes associated with G protein-coupled receptors (GPCRs) in aldosterone-producing adenoma (APA) and elucidate the mechanisms underlying aldosterone production.Microarray analysis targeting GPCR-associated genes was conducted using APA without known mutations (APA-WT) samples (n = 3) and APA with the KCNJ5 mutation (APA-KCNJ5; n = 3). Since gonadotropin-releasing hormone receptor (GNRHR) was the highest expression in APA-WT by microarray analysis, we investigated the effect of gonadotropin-releasing hormone (GnRH) stimulation on aldosterone production.The quantitative polymerase chain reaction assay results revealed higher GNRHR expression levels in APA-WT samples those in APA-KCNJ5 samples (P < 0.05). LHCGR levels were also significantly elevated in APA-WT samples, and there was a significant and positive correlation between GNRHR and LHCGR expression in all APA samples (r = 0.476, P < 0.05). Patients with APA-WT (n = 9), which showed higher GNRHR and LHCGR levels, had significantly higher GnRH-stimulated aldosterone response than those with APA-KCNJ5 (n = 13) (P < 0.05). Multiple regression analysis revealed that the presence of the KCNJ5 mutation was linked to GNRHR mRNA expression (β = 0.94 and P < 0.01). HAC15 cells with KCNJ5 gene carrying T158A mutation exhibited a significantly lower GNRHR expression than that in control cells (P < 0.05).We clarified increased expression of GNRHR and LHCGR in APA-WT, and the molecular analysis including the receptor expression associated with clinical findings of GnRH stimulation. PMID:27196470

  13. Testosterone regulates the secretion of thyrotrophin-releasing hormone (TRH) and TRH precursor in the rat hypothalamic-pituitary axis.

    PubMed

    Pekary, A E; Knoble, M; Garcia, N H; Bhasin, S; Hershman, J M

    1990-05-01

    Orchidectomy has been reported to decrease concentrations of thyrotrophin (TSH) in the circulation of male rats without affecting serum levels of thyroid hormones. To understand the mechanism underlying this observation, we have measured the effect of gonadal status on the in-vitro release of TSH-releasing hormone (TRH) by male rat hypothalamic fragments. Because hormone release rates can be affected by changes in the post-translational processing of the hormonal precursors, we have also studied the corresponding changes in the concentrations of TRH and TRH-Gly, a TRH precursor peptide in hypothalamus and pituitary, by radioimmunoassay. We observed a significant decline in the in-vitro release of TRH from incubated hypothalami 1 week after castration, which was quantitatively reversed by testosterone replacement. Concentrations of TRH and TRH-Gly in the posterior pituitary, on the other hand, which derive from neurones of hypothalamic origin, increased significantly with castration and were returned to the normal range by testosterone replacement. We conclude that the primary effect of testosterone is the stimulation of hypothalamic TRH release, resulting in the depletion of TRH and TRH precursors from TRH-containing neurones which project into the median eminence and posterior pituitary.

  14. Hormonal induction of gamete release, and in-vitro fertilisation, in the critically endangered Southern Corroboree Frog, Pseudophryne corroboree

    PubMed Central

    2010-01-01

    Background Conservation Breeding Programs (CBP's) are playing an important role in the protection of critically endangered anuran amphibians, but for many species recruitment is not successful enough to maintain captive populations, or provide individuals for release. In response, there has been an increasing focus on the use of Assisted Reproductive Technologies (ART), including the administration of reproductive hormones to induce gamete release followed by in vitro fertilisation. The objective of this study was to test the efficacy of two exogenous hormones to induce gamete release, for the purpose of conducting in vitro fertilisation (IVF), in one of Australia's most critically endangered frog species, Pseudophryne corroboree. Methods Male frogs were administered a single dose of either human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRHa), while female frogs received both a priming and ovulatory dose of LHRHa. Spermiation responses were evaluated at 3, 7, 12, 24, 36, 48, 60 and 72 h post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Ovulation responses were evaluated by stripping females every 12 h PA for 5 days. Once gametes were obtained, IVF was attempted by combining spermic urine with oocytes in a dilute solution of simplified amphibian ringer (SAR). Results Administration of both hCG and LHRHa induced approximately 80% of males to release sperm over 72 h. Peak sperm release occurred at 12 h PA for hCG treated males and 36 h PA for LHRHa treated males. On average, LHRHa treated males released a significantly higher total number of live sperm, and a higher concentration of sperm, over a longer period. In female frogs, administration of LHRHa induced approximately 30% of individuals to release eggs. On average, eggs were released between 24 and 48 h PA, with a peak in egg release at 36 h PA. IVF resulted in a moderate percentage (54.72%) of eggs being fertilised

  15. Direct effects of catecholamines, thyrotropin-releasing hormone, and somatostatin on growth hormone and prolactin secretion from adenomatous and nonadenomatous human pituitary cells in culture.

    PubMed Central

    Ishibashi, M; Yamaji, T

    1984-01-01

    To determine the mechanism and the site of action of catecholamines as well as hormones including thyrotropin-releasing hormone (TRH)1 and somatostatin on pituitary hormone release in patients with acromegaly and in normal subjects, the effects of these substances on growth hormone (GH) and prolactin (PRL) secretion from adenomatous and nonadenomatous human pituitary cells in culture were examined. When dopamine (0.01-0.1 microM) or bromocriptine (0.01-0.1 microM) was added to the culture media, a significant inhibition of GH and PRL secretion from adenoma cells from acromegalic patients was observed. This inhibition was blocked by D2 receptor blockade with metoclopramide or sulpiride, but not by D1 receptor blockade. Similarly, dopamine suppressed GH and PRL release by nonadenomatous pituitary cells in a dose-dependent manner, which was again blocked by D2 receptor blockade. The minimum effective concentration of dopamine required for a significant inhibition of PRL secretion (0.01 microM) was lower than that for GH release (0.1 microM). Norepinephrine, likewise, caused a suppression of PRL secretion from adenomatous and nonadenomatous pituitary cells. This effect was blocked by sulpiride, phentolamine, however, was ineffective. When TRH was added to the media, both GH and PRL secretion were enhanced in adenoma cells, while only the stimulation of PRL release was observed in nonadenomatous pituitary cells. Coincubation of TRH and dopamine resulted in variable effects on GH and PRL secretion. Somatostatin consistently lowered GH and PRL secretion in both adenomatous and nonadenomatous pituitary cells and completely blocked the TRH-induced stimulation of GH and PRL secretion from adenoma cells. Opioid peptides (1 microM) failed to affect hormone release. These results suggest that no qualitative difference in GH and PRL responses to dopaminergic agonists or to somatostatin exists between adenoma cells of acromegalic patients and normal pituitary cells, and that the

  16. Gonadotropin-releasing hormone in mulberry cells of Saccoglossus and Ptychodera (Hemichordata: Enteropneusta).

    PubMed

    Cameron, C B; Mackie, G O; Powell, J F; Lescheid, D W; Sherwood, N M

    1999-04-01

    Mulberry cells are epidermal gland cells bearing a long basal process resembling a neurite and are tentatively regarded as neurosecretory cells. They occur scattered through the ectoderm of the proboscis, collar, and anterior trunk regions of the acorn worms Saccoglossus, usually in association with concentrations of nervous tissue. They contain secretion granules that appear from electron micrographs to be released to the exterior. The granules are immunoreactive with antisera raised against mammalian and salmon gonadotropin-releasing hormone (GnRH). Similar results were obtained with another enteropneust, Ptychodera bahamensis, using antisera raised against tunicate-1 and mammalian GnRH. Mulberry cells were not found in either Cephalodiscus or Rhabdopleura (Hemichordata: Pterobranchia). Extracts of tissues from 4200 Saccoglossus contain an area of immunoreactive GnRH that is detected by an antiserum raised against lamprey GnRH when characterized by high-performance liquid chromatography and radioimmunoassay. This is the first report of the occurrence of GnRH in hemichordates, probably the most primitive group clearly belonging to the chordate lineage. The physiological function of GnRH in enteropneusts is unknown, but an exocrine function appears more likely than an endocrine or neurotransmitter role. PMID:10094853

  17. Gonadotropin-releasing hormone in mulberry cells of Saccoglossus and Ptychodera (Hemichordata: Enteropneusta).

    PubMed

    Cameron, C B; Mackie, G O; Powell, J F; Lescheid, D W; Sherwood, N M

    1999-04-01

    Mulberry cells are epidermal gland cells bearing a long basal process resembling a neurite and are tentatively regarded as neurosecretory cells. They occur scattered through the ectoderm of the proboscis, collar, and anterior trunk regions of the acorn worms Saccoglossus, usually in association with concentrations of nervous tissue. They contain secretion granules that appear from electron micrographs to be released to the exterior. The granules are immunoreactive with antisera raised against mammalian and salmon gonadotropin-releasing hormone (GnRH). Similar results were obtained with another enteropneust, Ptychodera bahamensis, using antisera raised against tunicate-1 and mammalian GnRH. Mulberry cells were not found in either Cephalodiscus or Rhabdopleura (Hemichordata: Pterobranchia). Extracts of tissues from 4200 Saccoglossus contain an area of immunoreactive GnRH that is detected by an antiserum raised against lamprey GnRH when characterized by high-performance liquid chromatography and radioimmunoassay. This is the first report of the occurrence of GnRH in hemichordates, probably the most primitive group clearly belonging to the chordate lineage. The physiological function of GnRH in enteropneusts is unknown, but an exocrine function appears more likely than an endocrine or neurotransmitter role.

  18. Central injection of ketone body suppresses luteinizing hormone release via the catecholaminergic pathway in female rats.

    PubMed

    Iwata, Kinuyo; Kinoshita, Mika; Susaki, Naoki; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-ichiro

    2011-06-01

    Ketosis is found in various pathophysiological conditions, including diabetes and starvation, that are accompanied by suppression of gonadal activity. The aim of the present study was to determine the role of ketone body in the brain in regulating pulsatile luteinizing hormone (LH) secretion in female rats. Injection of 3-hydroxybutyrate (3HB), a ketone body, into the fourth cerebroventricle (4V) induced suppression of pulsatile LH secretion in a dose-dependent manner in ovariectomized (OVX) rats with an estradiol (E2) implant producing diestrus plasma E2 levels. Plasma glucose and corticosterone levels increased immediately after the 4V 3HB injection, suggesting that the treatment caused a hunger response. The 3HB-induced suppression of LH pulses might be mediated by noradrenergic inputs to the hypothalamic paraventricular nucleus (PVN) because a local injection of α-methyl- p-tyrosine, a catecholamine synthesis inhibitor, into the PVN blocked 3HB-induced suppression of LH pulses and PVN noradrenaline release was increased by 4V 3HB injection in E2-primed OVX rats. These results suggest that ketone body sensed by a central energy sensor in the hindbrain may suppress gonadotropin release via noradrenergic inputs to the PVN under ketosis.

  19. Ovarian and hormonal responses to a progesterone-releasing controlled internal drug releasing treatment in dietary-restricted goats.

    PubMed

    Tanaka, Tomomi; Fujiwara, Ken-Ichiro; Kim, Seungjoon; Kamomae, Hideo; Kaneda, Yoshihiro

    2004-08-01

    An experiment was conducted to evaluate the effects of dietary restriction on ovarian, endocrine (ovarian steroids and luteinizing hormone (LH) pulse) and metabolic (glucose, insulin and non-esterified fatty acid (NEFA)) profiles in goats treated with a progesterone-releasing controlled internal drug releasing (CIDR-G) device. Cycling goats were offered either a maintenance or a restricted (30% of requirement; n =4 per treatment) level of feeding. The dietary restriction was started on the day following ovulation. At 30-32 days after the start of food restriction, the goats received a prostaglandin F(2alpha) (2mg of dinoprost) injection followed by 10 days of CIDR-G treatment. Ovarian ultrasonographic images were monitored daily throughout the experiment and blood samples were collected daily just before the morning feeding for analysis of endocrine and metabolic profiles. Frequent blood samples (1 ml) were also collected at 10 min intervals for 8 h from -8 h to CIDR-G removal, and from 32 to 40 h after CIDR-G removal for analysis of LH pulses. Body weight was significantly (P < 0.05) decreased in the food-restricted animals. Oestrous behaviour and ovulation followed by a rise of plasma progesterone concentration were observed after the CIDR-G removal in all control animals but not in any of the food-restricted animals within 12 days after CIDR-G removal. The LH pulse frequency from 32 to 40 h after the CIDR-G removal was significantly (P < 0.05) lower in the food-restricted animals than in control animals (1.5 +/- 0.6 versus 3.8 +/- 0.5 pulses for 8 h). There was no significant difference in the glucose concentration in weekly plasma samples between control and food-restricted animals. Insulin concentrations from 2 weeks after the start of feed restriction were significantly (P < 0.05) lower in restricted animals than in control animals. The NEFA concentration in restricted animals was significantly (P < 0.05) increased after the start of feed restriction, and

  20. Effect of gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown on testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian GnRH isoform (GnRH-II; His5, Trp7, Tyr8) is a poor stimulator of gonadotropin secretion. In addition, GnRH-II is ubiquitously expressed, with transcript levels highest in tissues outside of the brain. A receptor speci...

  1. Thyrotropin-releasing Hormone Increases Behavioral Arousal Through Modulation of Hypocretin/Orexin Neurons

    PubMed Central

    Hara, Junko; Gerashchenko, Dmitry; Wisor, Jonathan P.; Sakurai, Takeshi; Xie, Xinmin (Simon); Kilduff, Thomas S.

    2009-01-01

    Thyrotropin-releasing hormone (TRH) has previously been shown to promote wakefulness and to induce arousal from hibernation. Expression of TRH receptor 1 (TRH-R1) is enriched in the tuberal and lateral hypothalamic area (LHA), brain regions in which the hypocretin/orexin (Hcrt) cells are located. Since the Hcrt system is implicated in sleep/wake control, we hypothesized that TRH provides modulatory input to the Hcrt cells. In vitro electrophysiological studies showed that bath application of TRH caused concentration-dependent membrane depolarization, decreased input resistance, and increased firing rate of identified Hcrt neurons. In the presence of tetrodotoxin, TRH induced inward currents that were associated with a decrease in frequency, but not amplitude, of miniature postsynaptic currents (PSCs). Ion substitution experiments suggested that the TRH-induced inward current was mediated in part by Ca2+ influx. Although TRH did not significantly alter either the frequency or amplitude of spontaneous excitatory PSCs, TRH (100nM) increased the frequency of spontaneous inhibitory PSCs by 2-fold without affecting the amplitude of these events, indicating increased presynaptic GABA release onto Hcrt neurons. In contrast, TRH significantly reduced the frequency, but not amplitude, of miniature excitatory PSCs without affecting miniature inhibitory PSC frequency or amplitude, indicating that TRH also reduces the probability of glutamate release onto Hcrt neurons. When injected into the LHA, TRH increased locomotor activity in wild type mice but not in orexin/ataxin-3 mice in which the Hcrt neurons degenerate postnatally. Together, these results are consistent with the hypothesis that TRH modulates behavioral arousal, in part, through the Hcrt system. PMID:19321767

  2. Ultrastructural changes in granulosa cells and plasma steroid levels after administration of luteinizing hormone-releasing hormone in the Western painted turtle, Chrysemys picta.

    PubMed

    Al-Kindi, A Y; Mahmoud, Y; Woller, M J

    2001-08-01

    In this study we investigated the effects of treatment by luteinizing hormone-releasing hormone (LHRH) on the morphology and steroid release of ovarian tissues in the Western painted turtle, (Chrysemys picta). In Experiment I, four adult female turtles were injected with synthetic mammalian LHRH (i.p., 500 pg/g bodyweight) and four with saline 2-3 weeks prior to ovulation. Granulosa cells from LHRH-treated turtles vs controls contained both preovulatory follicles (16-20 mm in diameter) and small follicles (0.5-1.00mm in diameter) with increased RER, free ribosomes and mitochondria with swollen cristae. An increase in the amount of cytoskeletal material (microfilaments) was observed in granulosa cells of the experimental turtles compared to the controls. Cytoplasmic extensions of the oocyte and granulosa cells were longer in the small follicles of treated animals, accounting for the observed increase in the thickness of the zona pellucida (ZP) over the controls. In Experiment II, administration of LHRH (i.p.) to 10 turtles during the same period triggered a substantial increase in plasma progesterone and estradiol-17beta levels over the 10 saline-injected controls. This supports the idea that in this species, as in mammals, steroidogenic activity in the ovarian follicles are under the control of the hypothalamic-pituitary axis. The ultrastructure and hormonal levels of the experimental animals were typical of untreated turtles just prior to ovulation. In this species the development of follicles and steroidogenesis can be stimulated prematurely by a releasing hormone from a nonreptilian origin.

  3. Gonadotropin-releasing hormone/human chorionic gonadotropin beta based recombinant antibodies and vaccines.

    PubMed

    Talwar, G P; Vyas, Hemant K; Purswani, Shilpi; Gupta, Jagdish C

    2009-12-01

    Gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) are unique targets for the control of fertility. Immunological approaches to neutralizing these hormones have additional utility in cancer treatment. Vaccines have been developed against both GnRH and hCG and these have undergone Phase I/II clinical trials documenting their safety, reversibility and efficacy. The heterospecies dimer hCG vaccine prevented pregnancy in women of proven fertility without impairment of ovulation or derangement of menstrual regularity and bleeding profiles. The protective threshold of antibody titers to achieve efficacy was determined in these first-ever trials. Recently, a recombinant vaccine against the beta subunit of hCG linked to the B subunit of heat labile enterotoxin has been made and expressed as a glycosylated conjugate in Pichia pastoris. Experiments indicate its ability to generate antibodies above the protective threshold in all immunized Balb/c mice. Ectopic expression of hCG/hCGbeta is observed in many advanced stage cancers of various origins. A chimeric high affinity and specific recombinant antibody against hCGbeta linked to curcumin kills hCGbeta expressing T lymphoblastic leukemia cells without any deleterious effect. Several synthetic and recombinant vaccines have been developed against GnRH. These reduce serum testosterone to castration levels causing atrophy of the prostate. Three Phase I/II clinical trials conducted in India and Austria have shown that these vaccines elicit non-surgical reduction of testosterone, a fall in prostate specific antigen and clinical improvement of prostate carcinoma patients. A multimer recombinant vaccine against GnRH has high efficacy for sterilization of pigs and other animals. PMID:19854518

  4. Functions of corticotropin-releasing hormone in anthropoid primates: from brain to placenta.

    PubMed

    Power, Michael L; Schulkin, Jay

    2006-01-01

    Corticotropin-releasing hormone (CRH) is an ancient regulatory molecule. The CRH hormone family has at least four ligands, two receptors, and a binding protein. Its well-known role in the hypothalamic-pituitary-adrenal (HPA) axis is only one of many. The expression of CRH and its related peptides is widespread in peripheral tissue, with important functions in the immune system, energy metabolism, and female reproduction. For example, CRH is involved in the implantation of fertilized ova and in maternal tolerance to the fetus. An apparently unique adaptation has evolved in anthropoid primates: placental expression of CRH. Placental CRH stimulates the fetal adrenal zone, an adrenal structure unique to primates, to produce dehydroepiandrosterone sulfate (DHEAS), which is converted to estrogen by the placenta. Cortisol induced from the fetal and maternal adrenal glands by placental CRH induces further placental CRH expression, forming a positive feedback system that results in increasing placental production of estrogen. In humans, abnormally high placental expression of CRH is associated with pregnancy complications (e.g., preterm labor, intrauterine growth restriction (IUGR), and preeclampsia). Within anthropoid primates, there are at least two patterns of placental CRH expression over gestation: monkeys differ from great apes (and humans) by having a midgestational peak in CRH expression. The functional significance of these differences between monkeys and apes is not yet understood, but it supports the hypothesis that placental CRH performs multiple roles during gestation. A clearer understanding of the diversity of patterns of placental CRH expression among anthropoid primates would aid our understanding of its role in human pregnancy.

  5. Serotonin and acetylcholine affect the release of prolactin and growth hormone from pituitary glands of domestic fowl in vitro in the presence of hypothalamic tissue.

    PubMed

    Hall, T R; Harvey, S; Chadwick, A

    1984-04-01

    Anterior pituitary glands from broiler fowl were incubated alone or with hypothalamic tissue in medium containing either serotonin or serotoninergic drugs, acetylcholine or cholinergic drugs, and the release of prolactin (Prl) and growth hormone (GH) measured by homologous radioimmunoassays. The neurotransmitters and drugs affected the release of hormones from the pituitary gland only when hypothalamic tissue was also present. Serotonin and its agonist quipazine stimulated the release of Prl and inhibited release of GH in a concentration-related manner. The antagonist methysergide blocked the effects of serotonin and quipazine on Prl. Acetylcholine and its agonist pilocarpine also stimulated release of Prl and inhibited release of GH in a concentration-related manner. Atropine blocked these responses. The results show that serotonin and acetylcholine affect pituitary hormone secretion by acting on the hypothalamus. They may stimulate the secretion of a Prl releasing hormone and somatostatin. PMID:6144226

  6. Serotonin and acetylcholine affect the release of prolactin and growth hormone from pituitary glands of domestic fowl in vitro in the presence of hypothalamic tissue.

    PubMed

    Hall, T R; Harvey, S; Chadwick, A

    1984-04-01

    Anterior pituitary glands from broiler fowl were incubated alone or with hypothalamic tissue in medium containing either serotonin or serotoninergic drugs, acetylcholine or cholinergic drugs, and the release of prolactin (Prl) and growth hormone (GH) measured by homologous radioimmunoassays. The neurotransmitters and drugs affected the release of hormones from the pituitary gland only when hypothalamic tissue was also present. Serotonin and its agonist quipazine stimulated the release of Prl and inhibited release of GH in a concentration-related manner. The antagonist methysergide blocked the effects of serotonin and quipazine on Prl. Acetylcholine and its agonist pilocarpine also stimulated release of Prl and inhibited release of GH in a concentration-related manner. Atropine blocked these responses. The results show that serotonin and acetylcholine affect pituitary hormone secretion by acting on the hypothalamus. They may stimulate the secretion of a Prl releasing hormone and somatostatin.

  7. [Influence of 50% proximal or distal small bowel resection on gut hormone release after test meal loading in dogs].

    PubMed

    Kato, M; Sasaki, I; Naito, H; Takahashi, M; Matsuno, S

    1991-10-01

    The effect of proximal and distal small bowel resection on gut hormone release after test meal loading in dogs was studied. Ten beagle dogs were subjected to 50% proximal or distal small bowel resection, and test meal loading was performed after one night fasting to examine gut hormone release. Fasting levels of plasma gastrin were not changed after both proximal and distal resection, but response to test meal was increased at 18 weeks of postoperative period in 50% proximal resection. Postprandial release of plasma GIP was significantly decreased in both proximal and distal resection compared with preoperative period. Postprandial release of enteroglucagon was increased at 4 and 8 weeks in proximal resection. In distal resection, it was increased at 4 weeks but returned to preoperative levels at 8 weeks. Villus height of middle part of the intestine was increased in both proximal and distal resection, and significant change was observed in the duodenal mucosa of proximal resection at 4 weeks. These findings suggest that part of the resection of small bowel influences gut hormone release, and these may play an important role in intestinal adaptation.

