Science.gov

Sample records for adsorb large amounts

  1. Determination of maximal amount of minor gases adsorbed in a shale sample by headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2014-02-07

    In this paper, we present a novel method for determining the maximal amount of ethane, a minor gas species, adsorbed in a shale sample. The method is based on the time-dependent release of ethane from shale samples measured by headspace gas chromatography (HS-GC). The study includes a mathematical model for fitting the experimental data, calculating the maximal amount gas adsorbed, and predicting results at other temperatures. The method is a more efficient alternative to the isothermal adsorption method that is in widespread use today. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors

    PubMed Central

    Toko, Kiyoshi; Hara, Daichi; Tahara, Yusuke; Yasuura, Masato; Ikezaki, Hidekazu

    2014-01-01

    The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA) using a taste sensor (electronic tongue). In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane. PMID:25184491

  3. Transmission of large amounts of scientific data using laser technology

    NASA Astrophysics Data System (ADS)

    Isaev, E. A.; Tarasov, P. A.

    2016-08-01

    Currently, the volume of figures generated by different research scientific projects (the Large Hadron Collider (Large Hadron Collider, LHC), The Square Kilometre Array (SKA)), can reach tens of petabytes per day. The only technical solution that allows you to transfer such large amounts of scientific data to the places of their processing is the transfer of information by means of laser technology, using different propagation environment. This article discusses the possibility of data transmission via fiber-optic networks, data transmission using the modulation binary stream of light source by a special LED light source, the neccessity to apply laser technologies for deep space communications, the principle for an unlimited expansion of the capacity of laser data link. Also in this study is shown the need for a substantial increase in data transfer speed via a pre-existing communication networks and via the construction of new channels of communication that will cope with the transfer of very large scale data volumes, taking into account the projected rate of growth.

  4. Very Large Amounts of Radiation are Required to Produce Cancer

    PubMed Central

    Brooks, Antone L.; Hui, T. Edmond; Couch, Lezlie A.

    2007-01-01

    The public fear of radiation is in part driven by the Linear No Threshold Hypothesis (LNTH), or the concept that each and every ionization increases the risk for cancer. Even if this were true, it is important to recognize that the increased risk is very small at low doses and cannot be detected. This paper demonstrates the large number of assumptions and extrapolations needed when using the LNTH to estimate low-dose cancer risk. The manuscript provides information at every level of biological organization suggesting that many of these linear assumptions do not hold. While the initial damage may be produced linearly with dose, the processing of that damage is very non-linear. Finally, the paper provides the unique prospective on radiation-induced cancer, demonstrating that it takes large amounts (total energy) of radiation delivered to large populations to detect an increase in cancer frequency. These observations are supported by both theoretical calculations and examples based on past human radiation exposure. PMID:18648559

  5. Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes

    PubMed Central

    Ganesan, Kavita; Lloyd, Shane; Sarkar, Vikren

    2016-01-01

    The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases. PMID:27656096

  6. Making large amounts of meteorological plots easily accessible to users

    NASA Astrophysics Data System (ADS)

    Lamy-Thepaut, Sylvie; Siemen, Stephan; Sahin, Cihan; Raoult, Baudouin

    2015-04-01

    The European Centre for Medium-Range Weather Forecasts (ECMWF) is an international organisation providing its member organisations with forecasts in the medium time range of 3 to 15 days, and some longer-range forecasts for up to a year ahead, with varying degrees of detail. As part of its mission, ECMWF generates an increasing number of forecast data products for its users. To support the work of forecasters and researchers and to let them make best use of ECMWF forecasts, the Centre also provides tools and interfaces to visualise their products. This allows users to make use of and explore forecasts without having to transfer large amounts of raw data. This is especially true for products based on ECMWF's 50 member ensemble forecast, where some specific processing and visualisation are applied to extract information. Every day, thousands of raw data are being pushed to the ECMWF's interactive web charts application called ecCharts, and thousands of products are processed and pushed to ECMWF's institutional web site ecCharts provides a highly interactive application to display and manipulate recent numerical forecasts to forecasters in national weather services and ECMWF's commercial customers. With ecCharts forecasters are able to explore ECMWF's medium-range forecasts in far greater detail than has previously been possible on the web, and this as soon as the forecast becomes available. All ecCharts's products are also available through a machine-to-machine web map service based on the OGC Web Map Service (WMS) standard. ECMWF institutional web site provides access to a large number of graphical products. It was entirely redesigned last year. It now shares the same infrastructure as ECMWF's ecCharts, and can benefit of some ecCharts functionalities, for example the dashboard. The dashboard initially developed for ecCharts allows users to organise their own collection of products depending on their work flow, and is being further developed. In its first

  7. Knowledge discovery: Extracting usable information from large amounts of data

    SciTech Connect

    Whiteson, R.

    1998-12-31

    The threat of nuclear weapons proliferation is a problem of world wide concern. Safeguards are the key to nuclear nonproliferation and data is the key to safeguards. The safeguards community has access to a huge and steadily growing volume of data. The advantages of this data rich environment are obvious, there is a great deal of information which can be utilized. The challenge is to effectively apply proven and developing technologies to find and extract usable information from that data. That information must then be assessed and evaluated to produce the knowledge needed for crucial decision making. Efficient and effective analysis of safeguards data will depend on utilizing technologies to interpret the large, heterogeneous data sets that are available from diverse sources. With an order-of-magnitude increase in the amount of data from a wide variety of technical, textual, and historical sources there is a vital need to apply advanced computer technologies to support all-source analysis. There are techniques of data warehousing, data mining, and data analysis that can provide analysts with tools that will expedite their extracting useable information from the huge amounts of data to which they have access. Computerized tools can aid analysts by integrating heterogeneous data, evaluating diverse data streams, automating retrieval of database information, prioritizing inputs, reconciling conflicting data, doing preliminary interpretations, discovering patterns or trends in data, and automating some of the simpler prescreening tasks that are time consuming and tedious. Thus knowledge discovery technologies can provide a foundation of support for the analyst. Rather than spending time sifting through often irrelevant information, analysts could use their specialized skills in a focused, productive fashion. This would allow them to make their analytical judgments with more confidence and spend more of their time doing what they do best.

  8. Large amounts of antiproton production by heavy ion collision

    SciTech Connect

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  9. Making large amounts of meteorological data accessible through visualisation

    NASA Astrophysics Data System (ADS)

    Siemen, Stephan; Lamy-Thepaut, Sylvie

    2013-04-01

    The European Centre for Medium-Range Weather Forecasts (ECMWF) is an international organisation providing its member organisations with forecasts in the medium time range of 3 to 15 days. As part of its mission, ECMWF generates an increasing number of forecast data products for its users. To support the work of forecasters and researchers and to let them make best use of ECMWF forecasts, the Centre also provides tools and interfaces to visualise their products. This allows users to make use of and explore forecasts without having to transfer large amounts of raw data. This is especially true for products based on ECMWF's 50 member strong ensemble forecast. Users can choose to explore ECMWF's forecasts from the web or through visualisation tools installed locally or at ECMWF. ECMWF's new in-house developed web service, ecCharts, displays recent numerical forecasts to forecasters in national weather services. The functions that ecCharts provides are beyond standard web charts, in that forecasters can use the service to create bespoke charts on demand and do this themselves as and when they need to using an intuitive web interface. With ecCharts they are able to explore ECMWF's medium-range forecasts in far greater detail than has previously been possible on the web. Beside the interactive user interface built using jQuery the service also offers a machine-to-machine web map service based on the OGC Web Map Service (WMS) standard. The WMS service is primary intended to be used by forecaster workstations to integrate maps generated at ECMWF. The main challenge was to achieve fast response times even though the data volume and processing effort is quite high. PNG is the main format served but SVG is being investigated as a vector alternative. This talk will present examples of complex meteorological maps and graphs which show new possibilities users have gained by using the web as a medium. More advanced possibilities are available directly to users of the

  10. Expert system shell to reason on large amounts of data

    NASA Technical Reports Server (NTRS)

    Giuffrida, Gionanni

    1994-01-01

    The current data base management systems (DBMS's) do not provide a sophisticated environment to develop rule based expert systems applications. Some of the new DBMS's come with some sort of rule mechanism; these are active and deductive database systems. However, both of these are not featured enough to support full implementation based on rules. On the other hand, current expert system shells do not provide any link with external databases. That is, all the data are kept in the system working memory. Such working memory is maintained in main memory. For some applications the reduced size of the available working memory could represent a constraint for the development. Typically these are applications which require reasoning on huge amounts of data. All these data do not fit into the computer main memory. Moreover, in some cases these data can be already available in some database systems and continuously updated while the expert system is running. This paper proposes an architecture which employs knowledge discovering techniques to reduce the amount of data to be stored in the main memory; in this architecture a standard DBMS is coupled with a rule-based language. The data are stored into the DBMS. An interface between the two systems is responsible for inducing knowledge from the set of relations. Such induced knowledge is then transferred to the rule-based language working memory.

  11. Determination of small and large amounts of fluorine in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.; Ingram, B.; Cuttitta, F.

    1955-01-01

    Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.

  12. Comparison Analysis among Large Amount of SNS Sites

    NASA Astrophysics Data System (ADS)

    Toriumi, Fujio; Yamamoto, Hitoshi; Suwa, Hirohiko; Okada, Isamu; Izumi, Kiyoshi; Hashimoto, Yasuhiro

    In recent years, application of Social Networking Services (SNS) and Blogs are growing as new communication tools on the Internet. Several large-scale SNS sites are prospering; meanwhile, many sites with relatively small scale are offering services. Such small-scale SNSs realize small-group isolated type of communication while neither mixi nor MySpace can do that. However, the studies on SNS are almost about particular large-scale SNSs and cannot analyze whether their results apply for general features or for special characteristics on the SNSs. From the point of view of comparison analysis on SNS, comparison with just several types of those cannot reach a statistically significant level. We analyze many SNS sites with the aim of classifying them by using some approaches. Our paper classifies 50,000 sites for small-scale SNSs and gives their features from the points of network structure, patterns of communication, and growth rate of SNS. The result of analysis for network structure shows that many SNS sites have small-world attribute with short path lengths and high coefficients of their cluster. Distribution of degrees of the SNS sites is close to power law. This result indicates the small-scale SNS sites raise the percentage of users with many friends than mixi. According to the analysis of their coefficients of assortativity, those SNS sites have negative values of assortativity, and that means users with high degree tend to connect users with small degree. Next, we analyze the patterns of user communication. A friend network of SNS is explicit while users' communication behaviors are defined as an implicit network. What kind of relationships do these networks have? To address this question, we obtain some characteristics of users' communication structure and activation patterns of users on the SNS sites. By using new indexes, friend aggregation rate and friend coverage rate, we show that SNS sites with high value of friend coverage rate activate diary postings

  13. Elephant’s breast milk contains large amounts of glucosamine

    PubMed Central

    TAKATSU, Zenta; TSUDA, Muneya; YAMADA, Akio; MATSUMOTO, Hiroshi; TAKAI, Akira; TAKEDA, Yasuhiro; TAKASE, Mitsunori

    2016-01-01

    Hand-reared elephant calves that are nursed with milk substitutes sometimes suffer bone fractures, probably due to problems associated with nutrition, exercise, sunshine levels and/or genetic factors. As we were expecting the birth of an Asian elephant (Elephas maximus), we analyzed elephant’s breast milk to improve the milk substitutes for elephant calves. Although there were few nutritional differences between conventional substitutes and elephant’s breast milk, we found a large unknown peak in the breast milk during high-performance liquid chromatography-based amino acid analysis and determined that it was glucosamine (GlcN) using liquid chromatography/mass spectrometry. We detected the following GlcN concentrations [mean ± SD] (mg/100 g) in milk hydrolysates produced by treating samples with 6M HCl for 24 hr at 110°C: four elephant’s breast milk samples: 516 ± 42, three cow’s milk mixtures: 4.0 ± 2.2, three mare’s milk samples: 12 ± 1.2 and two human milk samples: 38. The GlcN content of the elephant’s milk was 128, 43 and 14 times greater than those of the cow’s, mare’s and human milk, respectively. Then, we examined the degradation of GlcN during 0–24 hr hydrolyzation with HCl. We estimated that elephant’s milk contains >880 mg/100 g GlcN, which is similar to the levels of major amino acids in elephant’s milk. We concluded that a novel GlcN-containing milk substitute should be developed for elephant calves. The efficacy of GlcN supplements is disputed, and free GlcN is rare in bodily fluids; thus, the optimal molecular form of GlcN requires a further study. PMID:28049867

  14. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.

    PubMed

    Choi, Sunho; Drese, Jeffrey H; Jones, Christopher W

    2009-01-01

    Since the time of the industrial revolution, the atmospheric CO(2) concentration has risen by nearly 35 % to its current level of 383 ppm. The increased carbon dioxide concentration in the atmosphere has been suggested to be a leading contributor to global climate change. To slow the increase, reductions in anthropogenic CO(2) emissions are necessary. Large emission point sources, such as fossil-fuel-based power generation facilities, are the first targets for these reductions. A benchmark, mature technology for the separation of dilute CO(2) from gas streams is via absorption with aqueous amines. However, the use of solid adsorbents is now being widely considered as an alternative, potentially less-energy-intensive separation technology. This Review describes the CO(2) adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks. These adsorbents are evaluated in terms of their equilibrium CO(2) capacities as well as other important parameters such as adsorption-desorption kinetics, operating windows, stability, and regenerability. The scope of currently available CO(2) adsorbents and their critical properties that will ultimately affect their incorporation into large-scale separation processes is presented.

  15. Simultaneous column preconcentration of ultra trace amounts of heavy metals with nano-adsorbent in some environmental and biological samples.

    PubMed

    Fazelirad, Hamid; Taher, Mohammad Ali

    2016-01-01

    In the present investigation, multi-walled carbon nanotubes impregnated by 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane were prepared and applied as adsorbent for the simultaneous separation of Bi(III), Cu(II), Cd(II) and Pb(II) ions prior to their determination by electrothermal atomic absorption spectrometry. The following analytical figures of merit were determined for bismuth, copper, cadmium and lead, respectively: enrichment factors of 168, 134, 111 and 146, assay precisions of ±4.6%, ±4.8%, ±5.3% and ±5.0% and detection limits of 11.3, 3.7, 0.5 and 0.3 ng L(-1). The method was successfully applied for the determination of heavy metals in environmental, biological and certified reference materials.

  16. Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces

    PubMed Central

    Bondarenko, L. V.; Gruznev, D. V.; Yakovlev, A. A.; Tupchaya, A. Y.; Usachov, D.; Vilkov, O.; Fedorov, A.; Vyalikh, D. V.; Eremeev, S. V.; Chulkov, E. V.; Zotov, A. V.; Saranin, A. A.

    2013-01-01

    Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with silicon technology. We have found that originally poor structural and electronic properties of the surface can be substantially improved by adsorbing small amounts of suitable species (e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic surface-state band with a momentum splitting of up to 0.052 Å−1 and an energy splitting of up to 190 meV at the Fermi level. The family of adsorbate-modified surfaces, on the one hand, is thought to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a semiconductor and, on the other hand, expands greatly the list of material systems prospective for spintronics applications. PMID:23661151

  17. Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces.

    PubMed

    Bondarenko, L V; Gruznev, D V; Yakovlev, A A; Tupchaya, A Y; Usachov, D; Vilkov, O; Fedorov, A; Vyalikh, D V; Eremeev, S V; Chulkov, E V; Zotov, A V; Saranin, A A

    2013-01-01

    Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with silicon technology. We have found that originally poor structural and electronic properties of the Au/Si(111) √3 x √3 surface can be substantially improved by adsorbing small amounts of suitable species (e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic surface-state band with a momentum splitting of up to 0.052 Å(-1) and an energy splitting of up to 190 meV at the Fermi level. The family of adsorbate-modified Au/Si(111) √3 x √3 surfaces, on the one hand, is thought to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a semiconductor and, on the other hand, expands greatly the list of material systems prospective for spintronics applications.

  18. Novel method to extract large amounts of bacteriocins from lactic acid bacteria.

    PubMed Central

    Yang, R; Johnson, M C; Ray, B

    1992-01-01

    Antimicrobial peptides, bacteriocins, produced by lactic acid bacteria were adsorbed on the cells of producing strains and other gram-positive bacteria. pH was a crucial factor in determining the degree of adsorption of these peptides onto cell surfaces. In general, between 93 and 100% of the bacteriocin molecules were adsorbed at pHs near 6.0, and the lowest (< or = 5%) adsorption took place at pH 1.5 to 2.0. On the basis of this property, a novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria. By using this method we made preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated. This method produced a higher yield than isolation procedures, which rely on precipitation of the bacteriocins from the cell-free culture liquor. It is simple and can be used to produce large quantities of bacteriocins from lactic acid bacteria to be used as food biopreservatives. Images PMID:1444369

  19. A simple biosynthetic pathway for large product generation from small substrate amounts.

    PubMed

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  20. A simple biosynthetic pathway for large product generation from small substrate amounts

    NASA Astrophysics Data System (ADS)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  1. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  2. Large-Scale Membrane- and Lignin-Modified Adsorbent-Assisted Extraction and Preconcentration of Triazine Analogs and Aflatoxins.

    PubMed

    Hu, Shun-Wei; Chen, Shushi

    2017-04-11

    The large-scale simultaneous extraction and concentration of aqueous solutions of triazine analogs, and aflatoxins, through a hydrocarbon-based membrane (e.g., polyethylene, polyethylene/polypropylene copolymer) under ambient temperature and atmospheric pressure is reported. The subsequent adsorption of analyte in the extraction chamber over the lignin-modified silica gel facilitates the process by reducing the operating time. The maximum adsorption capacity values for triazine analogs and aflatoxins are mainly adsorption mechanism-dependent and were calculated to be 0.432 and 0.297 mg/10 mg, respectively. The permeation, and therefore the percentage of analyte extracted, ranges from 1% to almost 100%, and varies among the solvents examined. It is considered to be vapor pressure- and chemical polarity-dependent, and is thus highly affected by the nature and thickness of the membrane, the discrepancy in the solubility values of the analyte between the two liquid phases, and the amount of adsorbent used in the process. A dependence on the size of the analyte was observed in the adsorption capacity measurement, but not in the extraction process. The theoretical interaction simulation and FTIR data show that the planar aflatoxin molecule releases much more energy when facing toward the membrane molecule when approaching it, and the mechanism leading to the adsorption.

  3. Large-Scale Membrane- and Lignin-Modified Adsorbent-Assisted Extraction and Preconcentration of Triazine Analogs and Aflatoxins

    PubMed Central

    Hu, Shun-Wei; Chen, Shushi

    2017-01-01

    The large-scale simultaneous extraction and concentration of aqueous solutions of triazine analogs, and aflatoxins, through a hydrocarbon-based membrane (e.g., polyethylene, polyethylene/polypropylene copolymer) under ambient temperature and atmospheric pressure is reported. The subsequent adsorption of analyte in the extraction chamber over the lignin-modified silica gel facilitates the process by reducing the operating time. The maximum adsorption capacity values for triazine analogs and aflatoxins are mainly adsorption mechanism-dependent and were calculated to be 0.432 and 0.297 mg/10 mg, respectively. The permeation, and therefore the percentage of analyte extracted, ranges from 1% to almost 100%, and varies among the solvents examined. It is considered to be vapor pressure- and chemical polarity-dependent, and is thus highly affected by the nature and thickness of the membrane, the discrepancy in the solubility values of the analyte between the two liquid phases, and the amount of adsorbent used in the process. A dependence on the size of the analyte was observed in the adsorption capacity measurement, but not in the extraction process. The theoretical interaction simulation and FTIR data show that the planar aflatoxin molecule releases much more energy when facing toward the membrane molecule when approaching it, and the mechanism leading to the adsorption. PMID:28398252

  4. Consumption with Large Sip Sizes Increases Food Intake and Leads to Underestimation of the Amount Consumed

    PubMed Central

    Bolhuis, Dieuwerke P.; Lakemond, Catriona M. M.; de Wijk, Rene A.; Luning, Pieternel A.; de Graaf, Cees

    2013-01-01

    Background A number of studies have shown that bite and sip sizes influence the amount of food intake. Consuming with small sips instead of large sips means relatively more sips for the same amount of food to be consumed; people may believe that intake is higher which leads to faster satiation. This effect may be disturbed when people are distracted. Objective The objective of the study is to assess the effects of sip size in a focused state and a distracted state on ad libitum intake and on the estimated amount consumed. Design In this 3×2 cross-over design, 53 healthy subjects consumed ad libitum soup with small sips (5 g, 60 g/min), large sips (15 g, 60 g/min), and free sips (where sip size was determined by subjects themselves), in both a distracted and focused state. Sips were administered via a pump. There were no visual cues toward consumption. Subjects then estimated how much they had consumed by filling soup in soup bowls. Results Intake in the small-sip condition was ∼30% lower than in both the large-sip and free-sip conditions (P<0.001). In addition, subjects underestimated how much they had consumed in the large-sip and free-sip conditions (P<0.03). Distraction led to a general increase in food intake (P = 0.003), independent of sip size. Distraction did not influence sip size or estimations. Conclusions Consumption with large sips led to higher food intake, as expected. Large sips, that were either fixed or chosen by subjects themselves led to underestimations of the amount consumed. This may be a risk factor for over-consumption. Reducing sip or bite sizes may successfully lower food intake, even in a distracted state. PMID:23372657

  5. Nutrient intakes during diets including unkilned and large amounts of oats in celiac disease.

    PubMed

    Kemppainen, T A; Heikkinen, M T; Ristikankare, M K; Kosma, V-M; Julkunen, R J

    2010-01-01

    We have shown earlier that consumption of moderate amount of oats improve intakes of vitamin B(1), fiber, magnesium and iron in celiac patients using gluten-free diet (GFD). The objective of this study was to clarify the effect of high amount of both kilned and unkilned oats on food and nutrient intakes in celiac patients in remission. Kilning as an industrial heating process is performed to preserve the main properties of oats and to lengthen its useableness. Kilning may, however, change the protein structure of oats and therefore influence on the intake of nutrients. The study group consisted of 13 men and 18 women with celiac disease in remission. The patients who were earlier using moderate amount of oats as part of their GFD were randomized to consume kilned or unkilned oats. After 6 months, the patients changed the treatment groups. The goal of daily intake of oats was 100 g. Food records and frequency questionnaire were used to follow nutrient intakes. Type of oats did not affect the amount of oats used. In the group using kilned oats, the intake of vitamin B1 and magnesium and in the group of unkilned oats that of magnesium and zinc increased significantly during the first 6 months (PLarge amounts of oats, both kilned and unkilned in GFD, can increase intakes of nutrients in celiac patients in remission. Oats improve the nutritional value of GFD.

  6. Study on Properties of Environment-friendly Concrete Containing Large Amount of Industrial by-products

    NASA Astrophysics Data System (ADS)

    Fujiwara, H.; Maruoka, M.; Sadayama, C.; Nemoto, M.; Yoshikawa, K.; Yamaji, M.

    2015-11-01

    This study aims to reduce CO2 discharged from the cement and concrete industries by effective use of industrial by-products, such as fly ash, blast furnace slag, and so on. In this paper, the properties of concrete containing large amount of industrial by-products and very small amount of alkaline activator including cement or sludge from ready mixed concrete plant are analyzed. As the result, it was confirmed that concretes containing large amount of industrial by-products can achieve sufficient compressive strength. However, these concretes showed poor frost resistance. It was thought that the reason was coarsening of air void system and this caused their poor frost resistance. Therefore, in order to micronize the air void system and improve frost resistance, the combination of air entraining agent and antifoaming agent was applied. By this method, it was confirmed that the frost resistance of some these concrete improved. In this study, other properties of these concretes, such as fresh properties and other durability were evaluated and it was confirmed that these concretes show sufficient properties.

  7. Photodissociation of HBr adsorbed on the surface and embedded in large Arn clusters

    NASA Astrophysics Data System (ADS)

    Baumfalk, Reinhard; Nahler, Nils Hendrik; Buck, Udo; Niv, Masha Y.; Gerber, R. Benny

    2000-07-01

    Ultraviolet (UV) photodissociation experiments are carried out for Arn(HBr) clusters in which the HBr is adsorbed on the surface of the Arn, and also on isomers of these systems in which HBr is embedded within the rare-gas cluster. The mean size of the cluster distribution in the experiments is around n¯=130. The kinetic energy distribution (KED) of the hydrogen atoms that left the clusters is measured. Molecular dynamics (MD) simulations of the photodissociation of the chemically similar clusters Arn(HCl) are used to provide a qualitative interpretation of the experimental results. The clusters with embedded HBr give a very cold H-atom KED. The clusters with the surface-adsorbed HBr give a KED with two peaks, one corresponding to very low energy H atoms and the other pertaining to high energies, of the order of 1.35 eV. The theoretical simulations show that already for n=54, there is a strong cage effect for the "embedded" molecule case, resulting in slow H atoms. The surface-adsorbed case is interpreted as due to two types of possible adsorption sites of HX on Ar55: for a locally smooth adsorption site, the cage effect is relatively weak, and hot H atoms emerge. Sites where the HBr is adsorbed at a vacancy of Arn lead to "encapsulation" of the H atom produced, with a strong cage effect. A weak tail of H atoms with energies well above the HBr monomer excess energy is observed for the embedded case. Simulations support that this is due to a second photon absorption by recombined, but still vibrationally hot, HBr. The results throw light on the differences between the cage effect inside bulk structure and at surfaces.

  8. Presentation of a large amount of moving objects in a virtual environment

    NASA Astrophysics Data System (ADS)

    Ye, Huanzhuo; Gong, Jianya; Ye, Jing

    2004-05-01

    It needs a lot of consideration to manage the presentation of a large amount of moving objects in virtual environment. Motion state model (MSM) is used to represent the motion of objects and 2n tree is used to index the motion data stored in database or files. To minimize the necessary memory occupation for static models, cache with LRU or FIFO refreshing is introduced. DCT and wavelet work well with different playback speeds of motion presentation because they can filter low frequencies from motion data and adjust the filter according to playback speed. Since large amount of data are continuously retrieved, calculated, used for displaying, and then discarded, multithreading technology is naturally employed though single thread with carefully arranged data retrieval also works well when the number of objects is not very big. With multithreading, the level of concurrence should be placed at data retrieval, where waiting may occur, rather than at calculating or displaying, and synchronization should be carefully arranged to make sure that different threads can collaborate well. Collision detection is not needed when playing with history data and sampled current data; however, it is necessary for spatial state prediction. When the current state is presented, either predicting-adjusting method or late updating method could be used according to the users' preference.

  9. Application of ultradisperse magnetic adsorbents for removal of small concentrations of pollutants from large volumes of water

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    Pollution of natural bodies of water (rivers, lakes, ground water, etc) is unfortunately very common, both from natural sources like volcanic activity; and, even more importantly, from human activity, including disposal of industrial and municipal waste, mining, etc. Many toxic substances are harmful for humans and other organisms even in very low concentrations (e.g., less than 1 µg/L of cadmium is harmful, for Hg it is 0.5 µg/L, for phenol - 1 µg/L), and can remain in water for decades or longer. Cleaning large volumes of water even from low concentrations of pollutants is a challenging technological task and is very expensive. We propose to use suspension of ultradisperse magnetic adsorbents, for example, nanostructured ferro-carbon particles, produced by plasmachemical technique, for removing small concentrations of pollutants from large volumes of water. The suspension is introduced into the water. Due to their small sizes and densities similar to water (we measured the density of FC-4 ferro-carbon to be about 1 g/cm3; presumably due to porosity) the particles do not sediment for a long time (hours, days or longer), move due to Brownian motion and adsorb a variety of substances from the water. The particle surface can be modified to provide selectivity of the adsorption. Sorption capacities of ferro-carbon adsorbents is in dozens of percent. Therefore, to collect 1 kg of a pollutant, 2 to 20 kg of the adsorbents is required. Then the particles with the adsorbed contaminant can be collected (e.g., downstream of the river) using a variety of magnetic traps. The traps can consist of ferromagnetic wires and permanent magnets, a variety of simple and inexpensive designs are available. As a model system, the kinetics of adsorption of a highly diluted (0.002 mg/ml) aqueous solution of a low molecular weight compound (toluidine blue) by a small concentration of a ferro-carbon powder (FC-4) was studied by spectrophotometry. Before each measurement, the particles

  10. A novel wet coating method using small amounts of solution on large flat substrates

    NASA Astrophysics Data System (ADS)

    Mousavi, S. H.; Jilavi, M. H.; May, A.; Schmitt, K. P.; Schäfer, B.; de Oliveira, P. W.

