Science.gov

Sample records for adriamycin bleomycin vinblastine

  1. HIV Status Does Not Influence Outcome in Patients With Classical Hodgkin Lymphoma Treated With Chemotherapy Using Doxorubicin, Bleomycin, Vinblastine, and Dacarbazine in the Highly Active Antiretroviral Therapy Era

    PubMed Central

    Montoto, Silvia; Shaw, Kate; Okosun, Jessica; Gandhi, Shreyans; Fields, Paul; Wilson, Andrew; Shanyinde, Milensu; Cwynarski, Kate; Marcus, Robert; de Vos, Johannes; Young, Anna Marie; Tenant-Flowers, Melinda; Orkin, Chloe; Johnson, Margaret; Chilton, Daniella; Gribben, John G.; Bower, Mark

    2012-01-01

    Purpose The prognosis of HIV-infected patients with non-Hodgkin lymphoma in the highly active antiretroviral therapy (HAART) era approaches that of the general population when they are treated with the same protocols. We analyzed the outcome of patients with Hodgkin lymphoma (HL) treated with doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) in the HAART era according to HIV serostatus to establish whether this also holds true for HL. Patients and Methods From 1997 to 2010, 224 patients newly diagnosed with HL, of whom 93 were HIV positive, were consecutively treated with ABVD chemotherapy. HIV-positive patients had more high-risk disease according to the International Prognostic Score (IPS) than HIV-negative patients (IPS ≥ 3: 68% v 26%, respectively; P < .001). Forty-seven HIV-positive patients had a CD4 count less than 200/μL, and 92 patients received HAART during chemotherapy. Results The complete response rate was 74% for HIV-positive patients and 79% for HIV-negative patients (P = not significant). After a median follow-up of 60 months (range, 8 to 174 months), 23 patients (16 HIV-negative and seven HIV-positive patients) have experienced relapse at a median time of 6 months (range, 1 to 106 months). Five-year event-free survival (EFS) was 59% (95% CI, 47% to 70%) for HIV-positive patients and 66% (95% CI, 57% to 74%) for HIV-negative patients (P = not significant). Five-year overall survival (OS) was 81% (95% CI, 69% to 89%) and 88% (95% CI, 80% to 93%) for HIV-positive and HIV-negative patients, respectively (P = not significant). HIV status did not predict OS or EFS on multivariate analysis including IPS and HIV status. Conclusion This mature study demonstrates that HIV-positive patients with HL have more extensive disease with more adverse prognostic factors than HIV-negative patients, but when treated with ABVD, HIV infection does not adversely affect OS or EFS. PMID:23045581

  2. Effect of Bleomycin Hydrolase Gene Polymorphism on Late Pulmonary Complications of Treatment for Hodgkin Lymphoma

    PubMed Central

    Miltényi, Zsófia; Póliska, Szilárd; Bálint, Bálint László; Illés, Árpád

    2016-01-01

    Background Bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, may be a potential candidate that could influence pulmonary function in ABVD (doxorubicin, bleomycin, vinblastin, dacarbasine)–treated Hodgkin lymphoma (HL) patients. Patients and Methods We hypothesized that the BLMH gene SNP A1450G (rs1050565) influences BLMH activity and late pulmonary toxicity. St. George Respiratory Questionnaire, lung scintigraphy and spirometry were used to determine lung function. TaqMan genotyping assay was used to determine genotype distribution of 131 previously treated HL patients. Results Significantly more favorable results were seen in the wild-type A/A genotype group than those in the group containing the mutated allele: A/G+G/G in retrospective pulmonary tests of ABVD treated patients. Conclusion Besides limitations of the current study, bleomycin pharmacokinetics should be further evaluated in patients with BLMH variations, hence identify those cases even in the frontline setting, where bleomycin should be omitted and replaced with targeted therapy. PMID:27327270

  3. Vinblastine

    MedlinePlus

    ... other chemotherapy drugs to treat Hodgkin's lymphoma (Hodgkin's disease) and non-Hodgkin's lymphoma (types of cancer that begin in a type of white blood cell that normally fights infection), and cancer of the testicles. ... X; Letterer-Siwe disease; a condition in which too many of a ...

  4. Bleomycin: female-specific dominant lethal effects in mice.

    PubMed

    Sudman, P D; Rutledge, J C; Bishop, J B; Generoso, W M

    1992-12-01

    Limited comparative data in mice indicate that chemical mutagens that induce dominant lethal mutations in males are not necessarily effective in females, but those which are effective in females are generally equally or more effective in males. Recently, however, a few chemicals have been identified that are female-specific with respect to induction of dominant lethal mutations. The antitumor antibiotic adriamycin is among them. Another antitumor antibiotic, bleomycin was examined for its ability to induce dominant lethal mutations in the reproductive cells of male and female mice. No dominant lethal or cytotoxic effects were observed in males treated with bleomycin, even at a maximum tolerated dose. In females, on the other hand, a dose nearly 1/4 of that used in males induced not only a high level of dominant lethal mutations but also killed oocytes in certain stages of follicular development. The effectiveness of bleomycin in inducing dominant lethal mutations in mouse oocytes makes it a valuable tool for investigating whether gonadal transport, inherent differences in the configuration of chromatin in the germ cells of the two sexes or other factors are responsible for the differential susceptibility to bleomycin, which implies potential gender-specific genetic risk in cancer chemotherapy.

  5. Isolation and characterization of Chinese hamster ovary cell lines sensitive to mitomycin C and bleomycin

    SciTech Connect

    Robson, C.N.; Harris, A.L.; Hickson, I.D.

    1985-11-01

    Seven Chinese hamster ovary K1 cell lines exhibiting sensitivity to anticancer drugs have been isolated by a replica-plating technique. Five of the mutants are hypersensitive to the DNA cross-linking agent mitomycin C. Of these, one is also appreciably sensitive to UV light. Significant variations in their cross-sensitivity to cis-platinum(II) diammine dichloride, chlorambucil, and Adriamycin have also been observed. Two additional mutants have been isolated on the basis of sensitivity to the radiomimetic agent bleomycin. One of these shows greater than 6-fold sensitivity to bleomycin, while the other is approximately 14 times more sensitive than the parental strain to bleomycin and is also hypersensitive to a number of other DNA-damaging agents, including cis-platinum(II) diammine dichloride, chlorambucil, X-rays, and UV light. Both bleomycin-sensitive mutants also exhibit some degree of sensitivity to Adriamycin. In all cases, the cell lines have been grown in continuous culture for 3 months without evidence of reversion and should act as suitable recipients in DNA transfection experiments aimed at identifying human DNA repair genes.

  6. Adriamycin cardiotoxicity amelioration by alpha-tocopherol.

    PubMed

    Krivit, W

    1979-01-01

    Adriamycin has become a potent member of the cancer chemotherapeutic program. However, the full utilization of adriamycin is limited by its cardiotoxicity. In experimental animals, alpha-tocopherol has been shown by some to ameliorate or prevent cardiac dysfunction without impairing antitumor effectiveness. During adriamycin therapy, future clinical research should consist of biochemical measurements of vitamin E in plasma, lipoperoxidation in red cells and platelets, while cars to indicate deficiency, should be considered as one method of ameliorating toxicity.

  7. Vinblastine suppresses dynamics of individual microtubules in living interphase cells.

    PubMed Central

    Dhamodharan, R; Jordan, M A; Thrower, D; Wilson, L; Wadsworth, P

    1995-01-01

    We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells. Images PMID:8534917

  8. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    PubMed

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  9. Potent Vinblastine C20′ Ureas Displaying Additionally Improved Activity Against a Vinblastine-Resistant Cancer Cell Line

    PubMed Central

    2013-01-01

    A series of disubstituted C20′-urea derivatives of vinblastine were prepared from 20′-aminovinblastine that was made accessible through a unique Fe(III)/NaBH4-mediated alkene functionalization reaction of anhydrovinblastine. Three analogues were examined across a panel of 15 human tumor cell lines, displaying remarkably potent cell growth inhibition activity (avg. IC50 = 200–300 pM), being 10–200-fold more potent than vinblastine (avg. IC50 = 6.1 nM). Significantly, the analogues also display further improved activity against the vinblastine-resistant HCT116/VM46 cell line that bears the clinically relevant overexpression of Pgp, exhibiting IC50 values on par with that of vinblastine against the sensitive HCT116 cell line, 100–200-fold greater than the activity of vinblastine against the resistant HCT116/VM46 cell line, and display a reduced 10–20-fold activity differential between the matched sensitive and resistant cell lines (vs 100-fold for vinblastine). PMID:24223237

  10. Bleomycin lung: a case report

    PubMed Central

    Rashid, Rabia Sofia

    2009-01-01

    A 69-year-old gentleman with non-Hodgkin’s lymphoma (stage I), with baseline fibrotic lung changes on CT, received six cycles of R-PMitCebo chemotherapy containing bleomycin. Three months later he presented to the Accident and Emergency Department with progressive dyspnoea, dry cough, pyrexia and generalised lethargy. Chest radiographs showed bilateral lower zone opacities. Clinically, all signs initially pointed to community-acquired penumonia, but he failed to respond to standard treatment for this. Repeat high-resolution CT (HRCT) subsequently showed widespread peripheral interstitial changes consistent with marked fibrotic lung changes. It became apparent that this was in fact bleomycin-induced pulmonary toxicity. The patient rapidly deteriorated and developed type I respiratory failure. Despite intensive steroid treatment, the patient progressively got worse and died in the Intensive Therapy Unit 10 days after admission. Death was directly attributed to pulmonary fibrosis secondary to bleomycin treatment. PMID:21686431

  11. [Combination chemotherapy with bleomycin, vinca alkaloid and cisplatin (BVP) for advanced urothelial cancer].

    PubMed

    Sekine, H; Fukui, I; Yamada, T; Takeuchi, S; Tachibana, Y; Yokokawa, M

    1984-08-01

    Since October 1979, 18 patients with metastatic urothelial cancer have been treated with combination chemotherapy of bleomycin (5-10 mg/day administered on days 1 to 7), vinca alkaloid (vinblastine 5-10 mg/day or vincristine 1 mg/sqm on days 8 and 9) and CDDP (60 mg/sqm on day 10). CR was achieved in 3 of the 18 patients and PR in 6 patients. Over-all, the response rate was 50%. Among 3 patients who achieved CR, 2 patients are still free of disease for 31 months and for 28 months, and the other is alive with cancer for 26 months. The 2-year survival rate was 58% in responders (CR + PR) and 0% in nonresponders. (p less than 0.005). In many cases, the response was observed after the first or second course of BVP therapy, and there was a relatively good response in patients with lymphnode metastasis alone. The treatment was tolerated well and common toxic effects were nausea, vomiting of moderate to severe degree (100%), myelosuppression (50%) and mild nephrotoxicity (22%). As to the choice of vinca alkaloids, vincristine seemed to be the treatment of choice because it was less toxic than vinblastine and was almost equally effective.

  12. Adriamycin effects and the interactions of adriamycin with x irradiation on murine mammary tumors

    SciTech Connect

    Dethlefsen, L.A.; Riley, R.M.

    1982-04-01

    The effects of a single intraperitoneal injection of adriamycin (10 mg/kg) on a slow-growing C3H mouse mammary tumor (Slow) were analyzed volumetrically, biochemically, autoradiographically, and flow cytometrically. Adriamycin, at this dose, did not induce regression in tumor volume but did inhibit the growth rate for several days. The (/sup 3/H)TdR pulse-labeling index was initially high (23% at 7 hr vs 16% for control) but then dropped to 8% at 96 hr postinjection. Qualitatively, the flow cytometric data supported these trends with the percentage of cells in S phase being about 95, 85, and 85%, respectively, at 7, 24, and 96 hr postinjection. In contrast, the (/sup 3/H)TdR incorporation even though quite valuable, was initially in agreement but at 96 hr postinjection, it was about 145% of control. The fraction of cells in G/sub 2/M was more than 350% of control at 72 hr and was still over 180% at 120 hr postinjection; however, the mitotic index per se was basically unchanged during this period. Thus the extended effect on the volumetric growth rate appears to be due primarily to the extensive G/sub 2/ arrest. Adriamycin also affects the subsequent X-irradiation response. The dose for local tumor control from a single irradiation was markedly elevated at 24 hr in the Slow line (slow growing) and at 96 hr after adriamycin injection in the S102F line (fast growing). These X-ray plus drug results are contrary to the results anticipated from the effects of adriamycin, as published in general, and specifically from the cytokinetic effects of adriamycin on the tumors reported here as well as those published previously. These results indicate that the interaction of drugs with X irradiation in solid tumors in vivo is much more complicated than expected from the numerous published in vitro studies.

  13. Electrochemical and quantum chemical studies on mitomycin and adriamycin

    NASA Astrophysics Data System (ADS)

    Özalp-Yaman, Şeniz; Önal, Ahmet M.; Türker, Lemi

    2003-06-01

    In-situ spectroelectrochemical redox behaviour of two prominent chemotherapeutic agents, mitomycin and adriamycin were studied at constant potential. AM1 (UHF) type quantum chemical calculations on the neutral as well as radical anion and cation forms of mitomycin and adriamycin were performed.

  14. Doxorubicin (Adriamycin) Cardiomyopathy—A Critical Review

    PubMed Central

    Saltiel, Emmanuel; McGuire, William

    1983-01-01

    Despite its vast utility in clinical oncology, the use of doxorubicin hydrochloride (Adriamycin) is limited by a potentially fatal cardiomyopathy. The following critical review, which examines the natural course, histopathologic effects, risk factors and monitoring indicators of this toxicity, also analyzes recent research of proposed mechanisms, including free radical formation with depletion of detoxifying enzymes, inhibition of vital enzyme systems and alterations in relative calcium concentrations. Prevention of the adverse reaction has been attempted by using such agents as α-tocopherol, selenium sulfide, coenzyme Q10, sulfhydryl donors, nucleosides and razoxane, and via liposomal carriage and alternative methods of administration. PMID:6356608

  15. Bleomycin

    MedlinePlus

    ... cancer (including cancer of the mouth, lip, cheek, tongue, palate, throat, tonsils, and sinuses) and cancer of ... rash hair loss sores on the mouth or tongue vomiting loss of appetite weight loss Some side ...

  16. The effects of vinblastine on the expression of human immunodeficiency virus type 1 long terminal repeat.

    SciTech Connect

    Akan, E.; Chang-Liu, C.-M.; Woloschak, G. E.; Center for Mechanistic Biology and Biotechnology

    1997-05-01

    Previous work by our group has demonstrated induction of the HIV-LTR following exposure of cells to various DNA-damaging agents such as ultraviolet (UV) light, cisplatin, and doxorubicin. The current experiments were designed to determine the relative effects of the anti-mitotic drug vinblastine on expression of the HIV-LTR. Using human cervical carcinoma (HeLa) cells stably transfected with the chloramphenicol acetyl transferase (CAT) reporter transcriptionally driven by the HIV-LTR promoter, we demonstrated a 9-10-fold induction at 48-72 h following vinblastine treatment. Previous experiments had demonstrated repression of cisplatin or doxorubicin-mediated HIV induction by treatment with salicylic acid. The vinblastine induction also was repressed by salicylic acid treatment, but not by treatment with indomethacin, suggesting a role for the NF{kappa}B pathway in the inductive response. When UV exposure was coupled to the vinblastine treatment, there was no additive or synergistic effect evident, suggesting similar paths of induction between the two agents. Northern blots demonstrated that these agents were operating at the level of transcription and that salicylic acid inhibited vinblastine-mediated induction of HIV-LTR-CAT mRNA only if administered at the same time as vinblastine; addition of salicylic acid 2 h later had no effect on transcript accumulation. All combinations of treatments with vinblastine and/or salicylic acid markedly reduced cell survival.

  17. Adriamycin alopecia prevented by cold air scalp cooling.

    PubMed

    Symonds, R P; McCormick, C V; Maxted, K J

    1986-10-01

    Preliminary studies are reported on the effectiveness of cold air scalp cooling to prevent alopecia in patients receiving Adriamycin. Cold air produced in a novel way using a vortex refrigeration tube was applied to the scalp for 15 min before and 30 min after the administration of Adriamycin and other cytotoxic agents. Sixteen of 26 patients had no hair loss, four had slight hair loss, and six required a wig. Two subgroups fared particularly well. Four of four patients treated with ABVD for Hodgkin's disease and nine of 13 treated with Adriamycin (40 mg/m2) and vincristine (2 mg) for breast cancer had no hair loss.

  18. Photochemical internalization of bleomycin for glioma treatment

    PubMed Central

    Mathews, Marlon S.; Blickenstaff, Joseph W.; Shih, En-Chung; Zamora, Genesis; Vo, Van; Sun, Chung-Ho; Hirschberg, Henry; Madsen, Steen J.

    2012-01-01

    Abstract. We study the use of photochemical internalization (PCI) for enhancing chemotherapeutic response to malignant glioma cells in vitro. Two models are studied: monolayers consisting of F98 rat glioma cells and human glioma spheroids established from biopsy-derived glioma cells. In both cases, the cytotoxicity of aluminum phthalocyanine disulfonate (AlPcS2a)-based PCI of bleomycin was compared to AlPcS2a-photodynamic therapy (PDT) and chemotherapy alone. Monolayers and spheroids were incubated with AlPcS2a (PDT effect), bleomycin (chemotherapy effect), or AlPcS2a+bleomycin (PCI effect) and were illuminated (670 nm). Toxicity was evaluated using colony formation assays or spheroid growth kinetics. F98 cells in monolayer/spheroids were not particularly sensitive to the effects of low radiant exposure (1.5  J/cm2 @ 5  mW/cm2) AlPcS2a-PDT. Bleomycin was moderately toxic to F98 cells in monolayer at relatively low concentrations—incubation of F98 cells in 0.1  μg/ml for 4 h resulted in 80% survival, but less toxic in human glioma spheroids respectively. In both in vitro systems investigated, a significant PCI effect is seen. PCI using 1.5  J/cm2 together with 0.25  μg/ml bleomycin resulted in approximately 20% and 18% survival of F98 rat glioma cells and human glioma spheroids, respectively. These results show that AlPcS2a-mediated PCI can be used to enhance the efficacy of chemotherapeutic agents such as bleomycin in malignant gliomas. PMID:22612148

  19. Modeling Space Radiation with Radiomimetic Agent Bleomycin

    NASA Technical Reports Server (NTRS)

    Lu, Tao

    2017-01-01

    Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of

  20. Mesenchymal stem cells are sensitive to bleomycin treatment

    PubMed Central

    Nicolay, Nils H.; Rühle, Alexander; Perez, Ramon Lopez; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2016-01-01

    Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic. PMID:27215195

  1. Detection of adriamycin-DNA adducts by accelerator mass spectrometry.

    PubMed

    Coldwell, Kate; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2010-01-01

    There have been many attempts in the past to determine whether significant levels of Adriamycin-DNA adducts form in cells and contribute to the anticancer activity of this agent. Supraclincal drug levels have been required to study drug-DNA adducts because of the lack of sensitivity associated with many of the techniques employed, including liquid scintillation counting of radiolabeled drug. The use of accelerator mass spectrometry (AMS) has provided the first direct evidence of Adriamycin-DNA adduct formation in cells at clinically relevant Adriamycin concentrations. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection (compared to liquid scintillation counting) and has revealed adduct formation within an hour of drug treatment. The rigorous protocol required for this approach, together with many notes on the precautions and procedures required in order to ensure that absolute levels of Adriamycin-DNA adducts can be determined with good reproducibility, is outlined in this chapter.

  2. Effect of hepatic irradiation on the toxicity and pharmacokinetics of adriamycin in children

    SciTech Connect

    Holcenberg, J.S.; Kun, L.E.; Ring, B.J.; Evans, W.E.

    1981-07-01

    The effect of hepatic irradiation on adriamycin toxicity and pharmacokinetics was studied in 10 children who received adriamycin with concurrent abdominal irradiation for Wilms' tumor. Hepatic irradiation to 2400 to 2700 rad at 100 to 150 rad per fraction did not alter the clinical toxicity or plasma pharmacokinetics of adriamycin.

  3. A Nonselective Cyclooxygenase Inhibitor Enhances the Activity of Vinblastine in a Naturally-Occurring Canine Model of Invasive Urothelial Carcinoma

    PubMed Central

    Knapp, Deborah W.; Ruple-Czerniak, Audrey; Ramos-Vara, José A.; Naughton, James F.; Fulkerson, Christopher M.; Honkisz, Sonia I.

    2016-01-01

    Background: Chemotherapy is expected to remain an important part of invasive urothelial carcinoma (UC) treatment. Strategies to enhance chemotherapy efficacy are needed. Objective: To determine the chemotherapy-enhancing effects of a nonselective cyclooxygenase (COX) inhibitor on vinblastine in a naturally-occurring canine model of invasive UC. Methods: With IACUC approval, privately-owned dogs with naturally-occurring histologically-diagnosed invasive UC, expected survival ≥6 weeks, and informed owner consent were randomly allocated to receive vinblastine (2.5 mg/m2 intravenously every 2 weeks) plus piroxicam (0.3 mg/kg daily per os) or vinblastine alone (same dose) with the option to receive piroxicam alone when vinblastine failed. Scheduled evaluations included physical exam, standard laboratory analyses, thoracic radiography, abdominal ultrasonography, and standardized measurement of urinary tract tumors. Results: Dogs receiving vinblastine alone (n = 27) and vinblastine-piroxicam (n = 24) were similar in age, sex, breed, tumor stage, and grade. Remission occurred more frequently (P <  0.02) with vinblastine-piroxicam (58.3%) than with vinblastine alone (22.2%). The median progression free interval was 143 days with vinblastine alone and 199 days with the combination. Interestingly, the overall median survival time was significantly longer (P <  0.03) in dogs receiving vinblastine alone followed by piroxicam alone (n = 20, 531 days) than in dogs receiving the combination (299 days). Treatment was well tolerated in both arms. Conclusions: Piroxicam significantly enhanced the activity of vinblastine in dogs with UC where the cancer closely mimics the human condition, clearly justifying further study. The study suggest the potential importance of tracking COX inhibitor use in patients in clinical trials as COX inhibitors could affect treatment response. PMID:27376143

  4. Combination radiation-adriamycin therapy: renoprival growth, functional and structural effects in the immature mouse

    SciTech Connect

    Donaldson, S.S.; Moskowitz, P.S.; Canty, E.L.; Fajardo, L.F.

    1980-07-01

    The normal tissue effects of radiation-adriamycin combination therapy were studied in the renoprival weanling mouse in an attempt to determine whether compensatory renal growth inhibition from radiation and chemotherapy could be associated with structural or functional abnormalities. Weanling BLc/sub Fl/ mice underwent unilateral nephrectomy, then single fraction renal irradiation, LD 1/21 doses of adriamycin in 5 daily doses, or combination therapy with radiation and adriamycin. Animals were sacrificed at 3, 12, and 24 weeks. Compensatory renal growth, body growth, serum blood urea nitrogen (BUN), and renal morphology by light microscopy were evaluated. Significant compensatory renal growth inhibition from radiation-adriamycin therapy exceeded that produced by adriamycin alone and radiation alone, at all time periods (p < 0.005). Body growth inhibition from radiation-adriamycin therapy or adriamycin alone significantly exceeded that produced by radiation alone (p < 0.005). Kidney and body growth inhibition from radiation-adriamycin therapy was proportionately severe. Kidney growth inhibition proportionately exceeded body growth inhibition with radiation alone; body growth inhibition proportionately exceeded kidney growth inhibition with adriamycin alone. Comparable azotemia developed by 24 weeks in both the radiation alone (p < .005) and radiation-adriamycin animals (p < 0.005), but not in the adriamycin only animals. Morphologic alterations consisting of increased glomerular density, tubular atrophy, and stromal fibrosis occurred with greater severity in the radiation-adriamycin animals than in the radiation only animals by 24 weeks; no alterations were seen in the adriamycin only animals. Using histologic criteria 750 rad plus adriamycin produced comparable injury as seen with 1000 rad alone, thus adriamycin produced an apparent dose-modifying factor of 1.33.

  5. DNA strand scission induced by adriamycin and aclacinomycin A.

    PubMed

    Someya, A; Tanaka, N

    1979-08-01

    The binding of adriamycin and aclacinomycin A with PM2 DNA, and the consequent cleavage of DNA have been demonstrated by agarose gel electrophoresis, using an ethidium bromide assay. Adriamycin was observed to induce a single strand scission of DNA in the presence of a reducing agent, but aclacinomycin A caused much less degree of DNA breaks. The DNA cleavage was enhanced by Cu2+ and Fe2+, but not significantly by Ni2+, Zn2+, Mg2+ and Ca2+, suggesting that reduction and auto-oxidation of the quinone moiety and H2O2 production participate in the DNA-cutting effect. The DNA degradation was dependent upon concentrations of the anthracyclines and CuCl2. The degree of DNA cleavage at 0.04 mM adriamycin was similar to that at 0.4 mM aclacinomycin A in the presence of 1 mM NADPH and 0.4 mM CuCl2. DNA was degraded to small fragments at 0.4 mM adriamycin and 0.2 mM CuCl2. The anthracycline-induced DNA cleavage was stimulated by H2O2, but partially inhibited by potassium iodide, superoxide dismutase, catalase and nitrogen gas atmosphere. The results suggested that both free radical of anthracycline quinones and hydroxyl radical directly react with DNA strands.

  6. Apigenin protects against bleomycin-induced lung fibrosis in rats.

    PubMed

    Chen, Ling; Zhao, Wei

    2016-01-01

    Apigenin is a non-toxic and non-mutagenic flavone that exists abundantly in numerous herbs and vegetables. Apigenin exerts anti-proliferative and anti-inflammatory properties. The aim of the present study was to investigate the effects of apigenin on bleomycin-induced lung fibrosis in rats. A single intratracheal instillation of bleomycin (5 mg/kg) was administered and rats were sacrificed on 7 and 28 days post bleomycin instillation. The instillation of bleomycin resulted in decreased body weight and an increase in the lung index. In addition, bleomycin administration increased the hydroxyproline content, myeloperoxidase (MPO) activity, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β levels and decreased the superoxide dismutase (SOD) activity in the rat lung tissues. Excessive collagen deposits were detected in the lung tissues in bleomycin-treated rats compared with normal control rats. Notably, the oral administration of apigenin (10, 15 and 20 mg/kg/day) appeared to prevent the fibrotic process. The treatment suppressed the increases in hydroxyproline content, MPO activity, TNF-α and TGF-β levels and attenuated the reduction of SOD activity that were induced by bleomycin. Furthermore, excessive collagen deposition was inhibited by the apigenin treatment. Collectively, these results suggest that apigenin may function as a potent anti-inflammatory and anti-fibrotic agent against bleomycin-induced lung fibrosis.

  7. The bactericidal effect on Pseudomonas strains of adriamycin associated with quinolones.

    PubMed

    Castelli, M; Baggio, G; Aresca, P; Bossa, R; Galatulas, I

    1989-01-01

    The in vitro antibacterial activity of quinolone compounds was assessed on strains of Pseudomonas aeruginosa isolated from clinical infections. The bactericidal effect of quinolones was high and their respective antibacterial properties with adriamycin remained unimpaired on strains both sensitive and resistant to betalactam and aminoglycoside antibiotics. The cytotoxic effect of the combination of adriamycin and quinolones was determined in cultured P388 leukemia cells: no interference with the cytotoxic activity of adriamycin was observed.

  8. JNK and NFκB dependence of apoptosis induced by vinblastine in human acute promyelocytic leukaemia cells.

    PubMed

    Calviño, Eva; Tejedor, M Cristina; Sancho, Pilar; Herráez, Angel; Diez, José C

    2015-06-01

    The relationship between the mitogen-activated protein kinase response, nuclear factor-κB (NFκB) expression and the apoptosis in human acute promyelocytic leukaemia NB4 cells treated with vinblastine was investigated in this work. Cell viability, subdiploid DNA and cell cycle were analysed by propidium iodide permeability and flow cytometry analyses. Apoptosis was determined by annexin V-Fluorescein isothiocyanate assays. Western-blot analysis was used for determination of expression levels of apoptotic factors (p53, Bax and Bcl2), intracellular kinases [serine/threonine-specific protein kinase, extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK)], NFκB factor and caspases. Electrophoretic mobility shift assay was usefully applied to study DNA-NFκB interaction. In NB4 cells, vinblastine produces alteration of p53 and DNA fragmentation. Vinblastine treatment had an antiproliferative effect via the induction of apoptosis producing Bax/Bcl-2 imbalance. Vinblastine treatment suppressed NFκB expression and depressed NFκB-DNA binding activity while maintaining JNK activation that subsequently resulted in apoptotic response through caspase-dependent pathway. Our study provides a possible anti-cancer mechanism of vinblastine action on NB4 cells by deregulation of the intracellular signalling cascade affecting to JNK activation and NFκB expression. Moreover, JNK activation and NFκB depression can be very significant factors in apoptosis induction by vinblastine.

  9. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  10. The effects of topical instillation of adriamycin in bladder tumors of rats fed with FANFT.

    PubMed

    Pontes, J E; Izbicki, R; Silberberg, B; Baker, L; Pierce, J M

    1978-01-01

    Topical bladder instillation of adriamycin was evaluated in FANET produced rat tumors produced by diets containing (N-[4-(5-Nitro-2-Furyl)-2-Thiazolyl] Formamide). The drug was ineffective in either preventing or eradicating tumors. The failure of response in this animal model may be related to drug schedule, biological potential of this tumor, or ineffectiveness of Adriamycin in this tumor.

  11. Activation of adriamycin by the pH-dependent formaldehyde-releasing prodrug hexamethylenetetramine.

    PubMed

    Swift, Lonnie P; Cutts, Suzanne M; Rephaeli, Ada; Nudelman, Abraham; Phillips, Don R

    2003-02-01

    Previous studies have shown that Adriamycin can react with formaldehyde to yield an activated form of Adriamycin that can further react with DNA to yield Adriamycin-DNA adducts. Because hexamethylenetetramine (HMTA) is known to hydrolyze under cellular conditions and release six molecules of formaldehyde in a pH-dependent manner, we examined this clinical agent for its potential as a formaldehyde-releasing prodrug for the activation of Adriamycin. In IMR-32 neuroblastoma cells in culture, increasing levels of HMTA resulted in enhanced levels of Adriamycin-DNA adducts. These adducts were formed in a pH-dependent manner, with 4-fold more detected at pH 6.5 compared with pH 7.4, consistent with the known acid lability of HMTA. The resulting drug-DNA lesion was shown to be cytotoxic, with combined Adriamycin and prodrug treatment resulting in a 3-fold lower IC(50) value compared with that of Adriamycin alone. Given the acidic nature of solid tumors and the preferential release of formaldehyde from HMTA in acidic environments, HMTA therefore has some potential for localized activation of Adriamycin in solid tumors.

  12. Bleomycin lung toxicity: who are the patients with increased risk?

    PubMed

    Azambuja, E; Fleck, J F; Batista, R G; Menna Barreto, S S

    2005-01-01

    Bleomycin is an antibiotic drug with anticancer properties produced by Streptomyces verticillus [Cheson BD. Pharmacology of cancer chemotherapy: miscellaneous chemotherapeutic agents. In De Vita Jr. VT, Hellmann S, Rosenberg AS, editors. Cancer principles and practice of oncology. Lippincott Willians & Wilkins; 2001. p. 452-459]. It was isolated in 1966 by Umezawa et al. and its mechanism of action is breaking the DNA double helix by the production of free radicals, which is oxygen and iron dependent [Cheson BD. Pharmacology of cancer chemotherapy: miscellaneous chemotherapeutic agents. In De Vita Jr. VT, Hellmann S, Rosenberg AS, editors. Cancer principles and practice of oncology. Lippincott Willians & Wilkins; 2001. p. 452-459; Hay J, Shahzeidi S, Laurent G. Mechanisms of bleomycin-induced lung damage. Arch Toxicol 1991;65:81-94]. Bleomycin may be inactivated by bleomycin hidrolase presents in normal and tumoral cells [Cheson BD. Pharmacology of cancer chemotherapy: miscellaneous chemotherapeutic agents. In De Vita Jr. VT, Hellmann S, Rosenberg AS, editors. Cancer principles and practice of oncology. Lippincott Willians & Wilkins; 2001. p. 452-459; Hay J, Shahzeidi S, Laurent G. Mechanisms of bleomycin-induced lung damage. Arch Toxicol 1991;65:81-94; Jules-Elysee K, White DA. Bleomycin-induced pulmonary toxicity. Clinics Chest Med 1990;11:1-20]. The complex bleomycin-Fe has been the most studied because bleomycin joins the DNA and Fe at the same time, and release of free radicals happens in the presence of molecular oxygen [Hay J, Shahzeidi S, Laurent G. Mechanisms of bleomycin-induced lung damage. Arch Toxicol 1991;65:81-94]. Bleomycin has a renal metabolism with 50% of dose eliminated in 4h after its administration and 70% in the next 24h. Its half-life (T 1/2) is not altered, although the creatinine clearance drops to 25-35 ml/min [Cheson BD. Pharmacology of cancer chemotherapy: miscellaneous chemotherapeutic agents. In De Vita Jr. VT, Hellmann S, Rosenberg

  13. Normalizing renal reducing ability prevents adriamycin-induced proteinuria

    SciTech Connect

    Oteki, Takaaki; Nagase, Sohji . E-mail: sohji-n@md.tsukuba.ac.jp; Yokoyama, Hidekatsu; Ohya, Hiroaki; Akatsuka, Takao; Tada, Mika; Ueda, Atsushi; Hirayama, Aki; Koyama, Akio

    2005-11-11

    Reactive oxygen species play an important role in adriamycin (ADR) nephropathy. We showed by in vivo electron paramagnetic resonance (EPR) that renal reducing ability (RRA) declined on the 7th day after ADR administration. Proteinuria appeared after the decline in RRA. The aim of this study was to prove by in vivo EPR whether the decline in RRA is altered by scavengers such as dimethyl sulfoxide (DMSO) and dimethylthiourea (DMTU) and that it is this change which is responsible for the proteinuria in ADR nephropathy. By showing that DMSO and DMTU ameliorate the RRA, we demonstrate that the decline in RRA is related to ADR-induced proteinuria.

  14. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    PubMed Central

    Mohseni, Mahsa; Samadi, Nasser; Ghanbari, Parisa; Yousefi, Bahman; Tabasinezhad, Maryam; Sharifi, Simin; Nazemiyeh, Hossein

    2016-01-01

    Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients’ survival. Induction of drug efflux due to overexpression of P-glycoproteins is considered as an important leading cause of multidrug resistance. In this study, we investigated the role of combination treatments of docetaxel and vinblastine in overcoming P-glycoprotein mediated inhibition of apoptosis and induction of cell proliferation in human non-small cell lung carcinoma cells. Materials and Methods: Cell proliferation and apoptosis were assessed using MTT assay and DAPI staining, respectively. P-glycoprotein expression was evaluated in gene and protein levels by Real-time RT-PCR and Western blot analysis, respectively. Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1) to (15±2.6) nM and for vinblastine from (30±5.9) to (5±5.6) nM (P≤0.05). P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001). Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05). Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents. Conclusion: Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression. PMID:27114800

  15. Elastase modifies bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Trajano, Larissa Alexsandra Silva Neto; Trajano, Eduardo Tavares Lima; Lanzetti, Manuella; Mendonça, Morena Scopel Amorim; Guilherme, Rafael Freitas; Figueiredo, Rodrigo Tinoco; Benjamim, Cláudia Farias; Valenca, Samuel Santos; Costa, Andréa Monte Alto; Porto, Luís Cristóvão

    2016-04-01

    Pulmonary fibrosis (PF) is characterized by excessive accumulation of collagen in the lungs. Emphysema is characterized by loss of the extracellular matrix (ECM) and alveolar enlargement. We studied the co-participation of elastase-induced mild emphysema in bleomycin-induced PF in mice by analyzing oxidative stress, inflammation and lung histology. C57BL/6 mice were divided into four groups: control; bleomycin (0.1U/mouse); elastase (using porcine pancreatic elastase (PPE)+bleomycin (3U/mouse 14 days before 0.1U/mouse of bleomycin; PPE+B); elastase (3U/mouse). Mice were humanely sacrificed 7, 14 and 21 days after treatment with bleomycin or vehicle. PF was observed 14 days and 21 days after bleomycin treatment but was observed after 14 days only in the PPE+B group. In the PPE+B group at 21 days, we observed many alveoli and alveolar septa with few PF areas. We also observed marked and progressive increases of collagens 7, 14 and 21 days after bleomycin treatment whereas, in the PPE+B group, collagen deposition was observed only at 14 days. There was a reduction in activities of the antioxidant enzymes superoxide dismutase (p<0.05), catalase (p<0.01) and glutathione peroxidase (p<0.01) parallel with an increase in nitrite (p<0.01) 21 days after bleomycin treatment compared with the control group. These endpoints were also reduced (p<0.05, p<0.05 and p<0.01, respectively) and increased (p<0.01) in the PPE+B group at 21 days compared with the control group. Interleukin (IL)-1β expression was upregulated (p<0.01) whereas IL-6 was downregulated (p<0.05) in the PPE+B group at 21 days compared with the control group. PF and emphysema did not coexist in our model of lung disease and despite increased levels of oxidative stress and inflammatory markers after combined stimulus (elastase and bleomycin) overall histology was improved to that of the nearest control group.

  16. Carnitine promotes heat shock protein synthesis in adriamycin-induced cardiomyopathy in a neonatal rat experimental model.

    PubMed

    Strauss, M; Anselmi, G; Hermoso, T; Tejero, F

    1998-11-01

    In order to evaluate carnitine protective strategy and its relationship with heat shock protein induction, female Sprague-Dawley neonatal rats, body weight 40 g, were randomized into four groups: control, adriamycin, carnitine and carnitine-adriamycin. Adriamycin was injected i.v. at a dose of 27 mg/kg (0.1 ml). Carnitine was administered i.v. (20 mg/0.1 ml) before each subdose of adriamycin and then per os (180 mg/kg) daily for 12 weeks. Body weight was recorded weekly. Ventricular wall thickness and cellular damage percentage were morphometrically and ultrastructurally determined, respectively. The determinations were realized monthly until the third month after treatment. The heat shock protein 25 content in the supernatant of the homogenized heart tissue was determined by Western blot analysis. Eight and 12 weeks after treatment, body weight and ventricular wall thickness decreased much more in adriamycin groups than in control and carnitine ones. At the same time, electron microscopic analysis of adriamycin left ventricular wall samples showed loss of myofibrils, swollen mitochondria and vacuoles. Carnitine-adriamycin treated rats resemble control groups more than adriamycin treated samples. Moreover, de-novo synthesis of heat shock protein was three times more induced in carnitine-adriamycin rats than in adriamycin ones. Carnitine may enhance the cell-protecting mechanism based on an induction of shock protein, and this first cellular response could reduce the severity of late adriamycin-cardiomiopathy.

  17. Erdosteine prevents bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Sogut, Sadik; Ozyurt, Huseyin; Armutcu, Ferah; Kart, Levent; Iraz, Mustafa; Akyol, Omer; Ozen, Suleyman; Kaplan, Suleyman; Temel, Ismail; Yildirim, Zeki

    2004-06-28

    Oxidative stress plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. Therefore, erdosteine, an antioxidant, is expected to have an inhibitor potential against the disease. Rats were given one dose of bleomycin in pulmonary fibrosis groups and saline in controls. The first dose of oral erdosteine (10 mg/kg/day) was given 2 days before the bleomycin injection to achieve the plateau level in blood and continued until killing. At day 14, fibrotic changes were evaluated, using Aschoft's criteria and lung hydroxyproline content. Bleomycin produced a fivefold increase in fibrosis score that was decreased by 87% by erdosteine (P>0.001) and almost twofold increases in hydroxyproline content which were completely prevented by erdosteine. Myeloperoxidase activities and MDA levels, which were significantly higher in the bleomycin group, were then significantly attenuated by erdosteine. These results revealed that oral erdosteine may prevent the development of acute pulmonary inflammation caused by bleomycin injection via the repression of neutrophil accumulation and lipid peroxidation, resulting in the inhibition of subsequent lung fibrosis.

  18. Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus

    PubMed Central

    Wang, Xi; Pan, Ya-Jie; Chang, Bo-Wen; Hu, Yan-Bo; Guo, Xiao-Rui; Tang, Zhong-Hua

    2016-01-01

    We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon. PMID:27314017

  19. A Remarkable Series of Vinblastine Analogues Displaying Enhanced Activity and an Unprecedented Tubulin Binding Steric Tolerance: C20' Urea Derivatives

    PubMed Central

    Leggans, Erick K.; Duncan, Katharine K.; Barker, Timothy J.; Schleicher, Kristin D.; Boger, Dale L.

    2012-01-01

    A systematic series of previously inaccessible key C20' urea and thiourea derivatives of vinblastine were prepared from 20'-aminovinblastine that was made accessible through a unique Fe(III)/NaBH4-mediated alkene functionalization reaction of anhydrovinblastine. Their examination defined key structural features of the urea-based analogues that contribute to their properties and provided derivatives that match or exceed the potency of vinblastine by as much as 10-fold in cell-based functional assays, which is directly related to their relative tubulin binding affinity. In contrast to expectations based on apparent steric constraints of the tubulin binding site surrounding the vinblastine C20' center depicted in an x-ray co-crystal structure, remarkably large C20' urea derivatives are accommodated. PMID:23244701

  20. Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus.

    PubMed

    Wang, Xi; Pan, Ya-Jie; Chang, Bo-Wen; Hu, Yan-Bo; Guo, Xiao-Rui; Tang, Zhong-Hua

    2016-01-01

    We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon.

  1. Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer–dimer interface

    PubMed Central

    Carney, Daniel W.; Lukesh, John C.; Brody, Daniel M.; Brütsch, Manuela M.; Boger, Dale L.

    2016-01-01

    Approaches to improving the biological properties of natural products typically strive to modify their structures to identify the essential pharmacophore, or make functional group changes to improve biological target affinity or functional activity, change physical properties, enhance stability, or introduce conformational constraints. Aside from accessible semisynthetic modifications of existing functional groups, rarely does one consider using chemical synthesis to add molecular complexity to the natural product. In part, this may be attributed to the added challenge intrinsic in the synthesis of an even more complex compound. Herein, we report synthetically derived, structurally more complex vinblastines inaccessible from the natural product itself that are a stunning 100-fold more active (IC50 values, 50–75 pM vs. 7 nM; HCT116), and that are now accessible because of advances in the total synthesis of the natural product. The newly discovered ultrapotent vinblastines, which may look highly unusual upon first inspection, bind tubulin with much higher affinity and likely further disrupt the tubulin head-to-tail α/β dimer–dimer interaction by virtue of the strategic placement of an added conformationally well-defined, rigid, and extended C20′ urea along the adjacent continuing protein–protein interface. In this case, the added molecular complexity was used to markedly enhance target binding and functional biological activity (100-fold), and likely represents a general approach to improving the properties of other natural products targeting a protein–protein interaction. PMID:27512044

  2. [Cell cycle arrest at M phase induced by vinblastine in MOLT-4 cells].

    PubMed

    Zhong, Yi-Sheng; Pan, Chang-Chuan; Jin, Chang-Nan; Li, Jian-Jun; Xiong, Gong-Peng; Zhang, Jian-Xi; Gong, Jian-Ping

    2009-04-01

    This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.

  3. Effect of adriamycin on BRCA1 and PARP-1 expression in MCF-7 breast cancer cells.

    PubMed

    Wang, Hui; Lu, Changqing; Tan, Yan; Xie, Jun; Jiang, Jingting

    2014-01-01

    To study the effects of adriamycin on the expression of BRCA1 and PARP-1 in BRCA1 wild-type MCF-7 cells. We used Western blotting to detect BRCA1 and PARP-1 levels in MCF-7 cells treated with adriamycin, and used flow cytometry to detect apoptotic MCF-7 cells. Results showed that adriamycin can increase PARP-1 activation in a dose- and time-dependent manner. BRCA1 levels were also increased upon treatment with a high dose of adriamycin, but gradually decreased over time. Treatment of MCF-7 cells with 3-ABA inhibited PARP-1 activity, but had no effect on BRCA1 levels. Compared to adriamycin and 3-ABA treatment alone, the co-treatment can increase the apoptosis of MCF-7 cells. Compared to BRCA1-defective HCC1937 cells, adriamycin combined with 3-ABA can further induce apoptosis of MCF-7 cells (P < 0.05). All of these suggested that adriamycin can affect the PARP-1 activation and the expression of BRCA1. Combined with 3-ABA has an additive effect on the rate of apoptosis observed.

  4. Bleomycin Sclerotherapy for Severe Symptomatic and Persistent Pelvic Lymphocele

    PubMed Central

    Fernandes, Ana Sofia; Costa, Antónia; Mota, Raquel; Paiva, Vera

    2014-01-01

    Background. Pelvic lymphoceles are frequently described as a complication of pelvic lymphadenectomy performed for surgical staging of gynaecologic malignancies. Case Report. A 72-year-old woman presented with severe symptomatic and refractory lymphocele associated with persistent lower limb lymphedema and recurrent erysipelas. After four CT fluoroscopy scan guided percutaneous catheter drainages, the lymphocele complicated with infection finally resolved with two sessions of bleomycin sclerotherapy. Conclusion. Symptomatic persistent lymphoceles require treatment and nowadays the first option is interventional radiologic procedures. Bleomycin is a safe and effective sclerosing agent and therefore should be regarded as a first-line treatment choice. PMID:25105040

  5. Effects of aminoguanidine and antioxidant erdosteine on bleomycin-induced lung fibrosis in rats.

    PubMed

    Yildirim, Zeki; Turkoz, Yusuf; Kotuk, Mahir; Armutcu, Ferah; Gurel, Ahmet; Iraz, Mustafa; Ozen, Suleyman; Aydogdu, Ismet; Akyol, Omer

    2004-09-01

    Reactive oxygen and nitrogen species have been implicated in the pathogenesis of bleomycin-induced lung fibrosis. The effects of aminoguanidine and erdosteine on the bleomycin-induced lung fibrosis were evaluated in rats. The animals were placed into five groups: Vehicle + vehicle, vehicle + bleomycin (2.5 U/kg), bleomycin + aminoguanidine (200 mg/kg), bleomycin + erdosteine (10 mg/kg), and bleomycin + erdosteine + aminoguanidine. Bleomycin administration resulted in prominent lung fibrosis as measured by lung hydroxyproline content and lung histology, which is completely prevented by erdosteine and aminoguanidine. A strong staining for nitro tyrosine antibody in lung tissue and increased levels of lung NO were found in bleomycin group, that were significantly reduced by aminoguanidine and erdosteine. Aminoguanidine and erdosteine significantly prevented depletion of superoxide dismutase and glutathione peroxidase and elevated myeloperoxidase activities, malondialdehyde level in lung tissue produced by bleomycin. Data presented here indicate that aminoguanidine and erdosteine prevented bleomycin-induced lung fibrosis and that nitric oxide mediated tyrosine nitration of proteins plays a significant role in the pathogenesis of bleomycin-induced lung fibrosis. Also our data suggest that antifibrotic affect of antioxidants may be due to their inhibitory effect on nitric oxide generation in this model.

  6. Total Synthesis of Vinblastine, Vincristine, Related Natural Products, and Key Structural Analogues

    PubMed Central

    Ishikawa, Hayato; Colby, David A.; Seto, Shigeki; Va, Porino; Tam, Annie; Kakei, Hiroyuki; Rayl, Thomas J.; Hwang, Inkyu; Boger, Dale L.

    2009-01-01

    Full details of the development of a direct coupling of catharanthine with vindoline to provide vinblastine are described along with key mechanistic and labeling studies. Following an Fe(III)-promoted coupling reaction initiated by generation of a presumed catharanthine radical cation that undergoes a subsequent oxidative fragmentation and diastereoselective coupling with vindoline, addition of the resulting reaction mixture to an Fe(III)–NaBH4/air solution leads to oxidation of the C15′–C20′ double bond and reduction of the intermediate iminium ion directly providing vinblastine (40–43%) and leurosidine (20–23%), its naturally occurring C20′ alcohol isomer. The yield of coupled products, which exclusively possess the natural C16′ stereochemistry, approaches or exceeds 80% and the combined yield of the isomeric C20′ alcohols is >60%. Preliminary studies of Fe(III)–NaBH4/air oxidation reaction illustrate a generalizable trisubstituted olefin scope, identified alternatives to O2 trap at the oxidized carbon, provides a unique entry into C20′ functionalized vinblastines, and affords initial insights into the observed C20′ diastereoselectivity. The first disclosure of the use of exo-catharanthine proceeding through Δ19′,20′-anhydrovinblastine in such coupling reactions is also detailed with identical stereochemical consequences. Incorporating either a catharanthine N-methyl group or a vindoline N-formyl group precludes Fe(III)-promoted coupling, whereas the removal of the potentially key C16 methoxy group of vindoline does not adversely impact the coupling efficiency. Extension of these studies provided a total synthesis of vincristine (2) via N-desmethylvinblastine (36, also a natural product), 16-desmethoxyvinblastine (44) and 4-desacetoxy-16-desmethoxyvinblastine (47) both of which we can now suggest are likely natural products produced by C. roseus, desacetylvinblastine (62) and 4-desacetoxyvinblastine (59), as well as a series of key

  7. Evaluation of prognostic markers for canine mast cell tumors treated with vinblastine and prednisone

    PubMed Central

    Webster, Joshua D; Yuzbasiyan-Gurkan, Vilma; Thamm, Douglas H; Hamilton, Elizabeth; Kiupel, Matti

    2008-01-01

    Background Canine cutaneous mast cell tumor (MCT) is a common neoplastic disease associated with a variable biologic behavior. Surgery remains the primary treatment for canine MCT; however, radiation therapy (RT) and chemotherapy are commonly used to treat aggressive MCT. The goals of this study were to evaluate the prognostic utility of histologic grade, c-KIT mutations, KIT staining patterns, and the proliferation markers Ki67 and AgNORs in dogs postoperatively treated with vinblastine and prednisone +/- RT, and to compare the outcome of dogs treated with post-operative chemotherapy +/- RT to that of a prognostically matched group treated with surgery alone. Associations between prognostic markers and survival were evaluated. Disease-free intervals (DFI) and overall survival times (OS) of dogs with similar pretreatment prognostic indices postoperatively treated with chemotherapy were compared to dogs treated with surgery alone. Results Histologic grade 3 MCTs, MCTs with c-KIT mutations, MCTs with increased cytoplasmic KIT, and MCTs with increased Ki67 and AgNOR values were associated with decreased DFI and OS. Dogs with histologic grade 3 MCT had significantly increased DFI and OS when treated with chemotherapy vs. surgery alone. Although not statistically significant due to small sample sizes, MCTs with c-KIT mutations had increased DFI and OS when treated with chemotherapy vs. surgery alone. Conclusion and clinical importance This study confirms the prognostic value of histologic grade, c-KIT mutations, KIT staining patterns, and proliferation analyses for canine MCT. Additionally, the results of this study further define the benefit of postoperative vinblastine and prednisone for histologic grade 3 MCTs. PMID:18700956

  8. Ameliorating Effect of Gemigliptin on Renal Injury in Murine Adriamycin-Induced Nephropathy

    PubMed Central

    Lee, Shin Yeong; Kim, Jin Sug; Kim, Yang Gyun; Moon, Ju-Young; Lee, Tae Won; Ihm, Chun Gyoo

    2017-01-01

    Background. Previous studies have shown the antiapoptotic and anti-inflammatory potential of DPP-IV inhibitor in experimental models of renal injury. We tested whether DPP-IV inhibitor (gemigliptin) ameliorates renal injury by suppressing apoptosis, inflammation, and oxidative stress in mice with adriamycin nephropathy. Methods. Mice were treated with normal saline (control), gemigliptin (GM), adriamycin (ADR), or adriamycin combined with gemigliptin (ADR+GM). Apoptosis, inflammation, and oxidative stress were analyzed via western blotting, real-time PCR, light microscopy, and immunofluorescence. Results. In the ADR+GM group, urine albumin creatinine ratio decreased significantly compared with that in the ADR group on day 15. Glomerulosclerosis index and tubulointerstitial injury index in mice with adriamycin-induced nephropathy decreased after gemigliptin treatment. ADR group showed higher levels of apoptosis, inflammation, and oxidative stress-related molecules compared with the control group. The upregulation of these molecules was significantly reduced by gemigliptin. In the ADR group, the staining intensities of WT-1 and nephrin reduced, but these changes were ameliorated in the ADR+GM group. Conclusion. We demonstrated that gemigliptin ameliorates nephropathy by suppressing apoptosis, inflammation, and oxidative stress in mice administered adriamycin. Our data demonstrate that gemigliptin has renoprotective effects on adriamycin-induced nephropathy. PMID:28326327

  9. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  10. Radiation therapy combined with Adriamycin or 5-fluorouracil for the treatment of locally unresectable pancreatic carcinoma. Gastrointestinal Tumor Study Group

    SciTech Connect

    Not Available

    1985-12-01

    One hundred fifty-seven patients with locally unresectable pancreatic carcinoma were randomly allocated to therapy with radiation and 5-fluorouracil or radiation and Adriamycin (doxorubicin). A total of 138 of 143 analyzable patients have died, and no differences in the relative survival impact of the treatments have been observed. Toxicity on the Adriamycin arm was more substantial and primarily attributable to Adriamycin chemotherapy after the completion of radiotherapy.

  11. Combination of {gamma}-radiation antagonizes the cytotoxic effects of vincristine and vinblastine on both mitotic arrest and apoptosis

    SciTech Connect

    Sui, Meihua; Fan Weimin . E-mail: fanw@musc.edu

    2005-03-15

    Purpose: Combination therapy with different modalities is a common practice in the treatment of cancer. The promising clinical profile of vincristine and vinblastine has promoted considerable interest in combining these vinca alkaloids with radiation therapy to treat a variety of solid tumors. However, the therapeutic efficacy and the interaction between the vinca alkaloids with radiation is not entirely clear. In this study, we assessed the potential interactions in the combination of vincristine or vinblastine with {gamma}-radiation against human tumor cells in vitro. Methods and materials: Vincristine or vinblastine and {gamma}-radiation were administrated at three different sequences designed as preradiated, coradiated, and postradiated combinations in human breast cancer cells and human epidermoid carcinoma cells. The cytotoxic interactions and mutual influences between these two modalities were analyzed by a series of assays including cytotoxic, morphologic, and biochemical examinations. Results: Our results showed that the combination of these two modalities did not produce any synergistic or additive effects. Instead, the clonogenic assays showed the survival rates of these combinations were increased up to 2.17-fold and 2.7-fold, respectively, of those treated with vincristine or vinblastine alone (p < 0.01). DNA fragmentation, T{alpha}T-mediated dUTP nick end labeling (TUNEL) assay, and flow cytometric assays also showed that the combination of {gamma}-radiation significantly interfered with the ability of these vinca alkaloids to induce apoptosis. Further analyses indicated that addition of {gamma}-radiation resulted in cell cycle arrest at the G{sub 2} phase, which subsequently prevented the mitotic arrest induced by vincristine or vinblastine. In addition, biochemical examinations revealed that {gamma}-radiation regulated p34{sup cdc2}/cyclin B1 and survivin, and inhibited I{kappa}B{alpha} degradation and bcl-2 phosphorylation. Conclusions: These

  12. Effects of bleomycin and antioxidants on the fatty acid profile of testicular cancer cell membranes.

    PubMed

    Cort, A; Ozben, T; Melchiorre, M; Chatgilialoglu, C; Ferreri, C; Sansone, A

    2016-02-01

    Bleomycin is used in chemotherapy regimens for the treatment of patients having testicular germ-cell tumor (TGCT). There is no study in the literature investigating the effects of bleomycin on membrane lipid profile in testicular cancer cells. We investigated membrane fatty acid (FA) profiles isolated, derivatized and analyzed by gas chromatography of NTera-2 testicular cancer cells incubated with bleomycin (Bleo) for 24 h in the absence and presence of N-Acetyl-L-Cysteine (NAC) and curcumin (Cur) as commonly used antioxidant adjuvants. At the same time the MAPK pathway and EGFR levels were followed up. Bleomycin treatment increased significantly saturated fatty acids (SFA) of phospholipids at the expense of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Bleomycin also led to a significant increase in the trans lipid isomers of oleic and arachidonic acids due to its free radical producing effect. Incubation with bleomycin increased the p38 MAPK and JNK levels and downregulated EGFR pathway. Coincubation of bleomycin with NAC reversed effects caused by bleomycin. Our results highlight the important role of membrane fatty acid remodeling occurring during the use of bleomycin and its concurrent use with antioxidants which can adjuvate the cytotoxic effects of the chemotherapeutic agents.

  13. [The role of oxygen radicals in bleomycin-induced pulmonary fibrosis].

    PubMed

    Wang, X Z

    1992-06-01

    A model of pulmonary fibrosis in rat has been developed using intratracheal administration of bleomycin (BLM) A5 (5mg/kg). Histopathologic features and total lung collagen were studied. We found that type I pneumocytes detached, basement membrane denuded and endothelia edema were the earliest changes in BLM induced pulmonary fibrosis. Serum MDA (an index of lipid peroxidation) level in rats receiving intratracheal bleomycin were increased at earlier time after bleomycin administration. Meanwhile, MDA level in the lung homogenate was elevated too. Our results indicated that the injured type I pneumocytes and endothelia caused by oxygen radicles are the fundamental damages in bleomycin-induced pulmonary fibrosis.

  14. Ultrastructural investigation of the protective effects of propolis on bleomycin induced pulmonary fibrosis.

    PubMed

    Bilgin, G; Kismet, K; Kuru, S; Kaya, F; Senes, M; Bayrakceken, Y; Yumusak, N; Celikkan, F T; Erdemli, E; Celemli, O G; Sorkun, K; Koca, G

    2016-01-01

    We investigated the antioxidant and anti-inflammatory effects of propolis on bleomycin induced lung fibrosis and compared these effects to prednisolone treatment. Forty rats were divided into four groups of ten: group 1 was treated with intratracheal infusion of 0.2 ml physiological saline followed by daily treatment with 0.5 ml physiological saline for 20 days. In the remaining groups (groups 2 - 4), 5 mg/kg bleomycin was given via the trachea. Rats in group 2 were given 0.5 ml physiological saline. Rats in group 3 were treated with 100 mg/kg propolis, and 10 mg/kg prednisolone was given to rats in group 4. The treatments for all groups were continued for 20 days. On postoperative day 21, blood and lung samples were taken for biochemistry, histopathology and electron microscopy evaluation. We compared oxidative stress parameters and found lower malondialdehyde and myeloperoxidase levels, and higher total sulfhydryl levels and catalase activities for the bleomycin + propolis group than for the bleomycin and bleomycin + prednisolone groups. The highest mean fibrosis score was detected in the bleomycin group. Although the mean fibrosis scores of the bleomycin + propolis and bleomycin + prednisolone groups were not significantly different, electron microscopy revealed that propolis diminished bleomycin induced lung fibrosis more effectively than prednisolone. The effects of propolis might be due to its potent antioxidant and anti-inflammatory properties.

  15. Verapamil increases the bacteriostatic and bactericidal effects of adriamycin on Escherichia coli.

    PubMed

    Abramov, Y; Aronovitch, J; Ramu, A

    1996-01-01

    The purpose of this study was to evaluate the effect of verapamil on adriamycin-resistant and -sensitive Escherichia coli bacterial strains. Two E. coli strains: B-SR9 and K12-KL16 were incubated with adriamycin in various concentrations in the presence or absence of verapamil. Growth and killing rates were measured using optical densities and colonogenic assays. Transmembrane transport capacity was evaluated by measuring radioactively labelled leucine uptake and intracellular potassium concentrations. While adriamycin (ADR) showed both bacteriostatic and bactericidal effects upon the two bacterial strains, the K12 strain was significantly more resistant to the drug than its peer. Subtoxic concentrations of verapamil augmented these effects in both strains. Verapamil affected bacterial transmembrane transport activity and caused potassium leakage through the cell membrane. Simultaneous exposure to adriamycin and verapamil resulted in rapid, massive damage to membrane functions, indicating accelerated killing rate. The authors concluded that verapamil acts as a potentiator of adriamycin's cytotoxicity in E. coli bacteria in a manner similar to that in multidrug resistant mammalian tumour cells. This observation suggests that the mechanisms of resistance to the drug may be similar in both species.

  16. Anticubilin antisense RNA ameliorates adriamycin-induced tubulointerstitial injury in experimental rats.

    PubMed

    Liu, Jun; Li, Kailong; He, Yani; Zhang, Jianguo; Wang, Huiming; Yang, Jurong; Zhan, Jun; Liang, Haijun

    2011-12-01

    This study was designed to determine the effects of in vivo anticubilin antisense RNA on the uptake of albumin in tubules and on the tubulointerstitial injury in adriamycin-induced proteinuric rats. Adriamycin-treated rats were subjected to intrarenal delivery of adenoviral vectors encoding empty plasmid, cubilin sense RNA expression vector pAd-CUB or anticubilin antisense RNA expression vector pAd-ACUB on day 3. On days 14 and 28, half of the rats in each group were randomly selected to be killed, and blood samples, kidney tissues and 24-hour urine were collected. The diseased rats treated with pAdEasy-ACUB showed a 60% decrease in serum creatinine and glomerular filtration rate. Interestingly, the anticubilin antisense treatment led to a marked increase in albuminuria. Antisense treatment attenuated the histologic changes on both day 14 and day 28. The antisense treatment induced more than 60% recovery of adriamycin-induced injury, accompanied with 85% knockdown in the expression of cubilin protein and markedly decreased albumin deposition. Adriamycin induced an increase in the expression of monocyte chemoattractant protein-1, transforming growth factor-β and regulated on activation in normal T-cell expressed and secreted and the number of infiltrating cells, which was reversed by the antisense treatment. Anticubilin antisense RNA delivered by an adenoviral vector ameliorates albuminuria-induced glomerulosclerosis and tubulointerstitial damage in adriamycin nephrotic rats, indicating that cubilin could be a potential therapeutic target in proteinuric nephropathy.

  17. Iron(III)/NaBH4-Mediated Additions to Unactivated Alkenes: Synthesis of Novel 20′-Vinblastine Analogues

    PubMed Central

    Leggans, Erick K.; Barker, Timothy J.; Duncan, Katharine K.; Boger, Dale L.

    2012-01-01

    An Fe(III)/NaBH4-mediated reaction for the functionalization of unactivated alkenes is described defining the alkene substrate scope, establishing the exclusive Markovnikov addition, exploring a range of free radical traps, examining the Fe(III) salt and initiating hydride source, introducing H2O-cosolvent mixtures, and exploring catalytic variants. Its use led to the preparation of a novel, potent and previously inaccessible C20′-vinblastine analogue. PMID:22369097

  18. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine.

    PubMed

    Rai, Vartika; Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100  μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress.

  19. Effects of colchicine, vinblastine and nocodazole on polarity, motility, chemotaxis and cAMP levels of human polymorphonuclear leukocytes.

    PubMed

    Keller, H U; Naef, A; Zimmermann, A

    1984-07-01

    We present evidence for intrinsic polymorphonuclear leukocyte (PMN) polarity manifested in presence of microtubule-disrupting drugs. Polarization in response to colchicine correlated with the known dose-dependent effects of this drug on microtubule disassembly. The response to 10(-5) M colchicine, 10(-5) M vinblastine and 10(-6) M nocodazole was associated with stimulated motility and random locomotion. Responses elicited by microtubule-disrupting drugs differed from f-Met-Leu-Phe (fMLP)-induced polarization by functional and morphological criteria. Polarization, motility and orthokinesis responses were much weaker. Furthermore, ruffling was almost absent in PMNs polarized in response to colchicine, vinblastine or nocodazole. The response was inhibited by cytochalasin B, indicating that it is microfilament-dependent. We suggest that microtubule-disrupting drugs induce motility via structural changes in the cytoskeleton which act as signals for the motor apparatus. The intrinsic polarity manifested in the presence of microtubule-disrupting drugs could be reversed by an extracellular chemotactic gradient. Stimulated locomotion and motility in response to microtubule-disrupting drugs was only observed with initially spherical PMNs but not with initially motile cells. The findings provide an explanation for the numerous conflicting statements on the chemokinetic activities of these drugs. The role of cAMP in stimulated polarization and motility has been studied. Colchicine, vinblastine and nocodazole elicited a transient elevation of cAMP levels within 1 min of stimulation. cAMP elevation and stimulated motility were not quantitatively correlated.

  20. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    PubMed Central

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  1. Factors involved in the sensitivity of Stentor to colchicine, lumicolchicine, and vinblastine sulfate.

    PubMed

    Burchill, B R; Diener, D R; Gillie, M H

    1983-09-01

    Oral regeneration by the ciliate Stentor coeruleus is inhibited by colchicine (Cc), but only at a relatively high concentration (0.9 mM); moreover, regeneration is inhibited by an even lower concentration of lumicolchicine (LCc) (0.2 mM). Together these results suggest that Cc may not be acting via tubulin binding. To evaluate this possibility we: (1) tested the effect of both drugs, and vinblastine sulfate (Vb) for comparison, on a population of labile cytoplasmic microtubules; and (2) measured the kinetics of association of all three drugs with regenerating cells. We found that Cc and Vb reduced the number of microtubules only at concentrations that blocked regeneration, whereas LCc blocked regeneration without reducing microtubule number. In addition, LCc associated with the cells much more readily than Cc, such that the cell-associated concentration of Cc that blocked regeneration was actually several fold lower than the effective concentration of LCc. We propose that common effects of Cc and LCc unrelated to tubulin binding play no more than a minor role in Cc effects on regeneration and conclude that Cc acts primarily if not exclusively via its antimicrotubule activity.

  2. Assessment of genotoxicity of vincristine, vinblastine and vinorelbine in human cultured lymphocytes: a comparative study

    PubMed Central

    Alzoubi, KH; Khabour, OF; Alawneh, KZ; Raffee, LA; Alsatari, ES; Hussein, EI; Bani-Hani, KE

    2016-01-01

    Abstract Vincristine (VCR), vinblastine (VBL) and vinorelbine (VRL) are anticancer agents from the Vinca alkaloid family that have the potential to induce genotoxic effect. The aim of the present study was to compare the genotoxic effect of VCR, VBL and VRL. Levels of 8-hydroxy-2-deoxy guanosine (8-OHdG) and sister chromatid exchanges (SCEs) were measured in cultured human blood lymphocytes treated with VCR, VBL and VRL at concentrations of 0.01 and 0.1 μg/mL. Results showed that VCR, VBL and VRL significantly increased the 8-OHdG levels (p <0.05), whereas it did not cause a significant increase in the frequencies of SCEs in human blood lymphocytes as compared to controls. On the other hand, all three agents significantly increased cells mitotic index (p <0.05). At both tested concentrations, the magnitude of the increase in 8-OHdG was VBL>VCR>VRL. In conclusion, VCR, VBL and VRL induce DNA damage as indicated by the increase in the 8-OHdG biomarker but with different magnitude. PMID:27785403

  3. The effects of adriamycin and adriamycin complexes with transitional metals on Ca(2+)-dependent K+ channels of human erythrocytes.

    PubMed

    Davtyan, T K; Gyulkhandanyan, A V; Gambarov, S S; Avanessian, L A; Alexanyan, Y T

    1996-10-17

    The influence of adriamycin (ADR) and ADR complexes with transitional metals Fe2+, Cu2+ and Co2+ on Ca(2+)-dependent K+ channels of human erythrocytes was investigated. We show that the anthracycline moiety of ADR increases Ca(2+)-dependent K+ efflux from erythrocytes, induced by low concentrations of propranolol, while the whole molecule of ADR has not any effect on Ca(2+)-dependent K+ channels, induced by propranolol or A23187 and on Pb(2+)-dependent K+ efflux. Ethidium bromide, verapamil and trifluoroperazine inhibited Ca(2+)-dependent K+ efflux, induced by high doses of propranolol. The anthracycline moiety of ADR is able to abolish blocking effect of ethidium bromide and verapamil, but does not influence the blocking effect of trifluoroperazine. We further show that ADR complexes with Fe2+, Cu2+ and Co2+ are potent inhibitors of Ca(2+)-dependent K+ efflux, induced by propranolol, but not of Pb(2+)-dependent K+ efflux. On the contrary, ADR-Fe3+ complex activates K(+)-permeability of human red blood cell. It is suggested that opposite effects of anthracycline moiety of ADR and ADR complexes with transitional metals on Ca(2+)-dependent K+ channels, induced by propranolol is due to their influence on the pathways of Ca2+ transport into cells, rather than their action directly on K+ channels.

  4. Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells

    SciTech Connect

    Chen, Li-Jun; Ye, Hong; Zhang, Qian; Li, Feng-Zhi; Song, Lin-Jie; Yang, Jie; Mu, Qing; Rao, Shan-Shan; Cai, Peng-Cheng; Xiang, Fei; Zhang, Jian-Chu; Su, Yunchao; Xin, Jian-Bao; Ma, Wan-Li

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis. Recent studies revealed that pleural mesothelial cells (PMCs) undergo epithelial–mesenchymal transition (EMT) and play a pivotal role in IPF. In animal model, bleomycin induces pulmonary fibrosis exhibiting subpleural fibrosis similar to what is seen in human IPF. It is not known yet whether bleomycin induces EMT in PMCs. In the present study, PMCs were cultured and treated with bleomycin. The protein levels of collagen-I, mesenchymal phenotypic markers (vimentin and α-smooth muscle actin), and epithelial phenotypic markers (cytokeratin-8 and E-cadherin) were measured by Western blot. PMC migration was evaluated using wound-healing assay of culture PMCs in vitro, and in vivo by monitoring the localization of PMC marker, calretinin, in the lung sections of bleomycin-induced lung fibrosis. The results showed that bleomycin induced increases in collagen-I synthesis in PMC. Bleomycin induced significant increases in mesenchymal phenotypic markers and decreases in epithelial phenotypic markers in PMC, and promoted PMC migration in vitro and in vivo. Moreover, TGF-β1-Smad2/3 signaling pathway involved in the EMT of PMC was demonstrated. Taken together, our results indicate that bleomycin induces characteristic changes of EMT in PMC and the latter contributes to subpleural fibrosis. - Highlights: • Bleomycin induces collagen-I synthesis in pleural mesothelial cells (PMCs). • Bleomycin induces increases in vimentin and α-SMA protein in PMCs. • Bleomycin induces decreases in cytokeratin-8 and E-cadherin protein in PMCs • TGF-β1-Smad2/3 signaling pathway is involved in the PMC EMT induced by bleomycin.