  8. A Gonadotropin-Releasing Hormone Agonist Model Demonstrates That Nocturnal Hot Flashes Interrupt Objective Sleep

    PubMed Central

    Joffe, Hadine; Crawford, Sybil; Economou, Nicole; Kim, Semmie; Regan, Susan; Hall, Janet E.; White, David

    2013-01-01

    Objectives: Sleep interruption is often reported by women with hot flashes and night sweats (or vasomotor symptoms, VMS). Although women report that VMS awaken them, polysomnography (PSG) studies have not consistently supported this contention. Design: We mimicked menopause using a gonadotropin-releasing hormone agonist (GnRHa) to investigate whether VMS increase awakenings and wake after sleep onset (WASO). VMS, serum estradiol, and at-home PSGs (two pretreatment, two posttreatment) were measured before and after 4 weeks on GnRHa. Regression models were used to determine the effect of increasing VMS frequency on awakenings and WASO, as measured objectively and subjectively. Participants: Twenty-nine healthy women (mean 27.3 y). Setting: Academic medical center. Interventions: Depot GnRHa (leuprolide 3.75-mg). Results: Serum estradiol was rapidly and uniformly suppressed on GnRHa. Persistent VMS were reported by 69% of women. The number of nighttime VMS correlated directly with the degree of sleep disturbance. Each additional reported nighttime VMS was associated with a 62% increase from baseline in PSG-measured WASO (P = 0.007), a 3% increase in awakenings (P = 0.05), and 6% increase in %N1 sleep (P = 0.02). Nighttime VMS were also associated with increased perceived WASO (312%; P = 0.02), awakenings (16%; P = 0.007), Insomnia Severity Index (P = 0.03), and Pittsburgh Sleep Quality Index (P = 0.03) scores, and decreased perceived sleep efficiency (P = 0.01). Objectively recorded nighttime VMS correlated with PSG-measured WASO (rs = 0.45, P = 0.02). Conclusions: This menopause model demonstrates that nighttime vasomotor symptoms correlate with increased sleep fragmentation. These findings are consistent with a specific contribution of vasomotor symptoms to polysomnography-measured sleep interruption suggesting that nighttime vasomotor symptoms interrupt sleep in the setting of menopause. Citation: Joffe H; Crawford S; Economou N; Kim S; Regan S; Hall JE; White D. A

  9. The neuroactive steroid allopregnanolone suppresses hypothalamic gonadotropin-releasing hormone release through a mechanism mediated by the gamma-aminobutyric acidA receptor.

    PubMed

    Calogero, A E; Palumbo, M A; Bosboom, A M; Burrello, N; Ferrara, E; Palumbo, G; Petraglia, F; D'Agata, R

    1998-07-01

    The central nervous system (CNS) is able to synthesize and/or metabolize steroid hormones. These neuroactive steroids are capable of modulating several brain functions and, among these, they seem to regulate the hypothalamic-pituitary-gonadal (HPG) axis. Indeed, recent observations have shown that 5 alpha-pregnane-3 alpha-ol-20-one (allopregnanolone), one of the most abundant naturally occurring neuroactive steroids, suppresses ovulation and sexual behaviour when administered within the CNS. The present study was undertaken to evaluate the effects of allopregnanolone and its inactive stereoisomer, 5 alpha-pregnane-3 beta-ol-20-one, upon the release of gonadotropin-releasing hormone (GnRH) from individually-incubated hemihypothalami. Allopregnanolone suppressed GnRH release in a concentration-dependent manner with maximal activity in the nanomolar range, a range at which this neurosteroid is capable of playing a biological action. The specificity of allopregnanolone suppression of GnRH release was provided by the lack of effect of its known inactive stereoisomer. To evaluate the involvement of gamma-aminobutyric acidA (GABAA) receptor, we examined the effects of two neurosteroids with GABA-antagonistic properties, pregnanolone sulfate (PREG-S) and dehydroepiandrosterone sulfate (DHEAS), and of bicuculline, a selective antagonist of the GABA binding site on the GABAA receptor, on allopregnanolone (10 nM)-suppressed GnRH release. Both PREG-S and bicuculline overcame the inhibitory effects of allopregnanolone on GnRH release, whereas DHEAS did not. To substantiate the involvement of the GABAA receptor further, we tested the effects of muscimol, a selective agonist for this receptor, which suppressed GnRH release. In conclusion, allopregnanolone suppressed hypothalamic GnRH release in vitro and this effect appeared to be mediated by an interaction with the GABAA receptor. We speculate that the inhibitory effect of allopregnanolone on the HPG axis may also be caused by

  10. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction.

    PubMed

    Treen, Nicholas; Itoh, Naoki; Miura, Hanae; Kikuchi, Ippei; Ueda, Takenori; Takahashi, Keisuke G; Ubuka, Takayoshi; Yamamoto, Kazutoshi; Sharp, Peter J; Tsutsui, Kazuyoshi; Osada, Makoto

    2012-04-01

    Gonadotropin-releasing hormone (GnRH) is central to the control of vertebrate reproductive cycles and since GnRH orthologs are also present in invertebrates, it is likely that the common ancestor of bilateral animals possessed a GnRH-like peptide. In order to understand the evolutionary and comparative biology of GnRH peptides we cloned the cDNA transcripts of prepro GnRH-like peptides from two species of bivalve molluscs, the Yesso scallop Patinopecten yessoensis and the Pacific oyster Crassostrea gigas. We compared their deduced uncleaved and mature amino acid sequences with those from other invertebrates and vertebrates, and determined their sites of expression and biological activity. The two molluscan GnRH sequences increased the number of known protostome GnRHs to six different forms, indicating the current classification of protostome GnRHs requires further revision. In both molluscs, RT-PCR analysis showed that the genes were highly expressed in nervous tissue with lower levels present in peripheral tissues including the gonads, while immunocytochemistry, using anti-octopus GnRH-like peptide, demonstrated the presence of GnRH-like peptide in neural tissue. Putative scallop GnRH-like peptide stimulated spermatogonial cell division in cultured scallop testis, but the scallop GnRH-like peptide did not stimulate LH release from cultured quail pituitary cells. This is the first report of the cloning of bivalve GnRH-like peptide genes and of molluscan GnRH-like peptides that are biologically active in molluscs, but not in a vertebrate.

  11. Three gonadotropin-releasing hormone genes in one organism suggest novel roles for an ancient peptide.

    PubMed Central

    White, S A; Kasten, T L; Bond, C T; Adelman, J P; Fernald, R D

    1995-01-01

    Gonadotropin-releasing hormone (GnRH) is known and named for its essential role in vertebrate reproduction. Release of this decapeptide from neurons in the hypothalamus controls pituitary gonadotropin levels which, in turn, regulate gonadal state. The importance of GnRH is underscored by its widespread expression and conservation across vertebrate taxa: five amino acids are invariant in all nine known forms, whereas two others show only conservative changes. In most eutherian mammals, only one form, expressed in the hypothalamus, is thought to exist, although in a recent report, antibody staining in developing primates suggests an additional form. In contrast, multiple GnRH forms and expression loci have been reported in many non-mammalian vertebrates. However, evidence based on immunological discrimination does not always agree with analysis of gene expression, since GnRH forms encoded by different genes may not be reliably distinguished by antibodies. Here we report the expression of three distinct GnRH genes in a teleost fish brain, including the sequence encoding a novel GnRH preprohormone. Using in situ hybridization, we show that this form is found only in neurons that project to the pituitary and exhibit changes in soma size depending on social and reproductive state. The other two GnRH genes are expressed in other, distinct cell populations. All three genes share the motif of encoding a polypeptide consisting of GnRH and a GnRH-associated peptide. Whereas the GnRH moiety is highly conserved, the GnRH-associated peptides are not, reflecting differential selective pressure on different parts of the gene. GnRH forms expressed in nonhypothalamic regions may serve to coordinate reproductive activities of the animal. Images Fig. 3 PMID:7667296

  12. Lead (Pb) alters the norepinephrine-induced secretion of luteinizing hormone releasing hormone from the median eminence of adult male rats in vitro

    SciTech Connect

    Bratton, G.R.; Hiney, J.K.; Dees, W.L. )

    1994-01-01

    In the present study, the authors evaluated the in vitro effects of lead (Pb) on basal and stimulated luteinizing hormone releasing hormone (LHRH) and Prostaglandin E[sub 2] (PGE[sub 2]) secretion. Median eminences (ME) were removed from brains of adult male rats and preincubated for 15 minutes in Krebs-Ringer bicarbonate glucose buffer in an atmosphere of 95% O[sub 2]-5% CO[sub 2]. These media were discarded and all MEs were subjected to one of the following experiments. In Experiment 1, all MEs were incubated for 30 minutes in medium only. These media were collected and replaced with medium only (controls) or with medium containing Pb doses ranging from 5 to 20 [mu]M. After this 60-minute incubation, media were collected, then replaced with new medium containing 60 [mu]M norepinephrine (NE), or NE plus each dose of Pb, then incubated for a final 30-minute period. Experiment 2 was conducted as above, except PGE[sub 2] (2.8 [mu]M) replaced the NE. In both experiments, the amounts of LHRH released was measured by RIA. In experiment 3, NE was again used for the challenge; however, this time, the amount of PGE[sub 2] released was measured by RIA. Results indicate that Pb did not alter basal LHRH release, but compared with controls, significantly blocked NE-induced LHRH release in a dose-related manner. Conversely, Pb had no effect on the PGE[sub 2]-induced release of LHRH. Additionally, Pb did not alter basal PGE[sub 2] release; however, it significantly blocked the NE-induced release of PGE[sub 2]. Since NE-induced LHRH release is mediated by PGE[sub 2], these results support the hypothesis that Pb is capable of altering the hypothalamus and suggest that this effect is due, at least in part, to the diminished PGE[sub 2] synthesis/release within the ME, resulting in diminished LHRH secretion.

  13. [Effects of castration and testosterone-replacement on hypothalamic and plasma luteinizing hormone-releasing hormone levels in the aged male rat].

    PubMed

    Zhang, Z J; Ren, H M; Hu, H T; Ling, F D

    1992-06-01

    Hypothalamic and plasma luteinizing hormone-releasing hormone (LHRH) levels following orchidectomy (ORDX) and testosterone (T)-replacement were compared between young (2-3 months old) and aged (24-26 months old) male rats by radioimmunoassay. Plasma T level and hypothalamic LHRH content are markedly decreased in the aged rat as compared to those of the young rat, whereas plasma LHRH levels are similar in the two groups. Following ORDX and ORDX plus T-replacement, plasma T levels in both groups are about the same, whereas the rates of variation of hypothalamic and plasma LHRH levels in the aged rat are significantly lower than those in the young rat. These results suggest that the negative feedback mechanism of the hypothalamic LHRHergic system is impaired in the aged rat, which may be one of the important reasons causing age-dependent deterioration of the functional control of hypothalamic-pituitary-testicular axis.

  14. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy.

    PubMed

    Giannogonas, Panagiotis; Apostolou, Athanasia; Manousopoulou, Antigoni; Theocharis, Stamatis; Macari, Sofia A; Psarras, Stelios; Garbis, Spiros D; Pothoulakis, Charalabos; Karalis, Katia P

    2016-01-01

    In inflammatory bowel disease (IBD), compromised restitution of the epithelial barrier contributes to disease severity. Owing to the complexity in the pathogenesis of IBD, a variety of factors have been implicated in its progress. In this study, we report a functional interaction between macroautophagy and Corticotropin Releasing Hormone (Crh) in the gut. For this purpose we used DSS colitis model on Crh -/- or wild-type (wt) with pharmacological inhibition of autophagy. We uncovered sustained basal autophagy in the gut of Crh -/- mice, which persisted over the course of DSS administration. Autophagy inhibition resulted in partial rescue of Crh -/- mice, while it increased the expression of Crh in the wt gut. Similarly, Crh deficiency was associated with sustained activation of base line autophagy. In vitro models of amino acid deprivation- and LPS-induced autophagy confirmed the in vivo findings. Our results indicate a novel role for Crh in the intestinal epithelium that involves regulation of autophagy, while suggesting the complementary action of the two pathways. These data suggest the intriguing possibility that targeting Crh stimulation in the intestine may provide a novel therapeutic approach to support the integrity of the epithelial barrier and to protect from chronic colitis. PMID:26987580

  15. Thyrotropin-Releasing Hormone Loaded and Chitosan Engineered Polymeric Nanoparticles: Towards Effective Delivery of Neuropeptides.

    PubMed

    Kaur, Sarabjit; Bhararia, Avani; Sharma, Krishna; Mittal, Sherry; Jain, Rahul; Wangoo, Nishima; Sharma, Rohit K

    2016-05-01

    Thyrotropin-Releasing Hormone (TRH), a tripeptide amide with molecular formula L-pGlu-L-His-L- Pro-NH2, is used in the treatment of brain/spinal injury and certain central nervous system (CNS) disorders, including schizophrenia, Alzheimer's disease, epilepsy, depression, shock and ischemia due to its profound effects on the CNS. However, TRH's therapeutic activity is severely hampered because of instability and hydrophilicity owing to its peptidic nature which results into ineffective penetration into the blood brain barrier. In the present study, we report the synthesis and stability studies of novel chitosan engineered TRH encapsulated poly(lactide-co-glycolide) (PLGA) based nanoformulation. The aim of such an encapsulation is to allow effective delivery of TRH in biological systems as the peptidase degrade naked TRH. The synthesis of TRH was carried out manually in solution phase followed by its encapsulation using PLGA to form polymeric nanoparticles (NPs) via nanoprecipitation technique. Different parameters such as type of organic phase, concentration of stabilizer, ratio of organic phase and aqueous phase, rate of addition of organic phase were optimized, tested and evaluated for particle size, encapsulation efficiency, and stability of NPs. The TRH-PLGA NPs were then surface modified with chitosan to achieve positive surface charge rendering them potential membrane penetrating agents. PLGA, PLGA-TRH, Chitosan-PLGA and Chitosan-PLGA-TRH NPs were characterized and analyzed using Dynamic Light Scattering (DLS), Transmissiom Electron Microscopy (TEM) and Infra-red spectroscopic techniques. PMID:27483926

  16. Gonadotropin releasing hormone stimulates the formation of inositol phosphates in rat anterior pituitary tissue.

    PubMed Central

    Schrey, M P

    1985-01-01

    The production of inositol phosphates in response to gonadotropin releasing hormone (GnRH) was studied in rat anterior pituitary tissue preincubated with [3H]inositol. Prelabelled paired hemipituitaries from prepubertal female rats were incubated in the presence or absence of GnRH in medium containing 10 mM-Li+ X Li+, which inhibits myo-inositol-1-phosphatase, greatly amplified the stimulation of inositol phosphate production by GnRH (10(-7) M) to 159, 198 and 313% of paired control values for inositol 1-phosphate, inositol bisphosphate and inositol trisphosphate respectively after 20 min. The percentage distribution of [3H]inositol within the phosphoinositides was 91.3, 6.3 and 2.4 for phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively and was unaffected by GnRH. The stimulation of inositol trisphosphate production by GnRH was evident after 5 min incubation, was dose-dependent with a half-maximal effect around 11 nM, and was not inhibited by removal of extracellular Ca2+. Elevation of cytosolic Ca2+ by membrane depolarization with 50 mM-K+ had no significant effect on inositol phosphate production. These findings are consistent with the hypothesis that GnRH action in the anterior pituitary involves the hydrolysis of phosphatidylinositol 4,5-bisphosphate. The resulting elevation of inositol trisphosphate may in turn lead to intracellular Ca2+ mobilization and subsequent stimulation of gonadotropin secretion. PMID:2986599

  17. The role of limited proteolysis of thyrotropin-releasing hormone in thermoregulation. Final report

    SciTech Connect

    Prasad, C.

    1982-01-01

    Cyclo (His-Pro) is a biologiclly active cyclic dipeptide derived from thyrotropin-releasing hormone by its limited proteolysis. We have developed a specific radioimmunoassay for this cyclic peptide and shown its presence throughout rat and monkey brains. The normal rat brain concentration of cyclo (His-Pro) ranged from 35-61 pmols/brain. The elution profiles of rat brain cyclo (His-Pro)-like immunoreactivity and synthetic radioactive cyclo (His-Pro) following gel filtration, ion-exchange chromatography and high pressure liquid chromatography were similar. An analysis of the regional distribution of cyclo (His-Pro) and TRH in rat and monkey brains exhibited no apparent precursor-product relationship. Studies on the neuroanatomic sites for the thermoregulatory effects of cyclo (His-Pro) suggested that the neural loci responsible for cyclo (His-Pro)-induced hypothermia resides within POA/AHA. The endogenous levels of brain cyclo (His-Pro) were elevated when rats were made either hypothyroid by surgical thyroidectomy or forced to drink alcohol for six weeks. These studies demonstrate that cyclo (His-Pro) is present throughout the central nervous system in physiologically relevant concentrations which can be modified by appropriate physiological and pharamacological manipulations. These data in conjunction with earlier reports of multiple biological activities of exogenous cyclo (His-Pro), suggest that endogenous cyclo (His-Pro) is a biological active peptide and it may play a neurotransmitter or neuromodulator role in the central nervous system.

  18. Ovarian hyperstimulation syndrome prevention strategies: use of gonadotropin-releasing hormone antagonists.

    PubMed

    Griesinger, Georg

    2010-11-01

    The most serious complication of ovarian stimulation for in vitro fertilization is severe ovarian hyperstimulation syndrome (OHSS), a rare but potentially life-threatening condition. The present review discusses the place of gonadotropin-releasing hormone antagonists (GnRH-ant) in primary, secondary, and tertiary prevention of OHSS. Sound evidence indicates that the routine use of GnRH-ant instead of GnRH agonists (GnRHa) during ovarian stimulation drastically reduces the relative risk of OHSS. GnRH-ant are therefore useful for primary OHSS prevention, and an increased use of antagonists should help reduce the overall incidence of severe OHSS with its associated risks and complications. In patients on antagonist protocols identified to be at risk of developing severe OHSS, replacing human chorionic gonadotropin with GnRHa as a trigger of final oocyte maturation has been proposed as an effective measure of secondary prevention. A concept of combining GnRHa triggering with cryopreservation of all oocytes or embryos has yielded promising results as far as total avoidance of OHSS is concerned while providing a good chance of pregnancy for the patient in later frozen-thawed embryo transfers. In patients with early onset of OHSS, reinitiation of GnRH-ant in the luteal phase as a measure of tertiary prevention might lead to rapid regression of the syndrome; however only limited data on this new concept are available in the literature.

  19. Estrogen receptor-β in the gonadotropin-releasing hormone neuron.

    PubMed

    Wolfe, Andrew; Wu, Sheng

    2012-01-01

    Estrogen regulation of gonadotropin-releasing hormone (GnRH) neuronal activity plays a crucial role in homeostatic regulation of the hypothalamic-pituitary-gonadal axis. Estrogen also coordinates a complex series of physiological changes culminating with a surge of gonadotropin secretion that triggers ovulation of a developed follicle from the ovary. The coordinated functions of estrogen ensure that the female will elaborate appropriate reproductive behaviors ultimately designed to deliver sperm to the oocyte and to provide a receptive uterine environment for the fertilized embryo. Although the effects of estrogen on GnRH neuronal function have long been proposed to be indirect due to the presumed lack of estrogen receptors in GnRH neurons, the identification of alternative estrogen signaling pathways, including estrogen receptor (ER)β and membrane ERs such as GPR30, has put the focus back on estrogen's effect at the level of the GnRH neuron itself. One candidate to mediate the effects of estrogen is the β isoform of the estrogen receptor. We review the evidence for a role for ERβ-mediated regulation of GnRH neuronal function.

  20. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons.

    PubMed

    Herbison, Allan E

    2016-08-01

    The gonadotropin-releasing hormone (GnRH) neuronal network generates pulse and surge modes of gonadotropin secretion critical for puberty and fertility. The arcuate nucleus kisspeptin neurons that innervate the projections of GnRH neurons in and around their neurosecretory zone are key components of the pulse generator in all mammals. By contrast, kisspeptin neurons located in the preoptic area project to GnRH neuron cell bodies and proximal dendrites and are involved in surge generation in female rodents (and possibly other species). The hypothalamic-pituitary-gonadal axis develops embryonically but, apart from short periods of activation immediately after birth, remains suppressed through a combination of gonadal and non-gonadal mechanisms. At puberty onset, the pulse generator reactivates, probably owing to progressive stimulatory influences on GnRH neurons from glial and neurotransmitter signalling, and the re-emergence of stimulatory arcuate kisspeptin input. In females, the development of pulsatile gonadotropin secretion enables final maturation of the surge generator that ultimately triggers the first ovulation. Representation of the GnRH neuronal network as a series of interlocking functional modules could help conceptualization of its functioning in different species. Insights into pulse and surge generation are expected to aid development of therapeutic strategies ameliorating pubertal disorders and infertility in the clinic.

  1. Puberty, statural growth, and growth hormone release in children with cerebral palsy

    PubMed Central

    Kuperminc, Michelle N.; Gurka, Matthew J.; Houlihan, Christine M.; Henderson, Richard C.; Roemmich, James N.; Rogol, Alan D.

    2010-01-01

    Objective Children with cerebral palsy (CP) are smaller than normally growing children.. The association between the growth hormone (GH) axis and growth in children with CP during puberty is unknown. We compared growth and markers of the GH axis in pre-pubertal and pubertal children with moderate to severe CP and without CP over a three-year period. Study design Twenty children with CP, ages 6–18, Gross Motor Function Classification System levels III–V, were compared to a group of sixty-three normally growing children of similar age. Anthropometry, Tanner stage, bone age, and laboratory analyses were performed every six months for three years. Laboratory values included spontaneous overnight GH release, fasting IGF-1 and IGFBP-3. Repeated measures models were used to evaluate interactions among Tanner stage and group (children with CP vs. reference children), taking into account gender, age, and nutritional status. Results Children with CP grew more slowly than those without CP at all Tanner stages (p<0.01). Patterns of IGF-1 and GH secretion in children with CP were similar to those of the reference group; however, the concentrations of IGF-1 (p<0.01) and GH (p<0.01) were lower in girls with CP, with a similar trend for boys (p=0.10 and 0.14, respectively). Conclusions Diminished circulating IGF-1 and GH concentrations may explain the differences in growth between the two groups. PMID:20216931

  2. Characterization of thyrotropin-releasing hormone in the central nervous system of African lungfish.

    PubMed

    Kreider, M S; Winokur, A; Manaker, S; Pack, A I; Fishman, A P

    1988-10-01

    Central administration of thyrotropin-releasing hormone (TRH) produces potent effects on various physiological parameters, such as arousal, respiration, and cardiovascular function, in several species. As part of an investigation into the evolution of this tripeptide as a central modulator of these parameters, we examined its distribution in the central nervous system of the African lungfish (Protopterus). Lungfish brains were dissected into three regions: telencephalon, diencephalon, and medulla. Each region was assayed for TRH by radioimmunoassay and for norepinephrine, dopamine, and serotonin by HPLC/electrochemical methods. TRH immunoreactivity (IR-TRH) was present in all regions of lungfish brain examined. The telencephalon contained the highest concentrations of TRH, the diencephalon also contained a high concentration of TRH, and the medulla contained a markedly lower concentration. Similar concentration gradients (telencephalon greater than diencephalon greater than medulla) were observed for norepinephrine, dopamine, and serotonin. The identity of IR-TRH as authentic TRH was confirmed by elution profiles on HPLC. The results of this investigation demonstrated that TRH and the monoamine neurotransmitters are present in high concentrations in various regions of lungfish brain. The lungfish may represent a promising model for further studies of the interactions of TRH with these neurotransmitter systems.

  3. Suppression of boar taint in cryptorchid pigs using a vaccine against the gonadotropin-releasing hormone.

    PubMed

    Gutzwiller, A; Ampuero Kragten, S

    2013-12-01

    Thirteen unilaterally cryptorchid Large White pigs, which had been immunized at 4 and 8 weeks of age and a third time at 64 ± 4 kg body weight against the gonadotropin releasing hormone with the vaccine Improvac®, were slaughtered at the age of 170 ± 9 days at a body weight of 102 ± 12 kg. Twelve pigs tested negative in the olfactory test of the salivary gland; their descended testicles were small and their fat androstenone concentration was low compared to normally developed boars of a previous experiment which had been vaccinated twice with Improvac® according the manufacturer's recommendation. One cryptorchid boar, which tested positive in the olfactory test and whose testicular weight and fat androstenone concentration corresponded to values of unvaccinated boars of the same age, obviously had not responded to the vaccination. It is an open question if the vaccination protocol for normal boars is sufficient to prevent boar taint in the majority of cryptorchid pigs, too.