    2017-10-01

    Coating on large surfaces is a critical issue in both academic studies and industrial production. This work proposes a novel method of coating a large flat substrate (50 × 100 cm2) via a wet chemical process using a very small amount (20 ml) of coating solution. The sol material consisted of surface-modified silicon dioxide (SiO2) nanoparticles (10-30 nm), which have the optimal antireflective (AR) function in the visible spectral range for thin films with a thickness ranging from 110 to 120 nm. Ellipsometry results demonstrate a homogeneous thickness of the AR coating on glass (109.4 ± 2.7 nm). A deviation of less than 3% over a large coated surface was observed. Crack-free coatings with homogeneous morphology on the surface of the coatings were observed using scanning electron microscopy. The AR effect was confirmed with UV-vis measurements, with an average transmittance of 91.1% and 94.7%, respectively, in visible wavelengths for the one-sided and double-sided AR coatings (in comparison to 88% for uncoated glass).

  11. Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data

    NASA Astrophysics Data System (ADS)

    Hillen, Florian; Höfle, Bernhard

    2015-08-01

    The reCAPTCHA concept provides a large amount of valuable information for various applications. First, it provides security, e.g., for a form on a website, by means of a test that only a human could solve. Second, the effort of the user for this test is used to generate additional information, e.g., digitization of books or identification of house numbers. In this work, we present a concept for adapting the reCAPTCHA idea to create user-generated geographic information from earth observation data, and the requirements during the conception and implementation are depicted in detail. Furthermore, the essential parts of a Geo-reCAPTCHA system are described, and afterwards transferred, to a prototype implementation. An empirical user study is conducted to investigate the Geo-reCAPTCHA approach, assessing time and quality of the resulting geographic information. Our results show that a Geo-reCAPTCHA can be solved by the users of our study on building digitization in a short amount of time (19.2 s on average) with an overall average accuracy of the digitizations of 82.2%. In conclusion, Geo-reCAPTCHA has the potential to be a reasonable alternative to the typical reCAPTCHA, and to become a new data-rich channel of crowdsourced geographic information.

  12. Analytics to Better Interpret and Use Large Amounts of Heterogeneous Data

    NASA Astrophysics Data System (ADS)

    Mathews, T. J.; Baskin, W. E.; Rinsland, P. L.

    2014-12-01

    Data scientists at NASA's Atmospheric Science Data Center (ASDC) are seasoned software application developers who have worked with the creation, archival, and distribution of large datasets (multiple terabytes and larger). In order for ASDC data scientists to effectively implement the most efficient processes for cataloging and organizing data access applications, they must be intimately familiar with data contained in the datasets with which they are working. Key technologies that are critical components to the background of ASDC data scientists include: large RBMSs (relational database management systems) and NoSQL databases; web services; service-oriented architectures; structured and unstructured data access; as well as processing algorithms. However, as prices of data storage and processing decrease, sources of data increase, and technologies advance - granting more people to access to data at real or near-real time - data scientists are being pressured to accelerate their ability to identify and analyze vast amounts of data. With existing tools this is becoming exceedingly more challenging to accomplish. For example, NASA Earth Science Data and Information System (ESDIS) alone grew from having just over 4PBs of data in 2009 to nearly 6PBs of data in 2011. This amount then increased to roughly10PBs of data in 2013. With data from at least ten new missions to be added to the ESDIS holdings by 2017, the current volume will continue to grow exponentially and drive the need to be able to analyze more data even faster. Though there are many highly efficient, off-the-shelf analytics tools available, these tools mainly cater towards business data, which is predominantly unstructured. Inadvertently, there are very few known analytics tools that interface well to archived Earth science data, which is predominantly heterogeneous and structured. This presentation will identify use cases for data analytics from an Earth science perspective in order to begin to identify

  13. Investigating the climate sensitivity of Stratospheric Injections of Large Amounts of S-bearing Gases.

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Hahmann, A. N.

    2001-12-01

    The Chicxulub impact structure (Yucatan, Mexico) was produced 65 Ma, in coincidence with the large Cretaceous-Tertiary mass extinctions. The presence of massive evaporitic (S-rich) deposits at the impact location suggests the possibility that a long-lasting strong and abrupt climate shift was generated by the release of large amounts of S-bearing gases in the upper stratosphere. This work is aimed at assessing the climate sensitivity of stratospheric sulfate aerosols produced by the reaction of impact-released S-bearing gases and water vapor. Although the effect is reminiscent of the climate change produced by large volcanic eruptions, the impact-related climate shift is bound to be much larger than any volcanic one because the amount of impact-produced S-bearinggases is orders of magnitude larger than any known volcanic eruption. This study is carried out with SCCM, the single column model ofthe National Center for Atmospheric Research (NCAR), modified to include a Sulfate Aerosol Model, which was developed specifically for this work. SCCM is equivalent to a grid column of the more complete NCAR's global climate model where the performance of the parameterized physics for the column is evaluated in isolation from the rest of the large-scale model. While lacking the more complete feedback mechanisms available to an atmospheric column imbedded in a global model, it provides an inexpensive first look at the response of the system to the forcing introduced by a particular parameterization. As expected, the presence of S-bearing gases and in particular of sulfate aerosols (strong LW absorbers) in the upper atmospheric layer of the model produces a significant change in the atmospheric radiation fluxes. This results in a strong heating of the stratosphere (due to the presence of gases and aerosols) accompanied by a strong cooling at the Earth's surface. Compared to a Pinatubo-type eruption, the model estimates that in the uppermost layer the temperature increases by (at

  14. Evaluation of Flush-Mounted, S-Duct Inlets With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) develop a new high Reynolds number, boundary-layer ingesting inlet test capability, 2) evaluate the performance of several boundary layer ingesting S-duct inlets, 3) provide a database for CFD tool validation, and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a fullscale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height and increasing inlet throat width) or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  15. Evaluation of Flush-Mounted, S-Duct Inlets with Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) provide a database for CFD tool validation on boundary layer ingesting inlets operating at realistic conditions and 2) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a full-scale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height) or ingesting a boundary layer with a distorted (adverse) profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  16. Deodorization with ku-ding-cha containing a large amount of caffeoyl quinic acid derivatives.

    PubMed

    Negishi, Osamu; Negishi, Yukiko; Yamaguchi, Fumiyoshi; Sugahara, Tatsuyuki

    2004-08-25

    Caffeoyl quinic acid (CQA) derivatives in ku-ding-cha, mate, coffee, and related plants were determined by HPLC. One ku-ding-cha contained a large amount of 3,5-dicaffeoylquinic acid (3,5-diCQA, 10.6% in dry weight) as well as 3-CQA (1.7%), 4-CQA (1.1%), 5-CQA (6.3%), 3,4-diCQA (1.8%), and 4,5-diCQA (4.3%). In this ku-ding-cha, the total caffeic acid moiety was 90.3 mmol/100 g of dry weight. The leaves of Ilex latifolia, which is one original species of ku-ding-cha, and another plant of the same genus, I. rotunda, also contained 3,5-diCQA (9.5 and 14.6%), 3-CQA (4.3 and 1.9%), and 5-CQA (4.8 and 3.8%), respectively, whereas raw coffee bean contained 5.5% 5-CQA and other low CQA derivatives. 3,5-DiCQA and 5-CQA with an apple acetone powder (AP) containing polyphenol oxidase showed high capturing activities toward thiols, and two addition compounds between 3,5-diCQA and methane thiol were also identified. Ku-ding-cha indicated extremely strong capturing activities toward methanethiol, propanethiol, and 2-propenethiol in the presence of apple AP. Furthermore, drinking ku-ding-cha reduced the amount of allyl methyl sulfide gas, well-known to persist as malodorous breath long after the ingestion of garlic.

  17. High-speed readout method of ID information on a large amount of electronic tags

    NASA Astrophysics Data System (ADS)

    Nagate, Wataru; Sasabe, Masahiro; Nakano, Hirotaka

    2006-10-01

    An electronic tag such as RFID is expected to create new services that cannot be achieved by the traditional bar code. Specifically, in a distribution system, simultaneous readout method of a large amount of electronic tags embedded in products is required to reduce costs and time. In this paper, we propose novel methods, called Response Probability Control (RPC), to accomplish this requirement. In RPC, a reader firstly sends an ID request to electronic tags in its access area. It succeeds reading information on a tag only if other tags do not respond. To improve the readout efficiency, the reader appropriately controls the response probability in accordance with the number of tags. However, this approach cannot entirely avoid a collision of multiple responses. When a collision occurs, ID information is lost. To reduce the amount of lost data, we divide the ID registration process into two steps. The reader first gathers the former part of the original ID, called temporal ID, according to the above method. After obtaining the temporal ID, it sequentially collects the latter part of ID, called remaining ID, based on the temporal ID. Note that we determine the number of bits of a temporal ID in accordance with the number of tags in the access area so that each tag can be distinguishable. Through simulation experiments, we evaluate RPC in terms of the readout efficiency. Simulation results show that RPC can accomplish the readout efficiency 1.17 times higher than the traditional method where there are a thousand of electronic tags whose IDs are 128 bits.

  18. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  19. How to extract clinically useful information from large amount of dialysis related stored data.

    PubMed

    Vito, Domenico; Casagrande, Giustina; Bianchi, Camilla; Costantino, Maria L

    2015-01-01

    The basic storage infrastructure used to gather data from the technological evolution also in the healthcare field was leading to the storing into public or private repository of even higher quantities of data related to patients and their pathological evolution. Big data techniques are spreading also in medical research. By these techniques is possible extract information from complex heterogeneous sources, realizing longitudinal studies focused to correlate the patient status with biometric parameters. In our work we develop a common data infrastructure involving 4 clinical dialysis centers between Lombardy and Switzerland. The common platform has been build to store large amount of clinical data related to 716 dialysis session of 70 patient. The platform is made up by a combination of a MySQL(®) database (Dialysis Database) and a MATLAB-based mining library (Dialysis MATlib). A statistical analysis of these data has been performed on the data gathered. These analyses led to the development of two clinical indexes, representing an example of transformation of big data into clinical information.

  20. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  1. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein.

    PubMed

    Wagner, Matthew S; McArthur, Sally L; Shen, Mingchao; Horbett, Thomas A; Castner, David G

    2002-01-01

    Characterization of biomaterial surfaces requires analytical techniques that are capable of detecting a wide concentration range of adsorbed protein. This range includes detection of low amounts of adsorbed protein (<10 ng/cm2) that may be present on non-fouling biomaterials. X-ray Photoelectron Spectroscopy (XPS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) are surface sensitive techniques capable of detecting adsorbed proteins. We have investigated the lower limits of detection of both XPS and ToF-SIMS on four model substrates each presenting unique challenges for analysis by XPS and ToF-SIMS: mica, poly(tetrafluoroethylene), allyl amine plasma polymer and heptyl amine plasma polymer. The detection limit for XPS ranged from 10 ng/cm2 of fibrinogen (on mica) to 200 ng/cm2 (on allyl amine plasma polymers). The detection limit for ToF-SIMS ranged from 0.1 ng/cm2 of fibrinogen to 100 ng/cm2, depending on the substrate and data analysis. Optimal conditions provided detection limits between 0.1 ng/cm2 and 15 ng/cm2 on all of the substrates used in this study. While both techniques were shown to be effective in detecting protein, the sensitivity of both XPS and ToF-SIMS was shown to be dependent on substrate surface chemistry and the organization of the adsorbed protein film. This study specifically highlights the applicability of ToF-SIMS in the characterization of low level protein adsorption.

  2. Adsorption of a therapeutic enzyme to self-assembled monolayers: effect of surface chemistry and solution pH on the amount and activity of adsorbed enzyme.

    PubMed

    Barrias, Cristina C; Martins, M A Cristina L; Sá Miranda, M A Clara; Barbosa, Mário A

    2005-05-01

    The adsorption of a therapeutic enzyme to self-assembled monolayers (SAMs) of different functionalities (X = CH(3)-, OH- and COOH-) was evaluated as a function of solution pH. Radiolabelling studies showed that the enzyme has higher affinity for hydrophobic surfaces than for hydrophilic surfaces, and that the highest adsorption was obtained at the more acidic pH values (4.5 and 5.5), despite the type of surface. IRAS and XPS measurements confirmed this tendency. Dye-binding studies and fluorescence quenching were used to investigate if a pH variation induces any conformational changes on the enzyme. Both methods suggest that lowering the pH from physiological to acidic values triggers an increased exposure of non-polar sites in the enzyme, which may modulate its adsorption behaviour to the more hydrophobic surfaces. At pH 4.5, the enzyme carries a substantial positive net charge and therefore relatively low native-state stability. As a consequence, surface binding may be favoured, irrespective of the type of surface, by providing increased conformational entropy to the enzyme. The specific activity (SA) of the adsorbed enzyme was strongly dependent on the conditions used. A decrease in SA (ca. 30% of control) was observed after adsorption on CH(3)-SAMs for all the pH tested. Adsorption on gold and on the more hydrophilic SAMs (OH- and COOH-) resulted in different degrees of inactivation at the more acidic pH (4.5), and in enzyme activation (up to ca. 230% of control) at higher pH (7-8), near the isoelectric point of the enzyme.

  3. Behavioral responses of cotton mice (Peromyscus gossypinus) to large amounts of coarse woody debris.

    SciTech Connect

    Hinkleman, Travis M.

    2004-08-01

    Hinkleman, Travis M. 2004. MS Thesis. Clemson University, Clemson, South Carolina. 62 pp. Coarse woody debris (CWD) is any log, snag, or downed branch >10 cm in diameter. As a major structural feature of forest ecosystems, CWD serves as an important habitat component for a variety of organisms. Rodents frequently use CWD for travel routes and daytime refugia. Although rodents are known to use CWD extensively and selectively, the use and selection of CWD by rodents may vary according to the abundance of CWD. The purpose of this project was to determine the effect of CWD abundance on the habitat use patterns of a common terrestrial rodent, the cotton mouse (Peromyscus gossypinus). I tracked cotton mice with fluorescent pigments and radiotelemetry in 6 plots, situated in loblolly pine (Pinus taeda) stands, with manipulated levels of woody debris. Treatment plots had 6x the amount of woody debris as control plots. I determined log use and movement patterns from the paths produced by powder-tracking, and I identified daytime refugia by radio-tracking. Travel along logs was almost exclusively associated with the surface of logs (91%). The proportion of a movement path associated with logs was not the best predictor of path complexity; rather, the sex of the individual was the only significant indicator of relative displacement (i.e., males moved farther from the point of release than females) and vegetation cover was the only significant predictor of mean turning angle (i.e., increasing vegetation cover yielded more convoluted paths). Mice used logs to a greater extent on treatment plots (23.7%) than mice on control plots (4.8%). Mice on treatment plots used logs with less decay, less ground contact, and more bark than logs used by mice on control plots. Differences in log use patterns were largely a result of the attributes of available logs, but mice used logs selectively on treatment plots. Refuges were highly associated with woody debris, including refuges in rotting

  4. Effect of large amounts of dihydroxyacetone in the diet of rats.

    NASA Technical Reports Server (NTRS)

    Shapira, J.

    1972-01-01

    Experiments in which dihydroxyacetone (DHA) was used as nutrient for growing rats have not fulfilled the expectation that DHA could be used as a significant portion of the diet. Any attempt to treat major cerebral damage by prolonged administration of DHA is strongly contraindicated. For this reason, regenerated formose mixtures containing appreciable amounts of DHA will not be suitable as a significant portion of the diet for the crews of long-duration space missions.

  5. Effect of large amounts of dihydroxyacetone in the diet of rats.

    NASA Technical Reports Server (NTRS)

    Shapira, J.

    1972-01-01

    Experiments in which dihydroxyacetone (DHA) was used as nutrient for growing rats have not fulfilled the expectation that DHA could be used as a significant portion of the diet. Any attempt to treat major cerebral damage by prolonged administration of DHA is strongly contraindicated. For this reason, regenerated formose mixtures containing appreciable amounts of DHA will not be suitable as a significant portion of the diet for the crews of long-duration space missions.

  6. The ATLAS Eventindex: an event catalogue for experiments collecting large amounts of data

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cranshaw, J.; Dimitrov, G.; Favareto, A.; Fernández Casaní, Á.; González de la Hoz, S.; Hřivnáč, J.; Malon, D.; Nowak, M.; Salt Cairols, J.; Sánchez, J.; Sorokoletov, R.; Zhang, Q.; Atlas Collaboration

    2014-06-01

    Modern scientific experiments collect vast amounts of data that must be catalogued to meet multiple use cases and search criteria. In particular, high-energy physics experiments currently in operation produce several billion events per year. A database with the references to the files including each event in every stage of processing is necessary in order to retrieve the selected events from data storage systems. The ATLAS EventIndex project is studying the best way to store the necessary information using modern data storage technologies (Hadoop, HBase etc.) that allow saving in memory key-value pairs and select the best tools to support this application from the point of view of performance, robustness and ease of use. This paper describes the initial design and performance tests and the project evolution towards deployment and operation during 2014.

  7. A Method to Study Response of Large Trees to Different Amounts of Available Soil Water

    Treesearch

    Donald H. Marx; Shi-jean S. Sung; James S. Cunningham; Michael D. Thompson; Linda M. White

    1995-01-01

    A method was developed to manipulate available soil water on large trees by intercepting thrufall with gutters placed under tree canopies and irrigating the intercepted thrufall onto other trees. With this design, trees were exposed for 2 years to either 25 percent less thrufall, normal tbrufall,or 25 percent additional thrufall. Undercanopy construction in these plots...

  8. A method to study response of large trees to different amounts of available soil water

    Treesearch

    D.H. Marx; Shi-Jean S. Sung; J.S. Cunningham; M.D. Thompson; L.M. White

    1995-01-01

    A method was developed to manipulate available soil water on large trees by intercepting thrufall with gutters placed under tree canopies and irrigating the intercepted thrufall onto other trees. With this design, trees were exposed for 2 years to either 25% less thrufall, normal thrufall, or 25% additional thrufall.Undercanopy construction in these plots moderately...

  9. The Dark-Purple Tea Cultivar 'Ziyan' Accumulates a Large Amount of Delphinidin-Related Anthocyanins.

    PubMed

    Lai, Yun-Song; Li, Sha; Tang, Qian; Li, Huan-Xiu; Chen, Shen-Xiang; Li, Pin-Wu; Xu, Jin-Yi; Xu, Yan; Guo, Xiang

    2016-04-06

    Recently, we developed a novel tea cultivar 'Ziyan' with distinct purple leaves. There was a significant correlation between leaf color and anthocyanin pigment content in the leaves. A distinct allocation of metabolic flow for B-ring trihydroxylated anthocyanins and catechins in 'Ziyan' was observed. Delphinidin, cyanidin, and pelargonidin (88.15 mg/100 g FW in total) but no other anthocyanin pigments were detected in 'Ziyan', and delphinidin (70.76 mg/100 g FW) was particularly predominant. An analysis of the catechin content in 'Ziyan' and eight other cultivars indicated that 'Ziyan' exhibits a preference for synthesizing B-ring trihydroxylated catechins (with a proportion of 74%). The full-length cDNA sequences of flavonoid pathway genes were isolated by RNA-Seq coupled with conventional TA cloning, and their expression patterns were characterized. Purple-leaved cultivars had lower amounts of total catechins, polyphenols, and water extract than ordinary non-anthocyanin cultivars but similar levels of caffeine. Because dark-purple-leaved Camellia species are rare in nature, this study provides new insights into the interplay between the accumulations of anthocyanins and other bioactive components in tea leaves.

  10. 26 CFR 301.6867-1 - Presumptions where owner of large amount of cash is not identified.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cash is not identified. 301.6867-1 Section 301.6867-1 Internal Revenue INTERNAL REVENUE SERVICE..., Bankruptcy, and Receiverships Jeopardy § 301.6867-1 Presumptions where owner of large amount of cash is not... 6861 (relating to jeopardy assessments), if cash in excess of $10,000 is found in the...

  11. Tuberculosis management continues to utilize a large amount of hospital resources in the United States.

    PubMed

    Allareddy, Veerasathpurush; Rampa, Sankeerth; Allareddy, Veerajalandhar; Nalliah, Romesh P

    2017-01-01

    The objective of this study is to examine longitudinal trends in hospital admissions attributed to tuberculosis and resulting hospitalization outcomes in the United States for the years 2000-2010. We used the Nationwide Inpatient Sample, which is the largest all-payer and nationally representative in-hospital dataset in the United States. All hospitalizations that had a primary diagnosis for tuberculosis were selected for analysis. Patient characteristics and outcomes including discharge status following hospitalization, length of stay in hospital and hospitalization charges were examined. During the study period, a total of 96 431 hospitalizations occurred due to tuberculosis. The mean age of hospitalizations was 48.6 years. Males comprised 64.2% of all hospitalizations; 24.8% were Whites, 25.5% Blacks, 26.5% Hispanics, 14.3% Asians/Pacific Islanders, 1% Native Americans, and 7.9% other/mixed races. Following hospitalization, 72.1% were discharged routinely, 3.4% were transferred to another acute-care hospital, 10.7% to long-term care facilities including skilled nursing facilities, 7.6% to home health care, and 2.1% were discharged against medical advice. There were 3815 patients who died (4% of hospitalizations). The total hospitalization charge for this cohort of patients admitted due to tuberculosis across the United States was $6.96 billion and the total hospitalization days over study period was 1 419 605 days. High-risk cohorts who are likely to be hospitalized due to tuberculosis included Blacks and Hispanics. Majority of hospitalization comprised of males. Even though the annual number of hospitalizations reduced over the study period, substantial amounts of resources are used in hospital settings to manage tuberculosis. © 2015 John Wiley & Sons Ltd.

  12. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall.

    PubMed

    Lekshmy, P R; Midhun, M; Ramesh, R; Jani, R A

    2014-07-11

    Oxygen isotopic variations in rainfall proxies such as tree rings and cave calcites from South and East Asia have been used to reconstruct past monsoon variability, mainly through the amount effect: the observed (18)O depletion of rain with increasing amount, manifested as a negative correlation of the monthly amount of tropical rain with its δ(18)O, both measured at the same station. This relation exhibits a significant spatial variability, and at some sites (especially North-East and peninsular India), the rainfall proxies are not interpretable by this effect. We show here that relatively higher (18)O-depletion in monsoon rain is not related necessarily to its amount, but rather, to large scale organized convection. Presenting δ(18)O analyses of ~654 samples of daily rain collected during summer 2012 across 9 stations in Kerala, southern India, we demonstrate that although the cross correlations between the amounts of rainfall in different stations is insignificant, the δ(18)O values of rain exhibit highly coherent variations (significant at P = 0.05). Significantly more (18)O-depletion in the rain is caused by clouds only during events with a large spatial extent of clouds observable over in the south eastern Arabian Sea.

  13. Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire.

    PubMed

    Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard

    2017-03-07

    Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R(2) = 0.94, p < 0.001). Our data clearly show that northern boreal forest soils have a strong sink capacity for Hg, and indicate that the sequestered Hg is bound in soil organic matter pools accumulating over millennia. Our results also suggest that more than half of the Hg stock in the sites with the longest time since fire originates from deposition predating the onset of large-scale anthropogenic emissions. This study emphasizes the importance of boreal forest humus soils for Hg storage and reveals that this pool is likely to persist over millennial time scales in the prolonged absence of fire.

  14. Extensive Recombination Due to Heteroduplexes Generates Large Amounts of Artificial Gene Fragments during PCR

    PubMed Central

    Liu, Jia; Song, Hongshuo; Liu, Donglai; Zuo, Tao; Lu, Fengmin; Zhuang, Hui; Gao, Feng

    2014-01-01

    Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS) assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 1013–1014 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template) were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations. PMID:25211143

  15. A MBD-seq protocol for large-scale methylome-wide studies with (very) low amounts of DNA.

    PubMed

    Aberg, Karolina A; Chan, Robin F; Shabalin, Andrey A; Zhao, Min; Turecki, Gustavo; Heine Staunstrup, Nicklas; Starnawska, Anna; Mors, Ole; Xie, Lin Y; van den Oord, Edwin J C G

    2017-07-13

    We recently showed that, after optimization, our methyl-CpG binding domain sequencing (MBD-seq) application approximates the methylome-wide coverage obtained with whole-genome bisulfite sequencing (WGB-seq), but at a cost that enables adequately powered large-scale association studies. A prior drawback of MBD-seq is the relatively large amount of genomic DNA (ideally >1 μg) required to obtain high-quality data. Biomaterials are typically expensive to collect, provide a finite amount of DNA, and may simply not yield sufficient starting material. The ability to use low amounts of DNA will increase the breadth and number of studies that can be conducted. Therefore, we further optimized the enrichment step. With this low starting material protocol, MBD-seq performed equally well, or better, than the protocol requiring ample starting material (>1 μg). Using only 15 ng of DNA as input, there is minimal loss in data quality, achieving 93% of the coverage of WGB-seq (with standard amounts of input DNA) at similar false/positive rates. Furthermore, across a large number of genomic features, the MBD-seq methylation profiles closely tracked those observed for WGB-seq with even slightly larger effect sizes. This suggests that MBD-seq provides similar information about the methylome and classifies methylation status somewhat more accurately. Performance decreases with <15 ng DNA as starting material but, even with as little as 5 ng, MBD-seq still achieves 90% of the coverage of WGB-seq with comparable genome-wide methylation profiles. Thus, the proposed protocol is an attractive option for adequately powered and cost-effective methylome-wide investigations using (very) low amounts of DNA.

  16. Ultrathin calcium silicate hydrate nanosheets with large specific surface areas: synthesis, crystallization, layered self-assembly and applications as excellent adsorbents for drug, protein, and metal ions.

    PubMed

    Wu, Jin; Zhu, Ying-Jie; Chen, Feng

    2013-09-09

    A simple and low-cost solution synthesis is reported for low-crystalline 1.4 nm tobermorite-like calcium silicate hydrate (CSH) ultrathin nanosheets with a thickness of ~2.8 nm and with a large specific surface area (SSA), via a reaction-rate-controlled precipitation process. The BET SSA of the CSH ultrathin nanosheets can reach as high as 505 m(2) g(-1) . The CSH ultrathin nanosheets have little cytotoxicity and can be converted to anhydrous calcium silicate (ACS) ultrathin nanosheets with a well preserved morphology via a heat treatment process. The crystallinity of CSH ultrathin nanosheets can be improved by solvothermal treatment in water/ethanol binary solvents or a single solvent of water, producing well-crystalline 1.1 nm tobermorite-like CSH nanobelts or nanosheets. CSH ultrathin nanosheets acting as building blocks can self-assemble into layered nanostructures via three different routes. The CSH ultrathin nanosheets are investigated as promising adsorbents for protein (hemoglobin, Hb), drug (ibuprofen, IBU), and metal ions (Cr(3+) , Ni(2+) , Cu(2+) , Zn(2+) , Cd(2+) , Pb(2+) ). The highest adsorbed percentages of Hb and IBU are found to be 83% and 94%, respectively. The highest adsorption capacities of Hb and IBU are found to be as high as 878 milligram Hb per gram CSH and 2.2 gram IBU per gram CSH, respectively. The ppm level metal ions can be totally adsorbed from aqueous solution in just a few minutes. Thus, the CSH ultrathin nanosheets are a promising candidate as excellent adsorbents in the biomedical field and for waste water treatment. Several empirical laws are summarized based on the adsorption profiles of Hb and IBU using CSH ultrathin nanosheets as the adsorbent. Furthermore, the ACS ultrathin nanosheets as adsorbents for Hb protein and IBU drug are investigated.

  17. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    PubMed

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2017-08-28

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  18. Antibody recognition of the glycoprotein g of viral haemorrhagic septicemia virus (VHSV) purified in large amounts from insect larvae

    PubMed Central

    2011-01-01

    Background There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Findings Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Conclusions Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies. PMID:21693048

  19. Discovering meaningful information from large amounts of environment and health data to reduce uncertainties in formulating environmental policies.

    PubMed

    Lee, I-Nong; Chang, Wen-Chung; Hong, Yu-Jue; Liao, Shang-Chih

    2006-12-01

    This study uses knowledge discovery concepts to analyze large amounts of data step by step for the purpose of assisting in the formulation of environmental policy. We performed data cleansing and extracting from existing nation-wide databases, and used regression and classification techniques to analyze the data. The current water hardness in Kaohsiung, Taiwan contributes to the prevention of cardiovascular disease (CVD) but exacerbates the development of renal stones (RS). However, to focus on water hardness alone to control RS would not be cost effective at all, because the existing database parameters do not adequately allow for a clear understanding of RS. Analysis of huge amounts of data can most often turn up the most reliable and convincing results and the use of existing databases can be cost-effective.

  20. The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros.

    PubMed

    Lord, Dominique; Geedipally, Srinivas Reddy

    2011-09-01

    The modeling of crash count data is a very important topic in highway safety. As documented in the literature, given the characteristics associated with crash data, transportation safety analysts have proposed a significant number of analysis tools, statistical methods and models for analyzing such data. Among the data issues, we find the one related to crash data which have a large amount of zeros and a long or heavy tail. It has been found that using this kind of dataset could lead to erroneous results or conclusions if the wrong statistical tools or methods are used. Thus, the purpose of this paper is to introduce a new distribution, known as the negative binomial-Lindley (NB-L), which has very recently been introduced for analyzing data characterized by a large number of zeros. The NB-L offers the advantage of being able to handle this kind of datasets, while still maintaining similar characteristics as the traditional negative binomial (NB). In other words, the NB-L is a two-parameter distribution and the long-term mean is never equal to zero. To examine this distribution, simulated and observed data were used. The results show that the NB-L can provide a better statistical fit than the traditional NB for datasets that contain a large amount of zeros.