  5. Relationship between intercellular communication and adriamycin resistance in non-small cell lung cancer.

    PubMed

    Bradley, C; Freshney, R I; Pitts, J

    1994-01-01

    The adriamycin chemosensitivity and extent of gap junctional intercellular communication were assessed in a panel of seven human non-small cell lung cancer (NSCLC) cell lines. Communication was assessed by autoradiographic detection of transfer of 3H uridine nucleotides between coupled cells. The strength of coupling varied widely between the cell lines and they could be separated into 3 groups: those which exhibited strong coupling, L-DAN and A549; those which exhibited weak coupling, SK-MES-1, Calu-3 and NCI-H125; and an intermediate group, WIL and NCI-H23. Adriamycin chemosensitivity was assessed by both clonogenic and MTT assays. The range of IC50 values as measured by either assay was extremely narrow, with no important differences between the lines. Thus, despite the wide spectrum of intercellular communication observed in these lines, this did not correlate with their adriamycin resistance.

  6. Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity

    NASA Technical Reports Server (NTRS)

    Tokes, Z. A.; Rogers, K. E.; Rembaum, A.

    1982-01-01

    Adriamycin was coupled to polyglutaraldehyde microspheres having an average diameter of 4500 A. The coupled microspheres remained stable during incubation with cells. Full cytostatic activity was observed when the coupled adriamycin was tested with murine or human leukemia and murine sarcoma cell lines. A 10-fold increase in sensitivity was obtained with drug-resistant human leukemia cell lines. Repeated use of the coupled microspheres in the cytostatic assays did not decrease their activity, indicating that these complexes can be recycled. The results suggest that coupled adriamycin sufficiently perturbs the plasma membrane to lead to cytostatic activity. It is proposed that this mode of drug delivery provides multiple and repetitious sites for drug-cell interactions. In addition, the drug-polymer complexes may overcome those forms of resistance that are the result of decreased drug binding at the cell surface.

  7. [The flavonoids effect against vinblastine, cyclophosphamide and paracetamol toxicity by inhibition of lipid-peroxydation and increasing liver glutathione concentration].

    PubMed

    Lahouel, M; Boulkour, S; Segueni, N; Fillastre, J P

    2004-07-01

    The paracetamol and cyclophosphamid are metabolized in the liver by the cytochrome P450. The formed reactive intermediates are responsible of a hepatocyte depletion of the glutathion and a lipoperoxydation. the vinblastine is also a chemotherapeutic agent hepatotoxic and hematotoxic. Otherwise, flavonoïds are polyphenols substances of plant origin having some biological and anti-oxydative properties. However no information is available on their effects on glutathion and glutathion-s-transferases. In our research, we valued the effect of oral administration of flavonoids (diosmine and quercetine) under shape of propolis extract to 60 mg/kg daily during 14 days, on hematological and hepatic toxicity of a single dose of cyclophosphamide 80 mg/kg by intravenous way, vinblastine 2 mg/kg by intravenous way and the hepatic toxicity of the paracetamol managed by oral way to 200 mg/kg corresponding to 2/3 the DL50 at the rat female albinos wistar. We did a blood numeration, an assessment of serum activities of transaminases and alkali phosphatases as well as quantification of the glutathion and the malondialdehyde (MDA) in liver homogenats of rats treated. Analyses are done at regular intervals; 1, 3, 7 and 14 days after the administration of drugs. In the group of rats treated by the cyclophosphamid paracetamol alone we observed since the 1st day, an increase of lipid peroxide (MDA) of 120% and a downfall of hepatic glutathion including the group receiving the vinblastine (until 210% of reduction). In the same way a severe leucopenia and a thrombopenia (70% of reduction) are observed between the 3rd and the 14th day at rats treated by the chemotherapeutic agents alone (cyclophosphamide and vinblastine). The combination of flavonoids with drugs have clearly reduced the effect of drugs toxicity. Indeed, the aplasic observed with the vinblastine, as well as the leucopenia and thrombopenia of the cyclophosphamide are corrected entirely. In the same way, we noted a restoration

  8. Deglycosylated bleomycin has the antitumor activity of bleomycin without pulmonary toxicity.

    PubMed

    Burgy, Olivier; Wettstein, Guillaume; Bellaye, Pierre S; Decologne, Nathalie; Racoeur, Cindy; Goirand, Françoise; Beltramo, Guillaume; Hernandez, Jean-François; Kenani, Abderraouf; Camus, Philippe; Bettaieb, Ali; Garrido, Carmen; Bonniaud, Philippe

    2016-02-17

    Bleomycin (BLM) is a potent anticancer drug used to treat different malignancies, mainly lymphomas, germ cell tumors, and melanomas. Unfortunately, BLM has major, dose-dependent, pulmonary toxicity that affects 20% of treated individuals. The most severe form of BLM-induced pulmonary toxicity is lung fibrosis. Deglyco-BLM is a molecule derived from BLM in which the sugar residue d-mannosyl-l-glucose disaccharide has been deleted. The objective of this study was to assess the anticancer activity and lung toxicity of deglyco-BLM. We compared the antitumor activity and pulmonary toxicity of intraperitoneally administrated deglyco-BLM and BLM in three rodent models. Pulmonary toxicity was examined in depth after intratracheal administration of both chemotherapeutic agents. The effect of both drugs was further studied in epithelial alveolar cells in vitro. We demonstrated in rodent cancer models, including a human Hodgkin's lymphoma xenograft and a syngeneic melanoma model, that intraperitoneal deglyco-BLM is as effective as BLM in inducing tumor regression. Whereas the antitumor effect of BLM was accompanied by a loss of body weight and the development of pulmonary toxicity, deglyco-BLM did not affect body weight and did not engender lung injury. Both molecules induced lung epithelial cell apoptosis after intratracheal administration, but deglyco-BLM lost the ability to induce caspase-1 activation and the production of ROS (reactive oxygen species), transforming growth factor-β1, and other profibrotic and inflammatory cytokines in the lungs of mice and in vitro. Deglyco-BLM should be considered for clinical testing as a less toxic alternative to BLM in cancer therapy.

  9. Decreased ATPase activity in adriamycin nephrosis is independent of proteinuria

    SciTech Connect

    Bakker, W.W.; Kalicharan, D.; Donga, J.; Hulstaert, C.E.; Hardonk, M.J.

    1987-03-01

    In previous studies from this laboratory it has been shown that ATP-ase activity in situ in the glomerular basement membrane (GBM) is clearly reduced in rats rendered nephrotic after treatment with adriamycin (ADR). The question was raised whether this reduction of ATP-ase activity in the GBM is due to toxic activity of ADR or rather a result of the nephrotic condition per se. Therefore, we studied ATP-ase activity using the cerium-based method in kidneys from ADR-treated rats without proteinuria (48 hr after ADR injection), or with proteinuria (approximately 150 mg/24 hr) several weeks after ADR injection. Also kidneys from rats rendered nephrotic by surgical ablation and from non-nephrotic rats treated with local X-irradiation (2000 rads) as well as from normal control rats were studied. The results show that in the GBM of ADR-treated or irradiated rats, clear reduction of ATP-ase activity is observed irrespective of their proteinuria, whereas in the GBM of rats rendered nephrotic by renal ablation (approximately 156 mg/24 hr mean protein excretion) no reduction of enzyme activity is found. It is concluded that decreased ATP-ase activity of the glomerular filtration barrier in ADR-treated rats is due to an early toxic activity of this drug and not a result of the nephrotic state per se. In view of the identical results in X-irradiated rats, it is likely that ADR may act through production of toxic radicals leading to damage of this membrane-associated enzyme system.

  10. Interactions between copper deficiency, selenium deficiency and adriamycin toxicity

    SciTech Connect

    Fischer, J.; Tackett, R.; Johnson, M.A. )

    1991-03-15

    The objective of this study was to test the hypothesis that there are interactions between copper (Cu) and selenium (Se) status, and adriamycin (ADR) toxicity. Male Sprague Dawley rats were fed Cu,Se adequate; Cu deficient, Se adequate ({minus}Cu); Cu adequate, Se deficient; or Cu,Se deficient diets for 38-41 days. ADR or saline (SAL) were administered weekly for the last 4 weeks of the study. Cu deficiency was confirmed by a 3-fold decrease in liver Cu,Zn-superoxide dismutase and liver Cu, and a 5-fold decrease in RBC Cu,Zn-SOD. Se deficiency was confirmed by a 10-fold decrease in liver glutathione peroxidase (GSH-Px). ADR, Cu deficiency and Se deficiency all caused EKG abnormalities. However, Cu and Se deficiencies did not enhance ADR's influence on EKGs. ADR increased lipid peroxidation in liver by 15% and in heart by 18% (NS). Cu deficiency decreased ADR-induced lipid peroxidation in heart tissue by 25%. ADR influenced Se status by significantly increasing heart GSH-Px, and Cu status by increasing liver Cu, plasma ceruloplasmin and liver Cu, Zn-SOD. These elevations in Cu,Zn-SOD and GSH-Px may be a consequence of the increased lipid peroxidation initiated by ADR. In {minus}Cu rats, ADR caused severe hemolytic anemia characterized by a 19% decrease in hematocrit and a 17-fold increase in splenic Fe. These data suggest that there are numerous interactions between ADR toxicity and Cu and Se status.

  11. The crypto-OH radical in the damage of DNA by bleomycin-Fe2+?

    PubMed

    Bartkowiak, A; Grzelinska, E; Bartosz, G; Zabłocka, J; Leyko, W

    1982-01-01

    1. Effects of various OH scavengers, superoxide dismutase and catalase on the formation of malondialdehyde-like products from DNA by bleomycin-Fe2+ were studied. In no case was a protective effect observed. 2. These results can be interpreted on the basis that a crypto-OH radical mediates the damage to DNA by bleomycin-Fe2+.

  12. Bleomycin-Induced Flagellate Erythema in a Patient Diagnosed with Ovarian Yolk Sac Tumor

    PubMed Central

    Boussios, Stergios; Moschetta, Michele; McLachlan, Jennifer; Banerjee, Susana

    2015-01-01

    Flagellate linear hyperpigmentation can rarely be caused by the chemotherapy agent, bleomycin. Herein, we describe the case of a 20-year-old woman treated with bleomycin for an ovarian yolk sac tumor and review the prominent features of this form of dermatitis. PMID:26798532

  13. Evaluating the inhibitory potential of sulindac against the bleomycin-induced pulmonary fibrosis in wistar rats.

    PubMed

    Verma, Ramesh; Brahmankar, Mahesh; Kushwah, Lokendra; Suresh, Balakrishnan

    2013-11-01

    The present study examined the protective effect of sulindac on bleomycin-induced lung fibrosis in rats. Animals were divided into saline group, bleomycin group (single intra-tracheal instillation of bleomycin) and bleomycin+sulindac (orally from day 1 to day 20). Bleomycin administration reduced the body weight, altered antioxidant status (such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione) while it increased the lung weight, hydroxyproline content, collagen deposition and lipid peroxidation. However, simultaneous administration of sulindac improved the body weight, antioxidant status and decreased the collagen deposition in lungs. Moreover, the levels of inflammatory cytokine tumour necrosis factor-α increased in bleomycin-induced group, whereas, on treatment with sulindac the levels of tumour necrosis factor-α were found reduced. Finally, histological evidence also supported the ability of sulindac to inhibit bleomycin-induced lung fibrosis. The results of the present study indicate that sulindac can be used as an agent against bleomycin-induced pulmonary fibrosis.

  14. Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site.

    PubMed

    Venghateri, Jubina B; Gupta, Tilak Kumar; Verma, Paul J; Kunwar, Ambarish; Panda, Dulal

    2013-01-01

    Maytansinoid conjugates are currently under different phases of clinical trials and have been showing promising activity for various types of cancers. In this study, we have elucidated the mechanism of action of ansamitocin P3, a structural analogue of maytansine for its anticancer activity. Ansamitocin P3 potently inhibited the proliferation of MCF-7, HeLa, EMT-6/AR1 and MDA-MB-231 cells in culture with a half-maximal inhibitory concentration of 20±3, 50±0.5, 140±17, and 150±1.1 pM, respectively. Ansamitocin P3 strongly depolymerized both interphase and mitotic microtubules and perturbed chromosome segregation at its proliferation inhibitory concentration range. Treatment of ansamitocin P3 activated spindle checkpoint surveillance proteins, Mad2 and BubR1 and blocked the cells in mitotic phase of the cell cycle. Subsequently, cells underwent apoptosis via p53 mediated apoptotic pathway. Further, ansamitocin P3 was found to bind to purified tubulin in vitro with a dissociation constant (Kd) of 1.3±0.7 µM. The binding of ansamitocin P3 induced conformational changes in tubulin. A docking analysis suggested that ansamitocin P3 may bind partially to vinblastine binding site on tubulin in two different positions. The analysis indicated that the binding of ansamitocin P3 to tubulin is stabilized by hydrogen bonds. In addition, weak interactions such as halogen-oxygen interactions may also contribute to the binding of ansamitocin P3 to tubulin. The study provided a significant insight in understanding the antiproliferative mechanism of action of ansamitocin P3.

  15. Enhanced efflux of (/sup 3/H)vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene

    SciTech Connect

    Hammond, J.R.; Johnstone, R.M.; Gros, P.

    1989-07-15

    Multidrug-resistant Chinese hamster ovary cell clones stably transfected with, and overexpressing, the mouse mdr1 complementary DNA clone along with drug-sensitive Chinese hamster ovary control cells were characterized for their capacities to accumulate and retain (/sup 3/H)vinblastine. Multidrug-resistant mdr1 transfectants show a 3-4-fold decrease in (/sup 3/H)vinblastine accumulation, compared to their drug-sensitive counterparts. After ATP depletion, this difference in (/sup 3/H)vinblastine accumulation between mdr1 transfectants and control cells effectively disappears. This ATP-dependent decreased drug accumulation is paralleled in mdr1 transfectants by an enhanced capacity of these cells to extrude the drug in an ATP-dependent manner. In medium containing glucose and glutamine, the mdr1 transfectants release preloaded drug at a rate five times that of control, drug-sensitive cells. In ATP-depleted control and mdr1-transfected cells, there is little difference in the rate or extent of (/sup 3/H)vinblastine release. The observation that the mdr1 transfectants show a decreased (/sup 3/H)vinblastine accumulation and an increased vinblastine release, both of which are abolished when cellular ATP levels are reduced, provides a direct demonstration that the product of the transfected mdr1 gene is responsible for a mechanism controlling cellular drug levels in an ATP-dependent manner. However, attempts to establish competition for (/sup 3/H)vinblastine transport by vincristine, daunomycin, and actinomycin D were only partly successful in mdr1 transfectants.

  16. The effect of the non-ionic surfactant Brij 30 on the cytotoxicity of adriamycin in monolayer, spheroid and clonogenic culture systems.

    PubMed

    Kerr, D J; Wheldon, T E; Russell, J G; Maurer, H R; Florence, A T; Halbert, G W; Freshney, R I; Kaye, S B

    1987-09-01

    The effects of a non-ionic polyoxyethylated lauryl ether surfactant (Brij 30) on monolayer uptake and spheroid penetration of adriamycin have been studied. Co-incubation of adriamycin with Brij 30 increases intracellular adriamycin levels by 2-3-fold. Although, in the concentrations used, Brij 30 alone is not cytotoxic, adriamycin and Brij 30 mixtures are significantly more cytotoxic (monolayer ID90 = 0.6 microgram/ml; disaggregated spheroid ID50 = 1.9 micrograms/ml) and induce significantly longer spheroid growth delay than adriamycin alone (monolayer ID90 = 2.1 micrograms/ml; disaggregated spheroid ID50 = 3.3 micrograms/ml). Adriamycin is equally cytotoxic to mouse normal granulocytes and chronic myeloid leukaemic (M1 cell line) cells in agar clonogenic cultures. The addition of Brij 30 appears to enhance preferentially the activity of adriamycin against these tumour cells relative to the normal granulocytes.

  17. Effects of curcumin on bleomycin-induced apoptosis in human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Ozben, Tomris

    2013-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols in testicular cancer. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has attracted interest because of its anti-inflammatory and chemopreventive activities. However, no study has been carried out so far to elucidate its interaction with bleomycin in testicular cancer cells. In this study, we investigated the effects of curcumin and bleomycin on apoptosis signalling pathways and compared the effects of bleomycin with H2O2 which directly produces reactive oxygen species. We measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and Cyt-c levels in NCCIT cells incubated with curcumin (5 μM), bleomycin (120 μg/ml), bleomycin + curcumin, H2O2 (35 μM), and H2O2 + curcumin for 72 h. Curcumin, bleomycin, and H2O2 caused apoptosis indicated as increases in caspase-3, caspase-8, and caspase-9 activities and Bax and cytoplasmic Cyt-c levels and a decrease in Bcl-2 level. Concurrent use of curcumin with bleomycin decreased caspase activities and Bax and Cyt-c levels compared to their separate effects in NCCIT cells. Our findings suggest that concurrent use of curcumin during chemotherapy in testis cancer should be avoided due to the inhibitory effect of curcumin on bleomycin-induced apoptosis.

  18. Protective effects of a bacterially expressed NIF-KGF fusion protein against bleomycin-induced acute lung injury in mice.

    PubMed

    Li, Xinping; Li, Shengli; Zhang, Miaotao; Li, Xiukun; Zhang, Xiaoming; Zhang, Wenlong; Li, Chuanghong

    2010-08-01

    Current evidence suggests that the keratinocyte growth factor (KGF) and the polymorphonuclear leukocyte may play key roles in the development of lung fibrosis. Here we describe the construction, expression, purification, and identification of a novel NIF (neutrophil inhibitory factor)-KGF mutant fusion protein (NKM). The fusion gene was ligated via a flexible octapeptide hinge and expressed as an insoluble protein in Escherichia coli BL21 (DE3). The fusion protein retained the activities of KGF and NIF, as it inhibited both fibroblast proliferation and leukocyte adhesion. Next, the effects of NKM on bleomycin-induced lung fibrosis in mice were examined. The mice were divided into the following four groups: (i) saline group; (ii) bleomycin group (instilled with 5 mg/kg bleomycin intratracheally); (iii) bleomycin plus dexamethasone (Dex) group (Dex was given intraperitoneally (i.p.) at 1 mg/kg/day 2 days prior to bleomycin instillation and daily after bleomycin instillation until the end of the treatment); and (iv) bleomycin plus NKM group (NKM was given i.p. at 2 mg/kg/day using the same protocol as the Dex group). NKM significantly improved the survival rates of mice exposed to bleomycin. The marked morphological changes and increased hydroxyproline levels resulted from the instillation of bleomycin (on Day 17) in the lungs were significantly inhibited by NKM. These results revealed that NKM can attenuate bleomycin-induced lung fibrosis, suggesting that NKM could be used to prevent bleomycin-induced lung damage or other interstitial pulmonary fibrosis.

  19. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death

    PubMed Central

    Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp—CrP14, obtained from stem tissues, and Talaromyces radicus—CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus—CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus—CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  20. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    PubMed

    Palem, Padmini P C; Kuriakose, Gini C; Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns.

  1. Effects of cysteine on the pharmacokinetics of intravenous adriamycin in rats with protein-calorie malnutrition.

    PubMed

    Kim, Y G; Cho, M K; Kwon, J W; Kim, S G; Lee, M G

    2000-01-01

    In rats with protein-calorie malnutrition (PCM, 5% caseine diet for 4 weeks), hepatic cytochrome P450 levels suppressed markedly and cytochrome P450 mRNAs decreased significantly compared with those in control rats (23% caseine diet for 4 weeks), however, the values completely (or partially) returned to control levels by a week (from fourth week) of cysteine supplementation (rats with PCMC) (Cho, Kim et al., Arch. Biochem. Biophys. 1999, 372: 150-158). The formation of aglycone metabolites of adriamycin and adriamycinol, M3 and M4, respectively, seemed to be induced (Lee and Lee, Res. Commun. Mol. Pathol. Pharmacol. 1999, 105: 87-96) by pretreatment with dexamethasone (possibly by hepatic cytochrome P450 RL 33/cDEX, Komori and Oda, J. Biochem. 1994, 116: 114-120) in rats. Adriamycin, 16 mg/kg, was administered intravenously in 1-min to control rats and rats with PCM and PCMC. In rats with PCM, the plasma concentrations of adriamycin was higher (the area under the plasma concentration-time curve from time zero to 12 hr, AUC(0-12 hr), tended to be higher) and 24-hr urinary excretion of M3 (including its 'conjugates') seemed to increase than those in control rats, suggested that the formation of M3 was inhibited in rats with PCM. In rats with PCMC, the plasma concentrations of adriamycin were lower (the AUC(0-12 hr) was significantly smaller) and 24-hr urinary excretion of M3 (including its 'conjugates') were significantly greater than those in rats with PCM, suggested that the formation of M3 increased significantly by cysteine supplementation by restoring the enzyme system(s) that metabolize adriamycin to M3. The altered pharmacokinetic parameters of adriamycin mentioned above in rats with PCM returned to greater than those of control rats after cysteine supplementation (rats with PCMC). Above data suggested that other hepatic cytochrome P450 isozyme(s) which catalyze(s) the formation of M3 from adriamycin could be induced by cysteine supplementation.

  2. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    SciTech Connect

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong; Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song; Grayburn, Paul A.

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  3. [Reversal of adriamycin resistance by digoxin in human breast cancer cell line MCF-7/adriamycin and its mechanism].

    PubMed

    Li, Bai-He; Yuan, Lei; Shi, Ran-Ran; Wang, Jian-Guo

    2015-12-25

    The aim of this study was to investigate the effects of digoxin on the chemoresistance of human breast cancer cell line MCF-7/adriamycin (ADR) and its underlying mechanism. MCF-7 and MCF-7/ADR cells were designated as control and ADR groups, respectively. MCF-7/ADR cells in ADR + digoxin group received 48 h of digoxin (10 nmol/L) treatment; MCF-7/ADR cells transfected with pLKO.1-shHIF-1α and pLKO.1-shcontrol plasmids were named shHIF-1α and shcontrol groups, respectively. CCK-8 assay was employed to detect the cytotoxic effect of ADR on MCF-7/ADR cells, and IC50 value and resistance index were calculated according to CCK-8. RT-PCR was used to measure the mRNA levels of hypoxia inducible factor-1α (HIF-1α) and multidrug resistance-1 (MDR1). Western blot was used to analyze the protein levels of HIF-1α and MDR1. Flow cytometry was used to determine the apoptosis. The result showed that the resistance index of MCF-7/ADR cells was 115.6, and it was reduced to 47.2 under the action of digoxin (P < 0.05). In comparison with control group, ADR groups showed increased protein and mRNA levels of HIF-1α and MDR1 (P < 0.05). Digoxin reduced the protein levels of HIF-1α and MDR1, as well as the mRNA level of MDR1, but did not affect the mRNA level of HIF-1α. After HIF-1α gene was silenced, the protein levels of HIF-1α and MDR1 were down-regulated (P < 0.05), and the pro-apoptotic effect of ADR on MCF-7/ADR cells was enhanced. Although it was also observed that digoxin promoted cell apoptosis in both shcontrol and shHIF-1α groups, the difference between the two groups was not significant. In conclusion, the results suggest that digoxin may partially reverse the ADR resistance in human breast cancer cell line MCF-7/ADR by means of down-regulating the expression levels of HIF-1α and MDR1 and promoting apoptosis via HIF-1α-independent pathway.

  4. NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities--part II.

    PubMed

    Háda, Viktor; Dubrovay, Zsófia; Lakó-Futó, Agnes; Galambos, János; Gulyás, Zoltán; Aranyi, Antal; Szántay, Csaba

    2013-10-01

    In the course of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC at the production site. Repeated attempts to isolate and purify these unknown impurities by preparative liquid chromatography yielded small amounts of materials whose main components were the unknown impurities, but were still contaminated with other VLB/VCR-related compounds. In spite of these difficulties, by using a combination of high-resolution (LC-)MS/MS and off-line 1D and 2D ultra high-field NMR techniques and leaning on the relevant spectroscopic data for VLB and VCR as discussed in Part 1 [1], we could unambiguously solve the structures of, and could give a complete spectral characterization for, the trace impurities. Among these, although "cyclo-VCR" (impurity-2), "[VCR]-C(16)-COOEt" (impurity-4) and "[VLB]-C(16)-COOEt" (impurity-5) are known synthetic VLB/VCR-derivatives, and "[VLB]-C(14')-OH(α)" is a known natural alkaloid (leurocolombine), they are new VLB/VCR impurities, and "[VCR]-N(4')-C(21')-iminium-salt" (impurity-3) is also a new chemical structure which provides direct proof of a hypothetic metabolic pathway of VLB/VCR. The structure determination of impurity-4 and impurity-5, and the rationalization of their origin was a particularly challenging task: since VCR is produced by the oxidation of VLB, it may be assumed that [VCR]-C(16)-COOEt (impurity-4) originates from the oxidization of [VLB]-C(16)-COOEt (impurity-5). This is consistent with the finding that [VLB]-C(16)-COOEt (impurity-5) could be detected by LC-MS/MS in the raw VLB samples in similar amounts as [VCR]-C(16)-COOEt (impurity-4) in the final VCR product. Our investigations indicate that [VLB]-C(16)-COOEt (impurity-5) does not form directly from VLB during extraction or chromatographic separation, suggesting that it may be a new natural product.

  5. Nitric Oxide Mediates Bleomycin-Induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

    PubMed Central

    Iyer, Anand Krishnan V.; Ramesh, Vani; Castro, Carlos A.; Kaushik, Vivek; Kulkarni, Yogesh M.; Wright, Clayton A.; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-01-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis. PMID:25919965

  6. The Protective Effect of Naringin against Bleomycin-Induced Pulmonary Fibrosis in Wistar Rats

    PubMed Central

    Turgut, Nergiz H.; Kara, Haki; Elagoz, Sahende; Deveci, Koksal; Gungor, Huseyin; Arslanbas, Emre

    2016-01-01

    The aim of the current study was to investigate the protective effect of naringin on bleomycin-induced pulmonary fibrosis in rats. Twenty-four Wistar rats randomly divided into four groups (control, bleomycin alone, bleomycin + naringin 40, and bleomycin + naringin 80) were used. Rats were administered a single dose of bleomycin (5 mg/kg; via the tracheal cannula) alone or followed by either naringin 40 mg/kg (orally) or naringin 80 mg/kg (orally) or water (1 mL, orally) for 14 days. Rats and lung tissue were weighed to determine the lung index. TNF-α and IL-1β levels, hydroxyproline content, and malondialdehyde (MDA) levels were assayed. Glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were determined. Tissue sections were stained with hematoxylin-eosin, Masson's trichrome, and 0.1% toluidine blue. TNF-α, IL-1β, and MDA levels and hydroxyproline content significantly increased (p < 0.01) and GPx and SOD activities significantly decreased in bleomycin group (p < 0.01). Naringin at a dose of 80 mg/kg body weight significantly decreased TNF-α and IL-1β activity, hydroxyproline content, and MDA level (p < 0.01) and increased GPx and SOD activities (p < 0.05). Histological evidence supported the results. These results show that naringin has the potential of reducing the toxic effects of bleomycin and may provide supportive therapy for conventional treatment methods for idiopathic pulmonary fibrosis. PMID:26977316

  7. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF.

    PubMed

    Iyer, Anand Krishnan V; Ramesh, Vani; Castro, Carlos A; Kaushik, Vivek; Kulkarni, Yogesh M; Wright, Clayton A; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-11-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.

  8. Expression and mechanism of BRP-39 in bleomycin-induced pulmonary fibrosis in rat.

    PubMed

    Du, Chunxian; Yang, Yibing; Lin, Yuhui; Yang, Jiong

    2014-09-01

    The purpose of the study was to explore the effects of breast regression protein 39 (BRP-39) in bleomycin-induced pulmonary fibrosis and its mechanism in pulmonary fibrosis by studying change in BRP-39 to provide a novel direction for the treatment of idiopathic pulmonary fibrosis. SPF grade male C57BL/6 rats were randomly divided into three groups, including bleomycin group, bleomycin+ BRP-39 recombinant protein group and control group. HE and Masson staining were applied to test the change in lung tissue after being treated by BRP-39, ELISA was applied to test the expression of TGF-β1 in different groups, and Western blot was used to test the expression of BRP-39 in rat lung tissue. Expression of BRP-39 increased, the fibrosis was obvious, and lung tissue collagen increased in bleomycin-induced pulmonary fibrosis in rat lung tissue. Increasing BRP-39 protein level and intratracheal bleomycin medication to establish pulmonary fibrosis model can aggravate pulmonary fibrosis. Along with the increase in BRP-39 protein level, TGF-β1 expression level also increased in lung tissue. Western blot results showed the expression of BRP-39, and TGF-β1 had the same trend in different groups. BRP-39 has effects in bleomycin-induced rat pulmonary fibrosis. Change in BRP-39 can affect the process of bleomycin-induced pulmonary fibrosis. The mechanism of BRP-3 in pulmonary fibrosis may work by regulating TGF-β1.

  9. Outcome of postoperative intratumoral bleomycin injection for cystic craniopharyngioma.

    PubMed Central

    Park, Dong Hyuk; Park, Jung Yul; Kim, Joo Han; Chung, Yong Gu; Lee, Hoon Kap; Lee, Ki Chan; Suh, Jung Keun

    2002-01-01

    Total excision is a treatment of choice in preventing the relapse of craniopharyngioma, but for tumors involving an extensive area, it is often associated with an increased risk of complications. We have performed a partial or subtotal tumor removal followed by repeated injection of bleomycin into the remaining tumor through a subcutaneous reservoir as postoperative adjuvant therapy. A retrospective review of clinical, radiological, and surgical data was performed for 10 patients (5 males and 5 females; age, 3-65 yr; follow-up duration, 12-79 months) with cystic craniopharyngiomas. The measurements of lactate dehydrogenase (LDH) level at each aspiration were performed. The shrinkage and/or stabilization of tumor was initially noted in all cases. The recurrence of tumor was seen in 4 cases (40%). The decreased or increased level of LDH was interpreted as tumor shrinkage or recurrence, respectively. The transient toxic reactions were observed in 3 patients (30%). Our study demonstrates that postoperative bleo-mycin injection for cystic craniopharyngioma, although does not appear to eradicate the tumor, decreases and stabilizes the tumor size, when used as an adjuvant therapy in young patients. PMID:11961313

  10. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    PubMed Central

    Li, Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, DanDan; Han, JianZhong; Huang, YanHong; Luo, SiWei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang, XiaoTing; Luo, ZiQiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice. PMID:25942563

  11. Cisplatin and bleomycin-induced acute peripheral-vascular stenosis in patient with testicular cancer

    PubMed Central

    Ozkan, Tayyar Alp; Aydin, Ufuk; Ay, Derih; Cebeci, I. Oguz Ozden

    2016-01-01

    After cisplatin and bleomycin-containing chemotherapy (CTx) for testicular cancer, part of the patients may develop acute or long-term cardiovascular toxicity. In the present case, we reported that a 58-year-old male patient presenting with testicular tumors who developed acute peripheral arterial disease during combination CTx with bleomycin, etoposide, and cisplatin. Superficial femoral artery occlusion not responded to structure thrombolytic and anticoagulators treatment. Left lower extremity was amputated below knee. In patients with high risk of cardiovascular disease, prophylactic anticoagulation may be recommended. The risk of causing factors of thromboembolism in patients with testicular cancer under cisplatin and bleomycin-containing CTx should be evaluated. PMID:28057998

  12. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  13. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  14. [Enhancement of reversing drug resistance of K562/A02 cells to adriamycin by ultrasound-induced cavitation].

    PubMed

    Chen, Bao-An; Meng, Qing-Qi; Wu, Wei; Gao, Feng; Shao, Ze-Ye; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Cheng, Hong-Yan; Sun, Yun-Yu; Wang, Jun; Cheng, Jian; Zhao, Gang; Song, Hui-Hui; Bao, Wen; Ma, Yan; Wang, Xue-Mei

    2008-12-01

    This study was aimed to investigate the effects of low frequency and power ultrasound combined with adriamycin on apoptosis of drug-resistant leukemia cell line K562/A02 in vitro, to find out the parameters of optimal exposure, and to explore the possible mechanism reversing drug-resistance of K562/A02 cells. The K562/A02 cells in logarithmic growth phase were used in experiments. The experiments were divided into 4 groups: group control, group adriamycin (A02) alone, group ultrasound (US) alone and group A02+US. The trypan blue dye exclusion test and MTT assay were used to determine the cell viability; Wright's staining was used to detect the apoptosis; the flow cytometry was used to analyze the drug concentration, and the scanning electron microscopy was used to observe the changes of cell surface. The results showed that the significant differences in cell viability, intracellular adriamycin concentration and changes of cell membrane were found between ultrasound-treated and untreated cells in the presence of various concentration of adriamycin. The exposure to ultrasound at 20 kHZ, 0.25 W/cm2 for 60 seconds could obviously decrease LC50 of adriamycin to K562/A02 cells, while the exposure to ultrasound at 20 kHZ, 0.05 W/cm2 for 60 seconds could kill K562/A02 cells at once. After being treated by low frequency ultrasound, the small holes with diameter about 1-2 microm in the cell surface appeared. The ultrasound increased the adriamycin concentration in the cells, accelerated the formation of apoptotic bodies, and promoted apoptosis of adriamycin-resistant cells. It is concluded that the ultrasound at optimal parameters enhances inhibitory effect of adriamycin on drug-resistant cell line, thereby reverses drug-resistance of drug-resistant cell line through sound-hole effect in tumor cells resulting from ultrasound induced cavitation.

  15. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis?

    PubMed Central

    Moeller, Antje; Ask, Kjetil; Warburton, David; Gauldie, Jack; Kolb, Martin

    2008-01-01

    Different animal models of pulmonary fibrosis have been developed to investigate potential therapies for idiopathic pulmonary fibrosis (IPF). The most common is the bleomycin model in rodents (mouse, rat and hamster). Over the years, numerous agents have been shown to inhibit fibrosis in this model. However, to date none of these compounds are used in the clinical management of IPF and none has shown a comparable antifibrotic effect in humans. We performed a systematic review of publications on drug efficacy studies in the bleomycin model to evaluate the value of this model regarding transferability to clinical use. Between 1980 and 2006 we identified 246 experimental studies describing beneficial antifibrotic compounds in the bleomycin model. In 221 of the studies we found enough details about the timing of drug application to allow inter-study comparison. 211 of those used a preventive regimen (drug given ≤ day 7 after last bleomycin application), only 10 were therapeutic trials (> 7 days after last bleomycin application). It is critical to distinguish between drugs interfering with the inflammatory and early fibrogenic response from those preventing progression of fibrosis, the latter likely much more meaningful for clinical application. All potential antifibrotic compounds should be evaluated in the phase of established fibrosis rather than in the early period of bleomycin-induced inflammation for assessment of its antifibrotic properties. Further care should be taken in extrapolation of drugs successfully tested in the bleomycin model due to partial reversibility of bleomycin induced fibrosis over time. The use of alternative and more robust animal models, which better reflect human IPF, is warranted. PMID:17936056

  16. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    SciTech Connect

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  17. Toll-like receptor 4 promotes fibrosis in bleomycin-induced lung injury in mice.

    PubMed

    Li, X X; Jiang, D Y; Huang, X X; Guo, S L; Yuan, W; Dai, H P

    2015-12-21

    The specific role of Toll-like receptor 4 (TLR4) in bleomycin-induced lung fibrosis of mice, a model of human idiopathic pulmonary fibrosis, has not been characterized. We injected bleomycin intratracheally into TLR4 knockout (TLR4(-/-)) and wild-type (WT) mice. Twenty-one days after injection, mice were sacrificed and their lungs were harvested for pathological, hydroxyproline, mRNA expression, and collagen I analyses. Body weight changes and mortality were observed. Light microscopy showed that lung fibrosis was minimal in TLR4(-/-) compared to that in WT mice on day 21 after bleomycin instillation. The Ashcroft score was significantly lower in TLR4(-/-) than in WT mice (3.667 ± 0.730 vs 4.945 ± 0.880, P < 0.05). Hydroxyproline content was significantly lower in TLR4(-/-) than in WT mice on day 21 after bleomycin injection (0.281 ± 0.022 vs 0.371 ± 0.047, P < 0.05). Compared to WT mice, bleomycin-treated TLR4(-/-) mice expressed significantly lower type I collagen mRNA levels (mesenchymal marker; 11.069 ± 2.627 vs 4.589 ± 1.440, P < 0.05). Collagen I was significantly lower in TLR4(-/-) than in WT mice (0.838 ± 0.352 vs 2.427 ± 0.551, P < 0.05). Bleomycin-treated TLR4(-/-) mice had a significantly lower mortality rate on day 21 than WT mice (33 vs 75%, P < 0.05). Body weight reduction was lower in TLR4(-/-) mice than in WT mice; this difference was not statistically significant (-3.735 ± 5.276 vs -6.698 ± 3.218, P > 0.05). Thus, bleomycin-induced pulmonary fibrosis is TLR4-dependent and TLR4 promoted fibrosis in bleomycin-challenged mice.

  18. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  19. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin

    PubMed Central

    Motlagh, Najme Sadat Hosseini; Parvin, Parviz; Ghasemi, Fatemah; Atyabi, Fatemeh

    2016-01-01

    Several chemo-drugs act as the biocompatible fluorophores. Here, the laser induced fluorescence (LIF) properties of doxorubicin, paclitaxel and bleomycin are investigated. The absorption lines mostly lie over UV range according to the UV-VIS spectra. Therefore, a single XeCl laser provokes the desired transitions of the chemo-drugs of interest at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration giving rise to the sensible red shift. This happens when large overlapping area appears between absorption and emission spectra accordingly. The red shift is taken into account as a characteristic parameter of a certain chemo-drug. The fluorescence extinction (α) and self-quenching (k) coefficients are determined based on the best fitting of the adopted Lambert-Beer equation over experimental data. The quantum yield of each chemo-drug is also measured using the linearity of the absorption and emission rates. PMID:27375954

  20. Tocopherol supplementation reduces NO production and pulmonary inflammatory response to bleomycin.

    PubMed

    Shi, Jin Dong; Golden, Thea; Guo, Chang-Jiang; Tu, Shui Ping; Scott, Pamela; Lee, Mao-Jung; Yang, Chung S; Gow, Andrew J

    2013-11-01

    Bleomycin causes acute lung injury through production of reactive species and initiation of inflammation. Previous work has shown alteration to the production of reactive oxygen species results in attenuation of injury. Vitamin E, in particular, γ-tocopherol, isoform, has the potential to scavenge reactive oxygen and nitrogen species. This study examines the utility of dietary supplementation with tocopherols in reducing bleomycin-mediated acute lung injury. Male C57BL6/J mice were intratracheally instilled with PBS or 2 units/kg bleomycin. Animals were analyzed 3 and 8 days post instillation at the cellular, tissue, and organ levels. Results showed successful delivery of tocopherols to the lung via dietary supplementation. Also, increases in reactive oxygen and nitrogen species due to bleomycin are normalized in those mice fed tocopherol diet. Injury was not prevented but inflammation progression was altered, in particular macrophage activation and function. Inflammatory scores based on histology demonstrate limited progression of inflammation in those mice treated with bleomycin and fed tocopherol diet compared to control diet. Upregulation of enzymes and cytokines involved in pro-inflammation were limited by tocopherol supplementation. Day 3 functional changes in elastance in response to bleomycin are prevented, however, 8 days post injury the effect of the tocopherol diet is lost. The effect of tocopherol supplementation upon the inflammatory process is demonstrated by a shift in the phenotype of macrophage activation. The effect of these changes on resolution and the progression of pulmonary fibrosis has yet to be elucidated.

  1. The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli.

    PubMed

    Blot, M; Hauer, B; Monnet, G

    1994-03-01

    The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS 50 R. We were not able to reproduce this result with IS 50 R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS 50 R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.

  2. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Takemasa, Akihiro; Ishii, Yoshiki; Fukuda, Takeshi

    2012-12-01

    Neutrophil elastase plays pivotal roles in the pathogenesis of pulmonary fibrosis. The neutrophil elastase inhibitor, sivelestat, could alleviate pulmonary fibrosis; however, the antifibrotic mechanisms have not yet been clarified. We examined the antifibrotic mechanisms, mainly focusing on a key fibrotic cytokine, transforming growth factor (TGF)-β1, in this study. To elucidate the antifibrotic mechanisms of sivelestat, we examined a murine model of bleomycin-induced early-stage pulmonary fibrosis. After intratracheal instillation of bleomycin, sivelestat was administered intraperitoneally once a day for 7 or 14 days. Bronchoalveolar lavage fluid and lung samples were examined on day 7 or day 14 after bleomycin instillation. In the bleomycin-induced early-stage pulmonary fibrosis model, the neutrophil elastase level was increased in the lungs. Sivelestat significantly inhibited the increase in lung collagen content, fibrotic changes, the numbers of total cells (including macrophages, neutrophils and lymphocytes), the levels of the active form of TGF-β1 and phospho-Smad2 in bleomycin-induced early-stage pulmonary fibrosis. The total TGF-β1 levels and relative changes of TGF-β1 mRNA expression, however, were not decreased significantly by sivelestat. These results suggest that sivelestat alleviated bleomycin-induced pulmonary fibrosis via inhibition of both TGF-β activation and inflammatory cell recruitment in the lung.

  3. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats.

    PubMed

    Wang, Changming; Xuan, Xiuping; Yao, Wenmin; Huang, Guojin; Jin, Junfei

    2015-07-01

    The present study aimed to determine whether artesunate has beneficial effects on bleomycin-induced pulmonary fibrosis in rats and to examine the possible mechanisms underlying these effects. All experiments were performed with male Sprague Dawley rats weighing 180-250 g. Animals were randomly divided into four experimental groups that were administered either saline alone, artesunate alone, bleomycin alone or bleomycin + artesunate. Lung histopathology was investigated by hematoxylin and eosin staining and Masson staining. Lung profibrotic molecules were analyzed by reverse transcription polymerase chain reaction, immunoblotting and immunohistochemistry. In rats treated with artesunate, pulmonary fibrosis induced by bleomycin was significantly reduced. Administration of artesunate significantly improved bleomycin-induced morphological alterations. Profibrotic molecules, including transforming growth factor-β1, Smad3, heat shock protein 47, α-smooth muscle actin and collagen type I were also reduced by artesunate. These findings suggest that artesunate improves bleomycin-induced pulmonary fibrosis pathology in rats possibly by inhibiting profibrotic molecules associated with pulmonary fibrosis.

  4. Inhibition of Cyclooxygenase-2 Reduces Hypothalamic Excitation in Rats with Adriamycin-Induced Heart Failure

    PubMed Central

    Liu, Wei; Zang, Wei-Jin; Bao, Cui-Yu; Qin, Da-Nian

    2012-01-01

    Background The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the progression of heart failure (HF). We investigated whether cyclooxygenase-2 (COX-2) inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in rats with adriamycin-induced heart failure. Methodology/Principal Finding Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg). On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB) or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW) and lung to body weight (LW/BW) ratios, heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak systolic pressure (LVPSP) and maximum rate of change in left ventricular pressure (LV±dp/dtmax) were improved in HF+CLB rats. Angiotensin II (ANG II), norepinephrine (NE), COX-2 and glutamate (Glu) in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH) positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. Conclusions These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure. PMID:23152801

  5. Hiponatremia during pregnancy with adriamycin-induced nephrotic syndrome in rats.

    PubMed

    Pedrycz, Agnieszka; Czerny, Krystyna; Wieczorski, Marcin; Hernik, Daria

    2003-01-01

    The purpose of the studies was to assess the electrolyte concentration in blood serum of pregnant Wistar rats, in which pregnancy coexisted with adriamycin-induced nephrotic syndrome. The results displayed hiponatremia in serum blood of these female rats. After puerperium sodium concentration came to the level similar to that before pregnancy, in comparison to control. Hiponatremia could cause neurological complications, which in pregnancy could activate eclampsia.

  6. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    PubMed

    Tan, Roderick J; Zhou, Lili; Zhou, Dong; Lin, Lin; Liu, Youhua

    2013-01-01

    Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA) and endothelin receptor B (ETB). Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p.) or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p.), atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios). Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  7. ANGPTL8 reverses established adriamycin cardiomyopathy by stimulating adult cardiac progenitor cells

    PubMed Central

    Chen, Shuyuan; Chen, Jiaxi; Meng, Xing-Li; Shen, Jin-Song; Huang, Jing; Huang, Pintong; Pu, Zhaoxia; McNeill, Nathan H.; Grayburn, Paul A.

    2016-01-01

    Established adriamycin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50% in a year. It has been known that ANGPTLs has various functions in lipid metabolism, inflammation, cancer cell invasion, hematopoietic stem activity and diabetes. We hypothesized that ANGPTL8 is capable of maintaining heart function by stimulating adult cardiac progenitor cells to initiate myocardial regeneration. We employed UTMD to deliver piggybac transposon plasmids with the human ANGPTL8 gene to the liver of rats with adriamycin cardiomyopathy. After ANGPTL8 gene liver delivery, overexpression of transgenic human ANGPTL8 was found in rat liver cells and blood. UTMD- ANGPTL8 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Our results also showed that ANGPTL8 reversed established ADM cardiomyopathy. This was associated with activation of ISL-1 positive cardiac progenitor cells in the epicardium. A time-course experiment shown that ISL-1 cardiac progenitor cells proliferated and formed a niche in the epicardial layer and then migrated into sub-epicardium. The observed myocardial regeneration accompanying reversal of adriamycin cardiomyopathy was associated with upregulation of PirB expression on the cell membrane of cardiac muscle cells or progenitor cells stimulated by ANGPTL8. PMID:27823982

  8. Combination chemoradiotherapy in early Hodgkin lymphoma.

    PubMed

    André, Marc P E

    2014-02-01

    Combination chemoradiotherapy achieves excellent results for the treatment of localized Hodgkin lymphoma. However, late toxic effects occur, mostly related to the radiotherapy administered after the standard adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) chemotherapy. The most serious sequelae are radiation-induced secondary cancers. Reducing radiotherapy has not yet prevented late malignancies. However, when radiotherapy was omitted, tumor control was inferior, with more relapses necessitating rescue treatment including high-dose chemotherapy with stem cell support. Early fluorodeoxyglucose positron emission tomography performed after a few cycles of ABVD is evaluated in several randomized trials to identify patients who might be safely treated with chemotherapy alone.

  9. A case of Hodgkin’s lymphoma with severely impaired liver function treated successfully with gemcitabine followed by ABVD

    PubMed Central

    Chakraborty, Rajshekhar; Mukkamalla, Shiva Kumar Reddy; Gutzmore, Garfield; Chan, Hon Cheung

    2015-01-01

    Hodgkin’s lymphoma (HL) originates from clonal B cells and is the most common malignancy in the second decade of life. Liver involvement is uncommon at presentation in patients with HL and there is a paucity of data for treatment of patients with severely impaired liver function. We present an unusual case of HL with severe hepatic impairment, splenomegaly and multiple chromosomal abnormalities that was treated initially with gemcitabine and steroids. Once liver function tests improved, six cycles of Adriamycin, bleomycin, vinblastine, and dacarbazine were administered. The patient remains in remission at 3.5 years of follow-up. PMID:25848330

  10. New Insights into the Mechanism and an Expanded Scope of the Fe(III)-mediated Vinblastine Coupling Reaction

    PubMed Central

    Gotoh, Hiroaki; Sears, Justin E.; Eschenmoser, Albert; Boger, Dale L.

    2012-01-01

    A definition of the scope of aromatic substrates that participate with catharanthine in an Fe(III)-mediated coupling reaction, an examination of the key structural features of catharanthine required for participation in the reaction, and the development of a generalized indole functionalization reaction that bears little structural relationship to catharanthine itself are detailed. In addition to providing insights into the mechanism of the Fe(III)-mediated coupling reaction of catharanthine with vindoline suggesting the reaction conducted in acidic aqueous buffer may be radical mediated, the studies provide new opportunities for the preparation of previously inaccessible vinblastine analogs and define powerful new methodology for the synthesis of indole-containing natural and unnatural products. PMID:22856867

  11. Soluble epoxide hydrolase inhibitor 1-trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl) urea attenuates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Zhou, Yong; Yang, Jun; Sun, Guo-Ying; Liu, Tian; Duan, Jia-Xi; Zhou, Hui-Fang; Lee, Kin Sing; Hammock, Bruce D; Fang, Xiang; Jiang, Jian-Xin; Guan, Cha-Xiang

    2016-02-01

    Epoxyeicosatrienoic acids (EETs), the metabolites of arachidonic acid derived from the cytochrome P450 (CYP450) epoxygenases, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties and inhibition of sEH might provide protective effects against inflammatory fibrosis. We test the effects of a selected sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), on bleomycin-induced pulmonary fibrosis (PF) in mice. A mouse model of PF was established by intratracheal injection of bleomycin and TPPU was administered for 21 days after bleomycin injection. We found TPPU treatment improved the body weight loss and survival rate of bleomycin-stimulated mice. Histological examination showed that TPPU treatment alleviated bleomycin-induced inflammation and maintained the alveolar structure of the pulmonary tissues. TPPU also decreased the bleomycin-induced deposition of collagen and the expression of procollagen I mRNA in lung tissues of mice. TPPU decreased the transforming growth factor-β1 (TGF-β1), interleukin-1β (IL-1β) and IL-6 levels in the serum of bleomycin-stimulated mice. Furthermore, TPPU inhibited the proliferation and collagen synthesis of mouse fibroblasts and partially reversed TGF-β1-induced α-smooth muscle actin expression. Our results indicate that the inhibition of sEH attenuates bleomycin-induced inflammation and collagen deposition and therefore prevents bleomycin-induced PF in a mouse model.

  12. Prostaglandin E₂ protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction.

    PubMed

    Dackor, Ryan T; Cheng, Jennifer; Voltz, James W; Card, Jeffrey W; Ferguson, Catherine D; Garrett, Ryan C; Bradbury, J Alyce; DeGraff, Laura M; Lih, Fred B; Tomer, Kenneth B; Flake, Gordon P; Travlos, Gregory S; Ramsey, Randle W; Edin, Matthew L; Morgan, Daniel L; Zeldin, Darryl C

    2011-11-01

    Prostaglandin E(2) (PGE(2)) is a lipid mediator that is produced via the metabolism of arachidonic acid by cyclooxygenase enzymes. In the lung, PGE(2) acts as an anti-inflammatory factor and plays an important role in tissue repair processes. Although several studies have examined the role of PGE(2) in the pathogenesis of pulmonary fibrosis in rodents, results have generally been conflicting, and few studies have examined the therapeutic effects of PGE(2) on the accompanying lung dysfunction. In this study, an established model of pulmonary fibrosis was used in which 10-12-wk-old male C57BL/6 mice were administered a single dose (1.0 mg/kg) of bleomycin via oropharyngeal aspiration. To test the role of prostaglandins in this model, mice were dosed, via surgically implanted minipumps, with either vehicle, PGE(2) (1.32 μg/h), or the prostacyclin analog iloprost (0.33 μg/h) beginning 7 days before or 14 days after bleomycin administration. Endpoints assessed at 7 days after bleomycin administration included proinflammatory cytokine levels and measurement of cellular infiltration into the lung. Endpoints assessed at 21 days after bleomycin administration included lung function assessment via invasive (FlexiVent) analysis, cellular infiltration, lung collagen content, and semiquantitative histological analysis of the degree of lung fibrosis (Ashcroft method). Seven days after bleomycin administration, lymphocyte numbers and chemokine C-C motif ligand 2 expression were significantly lower in PGE(2)- and iloprost-treated animals compared with vehicle-treated controls (P < 0.05). When administered 7 days before bleomycin challenge, PGE(2) also protected against the decline in lung static compliance, lung fibrosis, and collagen production that is associated with 3 wk of bleomycin exposure. However, PGE(2) had no therapeutic effect on these parameters when administered 14 days after bleomycin challenge. In summary, PGE(2) prevented the decline in lung static compliance and

  13. Dual effect of AMD3100, a CXCR4 antagonist, on bleomycin-induced lung inflammation.

    PubMed

    Watanabe, Masaki; Matsuyama, Wataru; Shirahama, Yuko; Mitsuyama, Hideo; Oonakahara, Ken-ichi; Noma, Satoshi; Higashimoto, Ikkou; Osame, Mitsuhiro; Arimura, Kimiyoshi

    2007-05-01

    The chemokine receptor CXCR4, which binds the chemokine stromal cell-derived factor 1, has been reported to be involved in the chemotaxis of inflammatory cells. In addition, AMD3100, an antagonist of CXCR4, has been reported to be an attractive drug candidate for therapeutic intervention in several disorders in which CXCR4 is critically involved. However, little is known about the therapeutic value of AMD3100 in the treatment of pulmonary fibrosis. In this study, we examined the effects of AMD3100 on a murine bleomycin-induced pulmonary fibrosis model. Concurrent administration of AMD3100 and bleomycin apparently attenuated bleomycin-induced pulmonary inflammation. In this process, an inhibition of neutrophil recruitment at early stage followed by the decrease of other inflammatory cell recruitment in the lung were observed. In addition, it also inhibited the expression of cytokines, including MCP-1, MIP-2, MIP-1alpha, and TGF-beta. In contrast, when AMD3100 was administered following bleomycin treatment, the bleomycin-induced lung inflammation progressed and resulted in severe pulmonary fibrosis. In this process, an increase of inflammatory cell recruitment, an up-regulation of lung MCP-1 and TGF-beta, and a remarkable activation of p44/42 MAPK in neutrophils were observed. U0126, an inhibitor of p44/42 MAPK, significantly abolished these effects. Thus, AMD3100 has dual effect on bleomycin-induced pulmonary fibrosis. Difference of inflammatory cell recruitment and activation might be associated with the dual effect of AMD3100 on bleomycin-induced pulmonary fibrosis.

  14. Essential role for cathepsin D in bleomycin-induced apoptosis of alveolar epithelial cells.

    PubMed

    Li, Xiaopeng; Rayford, Heather; Shu, Ruijie; Zhuang, Jiaju; Uhal, Bruce D

    2004-07-01

    Our earlier studies showed that bleomycin-induced apoptosis of type II alveolar epithelial cells (AECs) requires the autocrine synthesis and proteolytic processing of angiotensinogen into ANG II and that inhibitors of ANG-converting enzyme (ACEis) block bleomycin-induced apoptosis (Li X, Zhang H, Soledad-Conrad V, Zhuang J, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 284: L501-L507, 2003). Given the documented role of cathepsin D (CatD) in apoptosis of other cell types, we hypothesized that CatD might be the AEC enzyme responsible for the conversion of angiotensinogen into ANG I, the substrate for ACE. Primary cultures of rat type II AECs challenged with bleomycin in vitro showed upregulation and secretion of CatD enzymatic activity and immunoreactive protein but no increases in CatD mRNA. The aspartyl protease inhibitor pepstatin A, which completely blocked CatD enzymatic activity, inhibited bleomycin-induced nuclear fragmentation by 76% and reduced bleomycin-induced caspase-3 activation by 47%. Antisense oligonucleotides against CatD mRNA reduced CatD-immunoreactive protein and inhibited bleomycin-induced nuclear fragmentation by 48%. A purified fragment of angiotensinogen (F1-14) containing the CatD and ACE cleavage sites, when applied to unchallenged AEC in vitro, yielded mature ANG II peptide and induced apoptosis. The apoptosis induced by F1-14 was inhibited 96% by pepstatin A and 77% by neutralizing antibodies specific for CatD (both P < 0.001). These data indicate a critical role for CatD in bleomycin-induced apoptosis of cultured AEC and suggest that the role(s) of CatD in AEC apoptosis include the conversion of newly synthesized angiotensinogen to ANG II.

  15. The role of all-trans retinoic acid in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Dong, Zhaoxing; Tai, Wenlin; Yang, Yanni; Zhang, Tao; Li, Yongxia; Chai, Yanling; Zhong, Hong; Zou, Hua; Wang, Dianhua

    2012-03-01

    Much evidence suggests that immune imbalance in the lung plays a crucial role in the development of pulmonary fibrosis. Recently, all-trans retinoic acid (ATRA) shifting the regulatory T/T-helper 17 (Treg/Th17) profile had been proven in some diseases. However, to date, the effect of ARTA of pulmonary fibrosis has not been examined from this aspect. The objective of this study was to study the effect of ATRA on bleomycin-induced pulmonary fibrosis in mice and its possible mechanism. Pulmonary fibrosis was induced in C57BL/6 male mice by intratracheal instillation of bleomycin (5 mg.kg(-1)), which were randomly divided into control, bleomycin, and ATRA groups. Five mice in each group were sacrificed on day 28 after intratracheal instillation. Hemotoxylin and eosin (H&E) and Masson staining were used for pathological examination, and hydroxyproline in lung tissue was measured. Interleukin (IL)-17A protein expression was observed in lung with immunohistochemistry. The expression of IL-17A, IL-10, IL-6, and transforming growth factor (TGF)-β mRNAs were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Th17 and Treg expression in spleen lymphocytes were measured by flow cytometry. H&E and masson staining and expression of hydroxyproline showed that ATRA significantly alleviated lung fibrosis than in the bleomycin group. The expression of IL-17A, IL-10, IL-6, and TGF-β mRNAs were higher in the bleomycin group than in the normal group. ATRA can decrease these cytokines except for IL-10. CD4+CD25+ Treg cell ratio in the bleomycin group was significantly lower than normal, but CD4+IL-17+ T cells was higher; ARTA reversed this kind of expression. ATRA may ease the bleomycin-induced pulmonary fibrosis by inhibiting the expression of IL-6 and TGF-β, shifting the Treg/Th17 ratio and reducing the secretion of IL-17A.

  16. A micro-CT analysis of murine lung recruitment in bleomycin-induced lung injury

    PubMed Central

    Shofer, Scott; Badea, Cristian; Qi, Yi; Potts, Erin; Foster, W. Michael; Johnson, G. Allan

    2008-01-01

    The effects of lung injury on pulmonary recruitment are incompletely understood. X-ray computed tomography (CT) has been a valuable tool in assessing changes in recruitment during lung injury. With the development of preclinical CT scanners designed for thoracic imaging in rodents, it is possible to acquire high-resolution images during the evolution of a pulmonary injury in living mice. We quantitatively assessed changes in recruitment caused by intratracheal bleomycin at 1 and 3 wk after administration using micro-CT in 129S6/SvEvTac mice. Twenty female mice were administered 2.5 U of bleomycin or saline and imaged with micro-CT at end inspiration and end expiration. Mice were extubated and allowed to recover from anesthesia and then reevaluated in vivo for quasi-static compliance measurements, followed by harvesting of the lungs for collagen analysis and histology. CT images were converted to histograms and analyzed for mean lung attenuation (MLA). MLA was significantly greater for bleomycin-exposed mice at week 1 for both inspiration (P < 0.0047) and exhalation (P < 0.0377) but was not significantly different for week 3 bleomycin-exposed mice. However, week 3 bleomycin-exposed mice did display significant increases in MLA shift from expiration to inspiration compared with either group of control mice (P < 0.005), suggesting increased lung recruitment at this time point. Week 1 bleomycin-exposed mice displayed normal shifts in MLA with inspiration, suggesting normal lung recruitment despite significant radiographic and histological changes. Lung alveolar recruitment is preserved in a mouse model of bleomycin-induced parenchymal injury despite significant changes in radiographic and physiological parameters. PMID:18566189

  17. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    NASA Astrophysics Data System (ADS)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  18. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)bleomycin). Bleomycin was captured on a Cu(II)-loaded IDA resin at pH 9 in 50% yield from bleomycin-containing S. verticillus culture that was pre-processed using XAD-2 resin to remove endogenously bound Cu(II). The approximate 25-fold purification of bleomycin from complex culture supernatant under aqueous conditions in a single step demonstrates the potential of Cu(II)-based metal affinity chromatography as a green chemistry platform for streamlined access to this high-value therapeutic agent.

  19. Static and dynamic mechanics of the murine lung after intratracheal bleomycin

    PubMed Central

    2011-01-01

    Background Despite its widespread use in pulmonary fibrosis research, the bleomycin mouse model has not been thoroughly validated from a pulmonary functional standpoint using new technologies. Purpose of this study was to systematically assess the functional alterations induced in murine lungs by fibrogenic agent bleomycin and to compare the forced oscillation technique with quasi-static pressure-volume curves in mice following bleomycin exposure. Methods Single intratracheal injections of saline (50 μL) or bleomycin (2 mg/Kg in 50 μL saline) were administered to C57BL/6 (n = 40) and Balb/c (n = 32) mice. Injury/fibrosis score, tissue volume density (TVD), collagen content, airway resistance (RN), tissue damping (G) and elastance coefficient (H), hysteresivity (η), and area of pressure-volume curve (PV-A) were determined after 7 and 21 days (inflammation and fibrosis stage, respectively). Statistical hypothesis testing was performed using one-way ANOVA with LSD post hoc tests. Results Both C57BL/6 and Balb/c mice developed weight loss and lung inflammation after bleomycin. However, only C57BL/6 mice displayed cachexia and fibrosis, evidenced by increased fibrosis score, TVD, and collagen. At day 7, PV-A increased significantly and G and H non-significantly in bleomycin-exposed C57BL/6 mice compared to saline controls and further increase in all parameters was documented at day 21. G and H, but not PV-A, correlated well with the presence of fibrosis based on histology, TVD and collagen. In Balb/c mice, no change in collagen content, histology score, TVD, H and G was noted following bleomycin exposure, yet PV-A increased significantly compared to saline controls. Conclusions Lung dysfunction in the bleomycin model is more pronounced during the fibrosis stage rather than the inflammation stage. Forced oscillation mechanics are accurate indicators of experimental bleomycin-induced lung fibrosis. Quasi-static PV-curves may be more sensitive than forced oscillations

  20. Inhibitory effect of CXC chemokine receptor 4 antagonist AMD3100 on bleomycin induced murine pulmonary fibrosis.

    PubMed

    Song, Jeong Sup; Kang, Chun Mi; Kang, Hyeon Hui; Yoon, Hyung Kyu; Kim, Young Kyoon; Kim, Kwan Hyung; Moon, Hwa Sik; Park, Sung Hak

    2010-06-30

    CXC chemokine receptor 4 (CXCR4), which binds the stromal cell-derived factor-1 (SDF-1), has been shown to play a critical role in mobilizing the bone marrow (BM)-derived stem cells and inflammatory cells. We studied the effects of AMD3100, CXCR4 antagonist, on a murine bleomycin-induced pulmonary fibrosis model. Treatment of mice with AMD3100 in bleomycin-treated mice resulted in the decrease of SDF-1 in bronchoalveolar lavage (BAL) fluids at an early stage and was followed by the decrease of fibrocytes in the lung. AMD3100 treatment decreased the SDF-1 mRNA expression, fibrocyte numbers in the lung at an early stage (day 3) and CXCR4 expression at the later stage (day 7 and 21) after bleomycin injury. The collagen content and pulmonary fibrosis were significantly attenuated by AMD3100 treatment in later stage of bleomycin injury. AMD3100 treatment also decreased the murine mesenchymal and hematopoietic stem cell chemotaxis when either in the stimulation with bleomycin treated lung lysates or SDF-1 in vitro. In BM stem cell experiments, the phosphorylation of p38 MAPK which was induced by SDF-1 was significantly blocked by addition of AMD3100. Our data suggest that AMD3100 might be effective in preventing the pulmonary fibrosis by inhibiting the fibrocyte mobilization to the injured lung via blocking the SDF-1/CXCR4 axis.

  1. Asialoerythropoietin ameliorates bleomycin-induced acute lung injury in rabbits by reducing inflammation

    PubMed Central

    SONODA, AKINAGA; NITTA, NORIHISA; TSUCHIYA, KEIKO; OTANI, HIDEJI; WATANABE, SHOBU; MUKAISHO, KENICHI; TOMOZAWA, YUKI; NAGATANI, YUKIHIRO; OHTA, SHINICHI; TAKAHASHI, MASASHI; MURATA, KIYOSHI

    2014-01-01

    Acute lung injury, a critical illness characterized by acute respiratory failure with bilateral pulmonary infiltrates, remains unresponsive to current treatments. The condition involves injury to the alveolar capillary barrier, neutrophil accumulation and the induction of proinflammatory cytokines followed by lung fibrosis. In the present study, a rabbit model of bleomycin-induced acute lung injury was established to examine the effects of asialoerythropoietin (AEP), an agent with tissue-protective activities, on pulmonary inflammation. Six Japanese white rabbits were randomly divided into two equal groups. Acute lung injury was induced in all rabbits by intratracheally injecting bleomycin. The control group was injected with bleomycin only; the experimental (AEP) group was injected intravenously with AEP (80 μg/kg) prior to the bleomycin injection. Computed tomography (CT) studies were performed seven days later. The CT inflammatory scores of areas exhibiting abnormal density and the pathological inflammatory scores were recorded as a ratio on a 7×7 mm grid. The CT and pathological inflammatory scores were significantly different between the control and AEP groups [122±10 and 16.3±1.5 (controls) vs. 71±8.5 and 9.7±1.4 (AEP), respectively; P<0.01]. Thus, the present study revealed that AEP prevents bleomycin-induced acute lung injury in rabbits. PMID:25289037

  2. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis

    PubMed Central

    Zhang, Zongmei; Yu, Xiaoting; Fang, Xia; Liang, Aibin; Yu, Zhang; Gu, Pan; Zeng, Yu; He, Jian; Zhu, Hailong; Li, Shuai; Fan, Desheng; Han, Fei; Zhang, Lanjing; Yi, Xianghua

    2015-01-01

    Patients with pulmonary fibrosis often have low vitamin D levels, the effects of which are largely unknown. We here report that early vitamin D supplementation significantly reduced the severity of pulmonary fibrosis and inflammatory cell accumulationin in the bleomycin-induced pulmonary fibrosis mouse model on supplementary days 14, 21 and 28 (P < 0.001). Vitamin D supplementation also prevented some ultrastructural changes in response to bleomycin administration, including basement membrane thickening, interstitial fibrin deposition and microvilli flattening or disappearance on days 14, 21 and 28, and lamellar body swelling or vacuolation on days 21 and 28. The bleomycin group had rising hydroxyproline level on days 14, 21 and 28, whereas the vitamin D treatment group showed consistently lower hydroxyproline level but still higher than that of the control group (P < 0.001). Our immunohistochemistry and densitometry analyses showed less staining for α-smooth muscle actin, a myofibroblast marker, in the vitamin D group compared to the bleomycin group (P < 0.001). Thus, vitamin D treatment could prevent bleomycin-induced pulmonary fibrosis by delaying or suppressing ultrastructural changes, as well as attenuating hydroxyproline accumulation and inhibiting myofibroblastic proliferation. These data further our understanding of the roles of vitamin D in pulmonary fibrogenesis and in the treatment of pulmonary fibrosis. PMID:26627341

  3. Increased surface tension of the lung and surfactant in bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Horiuchi, T; Ikegami, M; Cherniack, R M; Mason, R J

    1996-10-01

    The increased elastic recoil of the lung in bleomycin-induced pulmonary fibrosis in the rat is due in part to increased surface forces. This study was designed to determine the role of surface tension in situ and in vitro 21 d after instillation of bleomycin. Using sequentially measured pressure-volume curves generated with air, saline, air after lavage with Tween 20, and saline, surface tension was significantly higher in bleomycin-treated lungs than in untreated lungs (4.7 +/- 1.1 versus 1.8 +/- 0.2 dyne/cm, p < 0.01). Surface tension was determined in vitro with a Wilhelmy balance using bronchoalveolar lavage fluid, surfactant, and organic solvent lipid extracts of surfactant. Bleomycin treatment resulted in elevated minimal surface tensions: BALF (20.7 +/- 0.6 versus 13.6 +/- 3.8 dyne/cm, p < 0.02), isolated surfactant (12.0 +/- 1.3 versus 3.0 +/- 0.5 dyne/cm, p < 0.02), and the organic solvent lipid extracted surfactant (11.0 versus 3.2 dyne/cm). These results indicate that the physical properties of surfactant in lungs of rats treated with bleomycin are abnormal and contribute to the increased elastic recoil in this model of pulmonary fibrosis.

  4. A Prospective Comparative Study of the Toxicity Profile of 5-Flurouracil, Adriamycin, Cyclophosphamide Regime VS Adriamycin, Paclitaxel Regime in Patients with Locally Advanced Breast Carcinoma

    PubMed Central

    Pillai, Pradeep Sadasivan; Jayakumar, Krishnan Nair Lalithamma

    2015-01-01

    Introduction A 5-flurouracil, Adriamycin, Cyclophosphamide (FAC) and Adriamycin, Paclitaxel (AT) are two popular chemotherapeutic regimens for treatment of breast carcinoma. The most time tested and popular regimen is FAC. It is extensively studied for efficacy and toxicity. But data regarding toxicity profile and efficacy of AT regimen is sparse. Aim To study the toxicity profile, severity of toxicities and clinical response rate of FAC and AT regimens in patients with locally advanced breast carcinoma. Materials and Methods A prospective observational study with 50 patients in each treatment arm. Study duration was 12 months from November 2012 to October 2013. Consecutive patients with locally advanced breast carcinoma receiving treatment with either FAC or AT regimen, satisfying inclusion criteria were enrolled into the study after getting informed written consent. Prior to initiation of treatment detailed medical history was taken from all patients. General clinical examination, examination of organ systems and local examination of breast lump were done. After each cycle of chemotherapy and after completion of treatment patients were interviewed and examined for clinical response and toxicities. Toxicities were graded with WHO toxicity grading criteria. All data were entered in a structured proforma. At least 50% reduction in tumour size was taken as adequate clinical response. Statistical Analysis Data was analysed using Chi-square test with help of Excel 2007 and SPSS-16 statistical software. Results Different pattern of toxicities were seen with FAC and AT regimens. Anaemia, thrombocytopenia, stomatitis, hyperpigmentation, photosensitivity and diarrhoea were more common with patients receiving FAC regimen. Leucopenia, peripheral neuropathy, myalgia, arthralgia, vomiting and injection site reactions were more common in AT regimen. Both FAC and AT regimens gave 100% clinical response. Conclusion FAC and AT regimens are equally efficacious but have different

  5. Protective Effect of Pistacia lentiscus Oil Against Bleomycin-Induced Lung Fibrosis and Oxidative Stress in Rat.

    PubMed

    Abidi, Anouar; Aissani, Nadhem; Sebai, Hichem; Serairi, Raja; Kourda, Nadia; Ben Khamsa, Saloua

    2017-04-01

    We aimed in the present study to investigate the protective effect of Pistacia lentiscus oil against bleomycin-induced lung fibrosis as well as the involvement of oxidative stress in such protection. In this respect, adult male Wistar rats were used and divided into three groups of twenty each: control (NaCl, 0.9%), bleomycin, and bleomycin (4 mg/kg b.w.) + P. lentiscus oil (3 g/kg, b.w.). Animals were pretreated for 30 days before the induction of fibrosis by bleomycin and 1 wk after the induction of fibrosis. The oil principal compounds detected by gas chromatography analysis are: Linoleic and palmitic acids (70.6 and 24.7%, respectively). Our data demonstrated that P. lentiscus oil protected against bleomycin-induced fibrosis as evidenced by TGFβ immunostaining increase in lungs fibrocytes as well as inflammatory infiltrate. We also showed that acute bleomycin-induced fibrosis was accompanied by an oxidative stress in lung tissue as assessed by an increase of lipid peroxidation as well as antioxidant enzyme activities depletion such as superoxide dismutase (SOD) and catalase (CAT). More importantly, P. lentiscus oil treatment reversed all bleomycin-induced oxidative stress parameters disturbances. In conclusion, we suggest that P. lentiscus oil had potent protective effects against bleomycin-induced fibrosis due in part to its antioxidant properties.