  4. Zeranol upregulates corticotropin releasing hormone expression in the placental cell line JEG-3.

    PubMed

    Wang, Yanfei; Tan, Wenjuan; Leung, Lai K

    2013-06-01

    Corticotrophin-releasing hormone (CRH) plays a pivotal role in the control of parturition in human. Increased amount of plasma CRH is associated with pre-mature delivery. Zeranol or α-zearalanol is a mycotoxin produced by fungi in the Fusarium family. Unlike other mycotoxins, exposure to zeranol appears to have minimal health risk. In North America, it is used as a growth-promoting agent in livestock. Because of the health concern of zeranol residue in meat, this practice has not been adopted in Europe. In our study zeranol could induce CRH protein expression in JEG-3 cells as low as 0.1nM. As electrophoretic mobility shift assay indicated an increase in the CRE binding activity in CRH promoter, the induction was likely triggered by transcriptional regulation. We further looked into the signal transduction pathway and PKCδ and ERK-1/2 were found to be activated. This study showed that zeranol could increase CRH expression in placental cells, and the findings might be a concern for pregnant women.

  5. Antibodies against gonadotropin-releasing hormone in patients with posterior laryngitis.

    PubMed

    Pendleton, Hillevi; Alm, Ragnar; Nordin Fredrikson, Gunilla; Ohlsson, Bodil

    2013-01-01

    Patients with functional gastrointestinal disorders express antibodies against gonadotropin-releasing hormone (GnRH) in serum. One common cause of posterior laryngitis (PL) is extra-esophageal reflux, but a functional etiology has also been suggested. The aim of this study was to scrutinize patients with PL with regard to the presence of GnRH antibodies and to examine the association between antibodies and symptoms and reflux. Consecutive PL patients were included after examination. Serum was analyzed for the presence of antibodies using an enzyme-linked immunosorbent assay (ELISA) method and expressed as relative units (RU). Two age- and gender-matched healthy subjects per case served as controls. The prevalence of IgM GnRH antibodies in patients was 35% compared with 28% in controls (P = 0.06), with higher levels in patients (0.8 (0.3-2.2) RU) than in controls (0.2 (0.1-0.6) RU) (P = 0.007). The corresponding IgG antibody prevalences were 43% and 4%, respectively (P = 0.001), with no difference in levels (P = 0.70). There was no association between antibodies and clinical findings.

  6. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.

    PubMed

    Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli

    2016-08-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. PMID:27426041

  7. Suppression of boar taint in cryptorchid pigs using a vaccine against the gonadotropin-releasing hormone.

    PubMed

    Gutzwiller, A; Ampuero Kragten, S

    2013-12-01

    Thirteen unilaterally cryptorchid Large White pigs, which had been immunized at 4 and 8 weeks of age and a third time at 64 ± 4 kg body weight against the gonadotropin releasing hormone with the vaccine Improvac®, were slaughtered at the age of 170 ± 9 days at a body weight of 102 ± 12 kg. Twelve pigs tested negative in the olfactory test of the salivary gland; their descended testicles were small and their fat androstenone concentration was low compared to normally developed boars of a previous experiment which had been vaccinated twice with Improvac® according the manufacturer's recommendation. One cryptorchid boar, which tested positive in the olfactory test and whose testicular weight and fat androstenone concentration corresponded to values of unvaccinated boars of the same age, obviously had not responded to the vaccination. It is an open question if the vaccination protocol for normal boars is sufficient to prevent boar taint in the majority of cryptorchid pigs, too. PMID:24297842

  8. Tolerability of the Dexamethasone-Corticotropin Releasing Hormone Test in Major Depressive Disorder

    PubMed Central

    Dunlop, Boadie W.; Betancourt, Yara; Binder, Elisabeth B.; Heim, Christine; Holsboer, Florian; Ising, Marcus; McKenzie, Melissa; Mletzko, Tanja; Pfister, Hildegard; Nemeroff, Charles B.; Craighead, W. Edward; Mayberg, Helen S.

    2010-01-01

    Background The dexamethasone-corticotropin releasing hormone (Dex-CRH) test may differentially predict which depressed patients will respond to antidepressant medication. However, a comprehensive analysis of the safety of this test in psychiatric patients has not been previously been performed. Methods We conducted a pooled analysis of depressed patients in four clinical studies. Observed and subjectively reported side effects in 454 patients were collected for 90 minutes following CRH administration. Pre-test electrocardiograms were available in 250 patients to assess cardiac safety. Descriptive statistics were performed to evaluate these safety data. Results Eight-six (18.9%) of all subjects experienced no side effects from the procedure. The mean number of side effects per subject was 1.4 ± 1.0. The most frequent adverse events were: flushing (n=216, 47.6%), feeling of warmth (144, 31.7%), hyperpnea/tachypnea (108, 23.8%), palpitations (37, 8.1%), and tachycardia (28, 6.2%). Side effects were consistently mild and brief in duration. There were no serious adverse events. Conclusion The Dex-CRH test produces a mild, predictable side-effect profile, characterized by flushing, feelings of warmth, hyperpnea/tachypnea, palpitations, and tachycardia. These results provide reassurance that the Dex-CRH test is well tolerated in psychiatric patients. PMID:20488460

  9. Spinal cord thyrotropin releasing hormone receptors of morphine tolerant-dependent and abstinent rats

    SciTech Connect

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. )

    1990-07-01

    The effect of chronic administration of morphine and its withdrawal on the binding of 3H-(3-MeHis2)thyrotropin releasing hormone (3H-MeTRH) to membranes of the spinal cord of the rat was determined. Male Sprague-Dawley rats were implanted with either 6 placebo or 6 morphine pellets (each containing 75-mg morphine base) during a 7-day period. Two sets of animals were used. In one, the pellets were left intact at the time of sacrificing (tolerant-dependent) and in the other, the pellets were removed 16 hours prior to sacrificing (abstinent rats). In placebo-pellet-implanted rats, 3H-MeTRH bound to the spinal cord membranes at a single high affinity binding site with a Bmax of 21.3 +/- 1.6 fmol/mg protein, and an apparent dissociation constant Kd of 4.7 +/- 0.8 nM. In morphine tolerant-dependent or abstinent rats, the binding constants of 3H-MeTRH to spinal cord membranes were unaffected. Previous studies from this laboratory indicate that TRH can inhibit morphine tolerance-dependence and abstinence processes without modifying brain TRH receptors. Together with the present results, it appears that the inhibitory effect of TRH on morphine tolerance-dependence and abstinence is probably not mediated via central TRH receptors but may be due to its interaction with other neurotransmitter systems.

  10. Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation

    PubMed Central

    Qin, Yong Jie; Chan, Sun On; Chong, Kelvin Kam Lung; Li, Benjamin Fuk Loi; Ng, Tsz Kin; Yip, Yolanda Wong Ying; Chen, Haoyu; Zhang, Mingzhi; Block, Norman L.; Cheung, Herman S.; Schally, Andrew V.; Pang, Chi Pui

    2014-01-01

    Disruptions in immunity and occurrence of inflammation cause many eye diseases. The growth hormone-releasing hormone–growth hormone–insulin-like growth factor-1 (GHRH–GH–IGF1) axis exerts regulatory effects on the immune system. Its involvement in ocular inflammation remains to be investigated. Here we studied this signaling in endotoxin-induced uveitis (EIU) generated by LPS. The increase in GHRH receptor (GHRH-R) protein levels was parallel to the increase in mRNA levels of pituitary-specific transcription factor-1, GHRH-R splice variant 1, GHRH, and GH following LPS insult. Elevation of GHRH-R and GH receptor was localized on the epithelium of the iris and ciliary body, and GHRH-R was confined to the infiltrating macrophages and leukocytes in aqueous humor but not to those in stroma. Treatment with GHRH-R antagonist decreased LPS-stimulated surges of GH and IGF1 in aqueous humor and alleviated inflammation by reducing the infiltration of macrophages and leukocytes and the production of TNF-α, IL-1β, and monocyte chemotactic protein-1. Our results indicate that inflammation in the iris and ciliary body involves the activation of GHRH signaling, which affects the recruitment of immune cells and the production of proinflammatory mediators that contribute to EIU pathogenesis. Moreover, the results suggest that GHRH-R antagonists are potential therapeutic agents for the treatment of acute ocular inflammation. PMID:25489106

  11. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    PubMed Central

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  12. The distribution of thyrotropin-releasing hormone (TRH) in the rhesus monkey spinal cord.

    PubMed

    Lechan, R M; Snapper, S B; Jacobson, S; Jackson, I M

    1984-01-01

    The distribution of thyrotropin-releasing hormone (TRH) in the Rhesus monkey spinal cord was studied using a highly specific antibody to TRH and the indirect peroxidase-antiperoxidase technique. TRH-positive fibers were found at all levels of the spinal cord and were in greatest concentration in the ventral gray, intermediolateral column and central gray. All motor nuclear groups in lamina IX of the ventral gray were innervated by TRH, frequently in close association with perikarya of alpha-motoneurons. The motor nuclei in the lumbar cord were the most heavily stained and contrasted to the minimal staining in the retrodorsolateral nuclear groups of the cervical, thoracic and sacral cord. Within the intermediolateral column, which contains the majority of preganglionic sympathetic neurons, TRH terminal fields reached their highest density between T2-T4 and T12-L2. Other preganglionic neurons including the nucleus intercalatus spinalis and the dorsal commissural nucleus were also densely innervated. These studies demonstrate the preferential distribution of TRH in the monkey spinal cord to regions containing alpha-motoneurons and preganglionic neurons and indicate that TRH may play an important role in the regulation of motor function and in the autonomic nervous system.

  13. Gonadotropin-releasing hormone agonist use in men without a cancer registry diagnosis of prostate cancer

    PubMed Central

    Kuo, Yong-fang; Goodwin, James S; Shahinian, Vahakn B

    2008-01-01

    Background Use of gonadotropin-releasing hormone (GnRH) agonists has become popular for virtually all stages of prostate cancer. We hypothesized that some men receive these agents after only a limited work-up for their cancer. Such cases may be missed by tumor registries, leading to underestimates of the total extent of GnRH agonist use. Methods We used linked Surveillance, Epidemiology and End-Results (SEER)-Medicare data from 1993 through 2001 to identify GnRH agonist use in men with either a diagnosis of prostate cancer registered in SEER, or with a diagnosis of prostate cancer based only on Medicare claims (from the 5% control sample of Medicare beneficiaries residing in SEER areas without a registered diagnosis of cancer). The proportion of incident GnRH agonist users without a registry diagnosis of prostate cancer was calculated. Factors associated with lack of a registry diagnosis were examined in multivariable analyses. Results Of incident GnRH agonist users, 8.9% had no diagnosis of prostate cancer registered in SEER. In a multivariable logistic regression model, lack of a registry diagnosis of prostate cancer in GnRH agonist users was significantly more likely with increasing comorbidity, whereas it was less likely in men who had undergone either inpatient admission or procedures such as radical prostatectomy, prostate biopsy, or transurethral resection of the prostate. Conclusion Reliance solely on tumor registry data may underestimate the rate of GnRH agonist use in men with prostate cancer. PMID:18620606

  14. Gonadotropin-releasing hormone modulates cholesterol synthesis and steroidogenesis in SH-SY5Y cells.

    PubMed

    Rosati, Fabiana; Sturli, Niccolò; Cungi, Maria Chiara; Morello, Matteo; Villanelli, Fabio; Bartolucci, Gianluca; Finocchi, Claudia; Peri, Alessandro; Serio, Mario; Danza, Giovanna

    2011-04-01

    Neurosteroids are involved in Central Nervous System development, brain functionality and neuroprotection but little is known about regulators of their biosynthesis. Recently gonadotropins, Gonadotropin-releasing Hormone (GnRH) and their receptors have been localized in different brain regions, such as hippocampus and cortex. Using human neuronal-like cells we found that GnRH up-regulates the expression of key genes of cholesterol and steroid synthesis when used in a narrow range around 1.0 nM. The expression of Hydroxysterol D24-reductase (seladin-1/DHCR24), that catalyzes the last step of cholesterol biosynthesis, is increased by 50% after 90 min of incubation with GnRH. StAR protein and P450 side chain cleavage (P450scc) are up-regulated by 3.3 times after 90 min and by 3.5 times after 3 h, respectively. GnRH action is mediated by LH and 1.0 nM GnRH enhances the expression of LHβ as well. A two fold increase of cell cholesterol is induced after 90 min of GnRH incubation and 17β-estradiol (E2) production is increased after 24, 48 and 72 h. These data indicate for the first time that GnRH regulates both cholesterol and steroid biosynthesis in human neuronal-like cells and suggest a new physiological role for GnRH in the brain. PMID:21296663

  15. Autoradiographic localization of thyrotropin releasing hormone (TRH) receptors in the central nervous system

    SciTech Connect

    Manaker, S.

    1985-01-01

    Quantitative autoradiography was used to examine the distribution of thyrotropin-releasing hormone (TRH) receptors in the rat and human central nervous system (CNS). The binding of (/sup 3/H)-3-methyl-histidine/sup 2/-TRH ((/sup 3/H)-MeTRH) to TRH receptors was saturable, of a high affinity (K/sub d/ = 5 nM), and specific for TRH analogs. Studies with neurotoxins ibotenic acid and 6-hydroxydopamine (6-OHDA) suggest that TRH receptors within the amygdala are predominantly located on cell bodies, and not nerve terminals. Finally, an examination was made of the concentrations of TRH receptors in spinal cords of patients with amyotrophic lateral sclerosis (ALS), a degenerative disease of the motor neurons located in Lamina IX. Large decreases in TRH receptors were noted in ALS spinal cords, when compared to non-neurological controls, probably reflecting the loss of motor neurons. In addition, decreases in the TRH receptor concentration of Lamina II were observed. This finding may reflect the sensitivity of neurons throughout the CNS to the pathophysiologic mechanisms of neuronal degeneration which cause ALS.

  16. Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons

    PubMed Central

    Koemeter-Cox, Andrew I.; Sherwood, Thomas W.; Green, Jill A.; Steiner, Robert A.; Berbari, Nicolas F.; Yoder, Bradley K.; Kauffman, Alexander S.; Monsma, Paula C.; Brown, Anthony; Askwith, Candice C.; Mykytyn, Kirk

    2014-01-01

    Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling. PMID:24982149

  17. Hormone therapy in acne.

    PubMed

    Lakshmi, Chembolli

    2013-01-01

    Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  18. Effect of Deletion of Ghrelin-O-Acyltransferase on the Pulsatile Release of Growth Hormone in Mice.

    PubMed

    Xie, T Y; Ngo, S T; Veldhuis, J D; Jeffery, P L; Chopin, L K; Tschöp, M; Waters, M J; Tolle, V; Epelbaum, J; Chen, C; Steyn, F J

    2015-12-01

    Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of

  19. A Randomised Comparison Evaluating Changes in Bone Mineral Density in Advanced Prostate Cancer: Luteinising Hormone-releasing Hormone Agonists Versus Transdermal Oestradiol

    PubMed Central

    Langley, Ruth E.; Kynaston, Howard G.; Alhasso, Abdulla A.; Duong, Trinh; Paez, Edgar M.; Jovic, Gordana; Scrase, Christopher D.; Robertson, Andrew; Cafferty, Fay; Welland, Andrew; Carpenter, Robin; Honeyfield, Lesley; Abel, Richard L.; Stone, Michael; Parmar, Mahesh K.B.; Abel, Paul D.

    2016-01-01

    Background Luteinising hormone-releasing hormone agonists (LHRHa), used as androgen deprivation therapy (ADT) in prostate cancer (PCa) management, reduce serum oestradiol as well as testosterone, causing bone mineral density (BMD) loss. Transdermal oestradiol is a potential alternative to LHRHa. Objective To compare BMD change in men receiving either LHRHa or oestradiol patches (OP). Design, setting, and participants Men with locally advanced or metastatic PCa participating in the randomised UK Prostate Adenocarcinoma TransCutaneous Hormones (PATCH) trial (allocation ratio of 1:2 for LHRHa:OP, 2006–2011; 1:1, thereafter) were recruited into a BMD study (2006–2012). Dual-energy x-ray absorptiometry scans were performed at baseline, 1 yr, and 2 yr. Interventions LHRHa as per local practice, OP (FemSeven 100 μg/24 h patches). Outcome measurements and statistical analysis The primary outcome was 1-yr change in lumbar spine (LS) BMD from baseline compared between randomised arms using analysis of covariance. Results and limitations A total of 74 eligible men (LHRHa 28, OP 46) participated from seven centres. Baseline clinical characteristics and 3-mo castration rates (testosterone ≤1.7 nmol/l, LHRHa 96% [26 of 27], OP 96% [43 of 45]) were similar between arms. Mean 1-yr change in LS BMD was −0.021 g/cm3 for patients randomised to the LHRHa arm (mean percentage change −1.4%) and +0.069 g/cm3 for the OP arm (+6.0%; p < 0.001). Similar patterns were seen in hip and total body measurements. The largest difference between arms was at 2 yr for those remaining on allocated treatment only: LS BMD mean percentage change LHRHa −3.0% and OP +7.9% (p < 0.001). Conclusions Transdermal oestradiol as a single agent produces castration levels of testosterone while mitigating BMD loss. These early data provide further supporting evidence for the ongoing phase 3 trial. Patient summary This study found that prostate cancer patients treated with transdermal oestradiol

  20. Participation of the Na+/H+ exchanger in the phospholipase-A2 activation of luteinizing hormone-releasing hormone release in rat hypothalamic fragments.

    PubMed

    Nava, L E; Tinajero, J C; Malacara, J M

    1992-01-01

    The role of the Na+/H+ exchanger in the phospholipase-A2 (PLA2) stimulation of LHRH release was investigated using in vitro incubations of rat hypothalamic fragments. It was found that monensin, the Na+/H+ ionophore, increased LHRH release in a dose-related manner. That effect diminished in the absence of calcium as well as after the addition of 2,4'-dibromoacetophenone, a blocker of PLA2 action. Amiloride, a blocker of the Na+/H+ exchanger, did not alter the effect of monensin. However, amiloride significantly diminished the effect of melittin, an activator of PLA2 action. LHRH release under PLA2 did not change when amiloride was added to the incubation medium. Lysophosphatidylcholine also increased LHRH release. These results were interpreted as evidence of the participation of Na+/H+ exchange in PLA2 activation in the release of LHRH in rat hypothalamic fragments. A role of lysophospholipids in this process is also suggested.

  1. Bed rest suppresses bioassayable growth hormone release in response to muscle activity

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Grindeland, R. E.; Hodgson, J. A.; Bigbee, A. J.; Edgerton, V. R.

    1997-01-01

    Hormonal responses to muscle activity were studied in eight men before (-13 or -12 and -8 or -7 days), during (2 or 3, 8 or 9, and 13 or 14 days) and after (+2 or +3 and +10 or +11 days) 17 days of bed rest. Muscle activity consisted of a series of unilateral isometric plantar flexions, including 4 maximal voluntary contractions (MVCs), 48 contractions at 30% MVC, and 12 contractions at 80% MVC, all performed at a 4:1-s work-to-rest ratio. Blood was collected before and immediately after muscle activity to measure plasma growth hormone by radioimmunoassay (IGH) and by bioassay (BGH) of tibia epiphyseal cartilage growth in hypophysectomized rats. Plasma IGH was unchanged by muscle activity before, during, or after bed rest. Before bed rest, muscle activity increased (P < 0.05) BGH by 66% at -13 or -12 days (2,146 +/- 192 to 3,565 +/- 197 microg/l) and by 92% at -8 or -7 days (2,162 +/- 159 to 4,161 +/- 204 microg/l). After 2 or 3 days of bed rest, there was no response of BGH to the muscle activity, a pattern that persisted through 8 or 9 days of bed rest. However, after 13 or 14 days of bed rest, plasma concentration of BGH was significantly lower after than before muscle activity (2,594 +/- 211 to 2,085 +/- 109 microg/l). After completion of bed rest, muscle activity increased BGH by 31% at 2 or 3 days (1,807 +/- 117 to 2,379 +/- 473 microg/l; P < 0.05), and by 10 or 11 days the BGH response was similar to that before bed rest (1,881 +/- 75 to 4,160 +/- 315 microg/l; P < 0.05). These data demonstrate that the ambulatory state of an individual can have a major impact on the release of BGH, but not IGH, in response to a single bout of muscle activity.

  2. Intracerebroventricular porcine corticotropin-releasing hormone and cortisol effects on pig immune measures and behavior.

    PubMed

    Salak-Johnson, J L; McGlone, J J; Whisnant, C S; Norman, R L; Kraeling, R R

    1997-01-01

    The effects of intracerebroventricular (icv) administration of porcine corticotropin-releasing hormone (pCRH) and cortisol on the immune system and behavior were examined in domestic pigs. In Experiment 1, 50 micrograms of pCRH in 200 microliters of saline or 200 microliters of vehicle was administered i.c.v. at 0600 h. Blood samples were obtained at 0600 (prior to injection), 0700, and 0800 h. Plasma cortisol concentrations were higher at 1 and 2 h after pCRH than after saline. Generally, pCRH failed to effect NK cytotoxicity or lymphocyte proliferation in response to phytohemagluttin (PHA). However, 1 h postinjection, pigs administered pCRH i.c.v. had marginally lower NK activity than control pigs. Pigs injected with pCRH had substantially lower neutrophil chemotaxis (CHTX) than the control pigs at 1 and 2 h postinjection. As blood cortisol concentration increased, neutrophil CHTX decreased. Pigs injected i.c.v. with pCRH had higher neutrophil numbers and neutrophil:lymphocyte ratios than control pigs. Percentage of lymphocytes was higher among control than treated pigs. Central pCRH increased overall activity, particularly walking, standing, licking, rooting, and increased activity-related sequences (e.g., sit, walk and stand, walk), but reduced complex oral/nasal sequences (e.g., root, lick). In Experiment 2, pigs were injected i.c.v. with 10 micrograms of cortisol in 200 microliters of saline or with vehicle at 0600 h. Administration of cortisol failed to effect NK cytotoxicity, lymphocyte proliferation, CHTX, or leukocyte distribution. Pigs given cortisol had no apparent change in behavior. These data indicate leukocyte distribution and specific neutrophil function in pigs were significantly modulated by stress-related hormones of the hypothalamic-pituitary-adrenal axis and complexity of behavioral sequences (pigs repeating certain behavioral sequences) associated with increased activity was reduced. Oral/nasal stereotypies (as seen among confined sows) were

  3. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene.

    PubMed

    Mantovani, Giovanna; Maghnie, Mohamad; Weber, Giovanna; De Menis, Ernesto; Brunelli, Valeria; Cappa, Marco; Loli, Paola; Beck-Peccoz, Paolo; Spada, Anna

    2003-09-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary. PMID:12970263

  4. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene.

    PubMed

    Mantovani, Giovanna; Maghnie, Mohamad; Weber, Giovanna; De Menis, Ernesto; Brunelli, Valeria; Cappa, Marco; Loli, Paola; Beck-Peccoz, Paolo; Spada, Anna

    2003-09-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary.

  5. Evidence that copper-amino acid complexes are potent stimulators of the release of luteinizing hormone-releasing hormone from isolated hypothalamic granules.