  1. Evaluation of different adsorbents for large-volume pre-concentration for analyzing atmospheric persistent organic pollutants at trace levels.

    PubMed

    Avino, Pasquale; Cinelli, Giuseppe; Notardonato, Ivan; Russo, Mario Vincenzo

    2011-07-01

    This paper investigates the performance of some adsorbents, Carbopack B, Tenax-GC, and XAD-2, in a SPE and GC analytical method for sampling and determining some persistent organic pollutants such as benzene, toluene, o-, m-, and p-xylenes, naphthalene, anthracene, fluorene, fluoranthene, benzo(i,k)fluorene, pyrene and benzo(a)pyrene, aldrin, dieldrin, endrin, endosulfan, and PCB congeners (nos. 1, 15, 44, 77, and 209). Adsorbents evaluated in this study are Carbopack B, Tenax-GC, and XAD-2. Before applying the analytical method to air samples, it was widely investigated in laboratory: the sampler is constituted by a glass pyrex vial home-filled with 300 mg (sampling section) and 50 mg of adsorbent material (backup section). The re-extraction is performed by CS(2) (1-2 mL) and analysis is performed by GC-FID and GC-ECD. The evaluation of breakthrough volumes and desorption efficiencies shows the XAD-2 performance in the enrichment of different organic species present in atmosphere at trace levels (ppt) to be more advantageous than the other two materials in terms of analytical and technical parameters. One of the advantages is the high volume of sampled air with high concentration factor and limited loss of analytes (breakthrough volumes are higher than 5,000 L g(-1) for high-boiling compounds and higher than 400 L g(-1) for low-boiling solutes). Another advantage is the possibility of easy and speed re-extraction of analytes using small volumes of solvent (a few milliliters). The recoveries are about 100% with a RSD ≤ 2.3 for low-boiling compounds, and between 77% and 109% with a RSD ≤ 5.7% for high-boiling species. The XAD-2 adsorbent was applied to real air samples collected in different polluted areas (urban, industrial, rural, and remote locations) demonstrating the wide application of such methodology in various environmental situation.

  2. Multiple small versus few large amount aspirations for bone marrow harvesting in autologous and allogeneic bone marrow transplantation.

    PubMed

    Witt, Volker; Pichler, Herbert; Fritsch, Gerhard; Peters, Christina

    2016-10-01

    For successful bone marrow transplantation it is necessary to obtain enough progenitor cells during the bone marrow (BM) harvesting procedure. Most centers are using multiple aspirations of maximum 2 ml BM (A), while other centers are using few larger amount aspirations for BM harvesting (B). There is still a discussion about possible differences in graft composition between A and B. To evaluate the feasibility in children we evaluated twenty BM harvestings that were performed in 18 donors, 7 autologous (median age 6.93y; 2.48-16.6) and 13 allogeneic donors (median age 19.75y; 6.45-50.7). A and B were performed crosswise by 2 operators starting with A (2 ml) or B (100 ml) changing to B or A, collecting identically amounts with both methods. We found no statistically significant difference between A and B for MNC, T-cells, and CFU (MNC/ml 824572 versus 725000, p = 0.728; MNC/kg 3.1 10(7) versus 2.9 10(7), p = 0.296; CD3/ml 162500 versus 300000, p = 0.310; CFU/10(5) MNC 1678 versus 1315, p = 0.094), but for CD34+ cells (CD34/kg 2.62 versus 2.09, p = 0.045). BM harvest by the large amount few punctures method (B) is as sufficient as the commonly used small amount frequent punctures method (A), and could be therefore used equally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  4. Hot Deformation Mechanisms of an As-Extruded TiAl Alloy with Large Amount of Remnant Lamellae

    NASA Astrophysics Data System (ADS)

    Liu, Hongwu; Rong, Rong; Gao, Fan; Liu, Yanguo; Li, Zhenxi; Wang, Qingfeng

    2017-07-01

    The hot deformation mechanisms of an as-extruded Ti-44Al-5V-1Cr alloy with a large amount of remnant lamellae were investigated by hot compression tests at temperatures of 900-1250 °C and strain rates of 0.001-1 s-1. The hot processing map of the as-extruded Ti-44Al-5V-1Cr alloy was developed on the basis of dynamic materials modeling and the Prasad criteria. There were four different domains in the hot processing map, according to the efficiency of power dissipation, η. The flow soft and hot deformation mechanisms for different domains were illustrated in the context of microstructural evolution during the process of deformation. As a result, the dynamic recrystallization and superplastic deformation occurred at 1125-1150 °C near 0.001 s-1, and this region is suitable for superplastic forming. The α phase dynamic recrystallization and dynamic recovery occurred at 1250 °C and 0.1 s-1. The existence of small amount of the γ and β phases effectively inhibited the growth of α grains.

  5. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    SciTech Connect

    Parsons, B.; Ela, E.; Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J.; Estanqueiro, A.; Gomez, E.; Smith, J. C.

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  6. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems, Results of IEA Collaboration

    SciTech Connect

    Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J. O.; Estanqueiro, A.; Gomez, E.; Smith, J. C.; Ela, E.

    2008-01-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R and D Task 25 on 'Design and Operation of Power Systems with Large Amounts of Wind Power' produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  7. Precisions Measurement for the Grasp of Welding Deformation amount of Time Series for Large-Scale Industrial Products

    NASA Astrophysics Data System (ADS)

    Abe, R.; Hamada, K.; Hirata, N.; Tamura, R.; Nishi, N.

    2015-05-01

    As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.

  8. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Large-scale structures in tetrahydrofuran-water mixture with a trace amount of antioxidant butylhydroxytoluene (BHT).

    PubMed

    Li, Zhiyong; Cheng, He; Li, Junyu; Hao, Jinkun; Zhang, Li; Hammouda, Boualem; Han, Charles C

    2011-06-23

    Author: Because of the closed-loop phase diagram of tetrahydrofuran (THF)-water mixture, THF aqueous solution naturally exhibits concentration fluctuations near the phase boundary. Besides the fast mode induced by concentration fluctuations, the 4.5% mole fraction THF aqueous solution is also characterized by a slow mode. The existence of a trace amount of butylhydroxytoluene (BHT) antioxidant in commercial THF strongly influences the slow mode in 4.5% mole fraction THF aqueous solution. A core-shell structure with a BHT core and a shell made from THF-rich THF-D(2)O mixture was identified by the combination of dynamic laser light scattering (DLS) and small-angle neutron scattering (SANS). BHT is hydrophobic, stabilized by a THF-rich domain in THF aqueous solution and acts as a tracer to make the large-scale structure (slow mode) "visible" through SANS because of its larger contrast with the solvent. In contrast, this large-scale structure was almost not detectable by SANS when BHT was removed from the THF-D(2)O mixture. Combined UV-vis, DLS, and static light scattering (SLS) indicated that slow-moving objects do exist and that their sizes almost do not change, but their concentration decreases to a small but nonzero value at the infinite dilution limit. The origin of the elusive large-scale structure at zero BHT concentration is still not clear, but it might be associated with some hydrophobic impurities or nanobubbles. However, a polydisperse sphere model of ∼8.5% mole fraction THF-D(2)O mixture can fit the structure with a radius of ∼100 nm, which gives the temperature-dependent low-q SANS profiles of 4.5% mole fraction THF aqueous solution at zero BHT concentration.

  10. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies.

    PubMed

    Taberlet, Pierre; Prud'Homme, Sophie M; Campione, Etienne; Roy, Julien; Miquel, Christian; Shehzad, Wasim; Gielly, Ludovic; Rioux, Delphine; Choler, Philippe; Clément, Jean-Christophe; Melodelima, Christelle; Pompanon, François; Coissac, Eric

    2012-04-01

    DNA metabarcoding refers to the DNA-based identification of multiple species from a single complex and degraded environmental sample. We developed new sampling and extraction protocols suitable for DNA metabarcoding analyses targeting soil extracellular DNA. The proposed sampling protocol has been designed to reduce, as much as possible, the influence of local heterogeneity by processing a large amount of soil resulting from the mixing of many different cores. The DNA extraction is based on the use of saturated phosphate buffer. The sampling and extraction protocols were validated first by analysing plant DNA from a set of 12 plots corresponding to four plant communities in alpine meadows, and, second, by conducting pilot experiments on fungi and earthworms. The results of the validation experiments clearly demonstrated that sound biological information can be retrieved when following these sampling and extraction procedures. Such a protocol can be implemented at any time of the year without any preliminary knowledge of specific types of organisms during the sampling. It offers the opportunity to analyse all groups of organisms using a single sampling/extraction procedure and opens the possibility to fully standardize biodiversity surveys.

  11. Transferring the exudate in the tissue engineering chamber as a trigger to incubate large amount adipose tissue in remote area.

    PubMed

    Lei, Chen; Dong, Ziqing; Wan, Jinlin; Xiao, Xiaolian; Lu, Feng; Wang, Biao

    2017-10-03

    Tissue engineering chamber (TEC) is a technique that could incubate up to 16 folds volume increase of a fat flap. But the mechanism in the silicone chamber was still unknown. The function of exudate in the chamber was noticed recently. We developed a special model called fluid drainage model (FDM) that consisted of a traditional TEC on the back and paired fat flaps without a chamber in the groins. Then we used a silicon tube to dynamically transfer the exudate from dorsal TEC to one of the paired inguinal fat flap while the other inguinal fat flap with a sham tube was set as control. At week 4, the volume of drainage group reached 8.7 ± 2.3 ml, 576±152% to its original volume while the growth ratio of control group was only 130±39%. Similar volume change and histological change were observed within fat flap from TEC model and drainage group. The exudate in the TEC is a heterogeneous cocktail contains cytokines as well as cells. Intriguingly, transferred exudate in the TEC model sustain the ability to incubate large amount of adipose tissue remotely. This article is protected by copyright. All rights reserved.

  12. The detection of large amounts of cool, x ray absorbing gas in distant clusters of galaxies. What does this mean?

    NASA Technical Reports Server (NTRS)

    Wang, Qingde; Stocke, John T.

    1993-01-01

    We present an x-ray spectral study of 12 distant (z = 0.17-0.54) rich clusters of galaxies observed with the Einstein Observatory Imaging Proportional Counter. These x-ray spectral data show evidence for substantial excess absorptions beyond those expected in the galaxy, indicating the presence of large amounts of x-ray absorbing cool gas in these distant clusters. The mean value of the excess absorptions corresponds to an absorbing gas column density approximately greater than 10(exp 21)/sq cm. We calculate the x-ray luminosities of the clusters with observed fluxes only in the 0.8-3.5 keV band where the fluxes are less effected by the absorptions, and use the temperature-to-luminosity correlation (known only for nearby clusters) to estimate the temperatures of the hot intracluster medium (ICM) in the distant clusters. These temperature estimates, together with the spectral fits, provide further constraints on the column densities in the individual clusters. For the cluster CL 0016+16, the lower limit on the column density is found to be 8 x 10(exp 20)/sq cm at the 99 percent confidence limit. We also show that the ratio of the temperature obtained from the spectral fit to the temperature expected from the correlation tends to decrease with increasing look-back time, indicating possible temperature evolution of the hot ICM in the recent past. The inclusion of this evolutionary effect further increases the absorptions required in fitting the spectra.

  13. High Reynolds Number Investigation of a Flush-Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.

  14. High Reynolds Number Investigation of a Flush Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.This CD-ROM supplement contains inlet data including: Boundary layer data, Duct static pressure data, performance-AIP (fan face) data, Photos, Tunnel wall P-PTO data and definitions.

  15. Design and Operation of Power Systems with Large Amounts of Wind Power, First Results of IEA Collaboration

    SciTech Connect

    Holttinen, H.; Meibom, P.; Orths, A.; Van Hulle, F.; Ensslin, C.; Hofmann, L.; McCann, J.; Pierik, J.; Tande, J. O.; Estanqueiro, A.; Soder, L.; Strbac, G.; Parsons, B.; Smith, J. C.; Lemstrom, B.

    2006-01-01

    An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task 'Design and Operation of Power Systems with Large Amounts of Wind Power' will analyse existing case studies from different power systems. There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. This paper summarizes the results from 10 countries and outlines the studies made at European Wind Energy Association and the European system operators UCTE and ETSO. A more in-depth review of the studies is needed to draw conclusions on the range of integration costs for wind power. A state-of-the art review process of the new IEA collaboration will seek reasons behind the wide range of results for costs of wind integration - definitions for wind penetration, reserves and costs; different power system and load characteristics and operational rules; underlying assumptions on variability and uncertainty of wind, etc.

  16. Effects of interactive transport and scavenging of smoke on the calculated temperature change resulting from large amounts of smoke

    SciTech Connect

    MacCracken, M.C.; Walton, J.J.

    1984-12-01

    Several theoretical studies with numerical models have shown that substantial land-surface cooling can occur if very large amounts (approx. 100 x 10/sup 12/ = 100 Tg) of highly absorbing sooty-particles are injected high into the troposphere and spread instantaneously around the hemisphere (Turco et al., 1983; Covey et al. 1984; MacCracken, 1983). A preliminary step beyond these initial calculations has been made by interactively coupling the two-layer, three-dimensional Oregon State University general circulation model (GCM) to the three-dimensional GRANTOUR trace species model developed at the Lawrence Livermore National Laboratory. The GCM simulation includes treatment of tropospheric dynamics and thermodynamics and the effect of soot on solar radiation. The GRANTOUR simulation includes treatment of particle transport and scavenging by precipitation, although no satisfactory verification of the scavenging algorithm has yet been possible. We have considered the climatic effects of 150 Tg (i.e., the 100 Mt urban war scenario from Turco et al., 1983) and of 15 Tg of smoke from urban fires over North America and Eurasia. Starting with a perpetual July atmospheric situation, calculation of the climatic effects as 150 Tg of smoke are spread slowly by the winds, rather than instantaneously dispersed as in previous calculations, leads to some regions of greater cooling under the denser parts of the smoke plumes and some regions of less severe cooling where smoke arrival is delayed. As for the previous calculations, mid-latitude decreases of land surface air temperature for the 150 Tg injection are greater than 15/sup 0/C after a few weeks. For a 15 Tg injection, however, cooling of more than several degrees centigrade only occurs in limited regions under the dense smoke plumes present in the first few weeks after the injection. 10 references, 9 figures.

  17. Enhanced membrane filtration of wood hydrolysates for hemicelluloses recovery by pretreatment with polymeric adsorbents.

    PubMed

    Koivula, Elsi; Kallioinen, Mari; Sainio, Tuomo; Antón, Enrique; Luque, Susana; Mänttäri, Mika

    2013-09-01

    In this study adsorption of foulants from birch and pine/eucalyptus wood hydrolysates on two polymeric adsorbents was studied aiming to reduce the membrane fouling. The effect of the pretreatment of hydrolysate on polyethersulphone membrane performance was studied in dead-end filtration experiments. Adsorption pretreatment improved significantly filtration capacity and decreased membrane fouling. Especially high-molecular weight lignin was efficiently removed. A multistep adsorption pretreatment was found to reduce the amount of adsorbent required. While large adsorbent amount was shown to increase flux in filtration, it was found also to cause significant hemicellulose losses.

  18. Pharmacodynamics of FUT-175 anticoagulant in adsorbent plasma perfusion.

    PubMed

    Yamazaki, Z; Hiraishi, M; Kanai, F; Takahama, T; Idezuki, Y; Inoue, N

    1989-01-01

    FUT, a new synthetic protease inhibitor, has been used recently in hemodialysis as an anticoagulant in patients with bleeding tendencies. As some new adsorbents require alternatives to heparin because of their strong adsorbing capacity for heparin, plasma perfusion with FUT anticoagulation was pharmacodynamically investigated. Blood was pumped from a dog (QB = 50-70 ml/min) into a plasma separator. The separated plasma (QP = 10-20 ml/min) passed through an adsorbent column and was reinfused into the blood that had passed through the plasma separator. FUT was continuously infused, at a flow rate of 50 mg/hr, into the blood as it left the dog and entered the extracorporeal circuit. Blood and plasma samples were taken as it exited the dog (S1), before and after the adsorbent column (S2, S3), and before reinfusion into the dog (S4). Except for that done with a charcoal-column, adsorbent plasma perfusion went well and the dog tolerated the procedure. FUT levels in S2, S3, and S4 provided anticoagulation. However, as the FUT levels in S1 remained negligible, the dog's coagulation time was within normal limits. In conclusion, FUT was pharmacodynamically proven to be a safe and reasonable anticoagulant for adsorbents that adsorb large amounts of heparin and for patients with bleeding tendencies.

  19. Fly ash as an adsorbent for wastewater treatment

    SciTech Connect

    Shao, J.; Wang, Z.; Shao, X.; Li, H.

    1997-12-31

    Fly ash is a kind of finely divided residue that results from the combustion of ground or powdered coal in power stations. The production of large amount of fly ash causes serious environmental problems. The grain size of fly ash is very small. Fly ash has high specific surface and high porosity. The contents of active components, active silicon and aluminum, are high too. So, fly ash has high adsorptivity. Wastewater contains amounts of inorganic and organic materials that pollute the environments. Normal adsorbent, such as activated carbon, has a high cost and a complex production technique. Fly ash can adsorb many materials in wastewater and it can partly substitute for activated carbon. When fly ash is used in wastewater treatment, it can bring about economic and social benefits. As a kind of adsorbent, fly ash has good results for decolorization, deodorization, organic matter removal, COD removal, defluorization, dephosporization, heavy metal removal, and pH modification in wastewater treatment processes.

  20. SN 2010mb: Direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material

    SciTech Connect

    Ben-Ami, Sagi; Gal-Yam, Avishay; Rabinak, Itay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Mazzali, Paolo A.; Gnat, Orly; Modjaz, Maryam; Sullivan, Mark; Bildsten, Lars; Poznanski, Dovi; Bloom, Joshua S.; Nugent, Peter E.; Horesh, Assaf; Kulkarni, Shrinivas R.; Perley, Daniel; Kasliwal, Mansi M.; Quimby, Robert; Xu, Dong

    2014-04-10

    We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (∼600 days) that cannot be powered by {sup 56}Ni/{sup 56}Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (∼10{sup 9} cm{sup –3}). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ∼3 M {sub ☉}. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature.

  1. High-cylinder acrylic toric intraocular lenses: a case series of eyes with cataracts and large amounts of corneal astigmatism.

    PubMed

    Cervantes-Coste, Guadalupe; Garcia-Ramirez, Laura; Mendoza-Schuster, Erick; Velasco-Barona, Cecilio

    2012-04-01

    To examine the stability and efficacy of high-cylinder power AcrySof toric intraocular lenses (IOLs), models SN60T6, SN60T7, SN60T8, and SN60T9 (Alcon Laboratories Inc). Eligible eyes had cataract and symmetric corneal astigmatism > 2.25 diopters (D). Outcomes included monocular uncorrected distance visual acuity (UDVA), manifest refraction, and assessment of IOL axis. Nineteen eyes from 14 patients had preoperative corneal astigmatism of 4.00 ± 1.10 D. Postoperatively, residual refractive cylinder was 0.55 ± 0.60 D at 3 months. Uncorrected distance visual acuity was 1.3 ± 0.5 logMAR preoperatively and improved to 0.11 ± 0.09 logMAR 3 months postoperatively (P<.0001). All IOLs were stable within 5°. The IOLs were stable and effective in correcting high amounts of preexisting astigmatism at the time of cataract surgery. Copyright 2012, SLACK Incorporated.

  2. Increased mortality of respiratory diseases, including lung cancer, in the area with large amount of ashfall from Mount Sakurajima volcano.

    PubMed

    Higuchi, Kenta; Koriyama, Chihaya; Akiba, Suminori

    2012-01-01

    Mount Sakurajima in Japan is one of the most active volcanoes in the world. This work was conducted to examine the effect of volcanic ash on the chronic respiratory disease mortality in the vicinity of Mt. Sakurajima. The present work examined the standardized mortality ratios (SMRs) of respiratory diseases during the period 1968-2002 in Sakurajima town and Tarumizu city, where ashfall from the volcano recorded more than 10.000 g/m2/yr on average in the 1980s. The SMR of lung cancer in the Sakurajima-Tarumizu area was 1.61 (95% CI=1.44-1.78) for men and 1.67 (95% CI=1.39-1.95) for women while it was nearly equal to one in Kanoya city, which neighbors Tarumizu city but located at the further position from Mt. Sakurajima, and therefore has much smaller amounts of ashfall. Sakurajima-Tarumizu area had elevated SMRs for COPDs and acute respiratory diseases while Kanoya did not. Cristobalite is the most likely cause of the increased deaths from those chronic respiratory diseases since smoking is unlikely to explain the increased mortality of respiratory diseases among women since the proportion of smokers in Japanese women is less than 20%, and SPM levels in the Sakurajima-Tarumizu area were not high. Further studies seem warranted.

  3. Large amounts of marine debris found in sperm whales stranded along the North Sea coast in early 2016.

    PubMed

    Unger, Bianca; Rebolledo, Elisa L Bravo; Deaville, Rob; Gröne, Andrea; IJsseldijk, Lonneke L; Leopold, Mardik F; Siebert, Ursula; Spitz, Jérôme; Wohlsein, Peter; Herr, Helena

    2016-11-15

    30 sperm whales (Physeter macrocephalus) stranded along the coasts of the North Sea between January and February 2016. The gastro-intestinal tracts of 22 of the carcasses were investigated. Marine debris including netting, ropes, foils, packaging material and a part of a car were found in nine of the 22 individuals. Here we provide details about the findings and consequences for the animals. While none of the items was responsible for the death of the animal, the findings demonstrate the high level of exposure to marine debris and associated risks for large predators, such as the sperm whale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Isolation and characterization of purple non-sulfur bacteria, Afifella marina, producing large amount of carotenoids from mangrove microhabitats.

    PubMed

    Kar Soon, Tan; Al-Azad, Sujjat; Ransangan, Julian

    2014-08-01

    This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at 30 ± 2°C. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight (4.32± 0.03 g/l) as well as total carotenoids (0.783 ± 0.002 mg/g dry cell weight). These values were significantly higher than those for dry cell weight (3.77 ± 0.02g/l ) and total carotenoid content (0.706 ± 0.008 mg/g) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.

  5. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  6. Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data.

    PubMed

    Gottschling, Marc; Soehner, Sylvia; Zinssmeister, Carmen; John, Uwe; Plötner, Jörg; Schweikert, Michael; Aligizaki, Katerina; Elbrächter, Malte

    2012-01-01

    The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage apparently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae. Phylogenetic analyses were performed using Maximum Likelihood and Bayesian approaches. The Thoracosphaeraceae were monophyletic, but included also a number of non-calcareous dinophytes (such as Pentapharsodinium and Pfiesteria) and even parasites (such as Duboscquodinium and Tintinnophagus). Bysmatrum had an isolated and uncertain phylogenetic position outside the Thoracosphaeraceae. The phylogenetic relationships among calcareous dinophytes appear complex, and the assumption of the single origin of the potential to produce calcareous structures is challenged. The application of concatenated ribosomal RNA sequence data may prove promising for phylogenetic reconstructions of the Dinophyceae in future. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Monitoring feed amounts in goliath groupers (Epinephelus itajara) using behavioral conditioning in a large mixed species exhibit.

    PubMed

    Kittell, Michele M; Ratte, Magan E

    2008-09-01

    Goliath groupers (Epinephelus itajara) are large charismatic species, which are often residents in public aquaria. This study reports a novel approach to feeding techniques for three resident goliath groupers. Because of the size and depth of their exhibit, the groupers were conditioned to hand feed from aquarists. Daily food logs were recorded including the type and number of species, how often the groupers were fed, and how often they accepted the offered food. Mackerel, herring, and sardine represented the highest percentage of the diet, whereas capelin, squid, and shrimp were the lowest percentage. Over a one-year period, records showed that grouper 1 and grouper 3 ate fairly consistently throughout the year. Grouper 2 had a higher degree of variation in his monthly feeding average with a decrease from May to September and an increase through April. Grouper 1 and grouper 3 took food from the aquarists most consistently with a monthly average of 88.8+/-10.8 and 89.7+/-6.15% of the time, respectively. Grouper 2 was not as consistent, hand feeding at only 74.5+/-16.2% of the time offered. Diet management and behavioral conditioning with the goliath groupers have established consistent husbandry records and therefore better monitoring of the individual fish's long-term health status. Zoo Biol 27:414-419, 2008. (c) 2008 Wiley-Liss, Inc.

  8. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  9. [A case of acute ethanol intoxication with remarkable hyperglycemia by "ume-shu", a Japanese apricot liquor made with a large amount of sugar].

    PubMed

    Sugano, Takayuki; Kojima, Naoki; Kaneko, Susumu; Ishida, Junro; Terada, Taizo; Inagawa, Hiroshi; Okada, Yasusei

    2002-07-01

    A 19-year-old woman ingested 2.2 L of "umeshu", a Japanese apricot liquor made with a large amount of sugar. She was unconscious and in shock. The estimated blood ethanol concentration was 607 mg/dl, and the blood glucose level was 576 mg/dl. Because her respiration and circulation was highly suppressed, blood purification was indicated. Continuous hemodiafiltration (CHDF) was performed instead of hemodialysis because her hemodynamics was unstable. After CHDF was instituted, her blood glucose level reduced to normal range, and her consciousness became alert. CHDF was effective in eliminating ethanol and stabilizing her hemodynamics within an early stage. Though acute ethanol intoxication is known to inhibit glucogenesis, leading to hypoglycemia, marked hyperglycemia was seen in this case. Ingestion of a large amount of glucose-rich liquor and being in shock seemed to be the causes of hyperglycemia.

  10. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    PubMed

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are immobilized on highly ordered mesoporous silicas (SBA-15) to catch CO(2) as primary, secondary, and tertiary aminosilica adsorbents. X-ray photoelectron spectroscopy was used to analyze the immobilized APTMS, MAPTMS, and DEAPTMS on the SBA-15. We report an interesting discovery that the CO(2) adsorption and desorption on the adsorbent depend on the amine type of the aminosilica adsorbent. The adsorbed CO(2) was easily desorbed from the adsorbent with the low energy consumption in the order of tertiary, secondary, and primary amino-adsorbents while the adsorption amount and the bonding-affinity increased in the reverse order. The effectiveness of amino-functionalized (1(o), 2(o), and 3(o) amines) SBA-15s as a CO(2) capturing agent was investigated in terms of adsorption capacity, adsorption-desorption kinetics, and thermodynamics. This work demonstrates apt amine types to catch CO(2) and regenerate the adsorbent, which may open new avenues to designing "CO(2) basket".

  11. Reversed-phase liquid chromatography using mandelic acid as an eluent for the determination of uranium in presence of large amounts of thorium.

    PubMed

    Jaison, P G; Telmore, Vijay M; Kumar, Pranaw; Aggarwal, Suresh K

    2009-02-27

    Studies were carried out for the separation of uranium (U) and thorium (Th) on reversed-phase (RP) C18 columns using mandelic acid as an eluent. Retention of thorium-mandelate on the unmodified stationary phase was found to be greater than that of uranyl-mandelate under the pH conditions employed. Th retention capacity of the stationary phase was determined as a function of pH and MeOH content of the mobile phase. The optimised parameters allowing U elution prior to Th were utilized for the determination of small amounts of U in the presence of large amounts of Th. The method has been used for the determination of U in synthetic samples with Th/U amount ratios up to 100,000 (10 microg/g of U) without any pre-separation, employing a particulate C18 column. Effect of concentration of ion interaction reagents (IIRs) on the retention was studied to understand the mechanism of adsorption of their mandelate complexes onto the stationary phase. The experiments conducted unequivocally prove that thorium-mandelate complex is neutral whereas uranyl-mandelate complex is anionic in nature.

  12. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    PubMed

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g(-1). The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent.

  13. Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus.

    PubMed

    Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi; Geertsema, Roger; Hsiang, Chinhui; Brown, Don; BenMohamed, Lbachir; Wechsler, Steven L

    2016-01-01

    Recurrent herpetic stromal keratitis (rHSK), due to an immune response to reactivation of herpes simplex virus (HSV-1), can cause corneal blindness. The development of therapeutic interventions such as drugs and vaccines to decrease rHSK have been hampered by the lack of a small and reliable animal model in which rHSK occurs at a high frequency during HSV-1 latency. The aim of this study is to develop a rabbit model of rHSK in which stress from elevated temperatures increases the frequency of HSV-1 reactivations and rHSK. Rabbits latently infected with HSV-1 were subjected to elevated temperatures and the frequency of viral reactivations and rHSK were determined. In an experiment in which rabbits latently infected with HSV-1 were subjected to ill-defined stress as a result of failure of the vivarium air conditioning system, reactivation of HSV-1 occurred at over twice the normal frequency. In addition, 60% of eyes developed severe rHSK compared to <1% of eyes normally. All episodes of rHSK were preceded four to five days prior by an unusually large amount of reactivated virus in the tears of that eye and whenever this unusually large amount of reactivated virus was detected in tears, rHSK always appeared 4-5 days later. In subsequent experiments using well defined heat stress the reactivation frequency was similarly increased, but no eyes developed rHSK. The results reported here support the hypothesis that rHSK is associated not simply with elevated reactivation frequency, but rather with rare episodes of very high levels of reactivated virus in tears 4-5 days earlier.