  6. Synergistic anticancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Kucuksayan, Ertan; Ozben, Tomris

    2012-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols used for testicular cancer; however, side-effects are common. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has been demonstrated to induce apoptosis in a number of malignancies. However, to date no study has been carried out to elucidate its anticancer activity and interaction with bleomycin in testicular cancer cells. In this study, we investigated and compared the effects of curcumin, bleomycin and hydrogen peroxide (H2O2) on apoptotic signaling pathways. Curcumin (20 µM), bleomycin (400 µg/ml) and H2O2 (400 µM) incubation for 24 h decreased the viability of NTera-2 cells, and increased caspase-3, -8 and -9 activities, Bax and cytoplasmic cytochrome c levels and decreased Bcl-2 levels. The concurrent use of curcumin with bleomycin induced caspase-3, -8 and -9 activities to a greater extent in NTera-2 cells than the use of each drug alone. Our observations suggest that the effects of curcumin and bleomycin on apoptotic signaling pathways are synergistic. Therefore, we propose to use curcumin together with bleomycin to decrease its therapeutic dose and, therefore, its side-effects.

  7. Attenuation of bleomycin-induced lung fibrosis by oral sulfhydryl containing antioxidants in rats: erdosteine and N-acetylcysteine.

    PubMed

    Yildirim, Zeki; Kotuk, Mahir; Iraz, Mustafa; Kuku, Irfan; Ulu, Ramazan; Armutcu, Ferah; Ozen, Suleyman

    2005-01-01

    Antioxidant therapy may be useful in diseases with impaired oxidant antioxidant balance such as lung fibrosis. The effects of sulfhydryl-containing antioxidant agents N-acetylcysteine (NAC) and erdosteine on the bleomycin-induced lung fibrosis were compared in rats. The animals were divided into four groups: Vehicle + vehicle, vehicle + bleomycin (2.5 U/kg), bleomycin + (10 mg/kg), and bleomycin + NAC (3 mmol/kg). Bleomycin administration resulted in prominent lung fibrosis as measured by lung hydroxyproline content and lung histology which is almost completely prevented by erdosteine and NAC. Hydroxyproline content was 18.7 +/- 3.5 and 11.2 +/- 0.6 mg/g dried tissue in bleomycin and saline treated rats, respectively (P < 0.001), and this level was 11.3 +/- 1.2 and 13.8 +/- 1.2 mg/g dried tissue in erdosteine and NAC pretreated, respectively. Erdosteine and NAC significantly reduced depletion of glutathione peroxidase, and prevented increases in myeloperoxidase activities, nitric oxide, and malondialdehyde levels in lung tissue produced by bleomycin. Data presented here indicate that erdosteine and NAC similarly prevented bleomycin-induced lung fibrosis and their antioxidant effects were also similar in this experiment.

  8. The effect of adriamycin and 4'-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids.

    PubMed

    Kerr, D J; Wheldon, T E; Kerr, A M; Freshney, R I; Kaye, S B

    1986-09-01

    Using growth delay and clonogenic cell survival as end points, we have shown that the 3-dimensional structure of human lung tumour spheroids confers a degree of resistance to the anthracyclines adriamycin and 4'-deoxydoxorubicin, relative to cells grown as monolayer. 4'-deoxydoxorubicin induces a longer growth delay and greater clonogenic cell kill than adriamycin in spheroids, although it is no more cytotoxic in monolayer (exponential and plateau phase). There is a log linear relationship between clonogenic cell survival and duration of adriamycin exposure in monolayers, and biphasic curve with a lesser degree of cell kill for disaggregated spheroid cells. Using fluorescent microscopy we have demonstrated, qualitatively, that the more lipophilic analogue partitions into the spheroid more rapidly and to a greater degree than adriamycin. It is possible that adriamycin penetration is a relatively important aspect of spheroid drug resistance, which may be related to intraspheroidal pH gradients, and that we have partially overcome this by using a lipophilic analogue.

  9. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Guan, Ruijuan; Zhao, Xiaomei; Wang, Xia; Song, Nana; Guo, Yuhong; Yan, Xianxia; Jiang, Liping; Cheng, Wenjing; Shen, Linlin

    2016-11-16

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with few treatment options and poor prognosis. Emodin, extracted from Chinese rhubarb, was found to be able to alleviate bleomycin (BLM)-induced pulmonary fibrosis, yet the underlying mechanism remains largely unknown. This study aimed to further investigate the effects of emodin on the inflammation and fibrosis of BLM-induced pulmonary fibrosis and the mechanism involved in rats. Our results showed that emodin improved pulmonary function, reduced weight loss and prevented death in BLM-treated rats. Emodin significantly relieved lung edema and fibrotic changes, decreased collagen deposition, and suppressed the infiltration of myofibroblasts [characterized by expression of α-smooth muscle actin (α-SMA)] and inflammatory cells (mainly macrophages and lymphocytes). Moreover, emodin reduced levels of TNF-α, IL-6, TGF-β1 and heat shock protein (HSP)-47 in the lungs of BLM-treated rats. In vitro, emodin profoundly inhibited TGF-β1-induced α-SMA, collagen IV and fibronectin expression in human embryo lung fibroblasts (HELFs). Emodin also inhibited TGF-β1-induced Smad2/3 and STAT3 activation, indicating that Smad2/3 and STAT3 inactivation mediates emodin-induced effects on TGF-β1-induced myofibroblast differentiation. These results suggest that emodin can exert its anti-fibrotic effect via suppression of TGF-β1 signaling and subsequently inhibition of inflammation, HSP-47 expression, myofibroblast differentiation and extracellular matrix (ECM) deposition.

  10. Bleomycin sensitivity test in the exposed and reference human populations.

    PubMed

    Michalska, J; Motykiewicz, G; Kalinowska, E; Chorazy, M

    1998-09-25

    Sensitivity to bleomycin was investigated in lymphocytes collected from three groups of males: 30 occupationally exposed cokery workers, 38 environmentally exposed Silesian citizen and 35 rural inhabitants. The data were analyzed at both the individual and group levels. The first analysis has revealed a substantial interindividual variability in the level of generated breaks (breaks per cell, b/c). This variability was independent of the age of the donor, smoking habit and X-ray exposure as tested in the multiple regression model. The means per group for the occupationally and environmentally exposed persons were almost the same with the values of 0.674 and 0.639, respectively. These two groups differed significantly from the rural population (b/c=0.448, p<0.001 by MANOVA). The reproducibility of the assay was satisfying (p>0.49 by the Wilcoxon matched paired test) after omitting 7 out of 49 repeatedly sampled donors. Those persons exhibited extremely high b/c rates in the first sampling.

  11. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells

    PubMed Central

    Jiang, Guojun; Dong, Shuying; Yu, Meiling; Han, Xi; Zheng, Chao; Zhu, Xiaoguang; Tong, Xuhui

    2017-01-01

    Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced. PMID:28356970

  12. Induction of drug-resistant bladder carcinoma cells in vitro: impact on polychemotherapy with cisplatin, methotrexate and vinblastine (CMV).

    PubMed

    Rohde, D; Brehmer, B; Kapp, T; Valdor, M; Jakse, G

    1998-01-01

    Residual tumor, tumor progression or relapse after chemotherapy of patients with advanced or metastasized transitional cell carcinoma of the bladder (TCCB) are suggested to reflect intrinsic drug resistance of cancer cells, or the development of chemotherapy-resistant tumor cell populations. The present study aimed to establish drug-resistant subculture cell lines from human TCCB, selected for anticancer drugs, administered in the cisplatin, methotrexate and vinblastine (CMV) polychemotherapy protocol. Tumor cells from chemonaive cell lines of human TCCB (HT1376, TCCSUP) have been exposed to progressively increasing concentrations of cis-diamminedichloroplatinum (II) (CDDP), methotrexate (MTX), vinblastine (VBL) or etoposide (VP16). The resulting drug-resistant subculture cell lines (HT1376-CDDP, HT1376-MTX, HT1376-VBL, HT1376-VP, TCCSUP-CDDP, TCCSUP-MTX, TCCSUP-VBL, TCCSUP-VP) were analyzed with regard to the achieved resistance factor (RF) for the inductive anticancer agent, the acquisition of cross-resistance, DNA content, cell cycle distribution and cellular morphology. Parental HT1376 cells were intrinsically less sensitive to all anticancer drugs (1.7-50x), compared with TCCSUP cells. Relative resistance against the inductive anticancer agents was similar for the final drug-resistant subculture cell lines of both parental cell lines concerning CDDP and VP-16 (RF: 4-5x), but were reciprocal for MTX and VBL, respectively. MTX led to much stronger resistance (RF > 200) than the other drugs (RF < 10). Pleiotropic cross-resistances were observed in six out of eight (75%) drug-resistant subculture cell lines. Highest RF (50-500x) and frequency of cross-resistance (five of six cell lines) occured for MTX, and the least from exposure to CDDP (one of six cell lines). Overall, the results corroborated the central role of CDDP against urothelial carcinoma whereas repetitive applications of MTX appeared to be a doubtful strategy. Moreover, the experiments provide the

  13. The effect of bleomycin on DNA synthesis in ataxia telangiectasia lymphoid cells

    SciTech Connect

    Cohen, M.M.; Simpson, S.J.

    1982-01-01

    Bleomycin, a radiomimetic glycopeptide, inhibits de novo DNA synthesis in ataxia telangiectasia lymphoblastoid B cells to a markedly lesser extent than in normal and xeroderma pigmentosum lymphoid cells. This observation is similar to that following ionizing radiation; however, the effect is slower following the chemical treatment. Recovery of the normal cells occurs 15-18 hours after treatment, whereas the ataxia telangiectasia lines do not attain normal levels of DNA synthesis during the entire 24-hour observation period. Similar differences were not observed following treatment with mitomycin C, a bifunctional alkylating agent, indicating a specific effect of bleomycin on DNA synthesis in ataxia telangiectasia cells. Following bleomycin treatment and preincubation with hydroxyurea, residual DNA synthesis in ataxia telangiectasia cells was similar to that in both normal and xeroderma pigmentosum lymphoid lines, suggesting that the capacity to repair the induced DNA lesion is present.

  14. In-vitro and in-vivo characterization of ruthenium-bleomycin compared to cobalt- and copper-bleomycin

    SciTech Connect

    Shao, H.S.; Meinken, G.E.; Srivastava, S.C.; Slosman, D.; Sacker, D.F.; Som, P.; Brill, A.B.

    1986-01-01

    Bleomycin (BLM) has undergone extensive investigation both as a cancer chemotherapeutic agent, and as a carrier for radionuclides for tumor imaging. The available methods or the radionuclides used, however, have had limited effectiveness. Although labeling of BLM with /sup 103/Ru has been reported earlier, we carried out a study to develop a more reproducible method of labeling particularly for use with Brookhaven Linac Isotope Producer produced /sup 97/Ru. Ruthenium-97 has favorable physical properties that make it ideal for imaging applications: decay by electron capture; ..gamma.. 216 keV, 85%; t/sub 1/2/ 2.9 d. A novel method based on the reduction of Ru/sup 3 +/ to Ru/sup 2 +/ using stannous chloride was investigated for labeling BLM with /sup 97/Ru and/or /sup 103/Ru. In-vitro and in vivo comparisons of the product(s) with /sup 57/Co and /sup 67/Cu-labeled BLM were also carried out. 4 refs., 3 tabs.

  15. Enhanced cough reflex in a model of bleomycin-induced lung fibrosis in guinea pigs.

    PubMed

    Fernández-Blanco, Joan Antoni; Aguilera, Mònica; Domènech, Anna; Tarrasón, Gema; Prats, Neus; Miralpeix, Montse; De Alba, Jorge

    2015-12-01

    Fibrotic lung diseases, such as idiopathic pulmonary fibrosis, are associated with spontaneous dry cough and hypersensitivity to tussive agents. Understanding the pathophysiology driving enhanced cough may help us to define better therapies for patients. We hypothesized that lung fibrosis induced by intratracheal bleomycin would exacerbate the cough reflex induced by tussive agents in guinea pigs. Disease progression in the lungs was characterized at days 1, 7, 14, 21 and 28 after bleomycin administration. Inflammatory and fibrotic markers, as well as neurotrophin levels, were assessed in bronchoalveolar lavage fluid and/or lung tissue. Cough sensitivity to citric acid, capsaicin and allylisothiocyanate was evaluated in conscious animals at days 14 and 21 after bleomycin administration. Pulmonary lesions evolved from an early inflammatory phase (from day 1 to day 7) to a fibrotic stage (between days 14 and 28). Fibrosis was related to increased levels of matrix metalloproteinase-2 in bronchoalveolar lavage fluid (day 21: saline, 0.26 ng/ml; bleomycin, 0.49 ng/ml). At day 14, we also observed increased cough reflexes to citric acid (163%), capsaicin (125%) and allylisothiocyanate (178%). Cough exacerbation persisted, but at a lower extent, by day 21 for capsaicin (100%) and allylisothiocyanate (54%). Moreover, bronchoalveolar lavage fluid concentrations of brain-derived neurotrophic factor, suggested to induce nerve remodelling in chronic cough, were also enhanced (day 1: saline, 14.21 pg/ml; bleomycin, 30.09 pg/ml). In summary, our model of bleomycin-induced cough exacerbation may be a valuable tool to investigate cough hypersensitivity and develop antitussive therapies for fibrotic lung diseases.

  16. Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice

    PubMed Central

    Oliveira-Junior, Manoel Carneiro; Assumpção-Neto, Erasmo; Brandão-Rangel, Maysa Alves Rodrigues; Damaceno-Rodrigues, Nilsa Regina; Garcia Caldini, Elia; Velosa, Ana Paula Pereira; Teodoro, Walcy Rosolia; Ligeiro de Oliveira, Ana Paula; Dolhnikoff, Marisa; Eickelberg, Oliver; Vieira, Rodolfo Paula

    2016-01-01

    Introduction The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c). Methods BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX); (n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). Results At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01), (IL-1β; p<0.001), (IL-5; p<0.01), (IL-6; p<0.001), (IL-13; p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). Conclusion AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15–44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model. PMID:27677175

  17. Hypoxia-Induced Epithelial-Mesenchymal Transition Is Involved in Bleomycin-Induced Lung Fibrosis.

    PubMed

    Guo, Liang; Xu, Jun-mei; Liu, Lei; Liu, Su-mei; Zhu, Rong

    2015-01-01

    Pulmonary fibrosis is a severe disease that contributes to the morbidity and mortality of a number of lung diseases. However, the molecular and cellular mechanisms leading to lung fibrosis are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in bleomycin-induced lung fibrosis. The bleomycin-induced fibrosis animal model was established by intratracheal injection of a single dose of bleomycin. Protein expression was measured by Western blot, immunohistochemistry, and immunofluorescence. Typical lesions of lung fibrosis were observed 1 week after bleomycin injection. A progressive increase in MMP-2, S100A4, α-SMA, HIF-1α, ZEB1, CD44, phospho-p44/42 (p-p44/42), and phospho-p38 MAPK (p-p38) protein levels as well as activation of EMT was observed in the lung tissues of bleomycin mice. Hypoxia increased HIF-1α and ZEB1 expression and activated EMT in H358 cells. Also, continuous incubation of cells under mild hypoxic conditions increased CD44, p-p44/42, and p-p38 protein levels in H358 cells, which correlated with the increase in S100A4 expression. In conclusion, bleomycin induces progressive lung fibrosis, which may be associated with activation of EMT. The fibrosis-induced hypoxia may further activate EMT in distal alveoli through a hypoxia-HIF-1α-ZEB1 pathway and promote the differentiation of lung epithelial cells into fibroblasts through phosphorylation of p38 MAPK and Erk1/2 proteins.

  18. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  19. Bleomycin sclerotherapy for lymphatic malformation after unsuccessful surgical excision: case report.

    PubMed

    Vlahovic, A; Gazikalovic, A; Adjic, O

    2015-10-01

    Lymphatic malformations (LMs) are benign cystic masses resulting from the abnormal development of lymphatic channels. Lymphatic malformations occur primarily in the head and neck region. Surgical excision of lymphatic malformation is followed by high rate of recurrence and a high risk of complications. Bleomycin is an established antineoplastic drug. It can be used as a sclerosing agent in vascular anomalies. We present a child who was unsuccessfully treated with four surgical resections, with peripheral palsy of facial nerve as complication. The lymphatic malformation was successfully treated in our institution with intralesional administration of bleomycin.

  20. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis

    PubMed Central

    2014-01-01

    Background Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. Methods To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2 -/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. Results BLM-treated rac2 -/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2 -/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2 -/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2 -/- and WT and mice that survived to day 21. Conclusion Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the

  1. Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Chen, Jianhui; Shi, Yingying; He, Lian; Hao, Hairong; Wang, Baolan; Zheng, Yulong; Hu, Chengping

    2016-11-01

    The purpose of this paper was to investigate the protective effects of polysaccharides from (PGL) Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats. Our study demonstrated that treatment with PGL of 100-300mg/kg for 28 days led to significant reduction in the pulmonary index, inflammatory cell infiltration and collagen deposition in rats with bleomycin-induced pulmonary fibrosis, which was associated with increased levels of glutathione, glutathione peroxidase, catalase and superoxide dismutase and decreased contents of malondialdehyde and hydroxyproline in the lung. These results indicated that PGL played a positive protective role in the pulmonary fibrosis and its possible mechanism was to improve lung antioxidant ability.

  2. Total Synthesis and Evaluation of Vinblastine Analogues Containing Systematic Deep-Seated Modifications in the Vindoline Subunit Ring System: Core Redesign

    PubMed Central

    Schleicher, Kristin D.; Sasaki, Yoshikazu; Tam, Annie; Kato, Daisuke; Duncan, Katharine K.; Boger, Dale L.

    2013-01-01

    The total synthesis of a systematic series of vinblastine analogues that contain deep-seated structural modifications to the core ring system of the lower vindoline subunit is described. Complementary to the vindoline 6,5 DE ring system, compounds with 5,5, 6,6 and the reversed 5,6 membered DE ring systems were prepared. Both the natural cis and unnatural trans 6,6-membered ring systems proved accessible, with the latter representing a surprisingly effective class for analogue design. Following Fe(III)-promoted coupling with catharanthine and in situ oxidation to provide the corresponding vinblastine analogues, their evaluation provided unanticipated insights into how the structure of the vindoline subunit contributes to activity. Two potent analogues (81 and 44) possessing two different unprecedented modifications to the vindoline subunit core architecture were discovered that matched the potency of the comparison natural products and both lack the 6,7-double bond whose removal in vinblastine leads to a 100-fold drop in activity. PMID:23252481

  3. Efficacy of methotrexate/vinblastine/doxorubicin cisplatin combination in gemcitabine-pretreated patients with advanced urothelial cancer: a retrospective analysis

    PubMed Central

    Karadimou, Alexandra; Lianos, Evangelos; Pectasides, Dimitrios; Dimopoulos, Meletios A; Bamias, Aristotle

    2010-01-01

    Objective Second-line treatment options in advanced urothelial cancer are limited. We investigated the efficacy of a methotrexate/vinblastine/doxorubicin/cisplatin (MVAC) combination after failure of gemcitabine/platinum chemotherapy. Patients and methods Twenty-five patients with advanced urothelial cancer, who received second-line MVAC after first-line gemcitabine/cisplatin (n = 9) or gemcitabine/carboplatin (n = 16), were included in this retrospective analysis. Results Twenty-two patients (88%) relapsed within 6 months after first-line treatment. Following MVAC, there were 5 (20%) objective responses. Median follow-up was 20.2 months. Median progression-free survival (PFS) was 3.8 months (95% CI: 2.3–5.2), and median overall survival (OS) was 9 months (95% CI: 6.6–11.4). Eastern Cooperative Oncology Group performance status 0.1 versus 2 was associated with longer PFS (5 months versus 3.3 months, P = 0.049). Response or stabilization of disease during second-line chemotherapy predicted for a significantly longer PFS and OS (7.4 versus 3.5, P = 0.005; 15.5 versus 7, P = 0.046). Conclusions Second-line MVAC chemotherapy may result in prolonged survival in some patients with refractory disease. Further research in this field is necessary. PMID:24198628

  4. NSCA-1-a novel N-substituted coumalamide derivative-increases Adriamycin sensitivity in HepG2/adriamycin cells through modulating Akt/GSK-3β signaling and p53-dependant apoptotic pathway.

    PubMed

    Fan, Yanhua; Liu, Jianyu; Liu, Dan; Zhou, Zhipeng; Bao, Ying; Wang, Jian; Zhao, Qingchun; Xu, Yongnan

    2017-01-01

    Coumalamide derivatives are one of 2-pyrones derivatives, exerting multifunctional bioactivity. An array of coumalamide derivatives have been developed and presented good antiproliferative properties on cancer cells. However, the synthesis of 5-substituted coumalamide derivatives has not yet been published. Resistance to chemotherapeutic drugs is a major obstacle in hepatocellular carcinoma therapy. Recent evidence suggests that overexpression of constitutively active Akt confers on cancer cells resistance to chemotherapy. In this study, we report the synthesis and biological evaluation of a novel N-substituted coumalamide derivative (NSCA-1). The results indicated that NSCA-1 exerts synergistic cytotoxicity with Adriamycin in HepG2/ADR (HepG2/adriamycin) cells. Furthermore, both of the Akt kinase activity and phosphorylated Akt (Ser473) were found to be inhibited by NSCA-1 and subsequently resulting in decreased phosphorylation of GSK-3β. The intracellular accumulation of Adriamycin was also boosted by NSCA-1 via reducing the expression of p-gp. In addition, we found that combined treatment with NSCA-1 enhance cell apoptosis induced by Adriamycin via p53-dependant apoptotic pathway.

  5. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury.

    PubMed

    Rey-Parra, G J; Vadivel, A; Coltan, L; Hall, A; Eaton, F; Schuster, M; Loibner, H; Penninger, J M; Kassiri, Z; Oudit, G Y; Thébaud, B

    2012-06-01

    Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin-angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-generated Angiotensin II contributes to lung injury. ACE2, a recently discovered ACE homologue, acts as a negative regulator of the RAS and counterbalances the function of ACE. We hypothesized that ACE2 prevents Bleomycin (BLM)-induced lung injury. Fourteen to 16-week-old ACE2 knockout mice-male (ACE2(-/y)) and female (ACE2(-/-))-and age-matched wild-type (WT) male mice received intratracheal BLM (1.5U/kg). Male ACE2(-/y) BLM injured mice exhibited poorer exercise capacity, worse lung function and exacerbated lung fibrosis and collagen deposition compared with WT. These changes were associated with increased expression of the profibrotic genes α-smooth muscle actin (α-SMA) and Transforming Growth Factor ß1. Compared with ACE2(-/y) exposed to BLM, ACE2(-/-) exhibited better lung function and architecture and decreased collagen deposition. Treatment with intraperitoneal recombinant human (rh) ACE2 (2 mg/kg) for 21 days improved survival, exercise capacity, and lung function and decreased lung inflammation and fibrosis in male BLM-WT mice. Female BLM WT mice had mild fibrosis and displayed a possible compensatory upregulation of the AT2 receptor. We conclude that ACE2 gene deletion worsens BLM-induced lung injury and more so in males than females. Conversely, ACE2 protects against BLM-induced fibrosis. rhACE2 may have therapeutic potential to attenuate respiratory morbidity in ALI/ARDS.

  6. Metformin Reduces Bleomycin-induced Pulmonary Fibrosis in Mice.

    PubMed

    Choi, Sun Mi; Jang, An Hee; Kim, Hyojin; Lee, Kyu Hwa; Kim, Young Whan

    2016-09-01

    Metformin has anti-inflammatory and anti-fibrotic effects. We investigated whether metformin has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis in a murine model. A total of 62 mice were divided into 5 groups: control, metformin (100 mg/kg), BLM, and BLM with metformin (50 mg/kg or 100 mg/kg). Metformin was administered to the mice orally once a day from day 1. We sacrificed half of the mice on day 10 and collected the bronchoalveolar lavage fluid (BALF) from their left lungs. The remaining mice were sacrificed and analyzed on day 21. The right lungs were harvested for histological analyses. The messenger RNA (mRNA) levels of epithelial-mesenchymal transition markers were determined via analysis of the harvested lungs on day 21. The mice treated with BLM and metformin (50 mg/kg or 100 mg/kg) showed significantly lower levels of inflammatory cells in the BALF compared with the BLM-only mice on days 10 and 21. The histological examination revealed that the metformin treatment led to a greater reduction in inflammation than the treatment with BLM alone. The mRNA levels of collagen, collagen-1, procollagen, fibronectin, and transforming growth factor-β in the metformin-treated mice were lower than those in the BLM-only mice on day 21, although statistical significance was observed only in the case of procollagen due to the small number of live mice in the BLM-only group. Additionally, treatment with metformin reduced fibrosis to a greater extent than treatment with BLM alone. Metformin suppresses the inflammatory and fibrotic processes of BLM-induced pulmonary fibrosis in a murine model.

  7. Histone H1.2 is translocated to mitochondria and associates with Bak in bleomycin-induced apoptotic cells.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Amorim, Bruna Rabelo; Haneji, Tatsuji

    2008-04-01

    Bleomycin induces single- and double-stranded breaks in DNA, with consequent mitochondrial membrane aberrations that lead to the apoptotic cell death. It is poorly understood how DNA damage-inducing apoptotic signals are transmitted to mitochondria, from which apoptotic factors are released into the cytoplasm. Here, we investigated the localization of histone H1.2 in the bleomycin-treated human squamous carcinoma SCCTF cells. The presence of DNA double-strand breaks in the bleomycin-treated cells was examined by Western analysis using antibody against phosphorylated histone H2AX (gamma-H2AX). Incubation of SCCTF cells for 48 h with 10 microM bleomycin induced apoptosis, as determined by cleavage of lamin B1 to 28 kDa fragment and DNA ladder formation. The mitochondrial permeabilization causing apoptotic feature was also detected with MitoCapture in the bleomycin-treated cells. Histone H1.2 was translocated from the nucleus to the mitochondria after treatment with bleomycin and co-localized with Bak in mitochondria. Our present results suggest that histone H1.2 plays an important role in transmitting apoptotic signals from the nucleus to the mitochondria following double-stranded breaks of DNA by bleomycin.

  8. P-selectin upregulation in bleomycin induced lung injury in rats: effect of N-acetyl-L-cysteine

    PubMed Central

    Serrano-Mollar, A; Closa, D; Cortijo, J; Morcillo, E; Prats, N; Gironella, M; Panes, J; Rosello-Catafau, J; Bulbena, O

    2002-01-01

    Background: A number of adhesion molecules are involved in the process of neutrophil infiltration into the lung. P-selectin is one of these neutrophil-endothelial cell adhesion molecules. A study was undertaken to examine the involvement of P-selectin in the development of bleomycin induced inflammation and the ability of N-acetyl-L-cysteine to reduce the potential expression of this selectin in rats. Methods: N-acetyl-L-cysteine (3 mmol/kg po) was administered daily for seven days prior to bleomycin administration (2.5 U/kg). The kinetics of P-selectin expression and the effect of N-acetyl-L-cysteine after bleomycin treatment were measured using radiolabelled antibodies. P-selectin localisation was evaluated by immunohistochemistry and neutrophil infiltration was assessed by myeloperoxidase activity. Results: Bleomycin administration resulted in an upregulation of P-selectin at 1 hour, returning to baseline at 3 hours. Myeloperoxidase activity showed a significant increase at 6 hours after bleomycin administration that lasted for 3 days. N-acetyl-L-cysteine treatment completely prevented these increases. Conclusion: Upregulation of P-selectin in the lung is associated with neutrophil recruitment in response to bleomycin. The beneficial effect of N-acetyl-L-cysteine on bleomycin induced lung injury may be explained in part by the prevention of neutrophil recruitment in the inflammatory stage of the disease. PMID:12096208

  9. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats.

    PubMed

    Mata, M; Ruíz, A; Cerdá, M; Martinez-Losa, M; Cortijo, J; Santangelo, F; Serrano-Mollar, A; Llombart-Bosch, A; Morcillo, E J

    2003-12-01

    Oxidative stress is involved in the pathogenesis of pulmonary fibrosis, therefore antioxidants may be of therapeutic value. Clinical work indicates that N-acetylcysteine (NAC) may be beneficial in this disease. The activity of this antioxidant was examined on bleomycin-induced lung damage, mucus secretory cells hyperplasia and mucin Muc5ac gene expression in rats. NAC (3 mmol x kg(-1) x day(-1)) or saline was given orally to Sprague-Dawley rats for 1 week prior to a single intratracheal instillation of bleomycin (2.5 U x kg(-1)) and for 14 days postinstillation. NAC decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content was 4,257+/-323 and 3,200+/-192 microg x lung(-1) in vehicle- and NAC-treated rats, respectively) and lessened the fibrotic area assessed by morphometric analysis. The bleomycin-induced increases in lung tumour necrosis factor-alpha and myeloperoxidase activity were reduced by NAC treatment. The numbers of mucus secretory cells in airway epithelium, and the Muc5ac messenger ribonucleic acid and protein expression, were markedly augmented in rats exposed to bleomycin. These changes were significantly reduced in NAC-treated rats. These results indicate that bleomycin increases the number of airway secretory cells and their mucin production, and that oral N-acetylcysteine improved pulmonary lesions and reduced the mucus hypersecretion in the bleomycin rat model.

  10. Antitumor efficacy of interleukin-2 alone and in combination with adriamycin and dacarbazine in murine solid tumor systems.

    PubMed

    LoRusso, P M; Aukerman, S L; Polin, L; Redman, B G; Valdivieso, M; Biernat, L; Corbett, T H

    1990-09-15

    Recombinant interleukin-2 (IL-2)/chemotherapy combinations have recently entered clinical trial. The rationale for sequencing has primarily been empiric or based on in vitro data. To establish in vivo models for chemoimmunotherapy trials, we investigated IL-2 alone and in combination with dacarbazine (DTIC) and adriamycin. IL-2 (as a single agent given i.v. at 1-3 x 10(5) Cetus units once daily for 5 days, repeated 7-10 days later), was highly active against an immunogenic line of colon adenocarcinoma no. 11/A [tumor growth inhibition (T/C) = 0% with cures]. It was modestly active against colon adenocarcinoma no. 38 (T/C = 39%), mammary adenocarcinoma no. 16/C (T/C = 18%), and B16 melanoma (T/C = 21%). IL-2 was inactive against colon adenocarcinoma no. 7/A (T/C = 83%). Combination trials were done using DTIC and IL-2 against colon no. 7/A and upstaged colon no. 11/A. The combination of adriamycin and IL-2 was tested against mammary adenocarcinoma no. 16/C. In the DTIC/IL-2 combination trials, the combination was superior over either agent used alone. In the IL-2/adriamycin trials, the combination was no better than adriamycin alone at optimum dosages.

  11. Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice.

    PubMed

    Jungsuwadee, Paiboon; Cole, Marsha P; Sultana, Rukhsana; Joshi, Gurujaj; Tangpong, Jitbanjong; Butterfield, D Allan; St Clair, Daret K; Vore, Mary

    2006-11-01

    Multidrug resistance-associated protein 1 (MRP1) mediates the ATP-dependent efflux of endobiotics and xenobiotics, including estradiol 17-(beta-d-glucuronide), leukotriene C(4), and the reduced glutathione conjugate of 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation. Adriamycin is an effective cancer chemotherapeutic drug whose use is limited by cardiotoxicity. Adriamycin induces oxidative stress and production of HNE in cardiac tissue, which may contribute to cardiomyopathy. We investigated the role of Mrp1 in Adriamycin-induced oxidative stress in cardiac tissue. Mice were treated with Adriamycin (20 mg/kg, i.p.), and heart homogenate and sarcolemma membranes were assayed for Mrp1 expression and ATP-dependent transport activity. Expression of Mrp1 was increased at 6 and 24 hours after Adriamycin treatment compared with saline treatment. HNE-adducted proteins were significantly increased (P < 0.001) in the homogenates at 6 hours after Adriamycin treatment and accumulated further with time; HNE adduction of a 190-kDa protein was evident 3 days after Adriamycin treatment. Mrp1 was localized predominately in sarcolemma as shown by confocal and Western blot analysis. Sarcolemma membrane vesicles transported leukotriene C(4) with a K(m) and V(max) of 51.8 nmol/L and 94.1 pmol/min/mg, respectively, and MK571 (10 micromol/L) inhibited the transport activity by 65%. Exposure of HEK(Mrp1) membranes to HNE (10 micromol/L) significantly decreased the V(max) for estradiol 17-(beta-d-glucuronide) transport by 50%. These results show that expression of Mrp1 in the mouse heart is localized predominantly in sarcolemma. Adriamycin treatment increased Mrp1 expression and HNE adduction of Mrp1. Cardiac Mrp1 may play a role in protecting the heart from Adriamycin-induced cardiomyopathy by effluxing HNE conjugates.

  12. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis

    PubMed Central

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-01-01

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses. PMID:25906080

  13. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis.

    PubMed

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-04-03

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses.

  14. Some repair-deficient mutants of Dictyostelium discoideum display enhanced susceptibilities to bleomycin.

    PubMed Central

    Deering, R A; Guyer, R B; Stevens, L; Watson-Thais, T E

    1996-01-01

    Dictyostelium discoideum, a soil eukaryote, is highly resistant to DNA-damaging agents; repair mutants are more susceptible. Susceptibility to bleomycin, produced by Streptomyces verticillus, is greater for mutants which are susceptible to other agents than for resistant strains. The high potential for DNA repair may result from the need to cope with chemicals produced by other soil microorganisms. PMID:8834899

  15. Bleomycin increases amikacin and streptomycin resistance in Escherichia coli harboring transposon Tn5.

    PubMed Central

    Blazquez, J; Martinez, J L; Baquero, F

    1993-01-01

    The antitumor antibiotic bleomycin acts as a transcriptional inducer of the neo-ble-str operon of the transposon Tn5, increasing the resistance level to streptomycin and amikacin in Tn5-containing Escherichia coli. The mechanism may involve a recA-independent induction mediated by DNA damage. Images PMID:7694544

  16. Deficiency in the divalent metal transporter 1 augments bleomycin-induced lung injury

    EPA Science Inventory

    Exposure to bleomycin can result in an inflammatory lung injury. The biological effect of this anti-neoplastic agent is dependent on its coordination of iron with subsequent oxidant generation. In lung cells, divalent metal transporter 1 (DMT1) can participate in metal transport ...

  17. Anticlastogenic effects of galangin against bleomycin-induced chromosomal aberrations in mouse spleen lymphocytes.

    PubMed

    Heo, M Y; Lee, S J; Kwon, C H; Kim, S W; Sohn, D H; Au, W W

    1994-12-01

    Galangin, a flavonoid derivative, was tested for its anticlastogenic effect against the induction of chromosome aberrations by bleomycin. For an in vitro assay, galangin (0, 2 x 10(-8), 2 x 10(-7), and 2 x 10(-6) M) was added to mouse spleen lymphocyte cultures together with bleomycin (3 microgram/ml) at 24 h after Con A initiation of cultures. In an in vivo/in vitro experiment, galangin (0, 0.1, 1, 10, and 100 mg/kg) was administered to mice orally twice with a 24-h interval. Mice were killed 8 h later. Spleen lymphocytes were isolated and cultures were made. Bleomycin (3 microgram/ml) was added to the mouse spleen lymphocyte cultures at 24 h after Con A initiation. Both in vitro and in vivo/in vitro cultures were harvested at 42 h after initiation. The harvested cells were used for cytogenetic analyses. The results showed that in vitro or in vivo treatment of lymphocytes with galangin suppressed the induction of chromosome aberrations by bleomycin in a galangin dose-dependent manner. The galangin doses used were non-clastogenic to cells. The data from our in vitro and in vivo/in vitro studies confirmed each other and indicate that galangin is an anticlastogenic agent. The in vivo/in vitro protocol may be a useful means to assay the chemoprotective effects of chemicals in humans.

  18. Deficiency of developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Kang, Yoon-Young; Kim, Dong-Young; Lee, Seung-Hwan; Choi, Eun Young

    2014-03-07

    Pulmonary fibrosis is a lung disease wherein lung parenchyma is gradually and irreversibly replaced with collagen. The molecular pathogenesis of pulmonary fibrosis is not fully understood and the only effective treatment available is lung transplantation. To test if Del-1, an endogenous anti-inflammatory molecule, may be implicated in the development of pulmonary fibrosis, we induced pulmonary fibrosis in wild type (WT) and Del-1(-/-) mice by intratracheal administration of bleomycin. Del-1 expression in the lung was decreased in the WT mice treated with bleomycin compared to control mice. In addition, bleomycin-induced pulmonary fibrosis increased collagen deposition and TGF-β production in the lung of Del-1(-/-) mice. Finally, Del-1(-/-) mice treated with bleomycin displayed higher weight loss and greater mortality than did WT mice identically treated. These findings suggest that Del-1 may negatively regulate development of pulmonary fibrosis. Further delineation of a role for Del-1 in the development of pulmonary fibrosis will broaden our understanding of the molecular pathogenesis of this disease and hopefully help develop potential therapeutics.

  19. Hyperoxia, but not thoracic X-irradiation, potentiates bleomycin- and cyclophosphamide-induced lung damage in mice

    SciTech Connect

    Hakkinen, P.J.; Whiteley, J.W.; Witschi, H.R.

    1982-08-01

    The intraperitoneal administration of cyclophosphamide or bleomycin to BALB/c mice resulted in lung cell damage followed by cellular proliferation, which was quantitated by measuring the increase in thymidine incorporation into pulmonary DNA. We have previously shown that administration of the antioxidant butylated hydroxytoluene produces lung damage that can be potentiated by both hyperoxia and thoracic X-irradiation. In the present study we show that hyperoxic exposure also potentiates bleomycin- and cyclophosphamide-induced acute lung damage. However, thoracic X-irradiation does not potentiate bleomycin- and cyclophosphamide-induced lung toxicity.

  20. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    PubMed

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  1. Effects of erdosteine on bleomycin-induced lung fibrosis in rats.

    PubMed

    Boyaci, Haşim; Maral, Hale; Turan, Gupse; Başyiğit, Ilknur; Dillioğlugil, Meltem O; Yildiz, Füsun; Tugay, Melih; Pala, Ayşe; Erçin, Cengiz

    2006-01-01

    This study was designed to examine the effects of erdosteine on bleomycin (BLM)-induced lung fibrosis in rats. Thirty-three Sprague-Dawley rats were divided randomly into three groups, bleomycin alone (BLM), bleomycin + erdosteine (BLM + ERD), and saline alone (control). The BLM and BLM + ERD groups, were given 2.5 mg/kg BLM intratracheally. The first dose of oral erdosteine (10 mg/kg/day) in the BLM + ERD group was started 2 days before BLM administration and continued until animals were sacrificed. Animals were sacrificed 14 days after intratracheal instillation of BLM. The effect of erdosteine on pulmonary fibrosis was studied by analysis of bronchoalveolar lavage (BAL) fluid, histopathology, and biochemical measurements of lung tissue superoxide dismutase (SOD) and glutathione (GSH) as antioxidants, malondialdehyde (MDA) as an index for lipid peroxidation, and nitrite/nitrate levels. Bleomycin-induced lung fibrosis as determined by lung histology was prevented with erdosteine (grades of fibrosis were 4.9, 2.3, and 0.2 in BLM, BLM + ERD, and control groups, respectively). Erdosteine also prevented bleomycin-induced increase in MDA (MDA levels were 0.50 +/- 0.15, 0.11 +/- 0.02, and 0.087+/- 0.03 nmol/mg protein in BLM, BLM + ERD, and control groups, respectively) and nitrite/nitrate (nitrite/nitrate levels were 0.92 +/- 0.06, 0.60 +/- 0.09, and 0.56+/- 0.1 micromol/mg protein in BLM, BLM + ERD, and control groups respectively) levels. Bleomycin-induced decrease in GSH and SOD levels in the lung tissue also prevented by erdosteine [(GSH levels were 213.5 +/- 12.4, 253.2+/- 25.2, and 287.9+/- 34.4 nmol/mg protein) (SOD levels were 1.42+/- 0.12, 1.75+/- 0.17, and 1.89+/- 0.09 U/mg protein) in BLM, BLM + ERD, and control groups respectively]. Erdosteine prevented bleomycin-induced increases in total cell number and neutrophil content of the BAL fluid. In conclusion, oral erdosteine is effective in prevention of BLM-induced lung fibrosis in rats possibly via the

  2. Cyclooxygenase-2 deficiency exacerbates bleomycin-induced lung dysfunction but not fibrosis.

    PubMed

    Card, Jeffrey W; Voltz, James W; Carey, Michelle A; Bradbury, J Alyce; Degraff, Laura M; Lih, Fred B; Bonner, James C; Morgan, Daniel L; Flake, Gordon P; Zeldin, Darryl C

    2007-09-01

    Cyclooxygenase (COX)-derived eicosanoids have been implicated in the pathogenesis of pulmonary fibrosis. Uncertainty regarding the influence of COX-2 on experimental pulmonary fibrosis prompted us to clarify the fibrotic and functional effects of intratracheal bleomycin administration in mice genetically deficient in COX-2. Further, the effects of airway-specific COX-1 overexpression on fibrotic and functional outcomes in wild-type and COX-2 knockout mice were assessed. Equivalent increases in airway cell influx, lung collagen content, and histopathologic evidence of fibrosis were observed in wild-type and COX-2 knockout mice 21 d after bleomycin treatment, suggesting that COX-2 deficiency did not alter the extent or severity of fibrosis in this model. However, bleomycin-induced alterations in respiratory mechanics were more severe in COX-2 knockout mice than in wild-type mice, as illustrated by a greater decrease in static compliance compared with genotype-matched, saline-treated control mice (26 +/- 3% versus 11 +/- 4% decreases for COX-2 knockout and wild-type mice, respectively; P < 0.05). The influence of COX-1 overexpression in airway Clara cells was also examined. Whereas the fibrotic effects of bleomycin were not altered in wild-type or COX-2 knockout mice overexpressing COX-1, the exaggerated lung function decrement in bleomycin-treated COX-2 knockout mice was prevented by COX-1 overexpression and coincided with decreased airway cysteinyl leukotriene levels. Collectively, these data suggest an important regulatory role for COX-2 in the maintenance of lung function in the setting of lung fibrosis, but not in the progression of the fibrotic process per se.

  3. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment.

    PubMed

    Degryse, Amber L; Tanjore, Harikrishna; Xu, Xiaochuan C; Polosukhin, Vasiliy V; Jones, Brittany R; Boomershine, Chad S; Ortiz, Camila; Sherrill, Taylor P; McMahon, Frank B; Gleaves, Linda A; Blackwell, Timothy S; Lawson, William E

    2011-06-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.

  4. Calcitonin gene-related peptide down-regulates bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Li, Xiao-Hui; Du, Jie; Li, Dai; Li, Yuan-Jian; Hu, Chang-Ping

    2016-12-01

    We have found that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway. Whether ERK1/2 - eIF3a signal pathway is involved in calcitonin gene-related peptide (CGRP)-mediated pathogenesis of bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. Sensory CGRP depletion by capsaicin exacerbated bleomycin-induced pulmonary fibrosis in rats, as shown by a significant disturbed alveolar structure, marked thickening of the interalveolar septa and dense interstitial infiltration by inflammatory cells and fibroblasts, accompanied with increased expression of TGF-β1, eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. Exogenous application of CGRP significantly inhibited TGF-β1-induced proliferation and differentiation of pulmonary fibroblasts concomitantly with decreased expression of eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. These effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that endogenous CGRP is related to the development of pulmonary fibrosis induced by bleomycin, and the inhibitory effect of CGRP on proliferation of lung fibroblasts involves the ERK1/2 - eIF3a signaling pathway.

  5. Combined local and systemic bleomycin administration in electrochemotherapy to reduce the number of treatment sessions

    PubMed Central

    Tellado, Matias; Olaiz, Nahuel; Michinski, Sebastian; Marshall, Guillermo

    2016-01-01

    Background Electrochemotherapy (ECT), a medical treatment widely used in human patients for tumor treatment, increases bleomycin toxicity by 1000 fold in the treated area with an objective response rate of around 80%. Despite its high response rate, there are still 20% of cases in which the patients are not responding. This could be ascribed to the fact that bleomycin, when administered systemically, is not reaching the whole tumor mass properly because of the characteristics of tumor vascularization, in which case local administration could cover areas that are unreachable by systemic administration. Patients and methods We propose combined bleomycin administration, both systemic and local, using companion animals as models. We selected 22 canine patients which failed to achieve a complete response after an ECT treatment session. Eleven underwent another standard ECT session (control group), while 11 received a combined local and systemic administration of bleomycin in the second treatment session. Results According to the WHO criteria, the response rates in the combined administration group were: complete response (CR) 54% (6), partial response (PR) 36% (4), stable disease (SD) 10% (1). In the control group, these were: CR 0% (0), PR 19% (2), SD 63% (7), progressive disease (PD) 18% (2). In the combined group 91% objective responses (CR+PR) were obtained. In the control group 19% objective responses were obtained. The difference in the response rate between the treatment groups was significant (p < 0.01). Conclusions Combined local and systemic bleomycin administration was effective in previously to ECT non responding canine patients. The results indicate that this approach could be useful and effective in specific population of patients and reduce the number of treatment sessions needed to obtain an objective response. PMID:27069450

  6. [Activity of nonspecific hepatic oxidases and the biological effects of the antineoplastic antibiotic adriamycin].

    PubMed

    Bogush, T A; Syrkin, A B; Donenko, F V

    1981-10-01

    It was shown in male CBA mice that toxic doses (15 and 20 mg/kg) of adriamycin (AD) inhibited the activity of nonspecific liver oxidases and noticeably increased the duration of the animals' sleep after injection of hexenal which is a substrate of this enzymatic system. The inhibitory effect of AD remained unchanged in the course of 9 days of the experiment. The nontoxic dose of AD (5 mg/kg) inhibited the activity of the enzymatic system on the 2nd--3rd days after the injection of the drug. Meanwhile the activity of the enzymatic system returned to the level seen in intact animals by days 5--6. The toxic action of AD declined on activation of nonspecific liver oxidases with phenobarbital and rose as a result of administering the inhibitor SKF 525-A. The authors discuss whether it is possible to use the data obtained for clinical application of AD.

  7. Study of the activation mechanism of adriamycin on rat mast cells.

    PubMed

    Estévez, M D; Vieytes, M R; Botana, L M

    1994-10-01

    Adriamycin (ADR) induces nonimmunological and noncytotoxic histamine release from peritoneal and pleural rat mast cells. This secretion is unaffected by the pretreatment with pertussis toxin, cholera toxin and benzalkonium chloride. Histamine release induced by compound 48/80, was markedly inhibited by pertussis toxin, cholera toxin, benzalkonium chloride and neuraminidase. The ADR dose-response curve is significantly shifted to the right when cells were preincubated with the unspecific phosphodiesterase inhibitor IBMX. The activation of protein kinase C (PKC) with the phorbol esther TPA increases the response to ADR, while PKC inhibition with trifluoperazine decreases histamine release. The pretreatment of mast cells with okadaic acid did not modify the response to ADR. These results suggest that ADR elicits histamine release with a mechanism notably different from compound 48/80.

  8. Redox kinetics of adriamycin adsorbed on the surface of graphite and mercury electrodes.

    PubMed

    Komorsky-Lovrić, Sebojka

    2006-09-01

    Kinetics of the surface redox reactions of adriamycin (doxorubicin hydrochloride) adsorbed on paraffin-impregnated graphite electrode (PIGE) and on mercury electrode is measured by square-wave voltammetry. In 0.9 mol/L KNO3 buffered to pH 4.65, the standard electrode reaction rate constants of the first quinone/hydroquinone redox couple (see Scheme 2) on PIGE and mercury are k(s1)=49+/-12 s(-1) and k(s1)=147+/-36 s(-1), respectively. Under the same conditions, the standard rate constant of the second redox couple on the PIGE is smaller than 4 s(-1) and the electron transfer coefficient of the reduction is alpha2=0.35.

  9. Synergistic effects of fish oil diet and dimethylthiourea in acute adriamycin nephrosis.

    PubMed

    Milner, L S; Wei, S; Kazakoff, P; Watkins, L; Houser, M T

    1994-11-01

    The synergistic effects of combining fish oil (FO) diet, which reduces thromboxane A production, with the free radical scavenger, dimethylthiourea (DMTU), were evaluated in acute adriamycin nephrosis, because proteinuria in adriamycin nephrosis is mediated by increased renal thromboxane A and free radical production. The effects of combined evening primrose oil (EPO) and DMTU were compared with the DMTU + FO combination because EPO increases prostaglandin E but not thromboxane A. After 7, 14, and 21 days, proteinuria was significantly (p < 0.05) reduced in rats receiving either DMTU + corn oil (CO) or DMTU + FO compared with untreated control rats. However, after 21 days, rats receiving DMTU + FO had significantly reduced urine protein excretion compared with those receiving DMTU + CO (103.9 +/- 20 mg daily vs 351.8 +/- 29.8 mg daily; P < 0.05). In contrast to FO, rats receiving EPO + DMTU had similar urine protein excretion to rats receiving DMTU + CO after 21 days (170.2 +/- 20.34 mg daily vs 179.45 +/- 26.38 mg daily). The mean serum cholesterol concentration was significantly (P < 0.01) reduced in rats receiving DMTU + FO (195.2 +/- 23.8 mg/dL) compared with DMTU + CO (377.9 +/- 28.5 mg/dL). Serum triglyceride levels also were significantly (P < 0.01) reduced in rats receiving DMTU + FO (52.5 +/- 26.4 mg/dL) compared with DMTU + CO (100.5 +/- 36.9 mg/dL). No significant differences in serum cholesterol concentrations or triglycerides occurred between rats receiving DMTU + CO and DMTU + EPO. Renal glutathione content was significantly (P < 0.05) increased by 23% in normal rats receiving FO diet and by 34% in rats receiving combined DMTU + FO compared with CO alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Protective effect of sulodexide on podocyte injury in adriamycin nephropathy rats.

    PubMed

    Chen, Shan; Fang, Zhan; Zhu, Zhonghua; Deng, Anguo; Liu, Jianshe; Zhang, Chun

    2009-12-01

    This study examined the effect of sulodexide on podocyte injury in rats with adriamycin nephropathy (AN). A total of 36 healthy male SD rats were randomly assigned to three groups: control group, AN group and sulodexide treatment group. Rat models of AN were established by a single tail intravenous injection of adriamycin (6.5 mg/kg) in both AN group and sulodexide treatment group. Sulodexide (10 mg/kg) was administered the rats in the treatment group once daily by garage from the first day of model establishment until the 14th day or the 28th day. Samples of 24-h urine and renal cortex tissues were harvested at day 14, 28 after the model establishment. Excretion of 24-h urinary protein was measured by Coomassie brilliant blue method. The pathological changes in renal tissues were observed by light microscopy and electron microscopy respectively. Heparanase mRNA was detected by RT-PCR. Expressions of desmin, CD2AP and heparanase were determined by immunohistological staining. The results showed that the expressions of heparanase mRNA and protein were increased in the glomeruli of AN rats at day 14 and 28 after the model establishment, which was accompanied by the increased expression of desmin and CD2AP. The mRNA and protein expression of heparanase was decreased in the sulodexide-treated rats as compared with AN rats at day 14 and 28. And, the protein expression of desmin and CD2AP was reduced as with heparanase in the sulodexide- treated rats. Proteinuria and podocyte foot process effacement were alleviated in the AN rats after sulodexide treatment. There was a positive correlation between the expression of heparanase and the expression of desmin and CD2AP (as well as 24-h urinary protein excretion). It was concluded that increased heparanase is involved in podocyte injury. Sulodexide can maintain and restore podocyte morphology by inhibiting the expression of heparanase in AN.

  11. Bleomycin-induced chromosome aberrations in head and neck cancer patients analyzed by classical cytogenetics and FISH.

    PubMed

    Zych, M; Schlade-Bartusiak, K; Chorostkowska, A; Stembalska, A; Krêcicki, T; Sasiadek, M

    2000-05-01

    Individual sensitivity to mutagens has been considered to play an important role in head-and-neck squamous cells carcinoma (HNSCC) development. The bleomycin test was introduced for establishing constitutional susceptibility to mutagens (T.C. Hsu, D.A. Johnston, L.M. Cherry, D. Ramkisson, S.P. Schantz, J.M. Jessup, R.J. Winn, L. Shirley, C. Furlong, Sensitivity to genotoxic effects of bleomycin in humans: possible relationship to environmental carcinogenesis, Int. J. Cancer 43 (1989) 403-409). Its criteria are based on scoring of chromosome aberrations (CAs, mainly breaks) in Giemsa-stained chromosomes. Fluorescence in situ hybridization (FISH) offers an easy method for analysis of translocations, acentric fragments and dicentrics. In the present study FISH was applied in the analysis of bleomycin-induced CAs of the HNSCC patients and controls. The results proved that FISH is a complementary method to the classical staining in monitoring of bleomycin-induced CAs.

  12. Total Synthesis of Vinblastine, Related Natural Products, and Key Analogues and Development of Inspired Methodology Suitable for the Systematic Study of Their Structure–Function Properties

    PubMed Central

    2015-01-01

    Conspectus Biologically active natural products composed of fascinatingly complex structures are often regarded as not amenable to traditional systematic structure–function studies enlisted in medicinal chemistry for the optimization of their properties beyond what might be accomplished by semisynthetic modification. Herein, we summarize our recent studies on the Vinca alkaloids vinblastine and vincristine, often considered as prototypical members of such natural products, that not only inspired the development of powerful new synthetic methodology designed to expedite their total synthesis but have subsequently led to the discovery of several distinct classes of new, more potent, and previously inaccessible analogues. With use of the newly developed methodology and in addition to ongoing efforts to systematically define the importance of each embedded structural feature of vinblastine, two classes of analogues already have been discovered that enhance the potency of the natural products >10-fold. In one instance, remarkable progress has also been made on the refractory problem of reducing Pgp transport responsible for clinical resistance with a series of derivatives made accessible only using the newly developed synthetic methodology. Unlike the removal of vinblastine structural features or substituents, which typically has a detrimental impact, the additions of new structural features have been found that can enhance target tubulin binding affinity and functional activity while simultaneously disrupting Pgp binding, transport, and functional resistance. Already analogues are in hand that are deserving of full preclinical development, and it is a tribute to the advances in organic synthesis that they are readily accessible even on a natural product of a complexity once thought refractory to such an approach. PMID:25586069

  13. Ameliorative potential of linagliptin and/or calcipotriol on bleomycin-induced lung fibrosis: In vivo and in vitro study.

    PubMed

    Kabel, Ahmed M; Abd Elmaaboud, Maaly A; Atef, Aliaa; Baali, Mohammed H

    2017-03-01

    Pulmonary fibrosis is a serious medical problem that may significantly compromise respiratory functions. The aim of this work was to study the effect of linagliptin and/or calcipotriol on bleomycin-induced pulmonary fibrosis and to explore the possible mechanisms underlying this effect. One hundred and twenty male C57BL/6 mice were divided into 6 equal groups as follows: control group; bleomycin group; bleomycin+carboxymethylcellulose group; bleomycin+linagliptin group; bleomycin+calcipotriol group and bleomycin+linagliptin+calcipotriol group. Lung weight/body weight index, lung tissue hydroxyproline, collagen, toll-like receptor 4 (TLR4), nuclear factor-like 2 (Nrf2), heme oxygenase-1 (HO-1), malondialdehyde (MDA), glutathione peroxidase (GPx) and catalase (CAT) were measured. Also, bronchoalveolar lavage fluid (BALF) was analyzed for total and differential leucocytic count, lactate dehydrogenase, tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10) and transforming growth factor-beta 1 (TGF-β1). Vascular response to potassium chloride, phenylephrine and carbachol as well as tracheal response to carbachol were measured. Also, lung tissue was subjected to histopathological and immunohistochemical examination. Administration of linagliptin and/or calcipotriol induced significant decrease in the lung weight/body weight index, total leucocytic count, BALF lactate dehydrogenase activity, IL-10, TNF-α and TGF-β1 associated with significant decrease in lung tissue MDA, Nrf2, HO-1, TLR4, hydroxyproline and collagen content with significant increase in tissue GPx and CAT and improvement of the pulmonary architecture, vascular and tracheal response compared to bleomycin group. These effects were significant in linagliptin/calcipotriol combination group compared to the use of each of these drugs alone. In conclusion, linagliptin/calcipotriol combination may represent an effective therapeutic modality for amelioration of bleomycin-induced pulmonary fibrosis.

  14. Transannular Diels-Alder/1,3-Dipolar Cycloaddition Cascade of 1,3,4-Oxadiazoles: Total Synthesis of a Unique Set of Vinblastine Analogues

    PubMed Central

    Campbell, Erica L.; Skepper, Colin K.; Sankar, Kuppusamy; Duncan, Katharine K.; Boger, Dale L.

    2013-01-01

    A powerful tandem [4+2]/[3+2] cycloaddition cascade of 1,3,4-oxadiazoles initiated by a transannular [4+2] cycloaddition is detailed. An impressive four rings, four carbon-carbon bonds, and six stereocenters are set on each site of the newly formed central six-membered ring in a cascade thermal reaction that proceeds at temperatures as low as 80 °C. The resulting cycloadducts provide the basis for the synthesis of unique analogues of vinblastine containing metabolically benign deep-seated cyclic modifications at the C3/C4 centers of the vindoline-derived subunit of the natural product. PMID:24087969

  15. Cytolytic T lymphocytes and antibodies to myocytes in adriamycin-treated BALB/c mice. Evidence for immunity to drug-induced antigens.

    PubMed Central

    Huber, S. A.; Moraska, A.

    1992-01-01

    Female BALB/c mice were given a single intravenous injection of between 0.1 and 10 mg adriamycin/kg body weight and were killed between 2 and 16 days later. Natural killer (NK) cell activity in the spleen was measured using YAC cell targets. Natural killer cell activity was slightly elevated 2 to 5 days after drug injection and significantly depressed by day 9 compared with spleen cells from untreated animals. Adriamycin-treated mice developed both cytolytic T lymphocytes (CTL) and antibodies to drug-treated myocytes. Peak CTL response occurred between days 9 and 13, whereas antibody reactivity continued to increase throughout the observation period. The effector cell belonged to the CD8+ T lymphocyte subpopulation, because cytolytic activity could be reduced by treating the cells with anti-Lyt 2 antibody and complement, whereas anti-L3T4 (CD4+ cell-specific) treatment either had no effect or increased cytotoxicity. Both CTL and antibody reactivity could be absorbed with adriamycin-treated myocyte monolayers but not by non-drug-treated myocytes. Furthermore CTL reactivity could be only partly removed by adriamycin-treated skin fibroblasts. Adriamycin concentrations in the heart were measured by flourometry and demonstrated only a gradual decrease in the drug over the 16-day period. Immunofluorescent staining of myocardial sections demonstrated increased numbers of both T lymphocytes and macrophages in the hearts of adriamycin-treated mice compared with untreated controls. PMID:1731528

  16. Downregulation of miR-221 enhances the sensitivity of human oral squamous cell carcinoma cells to Adriamycin through upregulation of TIMP3 expression.

    PubMed

    Chen, Dan; Yan, Wangxiang; Liu, Zhiguo; Zhang, Zhaoqiang; Zhu, Lijun; Liu, Weidong; Ding, Xueqiang; Wang, Anxun; Chen, Yu

    2016-02-01

    Aberrantly expressed microRNAs (miRNAs) are involved in oral tumorigenesis since they can alter the expression of proteins involved in cancer progression. It remains unclear whether miRNA-221 influences the resistance of human oral squamous cell carcinoma cells to Adriamycin. We therefore investigated the role of miR-221 in the sensitivity of oral squamous cell carcinoma cells to chemotherapy. Tca8113 and UM2 cells were treated with different concentrations of Adriamycin. Quantitative real-time PCR (qRT-PCR) revealed miR-221 upregulation after Adriamycin treatment of Tca8113 and UM2 cells. By using miR-221 inhibitor mimics, we found that depleting cells of miR-221 increases the sensitivity of the cells to Adriamycin. The expression of tissue inhibitor of metalloproteinase-3 (TIMP3), a target of miR-221, was decreased in cells treated with Adriamycin. TIMP3 depletion reversed the effect of a miR-221 inhibitor mimics on cell survival rates and apoptosis. Together, these results reveal that silencing of miR-221 enhances the sensitivity of human oral squamous cell carcinoma cells to Adriamycin through upregulation of TIMP3 expression.

  17. The effect of alpha-difluoromethylornithine on the development of bleomycin-induced pulmonary fibrosis in hamsters.

    PubMed Central

    Giri, S. N.; Hyde, D. M.; Schwartz, L. W.; Younker, W. R.

    1982-01-01

    The development of bleomycin-induced lung fibrosis was studied in hamsters drinking tap water or 2% alpha-difluoromethylornithine (DFMO) dissolved in tap water for 14 days. The fibrotic lesions in the lung were evaluated by biochemical measurements of total neutral salt soluble (NSS) and insoluble (NSI) collagens and by morphometric histopathologic techniques. Daily ingestion of DFMO failed to offer any protection against bleomycin-induced lung fibrosis; instead, it increased the deposition of total lung NSI collagen to 396% of control, as compared with 145% of control caused by bleomycin treatment alone. Daily intake of DFMO by itself increased the accumulation of total lung NSI collagen to 250% of control, as opposed to a 145% increase caused by bleomycin treatment alone. Histopathologically, the lung lesions in hamsters treated with bleomycin and DFMO were qualitatively similar to those of hamsters treated with bleomycin alone. However, morphometric estimates revealed that of lung lesions were more diffuse and severe in the former than in the latter group. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:6181691

  18. Cytochrome c biogenesis is involved in the transposon Tn5-mediated bleomycin resistance and the associated fitness effect in Escherichia coli.

    PubMed

    Adam, E; Volkert, M R; Blot, M

    1998-04-01

    The transposon Tn5 ble gene and the Escherichia coli alkylation-inducible aidC locus are co-operatively involved in the resistance to the anti-cancer drug and DNA-cleaving agent bleomycin and enhance fitness of bacteria in the absence of the drug. In this report, we demonstrate that the aidC locus is identical to nrfG, the last gene of the nrf operon involved in the periplasmic formate-dependent nitrite reduction. In the presence of Ble, NrfG expression is specifically induced and restores both bleomycin resistance and its associated beneficial growth effect in an aidC- strain. In vitro DNA protection assays reveal that purified Ble prevents bleomycin-mediated DNA breakage, as do bleomycin-binding proteins. Similarities between haems of the cytochrome c biogenesis nrf pathway and iron bleomycin suggest a DNA repair-independent molecular mechanism for both bleomycin resistance and increased viability. The Ble protein binds bleomycin and prevents DNA breakage. It also induces the nrf locus that may assimilate bleomycin into haem for extracellular transport or inactivate bleomycin. Inactivation of potent DNA oxidants confers a better fitness to the bacterium carrying the transposon, suggesting a symbiotic relationship between host and transposon.

  19. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells.

    PubMed

    Chen, P S; Li, J H; Liu, T Y; Lin, T C

    2000-05-01

    Terminalia catappa L. is a popular folk medicine for preventing hepatoma and treating hepatitis in Taiwan. In this paper, we examined the protective effects of T. catappa leaf water extract (TCE) and its major tannin component, punicalagin, on bleomycin-induced genotoxicity in cultured Chinese hamster ovary cells. Pre-treatment with TCE or punicalagin prevented bleomycin-induced hgprt gene mutations and DNA strand breaks. TCE and punicalagin suppressed the generation of bleomycin-induced intracellular free radicals, identified as superoxides and hydrogen peroxides. The effectiveness of TCE and punicalagin against bleomycin-induced genotoxicity could be, at least in part, due to their antioxidative potentials.

  20. Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes.

    PubMed

    Blot, M; Heitman, J; Arber, W

    1993-06-01

    The transposon Tn5 expresses a gene, ble, whose product increases the viability of Escherichia coli and also confers resistance to the DNA-cleaving antibiotic bleomycin and the DNA-alkylating agent ethylmethanesulphonate. We find that the Ble protein induces expression of an alkylation inducible gene, aidC, and that both the AidC gene product and DNA polymerase I are required for Ble to confer bleomycin resistance. These findings support models in which Ble enhances DNA repair and suggest that Tn5 confers a fitness advantage to the host bacterium by increasing the repair of spontaneous DNA lesions. Such co-operation between a transposon and its host suggests that Tn5 is a symbiotic rather than a selfish DNA element.

  1. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures.

  2. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models.

    PubMed

    Adiseshaiah, Pavan P; Clogston, Jeffrey D; McLeland, Christopher B; Rodriguez, Jamie; Potter, Timothy M; Neun, Barry W; Skoczen, Sarah L; Shanmugavelandy, Sriram S; Kester, Mark; Stern, Stephan T; McNeil, Scott E

    2013-09-01

    Autophagy, a catabolic survival pathway, is gaining attention as a potential target in cancer. In human liver and colon cancer cells, treatment with an autophagy inducer, nanoliposomal C6-ceramide, in combination with the autophagy maturation inhibitor, vinblastine, synergistically enhanced apoptotic cell death. Combination treatment resulted in a marked increase in autophagic vacuole accumulation and decreased autophagy maturation, without diminution of the autophagy flux protein P62. In a colon cancer xenograft model, a single intravenous injection of the drug combination significantly decreased tumor growth in comparison to the individual treatments. Most importantly, the combination treatment did not result in increased toxicity as assessed by body weight loss. The mechanism of combination treatment-induced cell death both in vitro and in vivo appeared to be apoptosis. Supportive of autophagy flux blockade as the underlying synergy mechanism, treatment with other autophagy maturation inhibitors, but not autophagy initiation inhibitors, were similarly synergistic with C6-ceramide. Additionally, knockout of the autophagy protein Beclin-1 suppressed combination treatment-induced apoptosis in vitro. In conclusion, in vitro and in vivo data support a synergistic antitumor activity of the nanoliposomal C6-ceramide and vinblastine combination, potentially mediated by an autophagy mechanism.

  3. Protection Effect of Zhen-Wu-Tang on Adriamycin-Induced Nephrotic Syndrome via Inhibiting Oxidative Lesions and Inflammation Damage

    PubMed Central

    Liang, Chun-ling; Wu, Jun-biao; Lai, Jie-mei; Ye, Shu-fang; Lin, Jin; Ouyang, Hui; Zhan, Janis Ya-xian; Zhou, Jiu-yao

    2014-01-01

    Zhen-wu-tang (ZWT), a well-known formula in China, is widely used to treat chronic kidney diseases. However, very little information on ZWT's mechanism of action is currently available. In this study, we investigated the possible protective role and underlying mechanism of ZWT on nephrotic syndrome (NS) induced by Adriamycin (intravenous injection, 6.0 mg/kg) in rats using biochemical and histopathological approaches. ZWT decreased urine protein excretion and the serum levels of total cholesterol, triglycerides, blood urea nitrogen, and creatinine significantly in diseased rats. A decrease in plasma levels of total protein and albumin was also recorded in nephropathic rats. Pathological results show an improved pathological state and recovering glomerular structure in ZWT treatment groups. ZWT decreased renal IL-8 level but increased renal IL-4 level. In addition, rats subjected to ZWT exhibited less IgG deposition in glomerulus compared with model group. RT-PCR results showed that ZWT decreased the mRNA expression of NF-κB p65 and increased the mRNA expression of IκB. Furthermore, ZWT reduced the level of MDA and increased SOD activity. These results demonstrated that ZWT ameliorated Adriamycin-induced NS in rats possibly by inhibiting Adriamycin-induced inflammation damage, enhancing body's antioxidant capacity, thereby protecting glomerulus from injury. PMID:24812565

  4. Epithelial-fibroblast interactions in bleomycin-induced lung injury and repair.

    PubMed Central

    Young, L; Adamson, I Y

    1993-01-01

    Intercellular communication between epithelial cells and fibroblasts of the alveolar wall contributes to regulatory control of each cell type. We examined whether lung injury and subsequent fibrosis are associated with disturbance of this mutual control system. Rats received bleomycin intratracheally, and after 10 days, when acute epithelial injury occurs, and at 6 weeks, when repair with fibrosis is found, pure populations of type 2 epithelial cells and lung fibroblasts were prepared to study interactions with respect to growth control. Epithelial cells were cultured alone, on a permeable filter over fibroblasts, and in co-culture with fibroblasts. The results showed that the low growth rate of normal epithelial cells increased when cells were exposed to fibroblast supernatants. This effect was also seen using cells from the 10-day bleomycin group, but it was diminished in the group treated for 6 weeks. However, epithelial cells from exposed or control rats did not show increased DNA synthesis when grown in contact with fibroblasts in co-culture. In contrast, fibroblast growth was inhibited when exposed to epithelial cell secretions in control cultures and when using cells from the 10-day bleomycin group. No inhibition of fibroblast growth by epithelial cells was found using cells from the fibrotic lungs. These results suggest that after lung injury by bleomycin, a fibroblast-secreted factor promotes epithelial growth; however, during repair, regenerating epithelial cells lose the ability to inhibit fibro-blast proliferation. These local changes in cellular control at the alveolar wall may be sufficient to produce pulmonary fibrosis. Images Figure 3. A Figure 3. B PMID:7685692

  5. Air leak: An unusual manifestation of organizing pneumonia secondary to bleomycin

    PubMed Central

    Namitha, R; Nimisha, KP; Yusuf, Nasser; Rauf, CP

    2017-01-01

    Organizing pneumonia (OP) is a less common interstitial lung disease with varying clinical picture. The development of pulmonary air leak in a case of OP is an extremely rare complication. Here, we report the case of a 46-year-old female with carcinoma ovary, postchemotherapy who developed respiratory distress with pneumomediastinum, and subcutaneous emphysema. Lung biopsy showed evidence of OP. This turned out to be a rare case of OP, secondary to bleomycin chemotherapy, presenting with pulmonary air leak. PMID:28360468

  6. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Vyalov, S. L.; Gabbiani, G.; Kapanci, Y.

