Science.gov

Sample records for adsorb carbon dioxide

  1. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  2. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  3. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  4. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  5. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    PubMed Central

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  6. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption.

    PubMed

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-30

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  7. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g-1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  8. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes.

    PubMed

    Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui

    2015-01-01

    New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.

  9. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  10. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  11. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  12. Surface area of vermiculite with nitrogen and carbon dioxide as adsorbates

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1969-01-01

    Surface-area studies were made on several homoionic vermiculites with both nitrogen and carbon dioxide as adsorbates. These studies show that only very slight penetration occurs between individual vermiculite platelets. This is in contrast to an earlier investigation of montmorillonite where it was found that the degree of penetration between layers is quite high, particularly for carbon dioxide, and is governed by the size and charge of the interlayer cation. The inability of these adsorbates to penetrate substantially between vermiculite platelets is due primarily to this mineral's high surface-charge density. The extent of penetration of nitrogen and carbon dioxide at the edges of vermiculite platelets, though slight, is influenced by the coordinated water retained within the sample at a given degassing temperature. Forces between layers are weakened with increasing water content, which permits slightly greater penetration by adsorbate gases. Thus, the surface area of vermiculite, as determined by gas adsorption, is larger than the calculated external surface area based upon particle size and shape considerations. In addition, "extra" surface is provided by the lifting and scrolling of terminal platelets. These morphological features are shown in scanning electron micrographs of a naturally occuring vermiculite. ?? 1969.

  13. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.

    PubMed

    Choi, Sunho; Drese, Jeffrey H; Jones, Christopher W

    2009-01-01

    Since the time of the industrial revolution, the atmospheric CO(2) concentration has risen by nearly 35 % to its current level of 383 ppm. The increased carbon dioxide concentration in the atmosphere has been suggested to be a leading contributor to global climate change. To slow the increase, reductions in anthropogenic CO(2) emissions are necessary. Large emission point sources, such as fossil-fuel-based power generation facilities, are the first targets for these reductions. A benchmark, mature technology for the separation of dilute CO(2) from gas streams is via absorption with aqueous amines. However, the use of solid adsorbents is now being widely considered as an alternative, potentially less-energy-intensive separation technology. This Review describes the CO(2) adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks. These adsorbents are evaluated in terms of their equilibrium CO(2) capacities as well as other important parameters such as adsorption-desorption kinetics, operating windows, stability, and regenerability. The scope of currently available CO(2) adsorbents and their critical properties that will ultimately affect their incorporation into large-scale separation processes is presented.

  14. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation.

    PubMed

    Meng, Qing Bo; Weber, Jens

    2014-12-01

    Suitable solid adsorbents are demanded for carbon capture and storage (CCS) processes. In this work, a novel microporous polymer is developed by hypercrosslinking of organosolv lignin, which is a renewable resource. Reaction with formaldehyde dimethyl acetal (FDA) via Friedel-Crafts reaction gives microporous networks, with moderate capacity of carbon dioxide but excellent selectivity towards CO2 /N2 mixture as predicted on the basis of ideal adsorption-solution theory (IAST). Pyrolysis of pure organosolv lignin results in microporous carbon powders, while pyrolysis of hypercrosslinked organosolv lignin yields shape-persistent materials with increased CO2 capacity while maintaining very good selectivity.

  15. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    PubMed

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.

  16. Capturing the Local Adsorption Structures of Carbon Dioxide in Polyamine-Impregnated Mesoporous Silica Adsorbents.

    PubMed

    Huang, Shing-Jong; Hung, Chin-Te; Zheng, Anmin; Lin, Jen-Shan; Yang, Chun-Fei; Chang, Yu-Chi; Deng, Feng; Liu, Shang-Bin

    2014-09-18

    Interactions between amines and carbon dioxide (CO2) are essential to amine-functionalized solid adsorbents for carbon capture, and an in-depth knowledge of these interactions is crucial to adsorbent design and fabrication as well as adsorption/desorption processes. The local structures of CO2 adsorbed on a tetraethylenepentamine-impregnated mesoporous silica SBA-15 were investigated by solid-state (13)C{(14)N} S-RESPDOR MAS NMR technique and theoretical DFT calculations. Two types of adsorption species, namely, secondary and tertiary carbamates as well as distant ammonium groups were identified together with their relative concentrations and relevant (14)N quadrupolar parameters. Moreover, a dipolar coupling of 716 Hz was derived, corresponding to a (13)C-(14)N internuclear distance of 1.45 Å. These experimental data are in excellent agreement with results obtained from DFT calculations, revealing that the distribution of surface primary and secondary amines readily dictates the CO2 adsorption/desorption properties of the adsorbent.

  17. Preparation of manganese dioxide loaded activated carbon adsorbents and their desulfurization performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaojing; Wang, Guojian; Wang, Wenyi; Song, Hua; Wang, Lu

    2016-12-01

    Manganese dioxide loaded activated carbon adsorbents (MnO2/AC) were prepared and characterized by N2 adsorption-desorption, BET method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy (SEM). Effects of preparation conditions and adsorption conditions on desulfurization performance of the adsorbents were studied in a fixed-bed adsorption apparatus. Experimental results show that the surface area and pore volume of MnO2/AC decreased compared with the unmodified activated carbon, but the adsorption capacity to H2S was improved greatly. A suitable H2S removal activity was obtained with manganese dioxide to activated carbon ratio of 1.1: 1 and the calcination temperature of 250°C. At the adsorption temperature of 40°C and gas flow rate of 20 mL/min, the H2S saturation capacity and H2S removal rate reached up to 713.25 mg/g and 89.9%, respectively.

  18. Accuracy of density functional theory in the prediction of carbon dioxide adsorbent materials.

    PubMed

    Cazorla, Claudio; Shevlin, Stephen A

    2013-04-07

    Density functional theory (DFT) has become the computational method of choice for modeling and characterization of carbon dioxide adsorbents, a broad family of materials which at present are urgently sought after for environmental applications. The description of polar carbon dioxide (CO(2)) molecules in low-coordinated environments like surfaces and porous materials, however, may be challenging for local and semi-local DFT approximations. Here, we present a thorough computational study in which the accuracy of DFT methods in describing the interactions of CO(2) with model alkali-earth-metal (AEM, Ca and Li) decorated carbon structures, namely anthracene (C(14)H(10)) molecules, is assessed. We find that gas-adsorption energies and equilibrium structures obtained with standard (i.e. LDA and GGA), hybrid (i.e. PBE0 and B3LYP) and van der Waals exchange-correlation functionals of DFT dramatically differ from the results obtained with second-order Møller-Plesset perturbation theory (MP2), an accurate computational quantum chemistry method. The major disagreements found can be mostly rationalized in terms of electron correlation errors that lead to wrong charge-transfer and electrostatic Coulomb interactions between CO(2) and AEM-decorated anthracene molecules. Nevertheless, we show that when the concentration of AEM atoms in anthracene is tuned to resemble as closely as possible the electronic structure of AEM-decorated graphene (i.e. an extended two-dimensional material), hybrid exchange-correlation DFT and MP2 methods quantitatively provide similar results.

  19. Nanoclay-Based Solid-Amine Adsorbents for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Roth, Elliot A.

    The objective of this research was to develop an efficient, low cost, recyclable solid sorbent for carbon dioxide adsorption from large point sources, such as coal-fired power plants. The current commercial way to adsorb CO 2 is to use a liquid amine or ammonia process. These processes are used in industry in the "sweetening" of natural gas, but liquid based technologies are not economically viable in the adsorption of CO2 from power plants due to the extremely large volume of CO2 and the inherent high regeneration costs of cycling the sorbent. Therefore, one of the main objectives of this research was to develop a novel sorbent that can be cycled and uses very little energy for regeneration. The sorbent developed here is composed of a nanoclay (montmorillonite), commonly used in the production of polymer nanocomposites, grafted with commercially available amines. (3-aminopropyl) trimethoxysilane (APTMS) was chemically grafted to the edge hydroxyl groups of the clay. While another amine, polyethylenimine (PEI), was attached to the surface of the clay by electrostatic interactions. To confirm the attachment of amines to the clay, the samples were characterized using FTIR and the corresponding peaks for amines were observed. The amount of amine loaded onto the support was determined by TGA techniques. The treated clay was initially analyzed for CO2 adsorption in a pure CO 2 stream. The adsorption temperatures that had the highest adsorption capacity were determined to be between 75°C and 100°C for all of the samples tested at atmospheric pressure. The maximum CO2 adsorption capacity observed was with nanoclay treated with both APTMS and PEI at 85°C. In a more realistic flue gas of 10% CO2 and 90% N2, the adsorbents had essentially the same overall CO2 adsorption capacity indicating that the presence of nitrogen did not hinder the adsorption of CO2. Adsorption studies in pure CO2 at room temperature under pressure from 40-300 PSI were also conducted. The average

  20. Carbon dioxide removal from natural gas using amine surface bonded adsorbents

    SciTech Connect

    Leal, O.; Bolivar, C.; Ovalles, C.; Urbina, A.

    1996-12-31

    The results of research on the greenhouse effect have shown, among other things, that the concentration of trace gases occurring in the atmosphere such as carbon dioxide, methane, nitrous oxide, ozone and halocarbons have grown significantly since the ore-industrial times. During this period, the CO{sub 2} level has risen 30% to nearly 360 ppm from a pre-industrial era level of 280 ppm. On the basis of a variety of evidence a consensus is emerging among researchers that humans beings, primarily through their burning of fossil fuels, are already perturbing Earth`s climate. All specialists agree that without drastic steps to curb greenhouse gas emissions, the average global temperature will increase 1 to 3.5{degrees}C during the next century because effective level of carbon dioxide are expected to double sometime between the years 2050 to 2100. It may be that human-generated emissions of carbon dioxide will have to be reduced by as much as 50-80% to avoid major climate changes. Such a reduction in the CO{sub 2} emissions rate probably cannot be accomplished without a massive switch to non-fossil energy sources. However, it has been proposed that emissions from fossil fuels can be moderated by three strategies: exploiting the fuels more efficiently, replacing coal by natural gas and by recovering and sequestering CO{sub 2} emissions. A rough analysis, based on the use of currently accepted values, shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect and improvements can be obtained if natural gas is upgrading by scrubbing the carbon dioxide out of it.

  1. Food wastes derived adsorbents for carbon dioxide and benzene gas sorption.

    PubMed

    Opatokun, Suraj Adebayo; Prabhu, Azhagapillai; Al Shoaibi, Ahmed; Srinivasakannan, C; Strezov, Vladimir

    2017-02-01

    Food wastes are produced worldwide in large quantities that could have potential to produce higher value products, including industrial adsorbents. The present work attempts valorization of food waste by CO2 activation and functionalization through nitric acid and melamine treatment. The prepared porous materials were subjected to gas phase adsorption of CO2 and benzene gases. The resultant highly porous carbon materials with surface area range from 797 to 1025 m(2)/g were synthesized showing uptake capacities of 4.41, 4.07, 4.18 and 4.36 mmol/g of CO2 and 345, 305, 242.5 and 380.7 mg/g of C6H6 respectively for PyF515, PyF520, PyF715 and PyF720 in the absence of doped carbon matrix. Differential thermogravimetric (DTG) analysis showed the thermostability of the precursors to validate selected initial pyrolysis temperatures (500 and 700 °C). C6H6 sorption lies mainly in the physisorption region for all adsorbents ensuring re-generation potential. PyF720 and PyF520 recorded the highest isosteric enthalpy of 64.4 kJ/mol and 48.7 kJ/mol respectively, despite the low degree of coverage of the latter. Thus, PyF515 and PyF720 demonstrated the potential for use as sustainable and cost effective adsorbents for benzene gas containment suitable for swing adsorption system.

  2. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.

    PubMed

    Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R

    2014-05-01

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  3. Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air

    SciTech Connect

    Goeppert, A; Zhang, H; Czaun, M; May, RB; Prakash, GKS; Olah, GA; Narayanan, SR

    2014-03-18

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  4. Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Walsh, D.; Perry, J.

    2005-01-01

    An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.

  5. In situ infrared study of adsorbed species during catalytic oxidation and carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Khatri, Rajesh A.

    2005-11-01

    of the Ni-Re/CeO2 catalyst was reduced by only 20% in the presence of sulfur compared to a 50% reduction with the Ni/CeO 2 catalyst. These results show that Re not only promotes the water-gas shift reaction but also enhances the sulfur tolerance of the Ni/CeO2 catalyst. Novel amine based solid sorbents have been developed to capture CO 2 reversibly using temperature-swing adsorption process. The IR study shows that CO2 adsorbs on amine grafted SBA-15 to form carbonates and bicarbonates. Comparison of monoamine and diamine-grafted SBA-15 showed that diamine grafted SBA-15 provides almost twice the active sites for CO 2 adsorption. The adsorption of SO2 on the amine-grafted SBA-15 revealed that SO2 adsorbs irreversibly and the sorbent cannot be regenerated under normal operating conditions. Results of these studies can be used to enhance the overall conversion of CH4 to H2 thus lowering the cost of H2 product.

  6. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture

    SciTech Connect

    Bae, TH; Hudson, MR; Mason, JA; Queen, WL; Dutton, JJ; Sumida, K; Micklash, KJ; Kaye, SS; Brown, CM; Long, JR

    2013-01-01

    A series of zeolite adsorbents has been evaluated for potential application in post-combustion CO2 capture using a new high-throughput gas adsorption instrument capable of measuring 28 samples in parallel. Among the zeolites tested, Ca-A exhibits the highest CO2 uptake (3.72 mmol g(-1) and 5.63 mmol cm(-3)) together with an excellent CO2 selectivity over N-2 under conditions relevant to capture from the dry flue gas stream of a coal-fired power plant. The large initial isosteric heat of adsorption of -58 kJ mol(-1) indicates the presence of strong interactions between CO2 and the Ca-A framework. Neutron and X-ray powder diffraction studies reveal the precise location of the adsorption sites for CO2 in Ca-A and Mg-A. A detailed study of CO2 adsorption kinetics further shows that the performance of Ca-A is not limited by slow CO2 diffusion within the pores. Significantly, Ca-A exhibited a higher volumetric CO2 uptake and CO2/N-2 selectivity than Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), one of the best performing adsorbents. The exceptional performance of Ca-A was maintained in CO2 breakthrough simulations.

  7. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane.

    PubMed

    Alonso, Amanda; Moral-Vico, J; Abo Markeb, Ahmad; Busquets-Fité, Martí; Komilis, Dimitrios; Puntes, Victor; Sánchez, Antoni; Font, Xavier

    2017-04-01

    Innovative gas capture technologies with the objective to mitigate CO2 and CH4 emissions are discussed in this review. Emphasis is given on the use of nanoparticles (NP) as sorbents of CO2 and CH4, which are the two most important global warming gases. The existing NP sorption processes must overcome certain challenges before their implementation to the industrial scale. These are: i) the utilization of the concentrated gas stream generated by the capture and gas purification technologies, ii) the reduction of the effects of impurities on the operating system, iii) the scale up of the relevant materials, and iv) the retrofitting of technologies in existing facilities. Thus, an innovative design of adsorbents could possibly address those issues. Biogas purification and CH4 storage would become a new motivation for the development of new sorbent materials, such as nanomaterials. This review discusses the current state of the art on the use of novel nanomaterials as adsorbents for CO2 and CH4. The review shows that materials based on porous supports that are modified with amine or metals are currently providing the most promising results. The Fe3O4-graphene and the MOF-117 based NPs show the greatest CO2 sorption capacities, due to their high thermal stability and high porosity. Conclusively, one of the main challenges would be to decrease the cost of capture and to scale-up the technologies to minimize large-scale power plant CO2 emissions.

  8. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  9. Simple template-free synthesis of high surface area mesoporous ceria and its new use as a potential adsorbent for carbon dioxide capture.

    PubMed

    Kamimura, Yoshihiro; Shimomura, Marie; Endo, Akira

    2014-12-15

    The development of an efficient technique for carbon dioxide (CO2) capture from a variety of large stationary sources is in important global issue. If we are to achieve an energy-efficient and effectively higher CO2 capture process based on an adsorption approach, we need new adsorbent materials realistic enough to provide higher CO2 loading on a volumetric basis. For this reason we have focused on the practical use of high surface area mesoporous ceria as a new application in the field of CO2 capture. In this regard, we demonstrate the simple and inexpensive template-free synthesis of mesoporous ceria with a high surface area up to 200 m(2) g(-1), and characterize it as an effective CO2 adsorbent for the first time. The mesoporous ceria is prepared based on sol-gel chemistry, where the product is simply precipitated by the self-assembly of ceria nanoparticles within a short reaction period at room temperature under highly alkaline conditions with optimized chemical compositions. The results of CO2 adsorption-desorption measurement at 298 K show that the obtained ceria with an enhanced surface area exhibits a noticeably higher CO2 adsorption capacity per volume than commercially available non-porous ceria, activated carbon and zeolite 13X over a wide pressure range with robust stability as well as regenerability. This work enables us to prepare promising new materials for the CO2 capture process based on an easy-to-handle synthesis system, and this effective material will have a broad applicability to the efficient CO2 separation from variety of industrial emission sources. The features of the obtained mesoporous ceria are reported and discussed.