  14. Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus

    PubMed Central

    Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi; Geertsema, Roger; Hsiang, Chinhui; Brown, Don; BenMohamed, Lbachir; Wechsler, Steven L.

    2017-01-01

    Aim Recurrent herpetic stromal keratitis (rHSK), due to an immune response to reactivation of herpes simplex virus (HSV-1), can cause corneal blindness. The development of therapeutic interventions such as drugs and vaccines to decrease rHSK have been hampered by the lack of a small and reliable animal model in which rHSK occurs at a high frequency during HSV-1 latency. The aim of this study is to develop a rabbit model of rHSK in which stress from elevated temperatures increases the frequency of HSV-1 reactivations and rHSK. Materials and methods Rabbits latently infected with HSV-1 were subjected to elevated temperatures and the frequency of viral reactivations and rHSK were determined. Results In an experiment in which rabbits latently infected with HSV-1 were subjected to ill-defined stress as a result of failure of the vivarium air conditioning system, reactivation of HSV-1 occurred at over twice the normal frequency. In addition, 60% of eyes developed severe rHSK compared to <1% of eyes normally. All episodes of rHSK were preceded four to five days prior by an unusually large amount of reactivated virus in the tears of that eye and whenever this unusually large amount of reactivated virus was detected in tears, rHSK always appeared 4–5 days later. In subsequent experiments using well defined heat stress the reactivation frequency was similarly increased, but no eyes developed rHSK. Conclusions The results reported here support the hypothesis that rHSK is associated not simply with elevated reactivation frequency, but rather with rare episodes of very high levels of reactivated virus in tears 4–5 days earlier. PMID:25859798

  15. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  16. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  17. Ordered mesoporous materials as adsorbents.

    PubMed

    Wu, Zhangxiong; Zhao, Dongyuan

    2011-03-28

    Environmental pollution, energy consumption and biotechnology have induced more and more public concerns. Problems imposed by these issues will circulate in the 21st century. Adsorption-based processes may lead to one of the most efficient routes for removal of toxic substances, energy storage and bio-applications. The fundamental and great challenge is developing highly efficient adsorbents. In this regard, ordered mesoporous materials (OMMs) may be the answer in the future. They possess intrinsic high specific surface areas, regular and tunable pore sizes, large pore volumes, as well as stable and interconnected frameworks with active pore surfaces for modification or functionalization. Such features meet the requirements as excellent adsorbents, not only providing huge interface and large space capable of accommodating capacious guest species, but also enabling the possibility of specific binding, enrichment and separation. As a result, these materials have been extensively studied as advanced adsorbents and hundreds of papers have been published since the millennium. In this Highlight, we will mainly summarize and outlook the development in pollution control, gas storage and bioadsorption by using OMMs as adsorbents.

  18. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy.

    PubMed

    Xu, Rong; Dickinson, Eric; Murray, Brent S

    2007-04-24

    Adsorbed films of proteins at the air-water interface have been imaged using Brewster angle microscopy (BAM). The proteins beta-lactoglobulin (beta-L) and ovalbumin (OA) were studied at a range of protein concentrations and surface ages at 25.0 degrees C and two pH values (7 and 5) in a Langmuir trough. The adsorbed films were periodically subjected to compression and expansion cycles such that the film area was typically varied between 125% and 50% of the original film area. With beta-L on its own, no structural changes were observable at pH 7. When a low-area fraction (less than 0.01%) of 20 mum polystyrene latex particles was spread at the interface before adsorption of beta-L, the particles became randomly distributed throughout the interface, but after protein adsorption and compression/expansion, the particles highlighted notable structural features not visible in their absence. Such features included the appearance of long (several hundred micrometers or more) folds and cracks in the films, generally oriented at right angles to the direction of compression, and also aggregates of protein and/or particles. Such structuring was more visible the longer the film was aged or at higher initial protein concentrations for shorter adsorption times. At pH 5, close to the isoelectric pH of beta-L, such features were just noticeable in the absence of particles but were much more pronounced than at pH 7 in the presence of particles. Similar experiments with OA revealed even more pronounced structural features, both in the absence and presence of particles, particularly at pH 5 (close to the isoelectric pH of OA also), producing striking stripelike and meshlike domains. Changes in the dilatational elasticity of the films could be correlated with the variations in the structural integrity of the films as observed via BAM. The results indicate that interfacial area changes of this type, typical of those that occur in food colloid processing, will lead to highly

  19. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Influence of a large amount of Co substitution on the magnetic properties of NdFeCoGaB magnets (abstract)

    NASA Astrophysics Data System (ADS)

    Tsutai, A.; Sakai, I.; Sahashi, M.; Inomata, K.

    1990-05-01

    We have found that a NdFeCoGaB sintered magnet containing 30 at. % Co still shows high coercive force in spite of such a large amount of Co substitution. The Curie temperature of the magnet is higher than that of the ternary NdFeB magnet by 280 °C. As a result, the following magnetic properties have been attained for Nd14.5Fe46Co30Ga1B8.5: Tc=590 °C, Br =11.7 kG, Hci =14.3 kOe, and (BH)max=32 MG Oe. Furthermore, in this magnet there exists an additional phase, Nd1(FeCoGa)4B1 with Ce1Co4B1 structure, which, as far as authors know, has not been reported to exist in the NdFeB-based magnets. In this study we investigated the magnetic properties and microstructure of Nd14.5Fe76-xCoxGa1B8.5 (x=16-50) sintered magnets. The high coercive force can be obtained in the Co-content region from 16 to 30 at. %. In particular, the magnet with 30 at. % Co shows coercive force as high as 14.3 kOe. However, further substitution of Co drastically deteriorates the magnetic properties. The coercive force of the magnet with 50 at. % Co is less than 1 kOe. From the metallographical point of view, the above-mentioned Nd1(FeCoGa)4B1 phase is not observed in the magnets containing less than 30 at. % Co. This phase abruptly appears in the magnet with 30 at. % Co and its amount increases with increasing Co content. The strongest x-ray-diffraction peak observed in the magnet with 50 at. % Co comes from the Nd1(FeCoGa)4B1 phase. The demagnetization-curve measurements suggest that reverse magnetic domains are nucleated in the Nd1(FeCoGa)4B1 phase at a low reverse magnetic field. It is noteworthy that the magnet with 30 at. % Co maintains the high coercive force in spite of the existence of such a soft magnetic phase. Details will be discussed in the coming session.

  2. Effects of single-session dietary counseling by dieticians on salt reduction in cardiology outpatients who consumed large amounts of salt.

    PubMed

    Yamasaki, Tamami; Sadanaga, Tsuneaki; Hirota, Shinichi

    2015-07-01

    The purpose of the present study was to assess the effects of single-session dietary counseling on salt restriction in Japanese cardiology outpatients as assessed using spot urine measurements. A total of 72 patients (73±11 years old, including 30 females) who visited a cardiology outpatient clinic and had a salt intake of >8 g/day were included in this study. The patients received dietary counseling for salt restriction by expert dieticians at the time of enrollment. The daily dietary salt intake was estimated using the spot urine test at baseline prior to dietary counseling, at 3-9 weeks (next office visit), and at 24-52 weeks during follow-up evaluations. The baseline level of estimated salt excretion was 11.3±1.5 g/day, which was reduced to 9.6±2.3 g/day (P<0.01) at 3-9 weeks, but increased again at 24-52 weeks to 10.4±2.1 g/day, which was less than the baseline value (P=0.034 vs. 3-9 weeks; P=0.025 vs. baseline). The numbers of patients who achieved salt excretion levels of <6.0 and <8.0 g/day at 3-9 weeks were 4 (5.6%) and 19 (26%) patients, respectively, and were further reduced to no patients (0%; P=0.043 vs. 3-9 weeks) and 9 (13%; P=0.035 vs. 3-9 weeks) patients at 24-52 weeks of follow-up evaluation, respectively. In conclusion, the efficacy of dietary counseling by expert dieticians in restricting the salt intake of patients who consumed large amounts of salt was modest and temporary. Multiple nutritional- and behavioral-oriented approaches should be considered to achieve further reductions in salt intake.

  3. Effects of single-session dietary counseling by dieticians on salt reduction in cardiology outpatients who consumed large amounts of salt

    PubMed Central

    YAMASAKI, TAMAMI; SADANAGA, TSUNEAKI; HIROTA, SHINICHI

    2015-01-01

    The purpose of the present study was to assess the effects of single-session dietary counseling on salt restriction in Japanese cardiology outpatients as assessed using spot urine measurements. A total of 72 patients (73±11 years old, including 30 females) who visited a cardiology outpatient clinic and had a salt intake of >8 g/day were included in this study. The patients received dietary counseling for salt restriction by expert dieticians at the time of enrollment. The daily dietary salt intake was estimated using the spot urine test at baseline prior to dietary counseling, at 3–9 weeks (next office visit), and at 24–52 weeks during follow-up evaluations. The baseline level of estimated salt excretion was 11.3±1.5 g/day, which was reduced to 9.6±2.3 g/day (P<0.01) at 3–9 weeks, but increased again at 24–52 weeks to 10.4±2.1 g/day, which was less than the baseline value (P=0.034 vs. 3–9 weeks; P=0.025 vs. baseline). The numbers of patients who achieved salt excretion levels of <6.0 and <8.0 g/day at 3–9 weeks were 4 (5.6%) and 19 (26%) patients, respectively, and were further reduced to no patients (0%; P=0.043 vs. 3–9 weeks) and 9 (13%; P=0.035 vs. 3–9 weeks) patients at 24–52 weeks of follow-up evaluation, respectively. In conclusion, the efficacy of dietary counseling by expert dieticians in restricting the salt intake of patients who consumed large amounts of salt was modest and temporary. Multiple nutritional- and behavioral-oriented approaches should be considered to achieve further reductions in salt intake. PMID:26170920

  4. Development of a passive device for freezing large amounts of transplantable skin at one time in a -70 degrees C mechanical refrigerator.

    PubMed

    May, S R; Roberts, D P

    1988-06-01

    A simple device has been developed for the simultaneous cooling of up to 9120 cm2 of allograft skin in a flat package format. The device, named an insulated alternating-offset heat sink device, is composed of a stack of interleaved layers of 2.0-mm-thick packets of skin and 3.18-mm-thick aluminum heat sinks (each 33.0 cm long by 22.9 cm wide). Four skin packets are placed in a single layer on each heat sink plate, and the number of plates can be varied to accommodate different numbers of skin packets. Every heat sink protrudes 6.3 cm of its 33.0-cm length beyond the skin packets to make a fin for heat convection, but adjacent plates alternate the direction of their fin protrusion so that the layers of plates alternate in their 6.3-cm offset. Insulation layers of 2.54-cm-thick expanded polystyrene are placed on the exposed surfaces of the top and bottom heat sinks in the stack, and the stack is held together by rubber bands. The device is cooled in a -70 degrees C mechanical refrigerator. Maximal cooling rates of -1.8 degrees C min-1 are obtained for both 6- and 11-plate devices, and -3.0 degrees C min-1 for a 2-plate device. The exothermic temperature plateaus associated with skin cooled in these devices are 1.5-1.8 min in duration. Skin cooled by this technique maintains levels of glucose oxidation similar to those associated with skin cooled by liquid nitrogen vapor at a controlled rate of -1 degree C min-1, provided rapid warming is employed after -70 degrees C storage. The development of this device provides a method for the simple, low-cost cryopreservation of the large amounts of allograft skin obtained from a cadaveric donor.

  5. PSE: A tool for browsing a large amount of MEDLINE/PubMed abstracts with gene names and common words as the keywords

    PubMed Central

    Yoneya, Takashi

    2005-01-01

    Background MEDLINE/PubMed (hereinafter called PubMed) is one of the most important literature databases for the biological and medical sciences, but it is impossible to read all related records due to the sheer size of the repository. We usually have to repeatedly enter keywords in a trial-and-error manner to extract useful records. Software which can reduce such a laborious task is therefore required. Results We developed a web-based software, the PubMed Sentence Extractor (PSE), which parses large number of PubMed abstracts, extracts and displays the co-occurrence sentences of gene names and other keywords, and some information from EntrezGene records. The result links to whole abstracts and other resources such as the Online Mendelian Inheritance in Men and Reference Sequence. While PSE executes at the sentence-level when evaluating the existence of keywords, the popular PubMed operates at the record-level. Therefore, the relationship between the two keywords, a gene name and a common word, is more accurately captured by PSE than PubMed. In addition, PSE shows the list of keywords and considers the synonyms and variations on gene names. Through these functions, PSE would reduce the task of searching through records for gene information. Conclusion We developed PSE in order to extract useful records efficiently from PubMed. This system has four advantages over a simple PubMed search; the reduction in the amount of collected literatures, the showing of keyword lists, the consideration for synonyms and variations on gene names, and the links to external databases. We believe PSE is helpful in collecting necessary literatures efficiently in order to find research targets. PSE is freely available under the GPL licence as additional files to this manuscript. PMID:16336692

  6. Synergistic adsorption of phenol from aqueous solution onto polymeric adsorbents.

    PubMed

    Ming, Zhang W; Long, Chen J; Cai, Pan B; Xing, Zhang Q; Zhang, B

    2006-02-06

    Adsorption of phenol from aqueous solution onto a nonpolar adsorbent, aminated adsorbent and weak base adsorbent (Amberlite XAD4, NDA103 and Amberlite IRA96C, respectively) at temperatures from 293 to 313K was studied for the weak interactions between the phenol molecules and the polymeric adsorbents. Isotherms of Langmuir and Freundlich equation with characteristic parameters for different adsorbents were well fitted to the batch equilibrium adsorption data. The adsorption capacity on NDA103 driven by hydrogen bonding and van der Waals interaction together is higher than that on IRA96C driven by hydrogen bonding interaction only and on XAD4 driven by van der Waals interaction only. For evaluating synergistic adsorption for phenol-water systems onto polymeric adsorbents, the adsorption capacity is normalized to the amounts of specific surface area and amino groups of adsorbents. The synergistic effect with other weak interactions would contribute more to the adsorption as acting simultaneously than that of acting individually.

  7. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2

  8. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  9. Fermented Citrus reticulata (ponkan) fruit squeezed draff that contains a large amount of 4'-demethylnobiletin prevents MK801-induced memory impairment.

    PubMed

    Kawahata, Ichiro; Suzuki, Tatsuya; Rico, Evelyn Gutiérrez; Kusano, Shuichi; Tamura, Hiroshi; Mimaki, Yoshihiro; Yamakuni, Tohru

    2017-05-09

    A previous study reported biotransformation of a citrus peel polymethoxyflavone, nobiletin, by Aspergillus enabling production of 4'-demethylnobiletin, and the product's antimutagenic activity. However, the effects of fermented citrus peel on the basal forebrain-hippocampal system remain unidentified. Citrus reticulata (ponkan) fruit squeezed draffs are generated as mass waste in beverage factories. In this study using PC12D cells and cultured central nervous system neurons, we therefore examined whether Aspergillus kawachii-fermented citrus fruit squeezed draff could affect cAMP response element (CRE)- and choline acetyltransferase gene (ChAT) promoter region-mediated transcriptional activities relevant to memory formation and cholinergic function. Our current fermentation yielded approximately 80% nobiletin bioconversion, and a sample of hot-water extract of the fermented fruit squeezed draff was stronger than that of the unfermented one in facilitating CRE-mediated transcription in cultured hippocampal neurons as well as in PC12D cells. A sample of 0-80% ethanol-eluted fraction of Diaion HP-20 column-adsorbed components of the preparation obtained by the fermentation concentration-dependently and more strongly facilitated CRE-mediated transcription than did the fraction of the unfermented one in both cell culture systems. In a separate study, this polymethoxyflavone-rich fraction of the fermented fruit squeezed draff showed a potent ability to facilitate CRE-mediated and ChAT transcription in a co-culture of hippocampal neurons and basal forebrain neurons. Repeated oral gavage of mice with the fermented fraction sample prevented MK801-impaired memory formation in mice. These findings suggest that the 4'-demethylnobiletin-rich fraction prepared from the Aspergillus-fermented ponkan squeezed draff has a potential anti-dementia effect.

  10. A green and efficient protocol for large-scale production of glycyrrhizic acid from licorice roots by combination of polyamide and macroporous resin adsorbent chromatography.

    PubMed

    Zheng, Yun-Feng; Wei, Juan-Hua; Qi, Lian-Wen; Cheng, Jian-Ming; Peng, Guo-Ping

    2013-02-01

    A green and efficient method for large-scale preparation of glycyrrhizic acid from licorice roots was developed by combination of polyamide and macroporous resin. The entire preparation procedure consisted of two simple separation steps. The first step is to use polyamide resin to remove licorice flavoniods from the licorice crude extract. Subsequently, various macroporous resins were tried to purify glycyrrhizic acid, and HPD-400 showed the most suitable adsorption and desorption properties. Under the optimized conditions, a large-scale preparation of glycyrrhizic acid from licorice roots was carried out. A 20 kg raw material produced 0.43 kg of glycyrrhizic acid using green aqueous ethanol as the solvent. The purity of glycyrrhizic acid was increased from 11.40 to 88.95% with a recovery of 76.53%. The proposed method may be also extended to produce large-scale other triterpenoid saponins from herbal materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Where will large amounts of materials accumulated within the economy go?--A material flow analysis of construction minerals for Japan.

    PubMed

    Hashimoto, Seiji; Tanikawa, Hiroki; Moriguchi, Yuichi

    2007-01-01

    For all countries analyzed so far, Material Flow Analysis/Accounting (MFA) studies indicate that the overall stock of materials within the economy is growing. Most are construction minerals such as asphalt, cement, sand and gravel, crushed stone, and other aggregates. In the analyses described in this paper, flows and stocks of construction minerals were estimated for Japan from the past to the future to elucidate: (1) the mechanisms by which construction minerals become waste, and (2) the future supply of and demand for recycled crushed stone. The following conclusions were drawn: (1) The amounts of waste construction minerals generated have been and will be at much lower levels than the domestic demand for construction minerals. These differences might indicate consistent growth of the stock of construction minerals, which will become waste in the future. However, certain amounts of materials that we account for as stock can be interpreted already in the environment as dead stock or dissipated waste; such materials can be called "missing stock" or "dissipated stock". Capturing that missing or dissipated stock is very important because it provides information that clarifies the environmental impacts and loss of resources that these materials cause; it allows estimation of appropriate future waste generation. (2) The amount of construction minerals that are recognized as waste was estimated to increase in the future. An imbalance in the supply of and demand for recycled crushed stone will likely occur in the near future if an expected decline in future road construction is considered.

  12. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine.

    PubMed

    Mansilla, E; Marín, G H; Drago, H; Sturla, F; Salas, E; Gardiner, C; Bossi, S; Lamonega, R; Guzmán, A; Nuñez, A; Gil, M A; Piccinelli, G; Ibar, R; Soratti, C

    2006-04-01

    Recent work has shown that human bone marrow contains mesenchymal stem cells (MSCs). However, little is known about their presence in peripheral blood. Since these cells are potentially responsible for tissue repair after injury, their number should be increased during these situations. To demonstrate their number during these situations, we measured MSCs in the peripheral blood of healthy donors and burn patients. Blood samples were obtained from 15 acute burn patients and 15 healthy donors. We performed flow cytometric analysis, using a large monoclonal antibody panel: CD44, CD45, CD14, DR, CD34, CD19, CD13, CD29, CD105, CD1a, CD90, CD38, CD25. MSC phenotype was considered positive for CD44, CD13, CD29, CD90, and CD105, and negative for the other monoclonals. The testing was performed on day 3 after injury. We correlated the results with the age, sex, and size and type of burns. Cells expressing the MSC phenotype were detected in the peripheral blood of both groups. Noteworthy, compared with samples from healthy donors (0.0078 +/- 0.0044), blood obtained from burn patients showed a higher MSC percentage (0.1643 +/- 0.115; P < .001). The percentage of MSCs correlated with the size and severity of the burn. Increased values were also observed among younger patients. MSCs have an important role in regenerative processes of human tissues. We found cells phenotypically identical to MSCs circulating in physiological number in normal subjects, but in significantly higher amounts during acute large burns. Therefore, they may represent a previously unrecognized circulatory component to the process of skin regeneration.

  13. Novel adsorbent applicability for decontamination of printing wastewater

    NASA Astrophysics Data System (ADS)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ < B = pure C < C with PEG 600 addition. The adsorption equilibrium data of Zn(II) ion on NZ, B, pure C and C with PEG 600 were analyzed in terms of the Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The characteristic parameters for each isotherms and related correlation coefficients were determined. The values of correlation coefficient (R2) indicated the following order of the isotherm models: Freundlich > Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential

  14. Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass

    DOEpatents

    Miller, C.M.; Nogar, N.S.

    1982-09-02

    Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

  15. Adsorbent and adsorbent bed for materials capture and separation processes

    DOEpatents

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  16. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors.

    PubMed

    Temkitthawon, Prapapan; Hinds, Thomas R; Beavo, Joseph A; Viyoch, Jarupa; Suwanborirux, Khanit; Pongamornkul, Wittaya; Sawasdee, Pattara; Ingkaninan, Kornkanok

    2011-10-11

    A number of medicinal plants are used in traditional medicine to treat erectile dysfunction. Since cyclic nucleotide PDEs inhibitors underlie several current treatments for this condition, we sought to show whether these plants might contain substantial amounts of PDE5 inhibitors. Forty one plant extracts and eight 7-methoxyflavones from Kaempferia parviflora Wall. ex Baker were screened for PDE5 and PDE6 inhibitory activities using the two-step radioactive assay. The PDE5 and PDE6 were prepared from mice lung and chicken retinas, respectively. All plant extracts were tested at 50 μg/ml whereas the pure compounds were tested at 10 μM. From forty one plant extracts tested, four showed the PDE5 inhibitory effect. The chemical constituents isolated from rhizomes of Kaempferia parviflora were further investigated on inhibitory activity against PDE5 and PDE6. The results showed that 7-methoxyflavones from this plant showed inhibition toward both enzymes. The most potent PDE5 inhibitor was 5,7-dimethoxyflavone (IC(50) = 10.64 ± 2.09 μM, selectivity on PDE5 over PDE6 = 3.71). Structure activity relationship showed that the methoxyl group at C-5 position of 7-methoxyflavones was necessary for PDE5 inhibition. Kaempferia parviflora rhizome extract and its 7-methoxyflavone constituents had moderate inhibitory activity against PDE5. This finding provides an explanation for enhancing sexual performance in the traditional use of Kaempferia parviflora. Moreover, 5,7-dimethoxyflavones should make a useful lead compound to further develop clinically efficacious PDE5 inhibitors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors

    PubMed Central

    Temkitthawon, Prapapan; Hinds, Thomas R.; Beavo, Joseph A.; Viyoch, Jarupa; Suwanborirux, Khanit; Pongamornkul, Wittaya; Sawasdee, Pattara; Ingkaninan, Kornkanok

    2014-01-01

    Aim of the study A number of medicinal plants are used in traditional medicine to treat erectile dysfunction. Since cyclic nucleotide PDEs inhibitors underlie several current treatments for this condition, we sought to show whether these plants might contain substantial amounts of PDE5 inhibitors. Materials and methods Forty one plant extracts and eight 7-methoxyflavones from Kaempferia parviflora Wall. ex Baker were screened for PDE5 and PDE6 inhibitory activities using the two-step radioactive assay. The PDE5 and PDE6 were prepared from mice lung and chicken retinas, respectively. All plant extracts were tested at 50 μg/ml whereas the pure compounds were tested at 10 μM. Results From forty one plant extracts tested, four showed the PDE5 inhibitory effect. The chemical constituents isolated from rhizomes of Kaempferia parviflora were further investigated on inhibitory activity against PDE5 and PDE6. The results showed that 7-methoxyflavones from this plant showed inhibition toward both enzymes. The most potent PDE5 inhibitor was 5,7-dimethoxyflavone (IC50 = 10.64 ± 2.09 μM, selectivity on PDE5 over PDE6 = 3.71). Structure activity relationship showed that the methoxyl group at C-5 position of 7-methoxyflavones was necessary for PDE5 inhibition. Conclusions Kaempferia parviflora rhizome extract and its 7-methoxyflavone constituents had moderate inhibitory activity against PDE5. This finding provides an explanation for enhancing sexual performance in the traditional use of Kaempferia parviflora. Moreover, 5,7-dimethoxyflavones should make a useful lead compound to further develop clinically efficacious PDE5 inhibitors. PMID:21884777

  18. Sequencing of the large dsDNA genome of Oryctes rhinoceros nudivirus using multiple displacement amplification of nanogram amounts of virus DNA.

    PubMed

    Wang, Yongjie; Kleespies, Regina G; Ramle, Moslim B; Jehle, Johannes A

    2008-09-01

    The genomic sequence analysis of many large dsDNA viruses is hampered by the lack of enough sample materials. Here, we report a whole genome amplification of the Oryctes rhinoceros nudivirus (OrNV) isolate Ma07 starting from as few as about 10 ng of purified viral DNA by application of phi29 DNA polymerase- and exonuclease-resistant random hexamer-based multiple displacement amplification (MDA) method. About 60 microg of high molecular weight DNA with fragment sizes of up to 25 kbp was amplified. A genomic DNA clone library was generated using the product DNA. After 8-fold sequencing coverage, the 127,615 bp of OrNV whole genome was sequenced successfully. The results demonstrate that the MDA-based whole genome amplification enables rapid access to genomic information from exiguous virus samples.

  19. Novel carbon adsorbents

    NASA Astrophysics Data System (ADS)

    Ghosal, Ranjan

    This work presents a method for altering the surface chemistry of carbon adsorbents based on the reaction of carbon with diazonium salts ("diazotization"). The technique allows the chemical attachment of a variety of species to the carbon surface, in concentrations on the order of 3 mumol/msp2 of available surface area. Specific functional groups can be affixed to the carbon surface by reacting it with the appropriate substituted diazonium salt. The BET surface area of a non-porous carbon black was unchanged after treatment with diazonium salts. However, adsorption of COsb2 at 273 K and 8 Torr increased by as much as 800% over the base material, when polar groups were bonded to the carbon surface by diazotization. Higher levels of treatment resulted in increased COsb2 adsorption. For the same concentration of surface species, surface species of greater polarity resulted in higher COsb2 adsorption. Isosteric heat of adsorption curves for COsb2 (284 K) were obtained on diazotized carbons. The initial heat of adsorption was a function of the type of surface group, and for a particular surface group, was invariant with level of treatment. Surface species of higher polarity increased, and non-polar surface species lowered, the initial heat of adsorption of COsb2. Gas chromatographic (GC) experiments were carried out on columns of untreated and diazotized carbon. Adsorbate retention times on untreated carbon black were independent of adsorbate polarity and proportional to the molecular weight of the adsorbate. However, on a diazotized carbon black with polar surface groups, the retention times of polar adsorbates increased by an order of magnitude in some cases. The same diazotized carbon successfully separated a mixture of butanol isomers based on their polarity. A semi-empirical multi-site adsorption model was used to describe COsb2 adsorption on diazotized carbons. The model successfully accounted for surface heterogeneity and the presence of different types of sites

  20. Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces

    NASA Astrophysics Data System (ADS)

    Pandey, Lalit M.; Pattanayek, Sudip K.

    2013-01-01

    We have studied the adsorption of BSA and fibrinogen from their mixture onto surfaces with mixed self-assembled monolayer (SAM) of amine and octyl (ratio 1:1) and hybrid SAM. The properties of adsorbed proteins obtained from individual protein solution differ considerably from the properties of the adsorbed proteins obtained from mixture of proteins at same total concentration. The adsorbed amount of proteins is lesser and the adsorbed protein is more elastic if it is adsorbing from mixture of proteins. It is found that with increasing total protein concentration, adsorbed amount increases and elasticity of the adsorbed proteins decreases. The apparent displacements of BSA with Fb are observed on the graphs of change in frequency with time, which are obtained from quartz crystal microbalance.

  1. Surface properties of mesoporous carbon-silica gel adsorbents

    SciTech Connect

    Leboda, R.; Turov, V.V.; Charmas, B.; Skubiszewska-Zieba, J.; Gun'ko, V.M.

    2000-03-01

    Carbon/silica (carbosil) samples prepared utilizing mesoporous silica gel (Si-60) modified by methylene chloride pyrolysis were studied by nitrogen adsorption, quasi-isothermal thermogravimetry, p-nitrophenol adsorption from aqueous solution, and {sup 1}H NMR methods. The structural characteristics and other properties of carbosils depend markedly on the synthetic conditions and the amount of carbon deposited. The changes in the pore size distribution with increasing carbon concentration suggest grafting of carbon mainly in pores, leading to diminution of the mesopore radii. However, heating pure silica gel at the pyrolysis temperature of 550 C leads to an increase in the pore radii. The quasi-isothermal thermogravimetry and {sup 1}H NMR spectroscopy methods used to investigate the water layers on carbosils showed a significant capability of carbosils to adsorb water despite a relatively large content of the hydrophobic carbon deposit, which represents a nonuniform layer incompletely covering the oxide surface.