    1993-01-01

    The majority of fibroblasts in alveolar septa are characterized by the presence of cytoplasmic bundles of microfilaments that contain cytoplasmic actin isoforms; these cells have been named contractile interstitial cells or V-type myofibroblasts. In the rat, they express desmin as intermediate filament protein. In this study, we explored the possibility that modulation and replication of such septal fibroblasts result in the appearance of alpha-smooth muscle (alpha-SM) actin-positive myofibroblasts, typical of lung fibrosis. Experimental pulmonary fibrosis was produced by a unique intratracheal instillation of bleomycin to 28 rats. Eight additional rats used as controls received the equivalent volume of saline. Paraffin and frozen sections of lungs were examined at days 1, 3, 5 and 7 after treatment. Microfilaments and intermediate filaments were stained using antibodies against total actin, alpha-SM actin, desmin, vimentin, keratin, and SM myosin. Electron microscopic labeling of desmin and alpha-SM actin using immunogold technique was done on Lowicryl K4M resin-embedded specimens. alpha-SM actin appeared in desmin-positive alveolar fibroblasts as early as 24 hours after intratracheal bleomycin instillation; the modulation of alpha-SM actin in these cells was preceded by a lymphomonocytic infiltration of alveolar septa. Twenty-four hours to 3 days after bleomycin administration, a proliferation of alveolar myofibroblasts occurred. Fibrosis with laying down of collagen fibers took place after the above mentioned cellular modifications. Our results support the view that septal fibroblastic cells can modulate into typical alpha-SM actin-containing myofibroblasts during experimental bleomycin-induced pulmonary fibrosis. In such a modulation a possible role of cytokines, particularly of transforming growth factor-beta, is considered. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14

  7. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, affects on the cellular response to DNA damage induced by exposures to radiation or other toxic chemicals will have an impact on the radiation risks for the astronauts, as well as on the mutation rate in microorganisms, is still an open question. Although the possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on the cellular response to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induces DNA damages including the double strand breaks (DSB) similar to the ionizing radiation. Damage in the DNA was measured by the phosphorylation of a histone protein H2AX (-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in the DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ti-67 signals. Our results suggested that the difference in -H2AX between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect the response of the DNA damage response genes to bleomycin treatment.

  8. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  9. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice

    NASA Astrophysics Data System (ADS)

    Trivedi, Ruchit; Redente, Elizabeth F.; Thakur, Ashish; Riches, David W. H.; Kompella, Uday B.

    2012-12-01

    Our purpose was to assess sustained delivery and enhanced efficacy of pirfenidone-loaded nanoparticles after intratracheal instillation. Poly(lactide-co-glycolide) nanoparticles containing pirfenidone (NPs) were prepared and characterized. Biodistribution of NPs and solution was assessed using LC-MS after intratracheal administration in C57Bl/6 mice at 3 and 24 h and 1 week post-administration. Efficacy was tested in C57Bl/6 mice in a bleomycin-induced pulmonary fibrosis model. Mice received 10 μg pirfenidone intratracheally in solution or NPs, once a week, for 3 weeks after bleomycin administration. Drug effects were monitored on day 28. Lung hydroxyproline content, total number of cells, and numbers of macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage (BAL) were assessed. Numbers of macrophages, lymphocytes, and neutrophils were assessed in the lung as well. NPs sustained significantly higher levels of pirfenidone in the lungs and BAL at 24 h and 1 week, compared to the solution group. Pirfenidone solution and NPs significantly reduced hydroxyproline levels by 57 and 81%, respectively, compared to bleomycin alone. At the end of 4 weeks, BAL cellularity was reduced by 25.4% and 56% with solution and NP treatment, respectively. The numbers of lymphocytes and neutrophils in the BAL were also reduced by 58.9 and 82.4% for solution and 74.5% and 89.7% for NPs, respectively. The number of inflammatory macrophages in the lung was reduced by 62.8% and the number of neutrophils was reduced by 59.1% in the NP group and by 37.7% and 44.5%, respectively, in the solution group, compared to bleomycin alone. In conclusion, nanoparticles sustain lung pirfenidone delivery and enhance its anti-fibrotic efficacy.

  10. Images of liposarcoma using technetium-99m bleomycin and technetium (V)-99m DMSA

    SciTech Connect

    Ohta, H.; Shane, F.I.; Endo, K.; Torizuka, K.; Horiuchi, K.; Yokoyama, A.; Ishii, M.

    1986-12-01

    The effectiveness of Tc-99m bleomycin (BLM) and Tc(V)-99m DMSA are compared with that of Ga-67 citrate, which is currently the most widely used agent. In four patients with lipomatous tumors, the clinical significance of tumor imaging with each of these three agents is discussed and compared. Results indicate that both Tc-99m BLM and Tc(V)-99m DMSA are superior in detecting the extension or localization of liposarcomas.

  11. Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Y; Zhu, W P; Cai, X J; Chen, M

    2016-04-07

    We sought to determine the efficacy of atomized paclitaxel liposome inhalation treatment of pulmonary fibrosis in a bleomycin-induced rat model. Forty male Sprague-Dawley rats were randomly divided into four groups: healthy control, pulmonary fibrosis without treatment, paclitaxel liposome inhalation-treated, and intravenous paclitaxel liposome-treated. Fibrosis was induced by bleomycin injection. A total of 20 mg/kg paclitaxel liposome was administered by inhalation every other day for a total of 10 doses. The intravenous group received 5 mg/kg paclitaxel liposome on days 1, 7, 14, and 21. We observed the general condition, weight change, survival index, and pathological changes in the lung tissue of the rats. Quantitative analysis of collagen types I and III and transforming growth factor (TGF)-β1 expression in the lungs was also performed. The paclitaxel liposome inhalation and intravenous delivery methods improved survival index and pulmonary fibrosis Ashcroft score, and decreased the thickness of the alveolar interval. No obvious difference was found between the two groups. Compared with the untreated group, paclitaxel liposome inhalation and intravenous injection significantly reduced the levels of collagen types I and III and TGF-β1 expression equally. In conclusion, atomized paclitaxel liposome inhalation protects against severe pulmonary fibrosis in a bleomycin-induced rat model. This delivery method has less systemic side effects and increased safety over intravenous injection.

  12. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis

    PubMed Central

    Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis. PMID:27992456

  13. Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Hu, Biao; Wu, Zhe; Bai, David; Liu, Tianju; Ullenbruch, Matthew R; Phan, Sem H

    2015-11-01

    Notch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking. In this study, we examined the effects of conditional mesenchymal-specific deletion of Notch1 on pulmonary fibrosis. Crossing of mice bearing the floxed Notch1 gene with α2(I) collagen enhancer-Cre-ER(T)-bearing mice successfully generated progeny with a conditional knockout (CKO) of Notch1 in collagen I-expressing (mesenchymal) cells on treatment with tamoxifen (Notch1 CKO). Because Notch signaling is known to be activated in the bleomycin model of pulmonary fibrosis, control and Notch1 CKO mice were analyzed for their responses to bleomycin treatment. The results showed significant attenuation of pulmonary fibrosis in CKO relative to control mice, as examined by collagen deposition, myofibroblast differentiation, and histopathology. However, there were no significant differences in inflammatory or immune cell influx between bleomycin-treated CKO and control mouse lungs. Analysis of isolated lung fibroblasts confirmed absence of Notch1 expression in cells from CKO mice, which contained fewer myofibroblasts and significantly diminished collagen I expression relative to those from control mice. These findings revealed an essential role for Notch1-mediated myofibroblast differentiation in the pathogenesis of pulmonary fibrosis.

  14. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    PubMed

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A.

  15. Plasminogen activator inhibitor-1 is elevated, but not essential, in the development of bleomycin-induced murine scleroderma

    PubMed Central

    Matsushita, M; Yamamoto, T; Nishioka, K

    2005-01-01

    Accumulative data have demonstrated that plasminogen activator inhibitor-1 (PAI-1) plays an important role in the extracellular matrix metabolism; however, the involvement of PAI-1 in scleroderma has not been fully elucidated. In this study, we investigated the role of PAI-1 in bleomycin-induced murine scleroderma. 100 µg of bleomycin was injected subcutaneously to the back skin of C3H/HeJ mice on alternate day for 4 weeks. Histopathological findings revealed that PAI-1 was positive in macrophage-like cells and fibroblastic cells in the dermis, in parallel with the induction of dermal sclerosis. PAI-1 mRNA expression in the whole skin was up-regulated at 1 and 4 weeks. The production of active PAI-1 protein in the lesional skin was significantly increased 3 and 4 weeks after bleomycin treatment. Next, we examined whether dermal sclerosis is induced by bleomycin in PAI-1-deficient (PAI-1–/–) mice. 10 µg of bleomycin was subcutaneously injected to PAI-1–/– and wild type (WT) mice 5 days per week for 4 weeks. Histological examination revealed that dermal sclerosis was similarly induced even in PAI-1–/– as well as WT mice. Dermal thickness and collagen contents in the skin were significantly increased by bleomycin injection in both PAI-1–/– and WT mice, and the rate of increase was similar. These data suggest that PAI-1 plays an important role, possibly via TGF-β pathway activation. However, the fact that PAI-1 deficiency did not ameliorate skin sclerosis suggest that PAI-1 is not the essential factor in the development of bleomycin-induced scleroderma, and more complex biochemical effects other than PA/plasmin system are greatly suspected. PMID:15730388

  16. Effect of bosentan is correlated with MMP-9/TIMP-1 ratio in bleomycin-induced pulmonary fibrosis

    PubMed Central

    Zuo, Wan-Li; Zhao, Jie-Min; Huang, Ji-Xiong; Zhou, Wei; Lei, Ze-Hong; Huang, Yan-Ming; Huang, Yan-Fen; Li, Hai-Gang

    2017-01-01

    Pulmonary fibrosis (PF) is a life-threatening non-tumorous disease characterized by progressive fibrosis and worsening lung function. Various drugs, such as bleomycin, can contribute to lung injury and PF, with lung injury potentially occurring in 10% of bleomycin users. Bleomycin is the most commonly used drug in the establishment of an animal model of PF in rats. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) serve an important role in controlling tissue organization and fibrosis following injury. The present study examined the effect of bosentan on fibrotic lung tissue in rats administrated with bleomycin. In total, 48 Wistar rats were administrated with bleomycin, with or without bosentan, while the control rats received saline. The lung tissues were microscopically examined by staining with hematoxylin and eosin and Masson's trichome. ELISA was also used to detect the MMP-9 and TIMP-1 concentrations in the plasma. The results indicated that the bosentan-treated groups on the next day and the 15th day showed significant reversal of pathological findings. In addition, the concentrations of MMP-9 and TIMP-1 appeared to be altered following bosentan treatment, improving the bleomycin-induced PF. Masson's trichome staining showed high collagen deposition in the lung tissue sections, which may be a direct result of the activity of MMP-9 and TIMP-1. Furthermore, the deposition of collagen was significantly inhibited in bosentan-treated groups. In conclusion, these results demonstrated that bosentan inhibited lung fibrosis induced by bleomycin and it may be used as an inhibitor of PF. PMID:28357073

  17. Depletion of TFAP2E attenuates adriamycin-mediated apoptosis in human neuroblastoma cells.

    PubMed

    Hoshi, Reina; Watanabe, Yosuke; Ishizuka, Yoshiaki; Hirano, Takayuki; Nagasaki-Maeoka, Eri; Yoshizawa, Shinsuke; Uekusa, Shota; Kawashima, Hiroyuki; Ohashi, Kensuke; Sugito, Kiminobu; Fukuda, Noboru; Nagase, Hiroki; Soma, Masayoshi; Ozaki, Toshinori; Koshinaga, Tsugumichi; Fujiwara, Kyoko

    2017-04-01

    Neuroblastoma is a childhood malignancy originating from the sympathetic nervous system and accounts for approximately 15% of all pediatric cancer-related deaths. To newly identify gene(s) implicated in the progression of neuroblastoma, we investigated aberrantly methylated genomic regions in mouse skin tumors. Previously, we reported that TFAP2E, a member of activator protein-2 transcription factor family, is highly methylated within its intron and its expression is strongly suppressed in mouse skin tumors compared with the normal skin. In the present study, we analyzed public data of neuroblastoma patients and found that lower expression levels of TFAP2E are significantly associated with a shorter survival. The data indicate that TFAP2E acts as a tumor suppressor of neuroblastoma. Consistent with this notion, TFAP2E-depleted neuroblastoma NB1 and NB9 cells displayed a substantial resistance to DNA damage arising from adriamycin (ADR), cisplatin (CDDP) and ionizing radiation (IR). Silencing of TFAP2E caused a reduced ADR-induced proteolytic cleavage of caspase-3 and PARP. Of note, compared with the untransfected control cells, ADR-mediated stimulation of CDK inhibitor p21WAF1 was markedly upregulated in TFAP2E‑knocked down cells. Therefore, our present findings strongly suggest that TFAP2E has a pivotal role in the regulation of DNA damage response in NB cells through the induction of p21WAF1.

  18. Protection against adriamycin (doxorubicin)-induced toxicity in mice by several clinically used drugs.

    PubMed

    Shinozawa, S; Gomita, Y; Araki, Y

    1987-02-01

    Protective effects of clinically used drugs against adriamycin (ADM)-induced toxicity were studied in ICR mice. The control mice, which were administered 15 mg/kg of ADM twice, survived 7.48 +/- 1.99 days (mean +/- S.D.). The survival times of mice treated with the following drugs, expressed as a percent of that of the control group, were 293.6% for coenzyme Q10 (Co Q10, 2 mg/kg), 402.2% for dextran sulfate (MDS, 300 mg/kg), 121.6% for flavin adenine dinucleotide (20 mg/kg), 236.3% for adenosine triphosphate disodium (50 mg/kg), 213.7% for reduced glutathione (100 mg/kg), 121.6% for phytonadione (50 mg/kg), 155.2% for inositol nicotinate (Ino-N, 500 mg/kg), 335.5% for nicomol (1000 mg/kg), 157.5% for nicardipine (10 mg/kg) and 123.3% for dipyridamol (50 mg/kg). Anti-hyperlipemic agents such as MDS, nicomol, Ino-N and Co Q10 strongly protected against the ADM-induced toxicity, and the mice administered these drugs lived significantly longer than the control mice. The mechanism of the protective effect was discussed.

  19. Role of C/EBP-α in Adriamycin-induced podocyte injury

    PubMed Central

    Zhong, Fang; Wang, Weiming; Lee, Kyung; He, John Cijiang; Chen, Nan

    2016-01-01

    Podocytes are terminally differentiated epithelial cells in the kidney glomeruli that act as a key component of the glomerular filtration barrier. Although the inciting injury to the podocyte may vary between various glomerular diseases, the inevitable consequence of podocyte injury results in their loss, leading to progressive kidney disease. Here, we report that the expression of CCAAT/enhancer binding protein-α (C/EBP-α), a transcription factor known to interact with and activate PPAR-γ and NF-κB, is suppressed in the glomerular cells, particularly in podocytes, in human kidneys with focal segmental glomerulosclerosis. Genetic ablation of C/EBP-α in podocytes resulted in increased proteinuria, increased podocyte foot process effacement, and to decreased podocyte number in the setting of Adriamycin (ADR)-induced nephropathy. Overexpression of C/EBP-α in human podocytes in vitro led to an inhibition of MCP-1 and IL-6 expression in response to TNF-α and IL-1β treatments. Conversely, augmented production of MCP-1 and IL-6 was observed in the glomeruli of C/EBP-α knockout mice and was associated increased infiltration of macrophages in vivo. Together, our data suggest that C/EBP-α mediates anti-inflammatory effects in podocytes to confer protection against podocyte injury and loss that may contribute to worsening glomerulosclerosis. PMID:27644413

  20. Effect of fenugreek seed extract on adriamycin-induced hepatotoxicity and oxidative stress in albino rats.

    PubMed

    Sakr, Saber A; Abo-El-Yazid, Samah M

    2012-11-01

    The purpose of this work was to evaluate the effect of aqueous extract of fenugreek seeds against hepatotoxicity induced in albino rats by the anticancer drug adriamycin (ADR). Animals were given single dose of ADR (10 mg/kg body weight) and were killed after 2 and 4 weeks. Liver of ADR-treated animals showed histopathological and biochemical alterations. The histopathological changes include hepatic tissue impairment, cytoplasmic vacuolization of the hepatocytes, congestion of blood vessels, leucocytic infiltrations and fatty infiltration. Moreover, the expression of proliferating cell nuclear antigen was increased in ADR-treated rats. The liver enzymes, aspartate aminotransferase (ALT) and alanine aminotransferase (AST) were increased in the sera of treated rats. Moreover, ADR significantly increased the concentration of malondialdehyde (MDA) and decreased the activities of superoxide dismutase (SOD) and catalase (CAT) in hepatic tissue. Treating animals with ADR and aqueous extract of fenugreek (0.4 g/kg body weight) seeds led to an improvement in histological and biochemical alterations induced by ADR. The biochemical results showed that AST and ALT appeared normal together with reduction in the level of MDA (lipid peroxidation marker) and increase in SOD and CAT activities. It was concluded from this study that the aqueous extract fenugreek seeds has a beneficial impact on ADR-induced hepatotoxicity due to its antioxidant effect in albino rats.

  1. Impact of ethyl pyruvate on Adriamycin-induced cardiomyopathy in rats

    PubMed Central

    Liu, Menglin; Wang, Menglong; Liu, Jianfang; Luo, Zhen; Shi, Lei; Feng, Ying; Li, Li; Xu, Lin; Wan, Jun

    2016-01-01

    Ethyl pyruvate (EP), a derivative of pyruvic acid, is known to have protective effects against ischemic cardiomyopathy and other disorders. However, little is known about its role in Adriamycin (ADR)-induced cardiomyopathy. The present study was designed to investigate the impact of EP on ADR-induced cardiomyopathy in an animal model. Sixty male Sprague-Dawley (SD) rats were divided into four groups: Normal control, EP, ADR and ADR + EP groups (n=15/group). Rats in the ADR and ADR + EP groups were treated with ADR (2.5 mg/kg/week intraperitoneally) for 6 weeks. From the eighth week, rats in the EP and ADR + EP groups received EP via gastric lavage at a dose of 50 mg/kg/day for 30 days. After completing the EP treatment, cardiac function was assessed by echocardiography and then rats were sacrificed. Hearts were harvested for subsequent analysis. Compared with rats in the normal control and EP groups (without ADR treatment), rats in the ADR and ADR + EP groups showed significant impairments in terms of cardiac function, apoptosis, severe oxidative stress and fibrosis in the heart. However, these impairments were alleviated by EP treatment in the ADR + EP group. Upon EP treatment, cardiac function was significantly improved. The levels of oxidative stress, fibrosis and apoptosis in the myocardial tissues were also significantly reduced. These findings indicated that EP treatment attenuated, at least partially, ADR-induced cardiomyopathy in rats. PMID:27882138

  2. Inhibition of adriamycin-induced nephropathy in rats by herbs based kangshenoral solution

    PubMed Central

    Zhao, Jingsheng; Lin, Xinwei; Xiao, Xueqing; Yang, Jun; Liu, Hong; Yi, Weiguo; Zhang, Zhengchen; Zhang, Xinkuan

    2015-01-01

    The Chronic kidney disease (CKD) is characterized by the progressive loss in renal function over a period. The progression of CKD will finally result the End Stage Renal Disease (ESRD) Symptoms which needs permanent renal replacement therapies. Therefore, control the progression of CKD is necessary. In this study, based on the theory of Traditional Chinese Medicine and the Traditional Chinese Herbology, we developed the Kangshen Oral Solution based ona combination of different herbs for extraction. By utilizing adriamycin (ARD)-induced chronic renal failure in rats as the CKD model, our results demonstrated thatadministration of the Kangshen Oral Solution reduced the kidney disease induced weight loss in rats. The Kangshen Oral Solution could also relieve the proteinuria and kidney index induced by ARD which indicated the partially restoration of the kidney function. The improved kidney function was further supported by biochemical tests for blood total protein level, albumin level as well as cholesterol, triglycerides and Creatinine. Moreover, the histology examination also confirmed the ARD induced pathological changes in kidney was relieved by Kangshen Oral Solution. Taken together, these findings suggested Kangshen Oral solution could reduce ARD-induced nephropathy in rats model and may be employed as an alternative treatment for CKD patients. PMID:26885229

  3. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis.

    PubMed

    Cao, Qi; Wang, Yiping; Zheng, Dong; Sun, Yan; Wang, Ya; Lee, Vincent W S; Zheng, Guoping; Tan, Thian Kui; Ince, Jon; Alexander, Stephen I; Harris, David C H

    2010-06-01

    IL-10/TGF-beta-modified macrophages, a subset of activated macrophages, produce anti-inflammatory cytokines, suggesting that they may protect against inflammation-mediated injury. Here, macrophages modified ex vivo by IL-10/TGF-beta (IL-10/TGF-beta Mu2) significantly attenuated renal inflammation, structural injury, and functional decline in murine adriamycin nephrosis (AN). These cells deactivated effector macrophages and inhibited CD4+ T cell proliferation. IL-10/TGF-beta Mu2 expressed high levels of the regulatory co-stimulatory molecule B7-H4, induced regulatory T cells from CD4+CD25- T cells in vitro, and increased the number of regulatory T cells in lymph nodes draining the kidneys in AN. The phenotype of IL-10/TGF-beta Mu2 did not switch to that of effector macrophages in the inflamed kidney, and these cells did not promote fibrosis. Taken together, these data demonstrate that IL-10/TGF-beta-modified macrophages effectively protect against renal injury in AN and may become part of a therapeutic strategy for chronic inflammatory disease.

  4. Kinetically directed combination therapy with adriamycin and x-irradiation in a mammary tumor model

    SciTech Connect

    Braunschweiger, P.G.; Schenken, L.L.; Schiffer, L.M.

    1981-06-01

    In the present studies, the interaction of adriamycin (A) and x-irradiation (X) in T1699 mouse mammary tumors was evaluated. Mitotic indices and thymidine labeling indices were determined at various intervals after A or X alone, and after A + X given in combination. The results with A (1.0 mg/kg) and X(200 R) alone suggest that those quantities of each agent induce a G/sub 2/ progression delay of 9 to 12 h. The kinetic results after A + X in combination indicated increased S phase transit time and G/sub 2/ progression delay. Recovery kinetics after A + X were used to predict optimum sequence intervals for subsequent A + X fractions. Sequential A + X treatment schedules, up to 4 fractions, were designed and evaluated by regrowth delay measurements. The results indicated that the interaction was additive when A and X were given together in combination. Fractionation of A + X to minimize proliferative recovery between fractions resulted in an enhanced antitumor effect.

  5. The Cooperative Effect of Local Angiotensin-II in Liver with Adriamycin Hepatotoxicity on Mitochondria

    PubMed Central

    Taskin, Eylem; Guven, Celal; Sahin, Leyla; Dursun, Nurcan

    2016-01-01

    Background Adriamycin (ADR) is a drug used clinically for anticancer treatment; however, it causes adverse effects in the liver. The mechanism by which these adverse effects occur remains unclear, impeding efforts to enhance the therapeutic effects of ADR. Its hepatotoxicity might be related to increasing reactive oxygen species (ROS) and mitochondrial dysfunction. The interaction between ADR and the local renin-angiotensin system (RAS) in the liver is unclear. ADR might activate the RAS. Angiotensin-II (Ang-II) leads to ROS production and mitochondrial dysfunction. In the present study we investigated whether ADR’s hepatotoxicity interacts with local RAS in causing oxidative stress resulting from mitochondrial dysfunction in the rat liver. Material/Methods Rats were divided into 5 groups: control, ADR, co-treated ADR with captopril, co-treated ADR with Aliskiren, and co-treated ADR with both captopril and Aliskiren. Mitochondria and cytosol were separated from the liver, then biochemical measurements were made from them. Mitochondrial membrane potential (MMP) and ATP levels were evaluated. Results ADR remarkably decreased MMP and ATP in liver mitochondria (p<0.05). Co-administration with ADR and Aliskiren and captopril improved the dissipation of MMP (p<0.05). The decreased ATP level was restored by treatment with inhibitors of ACE and renin. Conclusions Angiotensin-II may contribute to hepatotoxicity of in the ADR via mitochondrial oxidative production, resulting in the attenuation of MMP and ATP production. PMID:27019222

  6. Photochemical Internalization of Bleomycin Before External-Beam Radiotherapy Improves Locoregional Control in a Human Sarcoma Model

    SciTech Connect

    Norum, Ole-Jacob; Bruland, Oyvind Sverre; Gorunova, Ludmila; Berg, Kristian

    2009-11-01

    Purpose: The aim of this study was to explore the tumor growth response of the combination photochemical internalization and external-beam radiotherapy. Photochemical internalization is a technology to improve the utilization of therapeutic macromolecules in cancer therapy by photochemical release of endocytosed macromolecules into the cytosol. Methods and Materials: A human sarcoma xenograft TAX-1 was inoculated subcutaneously into nude mice. The photosensitizer AlPcS{sub 2a} and bleomycin were intraperitoneally administrated 48 h and 30 min, respectively, before diode laser light exposure at 670 nm (20 J/cm{sup 2}). Thirty minutes or 7 days after photochemical treatment, the animals were subjected to 4 Gy of ionizing radiation. Results: Using photochemical internalization of bleomycin as an adjunct to ionizing radiation increased the time to progression for the tumors from 17 to 33 days as compared with that observed with photodynamic therapy combined with ionizing radiation as well as for radiochemotherapy with bleomycin. The side effects observed when photochemical internalization of bleomycin was given shortly before ionizing radiation were eliminated by separating the treatment modalities in time. Conclusion: Photochemical internalization of bleomycin combined with ionizing radiation increased the time to progression and showed minimal toxicity and may therefore reduce the total radiation dose necessary to obtain local tumor control while avoiding long-term sequelae from radiotherapy.

  7. Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Swiderski, R. E.; Dencoff, J. E.; Floerchinger, C. S.; Shapiro, S. D.; Hunninghake, G. W.

    1998-01-01

    Exposure to the chemotherapeutic drug bleomycin leads to pulmonary fibrosis in humans and has been widely used in animal models of the disease. Using C57BL/6 bleomycin-sensitive mice, pulmonary fibrosis was induced by multiple intraperitoneal injections of the drug. An increase in the relative amounts of steady-state alpha1(I) procollagen, alpha1(III) procollagen, and fibronectin mRNA as well as histopathological evidence of fibrosis was observed. The effect of bleomycin on the expression of the enzymes responsible for extracellular matrix degradation, the matrix metalloproteinases (MMPs), and their inhibitors (TIMPs), was selective and showed temporal differences during the development of fibrosis. Of the MMPs tested, bleomycin treatment resulted in the up-regulation of gelatinase A and macrophage metalloelastase gene expression in whole-lung homogenates, whereas gelatinase B, stromelysin-1, and interstitial collagenase gene expression was not significantly changed. Timp2 and Timp3, the murine homologues of the respective TIMP genes, were constitutively expressed, whereas Timp1 was markedly up-regulated during fibrosis. The strong correlation between enhanced extracellular matrix gene expression, differential MMP and TIMP gene expression, and histopathological evidence of fibrosis suggest that dysregulated matrix remodeling is likely to contribute to the pathology of bleomycin-induced pulmonary fibrosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9502424

  8. Bleomycin Induces Molecular Changes Directly Relevant to Idiopathic Pulmonary Fibrosis: A Model for “Active” Disease

    PubMed Central

    Tyagi, Gaurav; Phillips, Jonathan E.; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M.; Kitson, Chris; Budd, David C.; Fine, Jay S.; Bauer, Carla MT.; Stevenson, Christopher S.

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease. PMID:23565148

  9. Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway.

    PubMed

    Nakayama, Yuji; Igarashi, Asae; Kikuchi, Ikue; Obata, Yuuki; Fukumoto, Yasunori; Yamaguchi, Naoto

    2009-09-10

    Polyploid cells result in aneuploidy through aberrant chromosome segregation, possibly leading to tumorigenesis. Although polyploid cells are induced through over-replication by a variety of agents, including DNA-damaging drugs, the mechanisms that induce polyploidy have been hitherto unknown. Here, we show that treatment with bleomycin, a glycopeptide anticancer drug, induces over-replication at low cytotoxic doses. During bleomycin-induced over-replication, mitotic entry is inhibited through tyrosine phosphorylation of CDK1 along the ATM/ATR pathway in the early phase of treatment. Bleomycin-induced over-replication is inhibited by the inhibitors of the ATM/ATR pathway through abrogation of bleomycin-induced G2 arrest, and the ATM/ATR inhibitors promote cell death instead of over-replication. Following the phosphorylation of CDK1, the level of cyclin B1 is decreased in the late phase of treatment. Time-lapse imaging of clone cells that express a live cell marker of endogenous cyclin B1 revealed that cyclin B1 is degraded in G2-arrested cells upon bleomycin treatment. Our findings lead to a model of how the ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis, and over-replication via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is an important factor for inducing over-replication.

  10. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.

  11. Augmentation of apoptosis by the combination of bleomycin with trifluoperazine in the presence of mutant p53.

    PubMed

    Sullivan, Gregory F; Garcia-Welch, Adrienne; White, Eileen; Lutzker, Stuart; Hait, William N

    2002-01-01

    A variety of anticalmodulin drugs can increase the cytotoxicity of bleomycin, a DNA damaging cancer chemotherapeutic. The combination has been shown to produce greater than expected DNA damage compared wot what was observed with either drug alone. Promising preclinical results led to Phase I and Phase II trials of trifluoperazine and bleomycin, which revealed activity in non-Hodgkin's lymphoma. Despite the unique activity of the combination, the mechanism underlying the DNA damaging effect remained poorly understood. In several systems, DNA damage leads to the induction of programmed cell death or apoptosis, which is characterized by interoligonucleosomal cleavage of DNA. To determine whether the activity of the combination of bleomycin with trifluoperazine was due to induction of apoptosis, we exposed L1210 leukemic lymphocytes to bleomycin in the presence or absence of trifluoperazine. The combination produced DNA laddering, cellular shrinkage, and chromatin condensation typical of programmed cell death. Cell cycle analyses revealed a blockade of cells in G2/M, suggesting the presence of mutant p53, which was confirmed by immunoanalysis. In addition, L1210 cells were found not to overexpress Bcl-2 in the presence or absence of drugs. These results indicate that the enhancement of bleomycin induced DNA damage by trifluoperazine is mediated, at least in part, through the induction of apoptosis.

  12. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology.

    PubMed

    Egger, Christine; Cannet, Catherine; Gérard, Christelle; Jarman, Elizabeth; Jarai, Gabor; Feige, Agnès; Suply, Thomas; Micard, Arthur; Dunbar, Andrew; Tigani, Bruno; Beckmann, Nicolau

    2013-01-01

    Pulmonary fibrosis can be experimentally induced in small rodents by bleomycin. The antibiotic is usually administered via the intratracheal or intranasal routes. In the present study, we investigated the oropharyngeal aspiration of bleomycin as an alternative route for the induction of lung fibrosis in rats and mice. The development of lung injury was followed in vivo by ultrashort echo time magnetic resonance imaging (UTE-MRI) and by post-mortem analyses (histology of collagen, hydroxyproline determination, and qRT-PCR). In C57BL/6 mice, oropharyngeal aspiration of bleomycin led to more prominent lung fibrosis as compared to intranasal administration. Consequently, the oropharyngeal aspiration route allowed a dose reduction of bleomycin and, therewith, a model refinement. Moreover, the distribution of collagen after oropharyngeal aspiration of bleomycin was more homogenous than after intranasal administration: for the oropharyngeal aspiration route, fibrotic areas appeared all over the lung lobes, while for the intranasal route fibrotic lesions appeared mainly around the largest superior airways. Thus, oropharyngeal aspiration of bleomycin induced morphological changes that were more comparable to the human disease than the intranasal administration route did. Oropharyngeal aspiration of bleomycin led to a homogeneous fibrotic injury also in rat lungs. The present data suggest oropharyngeal aspiration of bleomycin as a less invasive means to induce homogeneous and sustained fibrosis in the lungs of mice and rats.

  13. Comparative intracellular uptake of adriamycin and 4'-deoxydoxorubicin by non-small cell lung tumor cells in culture and its relationship to cell survival.

    PubMed

    Kerr, D J; Kerr, A M; Freshney, R I; Kaye, S B

    1986-08-15

    4'-Deoxydoxorubicin (4'-deoxy) is a new adriamycin analogue with a similar spectrum of antitumour activity but is significantly more lipophilic than the parent compound. We report the kinetics and uptake of the two drugs by human non-small cell lung tumour cells in monolayer culture and the relationship between intracellular drug levels and cytotoxicity. The rate and degree of cell uptake of 4'-deoxy (Vmax = 30 ng/10(5) cells/min) was greater than that of adriamycin (Vmax = 0.15 ng/10(5) cells/min). Although for a given intracellular drug concentration adriamycin was more lethal, on the basis of extracellular drug concentration, cell kill was virtually identical. The log cell survival vs intracellular drug concentration plot was linear for adriamycin but biphasic for 4'-deoxy. Intracellular distribution of the two drugs was followed by fluorescent microscopy and it was apparent that adriamycin was localized mainly within the nucleus whereas 4'-deoxy accumulated within the cytoplasm. Our results suggest that the relationship between intracellular distribution of the two drugs could reflect different modes of action for the drugs with respect to binding sites or could be a non-specific phenomenon, unrelated to lethal effects.

  14. The effect of adriamycin and 4'-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids.

    PubMed Central

    Kerr, D. J.; Wheldon, T. E.; Kerr, A. M.; Freshney, R. I.; Kaye, S. B.

    1986-01-01

    Using growth delay and clonogenic cell survival as end points, we have shown that the 3-dimensional structure of human lung tumour spheroids confers a degree of resistance to the anthracyclines adriamycin and 4'-deoxydoxorubicin, relative to cells grown as monolayer. 4'-deoxydoxorubicin induces a longer growth delay and greater clonogenic cell kill than adriamycin in spheroids, although it is no more cytotoxic in monolayer (exponential and plateau phase). There is a log linear relationship between clonogenic cell survival and duration of adriamycin exposure in monolayers, and biphasic curve with a lesser degree of cell kill for disaggregated spheroid cells. Using fluorescent microscopy we have demonstrated, qualitatively, that the more lipophilic analogue partitions into the spheroid more rapidly and to a greater degree than adriamycin. It is possible that adriamycin penetration is a relatively important aspect of spheroid drug resistance, which may be related to intraspheroidal pH gradients, and that we have partially overcome this by using a lipophilic analogue. Images Figure 7 PMID:3756078

  15. The vitamin D3 analog EB 1089 enhances the antiproliferative and apoptotic effects of adriamycin in MCF-7 breast tumor cells.

    PubMed

    Sundaram, S; Chaudhry, M; Reardon, D; Gupta, M; Gewirtz, D A

    2000-09-01

    Exposure of MCF-7 breast tumor cells to the vitamin D3 analog, EB 1089 enhances the response to adriamycin. Clonogenic survival studies indicate that EB 1089 shifts the dose-response curve for sensitivity to adriamycin by approximately six-fold in p53 wild-type MCF-7 cells; comparative studies in MCF-7 cells with a temperature-sensitive dominant negative p53 mutation show less than a two-fold shift in adriamycin sensitivity in the presence of EB 1089. The combination of EB 1089 with adriamycin also promotes apoptotic cell death in the p53 wild-type MCF-7 cells but not in the MCF-7 cells expressing mutant p53. EB 1089 treatment blocks the increase in p21waf1/cip1 levels induced by adriamycin and interferes with induction of MAP kinase activity by ionizing radiation, effects which could be related to the capacity of EB 1089 to promote secretion of insulin-like growth factor binding protein. Taken together with our previous findings that EB 1089 enhances breast tumor cell sensitivity to ionizing radiation, there studies further support the concept that vitamin D3 analogs could have utility in combination with conventional chemotherapy and/or radiotherapy in the treatment of breast cancer.

  16. Death by bleomycin pulmonary toxicity in ovarian dysgerminoma with pathologic complete response to chemotherapy. A case report.

    PubMed

    Calzas Rodríguez, Julia; Carmen Juarez Morales, María Del; Casero, Miguel Angel Racionero

    2016-01-01

    With cisplatin-based chemotherapy, most patients with ovarian dysgerminoma will survive long-term. Bleomycin is an important part of ovarian germ cell tumors (OGCT) treatment, and its dose-limiting toxicity is the development of pulmonary toxicity and it is increased in patients older than 40 years. We report the case of an elderly patient with an unresectable ovarian dysgerminoma who received neoadjuvant chemotherapy and who developed fatal bleomycin pulmonary toxicity (BPT) after surgery. A monitoring of pulmonary function is not routinely recommended for detecting BPT, although together with carefully assessment for symptoms or signs suggestive of pulmonary toxicity is the best way to reduce the risk of BPT. The frequency of pulmonary events in older patients makes us to think about the possibility of either reduce the dose of bleomycin or removing it from the BEP in ovarian GCT.

  17. Stage-specific DNA synthesis of rat spermatogenesis as an indicator of genotoxic effects of vinblastine, mitomycin C and ionizing radiation on rat spermatogonia and spermatocytes.

    PubMed

    Sjöblom, T; Parvinen, M; Lähdetie, J

    1995-10-01

    We have studied the effects of three known mutagens: vinblastine sulphate, mitomycin C and local irradiation of testes on the stage-specific DNA synthesis in the rat testis by using transillumination assisted microdissection of rat seminiferous tubules. It enables us to investigate the sensitivity of different types of spermatogonia and preleptotene spermatocytes to the genotoxic effects of these agents. According to our results, spermatogonia and preleptotene spermatocytes are quite resistant to the action of vinblastine at the treatment times and the doses used. After treatment with mitomycin C, type A2, A3 and A4 spermatogonia seem to be the first cell types affected, which shows itself as a reduction in the DNA synthesis at stages I, II-III, XIII-XIV of the epithelial cycle two and/or three days after the treatment. It also seems that they are mostly affected during the S-phase of their cell cycles. In addition, preleptotene spermatocytes are also sensitive to the action of mitomycin C when they are treated in the G1 phase of the cell cycle. The local irradiation of 3 Gy has severe effects on the spermatogonia of rat testis which can be seen already 18 h after the treatment and becomes more evident 42 and 66 h after the treatment as a reduction of DNA synthesis at stages XII-V. Type A spermatogonia (A1-A4) seem to be the most sensitive cell types to the action of irradiation. This study indicates that the novel method of stage-specific DNA synthesis in rat spermatogenesis allows detailed studies of sensitivities in differentiating spermatogonia to genotoxic agents.

  18. Effect of IL-2-Bax, a novel interleukin-2-receptor-targeted chimeric protein, on bleomycin lung injury.

    PubMed

    Segel, Michael J; Aqeilan, Rami; Zilka, Keren; Lorberboum-Galski, Haya; Wallach-Dayan, Shulamit B; Conner, Michael W; Christensen, Thomas G; Breuer, Raphael

    2005-10-01

    The role of lymphocytes in the pathogenesis of lung fibrosis is not clear, but the weight of the evidence supports a pro-fibrotic effect for lymphocytes. The high-affinity interleukin-2 receptor (haIL-2R) is expressed on activated, but not quiescent, T lymphocytes. This selective expression of haIL-2R provides the basis for therapeutic strategies that target IL-2R-expressing cells. We hypothesized that elimination of activated lymphocytes by IL-2R-targeted chimeric proteins might ameliorate lung fibrosis. We investigated the effects of IL-2-Bax, a novel apoptosis-inducing IL-2R-targeted chimeric protein, on bleomycin-induced lung injury in mice. Treatment groups included (i) a single intratracheal instillation of bleomycin and twice-daily intraperitoneal injections of IL-2-Bax; (ii) intratracheal bleomycin and intraperitoneal IL-2-PE66(4Glu), an older-generation chimeric protein; (iii) intratracheal bleomycin/intraperitoneal PBS; (iv) intratracheal saline/intraperitoneal PBS. Lung injury was evaluated 14 days after intratracheal instillation by cell count in bronchoalveolar lavage (BAL) fluid, semi-quantitative and quantitative histomorphological measurements and by biochemical analysis of lung hydroxyproline. Bleomycin induced a BAL lymphocytosis that was significantly attenuated by IL-2-Bax and IL-2-PE66(4Glu). However, morphometric parameters and lung hydroxyproline were unaffected by the chimeric proteins. These results show that IL-2-Bax reduces the lymphocytic infiltration of the lungs in response to bleomycin, but this effect is not accompanied by a decrease in lung fibrosis.

  19. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

    PubMed Central

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas

    2015-01-01

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524

  20. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair.

    PubMed

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A; Günther, Andreas; Bellusci, Saverio

    2015-05-15

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26(rtTA/+);tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.

  1. Effects of Wenyangzhenshuai Granule on ERK1/2 and ERK5 activity in the myocardial tissue in a rabbit model of adriamycin-induced chronic heart failure

    PubMed Central

    Chen, Xinyu; Cai, Huzhi; Chen, Qingyang; Xie, Haibo; Liu, Yuemei; Lu, Qing; Tang, Yanping

    2015-01-01

    Objective: To elucidate the effects of Wenyangzhenshuai granule on expression of extracellular signal-regulated kinase 1/2 (ERK1/2) and 5 (ERK5) in the myocardial tissue using a rabbit model of adriamycin-induced chronic heart failure. Materials and methods: Rabbits were divided into heart failure positive control, adriamycin injection, and adriamycin injection with Wenyangzhenshuai treatment (low, medium and high dose) groups. Cardiac function and cardiac hypotrophy were measured in all groups. Besides, myocardial expression of ERK1/2 and ERK5 phosphorylation were evaluated by Western blotting and ERK1/2 and ERK5 mRNA levels by RT-PCR. The cardiac structure and cardiac function were also compared using histology staining and electron microscope. Results: Adriamycin injection led to cardiac failure reflected by decreased left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), E/A ratio, and increased cardiac hypertrophy, both of which have been improved by Wenyangzhenshuai granule treatment (all P<0.05). Mechanistically, increased P-ERK1/2 and decreased P-ERK5 levels were observed in myocardial tissues of mice treated with Adriamycin for 8 weeks. However, such signaling change could be partially corrected by Wenyangzhenshuai treatment. In addition, no significant difference was detected in the expression of ERK1/2 and ERK5 mRNA levels between adriamycin injection groups and Wenyangzhenshuai treatment groups (P>0.05), indicating an alteration in the activity/phosphorylation levels of these proteins instead of the transcription levels. Conclusion: we found a beneficial effect of Wenyangzhenshuai treatment in partially decelerating the progression of CHF. Such effect was probably through the role of Wenyangzhenchuan in diminishing p-ERK1/2 and raising p-ERK5 level in myocardial tissue. PMID:26884996

  2. Adriamycin-induced oxidative stress is prevented by mixed hydro-alcoholic extract of Nigella sativa and Curcuma longa in rat kidney

    PubMed Central

    Mohebbati, Reza; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Mohammadian Roshan, Noema; Khajavi Rad, Abolfazl; Anaeigoudari, Akbar; Hosseinian, Sara; Karimi, Sareh; Beheshti, Farimah

    2016-01-01

    Objective: Inflammation and oxidative stress is considered to have a crucial role in induction of nephropathy. Curcuma longa (C. longa) and Nigella sativa (N. sativa) have anti-inflammatory and antioxidant effects. This study was designed to investigate the effect of mixed hydro-alcoholic extract of N.sativa and C. longa on the oxidative stress induced by Adriamycin (ADR) in rat kidney. Materials and Methods: The animals were divided into 6 groups: control (CO), ADR, Adriamycin+ Vitamin C (ADR+VIT C), C. longa extract+ Adriamycin (C.LE+ADR), N. sativa extract+ Adriamycin (N.SE+ADR) and C. longa extract+ N. sativa extract + Adriamycin (N.S+C.L+ADR). ADR (5mg/kg) was injected intravenously, whereas VITC (100mg/kg) and extract of C. longa (1000mg/kg) and N. sativa (200mg/kg) were administrated orally. Finally, the renal tissue, urine and blood samples were collected and submitted to measure of redox markers, osmolarity and renal index. Results: The renal content of total thiol and superoxide dismutase (SOD) activity significantly decreased and Malondialdehyde (MDA) concentration increased in Adriamycin group compared to control group. The renal content of total thiol and SOD activity significantly enhanced and MDA concentration reduced in treated-mixed extract of C. longa and N. sativa along with ADR group compared to ADR group. The mixed extract did not restore increased renal index percentage induced by ADR. There also was no significant difference in urine and serum osmolarity between the groups. Conclusion: hydro-alcoholic extracts of N.sativa and C.longa led to an improvement in ADR-induced oxidative stress and mixed administration of the extracts enhanced the aforementioned therapeutic effect. PMID:27247925

  3. Monitoring of /sup 57/Co-bleomycin delivery to brain metastases and their tumors of origin

    SciTech Connect

    Front, D.; Even-Sapir, E.; Iosilevsky, G.; Israel, O.; Frenkel, A.; Kolodny, G.M.; Feinsud, M.

    1987-10-01

    The concentration of cobalt-57 (/sup 57/Co)-labeled bleomycin delivered to three brain metastases and to their tumors of origin in the lungs was measured using a single-photon emission computerized tomography technique. In two brain metastases the /sup 57/Co-bleomycin concentration measured at different times after the intravenous injection was significantly lower than that in the originating lung tumors (p less than 0.01 and p less than 0.001). In these two patients, the tumor cumulative concentration (TCC) of drug in the brain neoplasm compared to the lung carcinoma was 12.92 versus 15.12 and 10.30 versus 19.74 micrograms/cc/min. In the third patient there was no significant difference in drug concentration between the tumor in the brain and in the lung (TCC 16.02 vs. 15.09 micrograms/cc/min). There was a significant difference in the drug TCC between the three brain metastases: the difference between the lowest and highest concentrations was more than 50% (10.3 vs. 16.02 micrograms/cc/min). When the concentration in the tumor over time (CT(t)) of the /sup 57/Co-bleomycin was compared in the brain and lung tumors, a good correlation was found in each of the three cases (r = 0.93, 0.99, and 0.97). This suggests that the difference in drug uptake between brain metastases and their originating lung tumor is a quantitative rather than a qualitative phenomenon. The results show that the amount of drug to which brain metastases are exposed varies and may be very low in some tumors; therefore, effectiveness of drug delivery may play a role in the nonresponsiveness of brain metastases to treatment.

  4. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  5. The protective effects of methyl jasmonate against adriamycin--induced hepatic and renal toxicities.

    PubMed

    Kosoko, A M; Molokwu, C J; Farombi, E O; Ademowo, O G

    2012-12-01

    The aim of the study was to investigate the protective effect of methyl jasmonate (MJ) in adriamycin (ADR) induced hepatic and renal toxicities. 36 BALB/c mice were randomly divided into control, ADR (20 mg/kg), MJ (50 mg/kg) only, MJ (100 mg/kg) only, MJ (50 mg/ kg) + ADR, MJ (100 mg/kg) + ADR groups (n = 6). The 2 doses of MJ was administered for 7 days in MJ only groups, ADR was administered intraperitoneally on the 8th day after pretreatment with the 2 different doses of MJ while ADR was administered on the 8th day only for the ADR only group. The malondialdehyde (MDA), glutathione (GSH), H2O2 generation, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine in the liver, kidneys and serum samples as applicable were estimated. Tissue MDA, H2O2 generation, and GST activity were markedly elevated while GSH content, CAT and SOD activities were significantly reduced in the tissues when compared to the control (p < 0.05). Pretreatment with MJ ameliorated ADR toxicities, with a significant reduction in serum urea concentration, ALT activity, MDA level, H2O2 generation, GST activity and a significant elevation in GSH content, CAT and SOD activities in the organ tissues. MJ induced significant reduction in MDA level and increase of GSH content in liver and kidney tissues. This study suggests that MJ may play an overall protective effect on ADR-induced toxicities in liver and kidneys and the inhibition of tissue peroxidative damage might contribute to this beneficial effect.

  6. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    SciTech Connect

    Liu Shukun; Wu Mei; Zhang Zunzhen

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here, cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.

  7. Depletion of cellular iron by bps and ascorbate: effect on toxicity of adriamycin.

    PubMed

    Nyayapati, S; Afshan, G; Lornitzo, F; Byrnes, R W; Petering, D H

    1996-01-01

    A new method was developed that reduces the intracellular iron content of cells grown in serum-containing culture without involving the significant uptake of iron-chelating agents into cells. Negatively charged bathophenanthrolinedisulfonate (BPS), together with ascorbate, caused cells to lose much of their cellular iron without causing much depression in HL-60 or H9c2 (2-1) cell proliferation over a 48-h period. When added to serum supplemented RPMI-1640 culture media, BPS and ascorbate efficiently reduced and competed for iron in Fe(III) transferrin to form Fe(II)(BPS)3. The reaction also occurred with purified human iron-transferrin. When cells were incubated with growth medium containing serum that had been treated with BPS and ascorbate for 24 h, little or no BPS2- or Fe(II)(BPS)(4-)3 entered the cells, according to direct measurements and in agreement with the highly unfavorable 1-octanol/water partition coefficients for these molecules. However, iron was mobilized out of both cell types. After 24 h incubation of cells in this medium, there was no change in the activities of catalase and superoxide dismutase, or in the concentration of glutathione. Glutathione peroxidase was elevated 9%. Using HL-60 and H9c2 (2-1) cells made iron deficient with BPS and ascorbate, HL-60 cells grown in defined-growth media in the absence of iron-pyridoxal isonicotinoyl hydrazone, or Euglena gracilis cells maintained in a defined medium that was rigorously depleted of iron, it was shown that the cytotoxicity of adriamycin is markedly dependent on the presence of iron in each type of cell. Similar results were obtained when HL-60 cells were grown in RPMI-1640 culture medium and serum that had been incubated for 24 h in BPS and ascorbate and then chromatographed over a Bio-Rad desalting column to remove small molecules including BPS, ascorbate, and Fe(II)(BPS)3.

  8. Prolonged Drainage and Intrapericardial Bleomycin Administration for Cardiac Tamponade Secondary to Cancer-Related Pericardial Effusion.

    PubMed

    Numico, Gianmauro; Cristofano, Antonella; Occelli, Marcella; Sicuro, Marco; Mozzicafreddo, Alessandro; Fea, Elena; Colantonio, Ida; Merlano, Marco; Piovano, Pierluigi; Silvestris, Nicola

    2016-04-01

    Malignant pericardial effusion (MPE) is a serious complication of several cancers. The most commonly involved solid tumors are lung and breast cancer. MPE can give rise to the clinical picture of cardiac tamponade, a life threatening condition that needs immediate drainage. While simple pericardiocentesis allows resolution of the symptoms, MPE frequently relapses unless further procedures are performed. Prolonged drainage, talcage with antineoplastic agents, or surgical creation of a pleuro-pericardial window are the most commonly suggested ones. They all result in MPE resolution and high rates of long-term control. Patients suitable for further systemic treatments can have a good prognosis irrespective of the pericardial site of disease. We prospectively enrolled patients with cardiac tamponade treated with prolonged drainage associated with Bleomycin administration. Twenty-two consecutive patients with MPE and associated signs of hemodynamical compromise underwent prolonged drainage and subsequent Bleomycin administration. After injection of 100 mg lidocaine hydrochloride, 10 mg Bleomycin was injected into the pericardial space. The catheter was clumped for 48 h and then reopened. Removal was performed when the drainage volume was <25 mL daily. Twelve patients (54%) achieved complete response and 9 (41%) a partial response. Only 1 (5%) had a treatment failure and underwent a successful surgical procedure. Acute toxicity was of a low degree and occurred in 7 patients (32%). It consisted mainly in thoracic pain and supraventricular arrhythmia. The 1-year pericardial effusion progression-free survival rate was 74.0% (95% confidence interval [CI]: 51.0-97.3). At a median follow-up of 75 months, a pericardial progression was detected in 4 patients (18%). One- and two-year overall survival rates were 33.9% (95% CI: 13.6-54.2) and 14.5% (95% CI: 0.0-29.5), respectively, with lung cancer patients having a shorter survival than breast cancer patients. The worst

  9. Tumor localization with gallium, radiolabeled bleomycin, thallium, selenium, carbon and nitrogen radionuclides. Oncology overview

    SciTech Connect

    Not Available

    1981-07-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Gallium scans; Radiolabeled bleomycin scans; Thallium scans; Selenium scans; Carbon radionuclide scans; Nitrogen radionuclide scans; Multiagent studies.

  10. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Reprinted from Biotechnology and Bioengineering, Vol. XI, Issue 6, Pages 1101-1110 (1969).

    PubMed

    Arcamone, F; Cassinelli, G; Fantini, G; Grein, A; Orezzi, P; Pol, C; Spalla, C

    2000-03-20

    Streptomyces peucetius var. caesius, obtained from S. peucetius, the daunomycin producing microorganism, by mutagenic treatment, differs from the parent culture by the color of the vegetative and aerial mycelia and by its antibiotic producing ability. S. peucetius var. caesius accumulates adriamycin in submerged and aerated culture on a medium containing glucose, brewer's yeast, and inorganic salts both in shake flasks and in stirred fermenters. Isolation of the product is performed by solvent extraction, chromatography on buffered cellulose columns, and crystallization as the hydrochloride. The new antitumor agent, adriamycin, is the 14-hydroxy derivative of daunomycin.

  11. Expression of 150-kDa oxygen-regulated protein (ORP150) stimulates bleomycin-induced pulmonary fibrosis and dysfunction in mice.

    PubMed

    Tanaka, Ken-Ichiro; Shirai, Ayano; Ito, Yosuke; Namba, Takushi; Tahara, Kayoko; Yamakawa, Naoki; Mizushima, Tohru

    2012-09-07

    Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.

  12. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury.

    PubMed

    Chen, Weimin; Li, Shanshan; Li, Jinwei; Zhou, Wen; Wu, Shouhai; Xu, Shengmei; Cui, Ke; Zhang, Donna D; Liu, Bo

    2016-07-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of the cellular antioxidant response and xenobiotic metabolism. Activation of the Nrf2 signaling pathway has been demonstrated to confer protection against environmental insults and prevent disease or inhibit the progression of diseases related to oxidative stress. In an attempt to identify novel improved Nrf2 inducers for systemic protection against tissue damage by environmental insults, we identified artemisitene as a novel Nrf2 activator using antioxidant responsive element luciferase assay in MDA-MB-231 cells. Further studies suggest that artemisitene activates Nrf2 by decreasing Nrf2 ubiquitination and increasing its stability. In Nrf2 wild-type mice, systemic administration of artemisitene strongly inhibits bleomycin-induced lung damage. Artemisitene represents a novel class of Nrf2 inducer, and artemisitene-based therapeutic approach targeting Nrf2 may also provide antioxidant protection for humans against tissue damage by toxic chemicals.-Chen, W., Li, S., Li, J., Zhou, W., Wu, S., Xu, S., Cui, K., Zhang, D. D., Liu, B. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury.

  13. An Escherichia coli mutant resistant to phleomycin, bleomycin, and heat inactivation is defective in ubiquinone synthesis.

    PubMed Central

    Collis, C M; Grigg, G W

    1989-01-01

    A mutant of Escherichia coli, selected for resistance to the antibiotic and antitumor agent phleomycin, has been characterized, and the phleomycin resistance determinant has been identified. The mutant is equally resistant to bleomycins. The resistance to phleomycin is strongly dependent on the nature of the C-terminal amine of the drug, with the greatest resistance being shown to phleomycins and bleomycins with the most basic terminal amines. The mutation also confers resistance to the lethal effects of heating at 52 degrees C. Other characteristics of the phleomycin-resistant strain include a slow growth rate, an inability to grow on succinate as the sole carbon source (Suc- phenotype), cross resistance to aminoglycoside antibiotics, and a slight sensitivity to hydrogen peroxide, methyl methanesulfonate, and gamma-irradiation. Some of these characteristics, together with mapping data, suggested that the phleomycin resistance and Suc- determinant probably lies within the ubiF gene coding for an enzyme effecting a step in the biosynthesis of ubiquinone. The phenotypes of known mutants defective in this and other steps of the ubiquinone pathway were found to be closely similar to those of the original phleomycin-resistant strain. PMID:2475481

  14. Antifibrotic effects of CXCR4 antagonist in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Makino, Hideki; Aono, Yoshinori; Azuma, Momoyo; Kishi, Masami; Yokota, Yuki; Kinoshita, Katsuhiro; Takezaki, Akio; Kishi, Jun; Kawano, Hiroshi; Ogawa, Hirohisa; Uehara, Hisanori; Izumi, Keisuke; Sone, Saburo; Nishioka, Yasuhiko

    2013-01-01

    Circulating fibrocytes had been reported to migrate into the injured lungs, and contribute to fibrogenesis via chemokine-chemokine receptor systems including CXCL12-CXCR4 axis. Here we hypothesized that blockade of CXCR4 might inhibit the migration of fibrocytes to the injured lungs and the subsequent pulmonary fibrosis. To explore the antifibrotic effects of blockade of CXCR4, we used a specific antagonist for CXCR4, AMD3100, in bleomycin-induced pulmonary fibrosis model in mice. Administration of AMD3100 significantly improved the loss of body weight of mice treated with bleomycin, and inhibited the fibrotic lesion in subpleural areas of the lungs. The quantitative analysis demonstrated that treatment with AMD3100 reduced the collagen content and fibrotic score (Aschcroft score) in the lungs. Although AMD3100 did not affect cell classification in bronchoalveolar lavage fluid on day 7, the percentage of lymphocytes was reduced by AMD3100 on day 14. AMD3100 directly inhibited the migration of human fibrocytes in response to CXCL12 in vitro, and reduced the trafficking of fibrocytes into the lungs treated with bleocmycin in vivo. These results suggest that the blockade of CXCR4 might be useful strategy for therapy of patients with pulmonary fibrosis via inhibiting the migration of circulating fibrocytes.

  15. Inhibitory effects of amines from Citrus reticulata on bleomycin-induced pulmonary fibrosis in rats

    PubMed Central

    ZHOU, XIAN-MEI; CAO, ZHEN-DONG; XIAO, NA; SHEN, QI; LI, JIAN-XIN

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease for which, thus far, there are no effective treatments. The pericarp of Citrus reticulata, as a traditional herbal drug, has been used for the clinical treatment of lung-related diseases in China for many years. In the present study, the amines from the pericarp of Citrus reticulata were isolated, and their hydrochlorides were prepared. The results of screening using cultured human embryonic lung fibroblasts (hELFs) revealed that, of the amines, 4-methoxyphenethylamine hydrochloride (designated as amine hydrochloride 1) possessed the most potent inhibitory effect. Further in vivo experiments using a rat model of bleomycin-induced pulmonary fibrosis demonstrated that the oral administration of amine hydrochloride 1 significantly lowered the hydroxyproline content in both serum and lung tissue, and alleviated pulmonary alveolitis and fibrosis. Immunohistochemical analysis revealed that amine hydrochloride 1 exerted its inhibitory effect against IPF through the downregulation of lung transforming growth factor (TGF)-β1 protein expression. Our results demonstrated that amine hydrochloride 1 prevented the development of bleomycin-induced lung fibrosis in rats. Thus, our data suggest that the amines from the pericarp of Citrus reticulata have therapeutic potential for use in the treatment of IPF. PMID:26675886

  16. Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin.

    PubMed

    Hashimoto, Soshi; Amaya, Fumimasa; Matsuyama, Hiroki; Ueno, Hiroshi; Kikuchi, Shojiro; Tanaka, Masaki; Watanabe, Yoshihisa; Ebina, Masahito; Ishizaka, Akitoshi; Tsukita, Sachiko; Hashimoto, Satoru

    2008-10-01

    Moesin belongs to the ezrin/radixin/moesin (ERM) protein family and participates in cellular functions, such as morphogenesis and motility, by cross-linking between the actin cytoskeleton and plasma membranes. Although moesin seems necessary for tissue construction and repair, its function at the whole body level remains elusive, perhaps because of redundancy among ERM proteins. To determine the role played by moesin in the modulation of pulmonary alveolar structure associated with lung injury and repair, we examined the morphological changes in the lung and the effect of bleomycin-induced lung injury and fibrosis in moesin-deficient (Msn(-/Y)) and control wild-type mice (Msn(+/Y)). Immunohistochemical analysis revealed that moesin was specifically localized in the distal lung epithelium, where ezrin and radixin were faintly detectable in Msn(+/Y) mice. Compared with Msn(+/Y) mice, Msn(-/Y) mice displayed abnormalities of alveolar architecture and, when treated with bleomycin, developed more prominent lung injury and fibrosis and lower body weight and survival rate. Furthermore, Msn(-/Y) mice had abnormal cytokine and chemokine gene expression as shown by real-time PCR. This is the first report of a functional involvement of moesin in the regulation of lung inflammation and repair. Our observations show that moesin critically regulates the preservation of alveolar structure and lung homeostasis.

  17. Enhancement of antioxidant defense system by epigallocatechin-3-gallate during bleomycin induced experimental pulmonary fibrosis.

    PubMed

    Sriram, Narayanan; Kalayarasan, Srinivasan; Sudhandiran, Ganapasam

    2008-07-01

    Oxidative stress resulting from an imbalance between radical-generating and radical scavenging systems plays an important role in the pathogenesis of pulmonary fibrosis. Epigallocatechin-3-gallate (EGCG), a polyphenol and a major component of green tea, possess a potent antioxidant property. This study was designed to evaluate the potential antioxidative activity of EGCG in the plasma and lungs during bleomycin induced experimental pulmonary fibrosis. Intratracheal administration of bleomycin (6.5 U/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) and non-enzymic antioxidants (reduced glutathione, vitamin C, vitamin E and vitamin A). Elevations in lung W/D (wet weight/dry weight) ratio, hydroxyproline content was observed with a synchronized increase in lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides). Intraperitoneal administration of EGCG at a dose of 20 mg/kg body weight significantly improved the body weight, enzymic and non enzymic antioxidants and considerably decreased the W/D ratio, hydroxyproline and lipid peroxidation marker levels. Histological observations also correlated with the biochemical parameters. Thus, this study confirms the beneficial use of EGCG in alleviating the oxidative stress induced during pulmonary fibrosis.

  18. Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis.

    PubMed

    Nagao, Saori; Taguchi, Kazuaki; Sakai, Hiromi; Tanaka, Ryota; Horinouchi, Hirohisa; Watanabe, Hiroshi; Kobayashi, Koichi; Otagiri, Masaki; Maruyama, Toru

    2014-08-01

    Carbon monoxide (CO) has potent anti-inflammatory and anti-oxidant effects. We report herein on the preparation of a nanotechnology-based CO donor, CO-bound hemoglobin-vesicles (CO-HbV). We hypothesized that CO-HbV could have a therapeutic effect on idiopathic pulmonary fibrosis (IPF), an incurable lung fibrosis, that is thought to involve inflammation and the production of reactive oxygen species (ROS). Pulmonary fibril formation and respiratory function were quantitatively evaluated by measuring hydroxyproline levels and forced vital capacity, respectively, using a bleomycin-induced pulmonary fibrosis mice model. CO-HbV suppressed the progression of pulmonary fibril formation and improved respiratory function compared to saline and HbV. The suppressive effect of CO-HbV on pulmonary fibrosis can be attributed to a decrease in ROS generation by inflammatory cells, NADPH oxidase 4 and the production of inflammatory cells, cytokines and transforming growth factor-β in the lung. This is the first demonstration of the inhibitory effect of CO-HbV on the progression of pulmonary fibrosis via the anti-oxidative and anti-inflammatory effects of CO in the bleomycin-induced pulmonary fibrosis mice model. CO-HbV has the potential for use in the treatment of, not only IPF, but also a variety of other ROS and inflammation-related disorders.

  19. Long-term treatment with royal jelly improves bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zargar, Hamid Reza; Hemmati, Ali Asghar; Ghafourian, Mehri; Arzi, Ardeshir; Rezaie, Anahita; Javad-Moosavi, Seyed Ali

    2017-01-01

    This study investigated the anti-fibrotic potential of royal jelly (RJ) powder against bleomycin-induced pulmonary fibrosis in rats. The rats were given RJ orally (25, 50, and 100 mg/kg per day) for 7 consecutive days before the administration of single intratracheal instillation of bleomycin (BLM) at 7.5 IU/kg. RJ doses were continued for 21 days after BLM exposure. Fibrotic changes in the lungs were studied by cell count and analysis of cytokine levels in the bronchoalveolar lavage fluid (BALF), histopathological examination, and assaying oxidative stress biomarkers in lung tissue. The results showed that BLM administration significantly increased the fibrotic changes, collagen content, and levels of malondialdehyde and decreased total thiol and glutathione peroxidase antioxidant contents in the rats' lung tissue. An increase in the level of cell counts and pro-inflammatory and pro-fibrotic cytokines such as TNF-α and TGF-β in BALF was observed. Also, it significantly decreased IFN-γ, an anti-fibrotic cytokine, in BALF. However, RJ (50 and 100 mg/kg) reversed all of these biochemical indices as well as histopathological alterations induced by BLM. The present study demonstrates that RJ, by its antioxidant and anti-inflammatory properties, attenuates oxidative damage and fibrosis induced by BLM.

  20. Effect of a bleomycin derivative on oral carcinoma. A clinical and immunologic study of five cases.

    PubMed

    Sakuda, M; Hiura, S; Usui, M; Sugi, M; Nukata, J; Miyazaki, T

    1980-04-01

    A new bleomycin derivative NK631 was administered in five cases of advanced recurrent oral carcinoma. The visible improvement of the tumor was noted in three cases, and in the cases of lower lip carcinoma the tumor completely disappeared, however, there was no effective change in cases of cervical metastases of the floor of the mouth and tongue carcinoma. The peripheral lymphocyte counts and serum proteins disclosed a characteristic decrease, serum proteins decreased in the albumin fraction and slightly increased in alpha 2-globlin fraction. Main side effects of NK 631 were skin exanthema, alopecia, anorexia, pyrexia, fatigue and bleeding from the tumor lesion. Regarding the lung function, the vital capacity did not change, but PaO and PaCO in blood gas analysis were together observed to slightly decrease, and it may be supposed that the influence of NK631 on the lung function cannot be neglected. T-cell ratio, lymphocyte blastoformation following PHA stimulation, PPD and DNCB skin tests, and phagocytosis test of peripheral leucocytes were studied. The immuno-suppressive effect of KK631 was the same or weak as bleomycin.

  1. Intralesional Bleomycin as an Adjunct Therapeutic Modality in Eyelid and Extraocular Malignancies and Tumors

    PubMed Central

    Meyer, David; Gooding, Caroline

    2015-01-01

    To present our recent experience with intralesional bleomycin (IBI) in nonmelanoma extraocular tumors, and present previous experience on periocular capillary hemangiomas and orbital lymphangiomas in a tertiary referral hospital. This was a retrospective descriptive study of patients with eyelid and extraocular malignancies where conventional therapies failed, or surgery was contraindicated or refused and were offered IBI as an alternate therapy. All patients were recruited from the Oculoplastics Clinic at Tygerberg Academic Hospital, Cape Town, South Africa. A solution containing 1 international unit of bleomycin per milliliter saline was injected intralesionally together with 2% lignocaine in a ratio of 4:1. The injected volume was calculated to be equivalent to the estimated volume of the lesion. A multipuncture technique with a 29-gauge needle was used. Patients requiring retreatment were injected every 4–8 weeks until satisfactory clinical endpoints were achieved. Our previous experience with IBI in extensive capillary hemangiomas and orbital lymphangiomas is reviewed. Cases are presented to illustrate that IBI induced significant regression and reduction in tumor size and marked clinical improvement of the eyelid and orbital basal cell carcinomas, Kaposi sarcoma, and mycosis fungoides. The improvements obviated the need for further surgical intervention in most cases. Based on clinical experience we propose that IBI should be considered a treatment modality in select cases of the malignant eyelid and ophthalmic vascular tumors where the conventional standard of care is not possible. IBI is a reasonable alternative or adjunct to consider in such cases. PMID:26692709

  2. Catalytic site-specific cleavage of a DNA-target by an oligonucleotide carrying bleomycin A5.

    PubMed Central

    Sergeyev, D S; Godovikova, T S; Zarytova, V F

    1995-01-01

    Oligonucleotide reagents have been created which are capable of catalytic site-specific cleavage of DNA-targets. The oligonucleotide reagent Blm-R-pd(CCAAACA) bearing the bleomycin A5 (Blm-RH) residue was used to degrade the DNA-target pd(TGTTTGGCGAAGGA). It has been shown that at equimolar reagent: target concentration the bleomycin oligonucleotide derivative can repeatedly cleave the target at G9, G7, T5, T4 and T3 in site-specific manner. This paper demonstrates that with a 10-fold excess of the DNA-target relative to the reagent 30% degradation of the target was observed primarily at a single position G7. The paper also shows that one reagent molecule containing bleomycin A5 residue was capable to degrade three molecules of the DNA-target. The catalytic activity of Blm-R-pd(CCAAACA) was the highest in the temperature range close to the melting temperature of the reagent-target complex, that is under conditions where the oligonucleotide reagent can form a complementary complex and easily dissociate to interact with the next molecule of the target. The number of target molecules degraded by the bleomycin reagent is limited by the degradation of the antibiotic residue itself. Images PMID:7501462

  3. Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii.