  10. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  11. Carbon Dioxide Absorbents

    DTIC Science & Technology

    1950-05-17

    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  12. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. CARBON DIOXIDE REDUCTION SYSTEM.

    DTIC Science & Technology

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  14. Melt crystallization/dewetting of ultrathin PEO films via carbon dioxide annealing: the effects of polymer adsorbed layers.

    PubMed

    Asada, Mitsunori; Jiang, Naisheng; Sendogdular, Levent; Sokolov, Jonathan; Endoh, Maya K; Koga, Tadanori; Fukuto, Masafumi; Yang, Lin; Akgun, Bulent; Dimitriou, Michael; Satija, Sushil

    2014-09-14

    The effects of CO2 annealing on the melting and subsequent melt crystallization processes of spin-cast poly(ethylene oxide) (PEO) ultrathin films (20-100 nm in thickness) prepared on Si substrates were investigated. By using in situ neutron reflectivity, we found that all the PEO thin films show melting at a pressure as low as P = 2.9 MPa and at T = 48 °C which is below the bulk melting temperature (Tm). The films were then subjected to quick depressurization to atmospheric pressure, resulting in the non-equilibrium swollen state, and the melt crystallization (and/or dewetting) process was carried out in air via subsequent annealing at given temperatures below Tm. Detailed structural characterization using grazing incidence X-ray diffraction, atomic force microscopy, and polarized optical microscopy revealed two unique aspects of the CO2-treated PEO films: (i) a flat-on lamellar orientation, where the molecular chains stand normal to the film surface, is formed within the entire film regardless of the original film thickness and the annealing temperature; and (ii) the dewetting kinetics for the 20 nm thick film is much slower than that for the thicker films. The key to these phenomena is the formation of irreversibly adsorbed layers on the substrates during the CO2 annealing: the limited plasticization effect of CO2 at the polymer-substrate interface promotes polymer adsorption rather than melting. Here we explain the mechanisms of the melt crystallization and dewetting processes where the adsorbed layers play vital roles.

  15. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  16. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  17. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  18. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  19. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  20. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  1. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  2. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  3. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    15 111-7 GRANULAR ACTIVATED CARBON ADSORPTION ISOTHERMS THERMALLY REACTIVATED CARBON .............. 16 I IV-1 PROCESS FLOW DIAGRAM FOR... PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...regenerate adsorbents such as granular activated carbon loaded with a broad variety of organic adsorbates. This regeneration process uses a supercritical

  4. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    DTIC Science & Technology

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  5. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  6. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  7. Carbon dioxide absorption methanol process

    SciTech Connect

    Apffel, F.

    1989-08-29

    This patent describes a process for removing carbon dioxide from a feed stream of natural gas having at least methane, ethane and heavier. It comprises: first, separating the feed stream in a first separator to form a first stream having substantially all of the propane and heavier hydrocarbons and carbon dioxide and ethane and a second stream, having methane, carbon dioxide and ethane; separating the second stream in a second separator into a stream of carbon dioxide product and a third stream having ethane, methane and carbon dioxide: mixing at least a portion of the third stream with a polar compound; stream after the mixing in an absorber; separating the vapor and liquid of the third stream after the mixing in an absorber; absorbing the remaining unabsorbed carbon dioxide in a lean portion of the polar compound in the absorber, the absorber carbon dioxide and ethane with the polar; separating the first stream in a third separator to separate the propane and heavier hydrocarbons from the carbon dioxide and ethane, which carbon dioxide and ethane forms a fifth stream; and separating the polar compound/carbon dioxide effluent of the absorber in a fourth separator, to separate the carbon dioxide from the polar compound, the polar compound forming a sixth stream.

  8. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  9. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  10. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  11. Carbon dioxide absorption methanol process

    SciTech Connect

    Apffel, F.P.

    1987-06-23

    A process is described for removing carbon dioxide from a feed stream of natural gas, having at least methane, ethane and heavier hydrocarbon, comprising: separating the feed stream in a first separator to form a first stream, having substantially all of the propane and heavier hydrocarbons and carbon dioxide and ethane, and a second stream, having methane, carbon dioxide and ethane; mixing the second stream with a polar compound to form a third stream; separating the vapor and liquid of the third stream in the bottom portion of an absorber; absorbing carbon dioxide and ethane from the separated vapor of Step C in a lean portion of the polar compound in the absorber, the absorber carbon dioxide and ethane forming a fourth stream; separating the ethane from the polar compound and carbon dioxide in a separator; separating the first stream in a third separator to separate the propane and heavier hydrocarbons from the carbon dioxide and ethane: carbon dioxide and ethane forms a fifth stream; and separating the polar compound/carbon dioxide effluent of the second separator in a fourth separator, to separate the carbon dioxide from the polar compound. The polar compound forming a sixth stream.

  12. Capture of carbon dioxide by hybrid sorption

    SciTech Connect

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  13. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  14. Oil shales and carbon dioxide.

    PubMed

    Sundquist, E T; Miller, G A

    1980-05-16

    During retorting of oil shales in the western United States, carbonate minerals are calcined, releasing significant amounts of carbon dioxide. Residual organic matter in the shales may also be burned, adding more carbon dioxide to the atmosphere. The amount of carbon dioxide produced depends on the retort process and the grade and mineralogy of the shale. Preliminary calculations suggest that retorting of oil shales from the Green River Formation and burning of the product oil could release one and one-half to five times more carbon dioxide than burning of conventional oil to obtain the same amount of usable energy. The largest carbon dioxide releases are associated with retorting processes that operate at temperatures greater than about 600 degrees C.

  15. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  16. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.

    PubMed

    Bang, Sunbaek; Patel, Manish; Lippincott, Lee; Meng, Xiaoguang

    2005-07-01

    A novel granular titanium dioxide (TiO2) was evaluated for the removal of arsenic from groundwater. Laboratory experiments were carried out to investigate the adsorption capacity of the adsorbent and the effect of anions on arsenic removal. Batch experimental results showed that more arsenate [As(V)] was adsorbed on TiO2 than arsenite [As(III)] in US groundwater at pH 7.0. The adsorption capacities for As(V) and As(III) were 41.4 and 32.4 mgg(-1) TiO2, respectively. However, the adsorbent had a similar adsorption capacity for As(V) and As(III) (approximately 40 mgg(-1)) when simulated Bangladesh groundwater was used. Silica (20 mgl(-1)) and phosphate (5.8 mgl(-1)) had no obvious effect on the removal of As(V) and As(III) by TiO2 at neutral pH. Point-of-entry (POE) filters containing 3 l of the granular adsorbent were tested for the removal of arsenic from groundwater in central New Jersey, USA. Groundwater was continuously passed through the filters at an empty bed contact time (EBCT) of 3 min. Approximately 45,000 bed volumes of groundwater containing an average of 39 microgl(-1) of As(V) was treated by the POE filter before the effluent arsenic concentration increased to 10 microgl(-1). The total treated water volumes per weight of adsorbent were about 60,000 l per 1 kg of adsorbent. The field filtration results demonstrated that the granular TiO2 adsorbent was very effective for the removal of arsenic in groundwater.

  17. Carbon dioxide/dewpoint monitor

    NASA Technical Reports Server (NTRS)

    Luczkowski, S.

    1977-01-01

    The portable Carbon Dioxide/Dewpoint Monitor was designed to permit measurements of carbon dioxide partial pressure and dewpoint and ambient gas temperature at any place within the Saturn Workshop. It required no vehicle interface other than storage. All components necessary for operation, including battery power source, were incorporated in the instrument.

  18. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  19. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  20. Carbon Dioxide (Reduction)

    SciTech Connect

    Fujita, Etsuko

    2000-01-12

    The twin problems of global warming, caused by an increase in atmospheric carbon dioxide (CO2) concentrations, and limited fossil fuel resources have stimulated research in the utilization of CO2. These problems would be partially alleviated by the development of artificial photochemical systems that could economically fix CO2 into fuels or useful chemicals. During the past one and a half decades, intensive efforts have been directed toward the photochemical production of carbon monoxide (CO) and formic acid (HCOOH) from CO2. These systems have several common elements: they all contain photosensitizers (such as metalloporphyrins, ruthenium or rhenium complexes with bipyridine), electron mediators or catalysts, and sacrificial electron donors (such as tertiary amines or ascorbic acid). Recent progress along these lines has resulted in advances in our understanding of the interaction of CO2 molecules with metal complexes, and the factors controlling the efficient storage of solar energy in the form of reduced carbon compounds.

  1. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  2. Carbon dioxide: atmospheric overload

    SciTech Connect

    Not Available

    1980-04-01

    The level of carbon dioxide in the atmosphere is increasing and may double within the next century. The result of this phenomenon, climatic alterations, will adversely affect crop production, water supplies, and global temperatures. Sources of CO2 include the combustion of fossil fuels, photosynthesis, and the decay of organic matter in soils. The most serious effect of possible climatic changes could occur along the boundaries of arid and semiarid regions. Shifts is precipitation patterns could accelerate the processes of desertification. An increase of 5..cap alpha..C in the average temperature of the top 1000 m of ocean water would raise sea level by 2 m. CO2 releases to the atmosphere can be reduced by controlling emissions from fossil fuel-fired facilities and by careful harvesting of forest regions. (3 photos, 5 references)

  3. Photolytical Generation of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Palmer, E. E.; Brown, R. H.

    2008-12-01

    Carbon dioxide has been found by Cassini VIMS throughout the Saturnian system in locations such as Iapetus' equator where the temperature is too high for it to remain as free ice for more than a few hundred years. We suggest that the 4.26 micron absorption feature found on Iapetus and Hyperion (that has been attributed to complexed CO2) is the result of either UV photolysis or ion bombardment driving chemistry between the carbon rich layer and the water ice regolith. We conducted experiments to simulate the generation of CO2 by UV radiation under conditions similar to those on the surface of Iapetus. A simulated icy regolith was created in an argon atmosphere using flash-frozen, degassed water crushed into sub-millimeter sized particles. Isotopically labeled amorphous carbon (13C), which was ground into a fine dust, was mixed into the regolith allowing for extensive grain contact. This sample was placed in a vacuum chamber and cooled to temperatures as low at 60K. The sample was irradiated with UV light, and the products were measured using both a mass spectrometer to identify free molecules and an IR spectrometer for molecules that remained trapped on and in the simulated regolith. We report on the production and reaction rates of CO2 and CO, as well as the generation of free hydrogen and oxygen as detected by a SRS-100 mass spectrometer. We also identify residual products that either freeze on the surface or become entrained by or adsorbed onto the ice grains. We attempt to match the CO2 absorption feature found on Iapetus with that seen in our simulation, perhaps identifying a possible source of CO2 in the Saturnian system. Finally, we estimate the time required for these reactions to occur on Iapetus to see if UV photolysis would be effective.

  4. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  5. Reducing carbon dioxide to products

    SciTech Connect

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  6. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  7. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  8. Proceedings: carbon dioxide research conference: carbon dioxide, science and consensus

    SciTech Connect

    Not Available

    1983-01-01

    Papers presented discussed the carbon cycle climate modelling, the West Antarctic ice sheet, and first detection of climate change. An appendix lists the carbon dioxide research programs of the European Community and of the World Meteorological Organization. A list of delegates is also included.

  9. Fine-Tuning of the Carbon Dioxide Capture Capability of Diamine-Grafted Metal-Organic Framework Adsorbents Through Amine Functionalization.

    PubMed

    Jo, Hyuna; Lee, Woo Ram; Kim, Nam Woo; Jung, Hyun; Lim, Kwang Soo; Kim, Jeong Eun; Kang, Dong Won; Lee, Hanyeong; Hiremath, Vishwanath; Seo, Jeong Gil; Jin, Hailian; Moon, Dohyun; Han, Sang Soo; Hong, Chang Seop

    2017-02-08

    A combined sonication and microwave irradiation procedure provides the most effective functionalization of ethylenediamine (en) and branched primary diamines of 1-methylethylenediamine (men) and 1,1-dimethylethylenediamine (den) onto the open metal sites of Mg2 (dobpdc) (1). The CO2 capacities of the advanced adsorbents 1-en and 1-men under simulated flue gas conditions are 19 wt % and 17.4 wt %, respectively, which are the highest values reported among amine-functionalized metal-organic frameworks (MOFs) to date. Moreover, 1-den exhibits both a significant working capacity (12.2 wt %) and superb CO2 uptake (11 wt %) at 3 % CO2 . Additionally, this framework showcases the superior recyclability; ultrahigh stability after exposure to O2 , moisture, and SO2 ; and exceptional CO2 adsorption capacity under humid conditions, which are unprecedented among MOFs. We also elucidate that the performance of CO2 adsorption can be controlled by the structure of the diamine ligands grafted such as the number of amine end groups or the presence of side groups, which provides the first systematic and comprehensive demonstration of fine-tuning of CO2 uptake capability using different amines.

  10. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  11. Storage stability of ketones on carbon adsorbents.

    PubMed

    Prado, C; Alcaraz, M J; Fuentes, A; Garrido, J; Periago, J F

    2006-09-29

    Activated coconut carbon constitutes the more widely used sorbent for preconcentration of volatile organic compounds in sampling workplace air. Water vapour is always present in the air and its adsorption on the activated carbon surface is a serious drawback, mainly when sampling polar organic compounds, such as ketones. In this case, the recovery of the compounds diminishes; moreover, ketones can be decomposed during storage. Synthetic carbons contain less inorganic impurities and have a lower capacity for water adsorption than coconut charcoal. The aim of this work was to evaluate the storage stability of various ketones (acetone, 2-butanone, 4-methyl-2-pentanone and cyclohexanone) on different activated carbons and to study the effect of adsorbed water vapour under different storage conditions. The effect of storage temperature on extraction efficiencies was significant for each ketone in all the studied sorbents. Recovery was higher when samples were stored at 4 degrees C. The results obtained for storage stability of the studied ketones showed that the performance of synthetic carbons was better than for the coconut charcoals. The water adsorption and the ash content of the carbons can be a measure of the reactive sites that may chemisorb ketones or catalize their decomposition. Anasorb 747 showed good ketone stability at least for 7 days, except for cyclohexanone. After 30-days storage, the stability of the studied ketones was excellent on Carboxen 564. This sorbent had a nearly negligible ash content and the adsorbed water was much lower than for the other sorbents tested.

  12. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  13. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  14. Carbon dioxide embolism during laparoscopic surgery.

    PubMed

    Park, Eun Young; Kwon, Ja-Young; Kim, Ki Jun

    2012-05-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery.

  15. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes; Zhang, Yinzhi; Kuchta, Matthew E.; Andresen, John M.; Fauth, Dan J.

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  16. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  17. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  18. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  19. Enhanced oil recovery using carbon dioxide

    SciTech Connect

    Cullick, A.S.

    1986-09-02

    A method is described for increasing the solubility of a polymer in dense-phase carbon dioxide, which comprises dissolving a substantially water-insoluble polymer in dense-phase carbon dioxide in the presence of an entrainer which is soluble in the dense phase carbon dioxide.

  20. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  1. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  2. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  5. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions.

    PubMed

    Xiang, Shengchang; He, Yabing; Zhang, Zhangjing; Wu, Hui; Zhou, Wei; Krishna, Rajamani; Chen, Banglin

    2012-07-17

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve such separations and to replace current technologies, which use aqueous solvents to chemically absorb carbon dioxide. Here we show that a metal-organic frameworks (UTSA-16) displays high uptake (160 cm(3) cm(-3)) of CO(2) at ambient conditions, making it a potentially useful adsorbent material for post-combustion carbon dioxide capture and biogas stream purification. This has been further confirmed by simulated breakthrough experiments. The high storage capacities and selectivities of UTSA-16 for carbon dioxide capture are attributed to the optimal pore cages and the strong binding sites to carbon dioxide, which have been demonstrated by neutron diffraction studies.

  6. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Chen, Jeffrey; Benezeth Ep Gisquet, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  7. Method for carbon dioxide splitting

    DOEpatents

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  8. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  9. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder.