    PubMed

    Barnea, A; Cho, G

    1984-09-01

    Chelated copper has been previously shown to stimulate the release of LHRH from isolated hypothalamic granules. In this study, we evaluated the chelator specificity, the kinetic constants, and the characteristics of copper interaction with LHRH granules. LHRH granules were isolated from the median eminence area of adult male rats and then incubated in a buffered medium at 37 C. Release of LHRH into the incubation medium was assessed by RIA of LHRH remaining in the granules after incubation. It was found that CuHistidine (CuHis) as well as CuCysteine markedly stimulated LHRH release from the isolated granules, release being 56% and 63%, respectively, of the total LHRH content of granules incubated in buffer alone. In contrast, neither CuGly-His-Lys nor CuBSA stimulated LHRH release. The CuHis-stimulated release of LHRH was a saturable function of the concentration of CuHis. The Michaelis-Menten constants of this release process were estimated; the apparent Km for copper was found to be 4 microM, and the maximal velocity was 65% of the granule content of LHRH released in 5 min. In addition, we noted that CuHis-stimulated release of LHRH, assessed 6 min after CuHis, was completely abolished when dithiothreitol (DTT) was added immediately after CuHis, partially abolished when added 1 or 2 min after CuHis, and not affected at all when added 3 min after CuHis. This time course of DTT inhibition of LHRH release suggests that a period of 2-3 min of copper interaction with the granules is required for the 6-min manifestation of copper action. Furthermore, this DTT-inhibitable interaction of copper did not occur when granules were incubated at 4 C. In summary the findings that copper, chelated to putative circulating chelators, markedly stimulates LHRH release and that the apparent Km of 4 microM for copper in this process is within the concentration range for the physiological action of copper support the proposal that blood-borne copper can interact rapidly with the LHRH

  6. Leptin directly acts within the hypothalamus to stimulate gonadotropin-releasing hormone secretion in vivo in rats

    PubMed Central

    Watanobe, Hajime

    2002-01-01

    It is still not known whether leptin, an adipocyte-derived hormone, acts directly within the hypothalamus to stimulate the gonadotropin-releasing hormone (GnRH)-luteinizing hormone (LH) system. In order to address this question, the present study examined the effects of direct intrahypothalamic perfusions with leptin on the in vivo release of GnRH in ovarian steroid-primed ovariectomized rats utilizing the push-pull perfusion technique. Both α-melanocyte-stimulating hormone (α-MSH) and neuropeptide Y were also measured in the hypothalamic perfusates. In normally fed animals, the leptin infusion was without effect on the release of these three hypothalamic peptides and also without effect on plasma LH and prolactin (PRL), whether leptin was infused into the medial preoptic area (where the majority of GnRH neuronal cell bodies exist) or the median eminence-arcuate nucleus complex (where axon terminals of GnRH neurons are located). In contrast, in 3-day fasted rats leptin was effective in stimulating the secretion of GnRH, α-MSH, and LH, regardless of the site of perfusion. These three hormones were increased in a temporal order of α-MSH, GnRH and LH. Irrespective of the site of perfusion, leptin was without effect on the release of neuropeptide Y. Only when leptin was infused into the median eminence-arcuate nucleus complex was PRL secretion also stimulated, although its onset was 1 h behind that of LH. The leptin-induced elevations of GnRH, α-MSH, LH and PRL were all dose-dependently stimulated by subnormal (1.0 ng ml−1) and normal (3.0 ng ml−1) concentrations of leptin, but at higher concentrations (10 ng ml−1) it did not produce additional effects. Leptin infusion into the anterior hypothalamic area, a control site equidistant from both the medial preoptic area and the median eminence-arcuate nucleus complex, did not produce a significant change in any of the hormones in either the fed or fasted rats. These results demonstrate for the first time that

  7. Familial idiopathic gonadotropin deficiency not linked to gene for gonadotropin-releasing hormone (GnRH) in Brazilian kindred

    SciTech Connect

    Faraco, J.; Francke, U.; Toledo, S.

    1994-09-01

    Familial idiopathic gonadotropin deficiency (FIGD) is an autosomal recessive disorder which results in failure to develop secondary sexual characteristics. The origin is a hypothalamic defect resulting in insufficient secretion of gonadotropin-releasing hormone GnRH (also called LHRH, luteinizing hormone releasing hormone) and follicle-stimuating hormone (FSH). FIGD has been determined to be a separate entity from Kallmann syndrome which presents with hypogonadism as well as anosmia. The FIGD phenotype appears to be analogous to the phenotype of the hpg (hypogonadal) mouse. Because the hpg phenotype is the result of a structurally abnormal GnRH gene, we have studied the GnRH gene in individuals from a previously reported Brazilian FIGD family. An informative dimorphic marker in the signal peptide sequence of the GnRH gene allowed assessment of linkage between the disease gene and the GnRH locus in this pedigree. We have concluded that the GnRH locus is not linked to the disease-causing mutation in these hypogonadal individuals. Recent evidence suggests that neuropeptide Y (NPY) may play a role in the initiation of puberty. We hypothesize that mutations in NPY may result in failure to secrete GnRH. We have characterized three diallelic frequent-cutter restriction fragment length polymorphisms within the human NPY locus, and are currently using these markers to determine if the NPY gene is linked to, and possibly the site of the disease mutation in this kindred.

  8. The S-to-R transition of corticosteroid-binding globulin and the mechanism of hormone release.

    PubMed

    Zhou, Aiwu; Wei, Zhenquan; Stanley, Peter L D; Read, Randy J; Stein, Penelope E; Carrell, Robin W

    2008-06-27

    Corticosteroids are transported in the blood by a serpin, corticosteroid-binding globulin (CBG), and their normally equilibrated release can be further triggered by the cleavage of the reactive loop of CBG. We report here the crystal structures of cleaved human CBG (cCBG) at 1.8-A resolution and its complex with cortisol at 2.3-A resolution. As expected, on cleavage, CBG undergoes the irreversible S-to-R serpin transition, with the cleaved reactive loops being fully incorporated into the central beta-sheet. A connecting loop of helix D, which is in a helix-like conformation in native CBG, unwinds and grossly perturbs the hormone binding site following beta-sheet expansion in the cCBG structure but shifts away from the binding site by more than 8 A following the binding of cortisol. Unexpectedly, on cortisol binding, the hormone binding site of cCBG adopts a configuration almost identical with that of the native conformer. We conclude that CBG has adapted an allosteric mechanism of the serpins to allow equilibrated release of the hormones by a flip-flop movement of the intact reactive loop into and out of the beta-sheet. The change in the hormone binding affinity results from a change in the flexibility or plasticity of the connecting loop, which modulates the configuration of the binding site.

  9. Effect of aging on GHRF-induced growth hormone release from anterior pituitary cells in primary culture

    SciTech Connect

    Spik, K.W.; Boyd, R.L.; Sonntag, W.E.

    1991-03-01

    Five criteria were developed to validate the primary cell culture model for comparison of GRF-induced release of growth hormone in pituitary tissue from aging animals. Pituitaries from young (5-mo), middle-aged (14-mo), and old (24-mo) male Fischer 344 rats were dispersed using either trypsin/trypsin inhibitor or dispase and compared with respect to the number of pituitary cells recovered, cell viability, 3H-leucine incorporation into total protein, time course for recovery of optimal response to GRF, and the dose-relationship for GRF-induced release of growth hormone 2, 4, and 6 days after dispersal. Results indicated that direct comparison of cellular responses between tissues from young, middle-aged, and old rats in primary cell culture is confounded by variations in time for recovery of optimal responses, the effects of the enzymes used for dispersal, and the methods used to express the data.

  10. Review: regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals

    PubMed Central

    Tsutsui, Kazuyoshi; Ubuka, Takayoshi; Bentley, George E.; Kriegsfeld, Lance J.

    2013-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH) neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R), GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG) axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin, and glucocorticoids, to control avian and mammalian reproduction. PMID:23596387

  11. Review: regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals.

    PubMed

    Tsutsui, Kazuyoshi; Ubuka, Takayoshi; Bentley, George E; Kriegsfeld, Lance J

    2013-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH) neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R), GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG) axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin, and glucocorticoids, to control avian and mammalian reproduction.

  12. A rapid release of corticosteroid-binding globulin from the liver restrains the glucocorticoid hormone response to acute stress.

    PubMed

    Qian, Xiaoxiao; Droste, Susanne K; Gutièrrez-Mecinas, María; Collins, Andrew; Kersanté, Flavie; Reul, Johannes M H M; Linthorst, Astrid C E

    2011-10-01

    A strict control of glucocorticoid hormone responses to stress is essential for health. In blood, glucocorticoid hormones are for the largest part bound to corticosteroid-binding globulin (CBG), and just a minor fraction of hormone is free. Only free glucocorticoid hormone is able to exert biological effects, but little is known about its regulation during stress. We found, using a dual-probe in vivo microdialysis method, that in rats, the forced-swim stress-induced rise in free corticosterone (its major glucocorticoid hormone) is strikingly similar in the blood and in target compartments such as the subcutaneous tissue and the brain. However, in all compartments, the free corticosterone response was delayed by 20-30 min as compared with the total corticosterone response in the blood. We discovered that CBG is the key player in this delay. Swim stress evoked a fast (within 5 min) and profound rise in CBG protein and binding capacity in the blood through a release of the protein from the liver. Thus, the increase in circulating CBG levels after stress restrains the rise in free corticosterone concentrations for approximately 20 min in the face of mounting total hormone levels in the circulation. The stress-induced increase in CBG seems to be specific for moderate and strong stressors. Both restraint stress and forced swimming caused an increase in circulating CBG, whereas its levels were not affected by mild novelty stress. Our data uncover a new, highly dynamic role for CBG in the regulation of glucocorticoid hormone physiology after acute stress.

  13. Frequency-Dependent Regulation of Follicle-Stimulating Hormone β by Pulsatile Gonadotropin-Releasing Hormone Is Mediated by Functional Antagonism of bZIP Transcription Factors ▿

    PubMed Central

    Ciccone, Nick A.; Xu, Shuyun; Lacza, Charlemagne T.; Carroll, Rona S.; Kaiser, Ursula B.

    2010-01-01

    Oscillatory synthesis and secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), under the control of pulsatile hypothalamic gonadotropin-releasing hormone (GnRH), is essential for normal reproductive development and fertility. The molecular mechanisms by which various patterns of pulsatile GnRH regulate gonadotrope responsiveness remain poorly understood. In contrast to the α and LHβ subunit genes, FSHβ subunit transcription is preferentially stimulated at low rather than high frequencies of pulsatile GnRH. In this study, mutation of a cyclic AMP response element (CRE) within the FSHβ promoter resulted in the loss of preferential GnRH stimulation at low pulse frequencies. We hypothesized that high GnRH pulse frequencies might stimulate a transcriptional repressor(s) to attenuate the action of CRE binding protein (CREB) and show that inducible cAMP early repressor (ICER) fulfills such a role. ICER was not detected under basal conditions, but pulsatile GnRH stimulated ICER to a greater extent at high than at low pulse frequencies. ICER binds to the FSHβ CRE site to reduce CREB occupation and abrogates both maximal GnRH stimulation and GnRH pulse frequency-dependent effects on FSHβ transcription. These data suggest that ICER production antagonizes the stimulatory action of CREB to attenuate FSHβ transcription at high GnRH pulse frequencies, thereby playing a critical role in regulating cyclic reproductive function. PMID:20008557

  14. Stimulation of cholesterol side-chain cleavage by a luteinizing-hormone-releasing hormone (luliberin) agonist (ICI 118630) in rat Leydig cells.

    PubMed Central

    Sullivan, M H; Cooke, B A

    1983-01-01

    The action of a luliberin (luteinizing-hormone-releasing hormone) agonist (ICI 118630) and lutropin (luteinizing hormone) on the activity of the cytochrome P-450 cholesterol side-chain cleavage enzyme in rat Leydig cells has been investigated. This has been carried out by studying the metabolism of exogenous (22R)-22- and 25-hydroxycholesterol to testosterone. It was found that both hydroxycholesterols increased testosterone production to higher levels than achieved by lutropin alone. Addition of luliberin agonist but not lutropin was found to increase further the metabolism of the hydroxycholesterol to testosterone; this occurred in the presence of saturating and subsaturating levels of the hydroxycholesterols. This effect of luliberin agonist was potentiated in the presence of lutropin. The protein synthesis inhibitor, cycloheximide, inhibited the luliberin agonist-induced stimulation of the hydroxycholesterol metabolism. At low calcium levels (1.1 microM), testosterone production was increased by addition of (22R)-22-hydroxycholesterol but the luliberin agonist effect was negated. The calmodulin inhibitor trifluoperazine inhibited (22R)-22-hydroxycholesterol-stimulated steroidogenesis and negated the luliberin agonist effect. These results indicate that luliberin agonist specifically increases the synthesis of the cytochrome P-450 cholesterol side-chain cleavage enzyme in rat testis Leydig cells. PMID:6230077

  15. Decrease in the AgNOR number in Dunning R3327 prostate cancers after treatment with an agonist and antagonist of luteinizing hormone-releasing hormone.

    PubMed Central

    Szepeshazi, K.; Korkut, E.; Schally, A. V.

    1991-01-01

    The argyrophilic staining of the nucleolar organizer region (AgNOR) in cells of Dunning R3327 rat prostate tumors was studied and the effect of hormonal treatments on their appearance was analyzed. The nuclei of the control tumor cells contained 4.1 +/- 0.17 AgNOR granules. Treatment of rats for 8 weeks with luteinizing hormone-releasing hormone (LH-RH) agonist (D-Trp-6-LH-RH) and antagonist SB-75 induced a marked inhibition of tumor growth and decreased significantly (P less than 0.01) the number of Ag-NORs in the tumors to 2.89 +/- 0.10 AgNOR granules/cell in the group given the agonist and to 2.82 +/- 0.10 after therapy with the highest dose of the antagonist. A reduced AgNOR number (3.14 +/- 0.16) also was found after 3 days of treatment with SB-75 (P less than 0.05), but the AgNORs returned to near control values 1 week after the short-term therapy, showing the reversibility of these changes. These results suggest that the AgNOR method, which was widely tested on human tumors in the past few years, can be a valuable technique in experimental tumor pathology and useful in the evaluation of the effects of various treatments. Images Figure 1 PMID:1827237

  16. Early development of the gonadotropin-releasing hormone neuronal network in transgenic zebrafish.

    PubMed

    Zhao, Yali; Lin, Meng-Chin A; Farajzadeh, Matthew; Wayne, Nancy L

    2013-01-01

    Understanding development of gonadotropin-releasing hormone (GnRH) neuronal circuits is fundamental to our understanding of reproduction, but not yet well understood. Most studies have been focused on GnRH neurons located in the hypothalamus and preoptic area (POA), which directly regulate the pituitary-gonadal axis. In zebrafish (Danio rerio), two forms of GnRH have been identified: GnRH2 and GnRH3. GnRH3 neurons in this species plays two roles: hypophysiotropic and neuromodulatory, depending on their location. GnRH3 neurons in the ventral telencephalon, POA, and hypothalamus control pituitary-gonadal function; in other areas (e.g., terminal nerve), they are neuromodulatory and without direct action on reproduction. To investigate the biology of GnRH neurons, a stable line of transgenic zebrafish was generated in which the GnRH3 promoter drives expression of a bright variant of green fluorescent protein (Emerald GFP, or EMD). This provides unprecedented sensitivity in detecting and imaging GnRH3 neurons during early embryogenesis in the transparent embryo. Using timelapse confocal imaging to monitor the time course of GnRH3:EMD expression in the live embryo, we describe the emergence and development of GnRH3 neurons in the olfactory region, hypothalamus, POA, and trigeminal ganglion. By 50 h post fertilization, these diverse groups of GnRH3 neurons project broadly in the central and peripheral nervous systems and make anatomical connections with each other. Immunohistochemistry of synaptic vesicle protein 2 (a marker of synaptic transmission) in this transgenic model suggests synaptic formation is occurring during early development of the GnRH3 neural network. Electrophysiology reveals early emergence of responsiveness to the stimulatory effects of kisspeptin in terminal nerve GnRH3 neurons. Overall, our findings reveal that the GnRH3 neuronal system is comprised of multiple populations of neurons as a complicated network. PMID:24009601

  17. Thyrotropin-releasing hormone-containing axons innervate histaminergic neurons in the tuberomammillary nucleus.

    PubMed

    Sárvári, Anna; Farkas, Erzsébet; Kádár, Andrea; Zséli, Györgyi; Füzesi, Tamás; Lechan, Ronald M; Fekete, Csaba

    2012-12-01

    Recent studies indicate that the effect of thyrotropin-releasing hormone (TRH) on the regulation of food intake may be mediated by histaminergic neurons. To elucidate the anatomical basis for a functional relationship between TRH- and histamine-synthesizing neuronal systems, double-labeling immunocytochemistry was performed on the tuberomammillary nucleus (TMN) of rats, the exclusive location of histaminergic neurons. TRH-immunoreactive (IR) innervation of the histaminergic neurons were detected in all five subnuclei (E1-5) of the TMN, but was most prominent in the E4 and E5 subnuclei where 100% of the histamine-IR neurons were contacted. The number of TRH-IR varicosities in contact with histamine-IR neurons was also greatest in the E4 and E5 subnuclei, averaging 27.0±1.2 in E4 and 7.9±0.5 in E5. Somewhat fewer histamine-IR neurons were juxtaposed by TRH-IR varicosities in E2 and E3 and contacted by 6.3±0.2 and 6.8±0.2 varicosities/innervated cell, respectively. The number of juxtapositions of TRH-IR axon varicosities with histamine-IR neurons was the lowest in the E1 subnucleus (85.7±0.9%; 4.0±0.2 varicosities/innervated cell). Ultrastructural analysis demonstrated that TRH-IR axons established both asymmetric and symmetric type synapses on the perikaryon and dendrites of the histamine-IR neurons, although the majority of synapses were asymmetric type. These data demonstrate that TRH neurons heavily innervate histaminergic neurons in all subdivisions of the TMN, with the densest innervation in the E4 and E5 subdivisions, and are likely to exert activating effects.

  18. Elevated Corticotropin-Releasing Hormone in Human Pregnancy Increases the Risk of Postpartum Depressive Symptoms

    PubMed Central

    Yim, Ilona S.; Glynn, Laura M.; Schetter, Christine Dunkel; Hobel, Calvin J.; Chicz-DeMet, Aleksandra; Sandman, Curt A.

    2009-01-01

    Context Postpartum depression (PPD) is common and has serious implications for the mother and her newborn. A possible link between placental corticotropin-releasing hormone (pCRH) and PPD incidence has been discussed, but there is a lack of empirical evidence. Objective To determine whether accelerated pCRH increases throughout pregnancy are associated with PPD symptoms. Design Pregnant women were recruited into this longitudinal cohort study. Blood samples were obtained at 15, 19, 25, 31 and 37 weeks gestational age (GA) for assessment of pCRH, cortisol and ACTH. Depressive symptoms were assessed with a standardized questionnaire at the last four pregnancy visits and postpartum. Setting Subjects were recruited from two Southern California Medical Centers, and visits were conducted in university research laboratories. Participants 100 adult women with a singleton pregnancy. Main Outcome Measure PPD symptoms were assessed 8.7 weeks (SD = 2.94 wks) after delivery with the Edinburgh Postnatal Depression Scale. Results Sixteen women developed PPD symptoms. At 25 weeks GA, pCRH was a strong predictor of PPD symptoms (R2 = .21, β = .46, p < .001), an effect that remained significant after controlling for prenatal depressive symptoms. No significant associations were found for cortisol and ACTH. Receiver Operating Characteristic curve analyses revealed that pCRH at 25 weeks GA is a useful diagnostic test (area under the curve = .78, p = .001). Sensitivity (.75) and specificity (.74) at the ideal cut-off point (56.86 pg/ml pCRH) were high. Growth curve analyses indicated that pCRH trajectories in women with PPD symptoms are significantly accelerated between 23 and 26 weeks GA. Conclusion There is a critical period in mid-pregnancy during which pCRH is a sensitive and specific early diagnostic test for PPD symptoms. If replicated, these results have implications for identification and treatment of pregnant women at risk of PPD. PMID:19188538

  19. Desensitization, Trafficking, and Resensitization of the Pituitary Thyrotropin-Releasing Hormone Receptor

    PubMed Central

    Hinkle, Patricia M.; Gehret, Austin U.; Jones, Brian W.

    2012-01-01

    The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking. PMID:23248581

  20. The gonadotropin-releasing hormone neurosecretory system of the jerboa (Jaculus orientalis) and its seasonal variations.

    PubMed

    El Ouezzani, S; Tramu, G; Magoul, R

    2000-12-01

    The distribution of cells expressing gonadotropin-releasing hormone (GnRH) immunoreactivity was examined in the brain of adult jerboa during two distinct periods of the reproductive cycle. During spring-summer, when the jerboa is sexually active, a high density of cell bodies and fibres immunoreactive (IR) for GnRH was observed at the level of separation of the frontal lobes, in the medial septal nucleus (MS) and in the diagonal band of Broca (DBB), in the preoptic area (POA), in the organum vasculosum laminae terminalis (OVLT), in the retrochiasmatic area and hypothalamus. In autumn, when the jerboa is sexually inactive, GnRH-immunoreactivity was less intense than during spring-summer. In the POA, we noted a 55% decrease in the number of GnRH containing cells with no change in cell numbers in the MS-DBB. Furthermore, a lower density of GnRH immunopositive axon fibres is observed in all the previously mentioned structures and the immunoreaction intensity was very weak particularly within the median eminence and OVLT. Independently of the season, the GnRH immunoreactivity within neurones and fibres was similar in jerboas living in captivity and in jerboas living in their natural biotope. The effects of photoperiod on the density of POA-GnRH and arcuate nucleus beta-endorphin-containing cells were studied in jerboas maintained in long day [(LD) 16-h light, 8-h dark] and short day [(SD) 8-h light, 16-h dark] for 8 weeks. In the POA, the GnRH-IR cell number was not significantly altered by the photoperiod. Similarly, in the mediobasal hypothalamus, the number of beta-endorphin-IR neurones was not affected by such a parameter. Consequently, the GnRH seasonal variations cannot be correlated to changes in the photoperiod alone. PMID:11106979

  1. Effects of gonadotrophin releasing hormone on reproductive performance of dairy cows with retained placenta.

    PubMed Central

    Leslie, K E; Doig, P A; Bosu, W T; Curtis, R A; Martin, S W

    1984-01-01

    The effects of gonadotrophin releasing hormone (GnRH) on the reproductive performance of dairy cows with retained placenta were studied. Three hundred and seventy-eight cows diagnosed as having retained placenta received intramuscular injections of either 2 mL sterile water or 200 micrograms of GnRH in 2 mL sterile water between day 8 and day 14 postpartum. Rectal palpation was performed at the time of treatment and ten to 20 days after treatment in order to determine the rate of uterine involution. Thereafter, monthly rectal examinations were carried out until insemination. Pregnancy diagnosis was made by rectal palpation at 40 days or more after breeding. Using the entire experimental population, there were no significant differences between GnRH-treated and control cows for the rate of uterine involution, the occurrence of reproductive problems, the interval from parturition to first observed estrus, the interval from parturition to first insemination, the interval from parturition to conception, the number of services per conception, the total number of services per cow regardless of conception and the incidence of culling for infertility. When the data for herds in which breeding began earlier in the postpartum period (herds having a mean less than or equal to 80 days from parturition to first service for retained placenta cows) were considered, the GnRH treatment resulted in a significantly shorter (p less than or equal to 0.01) calving to conception interval as compared to control cows. Also, there was a significant reduction (p less than or equal to 0.05) in the total number of services per cow regardless of conception and a significant reduction in the interval from parturition to first service.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6391640

  2. Differential social regulation of two pituitary gonadotropin-releasing hormone receptors.

    PubMed

    Au, Teresa M; Greenwood, Anna K; Fernald, Russell D

    2006-06-30

    In many vertebrates, social interactions regulate reproductive capacity by altering the activity of the hypothalamic-pituitary-gonadal (HPG) axis. To better understand the mechanisms underlying social regulation of reproduction, we investigated the relationship between social status and one main component of the HPG axis: expression levels of gonadotropin-releasing hormone receptor (GnRH-R). Social interactions dictate reproductive capacity in the cichlid fish Astatotilapia burtoni. Reproductively active territory holders suppress the HPG axis of non-territorial males through repeated aggressive encounters. To determine whether the expression of GnRH-R is socially regulated, we quantified mRNA levels of two GnRH-R variants in the pituitaries and brains of territorial (T) and non-territorial (NT) A. burtoni males. We found that T males had significantly higher levels of pituitary GnRH-R1 mRNA than NT males. In contrast, GnRH-R2 mRNA levels in the pituitary did not vary with social status. Pituitaries from both T and NT males expressed significantly higher mRNA levels of GnRH-R1 than GnRH-R2. GnRH mRNA levels in the brain correlated positively with GnRH-R1 mRNA levels in the pituitary but did not correlate with pituitary GnRH-R2. Measurements of GnRH-R1 and GnRH-R2 mRNA levels across the whole brain revealed no social status differences. These results show that, in addition to the known effects of social status on other levels of the HPG axis, GnRH receptor in the pituitary is also a target of social regulation.