  2. Modeling Bisolute Adsorption of Aromatic Compounds Based on Adsorbed Solution Theories.

    PubMed

    Zhang, Huichun; Wang, Shubo

    2017-05-16

    A large number of organic contaminants are commonly found in industrial and municipal wastewaters. For proper unit design to remove contaminant mixtures by adsorption, multicomponent adsorption equilibrium models are necessary. The present work examined the applicability of Ideal Adsorbed Solution Theory (IAST), a prevailing thermodynamic model, and its derivatives, i.e., Segregated IAST (SIAST) and Real Adsorbed Solution Theory (RAST), to bisolute adsorption of organic compounds onto a hyper-cross-linked polystyrene resin, MN200. Both IAST and SIAST were found to be less accurate in fitting the experimental bisolute adsorption isotherms than RAST. RAST incorporated with an empirical four-parameter equation developed in this work can fit the adsorbed phase activity coefficients, γi, better than RAST combined with the Wilson equation or the Nonrandom two-liquid (NRTL) model. Moreover, two polyparameter linear free energy relationships were developed for the adsorption of a number of solutes at low concentrations in the presence of a major contaminant (4-methylphenol or nitrobenzene). Results show that these relationships have a great potential in predicting γi of solutes when the adsorbed amounts are dominated by a major contaminant. To the best of our knowledge, this is the first study predicting γi for bisolute adsorption based on molecular descriptors. Overall, our findings have proved a major step forward to accurately modeling multisolute adsorption equilibrium.

  3. Graphene protected surface state on Ir(111) with adsorbed lithium

    NASA Astrophysics Data System (ADS)

    Lazic, Predrag; Pervan, Petar; Petrovic, Marin; Srut-Rakic, Iva; Pletikosic, Ivo; Kralj, Marko; Milun, Milorad; Valla, Tonica

    It is well known that electronic surface states (SS) get strongly perturbed upon the chemical adsorption of very small amount of adsorbates. Adsorption of lithium atoms on Ir(111) is no exception to that rule. Iridium SS gets strongly perturbed and is practically eradicated - it can not be seen as a sharp peak in the ARPES measurement. However, if the system is prepared with graphene on top of Ir/Li system, the iridium SS reappears. We present a combined experimental and theoretical study of the described system. Using the density functional theory calculations for large unit cells with disordered lithium atoms geometries on the (111) surface of iridium we were able to reproduce the results of the ARPES measurements - showing clearly that the SS signal is strongly suppressed when lithium is adsorbed, while it is almost unchanged when lithium is intercalated (i.e. with graphene on top of it). Looking at the projected density of states we constructed a rather simple model explaining this behavior which seems to be general.

  4. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    PubMed

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  5. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  6. Nanoclay-Based Solid-Amine Adsorbents for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Roth, Elliot A.

    The objective of this research was to develop an efficient, low cost, recyclable solid sorbent for carbon dioxide adsorption from large point sources, such as coal-fired power plants. The current commercial way to adsorb CO 2 is to use a liquid amine or ammonia process. These processes are used in industry in the "sweetening" of natural gas, but liquid based technologies are not economically viable in the adsorption of CO2 from power plants due to the extremely large volume of CO2 and the inherent high regeneration costs of cycling the sorbent. Therefore, one of the main objectives of this research was to develop a novel sorbent that can be cycled and uses very little energy for regeneration. The sorbent developed here is composed of a nanoclay (montmorillonite), commonly used in the production of polymer nanocomposites, grafted with commercially available amines. (3-aminopropyl) trimethoxysilane (APTMS) was chemically grafted to the edge hydroxyl groups of the clay. While another amine, polyethylenimine (PEI), was attached to the surface of the clay by electrostatic interactions. To confirm the attachment of amines to the clay, the samples were characterized using FTIR and the corresponding peaks for amines were observed. The amount of amine loaded onto the support was determined by TGA techniques. The treated clay was initially analyzed for CO2 adsorption in a pure CO 2 stream. The adsorption temperatures that had the highest adsorption capacity were determined to be between 75°C and 100°C for all of the samples tested at atmospheric pressure. The maximum CO2 adsorption capacity observed was with nanoclay treated with both APTMS and PEI at 85°C. In a more realistic flue gas of 10% CO2 and 90% N2, the adsorbents had essentially the same overall CO2 adsorption capacity indicating that the presence of nitrogen did not hinder the adsorption of CO2. Adsorption studies in pure CO2 at room temperature under pressure from 40-300 PSI were also conducted. The average

  7. Remediation of AMD using industrial waste adsorbents

    NASA Astrophysics Data System (ADS)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  8. MTBE adsorption on alternative adsorbents and packed bed adsorber performance.

    PubMed

    Rossner, Alfred; Knappe, Detlef R U

    2008-04-01

    Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.

  9. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  10. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  11. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    NASA Astrophysics Data System (ADS)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  12. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  13. Removal and recovery of phosphorus in wastewater by superconducting high gradient magnetic separation with ferromagnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Ishiwata, T.; Miura, O.; Hosomi, K.; Shimizu, K.; Ito, D.; Yoda, Y.

    2010-11-01

    Prevention of eutrophication for semi-enclosed bays and ponds is serious and important challenge. In spite of the advanced wastewater treatment, typically 1 mg/L phosphorus is discharged into public water bodies from wastewater treatment plants. The total amount of the discharged water is so large that the further improvement of the removal efficiency of phosphorus in the discharged water is demanded. On the other hand, recently phosphorus has become increasingly recognized as the important strategic material due to the global food problem. Therefore, the recovery and recycling of phosphorus is also important issue. In this work, removal and recovery of phosphorus from treated wastewater by High Gradient Magnetic Separation (HGMS) with ferromagnetic zirconium ferrite adsorbent were studied. Phosphorus in the treated wastewater could be removed from 1.12 mg/L to 0.03 mg/L by the HGMS system with 500 mg/L zirconium ferrite adsorbent for 5 min in adsorption time. The magnetic separation speed achieved 1 m/s at 1 T which was necessary for practical use. We also confirmed that phosphorus could be desorbed from zirconium ferrite adsorbent by alkali treatment in a short time.

  14. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  15. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  16. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers

    DOE PAGES

    Brown, Suree; Chatterjee, Sabornie; Li, Meijun; ...

    2015-12-10

    Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers wasmore » prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.« less

  17. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers

    SciTech Connect

    Brown, Suree; Chatterjee, Sabornie; Li, Meijun; Yue, Yanfeng; Tsouris, Costas; Janke, Christopher J.; Saito, Tomonori; Dai, Sheng

    2015-12-10

    Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers was prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.

  18. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  19. Controlling the supramolecular organisation of adsorbed collagen layers.

    PubMed

    Dupont-Gillain, Ch C; Pamula, E; Denis, F A; De Cupere, V M; Dufrêne, Y F; Rouxhet, P G

    2004-04-01

    The supramolecular organisation of collagen adsorbed on polymer substrates was investigated as a function of properties of the substrates (chemical nature, roughness) and of characteristics of the collagen solution (concentration, state of aggregation) as well as details of the preparation procedure (adsorption time, drying rate). Elongated structures are formed at the interface by assembly of collagen molecular segments protruding into the solution. This is favoured by using a hydrophobic and smooth substrate, by increasing the adsorbed amount and by increasing the adsorption time, even beyond stages at which the adsorbed amount does no longer vary. Collagen adsorbed at low amount on hydrophobic substrates strongly reorganises into a net-like pattern if drying is performed at low rate. This is due to dewetting and collagen displacement by the water meniscus. Applications derived from the control of collagen organisation are presented. Nanostructured polymer surfaces were created starting from a collagen template. The attachment and the cytoskeletal organisation of mammalian cells (MCF-7/6) were also shown to depend on collagen organisation.

  20. Uremic toxins and oral adsorbents.

    PubMed

    Goto, Shunsuke; Yoshiya, Kunihiko; Kita, Tomoyuki; Fujii, Hideki; Fukagawa, Masafumi

    2011-04-01

    Uremic toxins are associated with various disorders in patients with end-stage renal disease and it is difficult to remove some of these toxins by dialysis. Since some uremic toxins are generated by bacterial metabolites in the colon, oral adsorbents that interfere with the absorption of uremic toxins or their precursors are believed to prevent their accumulation in the body. AST-120 adsorbs various uremic retention solutes in the gastrointestinal system and has potential for providing clinical benefit. Sevelamer hydrochloride binds some harmful compounds in addition to phosphate and seems to have pleiotropic effects that include lowering serum LDL cholesterol levels and reduction of inflammation. The effect of sevelamer hydrochloride on indoxyl sulfate and p-cresol has been shown in an in vitro study; however, in vivo studies in mice or humans did not demonstrate this effect on protein-binding uremic toxins. Oral adsorbents are thus one of the important modalities in the treatment of uremic syndrome.

  1. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    PubMed

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  2. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  3. Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol

    PubMed Central

    Honorio-França, Adenilda Cristina; Nunes, Gabriel Triches; Fagundes, Danny Laura Gomes; de Marchi, Patrícia Gelli Feres; Fernandes, Rubian Trindade da Silva; França, Juliana Luzia; França-Botelho, Aline do Carmo; Moraes, Lucélia Campelo Albuquerque; Varotti, Fernando de Pilla; França, Eduardo Luzía

    2016-01-01

    Purpose Clinical and epidemiological studies have indicated that breastfeeding has a protective effect on breast cancer risk. Protein-based drugs, including antibodies, are being developed to attain better forms of cancer therapy. Secretory IgA (SIgA) is the antibody class in human breast milk, and its activity can be linked to the protective effect of breastfeeding. The aim of this study was to investigate the effect of polyethylene glycol (PEG) microspheres with adsorbed SIgA on MCF-7 human breast cancer cells. Methods The PEG microspheres were characterized by flow cytometry and fluorescence microscopy. The MCF-7 cells were obtained from American Type Culture Collection. MCF-7 cells were pre-incubated for 24 hours with or without SIgA (100 ng/mL), PEG microspheres or SIgA adsorbed in PEG microspheres (100 ng/mL). Viability, intracellular calcium release, and apoptosis in MCF-7 cells were determined by flow cytometry. Results Fluorescence microscopy and flow cytometry analyses revealed that SIgA was able to adsorb to the PEG microspheres. The MCF-7 cells that were incubated with PEG microspheres with adsorbed SIgA showed decreased viability. MCF-7 cells that were incubated with SIgA or PEG microspheres with adsorbed SIgA had increased intracellular Ca2+ levels. In the presence of SIgA, an increase in the percentage of apoptotic cells was observed. The highest apoptosis index was observed when the cells were treated with PEG microspheres with adsorbed SIgA. Conclusion These data suggest that colostral SIgA adsorbed to PEG microspheres has antitumor effects on human MCF-7 breast cancer cells and that the presence of large amounts of this protein in secreted breast milk may provide protection against breast tumors in women who breastfed. PMID:26893571

  4. Synergistic desalination of potash brine-impacted groundwater using a dual adsorbent.

    PubMed

    Gibb, Nick P; Dynes, James J; Chang, Wonjae

    2017-09-01

    The impact of saline mining effluent has been a significant environmental concern. Natural and modified clay-mineral adsorbents have been receiving increasing attention for salinity reduction of brine-impacted water, especially for natural resource extraction sites and surrounding environments. In this study, a dual-adsorbent treatment based on the sequential application of calcined layered double hydroxide (CLDH) and acid-treated zeolite was developed, evaluated and characterized for the desalination of potash brine-impacted groundwater. Potash brine produced by conventional potash mining in Saskatchewan (Canada) contains a large amount of Na(+), K(+) and Cl(-). The CLDH and acid-treated clinoptilolite zeolites were combined to sequentially remove Cl(-) and Na(+). A series of batch adsorption experiments were conducted for synthetic saline water and potash brine-spiked groundwater using various combinations of adsorbents: natural zeolites (NZ) or acid-treated zeolites (AZ) with or without the CLDH pretreatment. The experiment revealed that the Na(+) removal percentage was synergistically increased by the dechlorination pretreatment using CLDH, and further improved by AZ. The CLDH-AZ dual adsorbent achieved a Langmuir Na(+) adsorption capacity of 24.4mg/g, a significant improvement over conventional approaches to zeolite-based desalination. Using the brine-impacted groundwater with a high sodium adsorption ratio (SAR) of 13.3±0.1, the CLDH-AZ dual adsorbent decreased the concentrations of Na(+), K(+), and Cl(-) by 87, 97, and 87%, respectively (below drinking water standards). It also exhibited the additional advantages of neutralizing the effluent pH and decreasing the hardness, SAR, and total dissolved sulfur concentration. This study addresses the removal mechanisms, which are associated with the structural memory effect, dealumination, protonic exchanges, and zeolite porosity changes. Synchrotron-based scanning transmission X-ray microscopy analyses provided

  5. Adsorbent Removes Traces Of Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    An adsorbent, carbon molecular sieve containing copper oxide, selectively removes oxygen from gas mixtures, producing gas containing less than 1 part per billion of oxygen. Used to help prevent oxidation of chemicals being prepared in dry boxes or to extract undesired traces of oxygen from inert-gas chambers in which flammable gases are stored.

  6. Higher toxicity of dibutyltin and poly-L-lactide with a large amount of tin but lower toxicity of poly-L-lactide of synthetic artificial dura mater exhibited on murine astrocyte cell line.

    PubMed

    Tsuji, Masayoshi; Inoue, Yoko; Sugaya, Chiemi; Tsunoda, Masashi; Sugaya, Tsukiko; Takahashi, Masami; Yuba, Toshiyasu; Tsuchiya, Toshie; Aizawa, Yoshiharu

    2010-06-01

    Neurotoxicities of dibutyltin (DBT), tin(II) octylate (OT), poly-L-lactides (PLLA, molecular weight [MW]=5000, PLLA 5000), PLLA without tin (MW=3000, PLLA 3000), PLLA with a large amount (590 ppm) of tin (S3), poly(glycolic acid-co-epsilon-caprolactone) oligomer (MW=6200, PGC oligomer), and poly(L-lactic acid-co-glycolic acid-co-epsilon-caprolactone) oligomer (MW=6400, PLGC oligomer) related to artificial dura mater were examined using the murine astrocyte cell line, CRL-2534. The indices were cell viability, glutamate concentration in the cell supernatant, and cell proliferation. Lower cell viability was observed among cells exposed to 0.5 microM DBT or 10 microg/ml of S3. There were no differences in cell viability of astrocytes exposed to OT, PLLA 5000, PLLA 3000, PGC oligomer, or PLGC oligomer. Mean glutamate concentration in the supernatant of cells exposed to 0.25 muM DBT was higher than that of the control after 2 h incubation. Lower mean concentration of glutamate in the supernatant of cells exposed to 5 microg/ml of S3 was observed after 2 h incubation. Cells exposed to 50 microg/ml of PGC oligomer had a higher mean concentration of glutamate in the supernatant. OT only inhibited cell proliferation at 100 microM. Proliferation of cells exposed to 0.25 microM or 0.5 microM DBT was inhibited, as was that of cells exposed to 100 microM OT, 50 microg/ml PLLA 5000, 50 microg/ml PLLA 3000, and 5 microg/ml S3, 5 d and 7 d after exposure. Although DBT does not reach levels that induced neurotoxicity in artificial dura mater, these results suggest that DBT is neurotoxic and PLLA toxicity increases with the increase in tin concentration.

  7. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process.

    PubMed

    Hu, Tian-Jue; Zeng, Guang-Ming; Huang, Dan-Lian; Yu, Hong-Yan; Jiang, Xiao-Yun; Dai, Fang; Huang, Guo-He

    2007-03-22

    Three kinds of adsorbents-potassium dihydrogen phosphate, sawdust and mixture of potassium dihydrogen phosphate and sawdust were added respectively into composting to investigate their adsorption effect on ammonia. The experimental results showed that all the adsorbents could restrain ammonia volatilizing, with the sorption of potassium dihydrogen phosphate adsorbents being the best of all, the sorption of mixture adsorbent with potassium dihydrogen phosphate and sawdust being the second and the sorption of sawdust adsorbent being the last. Therefore, the total nitrogen loss ratios respectively reduced from 38% to 13%, 15% and 21% after adding these three kinds of adsorbents into composting. However, potassium dihydrogen phosphate produced negative influence on composting properties as its supplemented amount exceeded a quantity basis equivalent to 18% of total nitrogen in the composting, for example: pH value had been lessened, microorganism activity reduced, which finally resulted in the reduction of biodegradation ratio of organic matter. But it did not result in these problems when using the mixture of potassium dihydrogen phosphate and sawdust as adsorbent, in which the amount of potassium dihydrogen phosphate was under a quantity basis equivalent to 6% of total nitrogen in the composting. Moreover, the mixture adsorbent produced better adsorption effect on ammonia, and raised biodegradation ratio of organic matter from 26% to 33%.

  8. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    PubMed

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  9. Submerged membrane adsorption hybrid system using four adsorbents to remove nitrate from water.

    PubMed

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2017-04-05

    Nitrate contamination of ground and surface waters causes environmental pollution and human health problems in many parts of the world. This study tests the nitrate removal efficiencies of two ion exchange resins (Dowex 21K XLT and iron-modified Dowex 21K XLT (Dowex-Fe)) and two chemically modified bio-adsorbents (amine-grafted corn cob (AG corn cob) and amine-grafted coconut copra (AG coconut copra)) using a dynamic adsorption treatment system. A submerged membrane (microfiltration) adsorption hybrid system (SMAHS) was used for the continuous removal of nitrate with a minimal amount of adsorbents. The efficiency of membrane filtration flux and replacement rate of adsorbent were studied to determine suitable operating conditions to maintain the effluent nitrate concentration below the WHO drinking standard limit of 11.3 mg N/L. The volume of water treated and the amount of nitrate adsorbed per gramme of adsorbent for all four flux tested were in the order Dowex-Fe > Dowex > AG coconut copra > AG corn cob. The volumes of water treated (L/g adsorbent) were 0.91 and 1.85, and the amount of nitrate removed (mg N/g adsorbent) were 9.8 and 22.2 for AG corn cob and Dowex-Fe, respectively, at a flux of 15 L/(m(2)/h).

  10. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

    PubMed

    Dods, Stewart R; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G

    2015-01-09

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5

  11. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  12. Raman scattering from atomic adsorbates

    NASA Astrophysics Data System (ADS)

    Apell, P.; Flores, F.; Martin-Rodero, A.; Monreal, R.

    1988-08-01

    We investigate the simplest system which can be anticipated to show Raman Scattering, for adsorbates on a substrate; the case of a single atom. Incident light provides the necessary energy to promote an electron from a state primarily located in the metal to a state which has the main weight on the adsorbed atom or vice versa. This charge transfer takes the atom from a neutral state bound weakly to the metal by van der Waals forces to a state more strongly bound of "image" type. This will change the vibrational properties both with respect to equilibrium separation as well as vibrational frequency and compared to SERS there is no enhancement since the vibration of the atom against the surface is a feature which is not present for the separated systems. From the scattered light that is vibrationally shifted from the incoming light we can then get out information about the atoms binding to the surface which ultimately can be used as a tool for investigating surface phenomena like physi- and chemisorption. We calculate and compare the differential cross-sections for the A·p interaction and the A2-mechanism. Special attention is devoted to adsorbate induced resonances in the vicinity of the Fermi level. Our results yield cross-sections of the order 10-31-10-30cm2, which are clearly observable even for a smooth surface without any field enhancements.

  13. Comprehensive study of mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles as a promising adsorbent.

    PubMed

    Chi, Yue; Geng, Wangchang; Zhao, Liang; Yan, Xiao; Yuan, Qing; Li, Nan; Li, Xiaotian

    2012-03-01

    Highly ordered mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles has been successfully synthesized. By oxidative treatment using (NH(4))(2)S(2)O(8) and H(2)SO(4) mixed solution, numerous hydrophilic groups were created in the mesopores without destroying the ordered mesostructure of CMK-3. Through the in situ reduction in Fe(3+), magnetic nanoparticles were successfully introduced into the mesopores, resulting in the multifunctional mesoporous carbon Fe-CMK-3. The obtained hybrid carbon material possesses ordered mesostructure, high Brunauer-Emmett-Teller (BET) surface area up to 1013 m(2)/g, large pore volume of about 1.16 cm(3)/g, carboxylic surface, and excellent magnetic property. When used as an adsorbent, Fe-CMK-3 exhibits excellent performances for removing toxic organic compounds from waster-water, with a high adsorption capacity, an extremely rapid adsorption rate, and an easy magnetically separable process. In the case of requiring emergency removal of large amount of organic pollutants in aqueous, the hybrid carbon adsorbent would be an ideal choice. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  15. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-01

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  16. In-gap localized states induced by adsorbates on silicene

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong

    2016-02-01

    Due to the strong spin-orbit coupling, silicene is a topological insulator and can open a relatively large energy gap at the Dirac point. Moreover, the applied bias can drive silicene from a topological insulator into an ordinary insulator. Here, we examine the adsorbate effect on the electronic properties of silicene. The calculated local density of states around the adsorbates clearly reveal that the induced localized states contain the band topology information, which can be used to distinguish whether the system is a topological insulator or not. We also explore the impact of randomly distributed adsorbates with a low concentration on the electron structures and the transport properties of silicene, and find that the edge mode backscattering is significantly enhanced when the energies of the incoming modes from leads match that of the in-gap localized states.

  17. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-05

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  18. Fabrication and thermal conductivity improvement of novel composite adsorbents adding with nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Qibai; Yu, Xiaofen; Zhang, Haiyan; Chen, Yiming; Liu, Liying; Xie, Xialin; Tang, Ke; Lu, Yiji; Wang, Yaodong; Roskilly, Anthony Paul

    2016-10-01

    Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.

  19. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  20. A new sand adsorbent for the removal and reuse of nickel ions from aqueous solutions.

    PubMed

    Tao, Wenhong; Qi, Ling; Duan, Huimin; Liu, Shiquan

    2017-04-01

    Nickel ions (Ni(II)) in aqueous solutions were removed by a sand adsorbent with a surface functionalized porous coating. The sand adsorbent has a very large surface area of 150 m(2)/g. The influence of pH, initial concentration of the solution, temperature, contact time and adsorbent dosage on the removal efficiency of the synthesized sand adsorbent toward Ni(II) in the aqueous solutions were studied. The results indicate that the adsorption of nickel onto the sand adsorbent greatly increases the pH range of 2-4 and slightly increases with temperature from 25 to 40 °C. The maximum removal efficiency and ion retention in per unit mass of the adsorbent were 100% and 5.78 mg/g, respectively, under the specified experimental conditions. The adsorption can be described by the pseudo-second-order kinetic model and the Freundlich adsorption model. The adsorbed nickel (4.24 mg/g) together with the spent adsorbent were successfully employed to prepare a brown glass, suggesting a new way to reutilize the recovered nickel from wastewater and to avoid secondary pollution caused by the used adsorbents.

  1. Chemical effects on vibrational properties of adsorbed molecules on metal surfaces: Coverage dependence

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1987-10-01

    Vibrational properties of chemisorbed molecules on metal surfaces are studied with a focus on the coverage dependent chemical shift of the frequencies. Available experimental data of a CO adsorption on transition metal and noble metal surfaces are analyzed in the light of the coverage dependent back-donation into the 2 π* orbitals of chemisorbed CO molecules. The vibrational frequency ωCO of the intramolecular stretching mode exhibits a downward shift of varying magnitude, depending on the amount of back-donation into the 2 π* orbitals of the chemisorbed CO. On increasing the coverage θ, ωCO usually increases due to the dipole-dipole interaction. On Cu surfaces, however, the shifts are relatively small, or in some cases, negative. So far, this anomalous frequency shift with θ is understood as a result of competitive effect between the upward dipole Ωdip and the downward chemical shift Ωchem associated with back-donation. The purpose of this paper is to establish the possible origin of the downward frequency shift through the electronic properties of an incomplete monolayer of adsorbates. The adsorbate density of states ρa is calculated by means of the coherent potential approximation, in which the electron hopping between the adsorbates (band formation effect) and the depolarization effect due to the proximity of ionized adsorbed molecules are taken into account. The change of the occupied portion of ρa and ρa ( ɛF) at the Fermi level ɛF with increasing θ then manifests itself in the coverage dependent Ωchem not only due to the static back-donation, but also due to the dynamical charge fluctuation during vibrational excitation. It is found that in a weakly chemisorbed system, such as CO/Cu, the negative Ωchem amounts to Ωdip at low θ. Consequently the apparent total frequency shift remains almost constant. As the coverage increases, Ωchem becomes larger than Ωdip due to the band effect. It is also shown that the variation of the back

  2. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  3. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules

    NASA Astrophysics Data System (ADS)

    Ortega Lorenzo, M.; Baddeley, C. J.; Muryn, C.; Raval, R.

    2000-03-01

    The increasing demand of the chemical and pharmaceutical industries for enantiomerically pure compounds has spurred the development of a range of so-called `chiral technologies' (ref. 1), which aim to exert the ultimate control over a chemical reaction by directing its enantioselectivity. Heterogeneous enantioselective catalysis is particularly attractive because it allows the production and ready separation of large quantities of chiral product while using only small quantities of catalyst. Heterogeneous enantioselectivity is usually induced by adsorbing chiral molecules onto catalytically active surfaces. A mimic of one such catalyst is formed by adsorbing (R,R)-tartaric acid molecules on Cu(110) surfaces: this generates a variety of surface phases, of which only one is potentially catalytically active, and leaves the question of how adsorbed chiral molecules give rise to enantioselectivity. Here we show that the active phase consists of extended supramolecular assemblies of adsorbed (R,R)-tartaric acid, which destroy existing symmetry elements of the underlying metal and directly bestow chirality to the modified surface. The adsorbed assemblies create chiral `channels' exposing bare metal atoms, and it is these chiral spaces that we believe to be responsible for imparting enantioselectivity, by forcing the orientation of reactant molecules docking onto catalytically active metal sites. Our findings demonstrate that it is possible to sustain a single chiral domain across an extended surface-provided that reflection domains of opposite handedness are removed by a rigid and chiral local adsorption geometry, and that inequivalent rotation domains are removed by successful matching of the rotational symmetry of the adsorbed molecule with that of the underlying metal surface.

  4. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  5. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    PubMed Central

    Shinohara, Sho; Chiyomaru, You; Sassa, Fumihiro; Liu, Chuanjun; Hayashi, Kenshi

    2016-01-01

    Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size) using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA), composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP) layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules. PMID:27886070

  6. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  7. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  8. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  9. Results of testing various natural gas desulfurization adsorbents

    NASA Astrophysics Data System (ADS)

    Israelson, Gordon

    2004-06-01

    This article presents the results of testing many commercially available and some experimental sulfur adsorbents. The desired result of our testing was to find an effective method to reduce the quantity of sulfur in natural gas to less than 100 ppb volume (0.1 ppm volume). An amount of 100 ppb sulfur is the maximum limit permitted for Siemens Westinghouse solid oxide fuel cells (SOFCs). The tested adsorbents include some that rely only on physical adsorption such as activated carbon, some that rely on chemisorption such as heated zinc oxide, and some that may use both processes. The testing was performed on an engineering scale with beds larger than those used for typical laboratory tests. All tests were done at about 3.45 barg (50 psig). The natural gas used for testing was from the local pipeline in Pittsburgh and averaged 6 ppm volume total sulfur. The primary sulfur species were dimethyl sulfide (DMS), isopropyl mercaptan, tertiary butyl mercaptan, and tetrahydrothiophene. Some tests required several months to achieve a sulfur breakthrough of the bed. It was found that DMS always came through a desulfurizer bed first, independent of adsorption process. Since the breakthrough of DMS always exceeds the 100 ppb SOFC sulfur limit before other sulfurs were detected, an index was created to rate the adsorbents in units of ppm DMS × absorbent bed volume. This index is useful for calculating the expected adsorbent bed lifetime before sulfur breakthrough when the inlet natural gas DMS content is known. The adsorbents that are included in these reports were obtained from suppliers in the United States, the Netherlands, Japan, and England. Three activated carbons from different suppliers were found to have identical performance in removing DMS. One of these activated carbons was operated at four different space velocities and again showed the same performance. When using activated carbon as the basis of comparison for other adsorbents, three high-performance adsorbents

  10. Filter-adsorber aging assessment

    SciTech Connect

    Winegardner, W.K.

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  11. Adsorption characteristics of water vapor on gear-pellet and honeycomb-pellet types of adsorbents containing A-type zeolite

    SciTech Connect

    Nakamura, A.; Munakata, K.; Hara, K.; Narita, S.; Sugiyama, T.; Kotoh, K.; Tanaka, M.; Uda, T.