    PubMed

    Billemont, Pierre; Coasne, Benoit; De Weireld, Guy

    2013-03-12

    The adsorption of carbon dioxide, methane, and their mixtures in nanoporous carbons in the presence of water is studied using experiments and molecular simulations. Both the experimental and numerical samples contain polar groups that account for their partially hydrophilicity. For small amounts of adsorbed water, although the shape of the adsorption isotherms remain similar, both the molecular simulations and experiments show a slight decrease in the CO2 and CH4 adsorption amounts. For large amounts of adsorbed water, the experimental data suggest the formation of methane or carbon dioxide clathrates in agreement with previous work. In contrast, the molecular simulations do not account for the formation of such clathrates. Another important difference between the simulated and experimental data concerns the number of water molecules that desorb upon increasing the pressure of carbon dioxide and methane. Although the experimental data indicate that water remains adsorbed upon carbon dioxide and methane adsorption, the molecular simulations suggest that 40 to 75% of the initial amount of adsorbed water desorbs with carbon dioxide or methane pressure. Such discrepancies show that differences between the simulated and experimental samples are crucial to account for the rich phase behavior of confined water-gas systems. Our simulations for carbon dioxide-methane coadsorption in the presence of water suggest that the pore filling is not affected by the presence of water and that adsorbed solution theory can be applied for pressures as high as 15 MPa.

  10. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Chen, Jeffrey; Benezeth, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-06-16

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, the implication of these results is that mineral trapping in scCO2 dominated fluids will be insignificant and limited to surface complexation unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  11. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  12. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  13. Summer Ice and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  14. Summer ice and carbon dioxide

    SciTech Connect

    Kukla, G.; Gavin, J.

    1981-10-30

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and reseach ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55/sup o/ and 80/sup o/N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  15. Method for carbon dioxide sequestration

    SciTech Connect

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  16. Oxygen and carbon dioxide sensing

    NASA Technical Reports Server (NTRS)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  17. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  18. [AFM study on microtopography of NOM and newly formed hydrous manganese dioxide adsorbed on mica].

    PubMed

    Guo, Jin; Ma, Jun; Shi, Xue-hua

    2006-05-01

    With the methods of mica adsorbing, the microtopography of the newly formed hydrous manganese dioxide was perfectly captured. The tapping mode AFM study results revealed that the newly formed hydrous manganese dioxide possesses a perforated sheet (with a thickness of 0-1.75 nm) as well as some spheric particle structures compared with the hydrous manganese dioxide with 2 h aging time, which demonstrated that the newly formed hydrous manganese dioxide have a large surface area and adsorption capacity. When 1 mmol/L newly formed hydrous manganese dioxide was added, the microtopography of NOM molecules shifted from loosely dispersed pancake shape (with adsorption height of 5-8.5 nm) to densely dispersed and uniform spheric structure. NOM was prone to adsorb on the surface of the newly formed hydrous manganese dioxide, which provided a valid proof for the coagulation-aid mechanism of permanganate preoxidation.

  19. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  20. Carbon dioxide review 1982

    SciTech Connect

    Clark, W.C.

    1982-01-01

    The buildup of CO/sub 2/ is a reality, monitored with increasing precision since 1957 and inferred for much earlier dates. A statistical section gives the monitored values to 1980, as well as a review of a long series of measurements made at Mauna Loa by the pioneers of such monitoring, Charles D. Keeling, Robert B. Bacastow, and Timothy P. Whorf. The book discusses internal transport processes in the ocean, of ocean-atmosphere interaction, of the magnitude of forest and soil carbon wastage, of the future course of fossil-fuel consumption. Yet something else emerges, too: if the CO/sub 2/ buildup continues; if the big general circulation models are right about its impact on climate, and if we have not miscalculated the potential role of the oceans, then we face a climatic change in the next century and a half like nothing the post-glacial world, and hence civilized humanity, has seen.

  1. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  2. Volcanic versus anthropogenic carbon dioxide

    USGS Publications Warehouse

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  3. Sorption of carbon dioxide onto sodium carbonate

    SciTech Connect

    Sang-Wook Park; Deok-Ho Sung; Byoung-Sik Choi; Kwang-Joong Oh; Kil-Ho Moon

    2006-07-01

    Sodium carbonate was used as a sorbent to capture CO{sub 2} from a gaseous stream of carbon dioxide, nitrogen, and moisture. The breakthrough data of CO{sub 2} were measured in a fixed bed to observe the reaction kinetics of CO{sub 2}-carbonate reaction. Several models such as the shrinking-core model, the homogeneous model, and the deactivation model in the non-catalytic heterogeneous reaction systems were used to explain the kinetics of reaction among CO{sub 2}, Na{sub 2}CO{sub 3}, and moisture using analysis of the experimental breakthrough data. Good agreement of the deactivation model was obtained with the experimental breakthrough data. The sorption rate constant and the deactivation rate constant were evaluated by analysis of the experimental breakthrough data using a nonlinear least squares technique and described as Arrhenius form.

  4. Carbon dioxide disposal in solid form

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Sharp, D.H.; Wendt, C.H.

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  5. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  6. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  7. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  8. Microfluidic studies of carbon dioxide.

    PubMed

    Abolhasani, Milad; Günther, Axel; Kumacheva, Eugenia

    2014-07-28

    Carbon dioxide (CO2) sequestration, storage and recycling will greatly benefit from comprehensive studies of physical and chemical gas-liquid processes involving CO2. Over the past five years, microfluidics emerged as a valuable tool in CO2-related research, due to superior mass and heat transfer, reduced axial dispersion, well-defined gas-liquid interfacial areas and the ability to vary reagent concentrations in a high-throughput manner. This Minireview highlights recent progress in microfluidic studies of CO2-related processes, including dissolution of CO2 in physical solvents, CO2 reactions, the utilization of CO2 in materials science, and the use of supercritical CO2 as a "green" solvent.

  9. Electrocatalysts for carbon dioxide conversion

    DOEpatents

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  10. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide.

    PubMed

    Loring, John S; Chen, Jeffrey; Bénézeth, Pascale; Qafoku, Odeta; Ilton, Eugene S; Washton, Nancy M; Thompson, Christopher J; Martin, Paul F; McGrail, B Peter; Rosso, Kevin M; Felmy, Andrew R; Schaef, Herbert T

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 μmol/m(2). Above this concentration and up to 76 μmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 μmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O

  11. Carbon dioxide cleaning pilot project

    SciTech Connect

    Knight, L.; Blackman, T.E.

    1994-01-21

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved.

  12. Methods and compositions for removing carbon dioxide from a gaseous mixture

    DOEpatents

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  13. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  14. A new look at atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, David J.; Butler, James H.; Tans, Pieter P.

    Carbon dioxide is increasing in the atmosphere and is of considerable concern in global climate change because of its greenhouse gas warming potential. The rate of increase has accelerated since measurements began at Mauna Loa Observatory in 1958 where carbon dioxide increased from less than 1 part per million per year (ppm yr -1) prior to 1970 to more than 2 ppm yr -1 in recent years. Here we show that the anthropogenic component (atmospheric value reduced by the pre-industrial value of 280 ppm) of atmospheric carbon dioxide has been increasing exponentially with a doubling time of about 30 years since the beginning of the industrial revolution (˜1800). Even during the 1970s, when fossil fuel emissions dropped sharply in response to the "oil crisis" of 1973, the anthropogenic atmospheric carbon dioxide level continued increasing exponentially at Mauna Loa Observatory. Since the growth rate (time derivative) of an exponential has the same characteristic lifetime as the function itself, the carbon dioxide growth rate is also doubling at the same rate. This explains the observation that the linear growth rate of carbon dioxide has more than doubled in the past 40 years. The accelerating growth rate is simply the outcome of exponential growth in carbon dioxide with a nearly constant doubling time of about 30 years (about 2%/yr) and appears to have tracked human population since the pre-industrial era.

  15. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Su, Ting-Yi

    2006-06-30

    The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents.

  16. Carbon Dioxide Management on the International Space Station

    NASA Technical Reports Server (NTRS)

    Burlingame, Katie

    2016-01-01

    The International Space Station (ISS) is a manned laboratory operating in orbit around the Earth that was built and is currently operated by several countries across the world. The ISS is a platform for novel scientific research as well as a testbed for technologies that will be required for the next step in space exploration. In order for astronauts to live on ISS for an extended period of time, it is vital that on board systems consistently provide a clean atmosphere. One contaminant that must be removed from the atmosphere is carbon dioxide (CO2). CO2 levels on ISS are higher than those on Earth and can cause crew members to experience symptoms such as headaches, lethargy and mental slowness. A variety of systems exist on ISS to remove carbon dioxide, including adsorbent technologies which can be reused and testbed technologies for future space vehicles.

  17. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  18. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  19. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  20. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  1. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  2. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  3. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  4. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  5. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  6. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  7. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  8. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  9. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  10. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  11. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  12. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  13. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  14. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  15. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  16. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  17. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  18. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  19. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  20. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  1. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  2. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  3. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  4. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  5. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  6. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  7. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  8. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  9. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  10. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  11. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  12. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  13. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  14. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  15. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  16. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  17. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  18. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  19. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  20. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  1. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  2. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... colorless, odorless, noncombustible gas at normal temperatures and pressures. The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a...

  3. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOEpatents

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  4. Mineralization strategies for carbon dioxide sequestration

    SciTech Connect

    Penner, Larry R.; O'Connor, William K.; Gerdemann, Stephen J.; Dahlin, David C.

    2003-01-01

    Progress is reported in three primary research areas--each concerned with sequestering carbon dioxide into mineral matrices. Direct mineral carbonation was pioneered at Albany Research Center. The method treats the reactant, olivine or serpentine in aqueous media with carbon dioxide at high temperature and pressure to form stable mineral carbonates. Recent results are introduced for pretreatment by high-intensity grinding to improve carbonation efficiency. To prove feasibility of the carbonation process, a new reactor was designed and operated to progress from batch tests to continuous operation. The new reactor is a prototype high-temperature, high-pressure flow loop reactor that will furnish information on flow, energy consumption, and wear and corrosion resulting from slurry flow and the carbonation reaction. A promising alternative mineralization approach is also described. New data are presented for long-term exposure of carbon dioxide to Colombia River Basalt to determine the extent of conversion of carbon dioxide to permanent mineral carbonates. Batch autoclave tests were conducted using drill-core samples of basalt and reacted under conditions that simulate in situ injection into basalt-containing geological formations.

  5. Extraction and detection of pesticide residues from air filter inserts using supercritical carbon dioxide

    SciTech Connect

    Zemanian, T.S.; Robins, W.H.; Lee, R.N.; Wright, B.W.

    1994-10-01

    Trace quantities of airborne herbicide residues were collected on adsorbent bed cartridges and were subsequently extracted from the adsorbent using supercritical carbon dioxide. An apparatus was constructed to facilitate the extraction and recovery of the desired analytes. The resulting extracts were analyzed using gas chromatography/mass spectrometry (GC/MS) or high performance liquid chromatography (HPLC) techniques. Results are presented for a series of analytes representative of common commercial pesticides or herbicides.

  6. Sorption of methane, ethane, propane, butane, carbon dioxide, and nitrogen on kerogen

    NASA Astrophysics Data System (ADS)

    Pribylov, A. A.; Skibitskaya, N. A.; Zekel', L. A.

    2014-06-01

    Sorption isotherms of nitrogen, methane (in the pressure range of 0.1-40 MPa), ethane (0.1-3.7MPa), propane (0.01-1 MPa), butane (0.01-0.2 MPa), and carbon dioxide (0.1-6 MPa) are measured on two adsorbents with kerogen contents of 16 and 75% at temperatures of 303, 323, 343 K. Adsorption volumes are calculated for all adsorption systems using two independent methods. The BET technique is used to determine the surface area values of the two adsorbents on the basis of sorption data for ethane, propane, butane, and carbon dioxide. The initial and isosteric adheat of sorption values are calculated on the basis of sorption isotherms of ethane, propane, butane, carbon dioxide measured at three temperatures. It is found from comparing the dependences of isosteric heat of sorption on the two adsorbents that molecules of the above gases diffuse into its bulk (adsorbent 2) in addition to sorbing on the outside surface formed by kerogen molecules, while sorption of the same gases on the rock (adsorbent 1) is similar to sorption on a smooth hard adsorbent surface.

  7. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  8. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents

    SciTech Connect

    Moazeni, Maryam; Hajipour, Hengameh; Askari, Masoud; Nusheh, Mohammad

    2015-01-15

    The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. To achieve this goal, it is vital to use an effective adsorbent with maximum lithium adsorption potential together with a stable structure during extraction and insertion of the ions. In this study, titanium dioxide and then lithium titanate spinel with nanotube morphology was synthesized via a simple two-step hydrothermal process. The produced Li{sub 4}Ti{sub 5}O{sub 12} spinel ternary oxide nanotube with about 70 nm diameter was then treated with dilute acidic solution in order to prepare an adsorbent suitable for lithium adsorption from local brine. Morphological and phase analysis of the obtained nanostructured samples were done by using transmission and scanning electron microscopes along with X-ray diffraction. Lithium ion exchange capacity of this adsorbent was finally evaluated by means of adsorption isotherm. The results showed titanium dioxide adsorbent could recover 39.43 mg/g of the lithium present in 120 mg/L of lithium solution.

  9. Method for Extracting and Sequestering Carbon Dioxide

    SciTech Connect

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  10. Method for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  11. Apparatus for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  12. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study.

    PubMed

    Al-Hosney, H A; Grassian, V H

    2005-03-21

    Calcium carbonate (CaCO3) is a reactive component of mineral dust aerosol as well as buildings, statues and monuments. In this study, attenuated total reflection (ATR) and transmission Fourier transform infrared spectroscopy (FTIR) have been used to study the uptake of water, sulfur dioxide and nitric acid on CaCO3 particles at 296 K. Under atmospheric conditions, CaCO3 particles are terminated by a Ca(OH)(CO3H) surface layer. In the presence of water vapor between 5 and 95% relative humidity (RH), water molecularly adsorbs on the Ca(OH)(CO3H) surface resulting in the formation of an adsorbed thin water film. The adsorbed water film assists in the enhanced uptake of sulfur dioxide and nitric acid on CaCO3 in several ways. Under dry conditions (near 0% RH), sulfur dioxide and nitric acid react with the Ca(OH)(CO3H) surface to form adsorbed carbonic acid (H2CO3) along with sulfite and nitrate, respectively. Adsorbed carbonic acid is stable on the surface under vacuum conditions. Once the surface saturates with a carbonic acid capping layer, there is no additional uptake of gas-phase sulfur dioxide and nitric acid. However, upon adsorption of water, carbonic acid dissociates to form gaseous carbon dioxide and there is further uptake of sulfur dioxide and nitric acid. In addition, adsorbed water increases the mobility of the ions at the surface and enhances uptake of SO2 and HNO3. In the presence of adsorbed water, CaSO3 forms islands of a crystalline hydrate whereas Ca(NO3)2 forms a deliquescent layer or micropuddles. Thus adsorbed water plays an important and multi-faceted role in the uptake of pollutant gases on CaCO3.

  13. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  14. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  15. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  16. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  17. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  18. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  19. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  20. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  1. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  2. Effect of organic substituents on the adsorption of carbon dioxide on a metal-organic framework

    NASA Astrophysics Data System (ADS)

    Thu Ha, Nguyen Thi; Lefedova, O. V.; Ha, Nguyen Ngoc

    2017-01-01

    The adsorption of carbon dioxide on the MOF-5 metal-organic framework and modifications of it obtained by replacing the hydrogen atoms in the organic ligands with electron donor (-CH3,-OCH3) or electron acceptor groups (-CN,-NO2) is investigated using the grand canonical Monte Carlo (GCMC) method and density functional theory (DFT). It is shown that the adsorption of carbon dioxide molecules on the structures of metal-organic frameworks is most likely on Zn4O clusters, and that the adsorption of carbon dioxide is of a physical nature. The presence of substituents-CH3,-OCH3,-CN in metal-organic frameworks increases their capacity to adsorb carbon dioxide, while that of nitro groups (-NO2) has the opposite effect.

  3. Carbon dioxide capture and geological storage.

    PubMed

    Holloway, Sam

    2007-04-15

    Carbon dioxide capture and geological storage is a technology that could be used to reduce carbon dioxide emissions to the atmosphere from large industrial installations such as fossil fuel-fired power stations by 80-90%. It involves the capture of carbon dioxide at a large industrial plant, its transport to a geological storage site and its long-term isolation in a geological storage reservoir. The technology has aroused considerable interest because it can help reduce emissions from fossil fuels which are likely to remain the dominant source of primary energy for decades to come. The main issues for the technology are cost and its implications for financing new or retrofitted plants, and the security of underground storage.

  4. Polymers for metal extractions in carbon dioxide

    DOEpatents

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  5. Carbon dioxide hydrate and floods on Mars.

    PubMed

    Milton, D J

    1974-02-15

    Ground ice on Mars probably consists largely of carbon dioxide hydrate, CO(2) . 6H(2)O. This hydrate dissociates upon release of pressure at temperatures between 0 degrees and 10 degrees C. The heat capacity of the ground would be sufficient to produce up to 4 percent (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near surface temperature was in this range would have produced chaotic terrain and flood channels.

  6. Carbon dioxide hydrate and floods on Mars

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1974-01-01

    Ground ice on Mars probably consists largely of carbon dioxide hydrate. This hydrate dissociates upon release of pressure at temperatures between 0 and 10 C. The heat capacity of the ground would be sufficient to produce up to 4% (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near-surface temperature was in this range would have produced chaotic terrain and flood channels.