  3. Temporal migration of gonadotrophin-releasing hormone-1 neurones is modified in GAD67 knockout mice.

    PubMed

    Lee, J M; Tiong, J; Maddox, D M; Condie, B G; Wray, S

    2008-01-01

    Gonadotrophin-releasing hormone (GnRH-1) neurones reside in the forebrain and regulate gonadal function via the hypothalamic-pituitary-gonadal axis. Disruption of this axis results in reproductive dysfunction. During embryonic development, GnRH-1 neurones migrate from the nasal pit through the nasal/forebrain junction (NFJ) into the developing brain. Prenatally gamma-aminobutyric acid (GABA) is excitatory and has been shown to play a role in nervous system development. Both in vivo and in vitro experiments suggest that GABA inhibits migration of GnRH-1 neurones. The present study examines the migration of GnRH-1 neurones in GAD67 knockout (KO) mice to further elucidate the role of GABA on GnRH-1 neuronal development. Three stages were examined, embryonic day (E)12.5, E14.5 and E17.5. GnRH-1 cell number and location were analysed by immunocytochemistry and in situ hybridisation histochemistry. The total number of GnRH-1 immunopositive cells was similar between wild-type (WT) and KO mice. However, significant differences were found in the overall distribution of GnRH-1 immunopositive cells in GAD67 KO compared to WT mice at all stages. Subsequent analysis by area revealed differences occurred at the NFJ with an increase in GnRH-1 cells in GAD67 KO at E14.5 and a decrease in GnRH-1 cells in GAD67 KO at E17.5. Comparable counts for cells expressing GnRH-1 transcript and protein were obtained. These data indicate that attenuated levels of GABA accelerate GnRH-1 cell migration in nasal areas as well as movement of GnRH-1 cells into the central nervous system at the NFJ.

  4. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  5. Early Development of the Gonadotropin-Releasing Hormone Neuronal Network in Transgenic Zebrafish

    PubMed Central

    Zhao, Yali; Lin, Meng-Chin A.; Farajzadeh, Matthew; Wayne, Nancy L.

    2013-01-01

    Understanding development of gonadotropin-releasing hormone (GnRH) neuronal circuits is fundamental to our understanding of reproduction, but not yet well understood. Most studies have been focused on GnRH neurons located in the hypothalamus and preoptic area (POA), which directly regulate the pituitary-gonadal axis. In zebrafish (Danio rerio), two forms of GnRH have been identified: GnRH2 and GnRH3. GnRH3 neurons in this species plays two roles: hypophysiotropic and neuromodulatory, depending on their location. GnRH3 neurons in the ventral telencephalon, POA, and hypothalamus control pituitary-gonadal function; in other areas (e.g., terminal nerve), they are neuromodulatory and without direct action on reproduction. To investigate the biology of GnRH neurons, a stable line of transgenic zebrafish was generated in which the GnRH3 promoter drives expression of a bright variant of green fluorescent protein (Emerald GFP, or EMD). This provides unprecedented sensitivity in detecting and imaging GnRH3 neurons during early embryogenesis in the transparent embryo. Using timelapse confocal imaging to monitor the time course of GnRH3:EMD expression in the live embryo, we describe the emergence and development of GnRH3 neurons in the olfactory region, hypothalamus, POA, and trigeminal ganglion. By 50 h post fertilization, these diverse groups of GnRH3 neurons project broadly in the central and peripheral nervous systems and make anatomical connections with each other. Immunohistochemistry of synaptic vesicle protein 2 (a marker of synaptic transmission) in this transgenic model suggests synaptic formation is occurring during early development of the GnRH3 neural network. Electrophysiology reveals early emergence of responsiveness to the stimulatory effects of kisspeptin in terminal nerve GnRH3 neurons. Overall, our findings reveal that the GnRH3 neuronal system is comprised of multiple populations of neurons as a complicated network. PMID:24009601

  6. Urocortin 3 modulates social discrimination abilities via corticotropin-releasing hormone receptor type 2.

    PubMed

    Deussing, Jan M; Breu, Johannes; Kühne, Claudia; Kallnik, Magdalena; Bunck, Mirjam; Glasl, Lisa; Yen, Yi-Chun; Schmidt, Mathias V; Zurmühlen, Regine; Vogl, Annette M; Gailus-Durner, Valérie; Fuchs, Helmut; Hölter, Sabine M; Wotjak, Carsten T; Landgraf, Rainer; de Angelis, Martin Hrabé; Holsboer, Florian; Wurst, Wolfgang

    2010-07-01

    Urocortin 3 (UCN3) is strongly expressed in specific nuclei of the rodent brain, at sites distinct from those expressing urocortin 1 and urocortin 2, the other endogenous ligands of corticotropin-releasing hormone receptor type 2 (CRH-R2). To determine the physiological role of UCN3, we generated UCN3-deficient mice, in which the UCN3 open reading frame was replaced by a tau-lacZ reporter gene. By means of this reporter gene, the nucleus parabrachialis and the premammillary nucleus were identified as previously unknown sites of UCN3 expression. Additionally, the introduced reporter gene enabled the visualization of axonal projections of UCN3-expressing neurons from the superior paraolivary nucleus to the inferior colliculus and from the posterodorsal part of the medial amygdala to the principal nucleus of the bed nucleus of the stria terminalis, respectively. The examination of tau-lacZ reporter gene activity throughout the brain underscored a predominant expression of UCN3 in nuclei functionally connected to the accessory olfactory system. Male and female mice were comprehensively phenotyped but none of the applied tests provided indications for a role of UCN3 in the context of hypothalamic-pituitary-adrenocortical axis regulation, anxiety- or depression-related behavior. However, inspired by the prevalent expression throughout the accessory olfactory system, we identified alterations in social discrimination abilities of male and female UCN3 knock-out mice that were also present in male CRH-R2 knock-out mice. In conclusion, our results suggest a novel role for UCN3 and CRH-R2 related to the processing of social cues and to the establishment of social memories.

  7. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    SciTech Connect

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  8. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety.

    PubMed

    Gray, J Megan; Vecchiarelli, Haley A; Morena, Maria; Lee, Tiffany T Y; Hermanson, Daniel J; Kim, Alexander B; McLaughlin, Ryan J; Hassan, Kowther I; Kühne, Claudia; Wotjak, Carsten T; Deussing, Jan M; Patel, Sachin; Hill, Matthew N

    2015-03-01

    Corticotropin-releasing hormone (CRH) is a central integrator in the brain of endocrine and behavioral stress responses, whereas activation of the endocannabinoid CB1 receptor suppresses these responses. Although these systems regulate overlapping functions, few studies have investigated whether these systems interact. Here we demonstrate a novel mechanism of CRH-induced anxiety that relies on modulation of endocannabinoids. Specifically, we found that CRH, through activation of the CRH receptor type 1 (CRHR1), evokes a rapid induction of the enzyme fatty acid amide hydrolase (FAAH), which causes a reduction in the endocannabinoid anandamide (AEA), within the amygdala. Similarly, the ability of acute stress to modulate amygdala FAAH and AEA in both rats and mice is also mediated through CRHR1 activation. This interaction occurs specifically in amygdala pyramidal neurons and represents a novel mechanism of endocannabinoid-CRH interactions in regulating amygdala output. Functionally, we found that CRH signaling in the amygdala promotes an anxious phenotype that is prevented by FAAH inhibition. Together, this work suggests that rapid reductions in amygdala AEA signaling following stress may prime the amygdala and facilitate the generation of downstream stress-linked behaviors. Given that endocannabinoid signaling is thought to exert "tonic" regulation on stress and anxiety responses, these data suggest that CRH signaling coordinates a disruption of tonic AEA activity to promote a state of anxiety, which in turn may represent an endogenous mechanism by which stress enhances anxiety. These data suggest that FAAH inhibitors may represent a novel class of anxiolytics that specifically target stress-induced anxiety.

  9. Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages.

    PubMed

    Cardoso, João C R; Bergqvist, Christina A; Félix, Rute C; Larhammar, Dan

    2016-07-01

    The evolution of the peptide family consisting of corticotropin-releasing hormone (CRH) and the three urocortins (UCN1-3) has been puzzling due to uneven evolutionary rates. Distinct gene duplication scenarios have been proposed in relation to the two basal rounds of vertebrate genome doubling (2R) and the teleost fish-specific genome doubling (3R). By analyses of sequences and chromosomal regions, including many neighboring gene families, we show here that the vertebrate progenitor had two peptide genes that served as the founders of separate subfamilies. Then, 2R resulted in a total of five members: one subfamily consists of CRH1, CRH2, and UCN1. The other subfamily contains UCN2 and UCN3. All five peptide genes are present in the slowly evolving genomes of the coelacanth Latimeria chalumnae (a lobe-finned fish), the spotted gar Lepisosteus oculatus (a basal ray-finned fish), and the elephant shark Callorhinchus milii (a cartilaginous fish). The CRH2 gene has been lost independently in placental mammals and in teleost fish, but is present in birds (except chicken), anole lizard, and the nonplacental mammals platypus and opossum. Teleost 3R resulted in an additional surviving duplicate only for crh1 in some teleosts including zebrafish (crh1a and crh1b). We have previously reported that the two vertebrate CRH/UCN receptors arose in 2R and that CRHR1 was duplicated in 3R. Thus, we can now conclude that this peptide-receptor system was quite complex in the ancestor of the jawed vertebrates with five CRH/UCN peptides and two receptors, and that crh and crhr1 were duplicated in the teleost fish tetraploidization. PMID:27220618

  10. Active immunization against gonadotrophin-releasing hormone in Chinese male pigs.

    PubMed

    Zeng, X Y; Turkstra, J A; van de Wiel, D F; Guo, D Z; Liu, X Y; Meloen, R H; Schaaper, W M; Chen, F Q; Oonk, H B; Zhang, X

    2001-04-01

    We have investigated, under the normal conditions of local Chinese pig farming, castration of young male pigs by vaccination with a newly developed vaccine against gonadotrophin releasing hormone (GnRH). Because of the very early onset of puberty, long fattening period and relatively harsh circumstances in Chinese pig production, an investigation of the endocrine response of Chinese breeds to this type of vaccination was of particular interest. Fifteen crossbred boars (Yorkshire x Yanan) from three different litters were randomly assigned to three groups of five animals each. The first group was immunized at 13 weeks of age with a GnRH tandem dimer OVA-conjugate in Specol and received a booster immunization 8 weeks later. The second group was injected with Specol alone and served as untreated controls. The remaining group was surgically castrated at the time of weaning (at 6 weeks of age). Pigs were fed ad libitum from weaning onwards. All animals were slaughtered at 31 weeks of age. Immunized boars had undetectable or low serum testosterone (0.09 +/- 0.12 ng/ml), low fat androstenone (0.05 +/- 0.01 microg/g) levels and very low testes weights (19.1 +/- 4.3 g). Intact controls had much higher serum levels of testosterone (9.76 +/- 4.81 ng/ml), fat androstenone levels (2.26 +/- 0.87 microg/g) and testes weights (114.3 +/- 29.41 g) at slaughter. Both the immunized and castrated group grew significantly faster than intact boars (p < 0.01). Average daily gains in immunized, castrated and intact animals were 0.69 +/- 0.08, 0.63 +/- 0.05 and 0.42 +/- 0.07 kg (mean +/- SD), respectively. The present data demonstrate for the first time that the newly developed anti-GnRH vaccine works very well under practical Chinese pig farming conditions, and can be an attractive alternative to surgical castration.

  11. Inhibition of thyrotropin response to TSH-releasing hormone by thyroxine in hypothyroid rats

    SciTech Connect

    Boado, R.J.; Zaninovich, A.A.; Ulloa, E.R.; Fernandez Pol, J.A.

    1985-05-01

    Pharmacological amounts of throxine (T4) can inhibit the thyrotropin (TSH) response to TSH-releasing hormone (TRH) before its conversion to triiodothyronine (T3) in the hypophysis of euthyroid rate. The present work tested physiological doses of T4 in hypothyroid rats. Rats were treated with iopanoic acid (IOP) 5 mg/100 g BW 24, 12 and 1.5 hours preceding the study, to prevent intrapituitary conversion of T4 to T3. Nonradioactive T4 was injected iv at time 0. At 20 min a 1 ..mu..g/100 g BW dose of TRH was injected iv. Blood samples were drawn at times 0, 20, and 30 min for determination by radioimmunoassay of plasma T4, T3, and TSH. In untreated rats basal TSH was 1450 +- 200 (SEM) ..mu..U/ml. At 20 min it was 105 +- 12% the basal value and at 30 min (10 min post-TRH) plasma TSH rose to 165 +- 14%. In T4-treated rats, those injected with IOP or with the vehicle alone both had the TSH response suppressed. IOP reduced intrapitutiary T3 from 4.6 +- 2.4 to 0.5 +- 0.2 fmol/min/gland. Thirty min. following the iv injection of 150 ..mu..Ci of double-labeled /sup 125/I-T4, the in vitro cytoplasmic radioactivity in control rats was 1.3 +- 0.13 x 10-/sup 2/% of the injected dose (75% T4, 17% T3), while in nuclei it was 4.2 +- 3.6 x 10-/sup 3/% (5l% T4, 28% T3). The injection of 25 ..mu..g of nonradioactive T4 decreased /sup 125/I-T4 in cytoplasm with no changes in nuclei. These findings suggest an intrinsic capacity of T4 to control TRH stimulation of TSH through binding to cytoplasmic receptors.

  12. Divergent evolution of two corticotropin-releasing hormone (CRH) genes in teleost fishes

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2015-01-01

    Genome duplication, thought to have happened twice early in vertebrate evolution and a third time in teleost fishes, gives rise to gene paralogs that can evolve subfunctions or neofunctions via sequence and regulatory changes. To explore the evolution and functions of corticotropin-releasing hormone (CRH), we searched sequenced teleost genomes for CRH paralogs. Our phylogenetic and synteny analyses indicate that two CRH genes, crha and crhb, evolved via duplication of crh1 early in the teleost lineage. We examined the expression of crha and crhb in two teleost species from different orders: an African cichlid, Burton's mouthbrooder, (Astatotilapia burtoni; Order Perciformes) and zebrafish (Danio rerio; Order Cypriniformes). Furthermore, we compared expression of the teleost crha and crhb genes with the crh1 gene of an outgroup to the teleost clade: the spotted gar (Lepisosteus oculatus). In situ hybridization for crha and crhb mRNA in brains and eyes revealed distinct expression patterns for crha in different teleost species. In the cichlid, crha mRNA was found in the retina but not in the brain. In zebrafish, however, crha mRNA was not found in the retina, but was detected in the brain, restricted to the ventral hypothalamus. Spotted gar crh1 was found in the retina as well as the brain, suggesting that the ancestor of teleost fishes likely had a crh1 gene expressed in both retina and brain. Thus, genome duplication may have freed crha from constraints, allowing it to evolve distinct sequences, expression patterns, and likely unique functions in different lineages. PMID:26528116

  13. In vitro and in vivo human metabolism of degarelix, a gonadotropin-releasing hormone receptor blocker.

    PubMed

    Sonesson, Anders; Rasmussen, Birgitte Buur

    2013-07-01

    Degarelix is a decapeptide that shows high affinity/selectivity to human gonadotropin-releasing hormone receptors and has been approved for the treatment of advanced prostate cancer in the United States, European Union, and Japan. To investigate the metabolism of degarelix in humans, in vitro metabolism was addressed in liver tissue and in vivo metabolism was studied in plasma and excreta samples collected in clinical studies. In addition, drug transporter interaction potential of degarelix with selected efflux transporters and uptake transporters was studied using in vitro membrane vesicle-based assays and whole cell-based assays. In vitro degradation was observed in fresh hepatocytes; less than 25% of the initial concentration of degarelix remained after incubation at 37°C for 2 hours. One metabolite was detected, representing a truncated nonapeptide of degarelix. The same metabolite was also detected at low concentrations in plasma. The in vivo investigations also showed that degarelix is excreted unchanged via the urine but is undergoing extensive sequential peptidic degradation during its elimination via the hepato-biliary pathway. No unique human metabolites of degarelix were detected in the circulation or in the excreta. Degarelix did not show any interaction with selected efflux transporters and uptake transporters up to concentrations representing 200 times the clinical concentration. Because degarelix does not seem to interact with the cytochrome P450 enzyme system as substrate, inhibitor, or inducer and does not show any interaction with hepatic and renal uptake and efflux transporters, the risk for pharmacokinetic drug-drug interactions with this compound is highly unlikely.

  14. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation.

    PubMed

    Webster, E L; Lewis, D B; Torpy, D J; Zachman, E K; Rice, K C; Chrousos, G P

    1996-12-01

    Corticotropin-releasing hormone (CRH) secreted from the hypothalamus is the major regulator of pituitary ACTH release and consequent glucocorticoid secretion. CRH secreted in the periphery also acts as a proinflammatory modulator. CRH receptors (CRH-R1, R2alpha, R2beta) exhibit a specific tissue distribution. Antalarmin, a novel pyrrolopyrimidine compound, displaced 12SI-oCRH binding in rat pituitary, frontal cortex and cerebellum, but not heart, consistent with antagonism at the CRHR1 receptor. In vivo antalarmnin (20 mg/kg body wt.) significantly inhibited CRH-stimulated ACTH release and carageenin-induced subcutaneous inflammation in rats. Antalarmin, or its analogs, hold therapeutic promise in disorders with putative CRH hypersecretion, such as melancholic depression and inflammatory disorders. PMID:8940412

  15. Endocrine response and ovum transport in women treated with D-Trp6-luteinizing hormone-releasing hormone in the postovulatory period.

    PubMed

    Guiloff, E; Salvatierra, A M; Ortiz, M E; Croxatto, H B

    1982-01-15

    Possible alterations in ovum transport during increased activity of the hypothalamic-pituitary-ovarian axis were investigated in women. D-Trp6-luteinizing hormone (LH)-releasing hormone, a synthetic peptide with potent gonadotropin-releasing activity, was used to induce a gonadotropin surge and stimulate ovarian steroid secretion in the postovulatory phase. The compound was administered intramuscularly or intravenously 24, 48, or 72 hours following the maximum preovulatory LH level in plasma in seven women. An immediate and pronounced gonadotropin surge accompanied by a moderate increase in the estradiol and progesterone level was obtained in all cases. Ova were recovered from the fallopian tubes in four of the seven women 24 hours following treatment. The rate of recovery and the location of ova within the genital tract indicate that the treatment and the resulting endocrine changes failed to accelerate migration of the ova toward the uterus. This observation, taken together with other negative findings previously reported, suggests that in comparison with other mammals transport of the ovum in the woman is relatively insensitive to endocrine changes occurring in the postovulatory phase.

  16. Paradoxical effects of D-Trp6-luteinizing hormone-releasing hormone on the hypothalamic-pituitary-gonadal axis in immature female rats.

    PubMed

    Vilchez-Martinez, J A; Pedroza, E; Arimura, A; Schally, A V

    1979-06-01

    The effect of administration of a superactive and long-acting analog of luteinizing hormone-releasing hormone (LH-RH), D-Trp6-LH-RH, in doses of 0.05 or 1 microgram/day for 10 days on the hypothalamic-pituitary-gonadal axis was studied in immature female rats. Treatment with a 0.05-microgram dose of analog produced few changes as compared with the control group. Treatment with 1 microgram of D-Trp6-LH-RH did not affect the body weight or the pituitary weight, but increased ovarian weight and decreased uterine weight; elevated serum gonadotropin levels; and lowered the pituitary LH content. This depletion of pituitary LH content was associated with a low pituitary responsiveness to LH-RH. Serum estradiol levels were not modified, suggesting that decreased uterine weight reflects a direct and extrapituitary effect of this analog. The hypothalamic LH-RH content was higher, indicating a possible inhibition of the release of endogenous LH-RH. A delay in vaginal opening was also observed. This indicates that large doses of D-Trp6-LH-RH may interfere with the process of puberty in rats. These findings extend other reports about the paradoxical antifertility effects of large doses of stimulatory analogs of LH-RH.

  17. Delta opioid receptors are involved in morphine-induced inhibition of luteinizing hormone releasing hormone in SK-N-SH cells.

    PubMed

    Bennett, Lunawati; Ratka, Anna

    2003-10-01

    Opioids play an important role in the regulation of lutenizing hormone releasing hormone (LHRH). In the present study, we attempted to find out the subtype of opioid receptors involved in the inhibitory effect of morphine on LHRH. Experiments were conducted on SK-N-SH neuroblastoma cells that express both micro and delta opioid receptors, LHRH mRNA, and release the LHRH peptide. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of LHRH. LHRH level was decreased by 1000 microM of morphine regardless of the duration of exposure or differentiation status of the SK-N-SH cells and was not reversed by naloxone. Selective antagonism of micro opioid receptors, but not delta opioid receptors, allowed lower concentrations (1-100 microM) of morphine to inhibit LHRH. The results of this study imply that (1) delta opioid receptors may mediate the inhibitory effect of lower concentrations of morphine on LHRH levels in SK-N-SH cells, and (2) inhibition of LHRH level by high concentrations of morphine may involve systems other than opioid receptors.

  18. Luteinizing hormone-releasing hormone targeted poly(methyl vinyl ether maleic acid) nanoparticles for doxorubicin delivery to MCF-7 breast cancer cells.

    PubMed

    Varshosaz, Jaleh; Jahanian-Najafabadi, Ali; Ghazzavi, Jila

    2016-08-01

    The purpose of this study was to design a targeted anti-cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross-linking method using Zn(2+) ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1-ethyl-3-(3-dimethylaminopropyl) carboiimid HCl as cross-linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier-transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non-targeted ones were studied on MCF-7 cells which overexpress luteinizing hormone-releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF-7 cells compared to free DOX and non-targeted NPs. PMID:27463791

  19. A comparison of human chorionic gonadotropin and luteinizing hormone releasing hormone on the induction of spermiation and amplexus in the American toad (Anaxyrus americanus)

    PubMed Central

    2012-01-01

    Background Captive breeding programs for endangered amphibian species often utilize exogenous hormones for species that are difficult to breed. The purpose of our study was to compare the efficacy of two different hormones at various concentrations on sperm production, quantity and quality over time in order to optimize assisted breeding. Methods Male American toads (Anaxyrus americanus) were divided into three separate treatment groups, with animals in each group rotated through different concentrations of luteinizing hormone releasing hormone analog (LHRH; 0.1, 1.0, 4.0 and 32 micrograms/toad), human chorionic gonadotropin (hCG; 50, 100, 200, and 300 IU), or the control over 24 hours. We evaluated the number of males that respond by producing spermic urine, the sperm concentration, percent motility, and quality of forward progression. We also evaluated the effects of hCG and LHRH on reproductive behavior as assessed by amplexus. Data were analyzed using the Generalized Estimating Equations incorporating repeated measures over time and including the main effects of treatment and time, and the treatment by time interaction. Results The hormone hCG was significantly more effective at stimulating spermiation in male Anaxyrus americanus than LHRH and showed a dose-dependent response in the number of animals producing sperm. At the most effective hCG dose (300 IU), 100% of the male toads produced sperm, compared to only 35% for the best LHRH dose tested (4.0 micrograms). In addition to having a greater number of responders (P < 0.05), the 300 IU hCG treatment group had a much higher average sperm concentration (P < 0.05) than the treatment group receiving 4.0 micrograms LHRH. In contrast, these two treatments did not result in significant differences in sperm motility or quality of forward progressive motility. However, more males went into amplexus when treated with LHRH vs. hCG (90% vs. 75%) by nine hours post-administration. Conclusion There is a clear

  20. Luteinizing hormone and progesterone concentrations and induction of estrus after use of norgestomet ear implants or constant infusion of gonadotropin-releasing hormone in anestrous, nonlactating dairy goats.