    2015-03-15

    It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritiated water vapor on adsorbents with high surface areas. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. In this study, attention was focused on new adsorbents, which are gear-type pellet MS5A adsorbent, gear-type pellet MS4A adsorbent and honeycomb-type pellet MS5A adsorbent. The adsorption characteristics of the new adsorbent were comparatively studied with conventional type of adsorbents (pellet-type MS5A adsorbent and pebble-type MS5A adsorbent), in terms of adsorption capacity, pressure loss and adsorption rate. It was found that the adsorption capacity of water vapor on the gear-type adsorbents is higher than that on a honeycomb-type adsorbent. The experimental breakthrough curves indicate that the adsorption rates of water vapor on gear-type and honeycomb-type adsorbents are smaller than that on conventional type adsorbents. Various adsorption models were also tested to correlate the experimental isotherms. It was found that the Langmuir-Freundlich model could properly correlate the experimental adsorption isotherms.

  12. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  13. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  14. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, Shane R.; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D'Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods

  15. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  16. Chemical speciation of adsorbed glycine on metal surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jeong Woo; James, Joanna N.; Sholl, David S.

    2011-07-01

    Experimental studies have reported that glycine is adsorbed on the Cu(110) and Cu(100) surfaces in its deprotonated form at room temperature, but in its zwitterionic form on Pd(111) and Pt(111). In contrast, recent density functional theory (DFT) calculations indicated that the deprotonated molecules are thermodynamically favored on Cu(110), Cu(100), and Pd(111). To explore the source of this disagreement, we have tested three possible hypotheses. Using DFT calculations, we first show that the kinetic barrier for the deprotonation reaction of glycine on Pd(111) is larger than on Cu(110) or Cu(100). We then report that the presence of excess hydrogen would have little influence on the experimentally observed results, especially for Pd(111). Lastly, we perform Monte Carlo simulations to demonstrate that the aggregates of zwitterionic species on Pt(111) are energetically preferred to those of neutral species. Our results strongly suggest that the formation of aggregates with relatively large numbers of adsorbed molecules is favored under experimentally relevant conditions and that the adsorbate-adsorbate interactions in these aggregates stabilize the zwitterionic species.

  17. Chiral switching by spontaneous conformational change in adsorbed organic molecules.

    PubMed

    Weigelt, Sigrid; Busse, Carsten; Petersen, Lars; Rauls, Eva; Hammer, Bjørk; Gothelf, Kurt V; Besenbacher, Flemming; Linderoth, Trolle R

    2006-02-01

    Self-assembly of adsorbed organic molecules is a promising route towards functional surface nano-architectures, and our understanding of associated dynamic processes has been significantly advanced by several scanning tunnelling microscopy (STM) investigations. Intramolecular degrees of freedom are widely accepted to influence ordering of complex adsorbates, but although molecular conformation has been identified and even manipulated by STM, the detailed dynamics of spontaneous conformational change in adsorbed molecules has hitherto not been addressed. Molecular surface structures often show important stereochemical effects as, aside from truly chiral molecules, a large class of so-called prochiral molecules become chiral once confined on a surface with an associated loss of symmetry. Here, we investigate a model system in which adsorbed molecules surprisingly switch between enantiomeric forms as they undergo thermally induced conformational changes. The associated kinetic parameters are quantified from time-resolved STM data whereas mechanistic insight is obtained from theoretical modelling. The chiral switching is demonstrated to enable an efficient channel towards formation of extended homochiral surface domains. Our results imply that appropriate prochiral molecules may be induced (for example, by seeding) to assume only one enantiomeric form in surface assemblies, which is of relevance for chiral amplification and asymmetric heterogenous catalysis.

  18. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    systematically studied adsorption and diffusion of atomic and diatomic species (H, C, N, O, CO, and NO) on nanometer-sized Pt and Cu nanoparticles with...species and two diatomic molecules (H, C, N, O, CO, and NO) as adsorbates and study the adsorption and diffusion of these adsorbates across the edges

  19. Lysozyme adsorption onto mesoporous materials: effect of pore geometry and stability of adsorbents.

    PubMed

    Vinu, Ajayan; Miyahara, Masahiko; Hossain, Kazi Zakir; Takahashi, Motoi; Balasubramanian, Veerappan Vaithilingam; Mori, Toshiyuki; Ariga, Katsuhiko

    2007-03-01

    In this paper, adsorption of lysozyme onto two kinds of mesoporous adsorbents (KIT-5 and AISBA-15) has been investigated and the results on the effects of pore geometry and stability of the adsorbents are also discussed. The KIT-5 mesoporous silica materials possess cage-type pore geometry while the AISBA-15 adsorbent has mesopores of cylindrical type with rather large diameter (9.7 nm). Adsorption of lysozyme onto AISBA-15 aluminosilicate obeys a Langmuir isotherm, resulting in pore occupation of 25 to 30%. In contrast, the KIT-5 adsorbents showed very small adsorption capacities for the lysozyme adsorption, typically falling in 6 to 13% of pore occupation. The cage-type KIT-5 adsorbents have narrow channel (4 to 6 nm) where penetration of the lysozyme (3 x 3 x 4.5 nm) might be restricted. The KIT-5 adsorbent tends to collapse after long-time immersion in water, as indicated by XRD patterns, while the AISBA-15 adsorbent retains its regular structure even after immersion in basic water for 4 days. These facts confirm superiority of the AISBA-15 as an adsorbent as compared with the KIT-5 mesoporous silicates. This research strikingly demonstrates the selection of mesoporous materials is crucial to achieve efficient immobilization of biomaterials in aqueous environment.

  20. Picosecond adsorbate dynamics at condensed phase interfaces

    SciTech Connect

    Scott, T.W.; Chang, Y.J.; Martorell, J.

    1993-12-31

    Picosecond surface second harmonic generation has been used to probe a variety of elementary adsorbate reactions at liquid-solid interfaces. Electron transfer reactions at semiconductor-liquid junctions, geminate recombination of photogenerated free radical pairs and the orientational dynamics of dipolar adsorbates have all been explored in varying degrees of detail. These kinetic studies have led to a detailed analysis of adsorbate detection on the surface of non-centrosymmetric substrates as well as the use of total internal reflection geometries for signal enhancement from optically absorbing liquids. Particular emphasis has been placed on the static and dynamic characterization of adsorbate orientational distribution functions and how these are determined from the torque exerted on adsorbates by the angular part of the molecule-surface interaction potential.

  1. Nanovalved Adsorbents for CH4 Storage.

    PubMed

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications.

  2. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  3. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  4. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  5. Retention of radium from thermal waters on sand filters and adsorbents.

    PubMed

    Elejalde, C; Herranz, M; Idoeta, R; Legarda, F; Romero, F; Baeza, A

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  6. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2000-01-01

    Recent studies suggest that the tendency of many fault gouge minerals to take on adsorbed or interlayer water may strongly influence their frictional strength. To test this hypothesis, triaxial sliding experiments were conducted on 15 different single-mineral gouges with various water-adsorbing affinities. Vacuum dried samples were sheared at 100 MPa, then saturated with water and sheared farther to compare dry and wet strengths. The coefficients of friction, μ, for the dry sheet-structure minerals (0.2-0.8), were related to mineral bond strength, and dropped 20-60% with the addition of water. For non-adsorbing minerals (μ = 0.6-0.8), the strength remained unchanged after saturation. These results confirm that the ability of minerals to adsorb various amounts of water is related to their relative frictional strengths, and may explain the anomalously low strength of certain natural fault gouges.

  7. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  8. Effect of adsorbed chlorine and oxygen on the shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1976-01-01

    Static-friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration, 1.0). The coefficient of static friction decreased with increasing adsorbate concentration; however, it was independent of the type of metal and the adsorbate species. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio of the shear strength of the interface with an adsorbate concentration of 1.0 and the strength of the clean metal interface. This ratio was about 0.835 for all the systems tested.

  9. Effect of adsorbed chlorine and oxygen on the shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1976-01-01

    Static-friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration, 1.0). The coefficient of static friction decreased with increasing adsorbate concentration; however, it was independent of the type of metal and the adsorbate species. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio of the shear strength of the interface with an adsorbate concentration of 1.0 and the strength of the clean metal interface. This ratio was about 0.835 for all the systems tested.

  10. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    PubMed

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  12. A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants.

    PubMed

    Cordero, Teresa; Mohamed, Mohamed A; López-Moya, Juan-José; Daròs, José-Antonio

    2017-01-01

    Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner. Our experiments showed that the mechanical inoculation of solanaceous plants with PVY-Ros1 induced the formation of red infection foci in inoculated tissue and solid dark red pigmentation in systemically infected tissue, which allows disease progression to be easily monitored. By using silver nanoparticles, a nanomaterial with exciting antimicrobial properties, we proved the benefits of PVY-Ros1 to analyze novel antiviral treatments in plants. PVY-Ros1 was also helpful for visually monitoring the virus transmission process by an aphid vector. Most importantly, the anthocyanin analysis of infected tobacco tissues demonstrated that PVY-Ros1 is an excellent biotechnological tool for molecular farming because it induces the accumulation of larger amounts of anthocyanins, antioxidant compounds of nutritional, pharmaceutical and industrial interest, than those that naturally accumulate in some fruits and vegetables well known for their high anthocyanin content. Hence these results support the notion that the virus-mediated expression of regulatory factors and enzymes in plants facilitates easy quick plant metabolism engineering.

  13. R&D for graft adsorbents by radiation processing

    NASA Astrophysics Data System (ADS)

    Seko, Noriaki; Tamada, Masao

    Fibrous adsorbent for removal and recovery of metal ions have been synthesized by graft polymerization. In the grafting, the functional groups which have high selectivity against for target metal ions such as Fe, Sc, As, and U are introduced onto nonwoven fabric. When the monomer has a chelate group which makes selective coordination bond to specific these ions, it was directly grafted on the trunk polymer. In the case of precursor monomer having functional groups such as epoxy ring, the grafted trunk fabric is chemically modified. The resultant fibrous adsorbent leads the swift adsorption of metal ions. This property by using fibrous material can reduce the column size of adsorbent in the purification of waste water. The size of purification equipment becomes quite compact and that implies total volume of equipment can reduce. Instead of organic solvent, emulsion system which disperses monomer micelles in water with assistance of surfactant was found to accelerate the graft polymerization. This means the air pollution from organic solvent can be avoided by water system grafting. Furthermore, since the emulsion grafting was highly efficient, the required irradiation dose was considerably lower compared to general organic solvent system. As a result, the emulsion grafting has enormous potential for natural polymer to use as a trunk material for grafting. If a natural polymer such as cellulose can be used, the dependence on petroleum resources, the amount of industrial waste and the generation of carbon dioxide will be reduced to some extent.

  14. Detection of adsorbed water and hydroxyl on the Moon.

    PubMed

    Clark, Roger N

    2009-10-23

    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  15. Detection of adsorbed water and hydroxyl on the moon

    USGS Publications Warehouse

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  16. Titanium-incorporated organic–inorganic hybrid adsorbent for improved CO{sub 2} adsorption performance

    SciTech Connect

    Zhang, Xiaoyun; Qin, Hongyan; Zhang, Sisi; Wu, Wei

    2015-02-15

    Highlights: • Titanium-incorporated organic–inorganic hybrid adsorbent was prepared. • The incorporation of Ti to the adsorbent showed significant effect. • The sorbent shows high CO{sub 2} capture capacity both in pure and diluted CO{sub 2} at RT. • The sorbent exhibits a high recycling stability after 15 cycling runs. - Abstract: The CO{sub 2} adsorption performance of acrylonitrile (AN)–tetraethylenepentamine (TEPA) adduct (hereafter referred to as TN) impregnated adsorbent was greatly enhanced by introduction of Titanium atom into the silica matrix. The adsorbents were characterized by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption/desorption, UV–vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments together with the physicochemical characterization demonstrated that these adsorbents containing an optimal amount of Titanium (Ti/Si ≈ 0.1) remarkably reinforced the CO{sub 2} adsorption capacity and recycling stability. The highest CO{sub 2} uptakes reached 4.65 and 1.80 mmol CO{sub 2}/g adsorbent at 25 °C under 90% CO{sub 2} (CO{sub 2}/N{sub 2}, 90:10 V/V) and 1% CO{sub 2} (CO{sub 2}/N{sub 2}, 1:99 V/V) conditions for sample Ti(0.1)-DMS-TN, respectively. Repeated adsorption/desorption cycles revealed that the Ti-incorporated adsorbent showed only a tiny decrease in adsorption capacity (1.778 mmol CO{sub 2}/g adsorbent after 15 cycles, decreased by 0.95%), significantly enhanced the adsorbent recycling stability.

  17. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system.

    PubMed

    Shao, Senlin; Feng, Yijing; Yu, Huarong; Li, Jiangyun; Li, Guibai; Liang, Heng

    2017-01-01

    Gravity-driven membrane (GDM) filtration is a promising decentralized drinking water treatment process. To improve the performance of GDM system, a thin layer of adsorbent was pre-deposited on the membrane surface prior to filtration (adsorbent-laden GDM system). The tested adsorbents include powdered activated carbon (PAC) and anion exchange resin (AER), and an unmodified GDM system and a SiO2-laden GDM system were used as controls. In the adsorbent-laden GDM systems, the adsorption of the PAC and AER increased the removal efficiency of natural organic matter by 7.2-43.5% and microcystin-LR, atrazine, and bisphenol A by 7.9-81.2%. The presence of adsorbent particles increased the amount of microorganisms in the cake layer and therefore increased the removal efficiency of assimilable organic matter (AOC) by 20.1-34.4%. In the adsorbent-laden GDM systems, the physically irrecoverable fouling decreased because of the reduction in membrane foulants by the adsorbent layer. However, the presence of adsorbent particles in the cake layer counteracted this effect and increased the physically recoverable fouling. Consequently, the pre-deposited adsorbent layers had only a limited effect on the stabilized flux (2.26-2.65 L/m(2) h). A bilayer structure was found in the cake layer of the adsorbent-laden GDM systems via scanning electron microscopy (SEM), and the cake layer was looser in the presence of adsorbent particles. These results demonstrate that pre-depositing a thin layer of adsorbents on the membrane surface of the GDM system can significantly improve the quality of the permeate without decreasing the stabilized flux. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Volumetric interpretation of protein adsorption: capacity scaling with adsorbate molecular weight and adsorbent surface energy.

    PubMed

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A

    2009-12-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near tau(o) = 30 dyne/cm (theta approximately 65 degrees) for all protein/surface combinations studied (where tau(o) identical with gamma(lv)(o) costheta is the water adhesion tension, gamma(lv)(o) is the interfacial tension of pure-buffer solution, and theta is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining "layer" thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein

  19. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  20. To-date spacecraft applications and demonstration testing results, and future product development for new molecular adsorber technologies

    NASA Technical Reports Server (NTRS)

    Thomson, Shaun; Hansen, Patricia; Straka, Sharon; Chen, Philip; Triolo, Jack; Bettini, Ron; Carosso, Paolo; Carosso, Nancy

    1997-01-01

    The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.

  1. DBPs removal in GAC filter-adsorber.

    PubMed

    Kim, Jinkeun; Kang, Byeongsoo

    2008-01-01

    A rapid sand filter and granular activated carbon filter-adsorber (GAC FA) were compared in terms of dissolved organic carbon (DOC) and disinfection by-products (DBPs) removal. A water treatment plant (WTP) that had a high ammonia concentration and DOC in raw water, which, in turn, led to a high concentration of DBPs because of a high dose of pre-chlorination, was investigated. To remove DBPs and DOC simultaneously, a conventional rapid sand filter had been retrofitted to a GAC FA at the Buyeo WTP in Korea. The overall removal efficiency of DBPs and DOC was higher in the GAC FA than in the sand filter, as expected. Breakthrough of trihalomethanes (THMs) was noticed after 3 months of GAC FA operation, and then removal of THMs was minimal (<10%). On the other hand, the removal efficiency of five haloacetic acids (HAA(5)) in the GAC FA was better than that of THMs, though adsorption of HAA(5) decreased rapidly after 3.5 months of GAC FA operation. And then, gradual improvement (>90%) in HAA(5) removal efficiency was again observed, which could be attributed to biodegradation. At the early stage of GAC FA operation, HAA(5) removal was largely due to physical adsorption, but later on biodegradation appeared to prevail. Biodegradation of HAA(5) was significantly influenced by water temperature. Similar turbidity removal was noticed in both filters, while better manganese removal was confirmed in the sand filter rather than in the GAC FA.

  2. Feasibility of fullerene waste as carbonaceous adsorbent

    SciTech Connect

    Cleveland, T.G.; Garg, S.; Rixey, W.G.

    1996-03-01

    This note investigates using the waste soot generated in fullerene manufacture as an adsorbent. Both oven-dried and air-activated samples of waste soot are compared with three commercially available powdered activated carbons (PACs): Nuchar-SA, HDH, and Calgon-RC. Three model compounds were chosen for adsorption tests--TCE, Benzene, and Phenol--representing a small branched molecule, a small nonpolar ring molecule, and relatively polar ring molecule. Additionally, the effectiveness of total organic carbon (TOC) removal from wastewater was evaluated. Oven-dried soot performed poorly as compared to the commercial carbons, but activation of the waste soot for 60 min at 450 C in air resulted in an activated carbon (aFWS) with properties similar to those of commercially available PACs. The aFWS performed better than one would predict from the typical characterization measures of iodine number, molasses number, and methylene blue number. The data for phenol suggest some functional groups are created during the activation of the waste soot. These results show that large-scale fullerene manufacturing can be a zero-waste industry, because its primary waste product can be converted into a useful material.

  3. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance.

  4. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-05

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.

  5. Adsorbed molecules in external fields: Effect of confining potential

    NASA Astrophysics Data System (ADS)

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.

  6. Chitin Adsorbents for Toxic Metals: A Review.

    PubMed

    Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N; Kyzas, George Z

    2017-01-07

    Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  7. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  8. Chitin Adsorbents for Toxic Metals: A Review

    PubMed Central

    Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N.; Kyzas, George Z.

    2017-01-01

    Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth. PMID:28067848

  9. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  10. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  11. IR investigations of surfaces and adsorbates

    SciTech Connect

    Gwyn Williams

    2001-12-10

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  12. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  13. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  14. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  16. Supported Ag nanoparticles as trace iodide adsorbent from acetic acid

    NASA Astrophysics Data System (ADS)

    Qian, Qingli; Shao, Shouyan; Yan, Fang; Ling, Chen; Yan, Fengwen; Cao, Hongbing; Guo, Cun-Yue; Yuan, Guoqing

    2012-09-01

    Ag nanoparticles (AgNPs) were used as adsorbent to remove trace iodide from acetic acid. Under identical conditions, AgNPs adsorbent with 0.5 wt % Ag has the same performance as commercial adsorbent with 10 wt % Ag+. In addition, Ag loss of AgNPs adsorbent is remarkably lower than that of commercial adsorbent. The Ag content in AgNPs adsorbent affects its adsorption performance, and the optimal content is 1.0 wt %. Saturated AgNPs adsorbent can be regenerated by hydrogen reduction and reused with satisfying performance. The properties of AgNPs adsorbent are based on surface effect of nanoparticles, differing from commercial Ag+ type adsorbents. In a word, AgNPs adsorbent is of high efficiency, low Ag loss and easy recycling, thus making it "green adsorbent" for removing iodide from acetic acid.

  17. A new soil test for quantitative measurement of available and adsorbed boron

    USDA-ARS?s Scientific Manuscript database

    Boron soil tests currently in use, do not extract all plant available B but are used by relating the extractable amount of B to plant B content. There is a need to accurately measure all plant available or adsorbed B because B can be toxic to plants at elevated concentrations and can cause marked y...

  18. Universal singularities of multilayer adsorption isotherms and determination of surface area of adsorbents

    SciTech Connect

    Aranovich, G.L.; Donohue, M.D.

    1996-07-15

    The singularity in the adsorption isotherm for macroporous and nonporous adsorbents is considered as a universal function that can be characterized with two parameters: a coefficient of proportionality, K, and an exponent, d. It is shown that the value of K is proportional to the adsorbent surface area but does not depend on the nature of the adsorbent. This leads to a new method to determine the surface area of an adsorbent, S, that is independent of the form of the adsorption isotherm at low and moderate reduced pressures. Comparison with the BET areas for nitrogen shows that the new method gives the values of S which are very close to the BET results if K = 1.47 {times} 10{sup {minus}5} mol/m{sup 2} (for nitrogen). Analysis of adsorption data for macroporous adsorbents shows that the BET isotherm gives systematic deviations and that the experimental amount adsorbed is smaller than the value predicted by the BET equation (even in the range of the best agreement with experiment). These deviations lead to systematic error in the values of S of about 43%. Using K equal to K{sub f} = 1/{sigma}N{sub A} (=1.025 {times} 10{sup {minus}5} mol/m{sup 2} for nitrogen), the authors are able to eliminate systematic error in the surface area determination. Here {sigma} is the area occupied by one molecule and N{sub A} is the Avogadro number.

  19. Direct observation of the photodegradation of anthracene and pyrene adsorbed onto mangrove leaves.

    PubMed

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs.

  20. Infrared study on the adsorbed state of ammonia on heteropoly compounds

    SciTech Connect

    Seo, Gon; Lim, Jeong-Woo ); Kim, Jong-Taik )

    1988-12-01

    A heteropoly compound is one of the strongly active acid catalysts which can be used for several acid catalyzed reaction. One property of heteropoly compounds as a solid acid catalyst is that there are acid sites on the surface as well as in the bulk. The other property of these catalysts is that nitrogen compounds such as pyridine and ammonia are easily adsorbed as a pseudo-liquid phase in the bulk. Kim et al. reported that there was no correlation between the adsorbed amounts of pyridine and those of ammonia on heteropoly compounds. They suggested that ammonia could be adsorbed on an acid site of a heteropoly compound as well as on a metal cation. The adsorption of ammonia as an amine structure on copper containing heteropoly compound was discussed by Saito et al. However, a systematic study on the adsorbed state of ammonia on the heteropoly compound was not reported. This paper reports an investigation of the infrared spectra of ammonia adsorbed on a heteropoly compound to illustrate the possible states of the adsorbed ammonia.

  1. Direct Observation of the Photodegradation of Anthracene and Pyrene Adsorbed onto Mangrove Leaves

    PubMed Central

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs. PMID:25144741

  2. (2) Characterization and adsorption properties of selective adsorbents for high decontamination of cesium

    NASA Astrophysics Data System (ADS)

    Mimura, Hitoshi; Yamagishi, Isao

    Large amounts of high-activity-level water accumulated in the reactor, turbine building and the trench in the facility were generated from the nuclear accident of Fukushima NPP1 caused by the Great East Japan Earthquake, which resulted in the operation obstacles and environmental contamination. As of October, 2011, the circulating injection cooling system is effectively operated and the cold shutdown is completed, while the amounts of high-activity-level water are estimated to be over 200,000 m3 in future. However, at present, the treatment and disposal methods for the solid wastes (zeolites, insoluble ferrocyanides and crystalline silicotitanate) are not yet decided. In particular, there is no experience in the treatment and disposal of high decontamination solid materials such as insoluble ferrocyanides and crystalline silicotitanate. Hence the development of effective treatment and disposal methods are very urgent and important subjects. This special issue deals with the characterization and adsorption properties of selective adsorbents for high decontamination of cesium and the subjects for the treatment and disposal of solid wastes.

  3. High performance of a unique mesoporous polystyrene-based adsorbent for blood purification

    PubMed Central

    Chen, Jian; Han, Wenyan; Chen, Jie; Zong, Wenhui; Wang, Weichao; Wang, Yue; Cheng, Guanghui; Li, Chunran; Ou, Lailiang; Yu, Yaoting

    2017-01-01

    A multi-functional polystyrene based adsorbent (NKU-9) with a unique mesoporous and a high surface area was prepared by suspension polymerization for removal of therapeutic toxins in blood purification. The adsorbent produced had an almost equal amount of mesopore distribution in the range from 2 to 50 nm. The adsorption of serum toxins with different molecular weights were examined by in vitro adsorption assays and compared with some clinical currently used adsorbents such as HA-330, Cytosorb and BL-300 which are produced by China, America and Japan, respectively. Test results indicated that the adsorption rate for pentobarbital by NKU-9 was 81.24% which is nearly as high as HA-330 (81.44%). The latter adsorbent is currently used for acute detoxification treatment in China. To reach adsorption equilibrium, NKU-9 was faster than HA-330, which implies short treatment time. For the removal of middle molecular toxins such as β2-microglobulin (98.88%), NKU-9 performed better adsorptive selectivity than Cytosorb (92.80%). In addition, NKU-9 showed high performance for the removal of albumin-bound toxins (e.g., bilirubin), and its adsorption rate for total bilirubin (80.79%) in plasma was 8.4% higher than that of anion exchange resin BL-300 which is currently used to eliminate bilirubin in clinic. Therefore, our results indicate that the newly developed adsorbent with a wide distribution and almost equal amount of mesopores is a multifunctional adsorbent for high efficient removal of serum toxins with different molecular weights which might be an excellent blood purification adsorbent especially to treat diseases that conventional medical methods are low or not efficient. PMID:28149527

  4. A study of the alumina-silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid.

    PubMed

    Yokoyama, Takushi; Ueda, Akira; Kato, Koichi; Mogi, Katsumi; Matsuo, Shorin

    2002-08-01

    Two kinds of adsorbents (Si adsorbent and Al adsorbent) for the removal of silicic acid from geothermal water to retard the formation of silica scales were prepared using silicic acid contained in geothermal water. The Si adsorbent was prepared by evaporating geothermal water, and the Al adsorbent was prepared by evaporating geothermal water after the addition of aluminum chloride. The specific surface area of the Si adsorbent was small and it's adsorption capacity of silicic acid was low. Although the specific surface area of the Al adsorbent was also small, it was significantly increased by the adsorption of silicic acid and it's adsorption capacity was high. Based on the change in the local structure of aluminum ion by the adsorption of silicic acid, the Al adsorbent was considered to be silica particles covered with crystalline aluminum hydroxide. Moreover, it was concluded that the increase in the specific surface area of the Al adsorbent and the decrease in the zeta potential were due to the formation of an amorphous aluminosilicate with a large surface area and a negative charge (one 4-coordinated Al) by the reaction between aluminum ions and silicic acids.

  5. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil.

    PubMed

    Drese, Jeffrey H; Talley, Anne D; Jones, Christopher W

    2011-03-21

    The fast pyrolysis of biomass is a potential route to the production of liquid biorenewable fuel sources. However, degradation of the bio-oil mixtures due to reaction of oxygenates, such as aldehydes and ketones, reduces the stability of the liquids and can impact long-term storage and shipping. Herein, solid aminosilica adsorbents are described for the selective adsorptive removal of reactive aldehyde and ketone species. Three aminosilica adsorbents are prepared through the reaction of amine-containing silanes with pore-expanded mesoporous silica. A fourth aminosilica adsorbent is prepared through the ring-opening polymerization of aziridine from pore-expanded mesoporous silica. Adsorption experiments with a representative mixture of bio-oil model compounds are presented using each adsorbent at room temperature and 45 °C. The adsorbent comprising only primary amines adsorbs the largest amount of aldehydes and ketones. The overall reactivity of this adsorbent increases with increasing temperature. Additional aldehyde screening experiments show that the reactivity of aldehydes with aminosilicas varies depending on their chemical functionality. Initial attempts to regenerate an aminosilica adsorbent by acid hydrolysis show that they can be at least partially regenerated for further use.

  6. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  7. Quick, easy, cheap, effective, rugged and safe method with magnetic graphitized carbon black and primary secondary amine as adsorbent and its application in pesticide residue analysis.

    PubMed

    Zheng, Hao-Bo; Zhao, Qin; Mo, Jie-Zhen; Huang, Yun-Qing; Luo, Yan-Bo; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-07-26

    By using magnetic graphitized carbon black and primary secondary amine (GCB/PSA/MNPs) as adsorbent, a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was proposed for pesticide residue analysis in vegetables. The magnetic adsorbent was fabricated via simple co-mixing method based on an "aggregate warp" mechanism. To achieve the optimum conditions of modified QuEChERS toward target analytes, several parameters, including the composition of analyte protectants and the amount of the adsorbents were investigated. Under the optimized conditions, a simple, rapid and effective method for the determination of 10 pesticide residues in vegetables was established by coupling modified QuEChERS to gas chromatography/mass spectrometry analysis. The detection limits of the proposed method for 10 pesticides ranged from 0.39 to 8.6ng/g. Good linearity (R value≥0.990) was achieved at concentration levels of 10-200ng/g, and acceptable method reproducibility was found as intra- and inter-day precisions, yielding the relative standard deviations less than 10.7% and 13.4%, respectively. The recoveries were in the range of 69.9-125.0% at different concentrations for real samples. Compared with the reported methods for the determination of a large number of samples, the proposed method has the advantage of less time-consuming in clean-up procedure.