  7. Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation.

    PubMed

    Kvamme, Bjørn; Kuznetsova, Tatiana; Kivelae, Pilvi-Helina

    2012-04-07

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decline in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide into the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures, conditions which may lead to formation of hydrates from residual water dissolved in carbon dioxide and carbon dioxide. The critical question is whether the water at certain temperatures and pressures will drop out as liquid droplets first, and then form hydrates, or alternatively, adsorb on the pipeline surfaces, and subsequently form hydrates heterogeneously. In this work, we used several different basis sets of density functional theory in ab initio calculations to estimate the charge distribution of hematite (the dominating component of rust) crystals. These rust particles were embedded in water and chemical potential for adsorbed water molecules was estimated through thermodynamic integration and compared to similar estimates for water clusters of the same size. While the generated charges were not unique, the use of high order approximations and different basis sets provides a range of likely charge distributions. Values obtained for the chemical potential of water in different surroundings indicated that it would be thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based on this formation mechanism. Depending on the basis set and approximations, the estimated gain for water to adsorb on the hematite surface rather than condense as droplets varied between -1.7 kJ mole(-1) and -3.4 kJ mole(-1). The partial charge distribution on the hematite surface is incompatible with the hydrate structure, and thus hydrates will be unable to attach to the surface. The behavior of water outside the immediate vicinity of hematite (beyond 3

  8. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  9. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  10. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  11. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  12. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  13. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  14. Magnesian calcite sorbent for carbon dioxide capture.

    PubMed

    Mabry, James C; Mondal, Kanchan

    2011-01-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO2 capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO3:MgCO3) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 degrees C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  15. Experimental selectivity curves of gaseous binary mixtures of hydrocarbons and carbon dioxide on activated carbon and silica gel

    SciTech Connect

    Olivier, M.G.; Jadot, R.

    1998-07-01

    The selectivity curves of gaseous binary mixtures of ethane + ethylene, methane + carbon dioxide at 303 K and 700 kPa and butane + 2 methylpropane at 318 K and 200 kPa have been determined on activated carbon and silica gel using an original apparatus. In this paper, a brief description of this apparatus is given. The difference in behavior of these two adsorbents is discussed.

  16. Nanoporous-carbon adsorbers for chemical microsensors.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak; Yelton, William Graham

    2004-11-01

    Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC may outperform existing, irreproducible coatings for SAW sensor and {micro}ChemLab preconcentrator applications. Success of this project will provide a strategic advantage to the development of a robust, manufacturable, highly-sensitive chemical microsensor for public health, industrial, and national security needs. We use pulsed-laser deposition to grow NPC films at room-temperature with negligible residual stress, and hence, can be deposited onto nearly any substrate material to any thickness. Controlled deposition yields reproducible NPC density, morphology, and porosity, without any discernable variation in surface chemistry. NPC coatings > 20 {micro}m thick with density < 5% that of graphite have been demonstrated. NPC can be 'doped' with nearly any metal during growth to provide further enhancements in analyte detection and selectivity. Optimized NPC-coated SAW devices were compared directly to commonly-used polymer coated SAWs for sensitivity to a variety of VOC, TIC, CWA and NPP. In every analyte, NPC outperforms each polymer coating by multiple orders-of-magnitude in detection sensitivity, with improvements ranging from 103 to 108 times greater detection sensitivity! NPC-coated SAW sensors appear capable of detecting most analytes tested to

  17. Recovery of carbon dioxide from fuel cell exhaust

    SciTech Connect

    Healy, H.C.; Kolodney, M.; Levy, A.H.; Trocciola, P.

    1988-06-14

    An acid fuel cell power plant system operable to produce carbon dioxide as a by-product is described comprising: (a) fuel cell stack means having anode means, cathode means, and fuel cell cooling means, the cooling means using a water coolant; (b) means for delivering a hydrogen-rich fuel gas which contains carbon dioxide to the anode means for consumption of hydrogen by the anode means in an electrochemical reaction in the stack; (c) carbon dioxide absorber means including an absorbent for stripping carbon dioxide from gaseous mixtures thereof; (d) means for delivering hydrogen-depleted exhaust gas containing carbon dioxide from the anode means to the carbon dioxide absorber means for absorption of carbon dioxide from the exhaust gas; (e) an absorbent regenerator; (f) means for delivering carbon dioxide-enriched absorbent from the absorber means to the regenerator for separation of carbon dioxide from the absorbent; (g) means for exhausting carbon dioxide from the regenerator, the means for exhausting further including means for cooling and compressing carbon dioxide exhausted from the regenerator; and (h) means for removing the compressed carbon dioxide from the power plant.

  18. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  19. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  20. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  1. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  2. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  3. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  4. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  5. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  6. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  7. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  8. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  9. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  10. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  11. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  12. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  13. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  14. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  15. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  16. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  17. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  18. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  19. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  20. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  1. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  2. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  3. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  4. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  5. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  6. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  7. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  8. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  9. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 91....320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  10. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  11. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  12. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  13. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  14. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  15. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  16. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 90... Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial use and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  17. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  18. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  19. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  20. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  1. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  2. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  3. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  4. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  5. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  6. Sequestration of carbon dioxide (CO2) using red mud.

    PubMed

    Yadav, Vishwajeet S; Prasad, Murari; Khan, Jeeshan; Amritphale, S S; Singh, M; Raju, C B

    2010-04-15

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm(-3)). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO(2)/100 g of RM II.

  7. Surface properties of mesoporous carbon-silica gel adsorbents

    SciTech Connect

    Leboda, R.; Turov, V.V.; Charmas, B.; Skubiszewska-Zieba, J.; Gun'ko, V.M.

    2000-03-01

    Carbon/silica (carbosil) samples prepared utilizing mesoporous silica gel (Si-60) modified by methylene chloride pyrolysis were studied by nitrogen adsorption, quasi-isothermal thermogravimetry, p-nitrophenol adsorption from aqueous solution, and {sup 1}H NMR methods. The structural characteristics and other properties of carbosils depend markedly on the synthetic conditions and the amount of carbon deposited. The changes in the pore size distribution with increasing carbon concentration suggest grafting of carbon mainly in pores, leading to diminution of the mesopore radii. However, heating pure silica gel at the pyrolysis temperature of 550 C leads to an increase in the pore radii. The quasi-isothermal thermogravimetry and {sup 1}H NMR spectroscopy methods used to investigate the water layers on carbosils showed a significant capability of carbosils to adsorb water despite a relatively large content of the hydrophobic carbon deposit, which represents a nonuniform layer incompletely covering the oxide surface.

  8. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    DTIC Science & Technology

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  9. Water-wetting surfaces as hydrate promoters during transport of carbon dioxide with impurities.

    PubMed

    Kuznetsova, Tatiana; Jensen, Bjørnar; Kvamme, Bjørn; Sjøblom, Sara

    2015-05-21

    Water condensing as liquid drops within the fluid bulk has traditionally been the only scenario accepted in the industrial analysis of hydrate risks. We have applied a combination of absolute thermodynamics and molecular dynamics modeling to analyze the five primary routes of hydrate formation in a rusty pipeline carrying dense carbon dioxide with methane, hydrogen sulfide, argon, and nitrogen as additional impurities. We have revised the risk analysis of all possible routes in accordance with the combination of the first and the second laws of thermodynamics to determine the highest permissible content of water. It was found that at concentrations lower than five percent, hydrogen sulfide will only support the formation of carbon dioxide-dominated hydrate from adsorbed water and hydrate formers from carbon dioxide phase rather than formation in the aqueous phase. Our results indicate that hydrogen sulfide leaving carbon dioxide for the aqueous phase will be able to create an additional hydrate phase in the aqueous region adjacent to the first adsorbed water layer. The growth of hydrate from different phases will decrease the induction time by substantially reducing the kinetically limiting mass transport across the hydrate films. Hydrate formation via adsorption of water on rusty walls will play the decisive role in hydrate formation risk, with the initial concentration of hydrogen sulfide being the critical factor. We concluded that the safest way to eliminate hydrate risks is to ensure that the water content of carbon dioxide is low enough to prevent water dropout via the adsorption mechanism.

  10. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  11. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  12. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  13. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  14. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  15. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  16. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  17. Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent

    NASA Astrophysics Data System (ADS)

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-01

    This study was focused on carbon dioxide (CO2) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO2 adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were - 117.5 kJṡmol-1 and - 65.4 kJṡmol-1, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD-CO2. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m2/g and 702.5 m2/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm3/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO2 emissions as well as better CO2 adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO2 adsorbent.

  18. Magnesium oxide nanoparticles on green activated carbon as efficient CO{sub 2} adsorbent

    SciTech Connect

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-27

    This study was focused on carbon dioxide (CO{sub 2}) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO{sub 2} adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were − 117.5 kJ⋅mol{sup −1} and − 65.4 kJ⋅mol{sup −1}, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD−CO{sub 2}. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m{sup 2}/g and 702.5 m{sup 2}/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm{sup 3}/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO{sub 2} emissions as well as better CO{sub 2} adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO{sub 2} adsorbent.

  19. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  20. Activation and splitting of carbon dioxide on the surface of an inorganic electride material.

    PubMed

    Toda, Yoshitake; Hirayama, Hiroyuki; Kuganathan, Navaratnarajah; Torrisi, Antonio; Sushko, Peter V; Hosono, Hideo

    2013-01-01

    Activation of carbon dioxide is the most important step in its conversion into valuable chemicals. Surfaces of stable oxide with a low work function may be promising for this purpose. Here we report that the surfaces of the inorganic electride [Ca24Al28O64](4+)(e(-))4 activate and split carbon dioxide at room temperature. This behaviour is attributed to a high concentration of localized electrons in the near-surface region and a corrugation of the surface that can trap oxygen atoms and strained carbon monoxide and carbon dioxide molecules. The [Ca24Al28O64](4+)(e(-))4 surface exposed to carbon dioxide is studied using temperature-programmed desorption, and spectroscopic methods. The results of these measurements, corroborated with ab initio simulations, show that both carbon monoxide and carbon dioxide adsorb on the [Ca24Al28O64](4+)(e(-))4 surface at RT and above and adopt unusual configurations that result in desorption of molecular carbon monoxide and atomic oxygen upon heating.

  1. The synthesis of organic carbonates from carbon dioxide.

    PubMed

    Sakakura, Toshiyasu; Kohno, Kazufumi

    2009-03-21

    Carbon dioxide (CO(2)) is an easily available, renewable carbon resource, which has the advantages of being non-toxic, abundant and economical. CO(2) is also attractive as an environmentally friendly chemical reagent, and is especially useful as a phosgene substitute. CO(2) is an "anhydrous carbonic acid" that rapidly reacts with basic compounds. Nucleophilic attack at CO(2) conveniently produces carboxyl and carbamoyl groups. Further reactions of these species with electrophiles lead to the formation of organic carbonates and carbamates. The present article deals with the synthetic technologies leading to organic carbonates using CO(2) as a raw material.

  2. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  3. Adsorption of light hydrocarbons and carbon dioxide on silica gel

    SciTech Connect

    Olivier, M.G.; Jadot, R.

    1997-03-01

    The main component of natural gas is methane, but small quantities of other gases are also present. These compounds are in negligible quantities in natural gas but can become a problem for the storage of methane by adsorption, being less volatile than methane and so preferentially occupying the active sites of adsorbents. Adsorption isotherms of methane, ethane, ethylene, propane, propane, propadiene, butane, 2-methylpropane, and carbon dioxide on silica gel are given at three temperatures (278 K, 293 K, and 303 K). The results at pressures up to 0.8 P/P{sub s} for the subcritical compounds and up to 3,500 kPa for the supercritical compounds are measured using an automated apparatus.

  4. Recycling technology of emitted carbon dioxide

    SciTech Connect

    Arakawa, Hironori

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  5. Sequestering ADM ethanol plant carbon dioxide

    USGS Publications Warehouse

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  6. Climate impact of increasing atmospheric carbon dioxide.

    PubMed

    Hansen, J; Johnson, D; Lacis, A; Lebedeff, S; Lee, P; Rind, D; Russell, G

    1981-08-28

    The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.

  7. Regulation of cerebral autoregulation by carbon dioxide.

    PubMed

    Meng, Lingzhong; Gelb, Adrian W

    2015-01-01

    Cerebral autoregulation describes a mechanism that maintains cerebral blood flow stable despite fluctuating perfusion pressure. Multiple nonperfusion pressure processes also regulate cerebral perfusion. These mechanisms are integrated. The effect of the interplay between carbon dioxide and perfusion pressure on cerebral circulation has not been specifically reviewed. On the basis of the published data and speculation on the aspects that are without supportive data, the authors offer a conceptualization delineating the regulation of cerebral autoregulation by carbon dioxide. The authors conclude that hypercapnia causes the plateau to progressively ascend, a rightward shift of the lower limit, and a leftward shift of the upper limit. Conversely, hypocapnia results in the plateau shifting to lower cerebral blood flows, unremarkable change of the lower limit, and unclear change of the upper limit. It is emphasized that a sound understanding of both the limitations and the dynamic and integrated nature of cerebral autoregulation fosters a safer clinical practice.

  8. There is more to climate than carbon dioxide.

    PubMed

    Walker, J C

    1995-07-01

    Discussion of climate change on a range of time scales has tended to focus on carbon dioxide and a changing greenhouse effect. Because carbon dioxide couples climate to ocean, land, and biota, it has appealed to scientists with an interest in the whole Earth system. Carbon dioxide has left a geological record in fossils, isotopes, and sediments, so we can reasonably expect to reconstruct its history. While important questions of detail remain to be resolved, many published applications of carbon cycle modelling suggest that we understand the biogeochemical cycles of carbon well enough to estimate carbon dioxide concentrations in the past and the future. Furthermore, we have an excellent instrumental record of recent changes in atmospheric carbon dioxide. While these considerations make carbon dioxide attractive to paleoclimatologists, they do not necessarily make it a major component of climate change. I shall argue in this paper that clouds deserve much more attention than they have been getting.

  9. The direct viscosity enhancement of carbon dioxide

    SciTech Connect

    Iezzi, A.; Enick, R.; Brady, J. . Dept. of Chemistry)

    1988-01-01

    A high pressure viscometer has been constructed for use over a wide range of temperatures and pressures, including near-critical and supercritical conditions. An aluminum cylinder falls through a tube containing a stationary column of fluid, enabling viscosities to be determined from terminal velocity measurements. Preliminary results are presented on the search for an additive which can enhance the viscosity of carbon dioxide when present in low (less than 1%) concentrations.

  10. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  11. Carbon dioxide makes heat therapy work

    SciTech Connect

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  12. Carbon dioxide in Arctic and subarctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  13. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide.

    PubMed

    Wazne, Mahmoud; Meng, Xiaoguang; Korfiatis, George P; Christodoulatos, Christos

    2006-08-10

    A novel nanocrystalline titanium dioxide was used to treat depleted uranium (DU)-contaminated water under neutral and alkaline conditions. The novel material had a total surface area of 329 m(2)/g, total surface site density of 11.0 sites/nm(2), total pore volume of 0.415 cm(3)/g and crystallite size of 6.0 nm. It was used in batch tests to remove U(VI) from synthetic solutions and contaminated water. However, the capacity of the nanocrystalline titanium dioxide to remove U(VI) from water decreased in the presence of inorganic carbonate at pH > 6.0. Adsorption isotherms, Fourier transform infrared (FTIR) spectroscopy, and surface charge measurements were used to investigate the causes of the reduced capacity. The surface charge and the FTIR measurements suggested that the adsorbed U(VI) species was not complexed with carbonate at neutral pH values. The decreased capacity of titanium dioxide to remove U(VI) from water in the presence of carbonate at neutral to alkaline pH values was attributed to the aqueous complexation of U(VI) by inorganic carbonate. The nanocrystalline titanium dioxide had four times the capacity of commercially available titanium dixoide (Degussa P-25) to adsorb U(VI) from water at pH 6 and total inorganic carbonate concentration of 0.01 M. Consequently, the novel material was used to treat DU-contaminated water at a Department of Defense (DOD) site.

  14. Limiting future atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Sarmiento, Jorge L.; Le QuéRé, Corinne; Pacala, Stephen W.

    1995-03-01

    We estimate anthropogenic carbon emissions required to stabilize future atmospheric CO2 at various levels ranging from 350 ppm to 750 ppm. Over the next three centuries, uptake by the ocean and terrestrial biosphere would permit emissions to be 3 to 6 times greater than the total atmospheric increase, with each of them contributing approximately equal amounts. Owing to the nonlinear dependence of oceanic and terrestrial biospheric uptake on CO2 concentration, the uptake by these two sinks decreases substantially at higher atmospheric CO2 levels. The uptake also decreases with increased atmospheric CO2 growth rate. All the stabilization scenarios require a substantial future reduction in emissions.