    PubMed

    Bretzlaff, K N; Nuti, L C; Scarfe, A D; Elmore, R G; Capehart, J; Varner, D D; Weston, P G

    1991-09-01

    Plasma luteinizing hormone and progesterone concentrations, time to onset of estrus, and pregnancy rates were determined in nonlactating anestrous does given 1 of 4 treatments: subcutaneous ear implants containing 3 mg of norgestomet for 9 days (NOR; n = 6); subcutaneous administration, using osmotic minipumps, of 250 ng of gonadotropin-releasing hormone (GnRH)/h for 48 hours (GnRH; n = 6); 3 mg of NOR for 9 days, followed immediately by 250 ng of GnRH/h for 48 hours (NOR + GnRH; n = 6); or no treatment (control; n = 6). During the 72-hour period after removal of NOR or insertion of GnRH pumps, 6 of 6, 0 of 6, 6 of 6, and 3 of 6 does were observed in estrus at a mean (+/- 13.8) hours in groups NOR, GnRH, NOR + GnRH, and control, respectively. Time from end of treatment to peak concentrations of luteinizing hormone were 56 +/- 4.0, 28 +/- 4.7, 34 +/- 4.3, and 41 +/- 9.7 hours (mean +/- SE) for NOR, GnRH, NOR +/- GnRH, and control, respectively. Peak concentrations of luteinizing hormone were significantly greater and occurred significantly later in does given NOR. Progesterone concentrations in does that became pregnant increased to concentrations greater than or equal to 1.0 ng/ml 3 to 5 days after breeding and remained high. Functional corpora lutea (CL) was found in 6 does that did not become pregnant, 1 CL was associated with pseudopregnancy and 1 CL was associated with ovulation prior to placement of the GnRH pumps. Functional CL failed to form in 10 of the 12 doses in groups GnRH and control.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1952326

  1. Inhibition of growth of OV-1063 human epithelial ovarian cancer xenografts in nude mice by treatment with luteinizing hormone-releasing hormone antagonist SB-75.

    PubMed Central

    Yano, T; Pinski, J; Halmos, G; Szepeshazi, K; Groot, K; Schally, A V

    1994-01-01

    Female athymic nude mice bearing xenografts of OV-1063 human epithelial ovarian cancer cell line were treated with potent luteinizing hormone (LH)-releasing hormone (LH-RH) antagonist SB-75 (Cetrorelix; [Ac-D-Nal(2)1, D-Phe(4 CI)2, D-Pal(3)3, D-Cit6, D-Ala10]LH-RH in which Ac-D-Nal(2) = N-acetyl-3-(2-naphthyl)-D-alanine, D-Phe(4CI) = 4-chloro-D-phenylalanine, D-Pal(3) = 3-(3-pyridyl)-D-alanine, and D-Cit = D-Citrulline) or with the agonist [D-Trp6]LH-RH. In the first experiment, SB-75 and [D-Trp6]LH-RH were administered in the form of microcapsules releasing 60 and 25 micrograms/day, respectively. In the second study, the analogs were given by daily s.c. injections in doses of 100 micrograms/day. In both experiments, tumor growth, as measured by reduction in tumor volume, percentage change in tumor volume, tumor burden, and increase in tumor doubling time, was significantly inhibited by treatment with SB-75 but not with [D-Trp6]LH-RH. Uterine and ovarian weights were reduced and serum LH levels decreased by administration of either analog. Chronic treatment with SB-75 greatly reduced the concentration of receptors for epidermal growth factor and insulin-like growth factor I in tumor cell membranes, a phenomenon that might be related to tumor growth inhibition. It is possible that the antitumoral effects of SB-75 on OV-1063 ovarian cancers are exerted not only through the suppression of the pituitary-gonadal axis, but also directly. In view of its strong inhibitory effect on the growth of OV-1063 ovarian cancers in vivo, the potent LH-RH antagonist SB-75 might be considered for possible hormonal therapy of advanced epithelial ovarian carcinoma. PMID:7518926

  2. Radioimmunoassay for 6-D-tryptophan analog of luteinizing hormone-releasing hormone: measurement of serum levels after administration of long-acting microcapsule formulations

    SciTech Connect

    Mason-Garcia, M.; Vigh, S.; Comaru-Schally, A.M.; Redding, T.W.; Somogyvari-Vigh, A.; Horvath, J.; Schally, A.V.

    1985-03-01

    A sensitive and specific radioimmunoassay for (6-D-tryptophan)luteinizing hormone-releasing hormone ((D-Trp/sup 6/)LH-RH) was developed and used for following the rate of liberation of (D-Trp/sup 6/)LH-RH from a long-acting delivery systems based on a microcapsule formulation. Rabbit antibodies were generated against (D-Trp/sup 6/)LH-RH conjugated to bovine serum albumin with glutaraldehyde. Crossreactivity with LH-RH was less than 1%; there was no significant cross-reactivity with other peptides. The minimal detectable dose of (D-Trp/sup 6/)LH-RH was 2 pg per tube. In tra- and interassay coefficients of variation were 8% and 10%, respectively. The radioimmunoassay was suitable for direct determination of (D-Trp/sup 6/)LH-RH in serum, permitting the study of blood levels of the analog after single injections into normal men and after one-a-month administration of microcapsules to rats. In men, 90 min after subcutaneous injection of 250 ..mu..g of the peptide, serum (D-Trp/sup 6/)LH-RH rose to 6-12 ng/ml. Luteinizing hormone was increased 90 min and 24 hr after the administration of the analog. Several batches of microcapsules were tested in rats and the rate of release of (D-Trp/sup 6/)LH-RH was followed. The improved batch of microcapsules of (D-Trp/sup 6/)LH-RH increased serum concentrations of the analog for 30 days or longer after intramuscular injection.

  3. Activin-A stimulates hypothalamic gonadotropin-releasing hormone release by the explanted male rat hypothalamus: interaction with inhibin and androgens.

    PubMed

    Calogero, A E; Burrello, N; Ossino, A M; Polosa, P; D'Agata, R

    1998-02-01

    The presence of activins in those hypothalamic regions containing gonadotropin-releasing hormone (GnRH)-secreting neurons suggests that these peptides may regulate the reproductive function modulating not only pituitary FSH release and biosynthesis, but also hypothalamic GnRH release. The purpose of this study was to evaluate the effects of activin-A, a homodimer of inhibin beta A subunit, on hypothalamic GnRH release in vitro and, because of their well known antithetical effects, to evaluate its interaction with inhibin. In addition, since androgens modulate the release of GnRH from male rat hypothalami, we thought it of interest to study the possible interplay between these steroids and activin on GnRH release. To accomplish this, we employed a hypothalamic organ culture system which enabled us to evaluate GnRH release from individually incubated hemi-hypothalami explanted from male rats. Activin-A stimulated GnRH release in a biphasic manner. The maximal effect was reached at a concentration of 10 ng/ml which increased GnRH output by about 75%. Inhibin abolished the stimulatory effect of a maximally effective concentration of activin-A in a dose-dependent manner, whereas alone it had no effect on GnRH output. As previously shown, testosterone (1 nmol/l) and dihydrotestosterone (DHT, 0.1 nmol/l) suppressed basal GnRH release, but only testosterone was able to inhibit the release of GnRH stimulated by activin-A. Since DHT is a non-aromatizable androgen, we evaluated whether the inhibitory effect of testosterone was due to its in vitro conversion into 17 beta-estradiol. The addition of 4-hydroxyandrostenedione, a steroidal aromatase inhibitor, did not influence the suppressive effect of testosterone on GnRH release stimulated by activin-A. In conclusion, activin-A stimulated hypothalamic GnRH release in vitro and this effect was abolished by inhibin and was blunted by testosterone. These findings suggest that activins may participate in the regulation of the

  4. Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice.

    PubMed

    Peñalva, R G; Flachskamm, C; Zimmermann, S; Wurst, W; Holsboer, F; Reul, J M H M; Linthorst, A C E

    2002-01-01

    Corticotropin-releasing hormone plays an important role in the coordination of various responses to stress. Previous research has implicated both corticotropin-releasing hormone and the serotonergic system as causative factors in the development and course of stress-related psychiatric disorders such as major depression. To delineate the role of the corticotropin-releasing hormone receptor type 1 (CRH-R1) in the interactions between corticotropin-releasing hormone and serotonergic neurotransmission, in vivo microdialysis was performed in CRH-R1-deficient mice under basal (home cage) and stress (forced swimming) conditions. Hippocampal dialysates were used to measure extracellular levels of serotonin and its metabolite 5-hydroxyindoleacetic acid, and free corticosterone levels to monitor the status of the hypothalamic-pituitary-adrenocortical axis. Moreover, behavioural activity was assessed by visual observation and a scoring paradigm. Both wild-type and heterozygous mutant mice showed a clear diurnal rhythm in free corticosterone. Free corticosterone concentrations were, however, lower in heterozygous mutant mice than in wild-type animals and undetectable in homozygous CRH-R1-deficient mice. Homozygous CRH-R1-deficient mice showed enhanced hippocampal levels of 5-hydroxyindoleacetic acid but not of serotonin during the light and the dark phase of the diurnal cycle, which may point to an enhanced synthesis of serotonin in the raphe-hippocampal system. Moreover, the mutation resulted in higher behavioural activity in the home cage during the light but not during the dark period. Forced swimming caused a rise in hippocampal serotonin followed by a further increase after the end of the stress paradigm in all genotypes. Homozygous and heterozygous mutant mice showed, however, a significantly amplified serotonin response to the forced swimming as compared to wild-type control animals. We conclude that CRH-R1-deficiency results in reduced hypothalamic

  5. The estrogen myth: potential use of gonadotropin-releasing hormone agonists for the treatment of Alzheimer's disease.

    PubMed

    Casadesus, Gemma; Garrett, Matthew R; Webber, Kate M; Hartzler, Anthony W; Atwood, Craig S; Perry, George; Bowen, Richard L; Smith, Mark A

    2006-01-01

    Estrogen and other sex hormones have received a great deal of attention for their speculative role in Alzheimer's disease (AD), but at present a direct connection between estrogen and the pathogenesis of AD remains elusive and somewhat contradictory. For example, on one hand there is a large body of evidence suggesting that estrogen is neuroprotective and improves cognition, and that hormone replacement therapy (HRT) at the onset of menopause reduces the risk of developing AD decades later. However, on the other hand, studies such as the Women's Health Initiative demonstrate that HRT initiated in elderly women increases the risk of dementia. While estrogen continues to be investigated, the disparity of findings involving HRT has led many researchers to examine other hormones of the hypothalamic-pituitary-gonadal axis such as luteinising hormone (LH) and follicle-stimulating hormone. In this review, we propose that LH, rather than estrogen, is the paramount player in the pathogenesis of AD. Notably, both men and women experience a 3- to 4-fold increase in LH with aging, and LH receptors are found throughout the brain following a regional pattern remarkably similar to those neuron populations affected in AD. With respect to disease, serum LH level is increased in women with AD relative to non-diseased controls, and levels of LH in the brain are also elevated in AD. Mechanistically, we propose that elevated levels of LH may be a fundamental instigator responsible for the aberrant reactivation of the cell cycle that is seen in AD. Based on these aforementioned aspects, clinical trials underway with leuprolide acetate, a gonadotropin-releasing hormone agonist that ablates serum LH levels, hold great promise as a ready means of treatment in individuals afflicted with AD.

  6. The effect of dietary monensin on th luteinizing hormone response of prepuberal heifers given a multiple gonadotropin-releasing hormone challenge.

    PubMed

    Randel, R D; Rhodes, R C

    1980-10-01

    Ten prepuberal Simmental X Brahman-Hereford heifers (average weight 208 +/- 4 kg) were randomly assigned to receive either 2.7 kg/head/day of ground milo containing 0 mg monensin sodium (C) or 2.7 kg/head/day of ground milo containing 200 mg monensin sodium (M). Both groups of animals (n = 5) received Coastal bermudagrass hay ad libitum throughout the trial. On day 21 of the feeding period all heifers were fitted with jugular cannulas. Immediately after cannulation, the heifers were injected IM with 100 microgram of gonadotropin-releasing hormone (GnRH) and blood was collected every 10 min for 4 hours. Four hours after the first GnRH challenge, a second 100-microgram GnRH injection was administered, and blood samples were collected at 10-min intervals for an additional 5 hours. Serum was stored at -20 C until radioimmunoassayed for luteinizing hormone (LH). The amount of LH released after each GnRH injection was greater in the heifers fed M than in the controls (P less than .05). Peak LH after the first GnRH challenge was greater (P less than .05) in heifers fed M than in controls. The area under th first GnRH induced LH curve tended (P less than .20) to be greater for the M group than for the controls. Peak LH concentration was greater in heifers fed M than in control heifers, as the duration (P less than .05) and area under the second GnRH-induced LH curve. In prepuberal heifers, dietary monensin appears to increase hypophyseal capability of releasing LH after a first and second GnRH challenge. PMID:7007307

  7. The effect of dietary monensin on th luteinizing hormone response of prepuberal heifers given a multiple gonadotropin-releasing hormone challenge.

    PubMed

    Randel, R D; Rhodes, R C

    1980-10-01

    Ten prepuberal Simmental X Brahman-Hereford heifers (average weight 208 +/- 4 kg) were randomly assigned to receive either 2.7 kg/head/day of ground milo containing 0 mg monensin sodium (C) or 2.7 kg/head/day of ground milo containing 200 mg monensin sodium (M). Both groups of animals (n = 5) received Coastal bermudagrass hay ad libitum throughout the trial. On day 21 of the feeding period all heifers were fitted with jugular cannulas. Immediately after cannulation, the heifers were injected IM with 100 microgram of gonadotropin-releasing hormone (GnRH) and blood was collected every 10 min for 4 hours. Four hours after the first GnRH challenge, a second 100-microgram GnRH injection was administered, and blood samples were collected at 10-min intervals for an additional 5 hours. Serum was stored at -20 C until radioimmunoassayed for luteinizing hormone (LH). The amount of LH released after each GnRH injection was greater in the heifers fed M than in the controls (P less than .05). Peak LH after the first GnRH challenge was greater (P less than .05) in heifers fed M than in controls. The area under th first GnRH induced LH curve tended (P less than .20) to be greater for the M group than for the controls. Peak LH concentration was greater in heifers fed M than in control heifers, as the duration (P less than .05) and area under the second GnRH-induced LH curve. In prepuberal heifers, dietary monensin appears to increase hypophyseal capability of releasing LH after a first and second GnRH challenge.

  8. Synthesis and characterization of a high-affinity photoactivatable analogue of thyrotropin-releasing hormone.

    PubMed Central

    Brady, K D; Tashjian, A H

    1992-01-01

    An analogue of thyrotropin-releasing hormone (TRH, pGlu-His-ProNH2), i.e. pGlu-His-ProNH-(CH2)6-(4-azidosalicylamide) (TRH-ASA), has been synthesized and, in a radioiodinated form (TRH-IASA), characterized and used as a photoaffinity reagent to label the TRH receptor on rat pituitary GH4C1 cells. TRH-IASA bound to GH4C1 cells with high affinity (Kd = 8 nM), comparable with that of TRH binding. The binding of TRH-IASA was competitive with binding of TRH, two TRH analogues and a TRH receptor antagonist, chlordiazepoxide. TRH-IASA did not bind to or label GH12C1 cells, which lack functional TRH receptors. Labelling of GH4C1 cells with TRH-IASA followed by SDS/PAGE and autoradiography of membrane proteins demonstrated labelling of a single polypeptide which ran as a diffuse band between 71 and 91 kDa, centred at 76 kDa. No change in this labelling pattern was observed as a function of the length of time (between 5 min and 2 h) that GH4C1 cells were incubated with 3 nM-TRH-IASA. Using either a very short (5 s) photolysis interval or low TRH-IASA concentrations, only the 76 kDa band was labelled. Minor bands appeared only after extended photolysis and use of high TRH-IASA concentrations. We conclude that the TRH receptor from rat pituitary GH4C1 cells is a single peptide with an apparent molecular mass of 76 kDa. Details of the chemical synthesis of TRH-ASA are given in Supplementary Publication SUP 50167 (5 pages), which has been deposited at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1992) 281, 5. Images Fig. 3. Fig. 4. PMID:1310004

  9. Gonadotropin-releasing Hormone Agonist Overuse: Urologists’ Response to Reimbursement and Characteristics Associated with Persistent Overuse

    PubMed Central

    Ellis, Shellie D.; Nielsen, Matthew E.; Carpenter, William R.; Jackson, George L.; Wheeler, Stephanie B.; Liu, Huan; Weinberger, Morris

    2015-01-01

    BACKGROUND Medicare reimbursement cuts have been associated with declining Gonadotropin-releasing Hormone (GnRH) agonist overuse in localized prostate cancer. Medical school affiliation and foreign training have been associated with persistent overuse. However, physician-level prescribing changes and the practice type of persistent overusers have not been examined. We sought to describe physician-level changes in GnRH agonist overuse and test the association of time in practice and solo practice type with GnRH agonist overuse. METHODS We matched American Medical Association physician data for 2,138 urologists to SEER–Medicare data for 12,943 men diagnosed with early stage and lower grade adenocarcinoma of the prostate between 2000 and 2007. We conducted a population-based, retrospective study using multi-level modeling to control for patient and provider characteristics. RESULTS Three distinct patterns of GnRH agonist overuse were observed. Urologists’ time in practice was not associated with GnRH agonist overuse (OR 0.89; 95% CI 0.75–1.05).However, solo practice type (OR 1.65; 95% CI 1.34–2.02), medical school affiliation (OR 0.65; 95% CI 0.55–0.77), and patient race were. Compared to non-Hispanic whites, non-Hispanic blacks (OR 1.76; 95% CI 1.37–2.27), Hispanics (OR 1.41; 95% CI 1.12–1.79) and men of “other” race (OR 1.44; 95% CI 1.04–1.99) had greater odds of receiving unnecessary GnRH agonists. CONCLUSIONS GnRH agonist overuse remains high among some urologists who may be professionally isolated and difficult to reach. These urologists treat more vulnerable populations, which may contribute to health disparities in prostate cancer treatment quality. Nonetheless, these findings provide guidance to develop interventions to address overuse in prostate cancer. PMID:25849354

  10. The effect of pre-treatment with a gonadotrophin-releasing hormone agonist on reproductive functions in mature cycling rats.

    PubMed

    Raziel, A; Ron-el, R; Dekel, N

    1995-03-01

    In order to investigate the performance of follicles in a rat model in which gonadotrophin-releasing hormone agonist (GnRHa) was used for hypothalamic-pituitary-ovarian axis suppression, three groups of mature cycling rats were studied. One group was treated with buserelin followed by pregnant mare's serum gonadotrophin (PMSG), and the second group was treated with PMSG alone. Both these hormonally treated groups received human chorionic gonadotropin for induction of ovulation. The third group received no hormonal treatment. The average number of ovulated oocytes recovered from rat oviducts pre-treated with GnRHa was significantly higher than that in rats treated with the gonadotrophin alone, in spite of the larger number of pre-ovulatory follicles present in the gonadotrophin-treated group. The morphology of both the pre-ovulatory and the post-ovulatory cumulus-oocyte complexes in the three groups appeared similar. No difference in the capacity of follicles of the three groups to synthesize progesterone in vitro in response to luteinizing hormone could be observed. We conclude that ovarian morphology and function are not impaired by pre-treatment with buserelin.

  11. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    PubMed

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  12. Developmental changes in hypothalamic Kiss1 expression during activation of the pulsatile release of luteinising hormone in maturing ewe lambs.

    PubMed

    Redmond, J S; Baez-Sandoval, G M; Spell, K M; Spencer, T E; Lents, C A; Williams, G L; Amstalden, M

    2011-09-01

    Onset of puberty is characterised by a marked increase in the frequency of release of gonadotrophin-releasing hormone (GnRH) and luteinising hormone (LH). The Kiss1 gene plays a critical role in pubertal development, and its product, kisspeptin, stimulates GnRH and LH release. In the present study, we tested the hypothesis that Kiss1 gene expression in the preoptic area (POA) and hypothalamus increases during maturation of the reproductive neuroendocrine axis in association with increased LH pulsatility. Ovariectomised, oestradiol-replaced lambs were euthanised at 25, 30 and 35 weeks of age. Blood samples were collected before euthanasia to characterise the pattern of LH release. Kiss1 mRNA was detected in coronal sections of the POA and hypothalamus and Kiss1-expressing cells were identified on the basis of silver grain density. The mean number of Kiss1-expressing cells in the POA/periventricular (PeV) areas increased from 25 to 30 weeks of age. No further increase at 35 weeks of age was observed, and the changes in Kiss1 expression in the POA/PeV were independent of changes in LH pulse frequency. The mean number of Kiss1-expressing cells in the arcuate (ARC) nucleus did not differ among age groups, although it was greater in the middle ARC of lambs exhibiting increased frequency of LH release. The density of silver grains per cell did not differ among groups in any of the areas studied. The results obtained indicate that the Kiss1 gene is activated in the POA/PeV and ARC of ewe lambs during juvenile development, and that kisspeptin neurones in the middle ARC, in particular, are involved in the acceleration of pulsatile LH release during maturation of the reproductive neuroendocrine axis in ewe lambs.

  13. Efficacy of corifollitropin alfa followed by recombinant follicle-stimulating hormone in a gonadotropin-releasing hormone antagonist protocol for Korean women undergoing assisted reproduction

    PubMed Central

    Park, Hyo Young; Lee, Min Young; Jeong, Hyo Young; Rho, Yong Sook; Song, Sang Jin

    2015-01-01

    Objective To evaluate the effect of a gonadotropin-releasing hormone (GnRH) antagonist protocol using corifollitropin alfa in women undergoing assisted reproduction. Methods Six hundred and eighty-six in vitro fertilization-embryo transfer (IVF)/intracytoplasmic sperm injection (ICSI) cycles were analyzed. In 113 cycles, folliculogenesis was induced with corifollitropin alfa and recombinant follicle stimulating hormone (rFSH), and premature luteinizing hormone (LH) surges were prevented with a GnRH antagonist. In the control group (573 cycles), premature LH surges were prevented with GnRH agonist injection from the midluteal phase of the preceding cycle, and ovarian stimulation was started with rFSH. The treatment duration, quality of oocytes and embryos, number of embryo transfer (ET) cancelled cycles, risk of ovarian hyperstimulation syndrome (OHSS), and the chemical pregnancy rate were evaluated in the two ovarian stimulation protocols. Results There were no significant differences in age and infertility factors between treatment groups. The treatment duration was shorter in the corifollitropin alfa group than in the control group. Although not statistically significant, the mean numbers of matured (86.8% vs. 85.1%) and fertilized oocytes (84.2% vs. 83.1%), good embryos (62.4% vs. 60.3%), and chemical pregnancy rates (47.2% vs. 46.8%) were slightly higher in the corifollitropin alfa group than in the control group. In contrast, rates of ET cancelled cycles and the OHSS risk were slightly lower in the corifollitropin alfa group (6.2% and 2.7%) than in the control group (8.2% and 3.5%), although these differences were also not statistically significant. Conclusion Although no significant differences were observed, the use of corifollitropin alfa seems to offer some advantages to patients because of its short treatment duration, safety, lower ET cancellation rate and reduced risk of OHSS. PMID:26161335

  14. Total Androgen Blockade Versus a Luteinizing Hormone-Releasing Hormone Agonist Alone in Men With High-Risk Prostate Cancer Treated With Radiotherapy

    SciTech Connect

    Nanda, Akash; Moran, Brian J.; Braccioforte, Michelle H.; Dosoretz, Daniel; Salenius, Sharon; Katin, Michael; Ross, Rudi; D'Amico, Anthony V.

    2010-04-15

    Purpose: To assess whether short-course total androgen blockade vs. a luteinizing hormone-releasing hormone (LHRH) agonist alone affects the risk of prostate cancer-specific mortality (PCSM) in men with localized but high-risk disease treated with radiotherapy. Methods and Materials: The study cohort comprised 628 men with T1-T4, N0, M0 prostate cancer with high-risk disease (prostate-specific antigen level >20 ng/mL, Gleason score >=8, or clinical category >=T3) treated with 45 Gy of external beam radiotherapy followed by a brachytherapy boost in addition to receiving a median of 4.3 (interquartile range [IQR], 3.6-6.4) months of hormonal blockade with an LHRH agonist plus an antiandrogen or monotherapy with an LHRH agonist. Fine and Gray's multivariable regression analysis was used to determine whether combination androgen suppression therapy (AST) vs. monotherapy affected the risk of PCSM, adjusting for treatment year, duration of AST, age, and known prognostic factors. Results: After a median follow-up of 4.9 (IQR, 3.5-6.5) years, men receiving combination AST had a lower risk of PCSM than those treated with monotherapy (adjusted hazard ratio [AHR], 0.18; 95% confidence interval [CI], 0.04-0.90; p = 0.04). An increasing prostate-specific antigen level (AHR, 2.70; 95% CI, 1.64-4.45; p < 0.001) and clinical category T3/4 disease (AHR, 29.6; 95% CI, 2.88-303.5; p = 0.004) were also associated with an increased risk of PCSM. Conclusions: In men with localized but high-risk prostate cancer treated with external beam radiotherapy and brachytherapy, short-course AST with an LHRH agonist plus an antiandrogen is associated with a decreased risk of PCSM when compared with monotherapy with an LHRH agonist.