  8. Local structure and distribution of remaining elements inside extraction chromatography adsorbents

    NASA Astrophysics Data System (ADS)

    Watanabe, Sou; Sano, Yuichi; Shiwaku, Hideaki; Yaita, Tsuyoshi; Ohno, Simpei; Arai, Tsuyoshi; Matsuura, Haruaki; Koka, Masashi; Satoh, Takahiro

    2017-08-01

    A new adsorbent of the extraction chromatography technology impregnating CMPO and HDEHP extractants for minor actinide recovery process was prepared and fundamental performance were evaluated by batch-wise adsorption/elution experiments, EXAFS analysis and PIXE-CT analysis. Selective minor actinides recovery from the adsorbent charging minor actinides and lanthanides was revealed to be possible owing to synergistic extraction of lanthanides by CMPO and HDEHP. Discharging the residual lanthanides is essential for repeated use of the adsorbent, and ammonium acetate solution was proposed as an appropriate eluent although the elution ratio is not large enough. In order to enhance the elution performance of the lanthanides, improvements in structure of the adsorbent as well as in the eluent were shown to be important.

  9. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    SciTech Connect

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  10. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample.

    PubMed

    Zhu, Shuyun; Niu, Wenxin; Li, Haijuan; Han, Shuang; Xu, Guobao

    2009-10-15

    Single-walled carbon nanohorn (SWCNH) was developed as new adsorbent for solid-phase extraction using 4-nitrophenol as representative. The unique exoteric structures and high surface area of SWCNH allow extracting a large amount of 4-nitrophenol over a short time. Highly sensitive determination of 4-nitrophenol was achieved by linear sweep voltammetry after only 120s extraction. The calibration plot for 4-nitrophenol determination is linear in the range of 5.0x10(-8) M-1.0x10(-5) M under optimum conditions. The detection limit is 1.1x10(-8) M. The proposed method was successfully employed to determine 4-nitrophenol in lake water samples, and the recoveries of the spiked 4-nitrophenol were excellent (92-106%).

  11. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  12. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  13. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  14. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  15. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil.

    PubMed

    Kawano, Shintaro; Kida, Toshiyuki; Miyawaki, Kazuhiro; Noguchi, Yuki; Kato, Eiichi; Nakano, Takeshi; Akashi, Mitsuru

    2014-07-15

    A total of 179 countries (parties) ratified the Stockholm Convention on persistent organic pollutants (POPs) and agreed to destroy polychlorobiphenyls (PCBs) and develop a sound management plan by 2028. Currently, still 3 million tons of PCB-contaminated oil and equipment need to be managed under the Stockholm Convention. Thus, the development of a facile and environmentally benign method to treat large amounts of oil stockpiles contaminated with PCBs is a crucial subject. Herein, we report that cyclodextrin (CD) polymers, which are easily prepared by cross-linking the renewable cyclic oligosaccharide γ-cyclodextrin (γ-CD) with dibasic acid dichlorides, are a new selective and powerful adsorbent to remove PCB contaminants in oil. When PCB (100 ppm)-contaminated oil was passed through a column packed with the terephthaloyl-cross-linked γ-CD polymer (TP-γ-CD polymer) at 80-110 °C, the PCB contaminants were completely removed from the oil. Additionally, methyl esterification of the free carboxylic groups of the TP-γ-CD polymer enabled the complete recovery of the PCBs adsorbed on the polymer (with >99.9% recovery efficiency) by simply washing with acetone. The methyl-esterified TP-γ-CD polymer could be recycled at least 10 times for PCB adsorption without any loss in the adsorption capability. These results revealed that the γ-CD polymers can function as highly effective and powerful adsorbents for the removal and recovery of PCBs from PCB-contaminated oil and, thus, significantly contribute to the protection of the global environment.

  16. Efficient Eley-Rideal Reactions of H Atoms with Single Cl Adsorbates on Au(111)

    NASA Astrophysics Data System (ADS)

    Lemoine, Didier; Quattrucci, Joseph G.; Jackson, Bret

    2002-12-01

    Density functional theory is used to construct an interaction model for H atoms with Cl over Au(111). Single-adsorbate Eley-Rideal reactions are investigated with quantum and quasiclassical methods. The reaction cross sections, amounting to 2-3 Å2, are much larger than for HD recombinations on metals. This can be traced to the adsorbed Cl being relatively far above the surface, the H-Cl interaction prevailing over the H-substrate attraction for a sizable range of impact parameters.

  17. Adsorbent catalytic nanoparticles and methods of using the same

    DOEpatents

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  18. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  19. Standoff spectroscopy of surface adsorbed chemicals.

    PubMed

    Van Neste, C W; Senesac, L R; Thundat, T

    2009-03-01

    Despite its immediate applications, selective detection of trace quantities of surface adsorbed chemicals, such as explosives, without physically collecting the sample molecules is a challenging task. Standoff spectroscopic techniques offer an ideal method of detecting chemicals without using a sample collection step. Though standoff spectroscopic techniques are capable of providing high selectivity, their demonstrated sensitivities are poor. Here we describe standoff detection of trace quantities of surface adsorbed chemicals using two quantum cascade lasers operated simultaneously, with tunable wavelength windows that match with absorption peaks of the analytes. This standoff method is a variation of photoacoustic spectroscopy, where scattered light from the sample surface is used for exciting acoustic resonance of the detector. We demonstrate a sensitivity of 100 ng/cm(2) and a standoff detection distance of 20 m for surface adsorbed analytes such as explosives and tributyl phosphate.

  20. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  1. Gaseous and adsorbed PAH in an iron foundry.

    PubMed

    Knecht, U; Elliehausen, H J; Woitowitz, H J

    1986-12-01

    The increased risk of lung cancer among foundry workers is assumed to be associated with the inhalation of gaseous and particle bound polycyclic aromatic hydrocarbons (PAH). These compounds are produced during pyrolysis of carbon containing loading material in the moulding sand. The concentrations of 20 PAH, some of which are carcinogenic, have been determined in the dusty casting area of an iron foundry by means of gas chromatography and mass spectrometry. The total dust was fractionated by means of a precision cascade impactor. It was possible to differentiate the PAH load in microgram/mg dust in seven particle size fractions ranging from 0.36- greater than or equal to 24.95 microns. Initially, there was an increase of the adsorbed PAH mass concentration with increasing particle diameter up to a maximum of 1.1 microgram/mg in the dust of the 1.57 micron fraction. Thereafter there was a continuous decrease of PAH mass concentration with increasing particle size. When the differing weights of the seven fractions are taken into account, however, the total PAH load of the individual fractions increases steadily with increasing particle size. The inhalable fine dust, 31.4% of the total dust, contains 49.9% of the total adsorbed PAH. The gas phase contained on average three times more carcinogenic PAH with four and five rings than was adsorbed on the dust. Thus the percentage of the gaseous substances amounts to 77% of the total PAH load at the place of work in an iron foundry.

  2. Gaseous and adsorbed PAH in an iron foundry.

    PubMed Central

    Knecht, U; Elliehausen, H J; Woitowitz, H J

    1986-01-01

    The increased risk of lung cancer among foundry workers is assumed to be associated with the inhalation of gaseous and particle bound polycyclic aromatic hydrocarbons (PAH). These compounds are produced during pyrolysis of carbon containing loading material in the moulding sand. The concentrations of 20 PAH, some of which are carcinogenic, have been determined in the dusty casting area of an iron foundry by means of gas chromatography and mass spectrometry. The total dust was fractionated by means of a precision cascade impactor. It was possible to differentiate the PAH load in microgram/mg dust in seven particle size fractions ranging from 0.36- greater than or equal to 24.95 microns. Initially, there was an increase of the adsorbed PAH mass concentration with increasing particle diameter up to a maximum of 1.1 microgram/mg in the dust of the 1.57 micron fraction. Thereafter there was a continuous decrease of PAH mass concentration with increasing particle size. When the differing weights of the seven fractions are taken into account, however, the total PAH load of the individual fractions increases steadily with increasing particle size. The inhalable fine dust, 31.4% of the total dust, contains 49.9% of the total adsorbed PAH. The gas phase contained on average three times more carcinogenic PAH with four and five rings than was adsorbed on the dust. Thus the percentage of the gaseous substances amounts to 77% of the total PAH load at the place of work in an iron foundry. PMID:3801335

  3. Single-molecule measurements of adsorbed polymer

    NASA Astrophysics Data System (ADS)

    Yu, Changqian; Guan, Juan; Bae, Sung Chul; Granick, Steve

    2011-03-01

    Single-molecule tracking is used to study the surface mobility of PEG (polyethylene glycol) chains adsorbed to the solid-liquid interface from dilute aqueous solution. The end-labeled chains are visualized by objective-based total internal reflection fluorescence microscopy (TIRFM) and their trajectories are analyzed after cleaning the images with denoising algorithms. Surface mobility, which in this system depends on pH, is decomposed into one family of chains which remains adsorbed over the observation time window, and another family that appears to translate from point to point by hopping. This we quantify with nm-level resolution.

  4. Time Resolved Studies Of Adsorbed Species

    NASA Astrophysics Data System (ADS)

    Howard, J.; Nicol, J. M.

    1985-12-01

    A time-resolved Fourier transform IR study of ethyne adsorbed on ZnNaA zeolite yields results very different from those reported for related systems. Initially two species (A and B) are formed by the interaction of C2H2 with the cations. Whereas species A (π-bonded C2H2) was found to be removed immediately on evacuation, species B (probably Zn-acetylide) was not fully removed after 60 mins evacuation. In the presence of the gas phase, bands due to Species A decreased slowly in intensity as new bands due to adsorbed ethanal were observed.

  5. PROBING THE CONFORMATION AND ORIENTATION OF ADSORBED ENZYMES USING SIDE-CHAIN MODIFICATION

    PubMed Central

    Fears, Kenan P.; Sivaraman, Balakrishnan; Powell, Gary L.; Wu, Yonnie; Latour, Robert A.

    2013-01-01

    The bioactivity of enzymes that are adsorbed on surfaces can be substantially influenced by the orientation of the enzyme on the surface and adsorption-induced changes in the enzyme’s structure. Circular dichroism (CD) is a powerful method for observing the secondary structure of proteins; however, it provides little information regarding the tertiary structure of a protein or its adsorbed orientation. In this study, we developed methods using side-chain specific chemical modification of solvent-exposed tryptophan residues to complement CD spectroscopy and bioactivity assays to provide greater detail regarding whether changes in enzyme bioactivity following adsorption are due to adsorbed orientation and/or adsorption-induced changes in the overall structure. These methods were then applied to investigate how adsorption influences the bioactivity of hen egg white lysozyme (HEWL) and glucose oxidase (GOx) on alkanethiol self-assembled monolayers (SAMs) over a range of surface chemistries. The results from these studies indicate that surface chemistry significantly influences the bioactive state of each of these enzymes, but in distinctly different ways. Changes in the bioactive state of HEWL are largely governed by its adsorbed orientation, while the bioactive state of adsorbed GOx is influenced by a combination of both adsorbed orientation and adsorption-induced changes in conformation. PMID:19610641

  6. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    PubMed

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  7. Solvent cleanup using base-treated silica gel solid adsorbent

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO/sub 3/, dibutyl phosphate (DBP), UO/sub 2//sup 2 +/, Pu/sup 4 +/, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO/sub 3/ waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables.

  8. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    PubMed

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m(2)/g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O(-) groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.

  9. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    NASA Technical Reports Server (NTRS)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  10. Radon emanation from radium specific adsorbents.

    PubMed

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  11. Collision induced migration of adsorbates on surfaces

    NASA Astrophysics Data System (ADS)

    Romm, L.; Asscher, M.; Zeiri, Y.

    1999-06-01

    Collision induced migration (CIM) has been identified as a new surface phenomenon and has been studied for the first time using molecular dynamics simulations. The CIM process was represented by an energetic gas phase argon atom, striking an adsorbed nitrogen molecule on Ru(001). The efficiency of CIM was investigated as a function of the collider initial kinetic energy and angle of incidence. It was found that at low coverages an adsorbed molecule can migrate more than 150 Å following collisions at high energies and grazing angles of incidence. As coverage increases, inter-adsorbate collisions result in significant reduction of migration distances. At high energies, the competing process of collision induced desorption becomes dominant, leaving behind molecules which migrate shorter distances. These competing channels lead to a collision energy for which CIM is maximized. For the N2/Ru system, the CIM process is most effective near collider energy of 2.0 eV. This new surface phenomenon of CIM has to be considered for better understanding the full range of surface processes which govern industrial high pressure catalysis. At the tail of the thermal kinetic energy distribution, energetic colliders from the gas phase lead to CIM and generate high energy inter-adsorbate collisions, sometimes discussed in terms of "hot-particle" chemistry.

  12. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    PubMed

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-11-24

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  13. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Yu, Tianlin; Liu, Siqi; Xu, Min; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-08-01

    A novel aminated cellulose microsphere adsorbent (CVN) was successfully prepared by radiation-induced graft polymerization of vinylbenzyl chloride (VBC) onto cellulose microsphere (CMS), followed by amination. Micro-FTIR, XPS and SEM confirmed the structure of CVN. The adsorption behavior of Cr(VI) onto CVN from solution was well fitted by the pseudo-second order kinetic model. The isothermal adsorption of Cr(VI) was observed at pH 4.68 with adsorption capacity of 129 mg/g in accordance with Langmuir thermal model, and the removal of Cr(VI) from solution could be 91% at a low amount (20 mg) of adsorbent. The best pH for adsorption of Cr(VI) was nearly 3.08, and with the increasing of temperature, the adsorption capacity of Cr(VI) increased. XPS analysis confirmed the adsorption mechanism of Cr(VI) was ion-exchange mechanism, while common co-ions such as Na+, Mg2+, Cu2+, Ca2+, Zn2+, Ni2+, Cl-, NO3- has no significant effect on the adsorption capacity of Cr(VI), and the Cr(VI) removal of 80% still could be obtained compared with that of fresh CVN adsorbent. Finally, spent CVN could be regenerated under 2 mol/L NaCl. The work indicated that aminated cellulose adsorbent could be prepared successfully by radiation-induced grafting and amination and CVN is a promising bio-adsorbent in the removing Cr(VI) from waste water.

  14. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  15. In vitro antibacterial efficacy of tetracycline hydrochloride adsorbed onto Bio-Oss bone graft.

    PubMed

    Dashti, A; Ready, D; Salih, V; Knowles, J C; Barralet, J E; Wilson, M; Donos, N; Nazhat, S N

    2010-05-01

    Local delivery of antibiotics may provide the advantage of reducing the potential side effects associated with their systemic administration. This study assessed, in vitro, the antimicrobial efficacy of tetracycline hydrochloride (TCH) adsorbed onto Bio-Oss bone grafts against a range of pathogenic bacteria. Various levels of TCH were adsorbed onto Bio-Oss granules by immersing in TCH aqueous solutions of different initial concentrations for 48 h at room temperature. TCH release was assessed in phosphate buffered saline at 37 degrees C, and its antimicrobial efficacy, up to 96 h, was tested against two Gram-negative bacteria associated with periodontal diseases: Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans, and Porphyromonas gingivalis, and one Gram-positive bacterium associated with soft-tissue and bone infections: Staphylococcus aureus. The range of TCH concentrations studied was also assessed for cytotoxicity against osteoblast-like human osteosarcoma cell lines. The amount of TCH adsorbed and released from Bio-Oss was concentration dependent. All TCH adsorbed Bio-Oss resulted in a reduction of A. actinomycetemcomitans, P. gingivalis, and S. aureus and higher concentrations were generally more effective in reducing or eliminating bacterial growth. The proliferation of HOS cells was not substantially reduced except for the maximum concentration of TCH. In addition to its osteoconductive role, TCH adsorbed Bio-Oss could also be functional in negating systemically antibiotic prophylactic treatment in the prevention of implant or biomaterial related infections. (c) 2010 Wiley Periodicals, Inc.

  16. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  17. Development and testing of molecular adsorber coatings

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2012-10-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulas that passed coating adhesion and vacuum thermal cycling were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  18. Development and Testing of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  19. Phase diagram of hydrogen adsorbed on Ni(111)

    NASA Astrophysics Data System (ADS)

    Nagai, Kiyoshi; Ohno, Yuichi; Nakamura, Takashi

    1984-08-01

    The phase diagram for the H/Ni(111) system is calculated by treating a lattice gas on a honeycomb lattice through the position-space renormalization-group theory with prefacing transformation. The following interparticle interactions are considered: (A) nearest-neighbor exclusion, second-neighbor repulsion, and third-neighbor attraction, which was previously proposed by Domany et al.; (B) nearest-neighbor exclusion, second- and third-neighbor repulsions, and further-neighbor interactions up to the sixth-neighbor one. When the interaction parameters involved are suitably adjusted, both the interactions (A) and (B) lead to the phase diagrams in good agreement with the experimental one by Christmann et al. The change of the isosteric heat of hydrogen adsorption with the adsorbed amount is also calculated. The result obtained from interaction (B) is consistent with experiment, whereas that from interaction (A) is not.

  20. In Situ Investigation the Photolysis of the PAHs Adsorbed on Mangrove Leaf Surfaces by Synchronous Solid Surface Fluorimetry

    PubMed Central

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous solid surface fluorimetry (S-SSF) was utilized for in situ study the photolysis processes of anthracene (An) and pyrene (Py) adsorbed on the leaf surfaces of Kandelia obovata seedlings (Ko) and Aegiceras corniculata (L.) Blanco seedlings (Ac). Experimental results demonstrated that the photolysis of An and Py adsorbed on the leaf surfaces of two mangrove species under the laboratory conditions, followed first-order kinetics with their photolysis rates in the order of Ac>Ko. In addition, with the same amount of substances, the photolysis rate of An adsorbed on the same mangrove leaf surfaces was much faster than the adsorbed Py. In order to investigate further, the photolysis processes of An and Py in water were also studied for comparison. And the photolysis of An and Py in water also followed first-order kinetics. Moreover, for the same initial amount, the photolysis rate of the PAH in water was faster than that adsorbed on the leaf surfaces of two mangrove species. Therefore, photochemical behaviors of PAHs were dependent not only on their molecular structures but also the physical-chemical properties of the substrates on which they are adsorbed. PMID:24404158

  1. In situ investigation the photolysis of the PAHs adsorbed on mangrove leaf surfaces by synchronous solid surface fluorimetry.

    PubMed

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous solid surface fluorimetry (S-SSF) was utilized for in situ study the photolysis processes of anthracene (An) and pyrene (Py) adsorbed on the leaf surfaces of Kandelia obovata seedlings (Ko) and Aegiceras corniculata (L.) Blanco seedlings (Ac). Experimental results demonstrated that the photolysis of An and Py adsorbed on the leaf surfaces of two mangrove species under the laboratory conditions, followed first-order kinetics with their photolysis rates in the order of Ac>Ko. In addition, with the same amount of substances, the photolysis rate of An adsorbed on the same mangrove leaf surfaces was much faster than the adsorbed Py. In order to investigate further, the photolysis processes of An and Py in water were also studied for comparison. And the photolysis of An and Py in water also followed first-order kinetics. Moreover, for the same initial amount, the photolysis rate of the PAH in water was faster than that adsorbed on the leaf surfaces of two mangrove species. Therefore, photochemical behaviors of PAHs were dependent not only on their molecular structures but also the physical-chemical properties of the substrates on which they are adsorbed.

  2. In-situ leaching of south Texas uranium ores--part 2: oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  3. In-situ leaching of south Texas uranium ores--part 2: Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  4. Influence of the Adsorbent Material in the Performances of a Micro Gas Preconcentrator

    NASA Astrophysics Data System (ADS)

    Camara, E. H. M.; Breuil, P.; Briand, D.; Guillot, L.; Pijolat, C.; Viricelle, J. P.; de Rooij, N. F.

    2009-05-01

    This paper presents the evaluation of different adsorbents for the improvement of the performances of a gas preconcentrator by targeting the adsorption of a large range of volatiles organics compounds (VOCs) The objectives of this work are to find the adequate adsorbent for a given gas target in specific experimental conditions and to select an efficient deposition process. Results related to the characterization of carbon nanopowders, carbon nanotubes (single walled (SWCNTs) and multi walled (MWCNTs)) and polymer (Tenax TA) for the development of a device for benzene preconcentration are reported. These results provide guidelines to define the right adsorbent for the preconcentration of benzene according to some specific criterions such as a large specific surface, a high adsorption capacity and low desorption temperature.

  5. Insights into the origin of the separation selectivity with silica hydride adsorbents.

    PubMed

    Kulsing, Chadin; Nolvachai, Yada; Marriott, Philip J; Boysen, Reinhard I; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2015-02-19

    In this study, the surface properties of type-B silica have been compared with an unmodified silica hydride phase, a diamond hydride phase and silica hydride phases modified with bidentate anchored octyl (BDC8), bidentate anchored octadecyl (BDC18), phenyl and cholesteryl groups. Atomic distributions of the surface elemental composition of each type of stationary phase were determined using energy-dispersive X-ray spectroscopy. For the type-B silica, unmodified silica hydride, diamond hydride as well as BDC18 and cholesteryl silica hydride phases, the increase in carbon contents correlated with more negative surface ζ potential values (R(2) = 0.92). The origin of these more negative ζ potentials has been evaluated with mobile phases up to 100% (v/v) methanol content, with this property attributed to either an increase in the amount of adsorbed hydroxide ions or a decrease in the amount of adsorbed protons on the surfaces modified silica hydride phases of higher carbon content. This property of chemically modified silica hydride phases is in accordance with the unique propensity for hydroxide ions to be preferentially adsorbed onto hydrophobic surfaces of low permittivity and effects due to the specific accumulated water molecules associated with the electrical interfacial double layer of the adsorbent.

  6. From MDF and PB wastes to adsorbents for the removal of pollutants

    NASA Astrophysics Data System (ADS)

    Gomes, J. A. F. L.; Azaruja, B. A.; Mourão, P. A. M.

    2016-09-01

    The production of activated carbons in powder and monolith forms, by physical activation with CO2, with specific surface areas between 804 and 1469 m2 g-1, porous volume between 0.33 and 0.59 cm3 g-1, with basic nature (PZC ∼ 9.6-10.6) was achieved in our lab, from medium density fibreboard (MDF) and particleboard (PB), engineered wood composites wastes. These highly porous adsorbents were applied in kinetic and equilibrium adsorption studies, in batch and dynamic modes, in powder and monolith forms, of specific adsorptives, considered pollutants, namely phenol (P), p-nitrophenol (PNP) and neutral red (NR). In batch the maximum adsorbed amount was 267, 162 and 92 mg g-1, for PNP, P and NR, respectively. The application of different kinetic models (pseudo-first order, pseudo-second order and intraparticle diffusion model) leads to a better knowledge of the adsorption mechanisms of those adsorptives. The results obtained in the kinetic and equilibrium tests show that the combination of the structural features and the surface chemistry nature of the adsorbents, with the adsorptives properties, establish the kinetic performance, the type and amount adsorbed for each system. This work confirms the potential of these types of wastes in the production of activated carbons and its application in adsorption from liquid phase.

  7. Production of scallop shell nanoparticles by mechanical grinding as a formaldehyde adsorbent

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shinya; Suzuma, Akifumi; Fujimoto, Toshiyuki; Kuga, Yoshikazu

    2013-04-01

    Scallop shells, which are a waste product in the seafood industry, are disposed more than 200,000 ton per year in Hokkaido, Japan. We report effective uses and simple application for discarded shells as a formaldehyde adsorbent. The adsorption performance of scallop shells to remove formaldehyde vapor is investigated. Planetary ball milling under dry conditions and subsequent water addition realize shells with a crystallite size (35-90 nm) and equivalent size of the specific surface area (41-191 nm) in the nanometer range. The comminution properties of the scallop shells, especially the grinding limit, are estimated via a semi-theoretical consideration for the grinding limit. Additionally, the adsorbed amount of gaseous formaldehyde using a self-designed adsorption line is estimated. The nanosized scallop shells exhibit an excellent adsorption performance rather than the feed shell, and the adsorbed amount is positively correlated with the specific surface area of the shell. Hence, scallop shells have potential to adsorb volatile organic compounds.

  8. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M.

    2011-11-01

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  9. Dynamic analysis of a closed-cycle solar adsorption refrigerator using two adsorbent-adsorbate pairs

    SciTech Connect

    Hajji, A. ); Worek, W. ); Lavan, Z. )

    1991-05-01

    In this paper a dynamic analysis of a closed-cycle, solar adsorption refrigerator is presented. The instantaneous and daily system performance are studied using two adsorbent-adsorbate pairs, Zeolite 13X-Water and Chabazite-Methanol. The effect of design and operating parameters, including inert material thermal capacitance, matrix porosity, and evaporation and condenser temperatures on the solar and cycle coefficients of performance are evaluated.

  10. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    PubMed

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate

    USGS Publications Warehouse

    Zobrist, J.; Dowdle, P.R.; Davis, J.A.; Oremland, R.S.

    2000-01-01

    Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite, a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was influenced by the method in which arsenate became associated with the mineral phases and may have been strongly coupled with arsenate desorption rates. The extent of release of arsenite into solution was governed by adsorption of arsenite onto the ferrihydrite or alumina phases. The results of these experiments have interpretive significance to the mobilization of arsenic in large alluvial aquifers, such as those of the Ganges in India and Bangladesh, and in the hyporheic zones of contaminated streams.Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was

  12. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  13. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  14. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  15. Sand consolidation methods using adsorbable catalysts

    SciTech Connect

    Friedman, R. H.

    1985-04-23

    Methods are provided for selectively consolidating sand grains within a subterranean formation. First an acidic zirconium salt catalyst, such as ZrOCl/sub 2/, Zr(SO/sub 4/)/sub 2/, or ZrCl/sub 4/, is injected into the subterranean formation, wherein the acidic salt catalyst is adsorbed to the surface of the sand grains. Next a polymerizable resin composition such as furfuryl alcohol oligomer is introduced into the well formation. Polymerization of the resin occurs upon exposure to the elevated well temperatures and contact with the acid salt catalyst adsorbed to the sand grains. The polymerized resin serves to consolidate the surfaces of the sand grains while retaining permeability through the pore spaces. An ester of a weak organic acid is included with the resin compositions to control the extent of a polymerization by consuming the water by-product formed during the polymerization reaction.

  16. Efficient adsorbate transport on graphene by electromigration

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Solenov, Dmitry

    2012-02-01

    Chemical functionalization of the surface of graphene holds promise for various applications ranging from nanoelectronics to surface catalysis and nano-assembling. In many practical situations it would be beneficial to be able to propel adsorbates along the graphene sheet in a controlled manner. We propose to use electromigration as an efficient means to transport adsorbates along the graphene surface. Within the tight-binding approximation for graphene, parametrized by density functional theory calculations, we estimate the contributions of the direct force and the electron wind force to the drift velocity of electromigration and demonstrate that the electromigration can be rather efficient. In particular, we show that the drift velocity of atomic oxygen covalently bound to graphene can reach up to 4 cm/s for realistic graphene samples. Further, we discuss ways to dynamically, i.e., during experiment, control the efficiency of electromigration by charging and/or local heating of graphene.

  17. Analytical supercritical fluid extraction of adsorbent materials

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Gale, R.W.; Smith, R.D.

    1987-01-01

    The use of supercritical fluids for the analytical extraction of semivolatile and higher molecular weight materials from various adsorbent and particulate matrices was investigated. Instrumentation was designed to allow gram quantities of the matrix to be extracted at pressures up to 400 bar and temperatures to 235 /sup 0/C with collection of the effluent in a sealed liquid-nitrogen-cooled flask. Carbon dioxide, isobutane, and methanol modified (20 mol %) carbon dioxide fluid systems were evaluated and compared to liquid Soxhlet extraction. Supercritical fluid extraction (SFE) provided very rapid (approx. =30 min) extraction with comparable efficiency to the Soxhlet methods, and both more rapid and more efficient extractions appear feasible. The more polar carbon dioxide-methanol fluid system gave higher extraction efficiencies for the more polar adsorbates and the isobutane system was more efficient for the higher molecular weight and less polar compounds.

  18. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  19. Aquaculture of Uranium in Seawater by a Fabric-Adsorbent Submerged System

    SciTech Connect

    Seko, Noriaki; Katakai, Akio; Hasegawa, Shin; Tamada, Masao; Kasai, Noboru; Takeda, Hayato; Sugo, Takanobu; Saito, Kyoichi

    2003-11-15

    The total amount of uranium dissolved in seawater at a uniform concentration of 3 mg U/m{sup 3} in the world's oceans is 4.5 billion tons. An adsorption method using polymeric adsorbents capable of specifically recovering uranium from seawater is reported to be economically feasible. A uranium-specific nonwoven fabric was used as the adsorbent packed in an adsorption cage 16 m{sup 2} in cross-sectional area and 16 cm in height. We submerged three adsorption cages in the Pacific Ocean at a depth of 20 m at 7 km offshore of Japan. The three adsorption cages consisted of stacks of 52 000 sheets of the uranium-specific non-woven fabric with a total mass of 350 kg. The total amount of uranium recovered by the nonwoven fabric was >1 kg in terms of yellow cake during a total submersion time of 240 days in the ocean.