  15. Carbon dioxide adsorption in graphene sheets

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish Kumar; Ramaprabhu, Sundara

    2011-09-01

    Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes) have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 °C).

  16. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  17. A miniature chemiresistor sensor for carbon dioxide.

    PubMed

    Srinives, Sira; Sarkar, Tapan; Hernandez, Raul; Mulchandani, Ashok

    2015-05-18

    A carpet-like nanostructure of polyaniline (PANI) nanothin film functionalized with poly(ethyleneimine), PEI, was used as a miniature chemiresistor sensor for detection of CO2 at room temperature. Good sensing performance was observed upon exposing the PEI-PANI device to 50-5000 ppm CO2 in presence of humidity with negligible interference from ammonia, carbon monoxide, methane and nitrogen dioxide. The sensing mechanism relied on acid-base reaction, CO2 dissolution and amine-catalyzed hydration that yielded carbamates and carbonic acid for a subsequent pH detection. The sensing device showed reliable results in detecting an unknown concentration of CO2 in air.

  18. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    PubMed

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX.

  19. Modeling adsorbate-induced property changes of carbon nanotubes.

    PubMed

    Groß, Lynn; Bahlke, Marc Philipp; Steenbock, Torben; Klinke, Christian; Herrmann, Carmen

    2017-05-05

    Because of their potential for chemical functionalization, carbon nanotubes (CNTs) are promising candidates for the development of devices such as nanoscale sensors or transistors with novel gating mechanisms. However, the mechanisms underlying the property changes due to functionalization of CNTs still remain subject to debate. Our goal is to reliably model one possible mechanism for such chemical gating: adsorption directly on the nanotubes. Within a Kohn-Sham density functional theory framework, such systems would ideally be described using periodic boundary conditions. Truncating the tube and saturating the edges in practice often offers a broader selection of approximate exchange-correlation functionals and analysis methods. By comparing the two approaches systematically for NH3 and NO2 adsorbates on semiconducting and metallic CNTs, we find that while structural properties are less sensitive to the details of the model, local properties of the adsorbate may be as sensitive to truncation as they are to the choice of exchange-correlation functional, and are similarly challenging to compute as adsorption energies. This suggests that these adsorbate effects are nonlocal. © 2017 Wiley Periodicals, Inc.

  20. Metal carbon bond energies for adsorbed hydrocarbons from calorimetric data

    NASA Astrophysics Data System (ADS)

    Gross, Heike; Campbell, Charles T.; King, David A.

    2004-11-01

    Single crystal adsorption calorimetry (SCAC) is a powerful new method for measuring adsorption and reaction energies. Particularly for hydrocarbons, where little or no information is available from either experiment or theory on well-defined surfaces, this method can provide crucially needed information. Assignment of the measured calorimetric heats to the appropriate surface reaction yields directly reaction heats and heats of formation of surface species. An important extension using these results is to derive values for metal-carbon bond energies in adsorbed hydrocarbon species. In this paper we review the definition of the bond dissociation energy for a surface species and discuss methodologies and limitations for calculating accurate values of this quantity from measured calorimetric data. As a step in establishing benchmark data for adsorbed hydrocarbons, we calculate a Pt-C σ bond strength, < D(Pt-C)>, of about 245 kJ/mol from data for ethylidyne on Pt{1 1 1}. Two independent methods, the quasiempirical valence bond (QVB) method and an average bond energy (ABE) method, were used to obtain this value, and the two values derived from these two approaches agree quite well. We also discuss the implications and applicability of this value of D(Pt-C) for other adsorbed hydrocarbons and on other Pt surfaces, and estimates of how this bond energy should differ when the C atom's ligands are different.

  1. Advances in principal factors influencing carbon dioxide adsorption on zeolites

    PubMed Central

    Bonenfant, Danielle; Kharoune, Mourad; Niquette, Patrick; Mimeault, Murielle; Hausler, Robert

    2008-01-01

    We report the advances in the principal structural and experimental factors that might influence the carbon dioxide (CO2) adsorption on natural and synthetic zeolites. The CO2 adsorption is principally govern by the inclusion of exchangeable cations (countercations) within the cavities of zeolites, which induce basicity and an electric field, two key parameters for CO2 adsorption. More specifically, these two parameters vary with diverse factors including the nature, distribution and number of exchangeable cations. The structure of framework also determines CO2 adsorption on zeolites by influencing the basicity and electric field in their cavities. In fact, the basicity and electric field usually vary inversely with the Si/Al ratio. Furthermore, the CO2 adsorption might be limited by the size of pores within zeolites and by the carbonates formation during the CO2 chemisorption. The polarity of molecules adsorbed on zeolites represents a very important factor that influences their interaction with the electric field. The adsorbates that have the most great quadrupole moment such as the CO2, might interact strongly with the electric field of zeolites and this favors their adsorption. The pressure, temperature and presence of water seem to be the most important experimental conditions that influence the adsorption of CO2. The CO2 adsorption increases with the gas phase pressure and decreases with the rise of temperature. The presence of water significantly decreases adsorption capacity of cationic zeolites by decreasing strength and heterogeneity of the electric field and by favoring the formation of bicarbonates. The optimization of the zeolites structural characteristics and the experimental conditions might enhance substantially their CO2 adsorption capacity and thereby might give rise to the excellent adsorbents that may be used to capturing the industrial emissions of CO2. PMID:27877925

  2. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  3. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization.

    PubMed

    Huang, Ning; Chen, Xiong; Krishna, Rajamani; Jiang, Donglin

    2015-03-02

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel-wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel-wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high-performance gas storage and separation.

  4. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    PubMed

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  5. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  6. A Molecular Dynamics Study on the Confinement of Carbon Dioxide Molecules in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lazor, Meagan; Rende, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2012-02-01

    The influence of atmospheric carbon dioxide (CO2) concentration on global warming is considered as one of the primary environmental issues of the past two decades. The main source of CO2 emission is human activity, such as the use of fossil fuels in transportation and industrial plants. Following the release of Kyoto Protocol in 1997, effective ways of controlling CO2 emissions received much attention. As a result, various materials such as activated carbon, zeolites, and carbon nanotubes (CNTs) were investigated for their CO2 adsorbing properties. CNTs were reported to have CO2 adsorption capability twice that of activated carbon, hence they received the most attention. In the current study, single walled carbon nanotubes (SWNTs) were used as one dimensional nanoporous materials and their CO2 adsorption capacity was analyzed with Molecular Dynamics simulations. Results indicated that SWNTs are excellent CO2 adsorbers and their effectiveness increase at low CO2 concentrations. In addition, we showed that by varying temperature, CO2 can be removed from the SWNTs, providing a simple method to reuse SWNTs.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  8. Carbon dioxide: A substitute for phosgene

    SciTech Connect

    Aresta, M.; Quaranta, E.

    1997-03-01

    One of the many goals of the green chemistry movement is to eliminate the use of phosgene (COCl{sub 2}), an extremely hazardous compound used in many syntheses, including the production of carbamates, organic carbonates, and polymers. One of the most interesting options for eliminating this compound is to replace it with CO{sub 2}. In addition to carbon dioxide`s abundance and benign nature, it has the benefits of recycling carbon and of reducing the amount of CO{sub 2} released into the atmosphere when its use is linked with other processes that emit CO{sub 2}. Several synthetic strategies that do not use phosgene are under development. The authors briefly review the most interesting ones and then expand on the use of CO{sub 2} as a potential building block for organic carbamates, carbonates, and isocyanates. One of these routes, polycarbonate synthesis, is already in industrial-scale operation: PAC Polymers Inc. currently produces CO{sub 2}-epoxide copolymers. The synthesis of carbamates and substituted ureas has been developed, and this process awaits industrial exploitation.

  9. Cellulose: A review as natural, modified and activated carbon adsorbent.

    PubMed

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  10. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.

    PubMed

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.

  11. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  12. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  13. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    SciTech Connect

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  14. The nature of carbon dioxide waters in Snaefellsnes, western Iceland

    USGS Publications Warehouse

    Arnorsson, S.; Barnes, I.

    1983-01-01

    Over 20 occurrences of thermal and non-thermal waters rich in carbon dioxide are known in the Snaefellsnes Peninsula of western Iceland. On the basis of the thermal, chemical and isotopic characteristics of these waters, and hydrological considerations, it is concluded that they represent meteoric waters which have seeped to variable depths into the bedrock. Ascending carbon dioxide gas originating from intrusions or the mantle mixes with the meteoric waters to produce carbon dioxide waters: at considerable depth in the case of the thermal carbon dioxide waters but close to the surface in the case of cold carbon dioxide waters. The occurrence of carbon dioxide waters cannot be regarded as evidence for underground geothermal reservoirs. ?? 1983.

  15. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  16. Copolymerization of carbon dioxide and butadiene via a lactone intermediate.

    PubMed

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  17. Copolymerization of carbon dioxide and butadiene via a lactone intermediate

    NASA Astrophysics Data System (ADS)

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  18. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU-Concepts

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.; Sridhar, K. R.

    2000-01-01

    Solid oxide electrolyzers, such as electrolysis cells utilizing yttria-stabilized zirconia, can produce oxygen from Mars atmospheric carbon dioxide and reject carbon monoxide and unreacted carbon dioxide in a separate stream. The oxygen-production process has been shown to be far more efficient if the high-pressure, unreacted carbon dioxide can be separated and recycled back into the feed stream. Additionally, the mass of the adsorption compressor can be reduced. Also, the carbon monoxide by-product is a valuable fuel for space exploration and habitation, with applications from fuel cells to production of hydrocarbons and plastics. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU. Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, respectively. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU, Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, Research needs for the design shown are as follows: (1) The best adsorbent

  19. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  20. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  1. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  2. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  3. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  4. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  5. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  6. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  7. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  8. Upgrading carbon dioxide by incorporation into heterocycles.

    PubMed

    Yu, Bing; He, Liang-Nian

    2015-01-01

    Carbon dioxide is commonly regarded as the primary greenhouse gas, but from a synthetic standpoint can be utilized as an alternative and sustainable C1 synthon in organic synthesis rather than a waste. This results in the production of organic carbonates, carboxylic acids, and derivatives. Recently, CO2 has emerged as an appealing tool for heterocycle synthesis under mild conditions without using stoichiometric amounts of organometallic reducing reagents. This Minireview summarizes recent advances on methodologies for CO2 incorporation into N-, O-, and C-nucleophiles to provide various heterocycles, including cyclic carbamates, benzoxazine-2-one, 4-hydroxyquinolin-2-one, quinazoline-2,4(1 H,3 H)-diones, benzimidazolones, α-alkylidene cyclic carbonate.

  9. Thermochemical generation of hydrogen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); England, Christopher (Inventor)

    1984-01-01

    Mixing of carbon in the form of high sulfur coal with sulfuric acid reduces the temperature of sulfuric acid decomposition from 830.degree. C. to between 300.degree. C. and 400.degree. C. The low temperature sulfuric acid decomposition is particularly useful in thermal chemical cycles for splitting water to produce hydrogen. Carbon dioxide is produced as a commercially desirable byproduct. Lowering of the temperature for the sulfuric acid decomposition or oxygen release step simplifies equipment requirements, lowers thermal energy input and reduces corrosion problems presented by sulfuric acid at conventional cracking temperatures. Use of high sulfur coal as the source of carbon for the sulfuric acid decomposition provides an environmentally safe and energy efficient utilization of this normally polluting fuel.

  10. Supercritical carbon dioxide: a solvent like no other

    PubMed Central

    Peach, Jocelyn

    2014-01-01

    Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947

  11. THERMAL CONDUCTIVITY OF CARBON DIOXIDE AT ONE ATMOSPHERE.

    DTIC Science & Technology

    CARBON DIOXIDE , THERMAL CONDUCTIVITY, VISCOSITY, HIGH TEMPERATURE, GASES, NITROGEN COMPOUNDS, OXYGEN, LAMINAR FLOW, TEST EQUIPMENT, DIFFUSION, PRESSURE, DENSITY, MEASUREMENT, WATER, CYLINDRICAL BODIES, THEORY.

  12. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  13. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  14. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1999-01-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  15. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto.

    PubMed

    Carlson, R W

    1999-02-05

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  16. Amorphous silica-like carbon dioxide

    NASA Astrophysics Data System (ADS)

    Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A.

    2006-06-01

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call `a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.

  17. Six-fold Coordinated Carbon Dioxide VI

    SciTech Connect

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  18. Carbon dioxide inhalation causes pulmonary inflammation.

    PubMed

    Abolhassani, Mohammad; Guais, Adeline; Chaumet-Riffaud, Philippe; Sasco, Annie J; Schwartz, Laurent

    2009-04-01

    The aim of this study was to assess whether one of the most common poisons of cellular respiration, i.e., carbon dioxide, is proinflammatory. CO(2) is naturally present in the atmosphere at the level of 0.038% and involved in numerous cellular biochemical reactions. We analyzed in vitro the inflammation response induced by exposure to CO(2) for 48 h (0-20% with a constant O(2) concentration of 21%). In vivo mice were submitted to increasing concentrations of CO(2) (0, 5, 10, and 15% with a constant O(2) concentration of 21%) for 1 h. The exposure to concentrations above 5% of CO(2) resulted in the increased transcription (RNase protection assay) and secretion (ELISA) of proinflammatory cytokines [macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, IL-8, IL-6, monocyte chemoattractant protein-1, and regulated upon activation, normal T cell expressed, and, presumably, secreted (RANTES)] by epithelial cell lines HT-29 or A549 and primary pulmonary cells retrieved from the exposed mice. Lung inflammation was also demonstrated in vivo by mucin 5AC-enhanced production and airway hyperreactivity induction. This response was mostly mediated by the nuclear translocation of p65 NF-kappaB, itself a consequence of protein phosphatase 2A (PP2A) activation. Short inhibiting RNAs (siRNAs) targeted toward PP2Ac reversed the effect of carbon dioxide, i.e., disrupted the NF-kappaB activation and the proinflammatory cytokine secretion. In conclusion, this study strongly suggests that exposure to carbon dioxide may be more toxic than previously thought. This may be relevant for carcinogenic effects of combustion products.

  19. Surface excess isotherms of organic solvent mixtures in a system made of liquid carbon dioxide and a silicagel surface.

    PubMed

    Vajda, Péter; Guiochon, Georges

    2013-09-20

    The surface excess isotherms of methanol, ethanol, 2-propanol and acetonitrile from liquid carbon dioxide on a silica adsorbent were measured, using the minor disturbance method. The minor disturbance peaks - or system peaks - of each organic modifier were recorded using UV-detection in the whole composition range of the organic/liquid carbon dioxide mixtures, the whole composition range was completed by injecting the modifiers into pure liquid carbon dioxide as well. The excess isotherms were calculated based on the retention of the organic solvent signals. Our results show an enrichment of the organic modifier at the adsorbent surface. The alcohols show multilayer adsorption with an extremely high retention on the silica surface while acetonitrile shows weaker interactions and only a slight trend toward the formation of a multilayer above the surface.

  20. Development of a prototype regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Onischak, M.

    1976-01-01

    Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.

  1. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft Ecological Risk... ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon and carbon... inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas cartridge uses of sulfur....

  2. Carbon dioxide detection in adult Odonata.

    PubMed

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata.

  3. Searching for clues to ancient carbon dioxide

    SciTech Connect

    Appenzeller, T.

    1993-02-12

    Something on Earth just won't stop fiddling with the thermostat. In the past 500 million years, the planet has shivered through ice ages lasting millions of years and sweltered through episodes of global warmth. Climatologists, eager to know what keeps jiggling the planet's temperature setting, have focused their suspicions on carbon dioxide, the same heat-trapping gas expected to drive up temperatures in coming decades. Catching this suspect in the act has been difficult, however; the atmospheres of millions of years ago are gone with the wind.

  4. Cost analysis of carbon dioxide concentrators

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    A methodology is developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware and is used to predict the costs of three carbon dioxide concentration systems. The cost and performance data from Gemini, Skylab, and other programs are utilized as a basis for establishing the cost estimating relationships. The concentration systems analyzed are the molecular sieves C02 concentrator, the hydrogen-depolarized concentrator, and the regenerable solid desiccant concentrator. Besides the cost estimates for each system, their comparative criteria including relative characteristics, operational differences, and development status are considered.

  5. Synthesis of carbonates and related compounds from carbon dioxide via methanesulfonyl carbonates.

    PubMed

    Bratt, Mark O; Taylor, Paul C

    2003-07-11

    Carbonate anions resulting from reaction of primary or secondary alcohols with carbon dioxide, when added to methanesulfonic anhydride in cooled acetonitrile solution, yield methanesulfonyl carbonates, a new class of synthetic intermediate. Base-mediated reaction of the methanesulfonyl carbonates with alcohols, thiols, and amines yields carbonates, thiocarbonates, and carbamates, respectively. Overall yields for the three steps vary from 19% to 42%.