    PubMed

    Dortet, Laurent; Nordmann, Patrice; Poirel, Laurent

    2012-04-01

    The carbapenemase NDM-1 has been identified recently in Enterobacteriaceae and Acinetobacter baumannii as a source of multidrug resistance, including resistance to carbapenems. By analyzing the immediate genetic environment of the bla(NDM-1) carbapenemase gene among a series of NDM-1-producing enterobacterial isolates, a novel gene (ble(MBL), for ble gene associated with the metallo-β-lactamase NDM-1) was identified. The ble(MBL) gene encodes a novel bleomycin resistance protein (BRP), named BRP(MBL), that shares weak similarities with known BRPs (less than 60% amino acid identity). The expression of BRP(MBL) conferred resistance to bleomycin and to bleomycin-like molecules in Enterobacteriaceae and A. baumannii. The bla(NDM-1) and ble(MBL) genes were coexpressed under the control of the same promoter, located upstream of the bla(NDM-1) gene and at the extremity of the insertion sequence ISAba125. Most of the NDM producers possessed the ble(MBL) gene. Although BRP(MBL) did not modify the growth or death rates of Escherichia coli under experimental conditions, it suppressed the mutation rate of hypermutable E. coli and therefore may stabilize the plasmid-borne bla(NDM-1) gene. This study suggests that the emerging carbapenemase NDM-1 is selected by bleomycin-like molecules, and that BRP(MBL) producers (and consequently NDM producers) are better suited to various environments.

  4. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair

    PubMed Central

    Karo-Atar, D; Bordowitz, A; Wand, O; Pasmanik-Chor, M; Fernandez, I E; Itan, M; Frenkel, R; Herbert, D R; Finkelman, F D; Eickelberg, O; Munitz, A

    2016-01-01

    Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1−/− mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis. PMID:26153764

  5. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite.

    PubMed

    Yapislar, Hande; Taskin, Eylem; Ozdas, Sule; Akin, Demet; Sonmez, Emine

    2016-04-01

    Growing evidence has been reported on adriamycin (ADR) hepatotoxicity in literature. Hepatotoxicity caused by the use of drugs has a serious undesirable effect in the cure of cancer patients that needs to be eliminated. The exact mechanism of ADR on non-cancerous tissue still remains to be a mystery. The zeolite (clinoptilolite) minerals form a complex group of aluminosilicates that often occur as accessory minerals in intermediate and basic rocks. In light of this information, we investigated the possible anti-inflammatory and anti-apoptotic effects of clinoptilolite in ADR that is inducing the toxicity in primary liver cell culture. Primary liver cell culture from rat was used in the study. We had three experiment groups including the following: (1) cells treated only with 50 μM ADR for 24 h, (2) cells treated with the 50 μM ADR for 24 h and then treated with 10(-4) M zeolite for 1 h, and (3) cells were incubated with 50 μM ADR for 24 h and then incubated with 10(-4) M zeolite for 24 h to test its long-term effects. After that, western blotting was performed in order to evaluate protein expression levels of several inflammation markers including IL-1β, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB), and immunohistochemistry was carried out to detect apoptosis in liver cell culture. Also, TdT-dUTP Terminal Nick-End Labeling (TUNEL) method was used for detecting apoptosis. We found elevated levels of inflammatory protein and apoptotic markers in ADR-administered cells (p < 0.05). Inflammatory and apoptotic markers decreased significantly after treated with zeolite (p < 0.05). The present study was pointed out that ADR causes hepatotoxicity via apoptosis and/or inflammation processes resulting from initiator NF-κB and TNF which causes proinflammatory mediators such as IL-1β. Elevation of inflammation might give rise to trigger apoptosis. Clinoptilolite counteracted the apoptosis and inflammation induced by ADR arising from the

  6. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-β/β-catenin signaling and epithelial-mesenchymal transition.

    PubMed

    Zhang, Bin; Yang, Yan; Shi, Xiaoting; Liao, Wanyu; Chen, Min; Cheng, Alfred Sze-Lok; Yan, Hongli; Fang, Cheng; Zhang, Shu; Xu, Guifang; Shen, Shanshan; Huang, Shuling; Chen, Guangxia; Lv, Ying; Ling, Tingsheng; Zhang, Xiaoqi; Wang, Lei; Zhuge, Yuzheng; Zou, Xiaoping

    2015-01-28

    The effect of proton pump inhibitor (PPI) on cancer risk has received much attention recently. In this study, we investigated the mechanism underlying multidrug resistance and the effect of a PPI pantoprazole using an adriamycin-resistant gastric cancer cell model (SGC7901/ADR). Compared with the parental cell line, SGC7901/ADR cells showed reduced proliferation rate, but higher resistance to adriamycin under both anchorage-dependent and -independent conditions. Notably, SGC7901/ADR cells underwent epithelial to mesenchymal transition (EMT) and showed increased migrating and invading capabilities. At molecular level, SGC7901/ADR cells showed strong activation of Wnt/β-catenin signaling pathway compared with parental sensitive cells. Interestingly, we found that a PPI pantoprazole can effectively reverse the aggressiveness and EMT marker expression of SGC7901/ADR cells. Furthermore, pantoprazole treatment resulted in a profound reduction of both total and phosphorylated forms of Akt and GSK-3β, which in turn suppressed the adriamycin-induced Wnt/β-catenin signaling in SGC7901/ADR cells. Taken together, we demonstrate that the aggressive phenotype of adriamycin-resistant SGC7901/ADR cells is mediated by induction of EMT and activation of the canonical Wnt/β-catenin signaling pathway. And for the first time, we show that it is possible to suppress the invasiveness of SGC7901/ADR cells by pantoprazole which targets the EMT and Akt/GSK-3β/β-catenin signaling.

  7. Compartmental stress responses correlate with cell survival in bystander effects induced by the DNA damage agent, bleomycin.

    PubMed

    Savu, Diana; Petcu, Ileana; Temelie, Mihaela; Mustaciosu, Cosmin; Moisoi, Nicoleta

    2015-01-01

    Physical or chemical stress applied to a cell system trigger a signal cascade that is transmitted to the neighboring cell population in a process known as bystander effect. Despite its wide occurrence in biological systems this phenomenon is mainly documented in cancer treatments. Thus understanding whether the bystander effect acts as an adaptive priming element for the neighboring cells or a sensitization factor is critical in designing treatment strategies. Here we characterize the bystander effects induced by bleomycin, a DNA-damaging agent, and compartmental stress responses associated with this phenomenon. Mouse fibroblasts were treated with increasing concentrations of bleomycin and assessed for DNA damage, cell death and induction of compartmental stress response (endoplasmic reticulum, mitochondrial and cytoplasmic stress). Preconditioned media were used to analyze bystander damage using the same end-points. Bleomycin induced bystander response was reflected primarily in increased DNA damage. This was dependent on the concentration of bleomycin and time of media conditioning. Interestingly, we found that ROS but not NO are involved in the transmission of the bystander effect. Consistent transcriptional down-regulation of the stress response factors tested (i.e. BiP, mtHsp60, Hsp70) occurred in the direct effect indicating that bleomycin might induce an arrest of transcription correlated with decreased survival. We observed the opposite trend in the bystander effect, with specific stress markers appearing increased and correlated with increased survival. These data shed new light on the potential role of stress pathways activation in bystander effects and their putative impact on the pro-survival pro-death balance.

  8. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin.

    PubMed

    Guzy, Robert D; Stoilov, Ivan; Elton, Timothy J; Mecham, Robert P; Ornitz, David M

    2015-01-01

    The pathogenesis of pulmonary fibrosis involves lung epithelial injury and aberrant proliferation of fibroblasts, and results in progressive pulmonary scarring and declining lung function. In vitro, fibroblast growth factor (FGF) 2 promotes myofibroblast differentiation and proliferation in cooperation with the profibrotic growth factor, transforming growth factor-β1, but the in vivo requirement for FGF2 in the development of pulmonary fibrosis is not known. The bleomycin model of lung injury and pulmonary fibrosis was applied to Fgf2 knockout (Fgf2(-/-)) and littermate control mice. Weight loss, mortality, pulmonary fibrosis, and histology were analyzed after a single intranasal dose of bleomycin. Inflammation was evaluated in bronchoalveolar lavage (BAL) fluid, and epithelial barrier integrity was assessed by measuring BAL protein and Evans Blue dye permeability. Fgf2 is expressed in mouse and human lung epithelial and inflammatory cells, and, in response to bleomycin, Fgf2(-/-) mice have significantly increased mortality and weight loss. Analysis of BAL fluid and histology show that pulmonary fibrosis is unaltered, but Fgf2(-/-) mice fail to efficiently resolve inflammation, have increased BAL cellularity, and, importantly, deficient recovery of epithelial integrity. Fgf2(-/-) mice similarly have deficient recovery of club cell secretory protein(+) bronchial epithelium in response to naphthalene. We conclude that FGF2 is not required for bleomycin-induced pulmonary fibrosis, but rather is essential for epithelial repair and maintaining epithelial integrity after bleomycin-induced lung injury in mice. These data identify that FGF2 acts as a protective growth factor after lung epithelial injury, and call into question the role of FGF2 as a profibrotic growth factor in vivo.

  9. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage.

    PubMed

    Garcia, Orquidea; Carraro, Gianni; Turcatel, Gianluca; Hall, Marisa; Sedrakyan, Sargis; Roche, Tyler; Buckley, Sue; Driscoll, Barbara; Perin, Laura; Warburton, David

    2013-01-01

    The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.

  10. Targeting the hedgehog-glioma-associated oncogene homolog pathway inhibits bleomycin-induced lung fibrosis in mice.

    PubMed

    Moshai, Elika Farrokhi; Wémeau-Stervinou, Lidwine; Cigna, Natacha; Brayer, Stephanie; Sommé, Joëlle Marchal; Crestani, Bruno; Mailleux, Arnaud A

    2014-07-01

    Idiopathic pulmonary fibrosis has been associated with the reactivation of developmental pathways, notably the Hedgehog-Glioma-associated oncogene homolog (GLI) pathway. In this study, we determined whether the Hedgehog pathway was activated in bleomycin-induced lung injury in mice, and whether targeting the Hedgehog-Gli pathway could decrease bleomycin-induced lung fibrosis. After intratracheal injection of bleomycin on Day 0, C57Bl6 mice received GDC-0449 (an inhibitor of Smoothened, the transducer of the pathway), or 2,2'-[[Dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N dimethylbenzenamine (GANT61; an inhibitor of GLI transcription factors in the nucleus), from Day 7 to Day 13. At Day 14, whole-lung homogenates were obtained for morphological analysis, assessment of cell apoptosis and proliferation, collagen quantification, and evaluation of profibrotic (transforming growth factor-β, connective tissue growth factor, plasminogen activator inhibitor 1, vascular endothelial growth factor-A) and proinflammatory mediators (IL-1β) expression. We showed that the Hedgehog pathway was activated in bleomycin-induced lung fibrosis on Day 14 after injury, with an increased lung expression of the ligand, Sonic Hedgehog, and with increased messenger RNA expression and nuclear localization of GLI1 and GLI2. Inhibition of Smoothened with GDC-0449 did not influence the development of bleomycin-induced lung fibrosis. By contrast, the inhibition of GLI activity with GANT61 decreased lung fibrosis and lung collagen accumulation, and promoted an antifibrotic and anti-inflammatory environment. Our results identify the hedgehog-Gli pathway as a profibrotic pathway in experimental fibrosis. Inhibition of the Hedgehog-Gli pathway at the level of GLI transcriptional activity could be a therapeutic option in fibrotic lung diseases.

  11. The anti-tumor drug bleomycin preferentially cleaves at the transcription start sites of actively transcribed genes in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Galea, Anne M

    2014-04-01

    The genome-wide pattern of DNA cleavage at transcription start sites (TSSs) for the anti-tumor drug bleomycin was examined in human HeLa cells using next-generation DNA sequencing. It was found that actively transcribed genes were preferentially cleaved compared with non-transcribed genes. The 143,600 identified human TSSs were split into non-transcribed genes (82,596) and transcribed genes (61,004) for HeLa cells. These transcribed genes were further split into quintiles of 12,201 genes comprising the top 20, 20-40, 40-60, 60-80, and 80-100 % of expressed genes. The bleomycin cleavage pattern at highly transcribed gene TSSs was greatly enhanced compared with purified DNA and non-transcribed gene TSSs. The top 20 and 20-40 % quintiles had a very similar enhanced cleavage pattern, the 40-60 % quintile was intermediate, while the 60-80 and 80-100 % quintiles were close to the non-transcribed and purified DNA profiles. The pattern of bleomycin enhanced cleavage had peaks that were approximately 200 bp apart, and this indicated that bleomycin was identifying the presence of phased nucleosomes at TSSs. Hence bleomycin can be utilized to detect chromatin structures that are present at actively transcribed genes. In this study, for the first time, the pattern of DNA damage by a clinically utilized cancer chemotherapeutic agent was performed on a human genome-wide scale at the nucleotide level.

  12. The Antioxidative Effect of Chamomile, Anthocyanoside and their Combination on Bleomycin-induced Pulmonary Fibrosis in Rat

    PubMed Central

    Javadi, Iraj; Emami, SeyedAlireza

    2015-01-01

    Introduction: Bleomycin is a small peptide with 1500Daltun of molecular weight which has two junction areas in two molecule’s opposite sides, one of them to relate to the DNA and the other to relate to the iron. Iron is a crucially important factor in free radical production and cytotoxic activity of bleomycin. Material and methods: The study attempts to study, and compare, the effect of using Chamomile, Anthocyanoside and their combination, as anti-inflammatory agent to ameliorates, to prevent or control the development of fibrosis due to Bleomycin (BLM). to prepare pulmonary fibrosis model, male Wistar rats weighting 180-220g were assigned to specific groups Rats of each group received intratracheally 1U/100 g of BLM. 20 rats were divided to five comparable groups, as(1) BLM group, (2) saline group, (3) Chamomile group, (4) Anthocyanoside group, (5) combination of Anthocyanoside and Chamomile group. Antioxidative combinations were given as pretreatment and treatment after the rats received Bleomycine. Results: After 3 week, Malondialdehyde (MDA)was measured for each rat’s lung. After three weeks, MDA was reduced, compared to BLM group, to 44.27%, 37.80% and 46.07% in Anthocyanoside, Chamomiland combination group, respectively. It was concluded from the present study that administration of combination of Chamomile and Anthocyanoside lead to a significant reduction in Bleomycin-induced MDA. Conclusion: The mechanism of the effect of these combinations is possibly the result of phenolic combinations as antioxidant and oxy free radical scavenger and inhibitor of lipid peroxidation. PMID:26543307

  13. Long-term results and competing risk analysis of the H89 trial in patients with advanced-stage Hodgkin lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte (GELA).

    PubMed

    Fermé, Christophe; Mounier, Nicolas; Casasnovas, Olivier; Brice, Pauline; Divine, Marine; Sonet, Anne; Bouafia, Fahdela; Bastard-Stamatoullas, Aspasia; Bordessoule, Dominique; Voillat, Laurent; Reman, Oumedaly; Blanc, Michel; Gisselbrecht, Christian

    2006-06-15

    From 1989 to 1996, 533 eligible patients with stage IIIB/IV Hodgkin lymphoma (HL) were randomly assigned to receive 6 cycles of hybrid MOPP/ABV (mechlorethamine, vincristine, procarbazine, prednisone/Adriamycin [doxorubicin], bleomycin, vinblastine; n = 266) or ABVPP (doxorubicin, bleomycin, vinblastine, procarbazine, prednisone; n = 267). Patients in complete remission (CR) or partial response of at least 75% after 6 cycles received 2 cycles of consolidation chemotherapy (CT) (n = 208) or subtotal nodal irradiation (RT) (n = 210). A better survival probability was observed after ABVPP alone: the 10-year overall survival (OS) estimates were 90% for ABVPP x 8, 78% for MOPP/ABV x 8, 82% for MOPP/ABV with RT, and 77% for ABVPP x 6 with RT (P = .03); and the 10-year disease-free survival (DFS) estimates were 70%, 76%, 79%, and 76%, respectively (P = .09). The 10-year DFS estimates for patients treated with consolidation CT or RT were 73% and 78% (P = .07), and OS estimates were 84% and 79%, respectively (P = .29). These results showed that RT was not superior to consolidation CT after a doxorubicin-induced CR in patients with advanced HL. An analysis of competing risks identified age more than 45 years as a significant risk factor for death, relapse, and second cancers. Prospective evaluation of late adverse events may improve the management of patients with HL.

  14. Influence of colchicine and vinblastine on the intracellular migration of secretory and membrane glycoproteins: II. Inhibition of secretion of thyroglobulin in rat thyroid follicular cells as visualized by radioautography after 3H-fucose injection

    SciTech Connect

    Wild, G.; Bennett, G.

    1984-08-01

    Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In thyroid follicular cells of control animals, at this time interval, 57% of the total label was associated with colloid and secretory vesicles in the apical cytoplasm while 27% was localized in the Golgi apparatus and neighboring vesicles. In experimental animals, the proportion of label in colloid and apical vesicles was reduced by more than 69% after colchicine and more than 83% after vinblastine treatment. The proportion of label in the Golgi region, on the other hand, increased by more than 125% after colchicine and more than 179% after vinblastine treatment. Within the Golgi region, the great majority of the label was associated with secretory vesicles which accumulated adjacent to the trans face of the Golgi stacks. It is concluded that the drugs do not interfere with passage of newly synthesized thyroglobulin from the Golgi saccules to nearby secretory vesicles, but do inhibit intracellular migration of these vesicles to the cell apex. In most cells the number of vesicles in the apical cytoplasm diminished, but this was not always the case, suggesting that exocytosis may also be partially inhibited. The loss of microtubules in drug-treated cells suggests that the microtubules may be necessary for intracellular transport of thyroglobulin.

  15. Influence of colchicine and vinblastine on the intracellular migration of secretory and membrane glycoproteins: I. Inhibition of glycoprotein migration in various rat cell types as shown by light microscope radioautography after injection of 3H-fucose

    SciTech Connect

    Bennett, G.; Parsons, S.; Carlet, E.

    1984-08-01

    Previous studies have shown that colchicine and vinblastine inhibit secretion in many cell types by interrupting the normal intracellular migration of secretory products. In the present work, radioautography has been used to study the effects of these drugs on migration of membrane and secretory glycoproteins in a variety of cell types. Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for light microscope radioautography. Examination of secretory cell types such as ameloblasts and thyroid follicular cells in control animals revealed reactions of approximately equal intensity over the Golgi region and over extracellular secretion products, while in drug-treated rats most of the reaction was confined to the Golgi region. In a variety of other cell types, including endocrine cells (e.g., hepatocytes) and cells generally considered as nonsecretory (e.g., intestinal columnar cells), reaction in control animals occurred both over the Golgi region and over various portions of the cell surface. In drug-treated animals, a strong Golgi reaction was present, but reaction over the cell surface was weak or absent. These results indicate that in many cell types, colchicine and vinblastine inhibit migration out of the Golgi region not only of secretory glycoproteins, but also of membrane glycoproteins destined for the plasma membrane.

  16. Phosphodiesterase-5 inhibition by sildenafil citrate in a rat model of bleomycin-induced lung fibrosis.

    PubMed

    Yildirim, Alper; Ersoy, Yasemin; Ercan, Feriha; Atukeren, Pinar; Gumustas, Koray; Uslu, Unal; Alican, Inci

    2010-06-01

    Sildenafil, a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE)5, has a relaxant effect on the smooth muscle cells of the arterioles supplying the human corpus cavernosum acting via nitric oxide (NO)-dependent mechanism. This study aimed to investigate the possible protective effect of sildenafil citrate on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of bleomycin-induced lung fibrosis. Lung fibrosis was induced by intratracheal administration of 0.1 ml of bleomycin hydrochloride (5 mg/kg in 0.9% NaCl) under anesthesia to Sprague-Dawley rats (200-250 g; n = 7-8 per group). Control rats received an equal volume of saline intratracheally. In the treatment groups, the rats were treated with either sildenafil citrate (10 mg/kg per day; subcutaneously) or saline for 14 days. Another group of rats were administered subcutaneously with N(G)-nitro-l-arginine methyl ester (l-NAME; 20 mg/kg in 0.9% NaCl) 5 min after sildenafil injections. After decapitation, the lungs were excised and taken for microscopic evaluation or stored for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity, and for the assessment of apoptosis. Trunk blood was collected for the assessment of serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta levels. In the group with lung fibrosis, the lung tissue was characterized by microscopic lesions, increased lipid peroxidation with a concomitant reduction in GSH content, increased MPO activity and apoptosis. Serum TNF-alpha and IL-1beta levels were higher in the lung fibrosis group compared to control values. Sildenafil reversed tissue MDA levels, MPO activity and serum pro-inflammatory cytokine levels, and preserved GSH content although its effect on the extent of tissue lesion and apoptosis was not statistically significant. Treatment with l-NAME reversed

  17. Prevention of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice by Paeonol

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Ko, Hsin-Kuo; Perng, Diahn-Warng; Lee, Tzong-Shyuan; Kou, Yu Ru

    2017-01-01

    Pulmonary fibrosis is a severe and progressive disease that is characterized by an abnormal deposition of extracellular matrix, such as collagens. The pathogenesis of this disease may be initiated by oxidative damage of lung epithelial cells by fibrogenic stimuli, leading to lung inflammation, which in turn promotes various lung fibrotic responses. The profibrogenic effect of transforming growth factor-β1 (TGF-β1) on lung fibroblasts is crucial for the pathogenesis of this disease. Paeonol, the main phenolic compound present in the Chinese herb Paeonia suffruticosa, has antioxidant and anti-inflammatory properties. However, whether paeonol has therapeutic effects against pulmonary fibrosis remains unclear. Using a murine model, we showed that 21 days after the insult, intratracheal bleomycin caused pulmonary inflammation and fibrosis, as evidenced by lung histopathological manifestations and increase in various indices. The inflammatory indices included an increase in total cell count, differential cell count, and total protein concentration in bronchoalveolar lavage fluid. The fibrotic indices included an increase in lung levels of TGF-β1, total collagen, type 1α1 collagen (COL1A1), and α-smooth muscle actin (α-SMA; a marker of myofibroblasts). Bleomycin also was found to cause an increase in oxidative stress as reflected by increased levels of malondialdehyde and 4-hydroxynonenal in the lungs. Importantly, all these pathophysiological events were suppressed by daily treatment with paeonol. Using human lung fibroblasts, we further demonstrated that exposure of human lung fibroblasts to TGF-β1 increased productions of α-SMA and COL1A1, both of which were inhibited by inhibitors of Jun N-terminal kinase (JNK), p38, and Smad3. JNK and p38 are two subfamily members of mitogen-activated protein kinases (MAPKs), whereas Smad3 is a transcription factor. TGF-β1 exposure also increased the phosphorylation of JNK, p38, and Smad3 prior to the induction of α-SMA and

  18. Modulation of Bleomycin-Induced Lung Fibrosis by Pegylated Hyaluronidase and Dopamine Receptor Antagonist in Mice

    PubMed Central

    Pershina, Olga Victorovna; Reztsova, Alena Mikhaylovna; Ermakova, Natalia Nikolaevna; Khmelevskaya, Ekaterina Sergeevna; Krupin, Vycheslav Andreevich; Stepanova, Inna Ernestovna; Artamonov, Andrew Vladimirovich; Bekarev, Andrew Alexandrovich; Madonov, Pavel Gennadjevich

    2015-01-01

    Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA). To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL) by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL). Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF)-β, interleukin (IL)-1β, tumor necrosis factor (TNF)-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen) in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒CD34‒CD45‒CD44+CD73+CD90+CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan matrix can be considered

  19. Diversity oriented synthesis of a vinblastine-templated library of 7-aryl-octahydroazonino[5,4-b]indoles via a three-component reaction.

    PubMed

    Fokas, Demosthenes; Kaselj, Mira; Isome, Yuko; Wang, Zhimin

    2013-01-14

    A vinblastine-templated library of 7-aryl-octahydroazonino[5,4-b]indoles was prepared by a three-component reaction from indolizino[8,7-b]indoles, chloroformates, and activated arenes via a chloroformate mediated fragmentation of the indolizinoindole nucleus followed by insertion of an activated arene. In addition to N3-carbamoyl-7-aryl-octahydroazonino[5,4-b]indoles prepared in one step, a wide range of N3-substituted substrates were synthesized in one pot via the derivatization of a versatile N3-H-azonino[5,4-b]indole intermediate generated in situ by application of the same strategy. A subset of 308 compounds out of a virtual library of 3216, representing 13 different chemotypes, was prepared by high throughput solution-phase synthesis and subsequently purified by mass-triggered high performance liquid chromatography (HPLC). A total of 188 compounds with a minimum purity of 80% by UV214 nm and 85% by evaporative light scattering detection (ELSD) was isolated for primary screening.

  20. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: effects of SOM230.

    PubMed

    Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau

    2014-06-15

    Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis.

  1. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation.

    PubMed

    Cheng, Tao; Liu, Qingbo; Zhang, Rui; Zhang, Ying; Chen, Jianfeng; Yu, Ronghuan; Ge, Gaoxiang

    2014-12-01

    Enzymes involved in collagen biosynthesis, including lysyl oxidase (LOX), have been proposed as potential therapeutic targets for idiopathic pulmonary fibrosis. LOX expression is significantly upregulated in bleomycin (BLM)-induced lung fibrosis, and knockdown of LOX expression or inhibition of LOX activity alleviates the lung fibrosis. Unexpectedly, treatment of the mice with LOX inhibitor at the inflammatory stage, but not the fibrogenic stage, efficiently reduces collagen deposition and normalizes lung architecture. Inhibition of LOX impairs inflammatory cell infiltration, TGF-β signaling, and myofibroblast accumulation. Furthermore, ectopic expression of LOX sensitizes the fibrosis-resistant Balb/c mice to BLM-induced inflammation and lung fibrosis. These results suggest that LOX is indispensable for the progression of BLM-induced experimental lung fibrosis by aggravating the inflammatory response and subsequent fibrosis process after lung injury.

  2. The Chinese Herbal Medicine Formula mKG Suppresses Pulmonary Fibrosis of Mice Induced by Bleomycin.

    PubMed

    Gao, Ying; Yao, Li-Fu; Zhao, Yang; Wei, Li-Man; Guo, Peng; Yu, Meng; Cao, Bo; Li, Tan; Chen, Hong; Zou, Zhong-Mei

    2016-02-15

    Pulmonary fibrosis (PF) is a serious progressive lung disease and it originates from inflammation-induced parenchymal injury with excessive extracellular matrix deposition to result in the destruction of the normal lung architecture. Modified Kushen Gancao Formula (mKG), derived from traditional Chinese herbal medicine, has a prominent anti-inflammatory effect. The present study is to explore the inhibitory effects of mKG on bleomycin (BLM)-induced pulmonary fibrosis in mice. mKG significantly decreased pulmonary alveolitis, fibrosis scores, and interleukin-6 (IL-6), interleukin-17 (IL-17), transforming growth factor-β (TGF-β) and hydroxyproline (HYP) levels in lung tissue of mice compared with BLM treatment. It markedly alleviated the increase of HYP content in the lung tissues and pathologic changes of pulmonary fibrosis caused by BLM instillation. In conclusion, mKG has an anti-fibrotic effect and might be employed as a therapeutic candidate agent for attenuating pulmonary fibrosis.

  3. Heterologous Matrix Metalloproteinase Gene Promoter Activity Allows In Vivo Real-time Imaging of Bleomycin-Induced Lung Fibrosis in Transiently Transgenized Mice

    PubMed Central

    Stellari, Fabio Franco; Ruscitti, Francesca; Pompilio, Daniela; Ravanetti, Francesca; Tebaldi, Giulia; Macchi, Francesca; Verna, Andrea Elizabeth; Villetti, Gino; Donofrio, Gaetano

    2017-01-01

    Idiopathic pulmonary fibrosis is a very common interstitial lung disease derived from chronic inflammatory insults, characterized by massive scar tissue deposition that causes the progressive loss of lung function and subsequent death for respiratory failure. Bleomycin is used as the standard agent to induce experimental pulmonary fibrosis in animal models for the study of its pathogenesis. However, to visualize the establishment of lung fibrosis after treatment, the animal sacrifice is necessary. Thus, the aim of this study was to avoid this limitation by using an innovative approach based on a double bleomycin treatment protocol, along with the in vivo images analysis of bleomycin-treated mice. A reporter gene construct, containing the luciferase open reading frame under the matrix metalloproteinase-1 promoter control region, was tested on double bleomycin-treated mice to investigate, in real time, the correlation between bleomycin treatment, inflammation, tissue remodeling and fibrosis. Bioluminescence emitted by the lungs of bleomycin-treated mice, corroborated by fluorescent molecular tomography, successfully allowed real time monitoring of fibrosis establishment. The reporter gene technology experienced in this work could represent an advanced functional approach for real time non-invasive assessment of disease evolution during therapy, in a reliable and translational living animal model. PMID:28298912

  4. Crystal structure of DNA-bound Co(III)·bleomycin B[subscript 2]: Insights on intercalation and minor groove binding

    SciTech Connect

    Goodwin, Kristie D.; Lewis, Mark A.; Long, Eric C.; Georgiadis, Millie M.

    2008-07-21

    Bleomycins constitute a widely studied class of complex DNA cleaving natural products that are used to treat various cancers. Since their first isolation, the bleomycins have provided a paradigm for the development and discovery of additional DNA-cleaving chemotherapeutic agents. The bleomycins consist of a disaccharide-modified metal-binding domain connected to a bithiazole/C-terminal tail via a methylvalerate-Thr linker and induce DNA damage after oxygen activation through site-selective cleavage of duplex DNA at 5'-GT/C sites. Here, we present crystal structures of two different 5'-GT containing oligonucleotides in both the presence and absence of bound Co(III){center_dot}bleomycin B2. Several findings from our studies impact the current view of bleomycin binding to DNA. First, we report that the bithiazole intercalates in two distinct modes and can do so independently of well ordered minor groove binding of the metal binding/disaccharide domains. Second, the Co(III)-coordinating equatorial ligands in our structure include the imidazole, histidine amide, pyrimidine N1, and the secondary amine of the {beta} aminoalanine, whereas the primary amine acts as an axial ligand. Third, minor groove binding of Co(III){center_dot}bleomycin involves direct hydrogen bonding interactions of the metal binding domain and disaccharide with the DNA. Finally, modeling of a hydroperoxide ligand coordinated to Co(III) suggests that it is ideally positioned for initiation of C4'-H abstraction.

  5. Characterization of repair of bleomycin-induced DNA damage in human chromatin

    SciTech Connect

    Sidik, K.

    1989-01-01

    The characteristics of bleomycin-induced DNA damage and repair in intact human fibroblasts, and in fibroblasts that were reversibly permeabilized by short exposure to lysophosphatidylcholine (LPC), were examined. LPC treatment dramatically increases the dose effectiveness of bleomycin (BLM). Sufficient levels of single- and double-strand breaks were introduced into the DNA of permeabilized cells to yield a nucleosomal DNA pattern. We demonstrated that BLM is a short patch agent, since excision repair of BLM induced strand breaks involved the removal and reinsertion of less than 10 bases, as compared to >20 bases for long patch agents (e.g., UV radiation and bulky chemicals). Measurements of the initial nuclease sensitivity and subsequent nucleosome rearrangement of newly repaired regions of chromatin in intact and permeabilized cells following treatment with BLM were done in the presence and absence of aphidicolin (APC), an inhibitor of polymerase {alpha}. In intact cells, nucleosome rearrangement was not observed in the presence of APC. In the absence of APC, nucleosome rearrangement was also not observed if hydroxyurea (HU) was present after the insertion of repair patches (chased). If HU was absent during the chase period, rearrangement of chromatin structure at repair sites was observed. However, the rate of rearrangement was considerably slower than that observed for repair of long-patch agents. The slow rate of nucleosome rearrangement was also observed during repair induced by 1 {mu}g/ml BLM in the permeabilized cells. However, when higher concentrations of BLM were used, the rapid phase of nucleosome rearrangement was observed in permeabilized cells indicating nucleosome unfolding had taken place. These results suggest that, unlike long patch repair, significant nucleosome rearrangement does not occur during short-patch repair when the lesions are located primarily in linker regions of nucleosomes.

  6. Protective effect of dexpanthenol on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Ermis, Hilal; Parlakpinar, Hakan; Gulbas, Gazi; Vardi, Nigar; Polat, Alaadin; Cetin, Asli; Kilic, Talat; Aytemur, Zeynep Ayfer

    2013-12-01

    Despite extensive studies, there is no effective treatment currently available other than pirfenidone for idiopathic pulmonary fibrosis. A protective effect of pantothenic acid and its derivatives on cell damage produced by oxygen radicals has been reported, but it has not been tested in bleomycin (BLM)--induced pulmonary fibrosis in rats. Therefore, we aimed to investigate the preventive effect of dexpanthenol (Dxp) on pulmonary fibrosis. Thirty-two rats were assigned to four groups as follows: (1) control group, (2) dexpanthenol (Dxp) group; 500 mg/kg Dxp continued intraperitoneally for 14 days, (3) bleomycin (BLM) group; a single intratracheal injection of BLM (2.5 mg/kg body weight in 0.25-ml phosphate buffered saline), and (4) BLM + Dxp-treated group; 500 mg/kg Dxp was administered 1 h before the intratracheal BLM injection and continued for 14 days i.p. The histopathological grades of lung inflammation and collagen deposition, tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and myeloperoxidase (MPO) were measured. BLM provoked inflammation and collagen deposition (p < 0.0001), with a marked increase in myeloperoxidase (MPO) activity resembling increased inflammatory activity (p < 0.0001), which was prevented by Dxp (p < 0.0001, p = 0.02). BLM reduced tissue activities of SOD, GPx, and CAT compared to controls (p = 0.01, 0.03, 0.009). MDA was increased with BLM (p = 0.003). SOD (p = 0.001) and MDA (p = 0.016) levels were improved in group 4. The CAT levels in the BLM + Dxp group were close to those in the control group (p > 0.05). We showed that Dxp significantly prevents BLM-induced lung fibrosis in rats. Further studies are required to evaluate the role of Dxp in the treatment of lung fibrosis.

  7. Minimally Invasive Treatment of Giant Haemangiomas of the Liver: Embolisation With Bleomycin

    SciTech Connect

    Bozkaya, Halil Cinar, Celal; Besir, Fahri Halit; Parıldar, Mustafa Oran, Ismail

    2013-04-12

    PurposeThe management of patients with giant haemangioma of the liver remains controversial. Although the usual treatment method for symptomatic giant haemangioma is surgery, the classical paradigm of operative resection remains. In this study, we evaluated the symptomatic improvement and size-reduction effect of embolisation with bleomycin mixed with lipiodol for the treatment of symptomatic giant hepatic haemangioma.MethodsThis study included 26 patients [21 female, five male; age 41–65 years (mean 49.83 ± 1.53)] with symptomatic giant haemangioma unfit for surgery and treated with selective embolisation by bleomycin mixed with lipiodol. The patients were followed-up (mean 7.4 ± 0.81 months) clinically and using imaging methods. Statistical analysis was performed using SPSS version 16.0, and p < 0.05 was considered to indicate statistical significance.ResultsEmbolisation of 32 lesions in 26 patients was performed. The mean volume of the haemangiomas was 446.28 ± 88 cm{sup 3} (range 3.39–1559 cm{sup 3}) before intervention and 244.43 ± 54.38 cm{sup 3} (range 94–967 cm{sup 3}) after intervention. No mortality or morbidity related to the treatment was identified. Symptomatic improvement was observed in all patients, and significant volume reduction was achieved (p = 0.001).ConclusionThe morbidity of surgical treatment in patients with giant liver hemangioma were similar to those obtained in patients followed-up without treatment. Therefore, follow-up without treatment is preferred in most patients. Thus, minimally invasive embolisation is an alternative and effective treatment for giant symptomatic haemangioma of the liver.

  8. Inhibitory effect of emodin on bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Chen, Xiao-Hong; Sun, Ren-Shan; Hu, Jian-Ming; Mo, Zi-Yao; Yang, Zi-Feng; Jin, Guang-Yao; Guan, Wen-Da; Zhong, Nan-Shan

    2009-02-01

    1. Currently, there is no satisfactory treatment for pulmonary fibrosis. Emodin, a component in Chinese herbs, has been shown to have an antifibrotic effect on pancreatic fibrosis and liver fibrosis. In the present study, we tested the hypothesis that emodin may attenuate the development of pulmonary fibrosis. 2. Mice were randomly divided into five groups (n = 16 in each). One group was a control group; the remaining four groups were treated with intratracheal instillation of 3 mg/kg bleomycin (BLM). The following day, emodin (5, 10 or 20 mg/kg per day, p.o.) treatment was started for three of the BLM-treated groups and was continued for 21 days. The fourth BLM-treated group (and the control group) received daily 0.5% sodium carboxymethyl cellulose (placebo) by gavage over the same period. 3. Bleomycin challenge provoked severe pulmonary fibrosis, with marked increases in fibrosis fraction, hydroxyproline content and myeloperoxidase activity in lung tissue. Emodin treatment (10 and 20 mg/kg per day, p.o.) attenuated all these biochemical indices, as well as histopathological alterations induced by BLM. Furthermore, in mice injected with BLM, elevated levels of transforming growth factor-beta1, interleukin (IL)-4 and IL-13 were found in bronchoalveolar lavage fluid. These increases were significantly inhibited by 10 and 20 mg/kg per day emodin. 4. In cell culture, exposure of cells to 6.25, 12.5, 25 or 50 micromol/L emodin for 24 h decreased fibroblast proliferation. Treatment of cells with the same concentrations of emodin for 72 h decreased collagen production by fibroblasts. In addition, emodin (6.25, 12.5, 25 or 50 micromol/L) inhibited the steady state expression of alpha1 (I) procollagen and alpha2 (I) procollagen mRNA in a dose-dependent manner. 5. The results of the present study suggest that emodin may be effective in the treatment of pulmonary fibrosis.

  9. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury.

    PubMed

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D; Mitra, Sumegha; Desai, Ankit A; Weichselbaum, Ralph R; Garcia, Joe G N; Jacobson, Jeffrey R

    2015-12-15

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.

  10. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury

    PubMed Central

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D.; Mitra, Sumegha; Desai, Ankit A.; Weichselbaum, Ralph R.; Garcia, Joe G. N.

    2015-01-01

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a−/−) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a−/− mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt+/− mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a−/− mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a−/− mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically. PMID:26498248

  11. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    PubMed

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  12. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Wu, Yue-Han; Li, Xiao-Hui; Li, Dai; Du, Jie; Hu, Chang-Ping; Li, Yuan-Jian

    2015-02-15

    Eukaryotic translation initiation factor 3a (eIF3a) is a multifunctional protein and plays an important role in regulation of cellular function including proliferation and differentiation. In the present study, we tested the function of eIF3a in pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Primary pulmonary fibroblasts were cultured for proliferation investigation by BrdU incorporation method and flow cytometry. The expression/level of eIF3a, TGF-β1, ERK1/2 and α-SMA were analyzed by ELISA, real-time PCR or western blot. Results showed that the expression of eIF3a was obviously increased in lungs of pulmonary fibrosis rats accompanied by up-regulation of α-SMA and collagens. In cultured pulmonary fibroblasts, application of exogenous TGF-β1 induced cell proliferation and differentiation concomitantly with up-regulation of eIF3a expression and ERK1/2 phosphorylation. The effects of TGF-β1-induced proliferation of fibroblasts and up-regulation of α-SMA were abolished by eIF3a siRNA. TGF-β1-induced eIF3a expression was reversed in the presence of PD98059, an inhibitor of ERK1/2. These findings suggest that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis by regulating pulmonary fibroblasts׳ function, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway.

  13. Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models.

    PubMed

    Lieber, Gissela B; Fernandez, Xiomara; Mingo, Garfield G; Jia, Yanlin; Caniga, Michael; Gil, Malgorzata A; Keshwani, Shanil; Woodhouse, Janice D; Cicmil, Milenko; Moy, Lily Y; Kelly, Nancy; Jimenez, Johanna; Crawley, Yvette; Anthes, John C; Klappenbach, Joel; Ma, Yu-Lu; McLeod, Robbie L

    2013-10-15

    Accumulating evidence indicates protective actions of mineralocorticoid antagonists (MR antagonists) on cardiovascular pathology, which includes blunting vascular inflammation and myocardial fibrosis. We examined the anti-inflammatory and anti-fibrotic potential of MR antagonists in rodent respiratory models. In an ovalbumin allergic and challenged Brown Norway rat model, the total cell count in nasal lavage was 29,348 ± 5451, which was blocked by spironolactone (0.3-60 mg/kg, p.o.) and eplerenone (0.3-30 mg/kg, p.o.). We also found that MR antagonists attenuated pulmonary inflammation in the Brown Norway rat. A series of experiments were conducted to determine the actions of MR blockade in acute/chronic lung injury models. (1) Ex vivo lung slice rat experiments found that eplerenone (0.01 and 10 µM) and spironolactone (10 µM) diminished lung hydroxyproline concentrations by 55 ± 5, 122 ± 9, and 83 ± 8%. (2) In in vivo studies, MR antagonists attenuated the increases in bronchioalveolar lavage (BAL) neutrophils and macrophages caused by lung bleomycin exposure. In separate studies, bleomycin (4.0 U/kg, i.t.) increased lung levels of hydroxyproline by approximately 155%, which was blocked by spironolactone (10-60 mg/kg, p.o.). In a rat Lipopolysaccharide (LPS) model, spironolactone inhibited acute increases in BAL cytokines with moderate effects on neutrophils. Finally, we found that chronic LPS exposure significantly increased end expiratory lung and decreased lung elastance in the mouse. These functional effects of chronic LPS were improved by MR antagonists. Our results demonstrate that MR antagonists have significant pharmacological actions in the respiratory system.

  14. Bleomycin, unlike other male-mouse mutagens, is most effective in spermatogonia, inducing primarily deletions.

    PubMed

    Russell, L B; Hunsicker, P R; Kerley, M K; Johnson, D K; Shelby, M D

    2000-08-21

    Dominant-lethal tests [P.D. Sudman, J.C. Rutledge, J.B. Bishop, W.M. Generoso, Bleomycin: female-specific dominant lethal effects in mice, Mutat. Res. 296 (1992) 205-217] had suggested that Bleomycin sulfate (Blenoxane), BLM, might be a female-specific mutagen. While confirming that BLM is indeed a powerful inducer of dominant-lethal mutations in females that fails to induce such mutations in postspermatogonial stages of males, we have shown in a specific-locus test that BLM is, in fact, mutagenic in males. This mutagenicity, however, is restricted to spermatogonia (stem-cell and differentiating stages), for which the specific-locus mutation rate differed significantly (P<0.008) from the historical control rate. In treated groups, dominant mutations, also, originated only in spermatogonia. With regard to mutation frequencies, this germ-cell-stage pattern is different from that for radiation and for any other chemical studied to date, except ethylnitrosourea (ENU). However, the nature of the spermatogonial specific-locus mutations differentiates BLM from ENU as well, because BLM induced primarily (or, perhaps, exclusively) multilocus deletions. Heretofore, no chemical that induced specific-locus mutations in spermatogonia did not also induce specific-locus as well as dominant-lethal mutations in postspermatogonial stages, making the dominant lethal test, up till now, predictive of male mutagenicity in general. The BLM results now demonstrate that there are chemicals that can induce specific-locus mutations in spermatogonia without testing positive in postspermatogonial stages. Thus, BLM, while not female-specific, is unique, (a) in its germ-cell-stage specificity in males, and (b) in inducing a type of mutation (deletions) that is atypical for the responding germ-cell stages (spermatogonia).

  15. Therapeutic effect of ozone and rutin on adriamycin-induced testicular toxicity in an experimental rat model.

    PubMed

    Salem, E A; Salem, N A; Hellstrom, W J

    2017-02-01

    To evaluate the cytoprotective effects of rutin, ozone and their combination on adriamycin (ADR)-induced testicular toxicity, 50 male albino rats were classified into five groups of ten animals each as follows: placebo group; ADR group; ADR + rutin group; ADR + ozone group and ADR + rutin + ozone group. Sperm functions, testosterone (T), luteinising hormone (LH), follicle stimulating hormone (FSH), testicular enzymes, oxidant/antioxidant status, C-reactive protein, monocyte chemoattractant proteins-1 and leukotriene B4 were determined. After ADR injection, a decline in sperm functions was observed. FSH and LH levels were increased, T level and testicular enzymes were decreased, significant enhancement in oxidative stress with subsequent depletion in antioxidants was detected and inflammatory markers were significantly elevated. Treatment with rutin and/or ozone, however, improved the aforementioned parameters. Ozone therapy alone almost completely reversed the toxic effects of ADR and restored all parameters to normal levels.

  16. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance.

    PubMed

    Xu, Yixiao; Lin, Hongzhou; Zheng, Wenjie; Ye, Xiaohua; Yu, Lingfang; Zhuang, Jieqiu; Yang, Qing; Wang, Dexuan

    2016-11-15

    Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.

  17. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222.

    PubMed

    Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2016-03-01

    Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.

  18. Pioglitazone, a PPARγ agonist, provides comparable protection to angiotensin converting enzyme inhibitor ramipril against adriamycin nephropathy in rat.

    PubMed

    Ochodnicky, Peter; Mesarosova, Lucia; Cernecka, Hana; Klimas, Jan; Krenek, Peter; Goris, Maaike; van Dokkum, Richard P E; Henning, Robert H; Kyselovic, Jan

    2014-05-05

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to ameliorate diabetic nephropathy, but much less are known about their effects in non-diabetic nephropathies. In the present study, metabolic parameters, blood pressure, aortic endothelial function along with molecular and structural markers of glomerular and tubulointerstitial renal damage, were studied in a rat model of normotensive nephropathy induced by adriamycin and treated with PPARγ agonist pioglitazone (12mg/kg, po), angiotensin converting enzyme (ACE) inhibitor ramipril (1mg/kg, po) or their combination. Pioglitazone had no effect on systolic blood pressure, marginally reduced glycemia and improved aortic endothelium-dependent relaxation. In the kidney, pioglitazone prevented the development of proteinuria and focal glomerulosclerosis to the similar extent as blood-pressure lowering ramipril. Renoprotection provided by either treatment was associated with a reduction in the cortical expression of profibrotic plasminogen activator inhibitor-1 and microvascular damage-inducing endothelin-1, and a limitation of interstitial macrophage influx. Treatment with PPARγ agonist, as well as ACE inhibitor comparably affected renal expression of the renin-angiotensin system (RAS) components, normalizing increased renal expression of ACE and enhancing the expression of Mas receptor. Interestingly, combined pioglitazone and ramipril treatment did not provide any additional renoprotection. These results demonstrate that in a nondiabetic renal disease, such as adriamycin-induced nephropathy, PPARγ agonist pioglitazone provides renoprotection to a similar extent as an ACE inhibitor by interfering with the expression of local RAS components and attenuating related profibrotic and inflammatory mechanisms. The combination of the both agents, however, does not lead to any additional renal benefit.

  19. BlmB and TlmB provide resistance to the bleomycin family of antitumor antibiotics by N-acetylating metal-free bleomycin, tallysomycin, phleomycin, and zorbamycin.

    PubMed

    Coughlin, Jane M; Rudolf, Jeffrey D; Wendt-Pienkowski, Evelyn; Wang, Liyan; Unsin, Claudia; Galm, Ute; Yang, Dong; Tao, Meifeng; Shen, Ben

    2014-11-11

    The bleomycin (BLM) family of glycopeptide-derived antitumor antibiotics consists of BLMs, tallysomycins (TLMs), phleomycins (PLMs), and zorbamycin (ZBM). The self-resistant elements BlmB and TlmB, discovered from the BLM- and TLM-producing organisms Streptomyces verticillus ATCC15003 and Streptoalloteichus hindustanus E465-94 ATCC31158, respectively, are N-acetyltransferases that provide resistance to the producers by disrupting the metal-binding domain of the antibiotics required for activity. Although each member of the BLM family of antibiotics possesses a conserved metal-binding domain, the structural differences between each member, namely, the bithiazole moiety and C-terminal amine of BLMs, have been suggested to instill substrate specificity within BlmB. Here we report that BlmB and TlmB readily accept and acetylate BLMs, TLMs, PLMs, and ZBM in vitro but only in the metal-free forms. Kinetic analysis of BlmB and TlmB reveals there is no strong preference or rate enhancement for specific substrates, indicating that the structural differences between each member of the BLM family play a negligible role in substrate recognition, binding, or catalysis. Intriguingly, the zbm gene cluster from Streptomyces flavoviridis ATCC21892 does not contain an N-acetyltransferase, yet ZBM is readily acetylated by BlmB and TlmB. We subsequently established that S. flavoviridis lacks the homologue of BlmB and TlmB, and ZbmA, the ZBM-binding protein, alone is sufficient to provide ZBM resistance. We further confirmed that BlmB can indeed confer resistance to ZBM in vivo in S. flavoviridis, introduction of which into wild-type S. flavoviridis further increases the level of resistance.

  20. Expression profiling of genes regulated by Fra-1/AP-1 transcription factor during bleomycin-induced pulmonary fibrosis

    PubMed Central

    2013-01-01

    Background The Fra-1/AP-1 transcription factor regulates the expression of genes controlling various processes including migration, invasion, and survival as well as extracellular remodeling. We recently demonstrated that loss of Fra-1 leads to exacerbated bleomycin-induced pulmonary fibrosis, accompanied by enhanced expression of various inflammatory and fibrotic genes. To better understand the molecular mechanisms by which Fra-1 confers protection during bleomycin-induced lung injury, genome-wide mRNA expression profiling was performed. Results We found that Fra-1 regulates gene expression programs that include: 1) several cytokines and chemokines involved in inflammation, 2) several genes involved in the extracellular remodeling and cell adhesion, and 3) several genes involved in programmed cell death. Conclusion Loss of Fra-1 leads to the enhanced expression of genes regulating inflammation and immune responses and decreased the expression of genes involved in apoptosis, suggesting that this transcription factor distinctly modulates early pro-fibrotic cellular responses. PMID:23758685

  1. Spironolactone Attenuates Bleomycin-Induced Pulmonary Injury Partially via Modulating Mononuclear Phagocyte Phenotype Switching in Circulating and Alveolar Compartments

    PubMed Central

    Zhou, Xin; Zhang, Yi-Dan; Lu, Rui-Yi; Guo, Zhao-Zeng; Sun, Hai-Ying; Hu, Dao-Chuan; Yang, Guo-Hong; Li, Yu-Ming; Wei, Lu-Qing

    2013-01-01

    Background Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. Methodology/Principal Findings We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage) revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels) and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’ trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6Chi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c-) remained unaffected by spironolactone during investigation. Conclusions/Significance The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching. PMID:24260540

  2. Protective effect of royal jelly on fertility and biochemical parameters in bleomycin-‎induced male rats

    PubMed Central

    Amirshahi, Tayebeh; Najafi, Gholamreza; Nejati, Vahid

    2014-01-01

    Background: Bleomycin (BL) is a glycopeptide antibiotic obtained from the bacterium Streptomyces verticillus which is routinely used for treatment of human cancers. Royal jelly (RJ) is a production from the hypo pharyngeal, mandibular and post cerebral glands of nurse bees. RJ consists of 66% water, 15% sugars, 5% lipids, and 13% proteins, essential amino acids and vitamins. Objective: The aim of present study was to evaluate protective effect of royal jelly on sperm parameters and malondialdehyde (MDA) production in rat. Materials and Methods: Forty adult male wistar rats (220±20gr) were randomly divided into 4 groups (n=10). Control group (CG) received normal saline 10 ml/kg twice a week with Intraperitoneal (I.P) for 48 days (0.3 ml/rat(. Royal Jelly group (RJG) received jelly (100 mg/kg daily) for 48 days orally. Bleomycin group (BLG) received BL (10 mg/kg twice a week) with I.P for 48 days. Royal Jelly+ Bleomycin group (RJ+BLG) received royal Jelly (100 mg/kg /day) orally concomitant with BL administration. Sperm count, motility, and viability were investigated and chromatin quality and DNA integrity were also analyzed. Serum testosterone and MDA concentrations were measured as well. Results: BL caused decline significantly (p<0.05) sperm count, sperm viability, motility as well as testosterone concentration compared to control group while significant (p<0.05) increases in immature sperm, sperm with damaged DNA and MDA concentration were announced in BL in comparison with CG and RJ+BLG. Royal jelly improved Bleomycin-induced toxicity on sperm parameters and testosterone and MDA concentrations. Conclusion: The present results support the idea that BL adversely affects sperm parameters and MDA and the RJ with antioxidant properties has positive effects on these parameters. This article extracted from M.Sc. thesis. (Tayebeh amirshahi) PMID:24799882

  3. Human Adipose-derived Mesenchymal Stem Cells Attenuate Early Stage of Bleomycin Induced Pulmonary Fibrosis: Comparison with Pirfenidone

    PubMed Central

    Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish

    2016-01-01

    Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152

  4. Sensitization of multidrug resistant (MDR) cancer cells to vinblastine by novel acridones: correlation between anti-calmodulin activity and anti-MDR activity.

    PubMed

    Mayur, Y C; Padma, T; Parimala, B H; Chandramouli, K H; Jagadeesh, S; Gowda, N M Made; Thimmaiah, K N

    2006-01-01

    Multidrug resistance (MDR) of cancer cells remains to be an important cause of chemotherapy failure. Search for the new MDR reversal agents is still an unceasing challenge for the scientists. In an attempt to find clinically useful modulators of MDR, a series of 19 N(10)-substituted-2-bromoacridones has been synthesized. Parent compound 1, prepared by the Ullmann condensation of o-chlorobenzoic acid and p-bromoaniline, undergoes N-alkylation in the presence of a phase transfer catalyst. N-(omega-Chloroalkyl) analogues were subjected to iodide catalyzed nucleophilic substitution reaction with various secondary amines to get the products 3-10 and 12-19, which increased the uptake of vinblastine (VLB) in MDR KBCh(R)-8-5 cells to a greater extent (1.25 to 1.9-fold) than did a similar concentration of the standard modulator, verapamil (VRP). Results of the efflux experiment showed that each modulator significantly inhibited the efflux of VLB, suggesting that they may be competitors for P-gp. All the compounds effectively compete with [(3)H] azidopine for binding to P-gp, pointed out this transport membrane protein as their likely site of action. Compounds at IC(10) were evaluated for their efficacy to modulate the cytotoxicity of VLB in KBCh(R)-8-5 cells and found that the modulators enhanced the cytotoxicity of VLB by 3.8 to 34-fold. The study on the structure-activity relationship revealed that substitution of hydrogen atom at position C-2 in acridone nucleus by a bromine atom increased the cytotoxic and anti-MDR activities. The ability of acridones to inhibit calmodulin-dependent cyclic AMP phosphodiesterase has been determined and the results have shown a strong positive correlation between anti-calmodulin activity and cytotoxicity in KBCh(R)-8-5 cells or anti-MDR activity.

  5. Interaction of CCN1 with αvβ3 integrin induces P-glycoprotein and confers vinblastine resistance in renal cell carcinoma cells.

    PubMed

    Long, Qing-Zhi; Zhou, Ming; Liu, Xiao-Gang; Du, Yue-Feng; Fan, Jin-Hai; Li, Xiang; He, Da-Lin

    2013-09-01

    Renal cell carcinoma (RCC) ranks among the most chemoresistant tumors, and P-glycoprotein (P-gp) predominates multidrug resistance mechanisms by reducing the accumulation of intracellular chemotherapy drugs such as vinblastine (VBL), which is considered the most effective chemotherapeutic agent for this neoplasia. Unfortunately, the mechanism by which the expression of P-gp is regulated and the ways to inhibit the function of P-gp are poorly understood. Our study was carried out to determine the possible role of CCN1 in P-pg-mediated drug resistance on the basis of the validated function of CCN1, an extracellular matrix protein, in promoting chemoresistance. As expected, CCN1 was overexpressed in VBL-resistant cell lines (ACHN/VBL, A498/VBL, Caki-1/VBL, and Caki-2/VBL) as measured by enzyme-linked immunosorbent assay. We then transfected non-VBL-resistant cell lines with Ad-CCN1 and observed that the IC50 of VBL increased by about 3-5 times. Furthermore, both CCN1 antibody neutralization and αvβ3 integrin antibody blockade decreased the IC50 of VBL, which showed that CCN1 and αvβ3 are associated with resistance to VBL in RCC. Simultaneously, the enhanced expression of CCN1 triggered the intracellular PI3K/Akt pathway by binding αvβ3 integrin, as shown by western blot. P-gp expression was augmented in response to activation of the PI3K/Akt pathway, which could be modified by PI3K inhibitor LY294002 or multidrug resistance siRNA transfection. Therefore, targeted restraint of CCN1 or αvβ3 integrin in combination with the administration of VBL may be beneficial in the treatment of primary and metastatic RCC.

  6. The effect of temperature on the structure of vinblastine-induced polymers of purified tubulin: detection of a reversible conformational change.

    PubMed

    Nogales, E; Medrano, F J; Diakun, G P; Mant, G R; Towns-Andrews, E; Bordas, J

    1995-12-01

    Addition of the antimitotic drug vinblastine to solutions of purified tubulin induces the formation of helical polymers whose structure and type of aggregation is determined by the concentration of magnesium. While paracrystalline arrangements of single coils are observed at low concentrations of the ion, for concentrations higher than 6 mM free double-coiled spirals are obtained, which are indistinguishable from those obtained in the presence of microtubule-associated proteins (MAPs). This result is consistent with a similar effect of magnesium and MAPs in neutralizing negative charges on the tubulin molecule and so allowing for lateral contacts between protofilaments. The effects that temperature has on the structure of both types of polymers, free spirals or paracrystals, have been monitored using time-resolved X-ray solution scattering. This study shows that a temperature increase: (1) affects the length and lateral aggregation of the spirals in the paracrystalline sample; (2) induces a reversible increase of the helical pitch in both types of polymers that closely follows the temperature change; (3) produces an irreversible aggregation of some of the protein in both types of polymers; and (4) can induce a reversible transformation from one type of structure to the other when the concentration of Mg2+ is in the boundary between the two ranges. We suggest that the changes in pitch are due to a temperature-induced conformational change of the tubulin molecule. This effect may be related to the structural modifications that result in the temperature-induced assembly of microtubules in vitro under normal conditions of assembly.

  7. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling

    PubMed Central

    Ni, Shirong; Wang, Dexuan; Qiu, Xiaoxiao; Pang, Lingxia; Song, Zhangjuan; Guo, Kunyuan

    2015-01-01

    Pulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant may play an important role in many of the processes of inflammation and fibrosis. Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress. Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. In the present study, we investigated bone marrow mesenchymal stem cells (BMSCs) for the treatment of bleomycin-induced pulmonary fibrosis. Our results showed that BMSCs administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. The gene expression levels of NAD(P)H: quinine oxidoreductase 1 (NQO1), gama-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), attenuated by bleomycin, were increased up to basal levels after BMSCs transplantation. BMSCs significantly increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) production in the injured lung. The present study provides evidence that BMSCs may be a potential therapeutic reagent for the treatment of lung fibrosis. PMID:26339340

  8. Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP.

    PubMed

    Le Bouffant, Ronan; Cormier, Patrick; Mulner-Lorillon, Odile; Bellé, Robert

    2006-09-01

    The 4E-binding proteins (4E-BPs) regulate the cap-dependent eukaryotic initiation factor 4E (eIF4E). The level of 4E-BP protein is regulated during early development of sea urchin embryos. Fertilization leads to the rapid disappearance of the protein that reappears later in development. We show that two important cellular stresses, hypoxia and bleomycin prolonged checkpoint mobilization provoked the overexpression of the protein 4E-BP in developing sea urchin embryos. Hypoxia resulted after 1 h in a reversible gradual increase in the protein 4E-BP level. At 20 h, the protein 4E-BP had reached the level existing in the unfertilized eggs. Bleomycin used as a DNA-damaging agent for checkpoint activation, provoked cell cycle inhibition and after prolonged exposure (20 h), induced the expression of the protein 4E-BP. The effect of bleomycin on 4E-BP protein overexpression was dose-dependent between 0.4 and 1.2 mM. The role of the overexpression of the protein 4E-BP is discussed in relation with cellular stress responses.

  9. A hybrid NRPS-PKS gene cluster related to the bleomycin family of antitumor antibiotics in Alteromonas macleodii strains.

    PubMed

    Mizuno, Carolina Megumi; Kimes, Nikole E; López-Pérez, Mario; Ausó, Eva; Rodriguez-Valera, Francisco; Ghai, Rohit

    2013-01-01

    Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes.

  10. Ex vivo micro-computed tomography analysis of bleomycin-induced lung fibrosis for preclinical drug evaluation.

    PubMed

    Scotton, Chris J; Hayes, Brian; Alexander, Robert; Datta, Arnab; Forty, Ellen J; Mercer, Paul F; Blanchard, Andy; Chambers, Rachel C

    2013-12-01

    Research into the pathogenesis underlying the development of idiopathic pulmonary fibrosis is hampered by a repertoire of animal models that fail to recapitulate all the features of the human disease. Better use and understanding of what the animal models represent may improve clinical predictability. We interrogated ex vivo micro-computed tomography (CT) as a novel end-point measure in the mouse model of bleomycin-induced lung fibrosis (BILF), and to evaluate a therapeutic dosing regimen for preclinical drug evaluation. A detailed characterisation of BILF was performed using standard end-point measures (lung hydroxyproline and histology). High resolution micro-CT (∼13.7 μm voxel size) was evaluated for quantifying the extent and severity of lung fibrosis. The period from 14 to 28 days following bleomycin instillation represents progression of established fibrosis. A therapeutic dosing regimen during this period was validated using a transforming growth factor-β receptor-1 kinase inhibitor, and micro-CT provided a highly sensitive and quantitative measure of fibrosis. Moreover, fibrotic lesions did not completely resolve, but instead persisted for ≥6 months following a single insult with bleomycin. Ex vivo micro-CT analysis of BILF allows robust evaluation of therapeutic dosing once fibrosis is already well established, requiring fewer mice than conventional biochemical end-points.

  11. Bleomycin induced sensitivity to TRAIL/Apo-2L-mediated apoptosis in human seminomatous testicular cancer cells is correlated with upregulation of death receptors.

    PubMed

    Timur, Mujgan; Cort, Aysegul; Ozdemir, Evrim; Sarikcioglu, Sureyya Bilmen; Sanlioglu, Salih; Sanlioglu, Ahter Dilsad; Ozben, Tomris

    2015-01-01

    The most common solid tumor is testicular cancer among young men. Bleomycin is an antitumor antibiotic used for the therapy of testicular cancer. TRAIL is a proapoptotic cytokine that qualified as an apoptosis inducer in cancer cells. Killing cancer cells selectively via apoptosis induction is an encouraging therapeutic strategy in clinical settings. Combination of TRAIL with chemotherapeutics has been reported to enhance TRAIL-mediated apoptosis of different kinds of cancer cell lines. The molecular ground for sensitization of tumour cells to TRAIL by chemotherapeutics might involve upregulation of TRAIL-R1 (TR/1, DR4) and/or TRAIL-R2 (TR/2, DR5) receptors or activation of proapoptotic proteins including caspases. The curative potential of TRAIL to eradicate cancer cells selectively in testicular cancer has not been studied before. In this study, we investigated apoptotic effects of bleomycin, TRAIL, and their combined application in NTera-2 and NCCIT testicular cancer cell lines. We measured caspase 3 levels as an apoptosis indicator, and TRAIL receptor expressions using flow cytometry. Both NTera-2 and NCCIT cells were fairly resistant to TRAIL's apoptotic effect. Incubation of bleomycin alone caused a significant increase in caspase 3 activity in NCCIT. Combined incubation with bleomycin and TRAIL lead to elevated caspase 3 activity in Ntera-2. Exposure to 72 h of bleomycin increased TR/1, TR/2, and TR/3 cell-surface expressions in NTera-2. Elevation in TR/1 cell-surface expression was evident only at 24 h of bleomycin application in NCCIT. It can be concluded that TRAIL death receptor expressions in particular are increased in testicular cancer cells via bleomycin treatment, and TRAIL-induced apoptosis is initiated.

  12. Adriamycin resistance-associated prohibitin gene inhibits proliferation of human osteosarcoma MG63 cells by interacting with oncogenes and tumor suppressor genes.

    PubMed

    Du, Min-Dong; He, Kai-Yi; Qin, Gang; Chen, Jin; Li, Jin-Yi

    2016-09-01

    The resistance of cancer cells to chemotherapeutic agents is a major obstacle for successful chemotherapy, and the mechanism of chemoresistance remains unclear. The present study developed an adriamycin-resistant human osteosarcoma MG-63 sub-line (MG-63/ADR), and identified differentially expressed proteins that may be associated with adriamycin resistance. Two dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis and a protein identification assay were performed. Western blot analysis was used to examine the prohibitin (PHB) levels in the MG-63/ADR cells. Quantitative polymerase chain reaction was utilized to detect adriamycin resistant-associated genes. Laser-scanning confocal microscope was employed to examine the colocalization of PHB with v-myc avian myelocytomatosis viral oncogene homolog (c-myc), FBJ murine osteosarcoma viral oncogene homolog (c-fos), tumor protein p53 and retinoblastoma 1 (Rb). In addition, the full length of the open reading frame of human PHB was subcloned into a lentiviral vector pLVX-puro. The proliferative rate of MG-63 cells was also investigated. The overall protein expression in MG-63/ADR cells was clearly suppressed. Three notable protein regions, representing high mobility group box 1, Ras homolog gene family, member A, and PHB, were identified to be significantly altered in MG-63/ADR cells when compared with its parental cells. Therefore, PHB modulated the chemoresistance of MG-63/ADR cells by interacting with multiple oncogenes or tumor suppressor genes (c-myc, c-fos, p53 and Rb). In addition, overexpression of PHB decreases the proliferative rate of MG-63 cells. In conclusion, PHB is an adriamycin resistance-associated gene, which may inhibit the proliferation of human osteosarcoma MG-63 cells by interacting with the oncogenes or tumor suppressor genes, c-myc, c-fos, p53 and Rb.

  13. Effect of age and caloric restriction on bleomycin-chelatable and nonheme iron in different tissues of C57BL/6 mice.

    PubMed

    Sohal, R S; Wennberg-Kirch, E; Jaiswal, K; Kwong, L K; Forster, M J

    1999-08-01

    The objective of this study was to test the hypothesis that the widely observed age-associated increase in the amounts of macromolecular oxidative damage is due to an elevation in the availability of redox-active iron, that is believed to catalyze the scission of H2O2 to generate the highly reactive hydroxyl radical. Concentrations of bleomycin-chelatable iron and nonheme iron were measured in various tissues and different regions of the brain of mice fed on ad libitum (AL) or a calorically restricted (to 60% of AL) diet at different ages. The concentrations of these two pools of iron varied markedly as a function of tissue, age, and caloric intake. There was no consistent ratio between the amounts of nonheme and the bleomycin-chelatable iron pools across these conditions. Nonheme iron concentration increased with age in the liver, kidney, heart, striatum, hippocampus, midbrain and cerebellum of AL animals, whereas bleomycin-chelatable iron increased significantly with age only in the liver. Amounts of both nonheme and bleomycin-chelatable iron remained unaltered during aging in the cerebral cortex and hindbrain of AL mice. Caloric restriction had no effect on iron concentration in the brain or heart, but caused a marked increase in the concentration of both bleomycin-chelatable and nonheme iron in the liver and the kidney. The results do not support the hypothesis that accumulation of oxidative damage with age, or its attenuation by CR, are associated with corresponding variations in redox-active iron.

  14. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes

    PubMed Central

    Cho, Yoon Hee; Lee, Joong Won; Woo, Hae Dong; Lee, Sunyeong; Kim, Yang Jee; Lee, Younghyun; Shin, Sangah; Joung, Hyojee; Chung, Hai Won

    2016-01-01

    Following one of the world’s largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM), a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN) and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL), the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes. PMID:26907305

  15. SPARC Oppositely Regulates Inflammation and Fibrosis in Bleomycin-Induced Lung Damage

    PubMed Central

    Sangaletti, Sabina; Tripodo, Claudio; Cappetti, Barbara; Casalini, Patrizia; Chiodoni, Claudia; Piconese, Silvia; Santangelo, Alessandra; Parenza, Mariella; Arioli, Ivano; Miotti, Silvia; Colombo, Mario P.

    2011-01-01

    Fibrosis results from inflammatory tissue damage and impaired regeneration. In the context of bleomycin-induced pulmonary fibrosis, we demonstrated that the matricellular protein termed secreted protein acidic and rich in cysteine (SPARC) distinctly regulates inflammation and collagen deposition, depending on its cellular origin. Reciprocal Sparc−/− and wild-type (WT) bone marrow chimeras revealed that SPARC expression in host fibroblasts is required and sufficient to induce collagen fibrosis in a proper inflammatory environment. Accordingly, Sparc−/− >WT chimeras showed exacerbated inflammation and fibrosis due to the inability of Sparc−/− macrophages to down-regulate tumor necrosis factor production because of impaired responses to tumor growth factor-β. Hence, the use of bone marrow cells expressing a dominant-negative form of tumor growth factor-β receptor type II under the monocyte-specific CD68 promoter, as a decoy, phenocopied Sparc−/− donor chimeras. Our results point to an unexpected dual role of SPARC in oppositely influencing the outcome of fibrosis. PMID:22001347

  16. Mutagenicity of bleomycin and cross-adaptation with alkylating agents in Crepis capillaris

    SciTech Connect

    Dubinina, L.G.

    1995-05-01

    The radiomimetic effect of bleomycin (BLM) at concentrations of 5 and 10 mg/l on root meristem cells was studied. The roots of germinating seeds of Crepis capillaris were exposed to BLM 16 h after the seeds were soaked. At this time, the root meristem cells were at the S or late G{sub 1} phase of the cell cycle. The mutagenic effect of BLM was found when the cells were fixed at the 29th, 32nd, 39th, 42nd, or 45th hour (i.e., the early germinating fraction). The aberrations induced included chromosome and chromatid rearrangements. At late fixations cells were observed which had, in addition to definite double-hit aberrations, multiple chromosomal breaks and pronounced chromosomal fragmentation. A hypothesis is advanced that BLM causes inducible repair that is similar to SOS-repair. This repair is prone to DNA synthesis errors, which account for the increase in the number of aberrations at late fixation times. Pretreatment with 1 {mu}g/ml of mitomycin C, an alkylating agent, before the exposure to 10 mg/l BLM, resulted in cross-adaptation, which drastically reduced the number of BLM-induced aberrations. This was especially evident for the number of aberrations and the number of cells affected at late fixations. 36 refs., 5 figs.