  15. Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human.

    PubMed

    Skrapits, Katalin; Kanti, Vivien; Savanyú, Zsófia; Maurnyi, Csilla; Szenci, Ottó; Horváth, András; Borsay, Beáta Á; Herczeg, László; Liposits, Zsolt; Hrabovszky, Erik

    2015-01-01

    Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections.

  16. Effects of gonadotropin inhibitory hormone or gonadotropin-releasing hormone on reproduction-related genes in the protandrous cinnamon clownfish, Amphiprion melanopus.

    PubMed

    Choi, Young Jae; Kim, Na Na; Habibi, Hamid R; Choi, Cheol Young

    2016-09-01

    Hypothalamic peptide neurohormones such as gonadotropin-releasing hormones (GnRHs) and gonadotropin-inhibitory hormone (GnIH) play pivotal roles in the control of reproduction and gonadal maturation in teleost fish. To study the effects of GnIH on fish reproduction, we investigated the influence of seabream GnRH (sbGnRH) and GnIH (both alone and in combination) on levels of reproductive genes (GnIH, GnIH-receptor [GnIH-R], melatonin receptor [MT3], sbGnRH, and gonadotropic hormones [GTHs]) during different stages of gonadal maturation in male, female, and immature cinnamon clownfish, Amphiprion melanopus. The results showed that the expression levels of GnIH, GnIH-R, and MT3 genes increased after the GnIH injection, but decreased after the sbGnRH injection. In addition, these gene expression levels gradually lowered after GnIH3 and sbGnRH combination treatment, as compared to the MT3 mRNA levels of GnIH treatment alone. However, the expression levels of the HPG (hypothalamus-pituitary-gonad) axis genes (sbGnRH and GTHs) decreased after the GnIH injection, but increased after the sbGnRH injection. In all cinnamon clownfish groups, HPG axis gene mRNA levels gradually decreased after mixed GnIH3 and sbGnRH treatment, compared to GnIH treatment alone. The present study provides novel information on the effects of GnIH and strongly supports the hypothesis that GnIH plays an important role in the negative regulation of the HPG axis in the protandrous cinnamon clownfish. PMID:27288637

  17. Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human

    PubMed Central

    Skrapits, Katalin; Kanti, Vivien; Savanyú, Zsófia; Maurnyi, Csilla; Szenci, Ottó; Horváth, András; Borsay, Beáta Á.; Herczeg, László; Liposits, Zsolt; Hrabovszky, Erik

    2015-01-01

    Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections. PMID:26388735

  18. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes

    PubMed Central

    Cai, Yunpeng; Xu, Mingxin; Yuan, Minglu; Liu, Zhenguo; Yuan, Weien

    2014-01-01

    Since the availability of recombinant human growth hormone (rhGH) enabled the application of human growth hormone both in clinical and research use in the 1980s, millions of patients were prescribed a daily injection of rhGH, but noncompliance rates were high. To address the problem of noncompliance, numerous studies have been carried out, involving: sustained-release preparations, prolonged half-life derivatives, new injectors that cause less pain, and other noninvasive delivery methods such as intranasal, pulmonary and transdermal deliveries. Some accomplishments have been made and launched already, such as the Nutropin Depot® microsphere and injectors (Zomajet®, Serojet®, and NordiFlex®). Here, we provide a review of the different technologies and illustrate the key points of these studies to achieve an improved rhGH product. PMID:25114523

  19. Inhibition of serum androgen levels by chronic intranasal and subcutaneous administration of a potent luteinizing hormone-releasing hormone (LH-RH) agonist in adult men.

    PubMed

    Faure, N; Labrie, F; Lemay, A; Bélanger, A; Gourdeau, Y; Laroche, B; Robert, G

    1982-03-01

    The effect of chronic treatment with the luteinizing hormone-releasing hormone (LH-RH) agonist Buserelin (Hoechst AG, Frankfurt/Main, West Germany) ([D-Ser(TBU)6,des-Gly-NH2(10)]LH-RH ethylamide) administrered by nasal spray (200 or 500 micrograms, twice daily) or subcutaneously (50 micrograms daily) for periods of 1 to 8 months was studied on serum sex steroids and LH levels in 18 patients with cancer of the prostate. Basal serum testosterone concentration decreases to 71.1 +/- 18.3 (NS) and 28.6 +/- 9.3%, (P less than 0.01) of control in patients receiving the 200-micrograms and 500-micrograms dose by nasal spray, respectively. In patients treated subcutaneously, a more rapid inhibition of serum testosterone levels to 19.6 +/- 6.4% of control (P less than 0.01) is observed. The finding of decreased levels of 17-OH-progesterone, testosterone, and dihydrotestosterone in the presence of unchanged pregnenolone concentration indicates that the decrease in androgen biosynthesis induced by Buserelin treatment is due to a blockage at the level of 17-hydroxylase and 17,20-desmolase activities. The present data indicate that chronic administration of Buserelin could be a safe and effective means of reducing serum androgens in patients with cancer of the prostate.

  20. Chronic growth hormone (GH) hypersecretion induces reciprocal and reversible changes in mRNA levels from hypothalamic GH-releasing hormone and somatostatin neurons in the rat.

    PubMed Central

    Bertherat, J; Timsit, J; Bluet-Pajot, M T; Mercadier, J J; Gourdji, D; Kordon, C; Epelbaum, J

    1993-01-01

    Effects of growth hormone (GH) hypersecretion on somatostatin-(SRIH) and GH-releasing hormone (GHRH) were studied by in situ hybridization and receptor autoradiography in rats bearing a GH-secreting tumor. 6 and 18 wk after tumor induction, animals displayed a sharp increase in body weight and GH plasma levels; pituitary GH content was reduced by 47 and 55%, while that of prolactin and thyrotropin was unchanged. At 18 wk, hypothalamic GHRH and SRIH levels had fallen by 84 and 52%, respectively. In parallel, the density of GHRH mRNA per arcuate neuron was reduced by 52 and 50% at 6 and 18 wk, while SRIH mRNA levels increased by 71 and 83% in the periventricular nucleus (with no alteration in the hilus of the dentate gyrus). The numbers of GHRH- and SRIH-synthetizing neurons in the hypothalamus were not altered in GH-hypersecreting rats. Resection of the tumor restored hypothalamic GHRH and SRIH mRNAs to control levels. GH hypersecretion did not modify 125I-SRIH binding sites on GHRH neurons. Thus, chronic GH hypersecretion affects the expression of the genes encoding for GHRH and SRIH. The effect is long lasting, not desensitizable and reversible. Images PMID:8097209

  1. Identification of major urinary metabolites of nafarelin acetate, a potent agonist of luteinizing hormone-releasing hormone, in the rhesus monkey

    SciTech Connect

    Chan, R.L.; Chaplin, M.D.

    1985-09-01

    Nafarelin acetate (less than Glu-His-Trp-Ser-Tyr-3-(2-naphthyl)-D-Ala-Leu-Arg-Pro-Gly-NH2) is a potent agonistic analogue of luteinizing hormone-releasing hormone. After a single iv administration of nafarelin acetate (with UC label at C-3 of 3-(2-naphthyl)-D-Ala) to female rhesus monkeys, about 80% of the radioactivity was eliminated in urine. Five major radioactive urinary metabolites were isolated and purified by reversed phase HPLC. Four of these metabolites, identified by amino acid analysis, were short peptides: the 5-10-hexapeptide amide, the 6-10-pentapeptide amide, the 5-7-tripeptide, and the 6-7-dipeptide. The fifth metabolite, which accounted for about 15% of the radioactivity administered, was shown by NMR and mass spectrometry to be 2-naphthylacetic acid. A possible pathway of its formation is by oxidative deamination of 3-(2-napthyl)-D-Ala to give the corresponding alpha-keto acid, followed by oxidative decarboxylation of the alpha-keto acid. These five metabolites together accounted for about 70% of the radioactivity recovered in the urine of rhesus monkeys, or more than half of the radioactivity in the administered dose. Nafarelin acetate was also present in small amounts. Several of these metabolites were also present in plasma of the rhesus monkey.

  2. Luteinizing hormone-releasing hormone (LHRH) attenuates morphine-induced inhibition of cyclic AMP (cAMP) in opioid-responsive SK-N-SH cells.

    PubMed

    Ratka, A; Simpkins, J W

    1997-04-01

    SK-N-SH cells were used to assess the effects of luteinizing hormone-releasing hormone (LHRH) on opioid receptor-mediated changes in cyclic AMP (cAMP). Prostaglandin E1 (PGE1, 1 microM) caused a dramatic increase in cAMP levels. Treatment with 10 microM morphine (MOR) significantly inhibited the stimulatory effect of PGE1, LHRH (0.8 microM) caused an increase in the basal level of intracellular cAMP and potentiated the stimulatory effect of PGE1 on cAMP accumulation. In cells pretreated with LHRH the inhibitory effect of MOR on cAMP accumulation was significantly attenuated. An LHRH antagonist had no effect on cAMP. The involvement of pertussis toxin (PTX)-sensitive G proteins in the actions of LHRH was studied. PTX increased the stimulatory effect of PGE1 on cAMP and attenuated the inhibitory effect of MOR. However, PTX pretreatment prevented the effects of LHRH on the intracellular actions of PGE1 but exerted an additive effect with LHRH in blocking the MOR-induced decrease in cAMP levels. We conclude that LHRH attenuates the inhibitory, opioid receptor-mediated effect of MOR on intracellular cAMP accumulation in SK-N-SH cells, and that the G protein-independent mechanism may be involved in LHRH-induced attenuation of the inhibitory effect of MOR on neuronal cAMP.

  3. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  4. Gonadotropin-releasing hormone pulsatile administration restores luteinizing hormone pulsatility and normal testosterone levels in males with hyperprolactinemia.

    PubMed

    Bouchard, P; Lagoguey, M; Brailly, S; Schaison, G

    1985-02-01

    Hyperprolactinemia in men is frequently associated with hypogonadism. Normalization of serum PRL levels is generally associated with an increase in serum testosterone (T) to normal. To determine the mechanism of the inhibitory effect of hyperprolactinemia on the hypothalamic-pituitary-gonadal axis, we studied the effect of intermittent pulsatile GnRH administration on LH pulsatility and T levels in four men with prolactinomas. All patients had high PRL values (100-3000 ng/ml), low LH (mean +/- SEM, 2.2 +/- 0.1 mIU/ml), and low T values (2.3 +/- 0.3 ng/ml), with no other apparent abnormality of pituitary function. GnRH was administered iv using a pump delivering a bolus dose of 10 micrograms every 90 min for 12 days. No LH pulses were detected before treatment. Pulsatile GnRH administration resulted in a significant increase in basal LH levels (6.7 +/- 0.6 mIU/ml; P less than 0.001) and restored LH pulsatility. In addition, T levels increased significantly to normal values in all patients (7.8 +/- 0.4 ng/ml; P less than 0.001) and were normal or supranormal as long as the pump was in use, although PRL levels remained elevated. These data, therefore, suggest that hyperprolactinemia produces hypogonadism primarily by interfering with pulsatile GnRH release.

  5. Chapter 2: hypothalamic neural systems controlling the female reproductive life cycle gonadotropin-releasing hormone, glutamate, and GABA.

    PubMed

    Maffucci, Jacqueline A; Gore, Andrea C

    2009-01-01

    The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly through other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle.

  6. Effect of alcohol on the proestrous surge of luteinizing hormone (LH) and the activation of LH-releasing hormone (LHRH) neurons in the female rat.

    PubMed

    Ogilvie, K M; Rivier, C

    1997-04-01

    Reproduction is adversely affected by alcohol abuse in humans and laboratory animals. In rats, alcohol exposure suppresses both luteinizing hormone (LH) and sex steroid secretion, although consensus is lacking as to which level of the hypothalamic-pituitary-gonadal (HPG) axis is primarily affected. We tested the hypothesis that acute alcohol treatment inhibits the HPG axis by blunting release of LH-releasing hormone (LHRH) in female rats, by examining the effect of this drug on the central reproductive endocrine event; i.e., the proestrous surge of gonadotropins, which triggers ovulation. In a first series of experiments, we injected alcohol at 8 A.M. and 12 P.M. on proestrus and measured plasma levels of LH, estradiol (E2), and progesterone during the afternoons of proestrus and estrus. Alcohol administration blocked the proestrous surge of LH and ovulation. In subsequent experiments, alcohol inhibited the surge of LHRH (measured by push-pull cannulation) and LHRH neuronal activation (measured by Fos labeling in LHRH neurons). Because alcohol also decreased E2 levels, we reasoned that it might have prevented positive feedback; however, alcohol retained its ability to inhibit the LH surge evoked by E2 implantation in ovariectomized females, disproving this hypothesis. Additionally, alcohol does not act via increased corticosteroid secretion, because alcohol also blocked the proestrous surge in adrenalectomized females. Last, exogenous administration of LHRH to alcohol-blocked animals evoked LH secretion and ovulation, indicating that pituitary and/or ovarian function could be restored by mimicking the hypothalamic signal. Collectively, these data indicate that in female rats, alcohol inhibits the gonadotropin surge primarily by decreasing LHRH secretion.

  7. Identification of members of the gonadotropin-releasing hormone (GnRH), corticotropin-releasing factor (CRF) families in the genome of the holocephalan, Callorhinchus milii (elephant shark).

    PubMed

    Nock, Tanya G; Chand, Dhan; Lovejoy, David A

    2011-04-01

    The gonadotropin-releasing hormone (GnRH) and corticotropin-releasing family (CRF) are two neuropeptides families that are strongly conserved throughout evolution. Recently, the genome of the holocephalan, Callorhinchus milii (elephant shark) has been sequenced. The phylogenetic position of C. milii, along with the relatively slow evolution of the cartilaginous fish suggests that neuropeptides in this species may resemble the earliest gnathostome forms. The genome of the elephant shark was screened, in silico, using the various conserved motifs of both the vertebrate CRF paralogs and the insect diuretic hormone sequences to identify the structure of the C. milii CRF/DH-like peptides. A similar approach was taken to identify the GnRH peptides using conserved motifs in both vertebrate and invertebrate forms. Two CRF peptides, a urotensin-1 peptide and a urocortin 3 peptide were found in the genome. There was only about 50% sequence identity between the two CRF peptides suggesting an early divergence. In addition, the urocortin 2 peptide seems to have been lost and was identified as a pseudogene in C. milii. In contrast to the number of CRF family peptides, only a GnRH-II preprohormone with the conserved mature decapeptide was found. This confirms early studies about the identity of GnRH in the Holocephali, and suggests that the Holocephali and Elasmobranchii differ with respect to GnRH structure and function. PMID:21310155

  8. Combination of long-acting microcapsules of the D-tryptophan-6 analog of luteinizing hormone-releasing hormone with chemotherapy: investigation in the rat prostate cancer model.

    PubMed Central

    Schally, A V; Redding, T W

    1985-01-01

    The effect of combining hormonal treatment consisting of long-acting microcapsules of the agonist [D-Trp6]LH-RH (the D-tryptophan-6 analog of luteinizing hormone-releasing hormone) with the chemotherapeutic agent cyclophosphamide was investigated in the Dunning R-3327H rat prostate cancer model. Microcapsules of [D-Trp6]LH-RH formulated from poly(DL-lactide-co-glycolide) and calculated to release a controlled dose of 25 micrograms/day were injected intramuscularly once a month. Cyclophosphamide (Cytoxan) (5 mg/kg of body weight) was injected intraperitoneally twice a week. When the therapy was started 90 days after tumor transplantation--at the time that the cancers were well developed-and was continued for 2 months, tumor volume was significantly reduced by the microcapsules or Cytoxan given alone. The combination of these two agents similarly inhibited tumor growth but did not show a synergistic effect. In another study, the treatment was started 2 months after transplantation, when the developing tumors measured 60-70 mm3. Throughout the treatment period of 100 days, the microcapsules of [D-Trp6]LH-RH reduced tumor volume more than Cytoxan did, and the combination of the two drugs appeared to completely arrest tumor growth. Tumor weights also were diminished significantly in all experimental groups, the decrease in weight being smaller in the Cytoxan-treated group than in rats that received the microcapsules. The combination of Cytoxan plus the microcapsules was 10-100 times more effective than the single agents in reducing tumor weights. In both experiments, testes and ventral prostate weights were significantly diminished, serum testosterone was suppressed to undetectable levels, and prolactin values were reduced by administration of microcapsules of [D-Trp6]LH-RH alone or in combination with Cytoxan. These results in rats suggest that combined administration of long acting microcapsules of [D-Trp6]LH-RH with a chemotherapeutic agent, started soon after the

  9. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways

    SciTech Connect

    Vickers, Alison E.M.; Heale, Jason; Sinclair, John R.; Morris, Stephen; Rowe, Josh M.; Fisher, Robyn L.

    2012-04-01

    Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered

  10. Identification and distribution of gonadotropin-releasing hormone-like peptides in the brain of horseshoe crab Tachypleus tridentatus

    NASA Astrophysics Data System (ADS)

    Huang, Huiyang; Li, Linming; Ye, Haihui; Feng, Biyun; Li, Shaojing

    2013-03-01

    Gonadotropin-releasing hormone (GnRH) is a crucial peptide for the regulation of reproduction. Using immunological techniques, we investigated the presence of GnRH in horseshoe crab Tachypleus tridentatus. Octopus GnRH-like immunoreactivity, tunicate GnRH-like immunoreactivity, and lamprey GnRH-I-like immunoreactivity were detected in the neurons and fibers of the protocerebrum. However, no mammal GnRH-like immunoreactivity or lamprey GnRH-III-like immunoreactivity was observed. Our results suggest that a GnRH-like factor, an ancient peptide, existed in the brain of T. tridentatus and may be involved in the reproductive endocrine system.

  11. Combination of a long-acting delivery system for luteinizing hormone-releasing hormone agonist with Novantrone chemotherapy: increased efficacy in the rat prostate cancer model.

    PubMed Central

    Schally, A V; Kook, A I; Monje, E; Redding, T W; Paz-Bouza, J I

    1986-01-01

    The combination of hormonal treatment based on a long-acting delivery system for the agonist [6-D-tryptophan]luteinizing hormone-releasing hormone ([D-Trp6]-LH-RH) with the chemotherapeutic agent Novantrone (mitoxantrone dihydrochloride) was studied in the Dunning R3327H rat prostate cancer model. Microcapsules of [D-Trp6]-LH-RH formulated from poly(DL-lactide-co-glycolide) and calculated to release a controlled dose of 25 micrograms/day were injected intramuscularly once a month. Novantrone (0.25 mg/kg) was injected intravenously once every 3 weeks. Three separate experiments were carried out. When the therapy was started 45 days after transplantation and continued for 70 days, tumor volume in the presence of the microcapsules (966 +/- 219 mm3) or Novantrone (3606 +/- 785 mm3) given alone was significantly decreased compared to controls (14,476 +/- 3045 mm3). However, the combination of microcapsules and Novantrone caused a greater inhibition of tumor growth (189 +/- 31 mm3) than the single agents. Similar effects were seen when the percent increase in tumor volume was examined. Tumor volume increased 10,527 +/- 1803% for the control group. The inhibition of growth caused by the [D-Trp6]LH-RH microcapsules alone (672 +/- 153% increase in volume) was again greater than that caused by Novantrone alone (2722 +/- 421% increase). The combination of the two agents was again the most effective, resulting in an increase in tumor volume of only 105 +/- 29%. Control tumors weighed 30.0 +/- 6.5 g. Tumor weights were much less in the groups treated with either microcapsules (3.28 +/- 0.69 g) or Novantrone (19.53 +/- 3.3 g) alone. The lowest tumor weights after 70 days of treatment were obtained in the group that received the combination of [D-Trp6]LH-RH microcapsules and Novantrone (1.02 +/- 0.2 g). Testes and ventral prostate weights were significantly diminished by the administration of microcapsules of [D-Trp6]LH-RH alone or in combination with Novantrone. In both of these

  12. Feedback effects of estradiol and progesterone on ovulation and fertility of dairy cows after gonadotropin-releasing hormone-induced release of luteinizing hormone.

    PubMed

    Stevenson, J S; Pulley, S L

    2016-04-01

    An experiment was conducted with the objective to determine the effects of estradiol, progesterone, presence of a corpus luteum (CL), and size of a dominant follicle on the characteristics and patterns of GnRH-induced LH release and subsequent ovulation during a timed artificial insemination (TAI) program, or a combination of these. In 70 lactating dairy cows, a total of 163 blood collection periods resulting in a GnRH-induced LH release were analyzed. Concentrations of LH were measured in hourly samples (0 through 6 h after GnRH) during each of the blood collection periods, whereas concentrations of progesterone and estradiol were measured in the sample before GnRH treatment (0 h). Measures of LH included time to LH peak concentration during the 6-h blood collection period, the 2 largest concentrations of LH, mean, and variance of the 6 LH concentrations under each LH curve. Individual and combination effects of CL presence and a dominant follicle ≤ or >13.5mm, in addition to individual and combination effects of progesterone: low (<0.45 ng/mL; n=83), medium (0.53 to 2.41 ng/mL; n=25), and high (2.66 to 10.7 ng/mL; n=55), and estradiol: low (<4.0 pg/mL; n=89) and high (≥4.0 pg/mL; n=74) were independent variables in models to determine their influence on characteristics of LH and ovulation. Injections of GnRH induced LH release during 6 h after each of 163 injections. Measures of GnRH-induced LH concentration were inhibited at greater concentrations of progesterone and in the presence of a CL. In contrast, GnRH-induced LH concentrations were increased when estradiol was ≥4.0 pg/mL, but relatively unaffected by the size of the dominant follicle. Furthermore, resulting incidences of ovulation were decreased at greater progesterone concentrations and presence of a CL, and increased at greater estradiol concentrations and presence of follicles >13.5mm. In cows with or without a CL, the presence of a follicle >13.5mm did not increase mean LH concentration or

  13. Gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown reduces testis size and decreases testosterone secretion during pubertal development in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) functions quite differently from the classical form (GnRH-I) as it is a poor stimulator of gonadotropin release. Unlike most species, a functional GnRHR-II has been identified in swine. Our laboratory detected GnRHR-IIs on Leyd...

  14. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds.

    PubMed

    Ribeiro, Leonardo M; Garcia, Queila S; Müller, Maren; Munné-Bosch, Sergi

    2015-04-01

    Little is known about the control exerted by hormones in specific tissues during germination and post-germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue-specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3 ) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue-specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones. PMID:25174374

  15. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds.

    PubMed

    Ribeiro, Leonardo M; Garcia, Queila S; Müller, Maren; Munné-Bosch, Sergi

    2015-04-01

    Little is known about the control exerted by hormones in specific tissues during germination and post-germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue-specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3 ) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue-specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones.

  16. Cyproheptadine-mediated inhibition of growth hormone and prolactin release from pituitary adenoma cells of acromegaly and gigantism in culture.