  6. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  7. The kinetics of binding carbon dioxide in magnesium carbonate

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M.; Nomura, Koji |

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  8. Carbon dioxide research plan. A summary

    SciTech Connect

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  9. Cooperative redox activation for carbon dioxide conversion

    NASA Astrophysics Data System (ADS)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  10. Modeling flow of mineralized carbon dioxide slurry

    SciTech Connect

    Penner, Larry R.; Dahlin, David C.; Gerdemann, Stephen J.; Saha, K.K.

    2005-04-01

    Direct mineral carbonation was investigated at Albany Research Center (US DOE) as a means to sequester carbon dioxide into stable mineral matrices. Although previous work focused on treating Mg-containing minerals in conventional autoclaves, recent work has been done using pipeline-reactor technology for the high-temperature, high-pressure (HTHP) reaction of the minerals in aqueous/CO2 media. Sequestration of CO2 using above-ground reactors may be uneconomical, but the technology may also be applicable in geological sequestration of CO2. Progress is described in using a prototype HTHP flow-loop reactor to model flow in the dynamic three-phase system to help determine the pumping-energy requirements to optimize reactivity.

  11. Carbon dioxide extraction from air: Is it an option?

    SciTech Connect

    Lackner, K.S.; Grimes, P.; Ziock, H.J.

    1999-07-01

    Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of away from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it enter the atmosphere, this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants, a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For these cases the authors investigate the possibility of collecting the carbon dioxide directly from the atmosphere. The authors conclude that there are no fundamental obstacles to this approach and that it deserves further investigation. Carbon dioxide extraction directly from the atmosphere would allow carbon management without the need for a completely changed infrastructure. In addition it eliminates the need for a completely changed infrastructure. In addition it eliminates the need for a complex carbon dioxide transportation infrastructure, thus at least in part offsetting the higher cost of extraction from air.

  12. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis.

    PubMed

    Bloom, Arnold J; Burger, Martin; Rubio Asensio, Jose Salvador; Cousins, Asaph B

    2010-05-14

    The concentration of carbon dioxide in Earth's atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C(3) carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.

  13. Adsorbed Methane Film Properties in Nanoporous Carbon Monoliths

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Chada, Nagaraju; Beckner, Matthew; Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Carbon briquetting can increase methane storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed natural gas vehicle storage tank. To optimize methane storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis temperature. We found that carbon-to-binder ratio and pyrolysis temperature both have large influences on monolith uptakes. We have been able to optimize these parameters for high methane storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument. The saturated film density and the film thickness was determined using linear extrapolation on the high pressure excess adsorption isotherms. The saturated film density was also determined using the monolayer Ono-Kondo model. Film densities ranged from ca. 0.32 g/cm3 - 0.37 g/cm3.The Ono-Kondo model also determines the binding energy of methane. Binding energies were also determined from isosteric heats calculated from the Clausius-Clapeyron equation and compared with the Ono-Kondo model method. Binding energies from Ono-Kondo were ca. 7.8 kJ/mol - 10 kJ/mol. Work funded by California Energy Commission Contract #500-08-022.

  14. Electrocatalytic process for carbon dioxide conversion

    DOEpatents

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  15. The Structure and Properties of Carbon Fiber Based Adsorbent Monoliths

    SciTech Connect

    Burchell, T.; Judkins, R.R.; Rogers, M.R.; Shaw, W.S.

    1998-11-06

    Carbon fiber monoliths manufactured by a novel slurry molding process from isotropic pitch-derived fibers are being developed at ORNL for gas separation and storage applications [1]. Low density (p = 0.2 - 0,3 g/cm3) monoliths have been successfully demonstrated to have an acceptable pressure drop for gas separation applications and are currently being developed for C02/CH4 separations, whereas monoliths with densities in the range p = 0.4 - 0.6 g/cm3 have been "shown to have natural gas storage capacities of >100 VIV at 500 psi pressure and room temperature. Thermal conductivity, as a function of temperature, was measured using the LASER flash, thermal- pulse method. Another approach to minimizing the temperature gradients that develop in a storage bed is to increase the thermal conductivity of the adsorbent carbon. To this end, we have developed hybrid monoliths that contain small fractions of mesophase pitch- derived carbon fibers. Our hybrid monoliths exhibit thermal conductivities in the range 0.2-0.9 W/m.K depending on the blend and density of the monolith. In comparison, a packed bed of granular carbon at comparable density would have a thermal conductivity of approximately 0.1 W/m.K [ 1 ]. The thermal conductivities of several of the hybrid The improved thermal conductivity of our monoliths is attributed to the bonding between the fibers and the incorporation of high thermal conductivity, mesophase pitch-derived carbon fibers. These features are visible in the SEM micrograph in Fig. 4.

  16. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    PubMed Central

    Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639

  17. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide.

    PubMed

    Huang, Pei-Hsing; Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000(°)C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000(°)C and ground with a 170 mesh had the best adsorpt on capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  18. Kinetic separation of carbon dioxide and methane on a copper metal-organic framework.

    PubMed

    Bao, Zongbi; Alnemrat, Sufian; Yu, Liang; Vasiliev, Igor; Ren, Qilong; Lu, Xiuyang; Deng, Shuguang

    2011-05-15

    Separation of carbon dioxide and methane is an important issue in upgrading low-quality natural gas. Adsorption equilibria and kinetics of CO(2) and CH(4) on a copper metal-organic framework (MOF), Cu(hfipbb)(H(2)hfipbb)(0.5) [H(2)hfipbb=4,4'-(hexafluoroisopropylidene) bis(benzoic acid)], were investigated to evaluate the feasibility of removing CO(2) from CH(4) in a pressure swing adsorption process using this new MOF adsorbent. The heat of adsorption of CO(2) on the Cu-MOF at zero-coverage (29.7 kJ/mol) is much lower than those on a carbon molecular sieve and a zeolite 5A adsorbent; and the heat of adsorption of CH(4) on the Cu-MOF (21.4 kJ/mol) is similar to that on the zeolite 5A adsorbent and smaller than that on a carbon molecular sieve. The Cu-MOF being investigated has apertures of (~3.5 × 3.5 Å), which favors the kinetically controlled separation of CO(2) and CH(4). The kinetic selectivity is found to be 26 at 298 K, and the overall selectivity (combining the equilibrium and kinetic effects) is about 25 for an adsorption separation process. These results suggest that the Cu-MOF adsorbent is an attractive alternative adsorbent for the CO(2)/CH(4) separation.

  19. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  20. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  1. Promising flame retardant textile in supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...

  2. Solid amine compounds as sorbents for carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service.

  3. Carbon dioxide and climate: Summaries of research in FY 1988

    SciTech Connect

    Not Available

    1988-10-01

    Detailed worldwide measurements indicate that the amount of carbon dioxide in the earth's atmosphere has increased about 25 percent during the past 188 years, primarily because of fossil-fuel combustion and deforestation. Carbon dioxide is one of several trace gases that can modify the earth's heat balance by absorbing outgoing radiation from the earth's surface, thereby increasing the amount of heat retained by the atmosphere--the so-called greenhouse effect. Scientific analyses suggest that this increase could substantially affect climate, agriculture, and other human endeavors. The Carbon Dioxide Research Program is aimed at improving the scientific knowledge base to enable researchers to project future atmospheric concentrations of carbon dioxide, to estimate carbon dioxide-induced global and regional climate changes, and to assess the responses of vegetation to higher concentrations of carbon dioxide and changing climate. The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of directed research and to coordinate this research with relevant activities of other federal agencies, private concerns, and international institutions. This Program Summary documents the activities and products of the Carbon Dioxide Research (CDR) Program in Fiscal Year 1988. The Summary provides descriptions of all projects funded during the year and a brief overview of the CDR Program's goals, objectives, and organization. 1 fig., 3 tabs.

  4. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  5. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  6. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 89... Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, after any maintenance which could alter calibration, and bi-monthly thereafter, the NDIR...

  7. Cationic Polymerization of Vegetable Oils in Supercritical Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers derived from vegetable oils have been prepared in supercritical carbon dioxide (scCO2) medium by cationic polymerization. Boron trifluoride diethyl etherate BF3.O(C2H2)2 are used as initiator. Influences of polymerization temperature, initiator amount, and carbon dioxide pressure on the m...

  8. Covalent organic frameworks: Potential adsorbent for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Xie, Yinhuan

    A series of covalent organic frameworks (COFs) based on propeller shaped hexaphenylbenzene derivatives were obtained under solvothermal conditions via Schiff base reaction. The relationship between the geometry parameters of monomers and gas absorption behaviors of planar COFs was investigated. The FT-IR spectroscopy confirms the formation of imine double bond in the obtained COFs by showing a peak around 1620 cm-1. The resulting frameworks have high BET surface areas approaching 700 m2/g and CO2 uptake up to 14% at 273 K and 1 bar, which are better than most of the 2-D porous aromatic frameworks. The thermogravimetric analysis shows those frameworks are stable until 773 K, allowing for the practical application of the post-combustion CO2 technology. Moreover, a novel synthetic strategy for the trigonal pyramidal hydrozide monomers was established. It provides an efficient way to synthesize the hydrozide monomers at multi-gram scale, promising for the synthesis of hydrozane porous organic cages.

  9. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  10. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  11. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  12. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  13. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  14. Global carbon dioxide emissions from inland waters

    USGS Publications Warehouse

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  15. Global carbon dioxide emissions from inland waters.

    PubMed

    Raymond, Peter A; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory; Hoover, Mark; Butman, David; Striegl, Robert; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Dürr, Hans; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-11-21

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(+0.25)(-0.25)  petagrams of carbon (Pg C) per year from streams and rivers and 0.32(+0.52)(-0.26)  Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  16. Carbon dioxide removal with inorganic membranes

    SciTech Connect

    Judkins, R.R.; Fain, D.E.

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  17. Oxygen and carbon dioxide monitoring during sleep.

    PubMed

    Amaddeo, Alessandro; Fauroux, Brigitte

    2016-09-01

    Monitoring of oxygen and carbon dioxide (CO2) is of crucial importance during sleep-disordered breathing in order to assess the consequences of respiratory events on gas exchange. Pulse oximetry (SpO2) is a simple and cheap method that is used routinely for the recording of oxygen levels and the diagnosis of hypoxemia. CO2 recording is necessary for the diagnosis of alveolar hypoventilation and can be performed by means of the end-tidal (PetCO2) or transcutaneous CO2 (PtcCO2). However, the monitoring of CO2 is not performed on a routine basis due to the lack of simple, cheap and reliable CO2 monitors. This short review summarizes some technical aspects of gas exchange recording during sleep in children before discussing the different definitions of alveolar hypoventilation and the importance of CO2 recording.

  18. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  19. A weekly cycle in atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cerveny, Randall S.; Coakley, Kevin J.

    2002-01-01

    We present a new statistic called the ``Mean Symmetrized Residual'' (MSR) for detection and quantification of a weekly cycle in measured daily atmospheric carbon dioxide (CO2). At the Mauna Loa Observatory in Hawaii, we conclude that CO2 concentrations, on average, are significantly lower (0.022 parts per million by volume, ppmv) on weekends (Saturday-Sunday) than during the rest of the week. Over the past twenty-five years, the variation of the mean values of MSR (as a function of day of the week) has been relatively stable. We speculate that the observed weekday/weekend variation in CO2 at Mauna Loa is the result of anthropogenic emissions on Hawaii and nearby sources. We do not detect a weekly cycle in daily CO2 concentration measured at South Pole, Antarctica. This methodology has applicability to a variety of datasets.

  20. Carbon dioxide laser management cervical intraepithelial neoplasia

    SciTech Connect

    Bellina, J.H.; Wright, V.C.; Voros, J.I.; Riopelle, M.A.; Hohenschutz, V.

    1981-12-01

    In this report we describe the use of the carbon dioxide laser for the outpatient management of cervical intraepithelial neoplasia (CIN). A comparison of treatment effectiveness for different grades of CIN is also included. Two hundred fifty-six cases were evaluated by colposcopy, cytology, and histopathology, treated by at least 5 to 6 mm of laser vaporization, and followed up for an average of 10.7 months. Follow-up examinations included cytology, colposcopy, and directed biopsy if a suspicious lesion was discovered. During the follow-up, 18 cases of persistent CIN were identified (7.0%). Most of these were successfully managed with repeat laser treatment. Overall success of laser surgery for CIN, one or two applications, was 97.6%. Few complications were encountered. Laser surgery appears to offer acceptable treatment effectiveness, early identification of persistent disease, and easy retreatment when required. (Am. J. Obstet. Gynecol. 141:828, 1981.)

  1. Thermodynamical effects during carbon dioxide release

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  2. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  3. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  4. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  5. Carbon dioxide effects on fuel alcohol fermentation

    SciTech Connect

    Kao, D.W.

    1996-10-01

    Carbon dioxide is known to be inhibitory to yeastgrowth, with inhibition becoming appreciable between 1.5 and 2 atm absolute under of the brewing industry. First, the conditions prevailing in an industrial corn to ethanol plant employing relatively small were determined. Second, lab glucose fed batch fermentations under similar conditions and CO{sub 2} pressures of 0.5, 1.5, 2.5, and 3.5 atm absolute were run. High CO{sub 2} decreased the maximum number of viable cells and increased the death rate. Elevated CO{sub 2} levels also decreased the early growth associated production of glycerol. Translation of these results back to fermentor design and operation issues will be discussed.

  6. Carbon Dioxide Sequestration in Geologic Coal Formations

    SciTech Connect

    2001-09-30

    BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

  7. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  8. Demographic change and carbon dioxide emissions.

    PubMed

    O'Neill, Brian C; Liddle, Brant; Jiang, Leiwen; Smith, Kirk R; Pachauri, Shonali; Dalton, Michael; Fuchs, Regina

    2012-07-14

    Relations between demographic change and emissions of the major greenhouse gas carbon dioxide (CO(2)) have been studied from different perspectives, but most projections of future emissions only partly take demographic influences into account. We review two types of evidence for how CO(2) emissions from the use of fossil fuels are affected by demographic factors such as population growth or decline, ageing, urbanisation, and changes in household size. First, empirical analyses of historical trends tend to show that CO(2) emissions from energy use respond almost proportionately to changes in population size and that ageing and urbanisation have less than proportional but statistically significant effects. Second, scenario analyses show that alternative population growth paths could have substantial effects on global emissions of CO(2) several decades from now, and that ageing and urbanisation can have important effects in particular world regions. These results imply that policies that slow population growth would probably also have climate-related benefits.

  9. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  10. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  11. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  12. Intraosseous Venography with Carbon Dioxide in Percutaneous Vertebroplasty: Carbon Dioxide Retention in Renal Veins

    SciTech Connect

    Komemushi, Atsushi Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Tokuda, Takanori; Nomura, Motoo; Terada, Jiro; Kamata, Minoru; Sawada, Satoshi

    2008-11-15

    The objective of the present study was to determine the frequency of gas retention in the renal vein following carbon dioxide intraosseous venography in the prone position and, while citing references, to examine its onset mechanisms. All percutaneous vertebroplasties performed at our hospital from January to December 2005 were registered and retrospectively analyzed. Of 43 registered procedures treating 79 vertebrae, 28 procedures treating 54 vertebrae were analyzed. Vertebral intraosseous venography was performed using carbon dioxide as a contrast agent in all percutaneous vertebroplasty procedures. In preoperative and postoperative vertebral CT, gas retention in the renal vein and other areas was assessed. Preoperative CT did not show gas retention (0/28 procedures; 0%). Postoperative CT confirmed gas retention in the renal vein in 10 of the 28 procedures (35.7%). Gas retention was seen in the right renal vein in 8 procedures (28.6%), in the left renal vein in 5 procedures (17.9%), in the left and right renal veins in 3 procedures (10.7%), in vertebrae in 22 procedures (78.6%), in the soft tissue around vertebrae in 14 procedures (50.0%), in the spinal canal in 12 procedures (42.9%), and in the subcutaneous tissue in 5 procedures (17.9%). In conclusion, in our study, carbon dioxide gas injected into the vertebra frequently reached and remained in the renal vein.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  14. Dynamics of benzene vapor adsorption on carbon adsorbents having different volumes of transporting pores

    SciTech Connect

    Ivakhnyuk, G.K.; Fedorov, N.F.; Babkin, O.E.; Smetanin, G.N.; Belotserkovskii, G.M.

    1986-08-20

    To ascertain the effect of the porosity peculiarities on the benzene vapor adsorption process under dynamic conditions, a series of adsorbents was synthesized in this work from zirconium carbide. Their porous structure was studied by a traditional set of methods, viz., pycnometric, porometric, and sorption. Carbon adsorbents derived from zirconium carbide have an open-pore system of adsorbing pores which communicate directly with the outer surface. Transporting porosity of carbon adsorbents derived from zirconium carbide does not affect the mass transport processes during adsorption of benzene vapors on them under the conditions of a dynamic experiment.

  15. Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5.