  17. Further insights into the mechanism of the reaction of activated bleomycin with DNA

    PubMed Central

    Chow, Marina S.; Liu, Lei V.; Solomon, Edward I.

    2008-01-01

    Bleomycin (BLM) is a glycopeptide anticancer drug that effectively carries out single- and double-stranded DNA cleavage. Activated BLM (ABLM), a low-spin ferric-hydroperoxide, BLM–FeIII–OOH, is the last intermediate detected before DNA cleavage. We have previously shown through experiments and DFT calculations that both ABLM decay and reaction with H atom donors proceed via direct H atom abstraction. However, the rate of ABLM decay had been previously found, based on indirect methods, to be independent of the presence of DNA. In this study, we use a circular dichroism (CD) feature unique to ABLM to directly monitor the kinetics of ABLM reaction with a DNA oligonucleotide. Our results show that the ABLM + DNA reaction is appreciably faster, has a different kinetic isotope effect, and has a lower Arrhenius activation energy than does ABLM decay. In the ABLM reaction with DNA, the small normal kH/kD ratio is attributed to a secondary solvent effect through DFT vibrational analysis of reactant and transition state (TS) frequencies, and the lower Ea is attributed to the weaker bond involved in the abstraction reaction (C–H for DNA and N–H for the decay in the absence of DNA). The DNA dependence of the ABLM reaction indicates that DNA is involved in the TS for ABLM decay and thus reacts directly with BLM–FeIII–OOH instead of its decay product. PMID:18757754

  18. Colloidal Gold-Mediated Delivery of Bleomycin for Improved Outcome in Chemotherapy

    PubMed Central

    Yang, Celina; Uertz, Jamie; Chithrani, Devika B.

    2016-01-01

    Nanoparticles (NPs) can be used to overcome the side effects of poor distribution of anticancer drugs. Among other NPs, colloidal gold nanoparticles (GNPs) offer the possibility of transporting major quantities of drugs due to their large surface-to-volume ratio. This is while confining these anticancer drugs as closely as possible to their biological targets through passive and active targeting, thus ensuring limited harmful systemic distribution. In this study, we chose to use bleomycin (BLM) as the anticancer drug due to its limited therapeutic efficiency (harmful side effects). BLM was conjugated onto GNPs through a thiol bond. The effectiveness of the chemotherapeutic drug, BLM, is observed by visualizing DNA double strand breaks and by calculating the survival fraction. The action of the drug (where the drug takes effect) is known to be in the nucleus, and our experiments have shown that some of the GNPs carrying BLM were present in the nucleus. The use of GNPs to deliver BLM increased the delivery and therapeutic efficacy of the drug. Having a better control over delivery of anticancer drugs using GNPs will establish a more successful NP-based platform for a combined therapeutic approach. This is due to the fact that GNPs can also be used as radiation dose enhancers in cancer research.

  19. ASTROGLIOSIS AND BEHAVIORAL CHANGES IN MICE LACKING THE NEUTRAL CYSTEINE PROTEASE BLEOMYCIN HYDROLASE

    PubMed Central

    Montoya, S.E.; Thiels, E.; Card, J.P.; Lazo, J.S.

    2007-01-01

    Bleomycin hydrolase is a multifaceted neutral cysteine protease with a suggested role in antigen presentation, homocysteine-thiolactone metabolism, and Alzheimer’s disease pathogenesis. Deletion of the protease in mice results in increased neonatal mortality and dermatopathology. Immunohistochemical and behavioral studies of BLMH knockout mice were undertaken to further evaluate the role of the protease in the brain. No gross abnormalities in the central nervous system were observed upon preliminary histological examination of B6.129Blmhtm1Geh/J null animals. However, glial fibrillary acid protein immunohistochemistry revealed a global reactive astrogliosis in the aged null animals, indicative of undefined brain pathology. The role of BLMH in the brain was further explored by characterizing the behavioral phenotype of hybrid [129S6-Blmhtm1Geh/J X B6.129 Blmhtm1Geh/J]F1 null and littermate controls using multiple behavioral paradigms. In the water maze, deletion of BLMH resulted in poorer performance during water maze probe trials without detectable effect of the mutation on sensorimotor function. In addition, no age-dependent decline in discriminative performance on probe trials was observed in null animals. These data suggest a physiological non-redundant function for BLMH in the central nervous system. PMID:17391860

  20. Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs.

    PubMed

    Reed, S D; Fulmer, A; Buckholz, J; Zhang, B; Cutrera, J; Shiomitsu, K; Li, S

    2010-07-01

    On the basis of superior outcomes from electrochemogene therapy (ECGT) compared with electrochemotherapy in mice, we determined the efficacy of ECGT applied to spontaneous canine neoplasms. Intralesional bleomycin and feline interleukin-12 DNA (fIL-12 DNA) injection combined with translesional electroporation resulted in complete cure of two recurrent World Health Organization stage T(2b)N(0)M(0) oral squamous cell carcinomas (SCCs) and one T(2)N(0)M(0) acanthomatous ameloblastoma. Three remaining dogs, which had no other treatment options, had partial responses to ECGT; one had mandibular T(3b)N(2b)M(1) melanoma with pulmonary and lymph node metastases; one had cubital T(3)N(0)M(1) histiocytic sarcoma with spleen metastases; and one had soft palate T(3)N(0)M(0) fibrosarcoma. The melanoma dog had decrease in size of the primary tumor before recrudescence and euthanasia. The histiocytic sarcoma dog had resolution of the primary tumor, but was euthanized because of metastases 4 months after the only treatment. The dog with T(3)N(0)M(0) fibrosarcoma had tumor regression with recrudescence. Treatment was associated with minimal side effects and was easy to perform. It was associated with repair of bone lysis in cured dogs, it improved quality of life of dogs with partial responses and extended overall survival time. ECGT seems to be a safe and resulted in complete responses in SCC and acanthomatous ameloblastoma.

  1. Bleomycin/interleukin-12 electrochemogenetherapy for treating naturally occurring spontaneous neoplasms in dogs.

    PubMed

    Reed, S D; Fulmer, A; Buckholz, J; Zhang, B; Cutrera, J; Shiomitsu, K; Li, S

    2010-08-01

    On the basis of superior outcomes from electrochemogenetherapy (ECGT) compared with electrochemotherapy in mice, we determined the efficacy of ECGT applied to spontaneous canine neoplasms. Intralesional bleomycin (BLM) and feline interleukin-12 DNA injection combined with translesional electroporation resulted in complete cure of two recurrent World Health Organization stage T(2b)N(0)M(0) oral squamous cell carcinomas (SCCs) and one T(2)N(0)M(0) acanthomatous ameloblastoma. Three remaining dogs, which had no other treatment options, had partial responses to ECGT; one had mandibular T(3b)N(2b)M(1) melanoma with pulmonary and lymph node metastases; one had cubital T(3)N(0)M(1) histiocytic sarcoma with spleen metastases; and one had soft palate T(3)N(0)M(0) fibrosarcoma. The melanoma dog had decrease in the size of the primary tumor before recrudescence and euthanasia. The histiocytic sarcoma dog had resolution of the primary tumor, but was euthanized because of metastases 4 months after the only treatment. The dog with T(3)N(0)M(0) fibrosarcoma had tumor regression with recrudescence. Treatment was associated with minimal side effects and was easy to perform, was associated with repair of bone lysis in cured dogs, improved quality of life for dogs with partial responses and extended overall survival time. ECGT seems to be a safe and resulted in complete responses in SCC and acanthomatous ameloblastoma.

  2. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes.

    PubMed

    Cho, Yoon Hee; Lee, Joong Won; Woo, Hae Dong; Lee, Sunyeong; Kim, Yang Jee; Lee, Younghyun; Shin, Sangah; Joung, Hyojee; Chung, Hai Won

    2016-02-19

    Following one of the world's largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM), a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN) and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL), the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes.

  3. Role in cancer therapy of inhibiting recovery from PLD induced by radiation or bleomycin

    SciTech Connect

    Nakatsugawa, S.; Dewey, W.C.

    1984-08-01

    Effects on survival of allowing and inhibiting potentially lethal damage recovery (PLDR) after x ray or bleomycin (bleo) exposure, especially at clinically applicable doses, were examined in plateau phase Chinese hamster ovary (CHO) cells. Dose modifying factors (DMF's) at doses used clinically (1-4 Gy) were more than 2.0, suggesting its importance in radiotherapy of cancers. Among the inhibitors tested, 3'-deoxyguanosine at 3.7 mM and caffeine at 10.3 mM inhibited x and bleo PLDR (DMF of 1.0-1.2) when trypsinized 24 hours after treatment. However, interestingly, 3 aminobenzamide, a specific inhibitor of poly (ADP) ribose synthesis, even at 14.7 or 29.4 mM, was not as effective in suppressing both x and bleo PLDR, suggesting the role of repair processes independent of poly (ADP) ribose levels in PLDR in plateau phase cultures. Possibilities of clinical application of PLDR inhibitors as radio- and chemosensitizers are discussed.

  4. Inhibitory effects of amines from Citrus reticulata on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Xian-Mei; Cao, Zhen-Dong; Xiao, Na; Shen, Qi; Li, Jian-Xin

    2016-02-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease for which, thus far, there are no effective treatments. The pericarp of Citrus reticulata, as a traditional herbal drug, has been used for the clinical treatment of lung-related diseases in China for many years. In the present study, the amines from the pericarp of Citrus reticulata were isolated, and their hydrochlorides were prepared. The results of screening using cultured human embryonic lung fibroblasts (hELFs) revealed that, of the amines, 4-methoxyphenethylamine hydrochloride (designated as amine hydrochloride 1) possessed the most potent inhibitory effect. Further in vivo experiments using a rat model of bleomycin-induced pulmonary fibrosis demonstrated that the oral administration of amine hydrochloride 1 significantly lowered the hydroxyproline content in both serum and lung tissue, and alleviated pulmonary alveolitis and fibrosis. Immunohistochemical analysis revealed that amine hydrochloride 1 exerted its inhibitory effect against IPF through the downregulation of lung transforming growth factor (TGF)-β1 protein expression. Our results demonstrated that amine hydrochloride 1 prevented the development of bleomycin‑induced lung fibrosis in rats. Thus, our data suggest that the amines from the pericarp of Citrus reticulata have therapeutic potential for use in the treatment of IPF.

  5. Andrographolide plays an important role in bleomycin-induced pulmonary fibrosis treatment

    PubMed Central

    Yin, Jia-Ning; Li, Ya-Nan; Gao, Yang; Li, Shi-Bo; Li, Jian-Dong

    2015-01-01

    Pulmonary fibrosis (PF) leads to chronic inflammation and accumulation of macrophages, neutrophils, and lymphocytes in the alveoli. The factors involved in the development of PF include reactive oxygen species and tissue remodelling regulators. The present study demonstrates the effect of andrographolide on bleomycin (BLM)-induced PF in Sprague-Dawley rats. We investigated the total bronchoalveolar lavage fluid protein (BALF) and hydroxyproline (HYP) content along with the level of oxidative stress markers like malondialdehyde (MDA) and GSH/GSSG ratio. In addition, the levels of MMP-1 and TIMP-1 were also analysed. The results revealed an increase in BALF protein, HYP, and MDA contents and decrease in GSH/GSSG ratio of the lungs in animals treated with BLM. However, andrographolide treatment caused a reversal of the BLM induced changes after 20 or 40 days. Treatment with andrographolide suppressed oxidative stress with the decrease of MDA and the increase of the GSH/GSSG ratio. Andrographolide also improved the BLM mediated changes in the MMP-1/TIMP-1 ratio. Therefore, andrographolide has a potential therapeutic effect in the prevention of PF. PMID:26550147

  6. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.

    PubMed

    Zhao, Hui; Qin, Hou-Ying; Cao, Lin-Feng; Chen, Yuan-Hua; Tan, Zhu-Xia; Zhang, Cheng; Xu, De-Xiang

    2015-01-05

    A recent report showed that unfolded protein response (UPR) signaling was activated during bleomycin (BLM)-induced pulmonary fibrosis. Phenylbutyric acid (PBA) is an endoplasmic reticulum (ER) chemical chaperone that inhibits the UPR signaling. The present study investigated the effects of PBA on BLM-induced epithelial-mesenchymal transition (EMT) and pulmonary fibrosis. For induction of pulmonary fibrosis, all mice except controls were intratracheally injected with a single dose of BLM (3.0mg/kg). In PBA+BLM group, mice were intraperitoneally injected with PBA (150mg/kg) daily. Three weeks after BLM injection, EMT was measured and pulmonary fibrosis was evaluated. BLM-induced pulmonary UPR activation was inhibited by PBA. Moreover, BLM-induced pulmonary nuclear factor kappa B (NF-κB) p65 activation was blocked by PBA. In addition, BLM-induced up-regulation of pulmonary inflammatory cytokines was repressed by PBA. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT, was significantly attenuated by PBA. Moreover, BLM-induced pulmonary collagen (Col1α1 and Col1α2) was obviously inhibited by PBA. Importantly, BLM-induced pulmonary fibrosis, as determined using Sirius red staining, was obviously alleviated by PBA. Taken together, these results suggest that PBA alleviates ER stress-mediated EMT in the pathogenesis of BLM-induced pulmonary fibrosis.

  7. Hydroxysafflor Yellow A Attenuates Bleomycin-induced Pulmonary Fibrosis in Mice.

    PubMed

    Jin, Ming; Wu, Yan; Wang, Lin; Zang, Baoxia; Tan, Li

    2016-04-01

    Hydroxysafflor yellow A (HSYA) is an active component of Carthamus tinctorius L., and we want to investigate whether HSYA attenuates pulmonary fibrosis induced by bleomycin (BLM) in mice. The mice received a BLM via oropharyngeal aspiration, and HSYA was intraperitoneally injected. Arterial blood gas analysis was performed. Morphological changes and hydroxyproline content were measured. mRNA expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor, α-smooth muscle actin (α-SMA), and collagen I was measured by real-time polymerase chain reaction. α-SMA-positive cells in lung tissues were detected by immunohistochemical staining. A549 cell was cultured, and morphological changes were observed after TGF-β1 and HSYA treatment. mRNA expression was detected by real-time polymerase chain reaction. Phosphorylation of Smad3 was evaluated by western blotting. HSYA decreased the lung consolidation area and collagen deposition in mice with pulmonary fibrosis. The blood gas changes due to BLM were attenuated by HSYA. HSYA also alleviated the BLM-induced increase of TGF-β1, connective tissue growth factor, α-SMA, and collagen I mRNA levels. HSYA treatment inhibited the increase of α-SMA expression, Smad3 phosphorylation, the morphological changes in lung tissue. HSYA inhibits Smad3 phosphorylation and elevated expression of collagen I mRNA in epithelial-mesenchymal transition induced by TGF-β1.

  8. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    PubMed

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway.

  9. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions.

    PubMed

    Della Latta, Veronica; Cecchettini, A; Del Ry, S; Morales, M A

    2015-07-01

    Bleomycin (BLM) is a drug used to treat different types of neoplasms. BLM's most severe adverse effect is lung toxicity, which induces remodeling of lung architecture and loss of pulmonary function, rapidly leading to death. While its clinical role as an anticancer agent is limited, its use in experimental settings is widespread since BLM is one of the most widely used drugs for inducing lung fibrosis in animals, due to its ability to provoke a histologic lung pattern similar to that described in patients undergoing chemotherapy. This pattern is characterized by patchy parenchymal inflammation, epithelial cell injury with reactive hyperplasia, epithelial-mesenchymal transition, activation and differentiation of fibroblasts to myofibroblasts, basement membrane and alveolar epithelium injuries. Several studies have demonstrated that BLM damage is mediated by DNA strand scission producing single- or double-strand breaks that lead to increased production of free radicals. Up to now, the mechanisms involved in the development of pulmonary fibrosis have not been fully understood; several studies have analyzed various potential biological molecular factors, such as transforming growth factor beta 1, tumor necrosis factor alpha, components of the extracellular matrix, chaperones, interleukins and chemokines. The aim of this paper is to review the specific characteristics of BLM-induced lung fibrosis in different animal models and to summarize modalities and timing of in vivo drug administration. Understanding the mechanisms of BLM-induced lung fibrosis and of commonly used therapies for counteracting fibrosis provides an opportunity for translating potential molecular targets from animal models to the clinical arena.

  10. Role of thioredoxin nitration in bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Wang, Lei; Song, Yimin; Li, Xiankui; Guo, Haizhou; Zhang, Guojun

    2016-01-01

    Oxidant stimulation has been suggested to play an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our study aimed to investigate the role and mechanisms of thioredoxin (Trx) nitration during the development of IPF. A rat model of IPF was established by intratracheal instillation of bleomycin (BLM). Male Wistar rats were randomly distributed among the control group and BLM-treated group, in which rats were intratracheally instilled with a single dose of BLM (5.0 mg/kg body mass in 1.0 mL phosphate-buffered saline). At 7 or 28 days after instillation the rats were euthanized. Histopathological and biochemical examinations were performed. The activity and protein level of thioredoxin were assessed. The thioredoxin nitration level was determined using immunoprecipitation and immunoblotting techniques. Our results demonstrated that protein tyrosine nitration increased in the BLM-treated group compared with the control group. Trx activity decreased in the BLM group compared with control group, whereas Trx expression and nitration level increased dramatically in the BLM group compared with the control group. Our results indicated that Trx nitration might be involved in the pathogenesis of IPF.

  11. Lovastatin prevents bleomycin-induced DNA damage to HepG2 cells

    PubMed Central

    Nasiri, Marjan; Etebari, Mahmoud; Jafarian-Dehkordi, Abbas; Moradi, Shahla

    2016-01-01

    Lovastatin as a member of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors is used as a lipid-lowering agent. It can also inhibit the formation of hydrogen peroxide and superoxide anion and finally leads to decline in oxidative stress processes. Here, we evaluated whether lovastatin can increase DNA damage resistance of HepG2 cells against genotoxicity of the anticancer drug bleomycin (BLM). HepG2 cells were incubated with different concentrations of lovastatin (0.1, 0.5, 1, 5 µM) before exposure to BLM (0.5 µg/mL for one h). The genotoxic dose of BLM and lovastatin was separately determined and comet assay was used to evaluate the genotoxicity. After trapping cells in agarose coated lames, they were lysed and the electrophoresis was done in alkaline pH, then colored and monitored by florescent microscope. The results of this study indicated that lovastatin in doses lower than 5 µM has genoprotective effect and in doses higher than 50 µM is genotoxic. In conclusion, lovastatin is able to protect genotoxic effects of BLM in HepG2 cells. Further studies are needed to elucidate the mechanism(s) involved in this process. PMID:28003840

  12. Combined Cytogenotoxic Effects of Bee Venom and Bleomycin on Rat Lymphocytes: An In Vitro Study

    PubMed Central

    Abd-Elhakim, Yasmina M.; Khalil, Samah R.; Awad, Ashraf; AL-Ayadhi, Laila Y.

    2014-01-01

    This study was carried out to determine the cytotoxic and genotoxic effects of bee venom (BV) and/or the chemotherapeutic agent bleomycin (BLM) on healthy isolated rat lymphocytes utilizing morphometric and molecular techniques. Using the Ficoll-Histopaque density gradient centrifugation technique, lymphocytes were isolated, divided into groups, and subjected to BV and/or BLM at incubation medium concentrations of 10 or 20 μg/mL respectively for 24 and 72 hrs. An MTT assay and fluorescent microscopy examinations were used to assess the cytotoxic effects. To determine the predominant type of BV and/or BLM-induced cell death, LDH release assay was employed beside quantitative expression analyses of the apoptosis-related genes (Caspase-3 and Bcl-2). The genotoxic effects of the tested compounds were evaluated via DNA fragmentation assay. The results of these assays demonstrated that BV potentiates BLM-induced cytotoxicity through increased LDH release and diminished cell viability. Nevertheless, BV significantly inhibited the BLM-induced DNA damage. The results verify that BV significantly attenuates the genotoxic effects of BLM on noncancerous isolated rat lymphocytes but does not diminish BLM cytotoxicity. PMID:24822179

  13. Evaluating the Ameliorative Potential of Quercetin against the Bleomycin-Induced Pulmonary Fibrosis in Wistar Rats

    PubMed Central

    Kushwah, Lokendra; Gohel, Darpesh; Patel, Manish; Marvania, Tulsi; Balakrishnan, Suresh

    2013-01-01

    The current study deals with the effect of a dietary flavanoid quercetin on fibrotic lung tissue in rats. Bleomycin was administered by single intratracheal instillation to Wistar rats to induce lung fibrosis. The pathologies associated with this included significantly reduced antioxidant capacity, ultimately leading to protracted inflammation of the lung tissue. The hallmark of this induced fibrosis condition was an excessive collagen deposition in peribronchial and perialveolar regions of the lung. Oral quercetin treatment over a period of twenty days resulted in significant reversal of the pathologies. The antioxidant defense in lung tissue was revived. Moreover, activity of the collagenase MMP-7, which was high in fibrotic tissue, was seen restored after quercetin administration. Trichome staining of lung tissue sections showed high collagen deposition in fibrotic rats, which may be a direct result of increased mobilization of collagen by MMP-7. This was appreciably reduced in quercetin treated animals. These results point towards an important protective role of quercetin against idiopathic lung fibrosis, which remains a widely prevalent yet incurable condition in the present times. PMID:24396596

  14. The Efficacy and Tolerability of ABVD and Stanford V in Older Hodgkin Lymphoma Patients: A Comprehensive Analysis from the North American Intergroup Trial E2496

    PubMed Central

    Evens, Andrew M.; Hong, Fangxin; Gordon, Leo I.; Fisher, Richard I.; Bartlett, Nancy L.; Connors, Joseph M.; Gascoyne, Randy D.; Wagner, Henry; Gospodarowicz, Mary; Cheson, Bruce D.; Stiff, Patrick J.; Advani, Ranjana; Miller, Thomas P.; Hoppe, Richard T.; Kahl, Brad S.; Horning, Sandra J.

    2013-01-01

    SUMMARY There is a lack of contemporary prospective data examining the ABVD (adriamycin, bleomycin, vinblastine, dacarbazine) and Stanford V (SV; doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, prednisone) regimens in older Hodgkin lymphoma (HL) patients. Forty-four advanced-stage, older HL patients (aged ≥60 years) were treated on the randomized study, E2496. Toxicities were mostly similar between chemotherapy regimens, although 24% of older patients developed bleomycin lung toxicity (BLT), which occurred mainly with ABVD (91%). Further, the BLT-related mortality rate was 18%. The overall treatment-related mortality for older HL patients was 9% versus 0.3% for patients aged <60 years (p<0.001). Among older patients, there were no survival differences between ABVD and SV. According to age, outcomes were significantly inferior for older versus younger patients (5-year failure-free survival: 48% vs 74%, respectively, p=0.002; 5-year overall survival: 58% and 90%, respectively, p<0.0001), while time-to-progression (TTP) was not significantly different (5-year TTP: 68% versus 78%, respectively, p=0.37). Furthermore, considering progression and death without progression as competing risks, the risk of progression was not different between older and younger HL patients (5 years: 30% and 23%, respectively, p=0.30); however, the incidence of death without progression was significantly increased for older HL patients (22% versus 9%, respectively, p<0.0001). Thus, the marked HL age-dependent survival differences appeared attributable primarily to non-HL events. PMID:23356491

  15. Resistance of human glioma to adriamycin in vitro: the role of membrane transport and its circumvention with verapamil.

    PubMed

    Merry, S; Fetherston, C A; Kaye, S B; Freshney, R I; Plumb, J A

    1986-01-01

    We have investigated the mechanism of resistance to adriamycin (ADR) of 3 human glioma cell lines in culture. The cell lines had different inherent sensitivities to ADR. Verapamil increased the ADR sensitivities of the 2 most resistant cell lines (G-UVW and G-CCM) by up to 5-fold. This effect was not seen in a sensitive cell line (G-MCF). Although the accumulation of ADR in the 3 cell lines was not related to inherent sensitivity, energy deprivation or the addition of verapamil produced an increase (up to 46%) in net uptake for both G-UVW and G-CCM, but not for G-MCF. For G-UVW the ADR efflux data were consistent with an energy-dependent ADR efflux mechanism which could be inhibited by verapamil. A similar mechanism was not found for G-CCM. In this cell line verapamil may act by increasing intracellular ADR binding. These data indicate that, while inherent resistance to ADR may be multifactorial, one possible mechanism of resistance in human glioma may involve changes in drug accumulation and/or binding as has been seen in animals models. A potential clinical role for verapamil in overcoming drug resistance in human solid tumours is also indicated.

  16. Resistance of human glioma to adriamycin in vitro: the role of membrane transport and its circumvention with verapamil.

    PubMed Central

    Merry, S.; Fetherston, C. A.; Kaye, S. B.; Freshney, R. I.; Plumb, J. A.

    1986-01-01

    We have investigated the mechanism of resistance to adriamycin (ADR) of 3 human glioma cell lines in culture. The cell lines had different inherent sensitivities to ADR. Verapamil increased the ADR sensitivities of the 2 most resistant cell lines (G-UVW and G-CCM) by up to 5-fold. This effect was not seen in a sensitive cell line (G-MCF). Although the accumulation of ADR in the 3 cell lines was not related to inherent sensitivity, energy deprivation or the addition of verapamil produced an increase (up to 46%) in net uptake for both G-UVW and G-CCM, but not for G-MCF. For G-UVW the ADR efflux data were consistent with an energy-dependent ADR efflux mechanism which could be inhibited by verapamil. A similar mechanism was not found for G-CCM. In this cell line verapamil may act by increasing intracellular ADR binding. These data indicate that, while inherent resistance to ADR may be multifactorial, one possible mechanism of resistance in human glioma may involve changes in drug accumulation and/or binding as has been seen in animals models. A potential clinical role for verapamil in overcoming drug resistance in human solid tumours is also indicated. PMID:3947509

  17. Effect of coenzyme Q10 on the survival time and lipid peroxidation of adriamycin (doxorubicin) treated mice.

    PubMed

    Shinozawa, S; Etowo, K; Araki, Y; Oda, T

    1984-02-01

    The effect of coenzyme Q10 (Co Q10) was examined on the survival time and lipid peroxidation of adriamycin (ADM)-treated ICR mice. Co Q10 showed a protective effect against a subacute toxicity in mice induced by two intraperitoneal administrations of ADM (15 mg/kg). The group treated orally with 10 mg/kg of Co Q10 showed the longest survival time of all the groups studied (16.81 +/- 10.29 days, mean +/- S.D.) and a significantly longer survival time (p less than 0.001) than the ADM-alone group (7.48 +/- 1.99 days). The inhibitory effect of Co Q10 on the plasma and tissue lipid peroxidation levels did not correlate with the effect of prolonging the survival time of mice. Co Q10 tended to inhibit rises in plasma and liver lipid peroxidation levels induced by ADM administration, but there was no statistically significant difference between treatments. There was a statistically significant different inhibitory effect in the kidney lipid peroxidation levels, but was not in those of the heart.

  18. Effects of heparin fractions on the prevention of skin necrosis resulting from adriamycin extravasation: an experimental study.

    PubMed

    Askar, Ibrahim; Erbas, M Kemal; Gurlek, Ali

    2002-09-01

    Extravasation of a chemotherapeutic agent is one of the most frequent complications in cancer patients. Full-thickness skin necrosis often occurs after extravasation. Alternative approaches to treatment are local wound care, elevation, and hypothermia. It was shown that heparin prevents skin necrosis. In this experimental study, the effects of heparin fractions on the prevention of skin necrosis were compared by applying an extravasation model of Adriamycin in rats. Forty Sprague-Dawley male rats weighing 250 to 300 g were used. A total of 0.3 ml doxorubicin hydrochloride was administered subcutaneously to all rats. Ten minutes later, in the control group (group I), 1 ml normal saline was administered subcutaneously. In the first experimental group (group II), 100 U per day heparin sodium was administered in a volume of 1 ml subcutaneously. In the second experimental group (group III), nadroparin calcium (5 anti-Xa U per kilogram per day) was administered. In the third and last experimental group (group IV), dalteparin sodium (5 anti-Xa U per kilogram per day) was administered. All drugs were administered for 2 weeks. Necrotic areas were measured 4 weeks later. Statistical analysis was performed using the Kruskal-Wallis analysis of variance and the Mann-Whitney test. Heparin fractions caused a decreased ulcer rate and size than controls ( < 0.05). There was no superiority among heparin fractions. The authors think that low-molecular weight heparins are preferred, considering the higher risk of bleeding with unfractionated heparin.

  19. Combined modality therapy of diffuse histology non-Hodgkin's lymphoma with cyclophosphamide, adriamycin, vincristine, prednisone (CHOP) and total body irradiation

    SciTech Connect

    Weick, J.K.; Antunez, A.; Kraus, T.A.; Fabian, C.J.; Dixon, D.

    1983-08-01

    The combination of cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) alternating with total body irradiation (TBI) has been shown earlier to be effective therapy in patients with malignant lymphoma who have received prior chemotherapy and/or radiation therapy. A limited institutional pilot study was therefore done by the Southwest Oncology Group between October 1977, and November 1978 to test the benefit of this program in previously untreated persons with Stages 3 and 4 diffuse histology non-Hodgkin's lymphoma. Eleven evaluable patients with the following histologies were treated: 7 poorly differentiated, 2 with histiocytic, 1 with mixed lymphoma and 1 with well-differentiated morphology. Responses were seen in 8/11 patients (6 CR and 2 PR); 5 persons are currently alive and 6 are dead. The median duration of remission is 15 months and the median survival for all patients is 48 months. The therapy was well tolerated with a mean nadir leukocyte count of 3020 x 10/sup 9//..mu..l (range 1.2 to 5.5) and a mean nadir platelet count of 188 x 10/sup 9//..mu..l (range 016 to 270). As delivered, this program is capable of producing durable remissions and needs to be verified in a larger series of patients.

  20. Protective Effect of Ginsenoside Rg1 on Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of Caveolin-1 and TGF-β1 Signal Pathway.

    PubMed

    Zhan, Heqin; Huang, Feng; Ma, Wenzhuo; Zhao, Zhenghang; Zhang, Haifang; Zhang, Chong

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and high mortality rate. Panax Notoginseng Saponins (PNS), extracted from Panax Notoginseng as a traditional Asian medicine, displayed a significant anti-fibrosis effect in liver and lung. However, whether Ginsenoside Rg1 (Rg1), an important and active ingredient of PNS, exerts anti-fibrotic activity on IPF still remain unclear. In this study, we investigated the effect of Rg1 on bleomycin-induced pulmonary fibrosis in rats. Bleomycin (5 mg/kg body weight) was intratracheally administrated to male rats. Rg1 (18, 36 and 72 mg/kg) was orally administered on the next day after bleomycin. Lungs were harvested at day 7 and 28 for the further experiments. Histological analysis revealed that bleomycin successfully induced pulmonary fibrosis, and that Rg1 restored the histological alteration of bleomycin-induced pulmonary fibrosis (PF), significantly decreased lung coefficient, scores of alveolitis, scores of PF as well as contents of alpha smooth muscle actin (α-SMA) and hydroxyproline (Hyp) in a dose-dependent manner in PF rats. Moreover, Rg1 increased the expression levels of Caveolin-1 (Cav-1) mRNA and protein, lowered the expression of transforming growth factor-β1 (TGF-β1) mRNA and protein in the lung tissues of PF rats. These data suggest that Rg1 exhibits protective effect against bleomycin-induced PF in rats, which is potentially associated with the down-regulation of TGF-β1 and up-regulation of Cav-1.

  1. Inhibitory effect of l-mimosine on bleomycin-induced pulmonary fibrosis in rats: Role of eIF3a and p27.

    PubMed

    Li, Xian-Wei; Hu, Chang-Ping; Li, Yuan-Jian; Gao, Yuan-Xing; Wang, Xiang-Ming; Yang, Jie-Ren

    2015-07-01

    It has also been shown that the decreased expression of eukaryotic translation initiation factor 3a (eIF3a) by L-mimosine caused cell cycle arrest. Our previous study has found that eIF3a is involved in bleomycin-induced pulmonary fibrosis. Whether the eIF3a/p27 signal pathway is involved in the inhibitory effect of L-mimosine on bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. The expression of eIF3a, p27, α-SMA, collagen I and collagen III was analyzed by qPCR and Western blot. In vivo, L-mimosine treatment significantly ameliorated the bleomycin-mediated histological fibrosis alterations and blocked collagen deposition concomitantly with reversing bleomycin-induced expression up-regulation of eIF3a, α-SMA, collagen I and collagen III (both mRNA and protein) and expression down- regulation of p27. In vitro, L-mimosine remarkably attenuated proliferation of pulmonary fibroblasts and expression of α-SMA, collagen I and collagen III induced by TGF-β1, and this inhibitory effect of L-mimosine was accompanied by inhibiting eIF3a expression and increasing p27 expression. Knockdown of eIF3a gene expression reversed TGF-β1-induced proliferation of fibroblasts, down-regulation of p27 expression and up-regulation of α-SMA, collagen I, and collagen III expression. These results suggest that L-mimosine inhibited the progression of bleomycin-induced pulmonary fibrosis in rats via the eIF3a/p27 pathway.

  2. A case of bleomycin-induced acral erythema (AE) with eccrine squamous syringometaplasia (ESS) and summary of reports of AE with ESS in the literature.

    PubMed

    Tsuboi, Hiromi; Yonemoto, Kohzoh; Katsuoka, Kensei

    2005-11-01

    Chemotherapy-induced acral erythema (AE) is primarily induced by hydroxyurea, methotrexate, and cytarabine, although there are rare reports of AE induced by combination chemotherapy containing bleomycin. It is thought that the accumulation of chemotherapeutic drugs in eccrine glands may cause eccrine squamous syringometaplasia (ESS), which is characterized by metaplasia and focal necrosis of the epithelium of the eccrine duct. ESS is occasionally detected in conjunction with AE, but such occurrences are relatively uncommon. This is the first report of AE with ESS induced by the administration of bleomycin alone. We also provide a summary of past cases of AE with ESS in the literature.

  3. A Hybrid NRPS-PKS Gene Cluster Related to the Bleomycin Family of Antitumor Antibiotics in Alteromonas macleodii Strains

    PubMed Central

    Mizuno, Carolina Megumi; Kimes, Nikole E.; López-Pérez, Mario; Ausó, Eva; Rodriguez-Valera, Francisco; Ghai, Rohit

    2013-01-01

    Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes. PMID:24069455

  4. Prevention of bleomycin-induced lung inflammation and fibrosis in mice by naproxen and JNJ7777120 treatment.

    PubMed

    Rosa, Arianna Carolina; Pini, Alessandro; Lucarini, Laura; Lanzi, Cecilia; Veglia, Eleonora; Thurmond, Robin L; Stark, Holger; Masini, Emanuela

    2014-11-01

    Pulmonary fibrosis, a progressive and lethal lung disease characterized by inflammation and accumulation of extracellular matrix components, is a major therapeutic challenge for which new therapeutic strategies are warranted. Cyclooxygenase (COX) inhibitors have been previously utilized to reduce inflammation. Histamine H4 receptor (H4R), largely expressed in hematopoietic cells, has been identified as a novel target for inflammatory and immune disorders. The aim of this study was to evaluate the effect of JNJ7777120 (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine), a selective H4R antagonist, and naproxen, a well known nonsteroidal anti-inflammatory drug, and their combination in a murine model of bleomycin-induced fibrosis. Bleomycin (0.05 IU) was instilled intratracheally to C57BL/6 mice, which were then treated by micro-osmotic pump with vehicle, JNJ7777120 (40 mg/kg b.wt.), naproxen (21 mg/kg b.wt.), or a combination of both. Airway resistance to inflation, an index of lung stiffness, was assessed, and lung specimens were processed for inflammation, oxidative stress, and fibrosis markers. Both drugs alone were able to reduce the airway resistance to inflation induced by bleomycin and the inflammatory response by decreasing COX-2 and myeloperoxidase expression and activity and thiobarbituric acid-reactive substance and 8-hydroxy-2'-deoxyguanosine production. Lung fibrosis was inhibited, as demonstrated by the reduction of tissue levels of transforming growth factor-β, collagen deposition, relative goblet cell number, and smooth muscle layer thickness. Our results demonstrate that both JNJ7777120 and naproxen exert an anti-inflammatory and antifibrotic effect that is increased by their combination, which could be an effective therapeutic strategy in the treatment of pulmonary fibrosis.

  5. Maresin 1 Inhibits Epithelial-to-Mesenchymal Transition in Vitro and Attenuates Bleomycin Induced Lung Fibrosis in Vivo.

    PubMed

    Wang, Yaxin; Li, Ruidong; Chen, Lin; Tan, Wen; Sun, Zhipeng; Xia, Haifa; Li, Bo; Yu, Yuan; Gong, Jie; Tang, Min; Ji, Yudong; Yuan, Shiying; Shanglong Yao; Shang, You

    2015-11-01

    Lung fibrosis is an aggressive disease with uncontrolled fibrotic response and no effective therapeutic treatment. Epithelial-to-mesenchymal transition (EMT) has been proved to be an important pathological feature in lung fibrosis. In this study, we investigated whether MaR1, a kind of proresolving lipid mediators, could inhibit TGF-β1-induced EMT in vitro and lung fibrosis in vivo. In vitro study, mouse type II alveolar epithelial cells were treated with different does of MaR1 for 30 min and were exposed to TGF-β1 for 48 h. In vivo study, C57BL/6 mice were administered bleomycin intratracheally. After 14 days, MaR1 was injected intraperitoneally daily for 7 days. In day 28, mice were sacrificed. The results demonstrate that treatment of mouse type II alveolar epithelial cells with MaR1 (10 nM) significantly prevents TGF-β1-induced fibronectin and α-SMA expression and restores E-Cadherin level. The down-regulation of profibrotic molecules of MaR1 is associated with suppression of Smad2/3 and Akt phosphorylation. In vivo, MaR1 treatment significantly prolongs survival rate and attenuates destruction of lung architecture, as well as collagen deposition after bleomycin inhalation. TGF-β1 concentration in bronchoalveolar lavage and fibrotic markers (fibronectin and α-SMA) in lung tissues are inhibited by MaR1 administration. These data indicate that MaR1 inhibits TGF-β1-induced EMT and attenuates bleomycin-induced pulmonary fibrosis. MaR1 may be a promising strategy for alleviation of lung fibrosis.

  6. Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space

    PubMed Central

    Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2017-01-01

    Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment. The degree of DNA damage was quantified by immunofluorescence staining for γ-H2AX, which is manifested in three types of staining patterns. Although similar percentages of these types of patterns were found between flight and ground cells, there was a slight shift in the distribution of foci counts in the flown cells with countable numbers of γ-H2AX foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. We also performed a microarray analysis of gene expressions in response to bleomycin treatment. A qualitative comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. The microarray data was confirmed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly upregulated in both flight and ground cells after bleomycin treatment. Our results suggest that whether microgravity affects DNA damage response in space can be dependent on the cell type and cell growth condition. PMID:28248986

  7. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-induced DNA Damages in Confluent Human Fibroblasts

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael

    2016-07-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not

  8. Nucleosome rearrangement in human cells following short patch repair of DNA damaged by bleomycin

    SciTech Connect

    Sidik, K.; Smerdon, M.J. )

    1990-08-14

    We have examined the structure of newly repaired regions of chromatin in intact and permeabilized human cells following exposure to bleomycin (BLM). The average repair patch size (in permeabilized cells) was six to nine bases, following doses of 1-25 micrograms/mL BLM, and greater than 80% of the total repair synthesis was resistant to aphidicolin. In both intact and permeabilized cells, nascent repair patches were initially very sensitive to staphylococcal nuclease, analogous to repair induced by long patch agents, and are nearly absent from isolated nucleosome core DNA. Unlike long patch repair, however, the loss of nuclease sensitivity during subsequent chase periods was very slow in intact cells, or in permeabilized cells treated with a low dose of BLM (1 microgram/mL), and was abolished by treatment with hydroxyurea (HU) or aphidicolin (APC). The rate of repair patch ligation did not correlate with this slow rate of chromatin rearrangement since greater than 95% of the patches were ligated within 6 h after incorporation (even in the presence of HU or APC). In permeabilized cells, repair patches induced by either 5 or 25 micrograms/mL BLM, where significant levels of strand breaks occur in compact regions of chromatin, lost the enhanced nuclease sensitivity at a rate similar to that observed following long patch repair. This rapid rate of rearrangement was not affected by APC. These results indicate that short patch repair in linker regions of nucleosomes, and/or open regions of chromatin, involves much less nucleosome rearrangement than long patch repair or short patch repair in condensed chromatin domains.

  9. Copper(II) facilitates bleomycin-mediated unwinding of plasmid DNA

    SciTech Connect

    Levy, M.J.; Hecht, S.M.

    1988-04-19

    The unwinding of plasmid DNA by bleomycin A/sub 2/ (BLM A/sub 2/) was investigated by use of two-dimensional gel electrophoresis. It was found that Cu/sup 2 +/ ions greatly facilitated the unwinding of topoisomers of plasmid DNA by BLM A/sub 2/ at concentrations where cupric ions along had no effect on DNA supercoiling. The concentration of BLM A/sub 2/ required for observable unwinding was reduced at least 100-fold in the presence of equimolar Cu/sup 2 +/. A plot of (Cu/sup 2 +/) vs extent of DNA unwinding in the presence of 10/sup -4/ M BLM A/sub 2/ gave a curve consistent with the action of cupric ions on BLM in an allosteric fashion, possibly rearranging the drug into a conformation that facilitates DNA unwinding. The participation of the metal center in enhancing DNA unwinding via direct ionic interaction with one or more negatively charged groups on the DNA duplex also seems possible. Further analysis of the structural factors required for BLM-mediated DNA unwinding was carried out with Cu/sup 2 +/ + BLM demethyl A/sub 2/, the latter of which differs from BLM A/sub 2/ only in that it lacks a methyl group, and associated positive charge, at the C-terminus. Cu(II) x BLM demethyl A/sub 2/ was found to be much less effective than Cu(II) x BLM A/sub 2/ as a DNA unwinding agent, emphasizing the strong dependence of this process on the presence of positively charged groups within the BLM molecule. These findings constitute the first direct evidence that the metal center of BLM can participate in DNA interaction, as well as in the previously recognized role of oxygen binding and activation.

  10. Chlorambucil and bleomycin induce mutations in the specific-locus test in female mice.

    PubMed

    Russell, L B; Hunsicker, P R; Shelby, M D

    1996-10-28

    Specific-locus studies have shown chlorambucil (CHL) and bleomycin (BLE) to be mutagenic in mouse oocytes, almost doubling the number of chemicals previously known to induce mutations in females. The overall CHL-induced mutation rate in oocytes is, however, one order of magnitude below that for male meiotic and postmeiotic stages, and only 1/50 that for early spermatids. For BLE, no specific-locus data for males are available for comparison, but the chemical had earlier been found negative for dominant-lethal induction in males. Both BLE and CHL were significantly mutagenic only in mature and maturing oocytes. In keeping with an earlier report, BLE produced a high incidence of dominant lethals in these stages. CHL failed to induce dominant lethals, indicating that for mature and maturing oocytes, in contrast with results for males, sensitivity to dominant-lethal mutations is not a prerequisite for induction of specific-locus mutations. Exposure of immature oocytes to either BLE or CHL produced neither dominant lethals nor significant induction of specific-locus mutations; however, CHL gave evidence of killing immature oocytes. By contrast, BLE, which has been considered a radiomimetic chemical, does not appear to kill immature oocytes and thus differs markedly from radiation exposures equivalent for dominant-lethal induction. Therefore, the failure to recover specific-locus mutations cannot be ascribed to cell selection resulting from oocyte killing, as has sometimes been done for radiation. Adding results on the nature of the CHL- and BLE-induced mutations to prior information, the estimated minimum proportion of large DNA lesions induced in oocytes by chemicals becomes 35.3%, significantly different from the corresponding figure (approximately 70%) for radiations. For chemical treatments, the oocyte proportion is highly significantly above the 3.6% induced in spermatogonia, but only on the borderline of statistically significant difference from that induced in

  11. Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration.

    PubMed

    Suszyńska-Zajczyk, Joanna; Luczak, Magdalena; Marczak, Lukasz; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) participates in Hcy metabolism and is also linked to AD. The inactivation of the Blmh gene in mice causes accumulation of Hcy-thiolactone in the brain and increases susceptibility to Hcy-thiolactone-induced seizures. To gain insight into brain-related Blmh function, we used two-dimensional IEF/SDS-PAGE gel electrophoresis and MALDI-TOF/TOF mass spectrometry to examine brain proteomes of Blmh-/- mice and their Blmh+/+ littermates fed with a hyperhomocysteinemic high-Met or a control diet. We found that: (1) proteins involved in brain-specific function (Ncald, Nrgn, Stmn1, Stmn2), antioxidant defenses (Aop1), cell cycle (RhoGDI1, Ran), and cytoskeleton assembly (Tbcb, CapZa2) were differentially expressed in brains of Blmh-null mice; (2) hyperhomocysteinemia amplified effects of the Blmh-/- genotype on brain protein expression; (3) proteins involved in brain-specific function (Pebp1), antioxidant defenses (Sod1, Prdx2, DJ-1), energy metabolism (Atp5d, Ak1, Pgam-B), and iron metabolism (Fth) showed differential expression in Blmh-null brains only in hyperhomocysteinemic animals; (4) most proteins regulated by the Blmh-/- genotype were also regulated by high-Met diet, albeit in the opposite direction; and (5) the differentially expressed proteins play important roles in neural development, learning, plasticity, and aging and are linked to neurodegenerative diseases, including AD. Taken together, our findings suggest that Blmh interacts with diverse cellular processes from energy metabolism and anti-oxidative defenses to cell cycle, cytoskeleton dynamics, and synaptic plasticity essential for normal brain homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in AD.

  12. Kallistatin protects against bleomycin-induced idiopathic pulmonary fibrosis by inhibiting angiogenesis and inflammation

    PubMed Central

    Huang, Xiaoping; Wang, Xiao; Xie, Xiaolan; Zeng, Shulan; Li, Zhaofa; Xu, Xianxiang; Yang, Huiyong; Qiu, Fei; Lin, Junsheng; Diao, Yong

    2017-01-01

    Aberrant angiogenesis and vascular remodeling are the main features of idiopathic pulmonary fibrosis. Kallistatin is an anti-angiogenic peptide with known effects on endothelial cells. This study aimed to demonstrate that kallistatin has beneficial effects on bleomycin (BLM)-induced pulmonary fibrosis in a rat model by inhibiting angiogenesis. Twenty-five rats were randomly divided into five experimental groups: (A) Saline only (SA)-as the negative control, (B) BLM only (BLM)-as the model group, (C) BLM and 0.1 mg/kg kallistatin (L-Kal), (D) BLM and 0.5 mg/kg kallistatin (M-Kal), and (E) BLM and 2.5 mg/kg kallistatin (H-Kal). Fibrillar collagen was quantified by Masson’s trichrome and hematoxylin-eosin staining. Transforming growth factor-β1 (TGF-β1), α-smooth-muscle-actin (α-SMA) and microvascular density (MVD) were measured by immunohistochemistry. Vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), and tumor necrosis factor-α (TNF-α) were assayed by Western immunoblotting or ELISA. Daily administration of kallistatin attenuated fibrosis in BLM-induced pulmonary fibrosis, as shown by histology. During inflammation from BLM-induced pulmonary fibrosis, kallistatin reduced the number of inflammatory cells infiltrating the bronchoalveolar lavage fluid. Kallistatin also inhibited VEGF expression and phosphorylation of VEGFR2 (Flk-1). In vitro, kallistatin blocked tube formation by inhibiting Flk-1 and GSK-3β phosphorylation. The results demonstrated that continuous administration of kallistatin attenuated BLM-induced pulmonary fibrosis and improved survival of BLM rats. Reducing pulmonary fibrosis was achieved by partial inhibition of pulmonary inflammation and angiogenesis. PMID:28386328

  13. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition.

    PubMed

    Lu, Guo-Xun; Bian, Di-Fei; Ji, Yu; Guo, Jiao-Mei; Wei, Zhi-Feng; Jiang, Si-De; Xia, Yu-Feng; Dai, Yue

    2014-08-01

    This study aimed to explore the protective effects of madecassoside (Mad), a triterpenoid saponin isolated from Centella asiatica herbs, on experimental pulmonary fibrosis (PF) and underlying mechanisms. PF model was established in mice by endotracheal instillation with bleomycin (5 mg/kg). Mice were orally administered with Mad (10, 20, 40 mg/kg) and prednisone (5 mg/kg) for 7 or 21 days. Mad (20, 40 mg/kg) significantly improved lung pathological changes and reduced collagen deposition. In the aspect of collagen synthesis, Mad (20, 40 mg/kg) reduced the expressions of α-smooth muscle actin and transforming growth factor-β1 (TGF-β1), and inhibited the phosphorylations of Smad2 and Smad3 in the lung tissues. However, in vitro, Mad showed little effect on TGF-β1-induced phosphorylation of either Smad2 or Smad3 in primary mouse lung fibroblasts. Moreover, Mad (20, 40 mg/kg) attenuated oxidative damage and inflammation presented at the early stage of PF, evidenced by reduced total leukocytes in the bronchoalveolar lavage fluid, decreased myeloperoxidase activity and malondialdehyde level, and increased super-oxide dismutase activity and glutathione level in lung tissues. On the other hand, Mad (40 mg/kg) elevated the matrix metalloproteinase 1/tissue inhibitor of metalloproteinase 1 ratio in lung tissues of PF mice mainly by downregulating tissue inhibitor of metalloproteinase 1 expression. The present study demonstrated that Mad can ameliorate PF by preventing the deposition of extracellular matrix, which might be achieved mainly through attenuating inflammation and oxidative stress and consequent TGF-β1 overexpression.

  14. Effects of leflunomide on inflamation and fibrosis in bleomycine induced pulmonary fibrosis in wistar albino rats

    PubMed Central

    Guzel, Aygul; Duran, Latif; Tutuncu, Serife; Guzel, Ahmet; Gunaydın, Mithat; Salis, Osman; Okuyucu, Ali; Selcuk, Mustafa Yasin

    2013-01-01

    Purposes Pulmonary fibrosis is a rare and progressive lung disease with a high mortality rate. The treatment regimens still fail to recover the disease. Leflunomide (LEF) is an immunomodulatory agent with antiproliferative activity that is used for the treatment of rheumatoid arthritis. The purpose of the study is to investigate the potential therapeutic efficacy of LEF in bleomycin (BLM) induced pulmonary fibrosis. Methods A total of 21 male, adult wistar albino rats were used. The animals were divided into three groups as control, BLM and BLM plus LEF groups (n=7). In BLM group, mice were treated with intratracheal instillation of BLM (2.5 U/kg). Control group received the same volume of saline instead of BLM. In LEF group, in addition to BLM, LEF (10 mg/kg, daily) was administrated by oral gavage. The effect of LEF on pulmonary inflammation and fibrosis was studied by measurements of serum clara cell protein-16 (CC-16), thiobarbituric acid reactive substance levels (TBARS), superoxide dismutase (SOD) and advanced oxidation protein products (AOPP) levels and lung tissue contents of IL-6, TNF-α and NF-κB by immunhistochemical examinations. Results LEF significantly increased the level of CC-16 and decreased the level of AOPP (P=0.042 and P=0.003 respectively). Lung tissue contents of IL-6, TNF-α and NF-κB significantly decreased in LEF group compared to BLM group by immunhistochemical examinations (P<0.001). Conclusions LEF reduces oxidative stress factors, alveolar inflammation and attenuates lung injury and fibrosis. PMID:24255778

  15. Oropharyngeal aspiration of bleomycin: An alternative experimental model of pulmonary fibrosis developed in Swiss mice

    PubMed Central

    Bale, Swarna; Sunkoju, Manoj; Reddy, Shiva Shankar; Swamy, Veerabhadra; Godugu, Chandraiah

    2016-01-01

    Objective: Pulmonary fibrosis (PF) is a progressive and predominantly lethal form of several interstitial lung diseases with limited current therapeutics; it is, therefore, essential to develop a simple, homogeneous, and noninvasive disease model to investigate possible anti-fibrotic approaches. The present study is designed to develop oropharyngeal aspiration (OPA) model of bleomycin (BLM)-induced PF as a simple and alternative to intratracheal (IT) administration of BLM in Swiss mice strain. Materials and Methods: Mice were divided into two groups, BLM-treated and normal control. BLM via OPA (2 IU/kg) was used to induce PF. Water for injection was used as a vehicle in control animals. Body weights were measured once in a week, and the study was continued for 21 days. At the end of the study, animals were euthanized and bronchoalveolar lavage fluid was collected and subjected to lymphocytes count, estimation of albumin and protein levels. Lung tissues were collected, and various biochemical assays (malondialdehyde, glutathione, nitric oxide, hydroxyproline) and molecular techniques including ELISA and Western blot were performed to investigate the effect of OPA-BLM. Further, histopathology and Masson's trichrome staining techniques were performed in lung sections. Results: OPA administration of BLM in Swiss mice significantly induced PF, evident from lung index and morphology. Several oxidative stress parameters and hydroxyproline assay revealed the significant (P < 0.05) induction of PF. Further results obtained from histopathology, Masson's trichrome staining, ELISA, and Western blot confirmed the significant induction of PF via OPA-BLM. Conclusion: BLM administration by OPA route in Swiss mice can be used as a simple, homogeneous, and noninvasive model of inducing PF and to investigate the effect of various anti-fibrotic agents as an alternative to IT-BLM. PMID:28066100

  16. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS) on pulmonary inflammation induced by bleomycin

    PubMed Central

    Santos, Laisa A.; Silva, Carlos A.; Polacow, Maria L. O.

    2013-01-01

    Background Bleomycin (B) is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. Objective The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS). Method Wistar rats were divided into 4 groups (n=5): a control group (C); a stimulated group (TEDS); a group treated with a single dose of B (intratracheally, 2.5 mg/kg) (B); and a group treated with B and electric stimulation (B + TEDS). After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE) and 8-isoprostane-PGF2α (8-iso-PGF2α). The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p≤0.05). Results The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. Conclusion B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage. PMID:24346295

  17. Nitric oxide exerts protective effects against bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    2014-01-01

    Background Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms. Methods Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced pulmonary fibrosis. Results The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs. Conclusions These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis. PMID:25092105

  18. [Effects of erdosteine on inflammation and fibrosis in rats with pulmonary fibrosis induced by bleomycin].

    PubMed

    Erden, Ersin Sükrü; Kirkil, Gamze; Deveci, Figen; Ilhan, Nevin; Cobanoğlu, Bengü; Turgut, Teyfik; Muz, Mehmet Hamdi

    2008-01-01

    We aimed to investigate the levels of some chemokines, inflammatory cell counts in bronchoalveolar lavage (BAL) fluid, histopathological changes in lung tissue, to determine the effect of erdosteine on acute inflammatory changes and fibrosis in a rat fibrosis model induced by bleomycine (BLM). Forty-five Wistar male rats were taken into the study. On day 0, intratracheal saline to control group (group 1, n= 15), intratracheal BLM 7.5 U/kg to BLM (group 2, n= 15) and erdosteine group (group 3, n= 15) was administered. In group 3, oral erdosteine (10 mg/kg/day) was applied two days before BLM. On day 0, 14, and 29th five rats in each groups were sacrificed, BAL fluid was performed. Malonyldialdehyde (MDA), macrophage inflammatory protein (MIP)-1alpha, MIP-2 levels in BAL fluid, hydroxyproline levels in lung tissue were measured. Histopathological examination was performed. When BLM group compared to erdosteine group, the levels of MDA, MIP-1alpha, MIP-2, and neutrophil counts, the hydroxyproline (OH-P) level of lung tissue were decreased in erdosteine group on acute inflammatory phase (day 14) (p< 0.001, p= 0.017, p= 0.009, p< 0.001, p= 0.009, respectively), and late fibrosis phase (day 29) except BAL MIP-2 (p= 0.022, p= 0.025, p= 0.01, p< 0.001, respectively). Fibrosis level was significantly lower in erdosteine group than BLM group on day 29 (p= 0.01). We conclude that erdosteine may prevent the acute lung inflammation and fibrosis by suppressing the accumulation of neutrophils, inhibition of lipid peroxydation, chemokine production, and release.

  19. Effect of calcium antagonists and metabolic inhibitors on the retention of adriamycin, in both free and liposomal form, in a number of tumor cells lines

    SciTech Connect

    Radel, S.

    1987-01-01

    Adriamycin (ADR) encapsulated in liposomes (MLV-ADR) accumulated at a lower rate, with a concomitant reduced cytotoxicity, in comparison to the free drug form (F-ADR) in all murine tumors tested. However, inhibition of (/sup 3/H) thymidine incorporation into DNA appeared nearly equal between F-ADR and MLV-ADR treated tumor cells suggesting that the concentration necessary to inhibit DNA synthesis is only a fraction of the total drug content within the cells. Electrophoretic mobility of tumor cells was unaffected by exposure to either F-ADR or MLV-ADR. The metabolic inhibitor N-ethylmaleimide (NEM) when coincubated with F-ADR in P388 adriamycin-resistant leukemia cells (P388-ADR) resulted in a marked increase in intracellular drug accumulation. Use of the calcium channel blockers verapamil (VRP) and N-3,4-dimethoxyphenethyl)-N-methyl-2-(2-napthyl)-m-dithane-2-propylamine hydrochloride, (DMDP), a derivative of verapamil, in conjunction with adriamycin treatment demonstrated a near reversal of resistance in P388/ADR. Retention of drug increased 4-5 fold in the presence of each of the calcium antagonists in vitro studies with a concomitant drop in viability which surpassed that observed in P388/O. P388/ADR tumor bearing mice treated with the combination of VRP or DMDP and F-ADR exhibited no increase in mean survival times (MST) over F-ADR therapy alone. Scanning electron microscopy (SEM) studies of P388/O tumor cells demonstrated numerous, small villi-like processes, whereas P388/ADR cells possessed many large membraneous folds. Transmission electron microscopy (TEM) demonstrated not only the membrane folding seem by SEM, but also the presence of large numbers of C type viral particles in P388/ADR cells in comparison to the small amounts detected in P388/O cells.

  20. Preparation of the core-shell structure adriamycin lipiodol microemulsions and their synergistic anti-tumor effects with diethyldithiocarbamate in vivo.

    PubMed

    Daocheng, Wu; Mingxi, Wan

    2010-11-01

    We prepared the core-shell structure adriamycin lipiodol microemulsions (ADM-CSLMs) and evaluated their in vivo antitumor effects in combination with Diethyldithiocarbamate (DDC). Two types of ADM-CSLMs, adriamycin liposome-lipiodol microemulsion(ADM-LLM) and adriamycin microsphere lipiodol microemulsion (ADM-MLM), were prepared through the emulsification method. The drug loading and encapsulation efficiency of ADM-CSLMs were measured by the high-performance liquid chromatograph (HPLC). The size and shape of the ADM-CSLMs were determined by an atom force microscopy (AFM), a transmission electron microscopy (TEM), and a particle size analyzer, respectively. The synergistic effects of DDC and ADM-CSLMs for cancer treatment of carcinoma drug-resistance cell was evaluated by the MTT method, the activation of superoxide dismutase (SOD) was detected by chemiluminescence, and the ADM accumulation in cells was measured by flow cytometry. Walker-256 carcinoma was transplanted to the livers of the male SD rats, ADM-CSLMs were administrated to the livers of the rats by intervention hepatic artery embolization through microsurgery. The tumor growth and animal survival were evaluated. The results show that the average diameter of ADM-LLM and ADM-MLM were 4.23 ± 1.2 μm and 4.67 ± 1.4 μm, respectively, and their ADM encapsulation efficiency were 83.7% and 87.2% with respect to loading efficiency of 82 μg/ml and 91 μg/ml. The tumor growth and animal survival in two of the ADM-CSLMs combined with DDC groups were significantly higher than that of ADM only treatment, ADM liposome combined with DDC (P < 0.01), as well as the ADM microsphere combined with DDC (P < 0.01). Therefore, ADM-CSLMs are useful carriers for the treatment of carcinoma and their anti-tumor effect can be enhanced by DDC in a suitable concentration.

  1. Application of radiofrequency thermocoagulation combined with adriamycin injection in dorsal root ganglia for controlling refractory pain induced by rib metastasis of lung cancer (a STROBE-compliant article)

    PubMed Central

    Xie, Guang-lun; Guo, Da-peng; Li, Zhi-gang; Liu, Chang; Zhang, Wei

    2016-01-01

    Abstract This study aimed to observe the therapeutic effects and adverse reactions of radiofrequency thermocoagulation combined with adriamycin injection in dorsal root ganglia on lung cancer rib metastasis-related refractory pain which has no response to conventional therapy. This study contained 27 patients with lung cancer rib metastasis-related moderate or severe pain which had no response to conventional therapy. Under computed tomography (CT)-guidance, radiofrequency puncture need reached the corresponding intervertebral foramens to ensure needle point near dorsal root ganglia (DRG) by sensory and motor stimulation tests, and then radiofrequency thermocoagulation was performed on each corresponding DRG followed by injection of 0.5 to 1 mL of adriamycin (0.5%). The conditions of pain and complications were observed before management and 3 days, 1 month, and 3 months after management, respectively. Numerical rating scale (NRS) scores and dosage of morphine were all significantly decreased after management as compared with those before management (all P < 0.01). Although the number of patients with chest wall numbness was significantly increased after management as compared with that before management (all P < 0.01), the degree of chest wall numbness was tolerable. There were no statistical differences between before and after management in nausea and vomiting, and constipation. CT-guided radiofrequency thermocoagulation combined with adriamycin injection in DRG can effectively control lung cancer rib metastasis-related pain which has no response to conventional therapy. This combinatory treatment regimen is featured by better therapeutic effects and a few complications, so it is worthy of being recommended in clinical application. PMID:27749531

  2. Cardiac disease induced by chronic adriamycin administration in dogs and an evaluation of vitamin E and selenium as cardioprotectants.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.; Weirich, W. E.

    1980-01-01

    Chronic adriamycin (ADR) intoxication was produced in three groups of beagle dogs by weekly intravenous injections (1 mg/kg body weight) for 20 weeks (cumulative dose 400 mg/sq m). Group A (6 dogs) received ADR only; Group B (6 dogs) were given ADR and weekly doses of vitamin E (17 mg/kg body weight) as alpha-tocopherol acetate; and Group C (6 dogs) received ADR and weekly doses of vitamin E as did Group B and selenium (0.06 mg/kg body weight as selenite). Each of the 18 dogs developed ADR-induced cardiomyopathy (CMY), and death occurred in 11 dogs during Weeks 17-20. Mortality was lowest in Group B (2 of 6), but no differences between groups were seen either in survival time of the dogs that died or in severity of CMY. Cardiomyopathy was more severe in dogs that died than in survivors. Congestive heart failure with transudation was present in 4 of 11 dogs that died. Cardiac histopathology was characterized by vacuolar degeneration of myocytes. Myocardial damage was most severe in the left ventricle and the ventricular septum, intermediate in the right ventricle and the left atrium, and least in the right atrium. Ultrastructural study showed that an early alteration in damaged myocytes was distention of sarcoplasmic reticulum to form sarcoplasmic vacuoles. Occasional damaged fibers had myofibrillar lysis and focal proliferation of sarcoplasmic reticulum. This study demonstrates that the dog offers a suitable model for studies of chronic ADR cardiotoxicity in man. The lack of cardioprotection from vitamin E and selenium supplementation fails to support the proposed role of lipoperoxidative damage in the development of chronic ADR-induced CMY. Images Figure 9 Figure 10 Figure 1 Figure 2 Figure 11 Figure 12 Figure 13 Figure 3 Figure 4 Figure 5 Figure 14 Figure 15 Figure 6 Figure 7 Figure 8 Figure 16 Figure 17 Figure 18 Figure 19 PMID:7361854

  3. Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy

    PubMed Central

    2016-01-01

    The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria. PMID:27510383

  4. Chemoimmunotherapy of small cell bronchogenic carcinoma with VP-16-213, ifosfamide, vincristine, adriamycin, and Corynebacterium parvum

    SciTech Connect

    Valdivieso, M.; Tenczynski, T.F.; Rodriguez, V.; Burgess, M.A.; Mountain, C.F.; Barkley, H.T. Jr.; Hersh, E.M.; Bodey, G.P.

    1981-07-15

    Thirty-five consecutive patients with small cell bronchogenic carcinoma (SCBC) received chemoimmunotherapy with VP-16-213, Ifosfamide, vincristine, Adriamycin, and Corynebacterium parvum. Of 33 evaluable patients, 26 (79%) responded with complete (55%) or partial (24%) remissions. Complete remissions were more common among patients with limited disease (11/14 patients, 79%) compared with those with extensive disease (7/19 patients, 37%) and among patients (11/14 patients, 79%) compared with those with extensive disease (7/19 patients, 37%) and among patients who were ambulatory prior to therapy (16/25 patients, 64%) compared with those who were nonambulatory (2/8 patients, 25%). Myelosuppression consisted primarily of neutropenia. Eight percent of the treatment courses in 29% of the patients were associated with hematuria and/or documented episodes of infection during neutropenia. There were three deaths possibly related to treatment, in two of which there was no evidence of disease at post-mortem examination. Six patients relapsed in the central nervous system (CNS). In four instances, CNS relapse was the only site of tumor progression. Central nervous system relapse was more common among evaluable patients who did not receive prophylactic brain irradiation (5/17 patients, 29%, vs. 1/15 patients, 7%; P . 0.23). The median survival duration for all patients was 63 weeks, being slightly longer for patients with limited disease than for those with extensive disease (70.9 weeks vs. 56 weeks; P . 0.18). This was also true for patients who achieved complete rather than partial remissions (71 weeks vs. 50 weeks; P . 0.09). Patients receiving prophylactic brain irradiation experienced longer survival (100.8 weeks vs. 48 weeks; P . 0.01).

  5. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods.

    PubMed

    Liu, Lei V; Bell, Caleb B; Wong, Shaun D; Wilson, Samuel A; Kwak, Yeonju; Chow, Marina S; Zhao, Jiyong; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2010-12-28

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin Fe(III) peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4' hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of Fe(III)BLM and ABLM as (BLM)Fe(III)─OH and (BLM)Fe(III)(η(1)─OOH) species, respectively. The NRVS spectra of Fe(III)BLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─N(ax) transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.

  6. Prostaglandin F(2alpha) receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-beta.

    PubMed

    Oga, Toru; Matsuoka, Toshiyuki; Yao, Chengcan; Nonomura, Kimiko; Kitaoka, Shiho; Sakata, Daiji; Kita, Yoshihiro; Tanizawa, Kiminobu; Taguchi, Yoshio; Chin, Kazuo; Mishima, Michiaki; Shimizu, Takao; Narumiya, Shuh

    2009-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix (ECM) proteins, which lead to distorted lung architecture and function. Given that anti-inflammatory or immunosuppressive therapy currently used for IPF does not improve disease progression therapies targeted to blocking the mechanisms of fibrogenesis are needed. Although transforming growth factor-beta (TGF-beta) functions are crucial in fibrosis, antagonizing this pathway in bleomycin-induced pulmonary fibrosis, an animal model of IPF, does not prevent fibrosis completely, indicating an additional pathway also has a key role in fibrogenesis. Given that the loss of cytosolic phospholipase A(2) (cPLA(2)) suppresses bleomycin-induced pulmonary fibrosis, we examined the roles of prostaglandins using mice lacking each prostoaglandin receptor. Here we show that loss of prostaglandin F (PGF) receptor (FP) selectively attenuates pulmonary fibrosis while maintaining similar levels of alveolar inflammation and TGF-beta stimulation as compared to wild-type (WT) mice, and that FP deficiency and inhibition of TGF-beta signaling additively decrease fibrosis. Furthermore, PGF(2alpha) is abundant in bronchoalveolar lavage fluid (BALF) of subjects with IPF and stimulates proliferation and collagen production of lung fibroblasts via FP, independently of TGF-beta. These findings show that PGF(2alpha)-FP signaling facilitates pulmonary fibrosis independently of TGF-beta and suggests this signaling pathway as a therapeutic target for IPF.

  7. Genetic ablation of mast cells redefines the role of mast cells in skin wound healing and bleomycin-induced fibrosis.

    PubMed

    Willenborg, Sebastian; Eckes, Beate; Brinckmann, Jürgen; Krieg, Thomas; Waisman, Ari; Hartmann, Karin; Roers, Axel; Eming, Sabine A

    2014-07-01

    Conclusive evidence for the impact of mast cells (MCs) in skin repair is still lacking. Studies in mice examining the role of MC function in the physiology and pathology of skin regenerative processes have obtained contradictory results. To clarify the specific role of MCs in regenerative conditions, here we used a recently developed genetic mouse model that allows conditional MC ablation to examine MC-specific functions in skin. This mouse model is based on the cell type-specific expression of Cre recombinase in connective tissue-type MCs under control of the Mcpt5 promoter and the Cre-inducible diphtheria toxin receptor-mediated cell lineage ablation by diphtheria toxin. In response to excisional skin injury, genetic ablation of MCs did not affect the kinetics of reepithelialization, the formation of vascularized granulation tissue, or scar formation. Furthermore, genetic ablation of MCs failed to prevent the development of skin fibrosis upon bleomycin challenge. The amount of deposited collagen and the biochemistry of collagen fibril crosslinks within fibrotic lesions were comparable in MC-depleted and control mice. Collectively, our findings strongly suggest that significant reduction of MC numbers does not affect skin wound healing and bleomycin-induced fibrosis in mice, and provide to our knowledge previously unreported insight in the long-debated contribution of MCs in skin regenerative processes.

  8. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods.

    SciTech Connect

    Liu, L. V.; Bell, C. B., III; Wong, S. D.; Wilson, S. A.; Kwak, Y.; Chow, M.S.; Zhao, J.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2010-12-28

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin Fe{sup III} peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4{prime} hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of Fe{sup III}BLM and ABLM as (BLM)Fe{sup III}-OH and (BLM)Fe{sup III}({eta}{sup 1}-OOH) species, respectively. The NRVS spectra of Fe{sup III}BLM and ABLM are strikingly different because in ABLM the {delta}Fe-O-O bending mode mixes with, and energetically splits, the doubly degenerate, intense O-Fe-N{sub ax} transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.