    PubMed

    Ishibashi, M; Fukushima, T; Yamaji, T

    1985-08-01

    The effect of cyproheptadine on growth hormone (GH) and prolactin (Prl) secretion from cultured pituitary adenoma cells of acromegaly and pituitary gigantism was studied. When varying doses of cyproheptadine ranging from 0.01 to 1 microM were added to the incubation media, GH secretion was consistently inhibited and a dose-response relationship was observed between the cyproheptadine concentrations and the amounts of GH released into the media. In pituitary adenomas which concurrently produced and secreted Prl, cyproheptadine likewise suppressed Prl release in a dose-related manner. This effect of cyproheptadine was not blocked by coincubation with serotonin. Similarly, coincubation with a dopaminergic antagonist, haloperidol, failed to reverse the inhibitory action produced by cyproheptadine. When coincubated with dopamine, cyproheptadine further inhibited GH and Prl secretion. These results suggest that cyproheptadine possesses a direct action on human somatotroph adenoma cells to inhibit GH and Prl secretion by an unknown mechanism that is different from serotonergic and dopaminergic systems. PMID:2994332

  17. Medical treatment of uterine myoma with long-acting gonadotropin-releasing hormone agonist prior to myomectomy.

    PubMed

    Liu, C H; Lin, Y S; Lin, C C; Tzeng, C C; Chou, C Y

    1993-06-01

    A less bulky uterine myoma is technically easier to deal with during surgery. Recently gonadotropin-releasing hormone agonists (GnRH-a) have been used for the purpose of medical hypophysectomy, thereby reducing the size of uterine myomas. Ten premenopausal women with infertility and intramural-submucous myoma manifesting with menorrhagia and obstruction of the tubal ostia were recruited for this study. A long-acting depot GnRH-a, Decapeptyl, was given intramuscularly every four weeks for three months as an adjunct prior to myomectomy. Luteinizing hormone, follicular stimulating hormone and estradiol declined to the menopausal range following treatment. The size of the myoma decreased to a mean of 32.3 +/- 13.3% of the original volume. Myomectomy was performed in eight patients at the end of the study. Remarkably little blood loss was observed during the surgery. All of the patients had their uteri preserved, and six out of eight patients achieved pregnancy within 12 months after surgery. Our results indicate that monthly administration of long-acting GnRH-a significantly reduces the myoma volume and makes myomectomy technically easier to perform with the possibility of reduced complication rates and better preservation of future fertility.

  18. Induction of ovulation with subcutaneous pulsatile gonadotropin-releasing hormone: correlation with body weight and other parameters.

    PubMed

    Thomas, A K; Mander, J; Hale, J; Walstab, J; Forrest, M S

    1989-05-01

    We treated 21 anovulatory infertile patients with subcutaneous pulsatile gonadotropin-releasing hormone (GnRH) administered via a syringe pump. Response to treatment was assessed by urinary estrogen excretion and ultrasound measurement of follicular growth. Ten patients ovulated and 8 subsequently conceived, for a total of 10 pregnancies. Human chorionic gonadotropin (hCG) was not administered routinely, but two patients required hCG to induce follicular rupture. The majority of the patients who conceived had a body mass index (BMI) of less than 21 and a luteinizing hormone (LH)/follicle-stimulating hormone ratio of less than 1. Conversely, those patients with either elevated BMI or LH or both generally failed to respond satisfactorily to this treatment. It is suggested that pulsatile GnRH is most likely to succeed in inducing ovulation if the BMI is less than 21 and the LH is normal, but is unlikely to be successful if there is both an elevated LH and a BMI of greater than 25. Between these two extremes, the response is variable and a therapeutic trial may be appropriate. PMID:2495993

  19. Factors to predict positive results of gonadotropin releasing hormone stimulation test in girls with suspected precocious puberty.

    PubMed

    Nam, Hyo-Kyoung; Rhie, Young Jun; Son, Chang Sung; Park, Sang Hee; Lee, Kee-Hyoung

    2012-02-01

    Sometimes, the clinical findings and the results of the gonadotropin-releasing hormone (GnRH) stimulation test are inconsistent in girls with early breast development and bone age advancement. We aimed to investigate the factors predicting positive results of the GnRH stimulation test in girls with suspected central precocious puberty (CPP). We reviewed the records of 574 girls who developed breast budding before the age of 8 yr and underwent the GnRH stimulation test under the age of 9 yr. Positive results of the GnRH stimulated peak luteinizing hormone (LH) level were defined as 5 IU/L and over. Girls with the initial positive results (n = 375) showed accelerated growth, advanced bone age and higher serum basal LH, follicle-stimulating hormone, and estradiol levels, compared to those with the initial negative results (n = 199). Girls with the follow-up positive results (n = 64) showed accelerated growth and advanced bone age, compared to those with the follow-up negative results. In the binary logistic regression, the growth velocity ratio was the most significant predictive factor of positive results. We suggest that the rapid growth velocity is the most useful predictive factor for positive results in the GnRH stimulation test in girls with suspected precocious puberty.

  20. Testosterone selectively increases serum follicle-stimulating hormonal (FSH) but not luteinizing hormone (LH) in gonadotropin-releasing hormone antagonist-treated male rats: evidence for differential regulation of LH and FSH secretion.

    PubMed

    Bhasin, S; Fielder, T J; Swerdloff, R S

    1987-08-01

    Both testosterone (T) and gonadotropin-releasing hormone (GnRH)-antagonist (GnRH-A) when given alone lower serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact and castrated rats. However, when graded doses of testosterone enanthate (T.E.) were given to GnRH-A-treated intact male rats, a paradoxical dose-dependent increase in serum FSH occurred; whereas serum LH remained suppressed. This surprising finding led us to ask whether the paradoxical increase in serum FSH in GnRH-A-suppressed animals was a direct stimulatory effect of T on the hypothalamic-pituitary axis or the result of a T effect on a testicular regulator of FSH. To test these hypotheses, we treated adult male castrated rats with GnRH-A and graded doses of T.E. In both intact and castrated rats, serum LH remained undetectable in GnRH-A-treated rats with or without T.E. However, addition of T.E. to GnRH-A led to a dose-dependent increase in serum FSH in castrated animals as well, thus pointing against mediation by a selective testicular regulator of FSH. These data provide evidence that pituitary LH and FSH responses may be differentially regulated under certain conditions. When the action of GnRH is blocked (such as in GnRH-A-treated animals), T directly and selectively increases pituitary FSH secretion.

  1. Gonadotropin-releasing hormone 1 directly affects corpora lutea lifespan in Mediterranean buffalo (Bubalus bubalis) during diestrus: presence and in vitro effects on enzymatic and hormonal activities.

    PubMed

    Zerani, Massimo; Catone, Giuseppe; Maranesi, Margherita; Gobbetti, Anna; Boiti, Cristiano; Parillo, Francesco

    2012-08-01

    The expression of gonadotropin-releasing hormone (GNRH) receptor (GNRHR) and the direct role of GNRH1 on corpora lutea function were studied in Mediterranean buffalo during diestrus. Immunohistochemistry evidenced at early, mid, and late luteal stages the presence of GNRHR only in large luteal cells and GNRH1 in both small and large luteal cells. Real-time PCR revealed GNRHR and GNRH1 mRNA at the three luteal stages, with lowest values in late corpora lutea. In vitro corpora lutea progesterone production was greater in mid stages and lesser in late luteal phases, whereas prostaglandin F2 alpha (PGF2alpha) increased from early to late stages, and PGE2 was greater in the earlier-luteal phase. Cyclooxygenase 1 (prostaglandin-endoperoxide synthase 1; PTGS1) activity did not change during diestrus, whereas PTGS2 increased from early to late stages, and PGE2-9-ketoreductase (PGE2-9-K) was greater in late corpora lutea. PTGS1 activity was greater than PTGS2 in early corpora lutea and lesser in late luteal phase. In corpora lutea cultured in vitro, the GNRH1 analog (buserelin) reduced progesterone secretion and increased PGF2alpha secretion as well as PTGS2 and PGE2-9-K activities at mid and late stages. PGE2 release and PTGS1 activity were increased by buserelin only in late corpora lutea. These results suggest that GNRH is expressed in all luteal cells of buffalo, whereas GNRHR is only expressed in large luteal phase. Additionally, GNRH directly down-regulates corpora lutea progesterone release, with the concomitant increases of PGF2alpha production and PTGS2 and PGE2-9-K enzymatic activities. PMID:22592497

  2. Effects of growth hormone-releasing hormone treatment on milk production and plasma hormones and metabolites in lactating Japanese Black cows under negative energy balance.

    PubMed

    Shingu, H; Hodate, K; Kushibiki, S; Touno, E; Oshibe, A; Ueda, Y; Shinoda, M; Ohashi, S

    2009-04-01

    The current study was performed to clarify the effects of GHRH treatment on milk production and plasma hormones and metabolites in lactating Japanese Black cows (a beef breed) under negative energy balance (EB). Ten multiparous lactating beef cows were offered a normal-energy diet daily (110% of ME requirements for maintenance and lactation) until 5 d in milk (DIM) to standardize the cows before dietary treatment. From 6 DIM to the final days (63 DIM) of the experiment, the cows were allotted to experimental dietary treatments: 5 cows were offered a diet formulated for 130% [high-energy diet (HED)] and the remaining 5 cows were offered a diet formulated for 80% [low-energy diet (LED)] of ME requirements for maintenance and lactation. In addition, all cows received daily subcutaneous injections of 3 mg of bovine GHRH from 36 to 56 DIM (GHRH treatment period). Differences in BW of HED- and LED-fed cows at 63 DIM were +28.4 and -7.2 kg compared with BW at 6 DIM, and HED- and LED-fed cows were under positive EB (+23.7 MJ/d) and negative EB (-11.6 MJ/d) throughout the experiment period. Treatment with GHRH increased (P<0.01) the average daily milk yield to 6.2 kg in HED-fed cows compared with a milk yield of 5.3 kg for 7 d before the GHRH treatment period (pretreatment period); LED-fed cows had no increase in milk production from GHRH treatment. Plasma GH, IGF-1, insulin, and glucose concentrations increased (P<0.05) after GHRH treatment in both HED- and LED-fed cows; GHRH treatment also induced an increase (P<0.05) in the net area under the curve of plasma insulin after glucose challenge in both HED- and LED-fed cows. Plasma urea N concentrations were decreased (P<0.05) by GHRH treatment in HED-fed cows, but not in LED-fed cows. Plasma NEFA concentration was unaffected by GHRH treatment in both HED- and LED-fed cows. We conclude that GHRH treatment of lactating Japanese Black cows stimulates endogenous GH and subsequent IGF-1 secretion and might induce an increase in

  3. Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Sam; Jang, Do Soo; Yang, Seung Yun; Lee, Mi Nam; Jin, Kyeong Sik; Cha, Hyung Jin; Kim, Jin Kon; Sung, Young Chul; Choi, Kwan Yong

    2013-05-01

    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG4 to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG4 to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and

  4. Combined nuclear magnetic resonance spectroscopy and molecular dynamics study of growth hormone releasing hexapeptide GHRP-6 and a cyclic analogue.

    PubMed

    Fernández-Oliva, Miguel; Santana, Héctor; Suardíaz, Reynier; Gavín, José A; Pérez, Carlos S

    2012-05-01

    The Growth Hormone Releasing Hexapeptide, GHRP-6 was the first of a family of synthetic peptides that enhance the release of the Growth Hormone by the pituitary gland in a dose-dependent manner. Since its discovery, it has been used as a benchmark and starting point in numerous researches aiming to obtain new drugs. Complete resonance assignment of GHRP-6 NMR spectra in both open and cyclic forms are reported, showing some differences to random coil chemical shifts. Connectivities observed in the ROESY spectra indicate spatial proximity between the aromatic residues side-chains in both molecules, as well as between residues DPhe5 and Lys6 sidechains. An ensemble of 10 structures was generated for each one of the molecules, showing RMSD values indicative of nonrandom structures. Molecular Dynamics simulations, both with and without explicit solvent, were carried out for GHRP-6 and its cyclic analogue. Conformational analysis performed on the trajectories showed a nonrandom structure with a well preserved backbone. The presence of geometrical patterns resembling those typical of π-π interactions in both peptides, suggest that this kind of interactions may be relevant for the biological activity of GHRP-6. Same conclusion can be drawn from the spatial proximity of residues DPhe5 and Lys6 sidechains.

  5. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  6. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome.

    PubMed

    Moore, Aleisha M; Prescott, Mel; Marshall, Christopher J; Yip, Siew Hoong; Campbell, Rebecca E

    2015-01-13

    Polycystic ovarian syndrome (PCOS), the leading cause of female infertility, is associated with an increase in luteinizing hormone (LH) pulse frequency, implicating abnormal steroid hormone feedback to gonadotropin-releasing hormone (GnRH) neurons. This study investigated whether modifications in the synaptically connected neuronal network of GnRH neurons could account for this pathology. The PCOS phenotype was induced in mice following prenatal androgen (PNA) exposure. Serial blood sampling confirmed that PNA elicits increased LH pulse frequency and impaired progesterone negative feedback in adult females, mimicking the neuroendocrine abnormalities of the clinical syndrome. Imaging of GnRH neurons revealed greater dendritic spine density that correlated with increased putative GABAergic but not glutamatergic inputs in PNA mice. Mapping of steroid hormone receptor expression revealed that PNA mice had 59% fewer progesterone receptor-expressing cells in the arcuate nucleus of the hypothalamus (ARN). To address whether increased GABA innervation to GnRH neurons originates in the ARN, a viral-mediated Cre-lox approach was taken to trace the projections of ARN GABA neurons in vivo. Remarkably, projections from ARN GABAergic neurons heavily contacted and even bundled with GnRH neuron dendrites, and the density of fibers apposing GnRH neurons was even greater in PNA mice (56%). Additionally, this ARN GABA population showed significantly less colocalization with progesterone receptor in PNA animals compared with controls. Together, these data describe a robust GABAergic circuit originating in the ARN that is enhanced in a model of PCOS and may underpin the neuroendocrine pathophysiology of the syndrome.

  7. A role for mitogen-activated protein kinase in mediating activation of the glycoprotein hormone alpha-subunit promoter by gonadotropin-releasing hormone.

    PubMed Central

    Roberson, M S; Misra-Press, A; Laurance, M E; Stork, P J; Maurer, R A

    1995-01-01

    Gonadotropin-releasing hormone (GnRH) interacts with a G protein-coupled receptor and increases the transcription of the glycoprotein hormone alpha-subunit gene. We have explored the possibility that mitogen-activated protein kinase (MAPK) plays a role in mediating GnRH effects on transcription. Activation of the MAPK cascade by an expression vector for a constitutively active form of the Raf-1 kinase led to stimulation of the alpha-subunit promoter in a concentration-dependent manner. GnRH treatment was found to increase the phosphorylation of tyrosine residues of MAPK and to increase MAPK activity, as determined by an immune complex kinase assay. A reporter gene assay using the MAPK-responsive, carboxy-terminal domain of the Elk1 transcription factor was also consistent with GnRH-induced activation of MAPK. Interference with the MAPK pathway by expression vectors for kinase-defective MAPKs or vectors encoding MAPK phosphatases reduced the transcription-stimulating effects of GnRH. The DNA sequences which are required for responses to GnRH include an Ets factor-binding site. An expression vector for a dominant negative form of Ets-2 was able to reduce GnRH effects on expression of the alpha-subunit gene. These findings provide evidence that GnRH treatment leads to activation of the MAPK cascade in gonadotropes and that activation of MAPK contributes to stimulation of the alpha-subunit promoter. It is likely that an Ets factor serves as a downstream transcriptional effector of MAPK in this system. PMID:7791760

  8. Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice

    PubMed Central

    Zhang, Xianyang; Cui, Tengjiao; He, Jinlin; Wang, Haibo; Cai, Renzhi; Popovics, Petra; Vidaurre, Irving; Sha, Wei; Schmid, Janine; Ludwig, Barbara; Block, Norman L.; Bornstein, Stefan R.; Schally, Andrew V.

    2015-01-01

    Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic β-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 μg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus. PMID:26474831

  9. Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice.

    PubMed

    Zhang, Xianyang; Cui, Tengjiao; He, Jinlin; Wang, Haibo; Cai, Renzhi; Popovics, Petra; Vidaurre, Irving; Sha, Wei; Schmid, Janine; Ludwig, Barbara; Block, Norman L; Bornstein, Stefan R; Schally, Andrew V

    2015-11-01

    Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic β-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 μg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus. PMID:26474831

  10. Polymorphisms in luteinizing hormone receptor and hypothalamic gonadotropin-releasing hormone genes and their effects on sperm quality traits in Chinese Holstein bulls.

    PubMed

    Sun, Li-Ping; Du, Qing-Zhi; Song, Ya-Pan; Yu, Jun-Na; Wang, Shu-Juan; Sang, Lei; Song, Luo-Wen; Yue, Yao-Min; Lian, Yu-Ze; Zhang, Sheng-Li; Hua, Guo-Hua; Zhang, Shu-Jun; Yang, Li-Guo

    2012-06-01

    Genes of hypothalamic-pituitary-gonadal axis play a key role in male reproductive performance. This study evaluated the polymorphisms of luteinizing hormone receptor (LHR) and hypothalamic gonadotropin-releasing hormone (GnRH) genes and their effects on sperm quality traits including semen volume per ejaculate (VOL), sperm density (SD), fresh sperm motility (FSM), thawed sperm motility (TSM), acrosome integrity rate (AIR), and abnormal sperm rate (ASR) collected from 205 Chinese Hostein bulls. The study bulls consisted of 205 mature Chinese Holstein, 27 Simmental, 28 Charolais, and 14 German yellow cattle. One single nucleotide polymorphism (SNP) (A883G) in exon 2 of GnRH and two SNPs (A51703G and G51656T) in intron 9 of LHR were identified in 274 bulls. Analysis of variance in 205 Chinese Holstein bulls showed that age had significant effect on both SD and FSM (P < 0.01), and ASR (P < 0.05). With regards to genotype and its interaction with age, only the SNP of G51656T in LHR gene had significant effect on SD (P < 0.05, P < 0.01; respectively). The association result showed that bulls with AG genotype had higher FSM than bulls with AA and GG genotype in LHR at 51,703 locus (P < 0.10), and bulls with GG genotype had higher SD than bulls with TT genotype in LHR at G51656T locus (P < 0.10). Phenotypic correlation among the traits revealed that significant negative correlations were observed between ASR and AIR (r = -0.736, P < 0.01), ASR and AIR (r = -0.500, P < 0.01). There were moderate positive correlations between VOL and SD (r = 0.422, P < 0.01), as well as FSM (r = 0.411, P < 0.01). In conclusion, LHR may be a potential marker for sperm quality of SD and FSM.

  11. Early spring sex differences in luteinizing hormone response to gonadotropin releasing hormone in co-occurring resident and migrant dark-eyed juncos (Junco hyemalis).

    PubMed

    Greives, Timothy J; Fudickar, Adam M; Atwell, Jonathan W; Meddle, Simone L; Ketterson, Ellen D

    2016-09-15

    To optimally time reproduction, animals must coordinate changes in the hypothalamo-pituitary-gonadal (HPG) axis. The extent of intra-species variation in seasonal timing of reproductive function is considerable, both within and among populations. Dark-eyed junco (Junco hyemalis) populations are known to differ in their reproductive timing response to cues experienced in the same habitat in late winter/early spring. Specifically in juncos cohabitating on shared wintering grounds, residents initiate breeding and reproductive activity but migrants delay reproductive development and prepare to migrate before breeding. Here, we test the hypothesis that the pituitary gland acts as a 'control point' to modulate differential HPG axis activity across populations. We sampled free-living resident and migrant juncos on their shared over-wintering grounds in March, thus all individuals were experiencing the same environmental cues, including photoperiod. We predicted that during this critical time of transition, residents would more readily respond to repeated gonadotropin releasing hormone (GnRH) stimulation with increases in luteinizing hormone (LH), in contrast to migrants, which should delay full reproductive activity. Our data indicate that migrant females, while still on the overwintering grounds, have a reduced LH response to repeated GnRH injections compared to resident females. Male migrant and resident birds did not differ in their responsiveness to repeated GnRH. Our results suggest a sex difference in the costs of mistimed activation of the HPG axis, with female migrants being less responsive than residents females and males to repeated stimulation. Further, our data implicate a key role for the pituitary in regulating appropriate reproductive timing responses. PMID:27374492

  12. Melanin-concentrating hormone (MCH) and gonadotropin-releasing hormones (GnRH) in Atlantic cod, Gadus morhua: tissue distributions, early ontogeny and effects of fasting.

    PubMed

    Tuziak, Sarah M; Volkoff, Hélène

    2013-12-01

    Melanin-concentrating hormone (MCH) is classically known for its role in regulating teleost fish skin color change for environmental adaptation. Recent evidence suggests that MCH also has appetite-stimulating properties. The gonadotropin-releasing hormone (GnRH) peptide family has dual roles in endocrine control of reproduction and energy status in fish. Atlantic cod (Gadus morhua) are a commercially important aquaculture species inhabiting the shores of Atlantic Canada. In this study, we examine MCH and GnRH transcript expression profiles during early development as well as in central and peripheral tissues and quantify juvenile Atlantic cod MCH and GnRH hypothalamic mRNA expressions following food deprivation. MCH and GnRH3 cDNAs are maternally deposited into cod eggs, while MCH has variable expression throughout early development. GnRH2 and GnRH3 mRNAs "turn-on" during mid-segmentation once the brain is fully developed. For both MCH and GnRH, highest expression appears during the exogenous feeding stages, perhaps supporting their functions as appetite regulators during early development. MCH and GnRH transcripts are found in brain regions related to appetite regulation (telencephalon/preoptic area, optic tectum/thalamus, hypothalamus), as well as the pituitary gland and the stomach, suggesting a peripheral function in food intake regulation. Atlantic cod MCH mRNA is upregulated during fasting, while GnRH2 and GnRH3 transcripts do not appear to be influenced by food deprivation. In conclusion, MCH might be involved in stimulating food intake in juvenile Atlantic cod, while GnRHs may play a more significant role in appetite regulation during early development.

  13. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model

    PubMed Central

    Liao, Fan; Zhang, Tony J.; Mahan, Thomas E.; Jiang, Hong; Holtzman, David M.

    2014-01-01

    Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHRlit/lit mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHRlit/lit mice was significantly smaller than that in PS1APP/GHRHRlit/+ mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition. PMID:25218899

  14. Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases.

    PubMed

    Rick, Ferenc G; Schally, Andrew V; Szalontay, Luca; Block, Norman L; Szepeshazi, Karoly; Nadji, Mehrdad; Zarandi, Marta; Hohla, Florian; Buchholz, Stefan; Seitz, Stephan

    2012-01-31

    The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.

  15. Identification of a New Exo-Endocytic Mechanism Triggered by Corticotropin-Releasing Hormone in Mast Cells.

    PubMed

    Balseiro-Gomez, Santiago; Flores, Juan A; Acosta, Jorge; Ramirez-Ponce, M Pilar; Ales, Eva

    2015-09-01

    The key role of mast cells (MC), either in development of inflammatory pathologies or in response to environmental stress, has been widely reported in recent years. Previous studies have described the effects of corticotropin-releasing hormone (CRH), which is released from inflamed tissues by cellular stress signals, on MC degranulation, a process possibly driven by selective secretion of mediators (piecemeal degranulation). In this study, we introduce a novel granular exo-endocytic pathway induced by CRH on peritoneal MC. We found that CRH triggers substantial exocytosis, which is even stronger than that induced by Ag stimulation and is characterized by large quantal size release events. Membrane fluorescence increases during stimulation in the presence of FM1-43 dye, corroborating the strength of this exocytosis, given that discrete upward fluorescence steps are often observed and suggesting that secretory granules are preferentially released by compound exocytosis. Additionally, the presence of a depot of large tubular organelles in the cytoplasm suggests that the exocytotic process is tightly coupled to a fast compound endocytosis. This CRH-stimulated mechanism is mediated through activation of adenylate cyclase and an increase of cAMP and intracellular Ca(2+), as evidenced by the fact that the effect of CRH is mimicked by forskolin and 8-bromo-cAMP. Thus, these outcomes constitute new evidence for the critical role of MC in pathophysiological conditions within a cellular stress environment and an alternative membrane trafficking route mediated by CRH.

  16. Effect of intravenous bovine growth hormone or human pancreatic growth hormone-releasing factor on milk production and plasma hormones and metabolites in sheep.

    PubMed

    Hart, I C; Chadwick, P M; James, S; Simmonds, A D

    1985-05-01

    Although it is well known that exogenous bovine GH (bGH) increases milk yield in ruminants it has not been possible to determine whether an increase in endogenous GH secretion has the same effect. The recent isolation of human pancreatic GH-releasing factor (hpGRF-44) has enabled this comparison of the effects of bGH and hpGRF-44 on milk production in sheep. Three pairs of Dorset ewes underwent three 4-day treatments according to a Latin square design. Treatment 1 involved: 2-hourly i.v. injections (approximately 3.0 ml) of bGH (15 micrograms/kg; 1.8 units/mg); treatment 2: 2-hou