    PubMed

    Sabouni, Rana; Kazemian, Hossein; Rohani, Sohrab

    2013-08-20

    It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and different methods have been reported for CO2 capturing including adsorption onto zeolites and porous membranes, as well as absorption in amine solutions. All such methods require high energy input and high cost. A new class of porous materials called Metal Organic Frameworks (MOFs) exhibited excellent performance in extracting carbon dioxide from a gas mixture. In this study, the breakthrough curves for the adsorption of carbon dioxide on CPM-5 (crystalline porous materials) were obtained experimentally and theoretically using a laboratory-scale fixed-bed column at different experimental conditions such as feed flow rate, adsorption temperature, and feed concentration. It was found that the CPM-5 has a dynamic CO2 adsorption capacity of 11.9 wt % (2.7 mmol/g) (corresponding to 8 mL/min, 298 K, and 25% v/v CO2). The tested CPM-5 showed an outstanding adsorption equilibrium capacity (e.g., 2.3 mmol/g (10.2 wt %) at 298 K) compared to other adsorbents, which can be considered as an attractive adsorbent for separation of CO2 from flue gas.

  16. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  17. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].

    PubMed

    Ji, Hong-bing; Xu, Jian-hua; Xie, Jun-feng; Chen, Qing-lin

    2008-06-01

    8%Ru-5%Ce/gamma-Al2O3 catalyst exhibited excellent catalytic performance for low temperature activation of methane. Although the conversion rates of methane were 25.3% for exothermal partial oxidation of methane, and 0.8% for endothermal carbon dioxide reforming, whose activity was rather low, 38.8% of conversion rate of methane could be obtained for the obtained coupling reaction at 500 degrees C owing to the coupling intensification between endothermal carbon dioxide reforming reaction and exothermal partial oxidation of methane. The mechanism of coupling partial oxidation of methane and carbon dioxide reforming on supported Ru catalyst was investigated by in-situ DRIFTS. The adsorption of CO on 8%Ru-5%Ce/gamma-Al2O3 showed that two kinds of doublet peaks which were characteristic adsorption of the gaseous CO at 2167 cm(-1) (2118 cm(-1)) to form Ru(CO)2 at 2031 cm(-1) (2034 cm(-1)) to form Ce(CO)2 were observed. These CO adsorption species wee easy to be desorbed from the surface of the catalyst at high temperature. The results of in-situ DRIFTS showed that carbonate, formal (formate) and carbon monoxide formed on the surface of catalyst, and formal (formate) was intermediate for the methane partial oxidation. This intermediate was formed through the combination of the adsorption species of methane CHx and the lattice oxygen adsorption species on the surface of catalyst, and syngas was produced through the splitting of this intermediate. The DRIFTS researching on carbon dioxide reforming showed that there was no new adsorption species on the surface of the catalyst, which indicated that the mechanism for carbon dioxide reforming was through the dissociation of the adsorbed methane and carbon dioxide. During the reaction of the coupling of carbon dioxide reforming reaction and partial oxidation of methane, there was hydroxyl adsorption species on the surface of catalyst. The mechanism of coupling methane, carbon dioxide and oxygen might be composed of the above

  18. Carbon dioxide in the Surfaces of the Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hibbitts, C. A.; Szanyi, J.; McCord, T. B.

    2004-11-01

    Carbon dioxide has been detected on the surfaces of the Galilean satellites [Carlson et al., 1996; McCord et al., 1998], the Uranian satellite Ariel [Grundy, 2003], the Saturnian satellite Phoebe [NASA Press Release, 2004], and is ubiquitous in comets and the interstellar medium (ISM) [e.g. Vidali et al., 2004]. The physical state and distribution of CO2 on these objects can help us understand its origin and may help us understand the objects' geological histories. For instance, a small amount of CO2 exists in the fine-grained (and thus `recent') ice on the leading hemisphere of Europa. Carlson, [2004] infers an exogenic origin: radiolysis of carbonaceous material. Hibbitts et al., [2000; 2002] infer from spectral characteristics and surface distributions that the CO2 on Ganymede and Callisto is previously outgassed endogenic CO2 now trapped in non-ice material(s). They further argue that distributions of CO2 on Ganymede and Callisto suggest Ganymede's interior is depleted in CO2 relative to Callisto, consistent with its more extensive tectonic past [e.g. Pappalardo et al., 1998]. The CO2 so far identified on all Jovian and Saturnian satellites seems to be molecules bound/trapped to a host material, mostly nonice. IR spectra of the ISM also suggests some CO2 is bound material. Thus, bound CO2 seems to be spectrally, and potentially compositionally, significant on objects' surfaces in the outer solar system and beyond. To explore the physical state and associated mechanisms of CO2 bound to non-ice materials we conducted CO2 adsorption experiments with several candidate outer solar system non-ice materials at relevant temperatures and pressures. We have found that CO2 adsorbs to certain clays and zeolites but not to at least some oxides and oxyhydroxides. The spectral characteristics of adsorbed CO2 are dependent on the exact composition (which cation is present) and there may be temperature dependences.

  19. Carbon Dioxide in the Gulf of Trieste

    NASA Astrophysics Data System (ADS)

    Turk, D.; Malacic, V.; Degrandpre, M. D.; McGillis, W. R.

    2009-04-01

    Coastal marine regions such as the Gulf of Trieste (GOT) in the Northern Adriatic Sea serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for air-sea carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic Sea. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of air-sea exchange during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of air-sea interaction, and changes in biology and carbon chemistry. Here we investigate biological (phytoplankton blooms) and physical (freshwater input and winds) controls on the temporal variability of pCO2 in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy VIDA, Slovenia using the SAMI CO2 sensor. Our results indicate that: 1) The GOT was a sink for atmospheric CO2 in late spring of 2007; 2) Aqueous pCO2 was influenced by fresh water input from rivers entering the GOT and biological production associated with high nutrient input; 3) Surface water pCO2 showed a strong correlation with SST when river plumes where not present at the buoy location, and reasonable correlation with SSS during the presence of the plume.

  20. Viscosity behavior of carbon dioxide treated Cut Bank crude oil

    SciTech Connect

    Cady, G.V.; Mosawi, H.

    1995-12-31

    Carbon dioxide injection, either by huff and puff or displacement operations, results in a crude oil viscosity reduction at pressures below the miscibility conditions. Carbon dioxide miscibility occurs in reservoirs at miscible temperature and pressure, but these conditions are not possible in shallow reservoirs. Improved oil recovery in a shallow reservoir depends on the degree of viscosity reduction at the reservoir temperature and pressure. A recovery project`s success depends on the interaction between the carbon dioxide and the reservoir system. A research project carried out at Montana Tech to study the viscosity reduction and carbon dioxide solubility in Cut Bank crude oil at the reservoir`s prevailing temperature and near fracture pressure shows a viscosity reduction ratio (crude-carbon dioxide mixture to original dead oil viscosity) of 0.22 at a pressure of 1,000 psig and 90 F. An original mobility of 20 Md/cp improves to 91 Md/cp under a carbon dioxide recovery process at or near the reservoir`s fracture pressure. Based on the authors` research, improved oil recovery operations in the Cut Bank Field, Montana, is viable when using a commercial on site carbon dioxide recovery or generating system to minimize the cost of CO{sub 2} transportation. The major benefits are oil viscosity reduction, mobility ratio improvement, gas drive, and crude oil swelling.

  1. Herbivore responses to plants grown in enriched carbon dioxide atmospheres

    SciTech Connect

    Lincoln, D.E.

    1990-05-01

    Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl and pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.

  2. International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

    NASA Technical Reports Server (NTRS)

    ElSherif, Dina; Knox, James C.

    2005-01-01

    An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has operated with varying degrees of success. There have been several approaches to troubleshooting the CDRA system aimed at developing work-around solutions that would minimize the impact on astronaut time required to implement interim solutions. The paper discusses some of the short-term fixes applied to promote hardware life and restore functionality, as well as long-term plans and solutions for improving operability and reliability. The CDRA is a critical piece of life support equipment in the air revitalization system of the ISS, and is demonstrated technology that may ultimately prove well-suited for use in lunar or Mars base, and Mars transit life support applications.

  3. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  4. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  5. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  6. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Carbon adsorbers used as...

  7. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Carbon adsorbers used as...

  8. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Carbon adsorbers used as...

  9. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Carbon adsorbers used as...

  10. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Carbon adsorbers used as...

  11. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  12. Forest management techniques for carbon dioxide storage

    SciTech Connect

    Fujimori, Takao

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  13. Cooperative redox activation for carbon dioxide conversion

    PubMed Central

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing ‘waste', produced through oxygen insertion into the Si–Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2. PMID:27981967

  14. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  15. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  16. Can the carbon dioxide problem be resolved

    SciTech Connect

    Lemons, J.

    1984-01-01

    The combustion of fossil fuels increases atmospheric levels of carbon dioxide (CO/sub 2/). This may cause a long-term warming of the atmosphere. Solutions to the CO/sub 2/ problem are particularly difficult because adverse effects will be felt by future generations, but remedial action and sacrifices must be made by present generations. Decisions regarding the problem which affect both the immediate and long-range future must be made deliberately or by default in perhaps only 15 to 20 years, before we are reasonably confident of our knowledge of the problem and before we know whether atmospheric warming will, in fact, occur. Empirical and evaluative data do not seem compelling to decision makers. First, remedial actions require present generations to conserve fossil fuels for the benefit of posterity, and there is no consensus that an ethical obligation to posterity exists. Second, actions must be based upon uncertain projections of future energy use and uncertain scientific knowledge of the carbon cycle and the environment. Third, economic and social factors may preclude resolution of the problem. Fourth, speculation from moral psychology suggests that mankind may be psychologically incapable of caring enough for posterity to make serious sacrifices. Therefore, public policy regarding sacrifice by present generations for the benefit of posterity is not likely to be forthcoming from policy makers or suported by the public. 120 references.

  17. Moisture swing sorbent for carbon dioxide capture from ambient air.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen

    2011-08-01

    An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.

  18. Fractional carbon dioxide laser in recalcitrant vulval lichen sclerosus.

    PubMed

    Lee, Andrew; Lim, Adrian; Fischer, Gayle

    2016-02-01

    Vulval lichen sclerosus is an uncommon skin condition that can usually be managed with topical corticosteroids to maintain remission. However, there is a subset of patients in whom it remains recalcitrant despite treatment with super-potent topical corticosteroids. We report a case series of four patients undergoing fractional carbon dioxide laser resurfacing and one with ablative carbon dioxide laser for severe, hyperkeratotic vulval lichen sclerosus not responding to super-potent topical corticosteroids. In these patients, carbon dioxide laser was successful in achieving remission. Their vulval lichen sclerosus was subsequently able to be maintained with topical corticosteroid treatment.

  19. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  20. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    PubMed

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  1. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  2. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    PubMed

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  3. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  4. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    PubMed

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

  5. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  6. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  7. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  8. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  9. Capture and release of carbon dioxide by carbon nanotubes via temperature cycling

    NASA Astrophysics Data System (ADS)

    Rende{2}, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2011-03-01

    Carbon nanotubes (CNTs) received remarkable attention since they were shown to possess many unique properties as well as being effective and stable adsorbent materials that make them potentially useful for gas storage and separation of various gas mixtures. In this study, the effect of temperature variations on carbon dioxide (CO2) capture via single walled carbon nanotubes (SWNTs) and multi walled carbon nanotubes (MWNTs) were investigated with molecular dynamics simulations. SWNTs of type (10,10), (15,15), and (20,20) and MWNTs formed from the combination of these were simulated. The temperature was varied between 300 and 360 K. The results suggest that absorption of CO2 into the CNTs were directly related to the internal volume of the nanotube, but the cross-sectional area of the tube entrance had a significant effect on the number of CO2 molecules retained. The number of CO2 molecules collected in CNTs gradually decreases with increasing temperature. Separate simulations were performed to understand the potential use of CNTs as thermal pumps to collect/discharge CO2 molecules via temperature cycling. Supported by the NSF (CMMI-0500324 and DMR-0117792).

  10. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  11. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  12. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43... § 179.43 Carbon dioxide laser for etching food. Carbon dioxide laser light may be safely used for... consists of a carbon dioxide laser designed to emit pulsed infrared radiation with a wavelength of...

  13. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  14. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  15. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  16. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43... FOOD Radiation and Radiation Sources § 179.43 Carbon dioxide laser for etching food. Carbon dioxide... conditions: (a) The radiation source consists of a carbon dioxide laser designed to emit pulsed...

  17. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  18. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  19. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  20. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  1. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  2. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  3. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  4. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  5. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  6. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide fire-extinguishing system requirements... Carbon dioxide fire-extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  7. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  8. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  9. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  10. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  11. Membranes for separation of carbon dioxide

    DOEpatents

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  12. Evidence for Adsorbate-Enhanced Field Emission from Carbon Nanotube Fibers (Postprint)

    DTIC Science & Technology

    2013-07-31

    microscopy from single wall nanotube ( SWNT ) caps,9 and by current satura- tion measurements10 from adsorbate-covered SWNTs , were consistent with this...assertion. Comparison of the FE electron energy distributions acquired from clean and adsorbate- covered SWNTs led11 to the conclusion that enhancement...Residual Gas Analysis FE Field Emission CNT Carbon Nanotube SWNT Single Wall Nanotube CSA Chlorosulfonic Acid

  13. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  14. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  15. The oxygen and carbon dioxide balance in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  16. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    PubMed

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V

    2016-01-01

    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance.

  17. Infrared energy levels and intensities of carbon dioxide.

    PubMed

    Rothman, L S; Benedict, W S

    1978-08-15

    Updated tables of vibrational energy levels, molecular constants, band origins, and intensities for carbon dioxide in the infrared region of the spectrum are presented. These tables are references for the AFGL Atmospheric Absorption Line Parameters Compilation.

  18. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  19. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g... alarm sounds for at least twenty seconds before the carbon dioxide is released into the space....

  20. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g... alarm sounds for at least twenty seconds before the carbon dioxide is released into the space....

  1. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g... alarm sounds for at least twenty seconds before the carbon dioxide is released into the space....

  2. Plants Can't Do without Carbon Dioxide.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Describes an experiment to induce carbon dioxide deficiency to demonstrate its effects on plant growth. Suggests further studies to examine respiration by soil microbes and the effects of relative humidity, other gases, and air pollution on plant growth. (MDH)

  3. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... performance. (b) Zero the carbon dioxide analyzer with either zero-grade air or zero-grade nitrogen....

  4. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  5. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  6. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... performance. (b) Zero the carbon dioxide analyzer with either zero-grade air or zero-grade nitrogen....

  7. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  8. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  9. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  10. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  11. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    SciTech Connect

    Yu, Xiaofeng; Raaen, Steinar

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material.

  12. Carbon Dioxide Effects under Conditions of Raised Environmental Pressure

    DTIC Science & Technology

    1974-12-26

    the inspiratory muscles might have contributed to the elevated carbon dioxide tensions in the trained underwater swimmer because it was shown that...alveolar carbon dioxide tensions increase linearly with the work- load on the inspiratory muscles (Milic- Emili & Tyler 1962). Lanphier (1963...Submarine Escape Training Tank, U.S. Naval Submarine Base New London, in dives to 90 ft (3.7 ATA) (Sehaefer 1955; Schaefer & Carey 1962). During

  13. Tethered catalysts for the hydration of carbon dioxide

    SciTech Connect

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  14. Chalcocite Oxidation and Coupled Carbon Dioxide Fixation by Thiobacillus ferrooxidans.

    PubMed

    Nielsen, A M; Beck, J V

    1972-03-10

    The reaction of cell suspensions of Thiobacillus ferrooxidans with pulverized chalcocite (Cu(2)S) in a Warburg manometric apparatus resulted in oxygen uptake accompanied by increased solubilization of copper and fixation of carbon dioxide. Since the only detectable oxidized products were cupric ions and the more oxidized form of the sulfide mineral, that is, digenite or covellite, the apparent source of energy for the carbon dioxide fixation was provided by the oxidation of the cuprous copper of the chalcocite.

  15. Carbon dioxide in the ocean surface: The homogeneous buffer factor

    USGS Publications Warehouse

    Sundquist, E.T.; Plummer, L.N.; Wigley, T.M.L.

    1979-01-01

    The amount of carbon dioxide that can be dissolved in surface seawater depends at least partially on the homogeneous buffer factor, which is a mathematical function of the chemical equilibrium conditions among the various dissolved inorganic species. Because these equilibria are well known, the homogeneous buffer factor is well known. Natural spatial variations depend very systematically on sea surface temperatures, and do not contribute significantly to uncertainties in the present or future carbon dioxide budget. Copyright ?? 1979 AAAS.