  9. Low-magnification image analysis of Giemsa stained, electroporation and bleomycin treated endothelial monolayers provides reliable monolayer integrity data.

    PubMed

    Meulenberg, Cécil J W; Cemazar, Maja

    2014-06-01

    The aim of this study was to develop an in vitro cell model for studying the in vivo observed vascular effect, induced by exposing blood vessels to changing electric field strengths. Human microvascular endothelial cells (HMEC-1) were cultured as monolayers on 8 chamber glass slides as a model of capillary wall. Exposed to electric pulses alone, or in the presence of bleomycin (electrochemotherapy), monolayers were incubated with culture medium, fixed with methanol, stained with Giemsa, and photographed. Images of high-contrast low-magnification monolayers made under identical optimal light exposure were converted to greyscale, and the use of a threshold tool yielded a binary distribution, from which we determined two parameters of monolayer integrity: the covered surface area and the number of cells. We show that this low-magnification image analysis method for attached endothelial cells provides reliable control parameters of monolayer integrity, representing capillary wall. Besides, already within 2h post-treatment the data show distinct effects in the monolayer integrity parameters for electric pulses alone, or in the presence of bleomycin. The present method can be readily introduced to short and long-term toxicity assays with a variety of treatment conditions.

  10. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods

    PubMed Central

    Liu, Lei V.; Bell, Caleb B.; Wong, Shaun D.; Wilson, Samuel A.; Kwak, Yeonju; Chow, Marina S.; Zhao, Jiyong; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2010-01-01

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin FeIII peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4′ hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of FeIIIBLM and ABLM as (BLM)FeIII─OH and (BLM)FeIII(η1─OOH) species, respectively. The NRVS spectra of FeIIIBLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─Nax transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways. PMID:21149675

  11. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    SciTech Connect

    Fukunaga, Satoki; Kakehashi, Anna; Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki; Gi, Min; Wanibuchi, Hideki

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  12. Assessment of preferential cleavage of an actively transcribed retroviral hybrid gene in murine cells by deoxyribonuclease I, bleomycin, neocarzinostatin, or ionizing radiation

    SciTech Connect

    Beckmann, R.P.; Agostino, M.J.; McHugh, M.M.; Sigmund, R.D.; Beerman, T.A.

    1987-08-25

    Preferential cleavage induced by bleomycin, neocarzinostatin, or ionizing radiation in a transcribed cellular gene was evaluated through comparisons with deoxyribonuclease I. The glucocorticoid-inducible LTL gene previously described served as the specific DNA target. A Southern blot analysis was used to specifically assess cleavage of the LTL gene in nuclei isolated from cells either treated or untreated with the synthetic glucocorticoid dexamethasone. Hypersensitivity of the gene to bleomycin or neocarzinostatin, which paralleled deoxyribonuclease I hypersensitivity, was evident only in nuclei isolated from dexamethasone-treated cells. Like deoxyribonuclease I, sites of dexamethasone-inducible drug hypersensitivity were coincident with the binding region for the glucocorticoid receptor found within the regulatory sequences of the LTL gene. In contrast, no hypersensitivity to ionizing radiation was evident. Although bleomycin and neocarzinostatin showed qualitatively similar preferences for the threshold LTL gene, quantitative evaluations of damage to total cellular DNA by filter elution showed that the relative specificity of bleomycin for the hypersensitive region was much less than that of either deoxyribonuclease I or neocarzinostatin.

  13. Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis

    PubMed Central

    Gilhodes, Jean-Claude; Kreuz, Sebastian; Stierstorfer, Birgit; Stiller, Detlef; Wollin, Lutz

    2017-01-01

    Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes

  14. Preventive Effects of Rhodiola rosea L. on Bleomycin-Induced Pulmonary Fibrosis in Rats

    PubMed Central

    Zhang, Ke; Si, Xiao-Ping; Huang, Jian; Han, Jian; Liang, Xu; Xu, Xiao-Bo; Wang, Yi-Ting; Li, Guo-Yu; Wang, Hang-Yu; Wang, Jin-Hui

    2016-01-01

    Rhodiola rosea L. (RRL) possesses a wide range of pharmacological properties, including lung-protective activity, and has been utilized in folk medicine for several 100 years. However, the lung-protective mechanism remains unclear. This study investigated the possible lung-protective activity mechanism of RRL in a pulmonary fibrosis (PF) rat model. Lung fibrotic injury was induced in Sprague–Dawley rats by single intratracheal instillation of saline containing bleomycin (BLM; 5 mg/kg). The rats were administered 125, 250, or 500 mg/kg of a 95% ethanol extract of RRL for 28 days. The animals were killed to detect changes in body weight, serum levels of glutathione (GSH) and total superoxide dismutase (T-SOD), as well as lung tissue hydroxyproline (HYP) content. Tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin 6 (IL-6) levels were measured in bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assay. Hematoxylin and eosin, Masson’s trichrome, and immunohistochemical staining were performed to observe the histopathological changes in lung tissues. Additionally, target-related proteins were measured by Western blotting. RRL alleviated the loss of body weight induced by instilling BLM in PF rats, particularly at the 500 mg/kg per day dose. RRL reduced HYP (p < 0.01) and increased GSH and T-SOD contents. BALF levels of TNF-α, TGF-β1, and IL-6 decreased significantly in the RRL-treated groups. Expression levels of matrix metalloproteinase-9 (MMP-9) and α-smooth muscle actin decreased significantly in a dose-dependent manner in response to RRL. Moreover, the levels of TGF-β1 and tissue inhibitor of metalloproteinase-1 in lung tissues also decreased in the RRL-treated groups. RRL alleviated BLM-induced PF in rats. Our results reveal that the protective effects of RRL against fibrotic lung injury in rats are correlated with its anti-inflammatory, antioxidative, and anti-fibrotic properties. MMP-9 may play

  15. Role of E-selectin in bleomycin induced lung fibrosis in mice

    PubMed Central

    Azuma, A.; Takahashi, S.; Nose, M.; Araki, K.; Araki, M.; Takahashi, T.; Hirose, M.; Kawashima, H.; Miyasaka, M.; Kudoh, S.

    2000-01-01

    BACKGROUND—Bleomycin (BLM), a well known anti-cancer drug, often causes acute lung injury and fibrosis by mechanisms that are not well understood. It is suspected that some proteases and active oxygen species generated from inflammatory cells cause the lung injury and subsequent lung fibrosis. It was therefore hypothesised that inhibition of adhesion of inflammatory cells to the endothelium might prevent these developments.
METHODS—BLM (100 mg/kg) was injected into the tail veins of ICR mice to evaluate the induction of E-selectin, an adhesion molecule known to induce neutrophil attachment on endothelial cells. E-selectin mRNA induction was detected by reverse transcriptase polymerase chain reaction (RT-PCR). The myeloperoxidase (MPO) activities in the lung tissues of BLM treated and control mice were compared to evaluate neutrophil infiltration. Pathological changes in the lungs of soluble E-selectin transgenic mice (TG) and their TG negative (non-TG) littermates after BLM treatment were also compared. Serum samples of TG mice and non-TG mice were tested for their ability to block the binding of sialyl Lewisx to recombinant E-selectin in vitro.
RESULTS—E-selectin mRNA was maximally induced at six hours after BLM treatment in the ICR mice. The soluble form of E-selectin which can competitively inhibit the binding of sialylated antigens on inflammatory cells to E- and P-selectins on the endothelium was detected in the serum of TG mice. BLM induced lung fibrosis occurred in non-TG mice but not in TG mice. This result confirms the finding that the serum of TG mice inhibits the binding of sialyl Lewisx to E-selectin in vitro.
CONCLUSION—E-selectin plays an essential role in BLM induced lung fibrosis through the induction of neutrophil and other inflammatory cell accumulation, and soluble E-selectin may be of use in the prophylactic treatment of lung fibrosis.

 PMID:10639534

  16. Prostaglandin Transporter (PGT/SLCO2A1) Protects the Lung from Bleomycin-Induced Fibrosis.

    PubMed

    Nakanishi, Takeo; Hasegawa, Yoshitaka; Mimura, Reo; Wakayama, Tomohiko; Uetoko, Yuka; Komori, Hisakazu; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi; Tamai, Ikumi

    2015-01-01

    Prostaglandin (PG) E2 exhibits an anti-fibrotic effect in the lung in response to inflammatory reactions and is a high-affinity substrate of PG transporter (SLCO2A1). The present study aimed to evaluate the pathophysiological relevance of SLCO2A1 to bleomycin (BLM)-induced pulmonary fibrosis in mice. Immunohistochemical analysis indicated that Slco2a1 protein was expressed in airway and alveolar type I (ATI) and II (ATII) epithelial cells, and electron-microscopic immunohistochemistry further demonstrated cell surface expression of Slco2a1 in ATI cells in wild type (WT) C57BL/6 mice. PGE2 uptake activity was abrogated in ATI-like cells from Slco2a1-deficient (Slco2a1-/-) mice, which was clearly observed in the cells from WT mice. Furthermore, the PGE2 concentrations in lung tissues were lower in Slco2a1-/- than in WT mice. The pathological relevance of SLCO2A1 was further studied in mouse BLM-induced pulmonary fibrosis models. BLM (1 mg/kg) or vehicle (phosphate buffered saline) was intratracheally injected into WT and Slco2a1-/- mice, and BLM-induced fibrosis was evaluated on day 14. BLM induced more severe fibrosis in Slco2a1-/- than in WT mice, as indicated by thickened interstitial connective tissue and enhanced collagen deposition. PGE2 levels were higher in bronchoalveolar lavage fluid, but lower in lung tissues of Slco2a1-/- mice. Transcriptional upregulation of TGF-β1 was associated with enhanced gene transcriptions of downstream targets including plasminogen activator inhitor-1. Furthermore, Western blot analysis demonstrated a significant activation of protein kinase C (PKC) δ along with a modest activation of Smad3 in lung from Slco2a1-/- mice, suggesting a role of PKCδ associated with TGF-β signaling in aggravated fibrosis in BLM-treated Slco2a1-/- mice. In conclusion, pulmonary PGE2 disposition is largely regulated by SLCO2A1, demonstrating that SLCO2A1 plays a critical role in protecting the lung from BLM-induced fibrosis.

  17. Geniposide inhibited endothelial-mesenchymal transition via the mTOR signaling pathway in a bleomycin-induced scleroderma mouse model

    PubMed Central

    Qi, Qing; Mao, Yueping; Tian, Yongzhen; Zhu, Ke; Cha, Xushan; Wu, Minghua; Zhou, Xiaodong

    2017-01-01

    Aim: Geniposide is an iridoid glycoside isolated from the gardenia plant. It has multiple biological activities. The roles of geniposide in systemic sclerosis (SSc) and in endothelial-to-mesenchymal transition (EndMT) are unclear. We investigated the protective effects of geniposide in a bleomycin-induced SSc mouse model, and its potential mechanisms. Methods: The effects of geniposide were evaluated as follows: (1) histological and immunochemical changes in mouse skin tissue; (2) changes in cellular morphology of human umbilical vein endothelial cells (HUVECs); (3) expression of endothelial cell biomarkers (E-Cadherin, CD31, and CD34), mesenchymal cell markers (FSP1, Collagen, and α-SMA), and key factors of EndMT (Slug, Snail, and Twist) using real time PCR, Western blot, and immunofluorescence; (4) tube formation in HUVECs; (5) mTOR signaling pathway transcription factors using Western blot analysis. Results: Treatment with bleomycin induced up-regulation of mesenchymal cell biomarkers and down-regulation of endothelial cell biomarkers in in vivo and in vitro bleomycin-induced scleroderma models. Geniposide treatment suppressed these effects. Geniposide remedied bleomycin-induced dermal capillary loss and fibrosis in mice. The expression of key EndMT factors (Slug, Snail, and Twist) and the mTOR signaling pathway (mTOR and S6) were also attenuated by geniposide treatment. Conclusion: Geniposide had protective effects on endothelial cells in the bleomycin-induced scleroderma mouse model. These effects may occur via inhibition of the mTOR signaling pathway activation. The results suggested that geniposide could be a potential candidate drug for treatment of vascular damage in SSc patients. PMID:28386330

  18. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury.

    PubMed

    Ji, Wen-Jie; Ma, Yong-Qiang; Zhou, Xin; Zhang, Yi-Dan; Lu, Rui-Yi; Sun, Hai-Ying; Guo, Zhao-Zeng; Zhang, Zhuoli; Li, Yu-Ming; Wei, Lu-Qing

    2014-01-31

    The mononuclear phagocyte system, including circulating monocytes and tissue resident macrophages, plays an important role in acute lung injury and fibrosis. The detailed dynamic changes of mononuclear phagocytes in the circulating, lung alveolar and interstitial compartments in bleomycin-induced pulmonary injury model have not been fully characterized. The present study was designed to address this issue and analyzed their relationships with pulmonary pathological evolution after bleomycin challenge. A total of 100 male C57BL/6 mice were randomly divided to receive bleomycin (2.5mg/kg, n=50) or normal saline (n=50) via oropharyngeal approach, and were sacrificed on days 1, 3, 7, 14 and 21. Circulating monocyte subsets, polarization state of bronchoalveolar lavage fluid (BALF)-derived alveolar macrophages (AMφ) and lung interstitial macrophages (IMφ, derived from enzymatically digested lung tissue) were analyzed by flow cytometry. There was a rapid expansion of circulating Ly6C(hi) monocytes which peaked on day 3, and its magnitude was positively associated with pulmonary inflammatory response. Moreover, an expansion of M2-like AMφ (F4/80+CD11c+CD206+) peaked on day 14, and was positively correlated with the magnitude of lung fibrosis. The polarization state of IMφ remained relatively stable in the early- and mid-stage after bleomycin challenge, expect for an increase of M2-like (F4/80+CD11c-CD206+) IMφ on day 21. These results support the notion that there is a Ly6C(hi)-monocyte-directed pulmonary AMφ alternative activation. Our result provides a dynamic view of mononuclear phagocyte change in three compartments after bleomycin challenge, which is relevant for designing new treatment strategies targeting mononuclear phagocytes in this model.

  19. Long-term treatment with fasudil improves bleomycin-induced pulmonary fibrosis and pulmonary hypertension via inhibition of Smad2/3 phosphorylation.

    PubMed

    Bei, Yihua; Hua-Huy, Thông; Duong-Quy, Sy; Nguyen, Viet-Ha; Chen, Weihua; Nicco, Carole; Batteux, Frédéric; Dinh-Xuan, Anh Tuan

    2013-12-01

    Pulmonary hypertension (PH) associated with pulmonary fibrosis (PF) considerably worsens prognosis of interstitial lung diseases (ILD). RhoA/Rho-kinases (ROCK) pathway is implicated in high pulmonary vascular tone and pulmonary fibrosis but the effect of ROCK inhibitors on PH associated with PF is not known. We therefore aimed to determine whether long-term treatment with fasudil, a selective ROCK inhibitor, could attenuate PF and PH induced by bleomycin in mice. Male C57BL/6 mice received a single dose of intratracheal bleomycin (3.3 U/kg) to induce PF. Treatment with fasudil (30 mg kg(-1) day(-1)) was given intraperitoneally for 7, 14 or 21 days until mice underwent hemodynamic measurements. Right ventricular systolic pressure (RVSP) and RV/(LV + S) ratio were assessed. Lung inflammatory cells profiles, including macrophages, neutrophils, lymphocytes B and lymphocytes T were assessed by immunohistochemistry. Lung fibrosis was evaluated by histological and biochemical methods. Pulmonary arteriole muscularization and medial wall thickness (MWT) were evaluated by immunohistochemical staining for α-SMA. Bleomycin induced severe PF and PH in mice, associated with an increased RhoA/ROCK activity in the lung. Fasudil reduced lung inflammation and lung collagen content, and attenuated the increased RVSP, RV hypertrophy, and pulmonary vascular remodeling in bleomycin-intoxicated mice. Fasudil inhibited the increased activity of RhoA/ROCK pathway, and partly altered bleomycin-associated activation of TGF-β1/Smad pathway, via inhibition of Smad2/3 phosphorylation. The efficacy of long-term treatment with fasudil suggests that the blockade of RhoA/ROCK pathway may be a promising therapy for patients with ILD-associated PH.

  20. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis.

    PubMed

    Winters, Christopher J; Koval, Olha; Murthy, Shubha; Allamargot, Chantal; Sebag, Sara C; Paschke, John D; Jaffer, Omar A; Carter, A Brent; Grumbach, Isabella M

    2016-01-01

    The calcium and calmodulin-dependent kinase II (CaMKII) translates increases in intracellular Ca(2+) into downstream signaling events. Its function in pulmonary pathologies remains largely unknown. CaMKII is a well-known mediator of apoptosis and regulator of endoplasmic reticulum (ER) Ca(2+). ER stress and apoptosis of type II pneumocytes lead to aberrant tissue repair and progressive collagen deposition in pulmonary fibrosis. Thus we hypothesized that CaMKII inhibition alleviates fibrosis in response to bleomycin by attenuating apoptosis and ER stress of type II pneumocytes. We first established that CaMKII was strongly expressed in the distal respiratory epithelium, in particular in surfactant protein-C-positive type II pneumocytes, and activated after bleomycin instillation. We generated a novel transgenic model of inducible expression of the CaMKII inhibitor peptide AC3-I limited to type II pneumocytes (Tg SPC-AC3-I). Tg SPC-AC3-I mice were protected from development of pulmonary fibrosis after bleomycin exposure compared with wild-type mice. CaMKII inhibition also provided protection from apoptosis in type II pneumocytes in vitro and in vivo. Moreover, intracellular Ca(2+) levels and ER stress were increased by bleomycin and significantly blunted with CaMKII inhibition in vitro. These data demonstrate that CaMKII inhibition prevents type II pneumocyte apoptosis and development of pulmonary fibrosis in response to bleomycin. CaMKII inhibition may therefore be a promising approach to prevent or ameliorate the progression of pulmonary fibrosis.

  1. Cytosine arabinoside, vinblastine, diethylstilboestrol and 2-aminoanthracene tested in the in vitro human TK6 cell line micronucleus test (MNvit) at Institut Pasteur de Lille in support of OECD draft test guideline 487.

    PubMed

    Nesslany, Fabrice; Marzin, Daniel

    2010-10-29

    The reference genotoxic agents Cytosine arabinoside, Vinblastine, Diethylstilboestrol and 2-Aminoanthracene were tested in the in vitro micronucleus assay, in human lymphoblastoid TK6 cells, without cytokinesis block, at the laboratories of Institut Pasteur de Lille, France. This was done in support of the toxicity measures recommended in the late 2007 version of the draft OECD Test Guideline 487 for the testing of chemicals. All four reference agents were positive in the assay at concentrations giving approximately 50% toxicity or less as assessed by draft Test Guideline 487 recommended measures, relative population doublings and relative increase in cell counts. Accordingly, this work supports the premise that relative population doublings and relative increase in cell counts are appropriate measures of toxicity for the non-cytokinesis blocked in vitro micronucleus assay.

  2. JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-β/Smad Signaling

    PubMed Central

    He, Wei-ming; Lu, Xun; Ni, Li; Yang, Yan-yu; Chen, Lin; Xiong, Pei-hua; Sun, Wei

    2016-01-01

    JiaWeiDangGui (JWDG) decoction has anti-inflammatory and antifibrotic effects, which is used widely for the treatment of various kidney diseases. In previous studies, we have found that JWDG decoction can reduce the quantity of proteinuria, but the mechanism was unknown. Here, we studied the protective effect of JWDG decoction in adriamycin-induced nephropathy on rat. JWDG decoction, at 10 mL/kg/d, 20 mL/kg/d, and 40 mL/kg/d, was orally administered daily for 12 weeks. Therapeutic effects and mechanisms were further examined. The kidney function related biochemical indexes were measured by automatic biochemistry analyzer. The pathomorphological changes were observed using light and transmission electron microcopies. The proteins expressions of podocin, nephrin, collagen IV, and fibronectin (FN) were examined by immunohistochemical staining, and key proteins involved in TGF-β/Smad signaling were evaluated by RT-PCR and western blotting. Compared with vehicle-treated controls, JWDG decoction decreased the quantity of proteinuria; reduced glomerulosclerotic lesions induced by ADR; and preserved the expression of podocin and nephrin. JWDG decoction also inhibited the expression of the collagen IV, FN, and fibrogenic TGF-β. Further studies revealed that inhibition of renal fibrosis was associated with the blockade of TGF-β/Smad signaling and downregulation of snail expression dose dependently. JWDG decoction prevents proteinuria production, podocyte dysfunction, and kidney injury in adriamycin nephropathy by inhibiting TGF-β/Smad signaling. PMID:27403197

  3. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence

    PubMed Central

    2010-01-01

    Background Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. Methods HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. Results PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was

  4. miR-222 induces Adriamycin resistance in breast cancer through PTEN/Akt/p27(kip1) pathway.

    PubMed

    Wang, Dan-Dan; Yang, Su-Jin; Chen, Xiu; Shen, Hong-Yu; Luo, Long-Ji; Zhang, Xiao-Hui; Zhong, Shan-Liang; Zhao, Jian-Hua; Tang, Jin-Hai

    2016-11-01

    The high resistant rate of Adriamycin (Adr) is associated with a poor prognosis of breast cancer in women worldwide. Since miR-222 might contribute to chemoresistance in many cancer types, in this study, we aimed to investigate its efficacy in breast cancer through PTEN/Akt/p27 (kip1) pathway. Firstly, in vivo, we verified that miR-222 was upregulated in chemoresistant tissues after surgery compared with the paired preneoadjuvant samples of 21 breast cancer patients. Then, human breast cancer Adr-resistant cell line (MCF-7/Adr) was constructed to validate the pathway from the parental sensitive cell line (MCF-7/S). MCF-7/Adr and MCF-7/S were transfected with miR-222 mimics, miR-222 inhibitors, or their negative controls, respectively. The results showed that inhibition of miR-222 in MCF-7/Adr significantly increased the expressions of PTEN and p27 (kip1) and decreased phospho-Akt (p-Akt) both in mRNA and protein levels (p < 0.05) by using quantitative real-time PCR (qRT-PCR) and western blot. MTT and flow cytometry suggested that lower expressed miR-222 enhanced apoptosis and decreased the IC50 of MCF-7/Adr cells. Additionally, immunofluorescence demonstrated that the subcellular location of p27 (kip1) was dislocated resulting from the alteration of miR-222. Conversely, in MCF-7/S transfected with miR-222 mimics, upregulation of miR-222 is associated with decreasing PTEN and p27 (kip1) and increasing Akt accompanied by less apoptosis and higher IC50. Importantly, Adr resistance induced by miR-222 overexpression through PTEN/Akt/p27 was completely blocked by LY294002, an Akt inhibitor. Taken together, these data firstly elucidated that miR-222 could reduce the sensitivity of breast cancer cells to Adr through PTEN/Akt/p27 (kip1) signaling pathway, which provided a potential target to increase the sensitivity to Adr in breast cancer treatment and further improved the prognosis of breast cancer patients.

  5. Stage IV and age over 45 years are the only prognostic factors of the International Prognostic Score for the outcome of advanced Hodgkin lymphoma in the Spanish Hodgkin Lymphoma Study Group series.

    PubMed

    Guisado-Vasco, Pablo; Arranz-Saez, Reyes; Canales, Miguel; Cánovas, Araceli; Garcia-Laraña, José; García-Sanz, Ramón; Lopez, Andrés; López, José Luis; Llanos, Marta; Moraleda, José Maria; Rodriguez, José; Rayón, Consuelo; Sabin, Pilar; Salar, Antonio; Marín-Niebla, Ana; Morente, Manuel; Sánchez-Godoy, Pedro; Tomás, José Francisco; Muriel, Alfonso; Abraira, Victor; Piris, Miguel A; Garcia, Juán F; Montalban, Carlos

    2012-05-01

    The International Prognostic Score (IPS) is the most widely used system to date for identifying risk groups for the outcome of patients with advanced Hodgkin lymphoma, although important limitations have been recognized. We analyzed the value of the IPS in a series of 311 patients with advanced classical Hodgkin lymphoma (cHL) (Ann Arbor stage III, IV or stage II with B symptoms and/or bulky masses) treated with first-line chemotherapy including adriamycin (adriamycin, bleomycin, vinblastine, dacarbazine [ABVD] or equivalent variants). In univariate and multivariate analyses, stage IV disease and age ≥ 45 years were the only factors with independent predictive significance for overall survival (OS) (p = 0.002 and p < 0.001, respectively). Stage IV was still significant for freedom from progression (FFP) (p = 0.001) and age ≥ 45 years was borderline significant (p = 0.058). IPS separates prognostic groups, as in the original publication, but this is mainly due to the high statistical significance of stage IV and age ≥ 45 years. Moreover, the combination of these two factors enables a simpler system to be constructed that separates groups with different FFP and OS. In conclusion, in our series, stage IV and age ≥ 45 years are the key prognostic factors for the outcome of advanced cHL.

  6. Pneumomediastinum, subcutaneous emphysema, and pneumothorax after a pulmonary function testing in a patient with bleomycin-induced interstitial pneumonitis*

    PubMed Central

    Araujo, Mariana Sponholz; Fernandes, Frederico Leon Arrabal; Kay, Fernando Uliana; Carvalho, Carlos Roberto Ribeiro

    2013-01-01

    Spontaneous pneumomediastinum is an uncommon event, the clinical picture of which includes retrosternal chest pain, subcutaneous emphysema, dyspnea, and dysphonia. The pathophysiological mechanism involved is the emergence of a pressure gradient between the alveoli and surrounding structures, causing alveolar rupture with subsequent dissection of the peribronchovascular sheath and infiltration of the mediastinum and subcutaneous tissue with air. Known triggers include acute exacerbations of asthma and situations that require the Valsalva maneuver. We described and documented with HRCT scans the occurrence of pneumomediastinum after a patient with bleomycin-induced interstitial lung disease underwent pulmonary function testing. Although uncommon, the association between pulmonary function testing and air leak syndromes has been increasingly reported in the literature, and lung diseases, such as interstitial lung diseases, include structural changes that facilitate the occurrence of this complication. PMID:24310635

  7. Pneumomediastinum, subcutaneous emphysema, and pneumothorax after a pulmonary function testing in a patient with bleomycin-induced interstitial pneumonitis.

    PubMed

    Araujo, Mariana Sponholz; Fernandes, Frederico Leon Arrabal; Kay, Fernando Uliana; Carvalho, Carlos Roberto Ribeiro

    2013-01-01

    Spontaneous pneumomediastinum is an uncommon event, the clinical picture of which includes retrosternal chest pain, subcutaneous emphysema, dyspnea, and dysphonia. The pathophysiological mechanism involved is the emergence of a pressure gradient between the alveoli and surrounding structures, causing alveolar rupture with subsequent dissection of the peribronchovascular sheath and infiltration of the mediastinum and subcutaneous tissue with air. Known triggers include acute exacerbations of asthma and situations that require the Valsalva maneuver. We described and documented with HRCT scans the occurrence of pneumomediastinum after a patient with bleomycin-induced interstitial lung disease underwent pulmonary function testing. Although uncommon, the association between pulmonary function testing and air leak syndromes has been increasingly reported in the literature, and lung diseases, such as interstitial lung diseases, include structural changes that facilitate the occurrence of this complication.

  8. A new experimental trial using repeated heating every 24 hours for local hyperthermic therapy with bleomycin in vivo.

    PubMed

    Yamashita, Y; Hirai, T; Mukaida, H; Iwata, T; Toge, T; Hoon, H J

    1990-11-01

    This report presents the effect of repeated heating every 24 hrs using bleomycin (BLM) which, although seemingly contrary to the usual agreement that hyperthermia should be carried out with a long interval due to thermotolerance, holds many possibilities. FM3A cells on the foot pad of C3H mouse were immersed in a heated water bath at 43 and 44 degrees C for 30 min. The effect of repeated heating was appreciated by an improved growth curve and 50 day survival compared to mice which received heating twice with a 96-hr interval. Repeated heating every 24 hrs 5 times with BLM suppressed tumor growth significantly as compared to heating twice with a 96-hr interval without BLM. The longest survival time was obtained by the repeated heating with BLM among all protocols. There is therefore a good possibility that more effective results could be obtained clinically by repeated heating over a short period.

  9. Dexamethasone attenuates bleomycin-induced lung fibrosis in mice through TGF-β, Smad3 and JAK-STAT pathway

    PubMed Central

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    In order to find the possible mechanism of Dexamethasone (Dex) during curing fibrosis, the bleomycin (BLM)-induced mice model was used. After fibrosis were induced by BLM, histopathological evaluation and RT-PCR were employed to detect the expression of TGF-β1, Smad3 and STAT1. It was found that BLM promoted the development of inflammation, leading to severe pulmonary fibrosis with the increasing of TGF-β1, Smad3 and STAT1. After Dex treatment, the expression of TGF-β1, Smad3 and STAT1 showed a little higher with alleviation of the fibrosis. Thus it is concluded that there is a possible pathway of mouse pulmonary fibrosis model through TGF-β, Smad3 and JAK-STAT pathway. PMID:25356121

  10. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Min; Krishnaveni, Manda Sai; Li, Changgong; Zhou, Beiyun; Xing, Yiming; Banfalvi, Agnes; Li, Aimin; Lombardi, Vincent; Akbari, Omid; Borok, Zea; Minoo, Parviz

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.

  11. Therapeutic advantage of inhaled tacrolimus-bound albumin nanoparticles in a bleomycin-induced pulmonary fibrosis mouse model.

    PubMed

    Seo, Jisoo; Lee, Changkyu; Hwang, Ha Shin; Kim, Bomi; Thao, Le Quang; Lee, Eun Seong; Oh, Kyung Taek; Lim, Jong-Lae; Choi, Han-Gon; Youn, Yu Seok

    2016-02-01

    Tacrolimus (Tac) is an immunosuppressant that inhibits translocation of nuclear factor of activated T cells and has therapeutic potential for pulmonary fibrosis. Here, we investigated the therapeutic efficacy of a sustained-release type inhaled Tac formulation for treating bleomycin-induced pulmonary fibrosis. Inhalation has many meaningful advantages over injections, such as improved patient compliance, safety, and therapeutic effect. To this end, we fabricated inhalable albumin nanoparticles with bound Tac (Tac Alb-NPs) at a daily therapeutic dose (60 μg/mouse) using a high-pressure homogenizer via nanoparticle albumin-bound technology. The Tac Alb-NPs were spherical, ∼ 182.1 ± 28.5 nm in size, with a zeta potential of -34.5 ± 0.3 mV, and the Tac incorporation efficiency was as high as ∼ 85.3%. The bound tacrolimus was released gradually from Tac Alb-NPs for ∼ 24 h, which was sufficient time for pulmonary delivery. Most of all, the inhaled Tac Alb-NPs displayed remarkable anti-fibrotic efficacy in mice with bleomycin-induced pulmonary fibrosis, which was much better than the efficacy resulting from intraperitoneal administration of Tac (60 μg/mouse) based on histopathological results (hematoxylin and eosin and Masson's trichrome staining). Furthermore, the inhaled Cy5.5-labelled Tac Alb-NPs were visualized throughout the lungs of mice for ∼ 48 h, indicating direct exposure to fibrotic tissues in lung lesions. In conclusion, Tac Alb-NPs offer great potential as an inhalation delivery formulation for treating pulmonary fibrosis. Additionally, these NPs would be particularly useful as an effective and safe prototype for delivering practically insoluble therapeutic agents into the lungs.

  12. Chemoimmunotherapy with bleomycin, vincristine, lomustine, dacarbazine (BOLD) plus interferon alpha for metastatic melanoma: a multicentre phase II study.

    PubMed Central

    Punt, C. J.; van Herpen, C. M.; Jansen, R. L.; Vreugdenhil, G.; Muller, E. W.; de Mulder, P. H.

    1997-01-01

    High response rates in patients with metastatic melanoma have been achieved with combination chemoimmunotherapy. A response rate of 62% in 45 patients has been reported for treatment with dacarbazine, bleomycin, vincristine, lomustine (BOLD) plus interferon alpha (IFN-alpha). We conducted a multicentre phase II study to confirm these results. Melanoma patients with distant metastases were treated as outpatients with dacarbazine 200 mg m(-2) on days 1-5, vincristine 1 mg m(-2) on days 1 and 4, bleomycin 15 mg on days 2 and 5 i.v. and lomustine 80 mg orally on day 1, repeated every 4 weeks. IFN-alpha-2b was initiated s.c. on day 8 at 3 MU daily for 6 weeks, and 6 MU t.i.w. thereafter. Forty-three patients entered the study. The median number of metastatic sites was three (range 1-5), and 81% of patients had visceral metastases. Nine patients had brain metastases, and seven patients were systemically pretreated. Among the 41 patients that were evaluable for response, the response rate was 27% (95% CI 14-3%), with one complete and ten partial remissions. The response rate in 25 previously untreated patients without brain metastases was 40% (95% CI 21-61%). Median duration of response was 6 (range 2-14+) months; median overall survival was 5 (1-26) months. The main toxicity was malaise/fatigue. We confirm that BOLD plus IFN-alpha has activity in metastatic melanoma. The lower response rate in our study compared with the previous report is probably related to patient selection, as in the previous study 46% of patients had stage III disease, whereas all our patients had stage IV disease, which is associated with a worse prognosis. PMID:9231931

  13. Roles of the DNA binding proteins H-NS and StpA in homologous recombination and repair of bleomycin-induced damage in Escherichia coli.

    PubMed

    Shiraishi, Kouya; Ogata, Yasuyuki; Hanada, Katsuhiro; Kano, Yasunobu; Ikeda, Hideo

    2007-10-01

    The DNA binding protein H-NS promotes homologous recombination in Escherichia coli, but the role of its paralog StpA in this process remains unclear. Here we show that an hns mutant, but not an stpA mutant, are marginally defective in conjugational recombination and is sensitive to the double-strand-break-inducing agent bleomycin. Interestingly, the hns stpA double mutant is severely defective in homologous recombination and more bleomycin-sensitive than is the hns or stpA single mutant, indicating that the stpA mutation synergistically enhances the defects of homologous recombination and the increased bleomycin-sensitivity in the hns mutant. In addition, the transduction analysis in the hns stpA double mutant indicated that the stpA mutation also enhances the defect of recombination in the hns mutant. These results suggest that H-NS plays an important role in both homologous recombination and repair of bleomycin-induced damage, while StpA can substitute the H-NS function. The recombination analysis of hns single, stpA single, and hns stpA double mutants in the recBC sbcA and recBC sbcBC backgrounds suggested that the reduction of the hns single or hns stpA double mutants may not be due to the defect in a particular recombination pathway, but may be due to the defect in a common process of the pathways. The model for the functions of H-NS and StpA in homologous recombination and double-strand break repair is discussed.

  14. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    SciTech Connect

    Kalayarasan, Srinivasan Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  15. The mouse splenocyte assay, an in vivo/in vitro system for biological monitoring: studies with X-rays, fission neutrons and bleomycin.

    PubMed

    Darroudi, F; Farooqi, Z; Benova, D; Natarajan, A T

    1992-12-01

    A modified mouse splenocyte culture system was standardized after testing different mitogens (i.e., phytohemagglutinin (PHA), concanavalin A (Con A)). The mitotic index was determined for comparison between different mitogens. Following selection of appropriate mitogen (PHA 16, Flow), a series of experiments were conducted to evaluate the application of a cytokinesis-block for scoring micronuclei and assays for chromosomal aberrations produced by treatment in G0 and G2 for the purposes of biological dosimetry following in vivo and/or in vitro exposure to X-rays, fission neutrons and bleomycin. In the X-irradiation studies, the frequencies of micronuclei and chromosomal aberrations (i.e., dicentrics and rings) increased in a dose-dependent manner. These data could be fitted to a linear-quadratic model. No difference was observed between irradiation in vivo and in vitro, suggesting that measurement of dicentrics and micronuclei in vitro after X-irradiation can be used as an in vivo dosimeter. Following in vivo irradiation with 1 MeV fission neutrons and in vitro culturing of mouse splenocytes, linear dose-response curves were obtained for induction of micronuclei and chromosomal aberrations. The lethal effects of neutrons were shown to be significantly greater than for a similar dose of X-rays. The relative biological effectiveness (RBE) was 6-8 in a dose range of 0.25-3 Gy for radiation-induced asymmetrical exchanges (dicentrics and rings), and about 8 for micronuclei in a dose range of 0.25-2 Gy. Furthermore, the induction of chromosomal aberrations by bleomycin was investigated in mouse G0 splenocytes (in vitro) and compared with X-ray data. Following bleomycin treatment (2 h) a similar pattern of dose-response curve was obtained as with X-rays. In this context a bleomycin rad equivalent of 20 micrograms/ml = 0.50 Gy was estimated.

  16. Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway

    PubMed Central

    Li, Li-Fu; Lee, Chung-Shu; Lin, Chang-Wei; Chen, Ning-Hung; Chuang, Li-Pang; Hung, Chen-Yiu; Liu, Yung-Yang

    2017-01-01

    Background Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can cause diffuse lung inflammation, an effect termed ventilator-induced lung injury, which may produce profound pulmonary fibrogenesis. Histone deacetylases (HDACs) and serine/threonine kinase/protein kinase B (Akt) are crucial in modulating the epithelial–mesenchymal transition (EMT) during the reparative phase of ARDS; however, the mechanisms regulating the interactions among MV, EMT, HDACs, and Akt remain unclear. We hypothesized that trichostatin A (TSA), a HDAC inhibitor, can reduce MV-augmented bleomycin-induced EMT by inhibiting the HDAC4 and Akt pathways. Methods Five days after bleomycin treatment to mimic acute lung injury (ALI), wild-type or Akt-deficient C57BL/6 mice were exposed to low-tidal-volume (low-VT, 6 mL/kg) or high-VT (30 mL/kg) MV with room air for 5 h after receiving 2 mg/kg TSA. Nonventilated mice were examined as controls. Results Following bleomycin exposure in wild-type mice, high-VT MV induced substantial increases in microvascular leaks; matrix metalloproteinase-9 (MMP-9) and plasminogen activator inhibitor-1 proteins; free radical production; Masson’s trichrome staining; fibronectin, MMP-9, and collagen 1a1 gene expression; EMT (identified by increased localized staining of α-smooth muscle actin and decreased staining of E-cadherin); total HDAC activity; and HDAC4 and Akt activation (P < 0.05). In Akt-deficient mice, the MV-augmented lung inflammation, profibrotic mediators, EMT profiles, Akt activation, and pathological fibrotic scores were reduced and pharmacologic inhibition of HDAC4 expression was triggered by TSA (P < 0.05). Conclusions Our data indicate that TSA treatment attenuates high-VT MV-augmented EMT after bleomycin-induced ALI, in part by inhibiting the HDAC4 and Akt pathways. PMID:28234968

  17. Fibroblast-specific expression of AC6 enhances beta-adrenergic and prostacyclin signaling and blunts bleomycin-induced pulmonary fibrosis.

    PubMed

    Liu, Xiaoqiu; Li, Fengying; Sun, Shu Qiang; Thangavel, Muthusamy; Kaminsky, Joseph; Balazs, Louisa; Ostrom, Rennolds S

    2010-06-01

    Pulmonary fibroblasts regulate extracellular matrix production and degradation and are critical in maintenance of lung structure, function, and repair, but they also play a central role in lung fibrosis. cAMP-elevating agents inhibit cytokine- and growth factor-stimulated myofibroblast differentiation and collagen synthesis in pulmonary fibroblasts. In the present study, we overexpressed adenylyl cyclase 6 (AC6) in pulmonary fibroblasts and measured cAMP production and collagen synthesis. AC6 overexpression enhanced cAMP production and the inhibition of collagen synthesis mediated by isoproterenol and beraprost, but not the responses to butaprost or PGE(2). To examine if increased AC6 expression would impact the development of fibrosis in an animal model, we generated transgenic mice that overexpress AC6 under a fibroblast-specific promoter, FTS1. Lung fibrosis was induced in FTS1-AC6(+/-) mice and littermate controls by intratracheal instillation of saline or bleomycin. Wild-type mice treated with bleomycin showed extensive peribronchial and interstitial fibrosis and collagen deposition. By contrast, FTS1-AC6(+/-) mice displayed decreased fibrotic development, lymphocyte infiltration (as determined by pathological scoring), and lung collagen content. Thus, AC6 overexpression inhibits fibrogenesis in the lung by reducing pulmonary fibroblast-mediated collagen synthesis and myofibroblast differentiation. Because AC6 overexpression does not lead to enhanced basal or PGE(2)-stimulated levels of cAMP, we conclude that endogenous catecholamines or prostacyclin is produced during bleomycin-induced lung fibrosis and that these signals have antifibrotic potential.

  18. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats.

    PubMed Central

    Westergren-Thorsson, G; Hernnäs, J; Särnstrand, B; Oldberg, A; Heinegård, D; Malmström, A

    1993-01-01

    The development of bleomycin-induced pulmonary fibrosis in rats was studied over a period of 21 d after an intratracheal instillation of bleomycin. The expression of three small proteoglycans (biglycan, decorin, and fibromodulin), collagen III and TGF-beta 1 was studied by RNA-transfer blot analysis. The proteoglycans were also studied by SDS-polyacrylamide gel electrophoresis and Western blots. TGF-beta 1 mRNA increased threefold already on day 3 and remained elevated until day 10. After the increase of TGF-beta 1 mRNA the messages for biglycan and collagen III steadily increased to reach a maximum 10 d after bleomycin instillation. The mRNA for biglycan increased maximally fourfold and that of collagen III 2.5-fold. Decorin mRNA, in contrast to biglycan decreased and reached 20% of control on day 10. The message for fibromodulin remained constant throughout the study period. The amounts of biglycan and decorin in the tissue changed in accordance with the mRNA levels. The results corroborate and extend previous in vitro studies concerning the effect of TGF-beta 1 on the metabolism of small proteoglycans and show that these macromolecules are regulated differently also in vivo. The marked alterations of biglycan and decorin during the development of fibrosis suggests that these proteoglycans have a regulating role in this process. Images PMID:7688761

  19. BET bromodomain proteins mediate downstream signaling events following growth factor stimulation in human lung fibroblasts and are involved in bleomycin-induced pulmonary fibrosis.

    PubMed

    Tang, Xiaoyan; Peng, Ruoqi; Ren, Yonglin; Apparsundaram, Subramanium; Deguzman, Jeremy; Bauer, Carla M; Hoffman, Ann F; Hamilton, Shannon; Liang, Zhenmin; Zeng, Hang; Fuentes, Maria E; Demartino, Julie A; Kitson, Christopher; Stevenson, Christopher S; Budd, David C

    2013-01-01

    Epigenetic alterations, such as histone acetylation, regulate the signaling outcomes and phenotypic responses of fibroblasts after growth factor stimulation. The bromodomain and extra-terminal domain-containing proteins (Brd) bind to acetylated histone residues, resulting in recruitment of components of the transcriptional machinery and subsequent gene transcription. Given the central importance of fibroblasts in tissue fibrosis, this study sought to determine the role of Brd proteins in human lung fibroblasts (LFs) after growth factor stimulation and in the murine bleomycin model of lung fibrosis. Using small interfering RNA against human Brd2 and Brd4 and pharmacologic Brd inhibitors, this study found that Brd2 and Brd4 are essential in mediating the phenotypic responses of LFs downstream of multiple growth factor pathways. Growth factor stimulation of LFs causes increased histone acetylation, association of Brd4 with growth factor-responsive genes, and enhanced transcription of these genes that could be attenuated with pharmacologic Brd inhibitors. Of note, lung fibrosis induced after intratracheal bleomycin challenge in mice could be prevented by pretreatment of animals with pharmacologic inhibitors of Brd proteins. This study is the first demonstration of a role for Brd2 and Brd4 proteins in mediating the responses of LFs after growth factor stimulation and in driving the induction of lung fibrosis in mice in response to bleomycin challenge.

  20. Influence of colchicine and vinblastine on the intracellular migration of secretory and membrane glycoproteins: III. Inhibition of intracellular migration of membrane glycoproteins in rat intestinal columnar cells and hepatocytes as visualized by light and electron-microscope radioautography after 3H-fucose injection

    SciTech Connect

    Bennett, G.; Carlet, E.; Wild, G.; Parsons, S.

    1984-08-01

    In the present work, the effects of these drugs on migration of membrane glycoproteins have been examined at the ultrastructural level in duodenal villous columnar cells and hepatocytes. Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In duodenal villous columnar cells, 3H-fucose labeling of the apical plasma membrane was reduced by 51% after colchicine and by 67% after vinblastine treatment; but there was little change in labeling of the lateral plasma membrane. Labeling of the Golgi apparatus increased. This suggests that labeled glycoproteins destined for the apical plasma membrane were inhibited from leaving the Golgi region, while migration to the lateral plasma membrane was not impaired. In hepatocytes, labeling of the sinusoidal plasma membrane was reduced by 83% after colchicine and by 85% after vinblastine treatment. Labeling of the lateral plasma membrane also decreased, although not so dramatically. Labeling of the Golgi apparatus and neighboring secretory vesicles increased. This indicates that the drugs inhibited migration of membrane glycoproteins from the Golgi region to the various portions of the plasma membrane. Accumulation of secretory vesicles at the sinusoidal front suggests that exocytosis may also have been partially inhibited. In both cell types, microtubules almost completely disappeared after drug treatment. Microtubules may, therefore, be necessary for intracellular transport of membrane glycoproteins, although the possibility of a direct action of these drugs on Golgi or plasma membranes must also be considered.

  1. Triptolide Attenuates Podocyte Injury by Regulating Expression of miRNA-344b-3p and miRNA-30b-3p in Rats with Adriamycin-Induced Nephropathy

    PubMed Central

    Jiang, Chun-Bo; Wei, Ming-Gang; Tu, Yue; Zhu, Hao; Li, Chun-Qing; Jing, Wei-Min; Sun, Wei

    2015-01-01

    Objectives. We investigated the action of triptolide in rats with adriamycin-induced nephropathy and evaluated the possible mechanisms underlying its protective effect against podocyte injury. Methods. In total, 30 healthy male Sprague-Dawley rats were randomized into three groups (normal group, model group, and triptolide group). On days 7, 28, 42, and 56, 24 h urine samples were collected. All rats were sacrificed on day 56, and their blood and renal tissues were collected for determination of biochemical and molecular biological parameters. Expression of miRNAs in the renal cortex was analyzed by a biochip assay and RT-PCR was used to confirm observed differences in miRNA levels. Results. Triptolide decreased proteinuria, improved renal function without apparent adverse effects on the liver, and alleviated renal pathological lesions. Triptolide also elevated the nephrin protein level. Furthermore, levels of miR-344b-3p and miR-30b-3p were elevated in rats with adriamycin-induced nephropathy, while triptolide treatment reversed the increase in the expression of these two miRNAs. Conclusions. These results suggest that triptolide may attenuate podocyte injury in rats with adriamycin-induced nephropathy by regulating expression of miRNA-344b-3p and miRNA-30b-3p. PMID:26078766

  2. The ethical Kampo formulation Sho-seiryu-to (TJ-19) prevents bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Yang, Chang-qing; Sun, Peng-yuan; Ding, Da-zhi; Moriuchi, Hiroshi; Ishitsuka, Yoichi; Irikura, Mitsuru; Irie, Tetsumi

    2010-01-01

    The effects of Sho-seiryu-to (TJ-19), an ethical Kampo formulation, on bleomycin (BLM)-induced pulmonary fibrosis in rats was examined. Pulmonary fibrosis was induced by intratracheal instillation of a single dose of BLM (5 mg/kg). The TJ-19 used consisted of at least 21 constituents, as determined by three-dimensional HPLC analysis, and was administered orally twice a day at a dose of 1.5 g/kg until the end of the study period. Changes in general appearance and body weight were monitored. Twenty-eight days after BLM instillation, the animals were sacrificed and the study parameters were measured. TJ-19 attenuated the loss in body weight, increase in lung/body weight ratio and concentration of hydroxyproline and malondialdehyde in the lung tissues induced by BLM administration. TJ-19 also prevented BLM-induced fibrotic changes in the lung histology. These protective effects of TJ-19 were observed when administration was started 1 week before and simultaneously with the instillation of BLM. These results suggest that TJ-19 has prophylactic potential against BLM-induced pulmonary fibrosis, and may therefore be a promising drug candidate and medicinal resource for preventing BLM-induced and idiopathic pulmonary fibrosis.

  3. Intratracheal Bleomycin Aerosolization: The Best Route of Administration for a Scalable and Homogeneous Pulmonary Fibrosis Rat Model?

    PubMed Central

    Robbe, Alexandre; Tassin, Alexandra; Carpentier, Justine; Declèves, Anne-Emilie; Mekinda Ngono, Zita Léa; Nonclercq, Denis; Legrand, Alexandre

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic disease with a poor prognosis and is characterized by the accumulation of fibrotic tissue in lungs resulting from a dysfunction in the healing process. In humans, the pathological process is patchy and temporally heterogeneous and the exact mechanisms remain poorly understood. Different animal models were thus developed. Among these, intratracheal administration of bleomycin (BML) is one of the most frequently used methods to induce lung fibrosis in rodents. In the present study, we first characterized histologically the time-course of lung alteration in rats submitted to BLM instillation. Heterogeneous damages were observed among lungs, consisting in an inflammatory phase at early time-points. It was followed by a transition to a fibrotic state characterized by an increased myofibroblast number and collagen accumulation. We then compared instillation and aerosolization routes of BLM administration. The fibrotic process was studied in each pulmonary lobe using a modified Ashcroft scale. The two quantification methods were confronted and the interobserver variability evaluated. Both methods induced fibrosis development as demonstrated by a similar progression of the highest modified Ashcroft score. However, we highlighted that aerosolization allows a more homogeneous distribution of lesions among lungs, with a persistence of higher grade damages upon time. PMID:26064885

  4. Bleomycin A6-loaded anionic liposomes with in situ gel as a new antitumoral drug delivery system.

    PubMed

    Ding, Weiming; Li, Yanfang; Hou, Xucheng; Li, Guiling

    2016-01-01

    The goal is to develop an in situ gel system comprising anionic liposomes (AL) containing bleomycin A6 (BLM A6) dispersed within the thermosensitive in situ gel for sustained release. The results indicated that the gelation temperature decreased due to AL within gel. Similarly, viscosity and mechanical parameters, such as gel strength for gel, could be enhanced by inducing lipid material with negative charge (phosphatidylglycerol) at 37 °C, which provided against corrosion at physiological condition. The in vitro release experiments performed with a dialysis method revealed that in situ gel with AL exhibited the longer drug-release period compared to that with or without nonionic liposomes. An in vivo fluorescence imaging study suggested that the gel with AL loading FITC-BLM A6 stayed in administration site at least for five days. A thermosensitive in situ gel with anionic liposome was a promising carrier for hydrophilic BLM A6, to be used in parenteral delivery system for anti-tumor treatment.

  5. Effect-enhancing and toxicity-reducing activity of usnic acid in ascitic tumor-bearing mice treated with bleomycin.

    PubMed

    Su, Zu-Qing; Liu, Yu-Hong; Guo, Hui-Zhen; Sun, Chao-Yue; Xie, Jian-Hui; Li, Yu-Cui; Chen, Jian-Nan; Lai, Xiao-Ping; Su, Zi-Ren; Chen, Hai-Ming

    2017-03-08

    Usnic acid (UA) can be found in certain lichen species. Growing evidence suggests that UA possesses antitumoral, antioxidative and anti-inflammatory activities. Bleomycin (BLM) is widely used in the treatment of malignant ascites, however, it unexpectedly causes pulmonary fibrosis (PF). Researches show that excessive inflammatory response and oxidative stress in lung tissue is conspicuous causes of BLM-induced PF. Here we investigated mechanism underlying the effect-enhancing and toxicity-reducing activity of UA on H22-bearing mice treated with BLM. UA combined with BLM was significantly more effective than BLM alone in inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, and promoting the cleaved caspase-3 and cleaved caspase-8 activities to induce cancer cellular apoptosis. The mechanism may be associated with the transcriptional regulation of p53/p21/Cyclin pathway. Furthermore, UA effectively moderated the histopathological changes, reduced the content of MDA, HYP, TNF-α, IL-1β, IL-6 and TGF-β1, and increased the level of SOD when combined with BLM in lung tissues of H22-bearing mice, which was believed to be related to the inhibition on the protein level of p-Smad2/3 and enhancement of Smad7 expression. These findings suggested that UA might be a potential effect-enhancing and toxicity-reducing candidate for BLM in the treatment of malignant ascites.

  6. Evaluation of Bleomycin-induced chromosome aberrations under simulated microgravity conditions in human lymphocytes using "FISH" techniques

    NASA Astrophysics Data System (ADS)

    Mosesso, P.; Schuber, M.; Seibt, D.; Schatz, A.; Fosci, A.; Fonti, E.; Palitti, F.

    In the present investigation we report the effects of simulated microgravity conditions (clinostat) on the induction of chromosomal aberrations in human lymphocytes in vitro by ®Bleomycin. Chromosomal aberrations have been analysed by means of fluorescent in situ hybridisation (FISH) and chromosome-specific composite DNA probes (chromosome painting). The results obtained show that, under simulated microgravity conditions, the levels of both symmetrical and asymmetrical (dicentrics, rings), the number of cells bearing "complex" aberrations and hence the total numbers of aberrations were significantly elevated at any of the dose-levels assayed, compared to the parallel treatments performed as 1g control ("ground"). Furthermore, the ratio symmetrical:asymmetrical translocations was markedly elevated under simulated microgravity conditions, compared to the findings usually observed under "normal" 1g conditions. On these bases, we are much inclined to believe that simulated microgravity, rather than limiting the resealing of DNA double strand breaks (DSB's) induced by genotoxic agents is influencing in terms of enhancement the misrejoining of DSB's which is actually responsible for the fixation of the original lesions to DNA into chromosomal aberrations. In addition, the possible different misrepair processes leading to the formation of symmetrical and asymmetrical translocations might be differentially influenced by microgravity being the symmetrical translocations significantly more represented.

  7. Enhanced DNA repair of bleomycin-induced 3'-phosphoglycolate termini at the transcription start sites of actively transcribed genes in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Galea, Anne M

    2014-11-01

    The anti-tumour agent, bleomycin, cleaves DNA to give 3'-phosphoglycolate and 5'-phosphate termini. The removal of 3'-phosphoglycolate to give 3'-OH ends is a very important step in the DNA repair of these lesions. In this study, next-generation DNA sequencing was utilised to investigate the repair of these 3'-phosphoglycolate termini at the transcription start sites (TSSs) of genes in HeLa cells. The 143,600 identified human TSSs in HeLa cells comprised 82,596 non-transcribed genes and 61,004 transcribed genes; and the transcribed genes were divided into quintiles of 12,201 genes comprising the top 20%, 20-40%, 40-60%, 60-80%, 80-100% of expressed genes. Repair of bleomycin-induced 3'-phosphoglycolate termini was enhanced at actively transcribed genes. The top 20% and 20-40% quintiles had a very similar level of enhanced repair, the 40-60% quintile was intermediate, while the 60-80% and 80-100% quintiles were close to the low level of enhancement found in non-transcribed genes. There were also interesting differences regarding bleomycin repair on the sense and antisense strands of DNA at TSSs. The sense strand had highly enhanced repair between 0 and 250bp relative to the TSS, while for the antisense strand highly enhanced repair was between 150 and 450bp. Repair of DNA damage is a major mechanism of resistance to anti-tumour drugs and this study provides an insight into this process in human tumour cells.

  8. Abnormalities of pathways of fibrin turnover in lung lavage of rats with oleic acid and bleomycin-induced lung injury support alveolar fibrin deposition.

    PubMed Central

    Idell, S.; James, K. K.; Gillies, C.; Fair, D. S.; Thrall, R. S.

    1989-01-01

    Alveolar fibrin deposition commonly accompanies acute lung injury, but the nature of the local abnormalities of coagulation and fibrinolysis that support pathologic fibrin deposition are not well understood. The trended abnormalities of procoagulant and fibrinolytic activities occurring in lung lavage fluids of Fischer 344 rats after lung injury induced by intravenous oleic acid (OA) or intratracheal bleomycin were studied. After injury by either agent, bronchoalveolar lavage (BAL) contained increased procoagulant activity and decreased fibrinolytic activity. Lavage procoagulant activity was mainly due to an activator of Factor X attributable to the extrinsic coagulation pathway, and fibrinolytic activity was almost completely plasminogen dependent. Major mechanisms of inhibition of fibrinolytic activity involved both the inhibition of the plasminogen activator (PA) and plasmin. These abnormalities were temporally associated with prominent alveolar fibrin deposition in both models. In OA-treated animals, lavage fibrinolytic activity was absent or profoundly decreased, and antiplasmin and procoagulant activities were increased within 4 hours after the induction of acute lung injury. By 24 hours after OA, lavage PA inhibitor (PAI) activity was elevated with sustained antiplasmin activity. By 3 days after OA, these abnormalities had resolved in association with almost complete resolution of alveolar fibrin deposits. Within 3 days after bleomycin-induced lung injury, lavage procoagulant activity was increased and fibrinolytic activity was depressed due to increased antiplasmin and PAI activities. These conditions persisted for 2 weeks, during which time alveolar fibrin deposition was associated with the development of pulmonary fibrosis. These data indicate that a disruption of the normal balance between procoagulant and fibrinolytic activities occurs in alveolar lining fluids of rats with alveolitis induced by either OA or bleomycin, and that concurrent abnormalities

  9. Profiles of steady state levels of messenger RNAs coding for type I procollagen, elastin, and fibronectin in hamster lungs undergoing bleomycin-induced interstitial pulmonary fibrosis.

    PubMed Central

    Raghow, R; Lurie, S; Seyer, J M; Kang, A H

    1985-01-01

    We have characterized the messenger RNAs (mRNAs) coding for procollagen alpha 1(I), elastin, fibronectin, and actin in the lungs of Syrian golden hamsters by Northern blot analyses. While elastin, fibronectin, and beta-actin were each coded for by a single mRNA species of 4.1 kilobases (kb), 9.1 kb, and 2.1 kb in size, respectively, we identified a major (5.4 kb) and a minor (6.5 kb) procollagen alpha 1(I) mRNA species in the hamster lungs. The mRNAs for the three extracellular matrix proteins showed increased accumulation followed by steady decline in the bleomycin-treated lungs. There were significant differences among the three mRNAs in the relative increase and the time of maximum accumulation. After reaching the peak levels between 2-3 wk posttreatment, the levels of procollagen alpha 1(I) and elastin mRNAs declined to near normal values around the fourth week. In contrast, the accumulation of fibronectin mRNA was maximum in the first week after bleomycin treatment. The procollagen alpha 1(I) mRNA accumulated most dramatically (sevenfold above the levels in the untreated animals) compared with a five-fold increase in mRNA coding for fibronectin. Elastin mRNA increased approximately twofold above the control values. Nuclear runoff transcription experiments demonstrated a selective increase in the rates of transcription of genes coding for procollagen alpha 1(I), fibronectin, and elastin; the extent of transcriptional stimulation of procollagen alpha 1(I) and fibronectin genes was significantly greater than that of elastin. Since the amount of actin mRNA, as well as the rate of transcription of actin gene(s), varied only slightly after bleomycin treatment, we conclude that the metabolism of mRNAs coding for extracellular matrix proteins may be preferentially perturbed during pulmonary fibrosis. Images PMID:2414324

  10. Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion

    PubMed Central

    Regulus, Peggy; Duroux, Benoit; Bayle, Pierre-Alain; Favier, Alain; Cadet, Jean; Ravanat, Jean-Luc

    2007-01-01

    Bleomycin, a radiomimetic drug currently used in human cancer therapy, is a well known carcinogen. Its toxicity is mostly attributed to its potentiality to induce DNA double strand breaks likely arising from the formation of two vicinal DNA strand breaks, initiated by C4-hydrogen abstraction on the 2-deoxyribose moiety. In this work we demonstrate that such a hydrogen abstraction reaction is able to induce the formation of a clustered DNA lesion, involving a 3′ strand break together with a modified sugar residue exhibiting a reactive α,β-unsaturated aldehyde that further reacts with a proximate cytosine base. The lesion thus produced was detected as a mixture of four isomers by HPLC coupled to tandem mass spectrometry subsequent to DNA extraction and enzymatic digestion. The modified nucleosides that constitute new types of cytosine adducts were identified as the likely two pairs of diastereomers of 6-(2-deoxy-β-d-erythro-pentofuranosyl)-2-hydroxy-3(3-hydroxy-2-oxopropyl)-2,6-dihydroimidazo[1,2-c]-pyrimidin-5(3H)-one as inferred from mass spectrometry and NMR analyses of the chemically synthesized nucleosides. We demonstrate that bleomycin, and to a minor extent ionizing radiation, are able to induce significant amounts of the cytosine damage in cellular DNA. In addition, the repair kinetic of the lesion in a human lymphocyte cell line is rather slow, with a half-life of 10 h. The 2′-deoxycytidine adducts thus characterized that represent the first example of complex DNA lesions isolated and identified in cellular DNA upon one radical hit are likely to play an important role in the toxicity of bleomycin. PMID:17715301

  11. Delivery of antifibroblast agents as adjuncts to filtration surgery. Part I--Periocular clearance of cobalt-57 bleomycin in experimental drug delivery: pilot study in the rabbit

    SciTech Connect

    Kay, J.S.; Litin, B.S.; Woolfenden, J.M.; Chvapil, M.; Herschler, J.

    1986-10-01

    Antitumor and antifibroblast agents show promise as adjuncts after glaucoma filtration surgery in reducing postoperative scarring and failure. We used nuclear imaging in rabbits to investigate periocular clearance of one such agent (/sup 57/Co-bleomycin). Sub-Tenon injection was compared to other delivery techniques. Our results showed that a collagen sponge and a silastic disc implant with a microhole prolonged drug delivery when compared to sub-Tenon injection alone or injection with a viscosity enhancing agent (0.5% sodium hyaluronate). We theorize that if an antifibroblast agent can be delivered in small and sustained amounts after filtration surgery, this may prolong bleb longevity and avoid unnecessary drug toxicity.

  12. In Vitro and In Vivo preparation evaluations of bleomycin implants and microspheres Prepared with DL-poly (lactide-co-glycolide).

    PubMed

    D'Souza, R; Mutalik, S; Udupa, N

    2006-02-01

    In this investigation, poly(lactide-co-glycolide) (PLGA) gel implants and microspheric depot systems of bleomycin (BLM) were formulated and evaluated in vivo in mice bearing transplantable solid tumor (fibrosarcoma). The pharmacodynamic studies showed that both the formulations retarded tumor growth significantly (p<0.05) when compared to the control animals (without any drug treatment). Preliminary pharmacokinetic studies illustrated controlled release of the drug into the systemic circulation to elicit the anti-neoplastic action. The gel implants showed better release characteristics and greater pharmacodynamic action when compared to the microspheres, thus demonstrating the feasibility of employing biodegradable depot polymer gel matrix for chronic cancer therapy.

  13. The Fanconi anemia/BRCA pathway is involved in DNA interstrand cross-link repair of adriamycin-resistant leukemia cells.

    PubMed

    Yao, Chenjiao; Du, Wei; Chen, Haibing; Xiao, Sheng; Huang, Lihua; Chen, Fangping

    2015-03-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway plays a vital role in DNA damage repair induced by DNA cross-linking agents and is closely related to drug response in cancer treatment. Here we demonstrate that the FA/BRCA pathway contributes to acquired drug resistance in adriamycin (ADR)-resistant leukemia cell lines, and disruption of this pathway partially reverses the drug resistance. We observed that ADR-resistant cells have reduced DNA interstrand cross-links (ICL) compared with ADR-sensitive cells. Western blot studies demonstrated enhanced FA protein expression in ADR-resistant cells. Using siRNA to knock down FANCF in K562/R drug-resistant cells showed increases in sensitivity to ADR and ADR-induced DNA damage, and demonstrated a direct relationship between the FA/BRCA pathway and drug sensitivity. Overexpression of FANCF in K562 drug-sensitive cells partially reproduced the drug-resistant phenotype. These results show that the FA/BRCA pathway is involved in acquired ADR resistance of leukemia cells. The FA/BRCA pathway may be a new target to reverse ADR resistance in leukemia treatment.

  14. Tumor endothelial expression of P-glycoprotein upon microvesicular transfer of TrpC5 derived from adriamycin-resistant breast cancer cells

    SciTech Connect

    Dong, YePing; Pan, QiongXi; Jiang, Li; Chen, Zhen; Zhang, FangFang; Liu, YanJun; Xing, Hui; Shi, Mei; Li, Jiao; Li, XiYuan; Zhu, YaoDan; Chen, Yun; Bruce, Iain C.; Jin, Jian Ma, Xin

    2014-03-28

    Highlights: • TrpC5 was mainly accumulated in microvesicles of drug-resistant MCF-7/ADM cells. • Microvesicles from MCF-7/ADM transferred TrpC5 to endothelial cells. • TrpC5 inhibition reduced P-glycoprotein accumulation on tumor blood vessels in vivo. - Abstract: Treatment of carcinoma commonly fails due to chemoresistance. Studies have shown that endothelial cells acquire resistance via the tumor microenvironment. Microvesicle (MV) shedding from the cell membrane to the microenvironment plays an important role in communication between cells. The aim of the present study was to determine whether MCF-7 adriamycin-resistant cells (MCF-7/ADM) shed MVs that alter the characteristics of human microvessel endothelial cells (HMECs). MVs from tumor cells transferred a Ca{sup 2+}-permeable channel TrpC5 to HMECs, inducing the expression of P-glycoprotein (P-gp) by activation of the transcription factor NFATc3 (nuclear factor of activated T cells isoform c3). Expression of the mdr1 gene was blocked by the TrpC5-blocking antibody T5E3, and the production of P-gp in HMECs was reduced by blockade of TrpC5. Thus, we postulate that endothelial cells acquire the resistant protein upon exposure to TrpC5-containg MVs in the microenvironment, and express P-gp in the TrpC5–NFATc3 signal pathway.

  15. [Importance of the conjugated antibody for the induction of selective effect of adriamycin conjugated with anti AFP monoclonal antibody and entrapped in liposomes against AFP producing tumors].

    PubMed

    Konno, H; Kumai, K; Tsubouchi, T; Ishibiki, K; Abe, O; Tadakuma, T; Yasuda, T; Nagaike, K; Hosokawa, S; Sakaguchi, S

    1989-06-01

    We investigated experimentally the effect of adriamycin (ADM) conjugated with anti alpha-fetoprotein (AFP) monoclonal antibodies and entrapped in liposomes (Lip-ADM = AbAFP) in vitro or in vivo. In the present study, we examined the importance of the conjugated antibody for the induction of selective therapeutic effect of Lip-ADM = AbAFP against AFP producing tumors. As the target tumors, AFP producing human hepatoma strain, Li-7, and AFP non-producing human breast cancer strain, MX-1 maintained in BALB/c nu/nu male mice were used. In order to evaluate the importance of the conjugated antibody, we prepared also ADM conjugated with normal mouse IgG, and entrapped in liposomes Lip-ADM = NIgG, of which therapeutic effects were compared with that of Lip-ADM = AbAFP. Judging from the tumor growth curve and the tumor weight, the therapeutic effect of Lip-ADM = AbAFP was greater against Li-7 than that of Lip-ADM = NIgG. On the other hand, both conjugates showed similar effects against MX-1. As the results it is suggested that the antibody which recognizes the antigen expressed on the target tumor cells can solely increase the therapeutic effect of ADM entrapped in liposomes (Lip-ADM) and that the main factors which contribute to the efficient therapeutic effect of the conjugate were the sensitibility to ADM, the affinity of the tumor cells to liposomes and the superiority of the conjugated antibody.