  16. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  17. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  18. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  19. Carbon dioxide dynamics in an artificial ecosystem

    NASA Astrophysics Data System (ADS)

    Hu, Enzhu; Hu, Dawei; Tong, Ling; Li, Ming; Fu, Yuming; He, Wenting; Liu, Hong

    An experimental artificial ecosystem was established as a tool to understand the behavior of closed ecosystem and to develop the technology for a future bioregenerative life support system for lunar or planetary exploration. Total effective volume of the system is 0.7 m3 . It consists of a higher plant chamber, an animal chamber and a photo-bioreactor which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella), respectively. For uniform and sustained observations, lettuce and silkworms was cultivated using sequential cultivation method, and microalgae using continuous culture. Four researchers took turns breathing the system air through a tube for brief periods every few hours. A mathematic model, simulating the carbon dioxide dynamics was developed. The main biological parameters concerning photosynthesis of lettuce and microalgae, respiration of silkworms and human were validated by the experimental data. The model described the respiratory relationship between autotrophic and heterotrophic compartments. A control strategy was proposed as a tool for the atmosphere management of the artificial ecosystem.

  20. Effects of carbon dioxide on laryngeal receptors

    SciTech Connect

    Anderson, J.W.; Sant'Ambrogio, F.B.; Orani, G.P.; Sant'Ambrogio, G.; Mathew, O.P. )

    1990-02-26

    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  1. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  2. Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.

    2006-01-01

    A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.

  3. On the psychotropic effects of carbon dioxide.

    PubMed

    Colasanti, Alessandro; Esquivel, Gabriel; Schruers, Koen J; Griez, Eric J

    2012-01-01

    It has been well established that the inhalation of Carbon Dioxide (CO2) can induce in humans an emotion closely replicating spontaneous panic attacks, as defined by current psychiatry nosology. The purpose of this review is to provide a critical summary of the data regarding CO2's psychopharmacological properties and underlying mechanisms. The authors review the literature on the human and animal response for the exposure of exogenous CO2 focusing on five points of interest: 1) the early history of the use of CO2 as an anesthetic and therapeutic agent, 2) the subjective effects of breathing CO2 at different concentrations in humans, 3) the use of CO2 in experimental psychiatric research as an experimental model of panic, 4) the pharmacological modulation of CO2-induced responses, and 5) the putative neurobiological mechanisms underlying the affective state induced by CO2. The authors conclude with an evolutionary-inspired notion that CO2 might act as an agent of a primal emotion serving a homeostatic function, in the control of respiration and acid-base balance.

  4. Euthanasia of neonatal mice with carbon dioxide

    USGS Publications Warehouse

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  5. Carbon Dioxide Chemistry on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Cable, M. L.; Malaska, M. J.; Vu, T. H.

    2015-12-01

    The surfaces of the moons of the outer Solar System are usually considered too cold (30-100 K) for significant chemistry to occur without the input of energy from exogenic sources (such as charged particles or VUV irradiation). In particular, Titan's thick atmosphere prevents significant amounts of high energy radiation from reaching the surface, limiting opportunities for surface chemical reactivity. Recently, we have identified carbamation, the reaction of carbon dioxide with primary amines to form carbamic acids, as a reaction that could occur thermally on Titan's surface. Amines should be present on Titan's surface, formed by photochemical reactions of N2 and CH4 in the upper atmosphere, and amine-containing molecules have been detected as a component of laboratory tholins made in terrestrial laboratories. There is some spectral evidence that CO2 is present on the surface, and CO2 has been definitively identified in the atmosphere. We use a combination of micro-Raman spectroscopy and UHV FTIR spectroscopy to examine the reaction products and kinetics of the carbamation reaction for a variety of primary amines. The reaction occurs readily at Titan surface temperatures (94 K), and leads to both carbamic acids and ammonium carbamate salts. Our kinetic data can be used to estimate the lifetime of CO2 on Titan's surface, and thus constrain the age of possible CO2-bearing cryovolcanic deposits.

  6. Carbon dioxide removal and the futures market

    NASA Astrophysics Data System (ADS)

    Coffman, D.’Maris; Lockley, Andrew

    2017-01-01

    Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.

  7. Vibrations of the carbon dioxide dimer

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  8. Development of Carbon Dioxide Hermitic Compressor

    NASA Astrophysics Data System (ADS)

    Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki

    Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.

  9. Acute carbon dioxide avoidance in Caenorhabditis elegans

    PubMed Central

    Hallem, Elissa A.; Sternberg, Paul W.

    2008-01-01

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFβ signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm. PMID:18524955

  10. Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1968-01-01

    Surface area determinations were made on a montmorillonite with various cations emplaced on the exchangeable sites, utilizing nitrogen and carbon dioxide as adsorbates at 77 ??K and 195 ??K, respectively, in a dynamic system. From the fraction of a Mississippi montmorillonite less than about 1 ?? in size, samples were prepared by replacing the original exchangeable cations with Li+, Na+, K+, Rb+, Cs+, Mg++, Ca++, Ba++, and NH4+, forming a series of homoionic montmorillonite species. Surface areas from 3-point B.E.T. plots (half-hour adsorption points), with nitrogen as the adsorbate, ranged from 61 m2/g for Li-montmorillonite to 138 m2/g for Cs-montmorillonite, thus reflecting a certain degree of nitrogen penetration between layers. Complete penetration should theoretically result in a surface area of over 300 m2/g for this clay with a nitrogen monolayer between each pair of platelets. The experimental data indicate that the extent of penetration is time-dependent and is also a function of the interlayer forces as governed by the size and charge of the replaceable cation. This finding negates the generally accepted concept that nitrogen at 77 ??K does not penetrate the layers and provides a measure only of the external surface of expandable clay minerals. A further measure of the variation of interlayer forces is provided by the adsorption of carbon dioxide at 195 ??K. Surface area values ranged from 99 m2/g for Li-montmorillonite to 315 m2/g for Csmontmorillonite. Although the carbon dioxide molecule is larger than the nitrogen molecule, its greater penetration apparently is a result of its being kinetically more energetic (with a larger diffusion coefficient) at its higher adsorption temperature. Similar differences have been found with both adsorbates in the study of microporous substances, such as coal, where activated diffusion is of considerable significance. ?? 1968.

  11. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  12. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yanpeng; Nie, Yong; Wu, Angshan; Ji, Dengxiang; Yu, Fengwen; Ji, Jianbing

    2012-03-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  13. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  14. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  15. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    PubMed

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  16. Carbon dioxide sequestration by direct aqueous mineral carbonation

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  17. Using carbon dioxide as a building block in organic synthesis.

    PubMed

    Liu, Qiang; Wu, Lipeng; Jackstell, Ralf; Beller, Matthias

    2015-01-20

    Carbon dioxide exits in the atmosphere and is produced by the combustion of fossil fuels, the fermentation of sugars and the respiration of all living organisms. An active goal in organic synthesis is to take this carbon--trapped in a waste product--and re-use it to build useful chemicals. Recent advances in organometallic chemistry and catalysis provide effective means for the chemical transformation of CO₂ and its incorporation into synthetic organic molecules under mild conditions. Such a use of carbon dioxide as a renewable one-carbon (C1) building block in organic synthesis could contribute to a more sustainable use of resources.

  18. The role of renewable bioenergy in carbon dioxide sequestration

    SciTech Connect

    Kinoshita, C.M.

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  19. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    NASA Technical Reports Server (NTRS)

    Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.

    2007-01-01

    The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.

  20. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  1. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  2. Atmospheric input of carbon dioxide from burning wood.

    PubMed

    Wong, C S

    1978-04-14

    The atmospheric input of carbon dioxide from burning wood, in particular from forest fires in boreal and temperate regions resulting from both natural and man-made causes and predominantly from forest fires in tropical regions caused by shifting cultivation, is estimated to be 5.7 x 10(15) grams of carbon per year as gross input and 1.5 x 10(15) grams of carbon per year as net input. This is a significant amount as compared to the fossil fuel carbon dioxide produced from the utilization of oil, gas, coal, and limestone, and bears on the hypothesis of the enhanced sedimentation of marine detritus as a removal mechanism of excess atmospheric carbon dioxide.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  4. It is time to put carbon dioxide to work

    SciTech Connect

    Lipinsky, E.S.

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  5. Interaction of Surface Modified Carbon Nanotubes with Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Baysal, Nihat; Unsal, Banu; Ozisik, Rahmi

    2006-03-01

    The properties of carbon nanotube (CNT)-polymer nanocomposites are far below than those calculated, mainly due to poor dispersion or interface quality. This is particularly difficult for single walled carbon nanotubes (SWNTs) as they tend to form bundles or ropes that are difficult to exfoliate. Supercritical fluid (SCF) assisted processing is one of the methods that can be used to exfoliate/disperse CNTs along with modifiying the interface of the CNTs. Molecular dynamics simulations were performed to understand how the surface modifiers behave near SWNT surface with and without the presence of SCF molecules. It is also important to understand the diffusivity of SCF molecules between SWNT bundles and the effect of surface modifiers on diffusion. Octane and n-perflourooctane molecules were used as surface modifiers with varying tethering density and carbon dioxide (CO2) was chosen as the SCF. Results showed that the system with highest number of n-perfluorooctanes presented the highest degree of success in separating the SWNTs in the presence of CO2.

  6. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  7. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    PubMed

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  8. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2)...

  9. The Headache of Carbon Dioxide Exposures

    NASA Technical Reports Server (NTRS)

    James, John T.

    2007-01-01

    Carbon dioxide (CO2), a natural product of human metabolism, accumulates quickly in sealed environments when humans are present, and can induce headaches, among other symptoms. Major resources are expended to control CO2 levels to concentrations that are tolerable to the crews of spacecraft and submersible craft. It is not practical to control CO2 levels to those found in the ambient environment on earth. As NASA looks ahead to long-duration missions conducted far from earth, difficult issues arise related to the management and effects of human exposure to CO2. One is the problem of pockets of CO2 in the habitat caused by excess generation of the gas in one location without a mechanism to purge the area with fresh air. This results in the crew rebreathing CO2 from their exhaled breath, exposing them to a much higher concentration of CO2 than whole-module measurements would suggest. Another issue is the potential increased sensitivity to CO2 in microgravity. For example, based on anecdotal information, it appears that space crews may be more susceptible than submarine crews to some of the subtle, yet adverse effects of CO2 exposure. Another issue, not unique to spaceflight, is the possibility of inter-individual differences in the susceptibility of crewmembers to CO2 exposure. Again, anecdotal reports from the International Space Station (ISS) crews suggest that certain individuals may experience a greater susceptibility. The implications associated with these issues are extremely important as NASA sets CO2 exposure limits that protect the crew from this compound s subtle adverse effects, without causing an unwarranted expenditure of resources to scrub CO2 from the habitat atmosphere.

  10. Carbon-dioxide-controlled ventilation study

    SciTech Connect

    McMordie, K.L.; Carroll, D.M.

    1994-05-01

    The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

  11. Carbon dioxide catastrophes: Past and future menace

    NASA Technical Reports Server (NTRS)

    Baur, Mario E.

    1988-01-01

    Carbon dioxide is important in its role as coupler of the terrestrial biosphere to inorganic chemical processes and as the principal greenhouse gas controlling Earth's surface temperature. The hypothesis that atmospheric CO2 levels have diminished with time, with the resulting cooling effect offsetting an increase in the solar constant, seems firmly established, and it is shown that feedback mechanisms exist which can maintain the terrestrial surface in a relatively narrow temperature range over geological time. Of the factors involved in such CO2 variation, the oceanic reservoir appears the most important. Surface waters are probably in approximate equilibrium with regard to CO2 exchange with the ambient atmosphere in most regions, but data from deep-ocean water sampling indicates that such waters are somewhat undersaturated in the sense that they would tend to absorb CO2 from the atmosphere if brought to the surface without change in composition or temperature. If major impacts into the ocean can result in loss of a substantial portion of the atmospheric CO2 reservoir, then any such future event could imperil the continuation of most higher forms of life on Earth. The most likely candidate for an inverse Nyos global event in previous Earth history is the Cretaceous-Tertiary terminal extinction event. The Cretaceous was characterized by warm, equable temperatures presumably indicative of relatively high CO2 levels and an intense greenhouse heating. Cooling of the oceans in absence of massive transfer of CO2 to the oceanic reservoir in itself would promote a condition of CO2 undersaturation in abyssal waters, and this is made even more extreme by the pattern of ocean water circulation. It is possible to envision a situation in which deep ocean waters were at least occasionally profoundly undersaturated with regard to CO2. Turnover of a major fraction of such an ocean would then remove, on a very short time scale, as much as 90 percent of the atmospheric CO2

  12. Porous aerosil loading probucol using supercritical carbon dioxide: preparation, in vitro and in vivo characteristics.

    PubMed

    Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong

    2014-06-01

    The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.

  13. Reactor design considerations in mineral sequestration of carbon dioxide

    SciTech Connect

    Ityokumbul, M.T.; Chander, S.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.

    2001-01-01

    One of the promising approaches to lowering the anthropogenic carbon dioxide levels in the atmosphere is mineral sequestration. In this approach, the carbon dioxide reacts with alkaline earth containing silicate minerals forming magnesium and/or calcium carbonates. Mineral carbonation is a multiphase reaction process involving gas, liquid and solid phases. The effective design and scale-up of the slurry reactor for mineral carbonation will require careful delineation of the rate determining step and how it changes with the scale of the reactor. The shrinking core model was used to describe the mineral carbonation reaction. Analysis of laboratory data indicates that the transformations of olivine and serpentine are controlled by chemical reaction and diffusion through an ash layer respectively. Rate parameters for olivine and serpentine carbonation are estimated from the laboratory data.

  14. Application of a novel magnetic carbon nanotube adsorbent for removal of mercury from aqueous solutions.

    PubMed

    Homayoon, Farshid; Faghihian, Hossein; Torki, Firoozeh

    2017-04-01

    In this research, multiwall carbon nanotube was magnetized and subsequently functionalized by thiosemicarbazide. After characterization by FTIR, BET, SEM, EDAX, and VSM techniques, the magnetized adsorbent (multi-walled carbon nanotubes (MWCNTs)/Fe3O4) was used for removal of Hg(2+) from aqueous solutions and the experimental conditions were optimized. The adsorption capacity of 172.83 mg g(-1) was obtained at 25 °C and pH = 3 which was superior to the value obtained for initial multiwall carbon nanotube, magnetized sample, and many previously reported values. In the presence of Pb(+2) and Cd(+2), the adsorbent was selective towards mercury when their concentration was respectively below 50 and 100 mg L(-1). The adsorption process was kinetically fast and the equilibration was attained within 60 min with 69.5% of the capacity obtained within 10 min. The used adsorbent was regenerated by HNO3 solution, and the regenerated adsorbent retained 92% of its initial capacity. The magnetic sensitivity of the adsorbent allowed the simple separation of the used adsorbent from the solution by implying an appropriate external magnetic field. The adsorption data was well fitted to the Langmuir isotherm model, indicating homogeneous and monolayer adsorption of mercury by the adsorbent.

  15. Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle

    SciTech Connect

    Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob

    2012-05-22

    An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

  16. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    SciTech Connect

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  17. Vegetation Response to Carbon Dioxide and Climate: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to vegetation response to carbon dioxide and climate includes: • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • TDE Model Intercomparison Project Data Archive • Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) • FACE (Free-Air CO2 Enrichment) • Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001) • Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000) • Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994) • A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (1999) • A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (1999) • Forest Responses to Anthropogenic Stress (FORAST) Database (1995) • Effects of CO2 and Nitrogen Fertilization on Growth and Nutrient Content of Juvenile Ponderosa Pine (1998) • Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2Irrigation, and Nitrogen (1992) • Growth and Chemical Responses to CO2 Enrichment Virginia Pine Pinus Virginiana Mill.(1985)

  18. Carbon dioxide fluid-flow modeling and injectivity calculations

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.

  19. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    SciTech Connect

    Rathke, J.W.; Klingler, R.J.

    1992-12-31

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  20. Electroreduction of carbon dioxide in aqueous solutions at metal electrodes

    SciTech Connect

    Augustynski, J.; Jermann, B.; Kedzierzawski, P.

    1996-12-31

    The quantities of carbon stored in the form of atmospheric carbon dioxide, CO{sub 2} in the hydrosphere and carbonates in the terrestrial environment substantially exceed those of fossil fuels. In spite of this the industrial use of carbon dioxide as a source of chemical carbon is presently limited to preparation of urea and certain carboxylic acids as well as organic carbonates and polycarbonates. However, the situation is expected to change in the future, if effective catalytic systems allowing to activate carbon dioxide will become available. In this connection, the electrochemical reduction of CO{sub 2}, requiring only an additional input of water and electrical energy, appears as an attractive possibility. For more than 100 years formic acid and formates of alkali metals were considered as the only significant products of the electroreduction of carbon dioxide in aqueous solutions. The highest current efficiencies, exceeding 90 %, were obtained either with mercury or with amalgam electrodes. The only comprehensive study regarding kinetics of CO{sub 2} reduction in aqueous solution has been performed by Eyring et al. using a mercury cathode. This paper describes electrolysis studies.