  16. A Redox-Sensitive Micelle-Like Nanoparticle Self-Assembled from Amphiphilic Adriamycin-Human Serum Albumin Conjugates for Tumor Targeted Therapy

    PubMed Central

    Chen, Lin; Chen, Feng; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Yu, Jiangming; Yan, Zhiqiang; Zhang, Fulei; Sun, Yun; Chen, Di; Jiang, Cheng; Zhao, Xianxian; Gao, Yong; Guo, Shangjing; Li, Wei

    2015-01-01

    The application of chemotherapeutic drug adriamycin (ADR) in cancer therapy is limited by its side effects like high toxicity and insolubility. Nanomedicine offers new hope for overcoming the shortcomings. But how to increase in vivo stability and to control intracellular drug release is a key issue for nano-based formulations. Herein, the hydrophobic ADR was successfully linked to the biocompatible human serum albumin (HSA) by disulfide bond 3-(2-pyridyldithio) propionyl hydrazide (PDPH), resulting in amphiphilic HSA-ADR. The novel ADR-HSA micellar NPs which were thus assembled exhibited a well-defined stable core shell structure with glutathione (GSH) sensitive linkers. The stable PDPH linkers at extracellular level were broken by GSH at intracellular level with a controlled ADR release profile. The in vitro cytotoxicity against gastric cancer cells (NCI-N87) was obviously enhanced by such redox-sensitive ADR-HSA NPs. Additionally, as observed by IVIS Lumina II Imaging System (Xenogen), the intratumor accumulation of ADR-HSA NPs was much higher than that of HSA/ADR NPs due to its high stability. Consequently, the in vivo tumor inhibition was significantly promoted after intravenous administration to the Balb/c nude mice bearing gastric tumors. These in vitro/vivo results indicated that disulfide-bond-containing ADR-HSA NPs were an effective nanodrug delivery system for cancer therapy. PMID:26075280

  17. Efficacy analysis of the aprepitant-combined antiemetic prophylaxis for non-round cell soft-tissue sarcoma patients received adriamycin and ifosfamide therapy

    PubMed Central

    Kusaba, Hitoshi; Kumagai, Hozumi; Inadomi, Kyoko; Matsunobu, Tomoya; Harimaya, Katsumi; Takayoshi, Kotoe; Arita, Shuji; Ariyama, Hiroshi; Akashi, Koichi; Baba, Eishi

    2016-01-01

    Abstract Appropriate antiemetic prophylaxis for moderately emetogenic chemotherapy in patients with non-round cell soft-tissue sarcomas (NRC-STS) remains unclear. We retrospectively investigated efficacy and safety of aprepitant-combined antiemetic prophylaxis in patients with NRC-STS receiving adriamycin plus ifosfamide (AI) therapy. Forty NRC-STS patients were enrolled, their median age was 50 years (range 18–74), and 13 (32.5%) were female. Median cycle number of AI therapy was 4. Twenty patients received the doublet antiemetic prophylaxis (5-hydroxytryptamine-3 receptor antagonist and dexamethasone), and 20 received triplet (5-hydroxytryptamine-3 receptor antagonist, dexamethasone, and aprepitant). In the overall period, complete response rate for nausea and emesis in the triplet group was significantly higher than that in the doublet group (70% vs 35%; P = 0.027). Patients with no-emesis in the overall period were more frequently observed in the triplet group than in the doublet group (90% vs 65%; P = 0.058). All toxicities other than emesis were almost equivalent in both the groups. These results suggest that a triplet antiemetic prophylaxis may be optimal in the treatment with AI therapy for NRC-STS. PMID:27930525

  18. Enhanced therapeutic effect of Adriamycin on multidrug resistant breast cancer by the ABCG2-siRNA loaded polymeric nanoparticles assisted with ultrasound

    PubMed Central

    Teng, Yanwei; Sun, Ying; Li, Fan; Zhang, Xiangyu; Xu, Yuanyuan; Duan, Yourong; Du, Lianfang

    2015-01-01

    The overexpression of the breast cancer resistance protein (ABCG2) confers resistance to Adriamycin (ADR) in breast cancer. The silencing of ABCG2 using small interfering RNA (siRNA) could be a promising approach to overcome multidrug resistance (MDR) in cancer cells. To deliver ABCG2-siRNA effectively into breast cancer cells, we used mPEG-PLGA-PLL (PEAL) nanoparticles (NPs) with ultrasound-targeted microbubble destruction (UTMD). PEAL NPs were prepared with an emulsion-solvent evaporation method. The NPs size was about 131.5 ± 6.5 nm. The siRNA stability in serum was enhanced. The intracellular ADR concentration increased after the introduction of siRNA-loaded NPs. After intravenous injection of PEAL NPs in tumor-bearing mice, the ABCG2-siRNA-loaded NPs with UTMD efficiently silenced the ABCG2 gene and enhanced the ADR susceptibility of MCF-7/ADR (ADR resistant human breast cancer cells). The siRNA-loaded NPs with UTMD + ADR showed better tumor inhibition effect and good safety in vivo. These results indicate that ADR-chemotherapy in combination with ABCG2-siRNA is an attractive strategy to treat breast cancer. PMID:26575421

  19. STAT3 contributes to NK cell recognition by modulating expression of NKG2D ligands in adriamycin-resistant K562/AO2 cells.

    PubMed

    Cai, Xiaohui; Lu, Xuzhang; Jia, Zhuxia; Zhang, Xiuwen; Han, Wenmin; Rong, Xiao; Ma, Lingdi; Zhou, Min; Chen, Baoan

    2015-11-01

    Leukemic cells can survive after chemotherapy by acquisition of multidrug resistance genes, but other phenotypes related to escape from immune recognition remain elusive. Adriamycin-resistant K562/AO2 cells are less susceptible to elimination by NK cells compared with wild type K562 cells due to lower expression of NKG2D ligands. Treatment of K562/AO2 cells with STAT3 inhibitor VII resulted in reduced expression of multidrug resistance gene P-glycoprotein, and up-regulation of NKG2D ligands on K562/AO2 cells. Meanwhile, K562/AO2 cells treated with STAT3 inhibitor proliferated less and were more susceptible to killing by NK cells than untreated K562/AO2 cells. The enhanced cytotoxicity of NK cells against K562/AO2 cells was partly blocked by treatment of NK cells with anti-NKG2D antibodies. These data suggest that STAT3 contributes to NK cell recognition by modulating NKG2D ligands in K562/AO2 cells, which may a mechanism by which cells survive and cause relapse of leukemia.

  20. Efficacy analysis of the aprepitant-combined antiemetic prophylaxis for non-round cell soft-tissue sarcoma patients received adriamycin and ifosfamide therapy.

    PubMed

    Kusaba, Hitoshi; Kumagai, Hozumi; Inadomi, Kyoko; Matsunobu, Tomoya; Harimaya, Katsumi; Takayoshi, Kotoe; Arita, Shuji; Ariyama, Hiroshi; Akashi, Koichi; Baba, Eishi

    2016-12-01

    Appropriate antiemetic prophylaxis for moderately emetogenic chemotherapy in patients with non-round cell soft-tissue sarcomas (NRC-STS) remains unclear. We retrospectively investigated efficacy and safety of aprepitant-combined antiemetic prophylaxis in patients with NRC-STS receiving adriamycin plus ifosfamide (AI) therapy. Forty NRC-STS patients were enrolled, their median age was 50 years (range 18-74), and 13 (32.5%) were female. Median cycle number of AI therapy was 4. Twenty patients received the doublet antiemetic prophylaxis (5-hydroxytryptamine-3 receptor antagonist and dexamethasone), and 20 received triplet (5-hydroxytryptamine-3 receptor antagonist, dexamethasone, and aprepitant). In the overall period, complete response rate for nausea and emesis in the triplet group was significantly higher than that in the doublet group (70% vs 35%; P = 0.027). Patients with no-emesis in the overall period were more frequently observed in the triplet group than in the doublet group (90% vs 65%; P = 0.058). All toxicities other than emesis were almost equivalent in both the groups. These results suggest that a triplet antiemetic prophylaxis may be optimal in the treatment with AI therapy for NRC-STS.

  1. Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1

    PubMed Central

    Wang, Changyuan; Huo, Xiaokui; Wang, Lijuan; Meng, Qiang; Liu, Zhihao; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Peng, Jinyong; Liu, Kexin

    2016-01-01

    The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant. PMID:27329817

  2. Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy.

    PubMed

    Scarfe, Lauren; Rak-Raszewska, Aleksandra; Geraci, Stefania; Darssan, Darsy; Sharkey, Jack; Huang, Jiaguo; Burton, Neal C; Mason, David; Ranjzad, Parisa; Kenny, Simon; Gretz, Norbert; Lévy, Raphaël; Kevin Park, B; García-Fiñana, Marta; Woolf, Adrian S; Murray, Patricia; Wilm, Bettina

    2015-09-02

    Maximising the use of preclinical murine models of progressive kidney disease as test beds for therapies ideally requires kidney function to be measured repeatedly in a safe, minimally invasive manner. To date, most studies of murine nephropathy depend on unreliable markers of renal physiological function, exemplified by measuring blood levels of creatinine and urea, and on various end points necessitating sacrifice of experimental animals to assess histological damage, thus counteracting the principles of Replacement, Refinement and Reduction. Here, we applied two novel minimally invasive techniques to measure kidney function in SCID mice with adriamycin-induced nephropathy. We employed i) a transcutaneous device that measures the half-life of intravenously administered FITC-sinistrin, a molecule cleared by glomerular filtration; and ii) multispectral optoacoustic tomography, a photoacoustic imaging device that directly visualises the clearance of the near infrared dye, IRDye 800CW carboxylate. Measurements with either technique showed a significant impairment of renal function in experimental animals versus controls, with significant correlations with the proportion of scarred glomeruli five weeks after induction of injury. These technologies provide clinically relevant functional data and should be widely adopted for testing the efficacies of novel therapies. Moreover, their use will also lead to a reduction in experimental animal numbers.

  3. Differential long-term subcellular responses in heart and liver to adriamycin stress. Exogenous L-carnitine cardiac and hepatic protection.

    PubMed

    Zeidán, Q; Strauss, M; Porras, N; Anselmi, G

    2002-07-01

    In order to evaluate the heart and liver responses after adriamycin (ADR) toxic aggression, with and without exogenous L-carnitine (CAR) protection, female Sprague-Dawley rats, body weight 40-60 g, were randomized into four groups: CON, ADR, CAR and CAR-ADR. ADR was injected i.v. at a dose of 15-18 mg/kg body wt (0.1 ml). CAR was administered i.v. at a dose of 20 mg (0.1 ml) before each subdose of ADR, and then orally at 180 mg/kg body wt daily for 12 weeks. Long-term cardiac and hepatic subcellular damage were determined by transmission electron microscopic analysis of ultrathin sections. The ADR-induced long-term cardiac subcellular pathology included loss, disruption and disassembly of myofibrils, and mitochondrial swelling and condensation. On the other hand, the ADR-induced subcellular hepatic alterations consisted of polymorphic mitochondria, cytoplasmic vacuolization and accumulation of lipid droplets. Apparently, cardiac tissue was more affected by ADR toxic aggression than hepatic tissue. However, these alterations were of less severity in protected groups, in both heart and liver, suggesting CAR as a possible hepatoprotector agent against ADR toxicity. Because of the liver-L-carnitine-heart relationship, studying ADR-hepatotoxicity could be helpful in the further understanding of severe ADR-cardiotoxicity.

  4. A non-calcemic sulfone version of the vitamin D(3) analogue seocalcitol (EB 1089): chemical synthesis, biological evaluation and potency enhancement of the anticancer drug adriamycin.

    PubMed

    Posner, G H; Crawford, K R; Peleg, S; Welsh, J E; Romu, S; Gewirtz, D A; Gupta, M S; Dolan, P; Kensler, T W

    2001-09-01

    Novel side-chain diene sulfones 5, analogues of the natural hormone 1alpha,25-dihydroxyvitamin D(3) (calcitriol, 1), were designed to incorporate some of the therapeutically most favorable structural features of the Leo Pharmaceutical Company's drug candidate diene EB 1089 (seocalcitol, 4) and of the Hopkins' non-calcemic side-chain sulfone analogues 2 and 3. Synthesis of diene sulfones 5 features selective Swern oxidation of a primary silyl ether in the presence of a secondary silyl ether (9-->10) and Horner-Wadsworth-Emmons aldehyde addition by a 1-phosphonyl-3-sulfonyl stabilized carbanion regiospecifically at the 1-position to form E,E-diene sulfone 11. Sulfone diene analogue 5a with natural 1alpha,3beta-diol functionality, but not its diastereomer 5b with unnatural A-ring stereochemistry, is antiproliferative in vitro toward murine keratinocytes and malignant melanoma cells, as well as toward MCF-7 human breast cancer cells. Combining diene sulfone 5a with the currently used anticancer drug adriamycin (ADR) caused a noteworthy 3-fold enhancement of ADR antiproliferative potency in MCF-7 cells. Sulfone diene analogue 5a is weakly active transcriptionally in MCF-7 and ROS 17/2.8 cells, binds poorly but measurably to the vitamin D receptor (VDR), and desirably is non-calcemic in vivo at a daily dose (7 days) of 10 microg/kg of rat body weight.

  5. A modified murine model of systemic sclerosis: bleomycin given by pump infusion induced skin and pulmonary inflammation and fibrosis.

    PubMed

    Liang, Minrui; Lv, Jiaoyan; Zou, Linlin; Yang, Wei; Xiong, Yingluo; Chen, Xiangjun; Guan, Ming; He, Rui; Zou, Hejian

    2015-03-01

    Daily subcutaneous (sc) injection of bleomycin (BLM) causes dermal fibrosis but rarely causes lung changes in mice. There are also significant disadvantages to this traditional model for systemic sclerosis, including a variable distribution of lesions and a requirement for repetitive procedures. The present study was undertaken to develop a convenient method of BLM administration that yields stable dermal inflammation and fibrosis with extensive and reproducible interstitial lung disease (ILD) in mice. Osmotic minipumps containing BLM (150 mg/kg) or saline were implanted sc in C57BL/6 mice and the drug was delivered as a continuous infusion over 1∼4 weeks. The time course of morphological features, collagen content, and pro-inflammatory cytokine expression in the skin and the lungs were analyzed. Pathological examination demonstrated dominant inflammatory infiltrates at week 1 and significant fibrosis at week 4. Decreased microvessel density and increased myofibroblast counts were observed in the skin of BLM-treated mice at week 4. In addition, there were obvious increases in dermal infiltration of CD45(+) leukocytes, including F4/80(+) macrophages, Gr-1(+) neutrophils, and CD3(+) T lymphocytes in BLM-treated mice. IL-1β, IL-4, and CXCL2 transcripts were continually upregulated by BLM in the skin and lung tissues. In addition, lungs from BLM-treated mice showed significant inflammatory infiltrates and confluent subpleural fibrosis at week 4. In conclusion, this modified murine model for drug-induced systemic inflammation and fibrosis uses a single procedure and provides reproducible skin and lung lesions, mimicking human systemic sclerosis (SSc) with ILD-like manifestation.

  6. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Jorgensen, T. J.

    1995-01-01

    Using the radiomimetic drug, bleomycin, we have determined the mutagenic potential of DNA strand breaks in the shuttle vector pZ189 in human fibroblasts. The bleomycin treatment conditions used produce strand breaks with 3'-phosphoglycolate termini as > 95% of the detectable dose-dependent lesions. Breaks with this end group represent 50% of the strand break damage produced by ionizing radiation. We report that such strand breaks are mutagenic lesions. The type of mutation produced is largely determined by the type of strand break on the plasmid (i.e. single versus double). Mutagenesis studies with purified DNA forms showed that nicked plasmids (i.e. those containing single-strand breaks) predominantly produce base substitutions, the majority of which are multiples, which presumably originate from error-prone polymerase activity at strand break sites. In contrast, repair of linear plasmids (i.e. those containing double-strand breaks) mainly results in deletions at short direct repeat sequences, indicating the involvement of illegitimate recombination. The data characterize the nature of mutations produced by single- and double-strand breaks in human cells, and suggests that deletions at direct repeats may be a 'signature' mutation for the processing of DNA double-strand breaks.

  7. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  8. Radiotherapy Does Not Influence the Severe Pulmonary Toxicity Observed With the Administration of Gemcitabine and Bleomycin in Patients With Advanced-Stage Hodgkin's Lymphoma Treated With the BAGCOPP Regimen: A Report by the German Hodgkin's Lymphoma Study Group

    SciTech Connect

    Macann, Andrew; Bredenfeld, Henning; Mueller, Rolf-Peter; Diehl, Volker; Engert, Andreas; Eich, Hans Theodor

    2008-01-01

    Purpose: To evaluate the effect of radiotherapy on the severe pulmonary toxicity observed in the pilot study of BAGCOPP (bleomycin, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone, and gemcitabine) for advanced-stage Hodgkin's lymphoma. Methods and Materials: Patients with Stage III or IV Hodgkin's lymphoma or Stage IIB with risk factors participated in this single-arm, multicenter pilot study. Results: Twenty-seven patients were enrolled on the study before its premature closure as a result of the development of serious pulmonary toxicity in 8 patients. The pulmonary toxicity occurred either during or immediately after the BAGCOPP chemotherapy course. Pulmonary toxicity contributed to one early fatality but resolved in the other 7 patients after cessation of gemcitabine and bleomycin, allowing continuation of therapy. Fifteen patients received consolidative radiotherapy, including 4 who previously had pulmonary toxicity. There were no reported cases of radiation pneumonitis and no exacerbation of pulmonary symptoms in the 4 patients who had had previous pulmonary toxicity. Conclusions: The severe pulmonary toxicity observed in this study has been attributed to an interaction between gemcitabine and bleomycin. Gemcitabine (when administered without bleomycin) remains of interest in Hodgkin's lymphoma and is being incorporated into a new German Hodgkin's Lymphoma Study Group protocol that also includes consolidative radiotherapy. This study supports the concept of the integration of radiotherapy in gemcitabine-containing regimens in Hodgkin's lymphoma if there is an interval of at least 4 weeks between the two modalities and with a schedule whereby radiotherapy follows the chemotherapy.

  9. Cytotoxic effect of the red beetroot (Beta vulgaris L.) extract compared to doxorubicin (Adriamycin) in the human prostate (PC-3) and breast (MCF-7) cancer cell lines.

    PubMed

    Kapadia, Govind J; Azuine, Magnus A; Rao, G Subba; Arai, Takanari; Iida, Akira; Tokuda, Harukuni

    2011-03-01

    Previous cancer chemoprevention studies from our laboratories and by other investigators have demonstrated that the extract of red beetroot (Beta vulgaris L.), the FDA approved red food color E162, can be effective in suppressing the development of multi-organ tumors in experimental animals. To further explore this finding, we have compared the cytotoxic effect of the red beetroot extract with anticancer drug, doxorubicin (adriamycin) in the androgen-independent human prostate cancer cells (PC-3) and in the well-established estrogen receptor-positive human breast cancer cells (MCF-7). This red colored anticancer antibiotic was selected for comparative cytotoxic study because its chemical structure with a planar configuration of an aromatic chromophore attached to a sugar molecule is remarkably similar to that of betanin, the beetroot extract constituent primarily responsible for its red color. Both doxorubicin and the beetroot extract exhibited a dose-dependent cytotoxic effect in the two cancer cell lines tested. Although the cytotoxicity of the beetroot extract was significantly lower when compared to doxorubicin, it continued to decrease the growth rate of the PC-3 cells (3.7% in 3 days vs. 12.5% in 7 days) when tested at the concentration of 29 µg/ml. In contrast, doxorubicin, at the same concentration level, completely inhibited the growth of the PC-3 cells in three days. Similarly, comparative studies in the normal human skin FC and liver HC cell lines showed that the beetroot extract had significantly lower cytotoxic effect than doxorubicin (8.6% vs. 100%, respectively, at 29 µg/ml concentration of each, three-day test period). The results suggest that betanin, the major betacyanin constituent, may play an important role in the cytotoxicity exhibited by the red beetroot extract. Further studies are needed to evaluate the chemopreventive potentials of the beetroot extract when used alone or in combination with doxorubicin to mitigate the toxic side

  10. The restoration of kidney mitochondria function by inhibition of angiotensin-II production in rats with acute adriamycin-induced nephrotoxicity.

    PubMed

    Taskin, Eylem; Ozdogan, Kalender; Kunduz Kindap, Elvan; Dursun, Nurcan

    2014-05-01

    Adriamycin (ADR) is commonly used for many solid tumor treatments. Its clinical utility is, however, largely limited by the adverse reactions, are known to be nephrotoxic. The mechanism by which it induces kidney damage is still not completely understood, but its nephrotoxicity might relate to increase reactive oxidant status (ROS), mitochondrial dysfunction. Until now, neurohormonal activation of it is unclear. ADR might activate the renin angiotensin system. Angiotensin-II also induced ROS and mitochondrial dysfunction. The aim of this study was to investigate whether angiotensin-II production inhibition has the protective effect on attenuation of mitochondrial function in rats with acute ADR-nephrotoxicity or not. Rats were divided into five groups as a control, ADR, co-treated ADR with captopril (CAP), co-treated ADR with Aliskren, co-treated ADR with both CAP and Aliskren groups. Creatinine kinase (CK) levels were measured at the end of treatment period. The kidneys were homogenized and biochemical measurements were made in mitochondria, cytosol. Mitochondria membrane potential (MMP) and ATP levels were determined. ADR increased CK levels and oxidative stress in mitochondria too (p<0.05). ADR significantly decreased MMP and ATP level in kidney mitochondria (p<0.05). Co-administration with ADR and Aliskren and CAP improved the dissipation of MMP (p<0.05). The decrease in ATP level was restored by treatment with inhibitors of ACE and renin. We concluded that inhibitors of angiotensin-II are effective against acute ADR induced nephrotoxicity via the restoration of MMP and ATP production and prevention of mitochondrial damage in vivo.

  11. B-cell lymphoma 2 inhibitor ABT-737 induces Beclin1- and reactive oxygen species-dependent autophagy in Adriamycin-resistant human hepatocellular carcinoma cells.

    PubMed

    Yao, Xiaoxiao; Li, Xiaoning; Zhang, Dan; Xie, Yingjun; Sun, Baozhen; Li, Hang; Sun, Liankun; Zhang, Xuewen

    2017-03-01

    ABT-737, a B-cell lymphoma 2 homology 3 mimetic, not only induces cell apoptosis by inhibiting the interaction of B-cell lymphoma 2 and Bax but also induces cell autophagy by interrupting the interaction of B-cell lymphoma 2 and Beclin1. Several recent studies have reported that ABT-737 has antitumor efficacy in diverse cancers. However, another study showed that hepatocellular carcinoma cells with high B-cell lymphoma 2 expression were resistant to ABT-737 compared to hepatocellular carcinoma cells with low B-cell lymphoma 2 expression. It was also found that ABT-737-induced autophagy is crucial for drug resistance. Here, we observed that of B-cell lymphoma 2 expression in Adriamycin-resistant human hepatocellular carcinoma HepG2/ADM cells is higher than that in human hepatocellular carcinoma HepG2 cells. Therefore, we further confirmed the mechanism and effect of autophagy induced by ABT-737 on apoptosis in HepG2/ADM cells with high B-cell lymphoma 2 expression. Our results showed that ABT-737 induced apoptosis and autophagy in time- and dose-dependent manner in HepG2/ADM cells, and this ABT-737-induced autophagy was Beclin1-dependent. In addition, we demonstrated that ABT-737 induced reactive oxygen species-mediated autophagy, and the reactive oxygen species-inhibitor N-acetyl-l-cysteine suppressed the reactive oxygen species-induced autophagy and ABT-737-induced increase in HepG2/ADM cell apoptosis. Furthermore, autophagy inhibitors increased HepG2/ADM cell apoptosis. In conclusion, our study further confirms that Beclin1- and reactive oxygen species-dependent autophagy induced by ABT-737 also plays a protective function in HepG2/ADM cells, which show B-cell lymphoma 2 expression higher than that in HepG2 cells.

  12. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27(kip1) expression.

    PubMed

    Wang, Dan-Dan; Li, Jian; Sha, Huan-Huan; Chen, Xiu; Yang, Su-Jin; Shen, Hong-Yu; Zhong, Shan-Liang; Zhao, Jian-Hua; Tang, Jin-Hai

    2016-09-15

    Adriamycin (Adr) is a potent chemotherapeutic agent for chemotherapy of breast cancer patients. Despite impressive initial clinical responses, some developed drug resistance to Adr-based therapy and the mechanisms underlying breast cancer cells resistance to Adr are not well known. In our previous study, in vitro, we verified that miR-222 was upregulated in Adr-resistant breast cancer cells (MCF-7/Adr) compared with the sensitive parental cells (MCF-7/S). Here, miR-222 inhibitors or mimics were transfected into MCF-7 cell lines. RT-qPCR and western blot were used to detect the expression of p27(kip1). Immunofluorescence showed that miR-222 altered the subcellular location of p27(kip1) in nucleus. MTT was employed to verify the sensitivity of breast cancer cell lines to Adr. Flow cytometry showed the apoptosis and cell cycles of the cells after adding Adr. The results showed that downregulation of miR-222 in MCF-7/Adr increased sensitivity to Adr and Adr-induced apoptosis, and arrested the cells in G1 phase, accompanied by more expressions of p27(kip1), especially in nucleus. Furthermore, overexpressed miR-222 in MCF-7/S had the inverse results. Taken together, the results found that miR-222 induced Adr-resistance at least in part via suppressing p27(kip1) expression and altering its subcellular localization, and miR-222 inhibitors could reverse Adr-resistance of breast cancer cells. These results disclosed that the future holds much promise for the targeted therapeutic in the treatment of Adr-resistant breast cancer.

  13. Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling.

    PubMed

    Wang, Lingyan; Chen, Buyuan; Lin, Minhui; Cao, Yanqin; Chen, Yingyu; Chen, Xinji; Liu, Tingbo; Hu, Jianda

    2015-03-01

    Nucleophosmin/B23 (NPM) is a nuclear protein with prosurvival and ribosomal RNA processing functions. However, the potential role of NPM involved in drug-resistance in leukemia has not been investigated clearly. In this study, we generated an adriamycin (ADM)-resistant lymphoblastic cell line Molt-4/ADR (MAR) by stepwise induction. Cell proliferation, sensitivity to chemotherapy agents and expressions of drug resistance related molecules were assessed. The IC50 of Molt-4 cells were 0.58±0.11μmol/L and MAR cells were 22.56±1.94μmol/L, meaning MAR cells were 38.63 fold resistant to Molt-4 cells. Furthermore, MAR cells gained an expression of mdr-1 (P-gp) and a higher expression of NPM compared to Molt-4 cells. Knockdown of NPM by RNA interference (RNAi) suppressed the viability of both Molt-4 and MAR cells. After NPM RNAi, the IC50 of MAR and Molt-4 cells were 3.83±0.38μmol/L and 0.19±0.02μmol/L respectively. Both of them revealed an increase of drug sensitivity with down-regulation of mdr-1 and Akt/mTOR signaling. Knockdown of mdr-1 could also reverse the drug resistance, with no change in NPM expression. It could be concluded that knockdown of NPM reversed the drug resistance by down-regulating P-gp and Akt/mTOR signal pathway, indicating that NPM may serve as a potential modulator in drug resistance.

  14. Protective Effect of Infliximab, a Tumor Necrosis Factor-Alfa Inhibitor, on Bleomycin-Induced Lung Fibrosis in Rats.

    PubMed

    Altintas, Nejat; Erboga, Mustafa; Aktas, Cevat; Bilir, Bulent; Aydin, Murat; Sengul, Aysun; Ates, Zehra; Topcu, Birol; Gurel, Ahmet

    2016-02-01

    We aimed to investigate the preventive effect of Infliximab (IFX), a tumor necrosis factor (TNF)-α inhibitor, on bleomycin (BLC)-induced lung fibrosis in rats. Rats were assigned into four groups as follows: I-BLC group, a single intra-tracheal BLC (2.5 mg/kg) was installed; II-control group, a single intra-tracheal saline was installed; III-IFX + BLC group, a single-dose IFX (7 mg/kg) was administered intraperitoneally (i.p.), 72 h before the intra-tracheal BLC installation; IV-IFX group, IFX (7 mg/kg) was administered alone i.p. on the same day with IFX + BLC group. All animals were sacrificed on the 14th day of BLC installation. Levels of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, interleukin (IL)-6, periostin, YKL-40, nitric oxide (NO) in rat serum were measured, as well as, myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activity, and reduced glutathione (GSH), hydroxyproline, malondialdehyde (MDA) content in lung homogenates. Lung tissues were stained with hematoxylin and eosin (H&E) for quantitative histological evaluation. The inducible nitric oxide synthase (iNOS) expression and cell apoptosis in the lung tissues were determined quantitatively by immunohistochemical staining (INOS) and by TUNNEL staining, respectively. BLC installation worsened antioxidant status (such as SOD, CAT, GPx, GSH, MPO), while it increased the serum TNF-α, TGF-β, IL-6, periostin, YKL-40, and lipid peroxidation, and collagen deposition, measured by MDA and hydroxyproline, respectively. IFX pretreatment improved antioxidant status as well as BLC-induced lung pathological changes, while it decreased the TNF-α, TGF-β, IL-6, periostin, YKL-40, lipid peroxidation and collagen deposition. Finally, histological, immunohistochemical, and TUNNEL evidence also supported the ability of IFX to prevent BLC-induced lung fibrosis. The results of the present study indicate that IFX pretreatment can attenuate

  15. Bach1 siRNA attenuates bleomycin-induced pulmonary fibrosis by modulating oxidative stress in mice

    PubMed Central

    Liu, Yuan; Zheng, Yi

    2017-01-01

    Oxidative stress plays an essential role in inflammation and fibrosis. Bach1 is an important transcriptional repressor that acts by modulating oxidative stress and represents a potential target in the treatment of pulmonary fibrosis (PF). In this study, we knocked down Bach1 using adenovirus-mediated small interfering RNA (siRNA) to determine whether the use of Bach1 siRNA is an effective therapeutic strategy in mice with bleomycin (BLM)-induced PF. Mouse lung fibroblasts (MLFs) were incubated with transforming growth factor (TGF)-β1 (5 ng/ml) and subsequently infected with recombined adenovirus-like Bach1 siRNA1 and Bach1 siRNA2, while an empty adenovirus vector was used as the negative control. The selected Bach1 siRNA with higher interference efficiency was used for the animal experiments. A mouse model of BLM-induced PF was established, and Bach1 siRNA (1×109 PFU) was administered to the mice via the tail vein. The results revealed that the Bach1 mRNA and protein levels were significantly downregulated by Bach1 siRNA. Furthermore, the MLFs infected with Bach1 siRNA exhibited increased mRNA and protein expression levels of heme oxygenase-1 and glutathione peroxidase 1, but decreased levels of TGF-β1 and interleukin-6 in the cell supernatants compared with the cells exposed to TGF-β1 alone. Bach1 knockdown by siRNA also enhanced the expression of antioxidant factors, but suppressed that of fibrosis-related cytokines in mice compared with the BLM group. Finally, the inflammatory infiltration of alveolar and interstitial cells and the destruction of lung structure were significantly attenuated in the mide administered Bach1 siRNA compared with those in the BLM group. On the whole, our findings demonstrate that Bach1 siRNA exerts protective effects against BLM-induced PF in mice. Our data may provide the basis for the development of novel targeted therapeutic strategies for PF. PMID:27959382

  16. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: Possible role of oxidative stress in the pathogenesis

    SciTech Connect

    Zhou, Cheng-Fan; Zhou, Deng-Chuan; Zhang, Jia-Xiang; Wang, Feng; Cha, Wan-Sheng; Wu, Chang-Hao; Zhu, Qi-Xing

    2014-06-15

    Epithelial–mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4 weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100 mg/kg body weight/day) injected daily for 3 weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice. - Highlights: • We provided the first evidence that EMT occurred in BLM-induced skin fibrosis. • Epithelial cells superficial to the BMZ underwent

  17. Thiol-redox antioxidants protect against lung vascular endothelial cytoskeletal alterations caused by pulmonary fibrosis inducer, bleomycin: comparison between classical thiol-protectant, N-acetyl-L-cysteine, and novel thiol antioxidant, N,N'-bis-2-mercaptoethyl isophthalamide.

    PubMed

    Patel, Rishi B; Kotha, Sainath R; Sauers, Lynn A; Malireddy, Smitha; Gurney, Travis O; Gupta, Niladri N; Elton, Terry S; Magalang, Ulysses J; Marsh, Clay B; Haley, Boyd E; Parinandi, Narasimham L

    2012-06-01

    Lung vascular alterations and pulmonary hypertension associated with oxidative stress have been reported to be involved in idiopathic lung fibrosis (ILF). Therefore, here, we hypothesize that the widely used lung fibrosis inducer, bleomycin, would cause cytoskeletal rearrangement through thiol-redox alterations in the cultured lung vascular endothelial cell (EC) monolayers. We exposed the monolayers of primary bovine pulmonary artery ECs to bleomycin (10 µg) and studied the cytotoxicity, cytoskeletal rearrangements, and the macromolecule (fluorescein isothiocyanate-dextran, 70,000 mol. wt.) paracellular transport in the absence and presence of two thiol-redox protectants, the classic water-soluble N-acetyl-L-cysteine (NAC) and the novel hydrophobic N,N'-bis-2-mercaptoethyl isophthalamide (NBMI). Our results revealed that bleomycin induced cytotoxicity (lactate dehydrogenase leak), morphological alterations (rounding of cells and filipodia formation), and cytoskeletal rearrangement (actin stress fiber formation and alterations of tight junction proteins, ZO-1 and occludin) in a dose-dependent fashion. Furthermore, our study demonstrated the formation of reactive oxygen species, loss of thiols (glutathione, GSH), EC barrier dysfunction (decrease of transendothelial electrical resistance), and enhanced paracellular transport (leak) of macromolecules. The observed bleomycin-induced EC alterations were attenuated by both NAC and NBMI, revealing that the novel hydrophobic thiol-protectant, NBMI, was more effective at µM concentrations as compared to the water-soluble NAC that was effective at mM concentrations in offering protection against the bleomycin-induced EC alterations. Overall, the results of the current study suggested the central role of thiol-redox in vascular EC dysfunction associated with ILF.

  18. Involved-Node Proton Therapy in Combined Modality Therapy for Hodgkin Lymphoma: Results of a Phase 2 Study

    SciTech Connect

    Hoppe, Bradford S.; Flampouri, Stella; Zaiden, Robert; Slayton, William; Sandler, Eric; Dang, Nam H.; Lynch, James W.; Li, Zuofeng; Morris, Christopher G.; Mendenhall, Nancy P.

    2014-08-01

    Purpose: This study describes the early clinical outcomes of a prospective phase 2 study of consolidative involved-node proton therapy (INPT) as a component of combined-mode therapy in patients with stages I to III Hodgkin lymphoma (HL) with mediastinal involvement. Methods and Materials: Between September 2009 and June 2013, 15 patients with newly diagnosed HL received INPT after completing chemotherapy in an institutional review board-approved protocol comparing the dosimetric impact of PT with those of three-dimensional conformal radiation therapy (3DCRT) and intensity modulated RT. Based on {sup 18}F-Fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) response, 5 children received 15 to 25.5 cobalt Gy equivalent (CGE) of INPT after receiving 4 cycles of Adriamycin, Bleomycin, Vincristine, Etoposide, Prednisone, Cyclophosphamide or Vincristine, adriamycin, methotrexate, Prednisone chemotherapy, and 10 adults received 30.6 to 39.6 CGE of INPT after 3 to 6 cycles of Adriamycin, Bleomycine, Vinblastine, Dacarbazine. Patients were routinely evaluated for toxicity during and after treatment, using Common Terminology Criteria for Adverse Events, version 3.0, and for relapse by physical examination and routine imaging. Relapse-free survival (RFS) and event-free survival (EFS) rates were calculated using the Kaplan-Meier method from the time of diagnosis. Results: The median follow-up was 37 months (range, 26-55). Two events occurred during follow-up: 1 relapse (inside and outside the targeted field) and 1 transformation into a primary mediastinal large B cell lymphoma. The 3-year RFS rate was 93%, and the 3-year EFS rate was 87%. No acute or late grade 3 nonhematologic toxicities were observed. Conclusions: Although decades of follow-up will be needed to realize the likely benefit of PT in reducing the risk of radiation-induced late effects, PT following chemotherapy in patients with HL is well-tolerated, and disease outcomes

  19. [Pharmacological properties of chitosan-coated dialdehyde cellulose (chitosan DAC), a newly developed oral adsorbent (II). Effect of chitosan DAC on rats with chronic renal failure induced by adriamycin].

    PubMed

    Nagano, N; Yoshimoto, H; Nishitoba, T; Sato, H; Miyata, S; Kusaka, M; Jing, S B; Yamaguchi, T

    1995-08-01

    The effects of chitosan-coated dialdehyde cellulose (Chitosan DAC), a newly developed oral adsorbent of urea and ammonia, were examined in rats with progressive chronic renal failure (CRF) induced by adriamycin. CRF rats induced by repeated injections of adriamycin were fed a diet containing chitosan DAC (5% content) or Kremezin (5% content), an oral charcoal adsorbent (AST-120) under strict paired-feeding for four months. CRF rats that received both a normal diet and Kremezin showed progressive azotemia, hyperphosphatemia, hyperlipidemia, proteinuria, and anemia, and began to die from 9 weeks after feeding started. In contrast, chitosan DAC-treatment showed marked prolongation of the survival period and decreases in blood urea nitrogen, serum creatinine, and serum phosphate. In addition, chitosan DAC-treatment ameliorated anemia in CRF rats, although hyperlipidemia and proteinuria were not improved. Furthermore, fecal weight, fecal water content, fecal nitrogen and fecal sodium were markedly increased, and the apparent protein ratio was decreased in CRF rats fed a diet containing chitosan DAC for 9 weeks. In contrast, none of these effects were observed in CRF rats receiving Kremezin. These observations suggest the further possibility of using oral adsorbent therapy for CRF patients.

  20. Successful treatment of multiple basaliomas with bleomycin-based electrochemotherapy: a case series of three patients with Gorlin-Goltz syndrome.

    PubMed

    Kis, Erika; Baltás, Eszter; Kinyó, Agnes; Varga, Erika; Nagy, Nikoletta; Gyulai, Rolland; Kemény, Lajos; Oláh, Judit

    2012-11-01

    Gorlin-Goltz syndrome is a rare multisystemic disease, characterized by numerous basal cell carcinomas. The ideal approach for patients with the syndrome would be a treatment with a high cure rate, minimal scarring, short healing time and mild side-effects. Electrochemo-therapy is a novel therapeutic option that ablates tumours with electrical current and simultaneously administered anticancer drugs. Three patients with Gorlin-Goltz syndrome were treated with electrochemotherapy using intravenous bleomycin. Clinical response was obtained in 98 (99%) of the lesions, 86 (87%) of them showed complete response. In 2 tumours, regression was confirmed with histological examination. Long-term cosmetic results were excellent. We consider electrochemotherapy to be an additional tool in the therapeutic armamentarium for Gorlin-Goltz syndrome, and suggest using it as early as possible in selected patients to avoid disfiguring scarring.

  1. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.

    PubMed

    Murakami, Ken; Kohno, Masataka; Kadoya, Masatoshi; Nagahara, Hidetake; Fujii, Wataru; Seno, Takahiro; Yamamoto, Aihiro; Oda, Ryo; Fujiwara, Hiroyoshi; Kubo, Toshikazu; Morita, Satoshi; Nakada, Hiroshi; Hla, Timothy; Kawahito, Yutaka

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5). Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO)) mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT) mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF) collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF) levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1) or transforming growth factor β1 (TGF-β1) levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.

  2. Osthole Alleviates Bleomycin-Induced Pulmonary Fibrosis via Modulating Angiotensin-Converting Enzyme 2/Angiotensin-(1-7) Axis and Decreasing Inflammation Responses in Rats.

    PubMed

    Hao, Yuewen; Liu, Yan

    2016-01-01

    Studies have shown that angiotensin-converting enzyme 2 (ACE2) plays modulating roles in lung pathophysiology, including pulmonary fibrosis (PF) and acute lung injury. Pulmonary fibrosis is a common complication in these interstitial lung diseases, and PF always has a poor prognosis and short survival. To date, there are few promising methods for treating PF, and they are invariably accompanied by severe side effects. Recent studies have showed that the traditional Chinese herbal extract, osthole, had beneficial effects on lipopolysaccharide (LPS) induced acute lung injury (ALI) via an ACE2 pathway. Here we further investigated the protective effects of osthole on bleomycin induced pulmonary fibrosis and attempted to determine the underlying mechanism. PF mode rats were induced by bleomycin (BLM) and then subsequently administered osthole. Histopathological analyses were employed to identify PF changes. The results showed that BLM resulted in severe PF and diffuse lung inflammation, together with significant elevation of inflammatory factors and a marked increase in expression of angiotensin II (ANG II) and transforming growth factor-beta 1 (TGF-β1). ACE2 and angiotensin-(1-7) [ANG-(1-7)] were both greatly reduced after BLM administration. Meanwhile, osthole treatment attenuated BLM induced PF and inflammation, decreased the expression of these inflammatory mediators, ANG II, and TGF-β1, and reversed ACE2 and ANG-(1-7) production in rat lungs. We conclude that osthole may exert beneficial effects on BLM induced PF in rats, perhaps via modulating the ACE2/ANG-(1-7) axis and inhibiting lung inflammation pathways.

  3. Fluorofenidone attenuates bleomycin-induced pulmonary fibrosis by inhibiting eukaryotic translation initiation factor 3a (eIF3a) in rats.

    PubMed

    Wu, Yue-Han; Li, Xian-Wei; Li, Wen-Qun; Li, Xiao-Hui; Li, Yuan-Jian; Hu, Gao-Yun; Liu, Zhao-Qian; Li, Dai

    2016-02-15

    Fluorofenidone is a novel derivative of l-mimosine. It has remarkable anti-fibrotic properties. In this study, we established that fluorofenidone ameliorates pulmonary fibrosis (PF) both in vivo and in vitro by specifically inhibiting the expression of eukaryotic translation initiation factor 3a (eIF3a). eIF3a plays an important role in the development and progression of PF. An animal model of PF was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Rats were orally administered with fluorofenidone (250, 500 mg/kg/d·[i.g.]) and pirfenidone (500 mg/kg/d·[i.g.]) for 28 days. Primary pulmonary fibroblasts were cultured to determine the effect of fluorofenidone on TGF-β1-induced (5 ng/ml) proliferation and differentiation of fibroblasts. The expression/level of eIF3a, TGF-β1, α-SMA, collagen I, and collagen III were analyzed by ELISA, real-time PCR, and western blot. The cell proliferation rate was determined by MTS assay. The results indicate that fluorofenidone significantly improves the pathological changes in lung tissues and reduces the deposition of collagen by inhibiting eIF3a in rats with bleomycin-induced PF. Moreover, in a culture of pulmonary fibroblasts, fluorofenidone decreased the up-regulation of TGF-β1-induced eIF3a by inhibiting the proliferation of cells and reducing the expression of α-SMA, collagen I, and collagen III. These findings suggest that eIF3a is a new and special target of fluorofenidone, which could be potentially used in the development of a drug that treats PF.

  4. Treatment of bleomycin-induced pulmonary fibrosis by inhaled tacrolimus-loaded chitosan-coated poly(lactic-co-glycolic acid) nanoparticles.

    PubMed

    Lee, Changkyu; Seo, Jisoo; Hwang, Ha Shin; Thao, Le Quang; Lee, Seunghyun; Lee, Eun Seong; Lee, Eun Hee; Choi, Han-Gon; Youn, Yu Seok

    2016-03-01

    Pulmonary fibrosis is a chronic lung disease characterized by inflammation and collagen deposition, with an estimated mortality rate exceeding 70%. Here, we evaluated the therapeutic effectiveness of inhaled tacrolimus-loaded chitosan-coated poly(lactic-co-glycolic acid) nanoparticles (chitosan TAC PLGA-NPs) in a bleomycin-induced pulmonary fibrosis mouse model. Chitosan TAC PLGA-NPs were fabricated using an o/w emulsification diffusion method, and uncoated TAC PLGA-NPs and chitosan TAC PLGA-NPs were spherical with approximate diameters of 320 and 441 nm, respectively. The zeta potential of chitosan TAC PLGA-NPs (+13.6 mV) was increased significantly by chitosan-coating versus uncoated TAC PLGA-NPs (-28.3 mV). The incorporation efficiency of tacrolimus was 37.7%, and the tacrolimus was gradually released until about 5 day. Direct inhalation of chitosan TAC PLGA-NPs (TAC 180 μg/mouse) twice a week produced marked anti-fibrotic efficacy in mice with bleomycin-induced pulmonary fibrosis, which was much better than the efficacy resulting from daily oral administration (TAC 300 μg/mouse) on the basis of hematoxylin/eosin and Masson's trichrome staining assessments. Imaging of lung deposition showed that chitosan TAC PLGA-NPs were located well in the lungs and gradually faded over 96 h. The pulmonary delivery of tacrolimus could be therapeutically efficacious for treating pulmonary fibrosis. TAC-loaded PLGA nanoparticles should be considered to be an efficient sustained-release type inhalation system that reduces administration frequency and relevant side effects.

  5. Patterns of failure in patients with locally advanced head and neck cancer treated postoperatively with irradiation or concomitant irradiation with Mitomycin C and Bleomycin

    SciTech Connect

    Zakotnik, Branko . E-mail: bzakotnik@onko-i.si; Budihna, Marjan; Smid, Lojze; Soba, Erika; Strojan, Primoz; Fajdiga, Igor; Zargi, Miha; Oblak, Irena; Lesnicar, Hotimir

    2007-03-01

    Purpose: The long term results and patterns of failure in patients with squamous cell head and neck carcinoma (SCHNC) treated in a prospective randomized trial in which concomitant postoperative radiochemotherapy with Mitomycin C and Bleomycin (CRT) was compared with radiotherapy only (RT), were analyzed. Patients and Methods: Between March 1997 and December 2001, 114 eligible patients with Stage III or IV SCHNC were randomized. Primary surgical treatment was performed with curative intent in all patients. Patients in both groups were postoperatively irradiated to the total dose of 56-70 Gy. Chemotherapy included Mitomycin C 15 mg/m{sup 2} after 10 Gy and 5 mg of Bleomycin twice weekly during irradiation. Median follow-up was 76 months (48-103 months). Results: At 5 years in the RT and CRT arms, the locoregional control was 65% and 88% (p = 0.026), disease-free survival 33% and 53% (p = 0.035), and overall survival 37% and 55% (p = 0.091) respectively. Patients who benefited from chemotherapy were those with high-risk factors. The probability of distant metastases was 22% in RT and 20% in CRT arm (p = 0.913), of grade III or higher late toxicity 19% in RT and 26% in CRT arm (p = 0.52) and of thyroid dysfunction 36% in RT and 56% in CRT arm (p = 0.24). The probability to develop a second primary malignancy (SPM) was 34% in the RT and 8% in the CRT arm (p = 0.023). One third of deaths were due to infection, but there was no difference between the 2 groups. Conclusion: With concomitant radiochemotherapy, locoregional control and disease free survival were significantly improved. Second primary malignancies in the CRT arm compared to RT arm were significantly less frequent. The high probability of post treatment hypothyroidism in both arms warrants regular laboratory evaluation.

  6. Hydrogen peroxide overload increases adriamycin-induced apoptosis of SaOS(2)FM, a manganese superoxide dismutase-overexpressing human osteosarcoma cell line.

    PubMed

    Wang, Yadi; Kuroda, Masahiro; Gao, Xian-Shu; Asaumi, Jun-Ichi; Shibuya, Kohichi; Kawasaki, Shoji; Akaki, Shiro; St Clair, Daret; Hiraki, Yoshio; Kanazawa, Susumu

    2005-05-01

    We previously developed a new microscopic observation system that enables time-lapse quantitative analysis of apoptosis and necrosis. With this system we quantitatively analyzed adriamycin (ADR)-induced cell death using manganese superoxide dismutase (MnSOD)- and wild-type p53-gene transfectants on SaOS(2), a p53-deficient human osteosarcoma cell line. A highly MnSOD-overexpressing cell line, SaOS(2)FM(H), acquired ADR-tolerance compared to the parent cell line SaOS(2). The ADR-tolerance of SaOS(2)FM(H) diminished by L-buthionine-[S,R]-sulfoximine (BSO), which did not change ADR-sensitivity of SaOS(2), to the similar ADR-sensitivity of SaOS(2). A wild-type p53-expressing cell line, SaOS(2)wtp53, significantly increased in ADR-sensitivity compared to SaOS(2). This ADR-sensitivity of SaOS(2)wtp53 was enhanced by BSO. When isosorbide 5-mononitrate was combined with BSO, isosorbide 5-mononitrate increased ADR sensitivity of a moderately MnSOD-overexpressing cell line, SaOS(2)FM(L), decreased that of SaOS(2) FM(H), and did not change those of SaOS(2) and SaOS(2)wtp53 compared to BSO alone. Time-lapse microscopic observations during ADR treatment for 24 h indicated that the most cells of each cell line underwent apoptosis, and a few cells (less than 11%) died by necrosis. When cells were treated with iso-concentration of ADR, apoptosis of SaOS(2)FM(H) was less than that of SaOS(2). BSO, which did not change ADR-sensitivity of SaOS(2), increased appearance rate of ADR-induced apoptosis, but not necrosis of MnSOD-overexpressing cell lines. When iso-survival dose of ADR, which reduced surviving fraction to 0.01, was given for each cell line, no difference was observed in appearance of either apoptosis or necrosis between SaOS(2) and MnSOD-overexpressing cell lines. On the other hands, appearance of both apoptosis and the following secondary necrosis of SaOS(2) wtp53 was significantly accelerated compared to those of SaOS(2). These findings indicate that hydrogen peroxide

  7. A comparison of the long-term effects of lanthanum carbonate and calcium carbonate on the course of chronic renal failure in rats with adriamycin-induced nephropathy.

    PubMed

    Takashima, Tsuyoshi; Sanai, Toru; Miyazono, Motoaki; Fukuda, Makoto; Kishi, Tomoya; Nonaka, Yasunori; Yoshizaki, Mai; Sato, Sae; Ikeda, Yuji

    2014-01-01

    Lanthanum carbonate (LA) is an effective phosphate binder. Previous study showed the phosphate-binding potency of LA was twice that of calcium carbonate (CA). No study in which LA and CA were given at an equivalent phosphate-binding potency to rats or humans with chronic renal failure for a long period has been reported to date. The objective of this study was to compare the phosphate level in serum and urine and suppression of renal deterioration during long-term LA and CA treatment when they were given at an equivalent phosphate-binding potency in rats with adriamycin (ADR)-induced nephropathy. Rats were divided into three groups: an untreated group (ADR group), a CA-treated (ADR-CA) group and a LA-treated (ADR-LA) group. The daily oral dose of LA was 1.0 g/kg/day and CA was 2.0 g/kg/day for 24 weeks. The serum phosphate was lower in the ADR-CA or ADR-LA group than in the ADR group and significantly lower in the ADR-CA group than in the ADR group at each point, but there were no significant differences between the ADR and ADR-LA groups. The serum phosphate was also lower in the ADR-CA group than in the ADR-LA group, and there was significant difference at week 8. The urinary phosphate was significantly lower in the ADR-CA group than in the ADR or ADR-LA group at each point. The urinary phosphate was also lower in the ADR-LA group than in the ADR group at each point, and significant difference at week 8. There were no significant differences in the serum creatinine or blood urea nitrogen among the three groups. In conclusion, this study indicated the phosphate-binding potency of LA isn't twice as strong as CA, and neither LA nor CA suppressed the progression of chronic renal failure in the serum creatinine and blood urea nitrogen, compared to the untreated group.

  8. Involved Node Radiation Therapy: An Effective Alternative in Early-Stage Hodgkin Lymphoma

    SciTech Connect

    Maraldo, Maja V.; Aznar, Marianne C.; Vogelius, Ivan R.; Petersen, Peter M.; Specht, Lena

    2013-03-15

    Purpose: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy in a cohort of 97 clinical stage I-II HL patients. Methods and Materials: Patients were staged with positron emission tomography/computed tomography scans, treated with adriamycin, bleomycin, vinblastine, and dacarbazine chemotherapy, and given INRT (prechemotherapy involved nodes to 30 Gy, residual masses to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. Results: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7 malignancies were diagnosed, and 5 patients developed heart disease. Conclusions: INRT offers excellent tumor control and represents an effective alternative to more extended radiation therapy in the combined modality treatment for early-stage HL.

  9. Cell yield and cell survival following chemotherapy of the B16 melanoma.

    PubMed Central

    Stephens, T. C.; Peacock, J. H.

    1978-01-01

    We describe in this paper cell survival studies, using in vitro clonogenic assays, performed on the B16 melanoma treated in situ with various cytotoxic agents. In addition we have determined the effects of these agents on the yield of cells obtained by trypsinization. In untreated tumours the mean cell yield was approximately 10(8)/g, which is 20--30% of the cells actually present in the tissue. The plating efficiency was approximately 40%. Most agents rapidly affected both cell yield and cell survival. For example, within 20--30 h, gamma-radiation and several alkylating agents reduced cell yield by about 40%. The cell yield change was associated with an increase in mean cell size. Cell yield was reduced even more (approximately 70%) by Vinca alkaloids. This large reduction was associated with extensive cell lysis, observed as an increase in the necrotic fraction of tumours from approximately 35% to approximately 70%. Adriamycin, bleomycin and Ara-C also produced a moderate reduction in cell yield (approximately 40%), but actinomycin D did not reduce cell yield and FU increased it by about 30%. Only gamma-radiation, cyclophosphamide, CCNU, BCNU and melphalan produced more than a 90% reduction in cell survival, although there was a small but measurable reduction with all other agents except vinblastine, HN2 and actinomycin D. PMID:728348

  10. [Hodgkin's lymphoma and radiotherapy].

    PubMed

    Datsenko, P V; Panshin, G A

    2015-01-01

    After a median observation time of 4,5 years, 440 patients with Hodgkin's lymphoma stage I-IV to the Ann Arbor classification were treated with radiotherapy (2200 lymph areas) and ABVD (n=204) or BEACOPP (n=117) or CEA/ABVD (lomustine, etoposide, adriamycine, bleomycine, vinblastine and dacarbacine; n=119) regimens in 1995-2012. Correct allocation of groups with "CR or PR ≥80%" and "PR: 0-79%", after first-line chemotherapy, is extremely important for following RT planning. Adaptation of patients with Hodgkin's lymphoma can take place only after successful treatment, the probability of relapse and fear of repeated courses strongly interfere with this process, especially in the first years after its closure. Duration of remission period, especially in young people, is no less important than the criteria for overall survival. It is impossible to build recommendations for treatment for Hodgkin's lymphoma, based only on long-term survival rates. Importance of radiotherapy in reducing the number of relapses is undeniable, so the idea that the development of the role of chemotherapy in the treatment of the ray method Hodgkin's lymphoma gradually becomes secondary is in serious doubt. Our findings suggest the importance of both maintaining a high disease-free survival and reducing long-term complications in designing treatments of Hodgkin's lymphoma.

  11. Second acute leukemia and other malignancies following treatment for Hodgkin's disease

    SciTech Connect

    Valagussa, P.; Santoro, A.; Fossati-Bellani, F.; Banfi, A.; Bonadonna, G.

    1986-06-01

    The records of 1329 patients with Hodgkin's disease admitted from 1965 to 1982 were analyzed to assess the relative frequency of second neoplasms. Within a median follow-up of 9.5 years, a total of 68 new cancers were documented. Nineteen cases of acute nonlymphocytic leukemia, 6 cases of non-Hodgkin's lymphomas, and 43 cases with different types of solid tumors were identified. The overall risk of non-Hodgkin's lymphoma was 1.3% +/- 0.6% and of solid tumors was 8.3% +/- 1.5% when basal cell carcinomas were included and 6.7% +/- 1.4% when basal cell carcinomas were excluded. No cases of leukemia were documented in patients treated with radiation therapy only. The 12-year estimate of leukemia by treatment was as follows: chemotherapy only 1.4% +/- 2.3%; radiation plus MOPP (mechlorethamine, vincristine, procarbazine, and prednisone) 10.2% +/- 5.2%; radiation plus ABVD (Adriamycin, bleomycin, vinblastine, and dacarbazine) 0; and radiation plus other drug regimens 4.8% +/- 1.6%. The risk of leukemia was particularly high (15.5% +/- 7.4%) in patients who received salvage MOPP after radiation failure. A positive association was also noted between increasing age and risk of second malignancies, especially leukemia. The incidence of second neoplasms can be markedly decreased by deleting from potentially curative therapy certain drugs such as alkylating agents, procarbazine, and nitrosourea derivatives.

  12. Unusual primary osseous Hodgkin’s lymphoma: A case report

    PubMed Central

    LUO, WEI; ZHANG, FANGJIE; SUN, JINPENG; HE, HONGBO

    2015-01-01

    Hodgkin’s lymphoma (HL) is one of the few adult malignancies that most frequently presents with a progressive, painless enlargement of the peripheral lymph nodes. A primary osseous presentation of HL, without lymph node involvement, is extremely rare. The present study describes a case of primary multifocal osseous HL in a 22-year-old female. The patient presented with pain in the lumbar-sacral-pelvic area and a prolonged fever. Pathological examination led to a diagnosis of primary multifocal osseous lymphoma, and the patient was subsequently prescribed a course of Adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy. Following this, the patient recovered with no pain or fever, and computed tomography identified no further progression. The clinical, radiological and histological features of HL are similar to those of other medical conditions, such as tuberculosis and eosinophilic granuloma. Furthermore, in rare cases, HL may even occur in combination with multiple myeloma. This makes it difficult to diagnose the condition, which often leads to a delay in treatment. Clinicians should not ignore HL when it manifests in the unusual primary osseous form. PMID:25621037

  13. A case of Langerhans' cell histiocytosis following Hodgkin's disease

    PubMed Central

    LI, XIN; DENG, QI; LI, YU-MING

    2016-01-01

    Langerhans' cell histiocytosis (LCH) is a group of disorders in various tissues characterized by the proliferation of Langerhans cells. It is rarely observed in adults. Langerhans cells are dendritic cells that express cluster of differentiation 1a (CD1a) and S100 protein, and contain Birbeck granules. Its etiopathogenesis remains to be elucidated. One possible etiological cause is a reactive proliferation of Langerhans cells following chemotherapy or radiotherapy for Hodgkin's disease (HD). A number of cases of LCH associated with malignant lymphoma have been reported previously. It may follow after the malignant lymphoma, or occur with it. However, fewer cases have been reported where the LCH followed after HD. In the present case report, a patient was diagnosed with HD following chemotherapy for LCH. As LCH was diagnosed, the patient was treated with a combination of various chemotherapeutic agents in two cycles of cyclophosphamide, vincristine, and prednisolone (COP), and eight cycles of cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP). The patient went into a successful clinical remission. One year later, computed tomographic (CT) scans of the thorax and abdomen revealed augmentation of the tumor mass in the mediastinum. An excisional biopsy of the right inguinal lymph node was performed. The patient was diagnosed with nodular sclerosing Hodgkin's disease. Following four cycles of doxorubicin (Adriamycin), bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy, a whole-body positron emission tomographic CT scan revealed a decrease in tumor mass in the mediastinum. At present, the patient remains in treatment, and the prognosis has yet to be fully determined. PMID:27330759

  14. Persistent improved results after adding vincristine and bleomycin to a cyclophosphamide/hydroxorubicin/Vm-26/prednisone combination (CHVmP) in stage III-IV intermediate- and high-grade non-Hodgkin's lymphoma. The EORTC Lymphoma Cooperative Group.

    PubMed

    Meerwaldt, J H; Carde, P; Somers, R; Thomas, J; Kluin-Nelemans, J C; Bron, D; Noordijk, E M; Cosset, J M; Bijnens, L; Teodorovic, I; Hagenbeek, A

    1997-01-01

    CHOP has been and still is regarded by many as the 'standard' treatment of advanced non-Hodgkin's lymphoma. In 1980 the EORTC Lymphoma Cooperative Group started a study to evaluate the addition of vincristine and bleomycin to its standard four-drug combination chemotherapy, CHVmP (cyclophosphamide, hydroxorubicin, Vm-26, prednisone). Eligible patients were stage III or IV, intermediate- to high-grade non-Hodgkin's lymphoma (Working Formulation E-I). One-hundred-eighty-nine patients were entered, of whom 140 were eligible and evaluable. A previous report showed an improved response rate and failure-free survival (FFS) and overall survival for the combination CHVmP-VB. At ten years, the outcome still favors the addition of vincristine and bleomycin. The FFS was 34% vs. 23% and the overall survival 34% vs 22%. This difference was mainly due to a difference in CR rate (74% vs. 49%), Relapse-free survival for patients reaching a CR was the same in both arms. When the patients were grouped according to the International Prognostic Factor Index, no statistically significant difference could be observed in favor of one treatment within either group. This trial clearly demonstrates the benefit gained by the addition of vincristine and bleomycin to 'standard' chemotherapy for intermediate and high-grade non-Hodgkin's lymphoma.

  15. Nrf2 Regulates the Risk of a Diesel Exhaust Inhalation-Induced Immune Response during Bleomycin Lung Injury and Fibrosis in Mice

    PubMed Central

    Li, Ying-Ji; Shimizu, Takako; Shinkai, Yusuke; Hirata, Yukiyo; Inagaki, Hirofumi; Takeda, Ken; Azuma, Arata; Yamamoto, Masayuki; Kawada, Tomoyuki

    2017-01-01

    The present study investigated the effects of diesel exhaust (DE) on an experimental model of bleomycin (BLM)-induced lung injury and fibrosis in mice. BLM was intravenously administered to both Nrf2+/+ and Nrf2−/− C57BL/6J mice on day 0. The mice were exposed to DE for 56 days from 28 days before the BLM injection to 28 days after the BLM injection. Inhalation of DE induced significant inhibition of airway clearance function and the proinflammatory cytokine secretion in macrophages, an increase in neutrophils, and severe lung inflammatory injury, which were greater in Nrf2−/− mice than in Nrf2+/+ mice. In contrast, inhalation of DE was observed to induce a greater increase of hydroxyproline content in the lung tissues and significantly higher pulmonary antioxidant enzyme mRNA expression in the Nrf2+/+ mice than in Nrf2−/− mice. DE is an important risk factor, and Nrf2 regulates the risk of a DE inhalation induced immune response during BLM lung injury and fibrosis in mice. PMID:28304344

  16. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    PubMed Central

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  17. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice.

    PubMed

    Chow, Leola N; Schreiner, Petra; Ng, Betina Y Y; Lo, Bernard; Hughes, Michael R; Scott, R Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M; Crawford, Jason; Webb, Murray; Underhill, T Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  18. Toxicity of aggressive multimodality therapy including cisplatinum, bleomycin and methotrexate with radiation and/or surgery for advanced head and neck cancer

    SciTech Connect

    Weichselbaum, R.R.; Posner, M.R.; Ervin, T.J.; Fabian, R.L.; Miller, D.

    1982-05-01

    A combined modality regimen employing induction chemotherapy with cisplatinum, bleomycin and methotrexate followed by surgery and/or radiation therapy was initiated in patients with advanced squamous cell carcinoma of the head and neck. In the first 23 patients treated with this program there was a 90% response rate to induction chemotherapy (9% CR and 81% PR). Toxicity associated with radiotherapy, but not surgery, was increased with 11 of 23 patients (48%) who experienced some toxicity during or immediately after radiotherapy. Mucositis was worse than expected and severe delayed mucositis was seen in 2 patients, one of whom required hospitalization. Late complications, possibly related to therapy included one myocardial infarction and one episode of hypoglycemia, both of which were fatal. One other patient voluntarily failed to take prescribed oral leucovorin, dying of unrescued methotrexate toxicity during adjuvant therapy, a questionable suicide. Further follow-up analysis of failure will be necessary to determine if the value of a combined modality regimen in producing an increased cure rate and long term survival will out weigh increased toxicity.

  19. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs

    PubMed Central

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D’Alessandro-Gabazza, Corina N.; Gabazza, Esteban C.; Ichihara, Sahoko

    2014-01-01

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs. PMID:25561223

  20. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    PubMed

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy.

  1. Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice

    PubMed Central

    Oh, Keunhee; Park, Hyung-Bae; Byoun, Ok-Jin; Shin, Dong-Myung; Jeong, Eui Man; Kim, Young Whan; Kim, Yon Su; Melino, Gerry

    2011-01-01

    Pulmonary fibrosis is a potentially life-threatening disease that may be caused by overt or asymptomatic inflammatory responses. However, the precise mechanisms by which tissue injury is translated into inflammation and consequent fibrosis remain to be established. Here, we show that in a lung injury model, bleomycin induced the secretion of IL-6 by epithelial cells in a transglutaminase 2 (TG2)–dependent manner. This response represents a key step in the differentiation of IL-17–producing T cells and subsequent inflammatory amplification in the lung. The essential role of epithelial cells, but not inflammatory cells, TG2 was confirmed in bone marrow chimeras; chimeras made in TG2-deficient recipients showed reduced inflammation and fibrosis, compared with those in wild-type mice, regardless of the bone marrow cell phenotype. Epithelial TG2 thus appears to be a critical inducer of inflammation after noninfectious pulmonary injury. We further demonstrated that fibroblast-derived TG2, acting downstream of transforming growth factor-β, is also important in the effector phase of fibrogenesis. Therefore, TG2 represents an interesting potential target for therapeutic intervention. PMID:21746810

  2. Nrf2 Regulates the Risk of a Diesel Exhaust Inhalation-Induced Immune Response during Bleomycin Lung Injury and Fibrosis in Mice.

    PubMed

    Li, Ying-Ji; Shimizu, Takako; Shinkai, Yusuke; Hirata, Yukiyo; Inagaki, Hirofumi; Takeda, Ken; Azuma, Arata; Yamamoto, Masayuki; Kawada, Tomoyuki

    2017-03-17

    The present study investigated the effects of diesel exhaust (DE) on an experimental model of bleomycin (BLM)-induced lung injury and fibrosis in mice. BLM was intravenously administered to both Nrf2(+/+) and Nrf2(-/-) C57BL/6J mice on day 0. The mice were exposed to DE for 56 days from 28 days before the BLM injection to 28 days after the BLM injection. Inhalation of DE induced significant inhibition of airway clearance function and the proinflammatory cytokine secretion in macrophages, an increase in neutrophils, and severe lung inflammatory injury, which were greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. In contrast, inhalation of DE was observed to induce a greater increase of hydroxyproline content in the lung tissues and significantly higher pulmonary antioxidant enzyme mRNA expression in the Nrf2(+/+) mice than in Nrf2(-/-) mice. DE is an important risk factor, and Nrf2 regulates the risk of a DE inhalation induced immune response during BLM lung injury and fibrosis in mice.

  3. Raynaud's phenomenon in a child with medulloblastoma as a late effect of chemotherapy.

    PubMed

    Atas, Erman; Korkmazer, Nadir; Artik, Hatice A; Babacan, Oguzhan; Kesik, Vural

    2015-01-01

    There are a lot of early or late side effects of chemotherapies. One of them is Raynaud's phenomenon (RP). Vascular toxicity associated with antineoplastic agents is notified in bleomycin alone therapy or in combination with cisplatin, vinblastine, and vincristine. The mechanism of RP associated with antineoplastic agents is unknown. All children receiving vinblastine, vincristine, bleomycin and cisplatin therapy, are followed and questioned about their complaint on RP. Long-term follow-up of surviving patients is recommended. Oncologists should be aware of the potential late toxic effects of antineoplastic drugs.

  4. X-ray crystallographic analysis of 3-(2'-phenyl-2,4'-bithiazole-4-carboxamido) propyldimethylsulphonium iodide, an analogue of the DNA-binding portion of bleomycin A2.

    PubMed

    Kuroda, R; Neidle, S; Riordan, J M; Sakai, T T

    1982-08-11

    The crystal and molecular structure of the title compound, an analogue of the DNA binding region of bleomycin A2, has been determined by X-ray crystallography. All the three independent molecules in an asymmetric unit are approximately planar with fully extended side chains. A computer graphics model-building study has shown that the phenyl group and the second thiazole ring can be intercalated between the base pairs of the double-stranded deoxydinucleoside phosphate d(CpG), and also that the sulphonium cation can interact with a backbone phosphate group. This model is in accord with NMR spectral data.

  5. X-ray crystallographic analysis of 3-(2'-phenyl-2,4'-bithiazole-4-carboxamido) propyldimethylsulphonium iodide, an analogue of the DNA-binding portion of bleomycin A2.

    PubMed Central

    Kuroda, R; Neidle, S; Riordan, J M; Sakai, T T

    1982-01-01

    The crystal and molecular structure of the title compound, an analogue of the DNA binding region of bleomycin A2, has been determined by X-ray crystallography. All the three independent molecules in an asymmetric unit are approximately planar with fully extended side chains. A computer graphics model-building study has shown that the phenyl group and the second thiazole ring can be intercalated between the base pairs of the double-stranded deoxydinucleoside phosphate d(CpG), and also that the sulphonium cation can interact with a backbone phosphate group. This model is in accord with NMR spectral data. PMID:6182526

  6. Variability in cytogenetic adaptive response of cultured human lymphocytes to mitomycin C, bleomycin, quinacrine dihydrochloride, Co60 gamma-rays and hyperthermia.

    PubMed

    Krishnaja, A P; Sharma, N K

    2008-03-01

    Adaptive response (AR) is a well-documented phenomenon by which cells or organisms exposed to low dose of a genotoxicant become less sensitive to subsequent high-dose exposure to the same or another genotoxicant. AR, if induced can modify the efficacy leading to drug or radio-resistance, during anti-neoplastic drug or radiation treatment. Contradictions exist in AR induction by different genotoxicants with respect to the biomarkers, time schedules, and inter-individual variability, reflecting the complexity of AR in eukaryotic cells. In order to further ascertain these factors, AR induced by anti-neoplastic agents mitomycin C (MMC), bleomycin (BLM) and chemosterilant quinacrine dihydrochloride was examined in different donors and time schedules using cytogenetic biomarkers chromosome aberrations, sister chromatid exchanges and micronuclei (MN). BLM- and hyperthermia (HT)-induced cross-resistance to gamma rays and MMC/BLM, respectively, was also studied. Difference between MMC- and BLM-induced protective effects in biomarkers examined in the same donors was noticed. Adaptation to BLM and HT showed cross-resistance to chromosome damage induction by gamma rays and BLM/MMC, respectively. Cell cycle analysis indicated that adaptation is not caused by change in the rate of cell proliferation after challenge dose. MN as a chromosomal biomarker in large-scale population studies on AR is advocated, based on similar AR induced in all donors by MMC/BLM and rapid assessment in binucleated cells. Influence of certain genotypes on chromosomal biomarkers used in AR studies and role of AR in radiation and chemotherapy need to be further deciphered.

  7. IL-21 induction of CD4+ T cell differentiation into Th17 cells contributes to bleomycin-induced fibrosis in mice.

    PubMed

    Lei, Ling; Zhong, Xiao-Ning; He, Zhi-Yi; Zhao, Cheng; Sun, Xue-Jiao

    2015-04-01

    Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis of the skin and internal organs. Th17 cells and interleukin-17 (also called IL-17A) have been found to be increased in peripheral blood and skin in patients with SSc. IL-21 is a potent inducer of Th17 differentiation that is produced by activated T cells, and whose relationship with Th17 cells in SSc is unclear. Here, using a bleomycin (BLM)-induced mouse model of skin fibrosis, we detected the frequency of CD4+/IL-17+ (Th17) cells, CD4+/IL-21+ T cells and IL-21+ Th17 cells in peripheral blood, skin and lungs, as well as the serum content of IL-17A and IL-21. In addition, we assessed the differentiation of CD4+ T cells cultured from these mice into Th17 cells in response to treatment with IL-21. Compared with the control mice, Th17 cell counts and IL-17A levels were significantly increased and correlated with inflammatory and fibrotic indices in the skin and lungs of the BLM-induced fibrosis mice. Moreover, serum levels of CD4+/IL-21+ T cells, IL-21+ Th17 cells, and IL-21 were significantly increased in these mice, and correlated positively with serum levels of Th17 cells. In vitro experiments showed that IL-21 treated CD4+ T cells derived from BLM-induced mice differentiated into Th17 cells. Our results indicate that Th17 cells and IL-17A contributes to inflammatory and fibrotic processes in the skin and lungs in a BLM-induced mouse model of SSc. Moreover, the expansion of the Th17 cell population may be subsequent to IL-21 promotion of the differentiation of CD4+ T cells in these mice.

  8. Supercritical-Carbon Dioxide Fluid Extract from Chry