  20. Green Adsorbents for Wastewaters: A Critical Review

    PubMed Central

    Kyzas, George Z.; Kostoglou, Margaritis

    2014-01-01

    One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents. PMID:28788460

  1. Local anesthetics adsorbed onto infusion balloon.

    PubMed

    Mizogami, Maki; Tsuchiya, Hironori; Takakura, Ko

    2004-09-01

    We compared the adsorption of different local anesthetics onto infusion balloons and studied one of the possible mechanisms for adsorption. After injection of lidocaine, bupivacaine, ropivacaine, and mepivacaine solutions (1 mM each; pH 7.4) into balloons of 100-mL volume, their concentrations in effluents flowing out at 4 mL/h were determined over time by high-performance liquid chromatography. All were adsorbed in a structure-dependent manner, and the concentration decreased by 6%-14% within 5 min. Bupivacaine was most strongly adsorbed, followed by lidocaine, ropivacaine, and mepivacaine. QX-314, a quaternary ammonium derivative of lidocaine, was only weakly adsorbed compared with the parent compound lidocaine. The extent of adsorption of local anesthetics was related to their hydrophobicity (evaluated by reversed-phase chromatography) and was much more at pH 7.4 than at pH 6.0. A hydrophobic interaction with balloon materials appears to be responsible for the adsorption of local anesthetics. When infusion balloons are used for the continuous administration of local anesthetics, attention should be paid to the possibility that their actual concentrations in effluents are smaller than those present when they are initially prepared.

  2. High-efficiency DALI apheresis using 1,250 ml adsorbers in a hypercholesterolemic obese patient: a case report.

    PubMed

    Bosch, T; Lennertz, A; Samtleben, W

    2001-10-01

    Direct adsorption of lipoproteins (DALI) apheresis is the first method for direct adsorption of lipoproteins from whole blood and is therefore an easy and rapid procedure. The majority of patients reaches >60% acute low-density lipoprotein cholesterol (LDL-C) reduction using either the DALI 750 or 1000 configuration. However, in patients with extremely high LDL-C levels or very large blood volumes, these configurations may lead to suboptimal results. The current study was performed to test the safety and efficacy of DALI 1250. In a severely obese patient (185 cm, 133 kg, blood volume 7.2 L, LDL-C 239 mg/dl), 11 L of blood (1.53-fold patient blood volume) was processed at a flow rate of 80 ml/min in 2.5 h; a combined heparin-plus-citrate anticoagulation regimen was used. Commercially available DALI 1250 and DALI hardware and disposables were manufactured by Fresenius HemoCare Adsorber Technology, St. Wendel, Germany. Twenty weekly sessions were performed. Clinically and technically, the apheresis sessions were completely uneventful. As compared to DALI 1000 (n = 4 sessions), the reduction rates by DALI 1250 (n = 20) improved for LDL-C (from 52% to 66%), lipoprotein (a) (Lp[a]) (53% vs. 66%), and fibrinogen (11% vs. 16%). There was a slight increase in high-density lipoprotein cholesterol (HDL-C) loss (20% vs. 24%). Moreover, the absolute amount of LDL-C removed per session increased from 5.06 g to 5.94 g. Laboratory safety parameters remained within the normal range, the anticoagulation was well controlled, and the pressure gradients over the adsorber remained constant. In this case report, DALI 1250 was perfectly safe and significantly increased the efficacy of LDL-C and Lp(a) elimination compared to standard DALI. Thus, this high-efficiency version of DALI may be used in patients with extremely high LDL-C levels and/or large blood volumes.

  3. Ellipsometric Measurements of Dotriacontane Films Adsorbed on Au(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Soza, P.; Del Campo, V.; Cisternas, E.; Pino, M.; Volkmann, U. G.; Taub, H.; Hansen, F. Y.

    2006-03-01

    We have conducted ellipsometric and stray light intensity measurements on dotriacontane (n-C32H66 or C32) films adsorbed on Au(111) substrates in air as a function of temperature in order to determine their optical thickness and surface roughness. The C32 films were deposited from a heptane (n-C7H16) solution onto the gold surface. Our large, atomically flat gold substrates were produced by the method reported by Hegner et al.^2 in which gold films grown on mica are glued onto Si(100) wafers. For films of 25 å thickness, our ellipsometry measurements show a decrease of about 75% in the height of the monolayer substep compared to the same film adsorbed on SiO2 substrates.^3 This substep is believed to be contributed by a monolayer phase in which the molecules are oriented with their long axis perpendicular to the surface. The substep decrease may be interpreted as reduction in the number of molecules in this phase or possibly a tilting of the molecules. ^2 M. Hegner et al., Surf. Sci. 291, 39 (1993). ^3U.G. Volkmann et al., J. Chem. Phys. 116, 2107 (2002).

  4. New Fiber Materials with Sorption Capacity at 5.0 g-U/kg Adsorbent under Marine Testing Conditions

    SciTech Connect

    Saito, Tomonori; Brown, S.; Das, Sadananda; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Kuo, Li-Jung; Strivens, Jonathan E.; Schlafer, Nicholas; Wood, J.; Gill, G. A.; Flicker Byers, M.; Schneider, Eric

    2016-03-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) has focused on assuring that nuclear fuel resources are available in the United States for a long term. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. Extraction of the uranium resource in seawater can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to make the seawater uranium recovery technology a cost competitive, viable technology. Under this program, Oak Ridge National Laboratory (ORNL) has developed several novel adsorbents, which enhanced the uranium capacity 4-5 times from the state-of-the art Japanese adsorbents. Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. Because of the vast volume of the oceans, the total estimated amount of uranium in seawater is approximately 1000 times larger than its amount in terrestrial resources. However, due to the low concentration, a significant challenge remains for making the extraction of uranium from seawater a commercially viable alternative technology. The biggest challenge for this technology to overcome to efficiently reduce the extraction cost is to develop adsorbents with increased uranium adsorption capacity. Two major approaches were investigated for synthesizing novel adsorbents with enhanced uranium adsorption capacity. One method utilized conventional radiation induced graft polymerization (RIGP) to synthesize adsorbents on high-surface area trunk fibers and the other method utilized a chemical grafting technique, atom-transfer radical polymerization (ATRP). Both approaches have shown promising uranium extraction

  5. Interaction forces between adsorbed polymer layers.

    PubMed

    Tadros, Tharwat

    2011-07-11

    The interaction forces between adsorbed polymer layers were investigated. Two types of graft copolymers that were adsorbed on hydrophobic surfaces have been investigated: (i) a graft copolymer consisting of polymethylmethacrylate/polymethacrylic acid back bone (the B chain) on which several poly(ethylene oxide) chains are grafted (to be referred to as PMMA/PEO(n)); and (ii) a graft copolymer consisting of inulin (linear polyfructose with degree of polymerization >23) (the A chain) on which several C(12) chains are grafted (INUTEC SP1). In the first case adsorbed layers of the graft copolymer were obtained on mica sheets and the interaction forces were measured using the surface force apparatus. In the second case the interaction forces were measured using Atomic Force Microscopy (AFM). For this purpose a hydrophobically modified glass sphere was attached to the tip of the cantilever of the AFM and the glass plate was also made hydrophobic. Both the sphere and the glass plate contained an adsorbed layer of INUTEC SP1. In the surface forces apparatus one essentially measures the energy E(D)-distance D curves for the graft copolymer of PMMA/PEO(n) between mica surfaces bearing the graft copolymer and this could be converted to interaction energy between flat surfaces. Using the de Gennes scaling theory, it is possible to calculate the interaction energy between the polymer layers. The same graft copolymer was used in latex dispersions and the high frequency modulus G'(∝) was measured as a function of the volume fraction Φ of the dispersion. This high frequency modulus could be related to the potential of mean force. In this way one could compare the results obtained from rheology and those obtained from direct measurement of interaction forces. In the AFM method, the interaction forces are measured in the contact area between two surfaces, i.e. a spherical glass particle and a glass plate. Both glass spheres and plates were hydrophobized using

  6. Quantitative adsorbate structure determination for quasicrystals using x-ray standing waves.

    PubMed

    Diehl, R D; Li, H I; Su, S Y; Mayer, A; Stanisha, N A; Ledieu, J; Lovelock, K R J; Jones, Robert G; Deyko, A; Wearing, L H; McGrath, R; Chaudhuri, A; Woodruff, D P

    2014-09-05

    The quantitative structure determination of adsorbed species on quasicrystal surfaces has so far appeared to present insurmountable problems. The normal incidence standing x-ray wave field technique offers a simple solution, without extensive data sets or large computations. Its application to quasicrystals raises several conceptual difficulties that are related to the phase problem in x-ray diffraction. We demonstrate their solution for the case of Si atoms adsorbed on the decagonal Co-rich modification of the Al-Co-Ni quasicrystal to determine the local structure, comprising 6-atom clusters in particular hollow sites.

  7. Quantitative Adsorbate Structure Determination for Quasicrystals Using X-Ray Standing Waves

    NASA Astrophysics Data System (ADS)

    Diehl, R. D.; Li, H. I.; Su, S. Y.; Mayer, A.; Stanisha, N. A.; Ledieu, J.; Lovelock, K. R. J.; Jones, Robert G.; Deyko, A.; Wearing, L. H.; McGrath, R.; Chaudhuri, A.; Woodruff, D. P.

    2014-09-01

    The quantitative structure determination of adsorbed species on quasicrystal surfaces has so far appeared to present insurmountable problems. The normal incidence standing x-ray wave field technique offers a simple solution, without extensive data sets or large computations. Its application to quasicrystals raises several conceptual difficulties that are related to the phase problem in x-ray diffraction. We demonstrate their solution for the case of Si atoms adsorbed on the decagonal Co-rich modification of the Al-Co-Ni quasicrystal to determine the local structure, comprising 6-atom clusters in particular hollow sites.

  8. Assessing the Influence of Adsorbed-State Conformation on the Bioactivity of Adsorbed Enzyme Layers

    PubMed Central

    Fears, Kenan P.; Latour, Robert A.

    2013-01-01

    Systems using immobilized enzymes are attractive for a wide range of industrial and medical applications because they allow for the fabrication of stable, reusable substrates with highly specific functionality. The performance of these systems is greatly dependent upon the orientation and conformation of the adsorbed enzymes. To investigate these relationships, we have developed and applied methods to quantitatively assess the secondary structure of adsorbed enzyme layers on planar surfaces using circular dichroism (CD) spectroscopy and evaluate their bioactivity using colorimetric assays. These combined measurements provide molecular-level insights regarding whether observed changes in adsorbed enzyme bioactivity are due to the adsorbed orientation of an enzyme or adsorption-induced changes in its conformation. Using this approach, we investigated the adsorption behavior of lysozyme (HEWL), xylanase (XYL), and glucose oxidase (GOx) on OH-, CH3-, NH2-, and COOH-terminated alkanethiol self-assembled monolayer (SAM) surfaces. The bioactivities of the small enzymes, HEWL and XYL, had pronounced variations between the different SAM surfaces despite their structural stability, highlighting the role of adsorbed orientation on bioactivity. In contrast, GOx, which is a much larger enzyme, exhibited wide variations in both its structure and bioactivity after adsorption, with adsorption-induced conformational changes actually enhancing its bioactivity. These results provide new insights into protein-surface interactions at the molecular level and demonstrate that adsorption can either promote or inhibit bioactivity depending on how the surface chemistry influences the orientation and conformational state of the enzyme on the surface. PMID:19499935

  9. Investigation of the Effects of Surface Chemistry and Solution Concentration on the Conformation of Adsorbed Proteins Using an Improved Circular Dichroism Method

    PubMed Central

    Sivaraman, Balakrishnan; Fears, Kenan P.; Latour, Robert A.

    2009-01-01

    In this paper we present the development of methods using circular dichroism spectropolarimetry with a custom-designed cuvette to increase the signal-to-noise ratio for the measurement of the secondary structure of adsorbed proteins, thus providing enhanced sensitivity and reproducibility. These methods were then applied to investigate how surface chemistry and solution concentration influence both the amount of adsorbed proteins and their secondary structure. Human fibrinogen and albumin were adsorbed onto alkanethiol self-assembled monolayers (SAMs) on gold with CH3, OCH2-CF3, NH2, COOH, and OH terminal groups from both dilute (0.1 mg/mL) and moderately concentrated (1.0 mg/mL) solutions. An increase in surface hydrophobicity was found to cause an increase in both the amount of the protein adsorbed and the degree of structural change that was caused by the adsorption process, while an increase in solution concentration caused an increase in the amount of protein adsorbed but a decrease in the degree of conformational change, with these effects being more pronounced on the more hydrophobic surfaces. The combined use of these two parameters (i.e., surface chemistry and solution concentration) thus provides a means of independently varying the degree of structural change following adsorption from the amount of adsorbed protein. Further studies are underway to examine which of these factors most strongly influences platelet response, with the overall goal of developing a better understanding of the fundamental factors governing the hemocompatibility of biomaterial surfaces. PMID:19437712

  10. Lanthanide metals adsorbed in an open-cage Fullerene: first-principles calculations.

    PubMed

    Jun, Guo; Zhiguo, Liu; Xuehui, Zhao; Kelong, Huang

    2012-02-01

    In this paper, the properties of a 12-membered-ring open-cage fullerene, which encapsulate La, Ce, Pr, Nd, Pm, Sm, Eu or Gd, as a guest atom, were calculated using first-principle calculations. Calculations show that La etc. lanthanide metal atoms can be stably adsorbed on the openings of the fullerenes. The average adsorption energy is about -3.65 eV in which Pr and Nd have relatively large adsorption energy with -4.75 eV and -4.63 eV, respectively. The Gd is stably adsorbed on the side wall near bottom of the fullerene with adsorption energy of -3.05 eV. The PDOS of adsorbed lanthanides were analyzed, respectively. Magnetic property of adsorbed lanthanides was also discussed. From the calculation, it is proved that most of the adsorbed lanthanides keep good magnetic property. Finally, vertical ionization potential and vertical electron affinity of the complex compounds were researched. The results show that the possibility of donating electrons of the 12-membered-ring open-cage fullerene is significantly affected by the endohedral lanthanide metals. From our calculations, it is believed that the complex compounds could be promising candidates for medicine-carrier.

  11. Improvement of cesium leaching resistance of solidified borate wastes with copper-ferrocyanide-vermiculite adsorbent

    SciTech Connect

    Huang, C.T.; Wu, G.

    1996-09-01

    Removal of cesium from deionized water, sea water, and lime water with copper ferrocyanide (CFC) and porous media including silica gel, bentonite, vermiculite, and zeolite were investigated; CFC and vermiculite were incorporated to prepare a compound adsorbent which was used to improve the Cs-leaching resistance of solidified borate wastes. It was shown that the Cs-removal efficiency by CFC is largely affected by pHs of the solutions, good cesium removal occurs in pHs ranged from 3 to 12 and the best from 7 to 10; the effect of Cs concentration is significantly only from lime water for Cs > 10{sup {minus}6} M at high pH and is insignificant from other solutions. Vermiculite and zeolite were shown to have better removal efficiency than silica gel and bentonite, and vermiculite was chosen to incorporate with CFC to make compound adsorbents because of its good compatibility with CFC. Compound adsorbents with different CFC contents were used as additives in the solidification of borate radwaste for improving the cesium leaching resistance of waste forms. Experimental results showed that the measured, cesium leaching index following ANSI/ANS 16.1, was increased from 7.96 to 9.76 by adding 0.25% of a compound adsorbent containing 20% CFC and 80% vermiculite, which indicated that the CFC-vermiculite compound adsorbent is very useful for improving cesium leaching resistance of the solidified borate radwastes.

  12. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g-1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  13. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption.

    PubMed

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-30

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  14. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    PubMed Central

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  15. Binary chromatographic data and estimation of adsorbent porosities. [data for system n-heptane/n-pentane

    NASA Technical Reports Server (NTRS)

    Meisch, A. J.

    1972-01-01

    Data for the system n-pentane/n-heptane on porous Chromosorb-102 adsorbent were obtained at 150, 175, and 200 C for mixtures containing zero to 100% n-pentane by weight. Prior results showing limitations on superposition of pure component data to predict multicomponent chromatograms were verified. The thermodynamic parameter MR0 was found to be a linear function of sample composition. A nonporous adsorbent failed to separate the system because of large input sample dispersions. A proposed automated data processing scheme involving magnetic tape recording of the detector signals and processing by a minicomputer was rejected because of resolution limitations of the available a/d converters. Preliminary data on porosity and pore size distributions of the adsorbents were obtained.

  16. Determination of Adsorption Equations for Chloro Derivatives of Aniline on Halloysite Adsorbents Using Inverse Liquid Chromatography.

    PubMed

    Słomkiewicz, Piotr M; Szczepanik, Beata; Garnuszek, Magdalena; Rogala, Paweł; Witkiewicz, Zygfryd

    2017-07-13

    Chloro derivatives of aniline are commonly used in the production of dyes, pharmaceuticals, and agricultural agents. They are toxic compounds with a large accumulation ability and low natural biodegradability. Halloysite is known as an efficient adsorbent of toxic compounds, such as phenols or herbicides, from wastewater. Inverse LC was applied to measure the adsorption of aniline and 2-chloroaniline (2-CA), 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) on halloysite adsorbents. A peak division (PD) method was used to determine a Langmuir equation in accordance with the adsorption measurement results. The values of adsorption equilibrium constants and enthalpy were determined and compared by breakthrough curve and PD methods. The physical sense of the calculated adsorption enthalpy values was checked by applying Boudart's entropy criteria. Of note, adsorption enthalpy values for halloysite adsorbents decreased in the following order: aniline > 4-CA > 2-CA > 3-CA.

  17. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    PubMed

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents.

  18. Negatively charged ions on Mg(0001) surfaces: appearance and origin of attractive adsorbate-adsorbate interactions.

    PubMed

    Cheng, Su-Ting; Todorova, Mira; Freysoldt, Christoph; Neugebauer, Jörg

    2014-09-26

    Adsorption of electronegative elements on a metal surface usually leads to an increase in the work function and decrease in the binding energy as the adsorbate coverage rises. Using density-functional theory calculations, we show that Cl adsorbed on a Mg(0001) surface complies with these expectations, but adsorption of {N,O,F} causes a decrease in the work function and an increase in the binding energy. Analyzing the electronic structure, we show that the presence of a highly polarizable electron spill-out in front of Mg(0001) causes this unusual adsorption behavior and is responsible for the appearance of a hitherto unknown net-attractive lateral electrostatic interaction between same charged adsorbates.

  19. Discounting of delayed hypothetical money and food: effects of amount.

    PubMed

    Odum, Amy L; Baumann, Ana A L; Rimington, Delores D

    2006-11-01

    Delay discounting research determines how the value of an outcome is affected by delay to its receipt. Research so far shows that consumable outcomes are discounted more steeply by delay than money. Prior studies, however, have used large amounts of the outcomes (e.g. 100 dollars worth) that would not typically be consumed in one bout, unlike the corresponding amount of money (e.g. 100 dollars ). This experiment examined whether small amounts of food would be discounted more steeply than money, as occurs with larger amounts. One hundred and two adults indicated their preferences in a series of choices for two hypothetical outcome types: immediate versus delayed food and immediate versus delayed money. Participants made choices involving either relatively small maximum amounts of food (10 dollars worth) and money (10 dollars) or for relatively large maximum amounts of food (100 dollars worth) and money (100 dollars ). In the within-subject comparisons, food was discounted more steeply by delay than money for both groups. In the between-subject comparisons, different amounts of the commodities were affected similarly by delay. Overall, these results suggest that steeper discounting of consumable outcomes than money is a fairly robust phenomenon, occurring with relatively small amounts of outcomes as well as with larger amounts.

  20. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    PubMed

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  1. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, R. Shane; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D’Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage

  2. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of...

  3. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of slop...

  4. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of slop...

  5. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of slop...

  6. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  7. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    PubMed

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  8. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Tamez; Rahman, Md. Arifur; Rukanuzzaman, Md.; Islam, Md. Akhtarul

    2017-03-01

    This study was aimed at using mango leaf powder (MLP) as a potential adsorbent for the removal of methylene blue (MB) from aqueous solutions. Characterization of the adsorbent was carried out with scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The pH at the point of zero charge of the adsorbent was determined by titration method and was found a value to be 5.6 ± 0.2. Batch studies were performed to evaluate the influence of various experimental parameters like initial solution pH, contact time, initial concentration of dye and adsorbent dosage on the removal of MB. An adsorption-desorption study was carried out resulting the mechanism of adsorption was carried out by electrostatic force of attraction. The adsorption equilibrium time required for the adsorption of MB on MLP was almost 2 h and 85 ± 5% of the total amount of dye uptake was found to occur in the first rapid phase (30 min). The Langmuir and Freundlich isotherm models were used for modeling the adsorption equilibrium. The experimental equilibrium data could be well interpreted by Langmuir isotherm with maximum adsorption capacity of 156 mg/g. To state the sorption kinetics, the fits of pseudo-first-order and pseudo-second-order kinetic models were investigated. It was obtained that the adsorption process followed the pseudo-second-order rate kinetics. The above findings suggest that MLP can be effectively used for decontamination of dye containing wastewater.

  9. Adsorbent capability testing using desorption efficiency method on palm oil fiber

    NASA Astrophysics Data System (ADS)

    Manap, Nor Rahafza Abdul; Shamsudin, Roslinda

    2015-09-01

    The palm oil fiber had been used as filler in making thermoplastics, biocomposites and also used as adsorbent in treating waste water. In this study, palm oil fiber was used as adsorbent to treat indoor air pollutants that caused by toluene, ethylbenzene, ortho-, meta-, and para- xylene (o-, m-, p-xylene). Known amount of pollutants, ranges between 1.3 to 28 ppm was spiked into palm oil fiber and left in refrigerator for 24 hours. Then, elution of the pollutants was carried out by carbon disulphide as mobile phase or eluent. The ability of palm oil fiber as adsorbent was determine using desorption efficiency technique by gas chromatography with flame ionization detector (GC/FID). The desorption efficiency percentage given by toluene was in the range of 88.9% to 100%, 91% to 100% for ethylbenzene, 65% to 100% for pm-xylene and 92.9% to 100% for o-xylene. This percentage indicates that palm oil fiber can be used as adsorbent to treat indoor air pollutants.

  10. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations

    NASA Astrophysics Data System (ADS)

    Rad, Ali Shokuhi

    2016-03-01

    We have studied the electronic structure and property of pristine as well as Al-doped graphene sheets towards adsorption of some halomethane compounds (trichloromethane, dichloromethane, and difluoromethane) using density functional theory (DFhsT) calculations. The adsorption energies have been calculated for each adsorbed-adsorbent system. Based on our results, compared to pristine graphene, the Al-doped graphene causes significant adsorption energy, higher charge transferring, and smaller bond distances to halomethane compounds. Our calculated adsorption energies of trichloromethane, dichloromethane, and difluoromethane on Al-doped graphene were - 54.1, - 68.3, and - 123.2 kJ mol- 1, respectively, which are categorized in the chemisorption region while the adsorption of these molecules on pristine graphene release insignificant energies which correspond to very weak adsorption on it. Furthermore, we used charge transfer analysis to search the amount of electron allocation. Orbital analysis including the density of states (DOS) was done to find the possible orbital hybridization between adsorbates and two graphene sheets. These results imply the suitability of Al-doped graphene as a good adsorbent/sensor for halomethane compounds.

  11. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Kim, Seonghwan; Van Neste, C. W.; Lee, Moonchan; Jeon, Sangmin; Thundat, Thomas

    2014-01-01

    A rapid method of obtaining photoacoustic spectroscopic signals for trace amounts of surface adsorbed molecules using a nanostructured coupled resonator array is described. Explosive molecules adsorbed on a nanoporous anodic aluminum oxide cantilever, which has hexagonally ordered nanowells with diameters and well-to-well distances of 35 nm and 100 nm, respectively, are excited using pulsed infrared (IR) light with a frequency matching the common mode resonance frequency of the coupled resonator. The common mode resonance amplitudes of the coupled resonator as a function of illuminating IR wavelength present a photoacoustic IR absorption spectrum representing the chemical signatures of the adsorbed explosive molecules. In addition, the mass of the adsorbed molecules as an orthogonal signal for quantitative analysis is determined by measuring the variation of the localized, individual mode resonance frequency of a cantilever on the array. The limit of detection of the ternary mixture of explosive molecules (1:1:1 of trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) is estimated to be ˜100 ng cm-2. These multi-modal signals enable us to perform quantitative and rapid chemical sensing and analysis in ambient conditions.

  12. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  13. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization.

  14. Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater

    NASA Astrophysics Data System (ADS)

    Gao, Qianhong; Hu, Jiangtao; Li, Rong; Xing, Zhe; Xu, Lu; Wang, Mouhua; Guo, Xiaojing; Wu, Guozhong

    2016-05-01

    A new kind of highly efficient adsorbent material has been fabricated in this study for the purpose of extracting uranium from seawater. Ultra-high molecular weight polyethylene (UHMWPE) fiber was used as a trunk material for the adsorbent, which was prepared by a series of modification reactions, as follows: (1) grafting of glycidyl methacrylate (GMA) and methyl acrylate (MA) onto UHMWPE fibers via 60Co γ-ray pre-irradiation; (2) aminolyzation of UHMWPE fiber by the ring-opening reaction between of epoxy groups PGMA and ethylene diamine (EDA); (3) Michael addition of amino groups with acrylonitrile (AN) to yield nitrile groups; (4) amidoximation of the attached nitrile moieties by hydroxylamine in dimethyl sulfoxide-water mixture. Modified UHMWPE fibers were characterized by means of attenuated total reflectance-Fourier transformed infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) to confirm the attachment of amidoxime (AO) groups onto the UHMWPE fibers. The results of X-ray diffraction (XRD) and single fiber tensile strength verified that the modified UHMWPE fiber retained excellent mechanical properties at a low absorbed radiation dose. The adsorption performance of the UHMWPE fibrous adsorbent was evaluated by subjecting it to an adsorption test in simulated seawater using a continuous-flow mode. The amount of uranium adsorbed by this AO-based UHMWPE fibrous adsorbent was 1.97 mg-U/g after 42 days. This new adsorbent also showed high selectivity for the uranyl ion, and its selectivity for metal ions was found to decrease in the following order: U>Cu>Fe>Ca>Mg>Ni>Zn>Pb>V>Co. The adsorption selectivity for uranium is significantly higher than that for vanadium. In addition, preparation of this modified adsorbent consumes much smaller amounts of the toxic acrylonitrile monomer than the conventional preparation methods of AO-based polyethylene fibers.

  15. Adsorbate Azimuthal Orientation from Reflectance Anisotropy Spectroscopy

    NASA Astrophysics Data System (ADS)

    Frederick, B. G.; Power, J. R.; Cole, R. J.; Perry, C. C.; Chen, Q.; Haq, S.; Bertrams, Th.; Richardson, N. V.; Weightman, P.

    1998-05-01

    We have determined the azimuthal orientation of an adsorbate on a metal surface from an intramolecular-transition-derived feature in reflectance anisotropy spectroscopy (RAS). Adsorption of 9-anthracene carboxylic acid onto p\\(2×1\\)O/Cu110 led to an ordered structure with a strong (2%), derivativelike feature at 4.5 eV. Fresnel theory predicts the measured intensity, functional behavior, and sense of the RAS signal for the molecule aligned along [110]. IR measurements confirm that the molecular plane is perpendicular to the surface and STM measurements support the azimuthal orientation. We reassign the sense of the clean Cu(110) surface RA spectrum.

  16. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  17. Phthalocyanine-dyed fibers adsorb allergenic proteins.

    PubMed

    Yano, H; Sugihara, Y; Shirai, H; Wagatsuma, Y; Kusada, O; Matsuda, T; Kuroda, S; Higaki, S

    2006-05-01

    Phthalocyanine (Pc)-dyed fiber is reported to reduce atopic symptoms in some patients when they use underwear made of the fiber. We investigated the adsorption of allergens on Pc-fiber. Pc-fiber trapped house dust/pollen/food allergens with varied molecular weight and pI. The adsorbed allergens were released in the presence of mild detergent. Pc-fiber did not change the molecular weight or disulfide bonding of the allergens. These observations imply that Pc-fiber is applicable as an "allergen trap" for a wide variety of products.

  18. Infrared overtone spectroscopy of adsorbed hydrogen in MOF-5

    NASA Astrophysics Data System (ADS)

    FitzGerald, Stephen A.; Nelson, Jocienne N.; Gilmour, Elizabeth; Rowsell, Jesse L. C.

    2015-01-01

    Overtone spectroscopy is used to observe the rovibrational spectra of the hydrogen isotopologues H2, HD, and D2 adsorbed in the metal-organic framework known as MOF-5. It is shown that the overtone spectrum facilitates the identification of hydrogen modes which are obscured in the fundamental region by the presence of MOF-5 features. Further, the overtone spectrum of H2 at the primary adsorption site is greatly enhanced relative to other sites, and thus ambiguities about feature assignment can be avoided. The frequency (wavenumber) of the overtone modes are in good agreement with a Buckingham perturbative model while the relative intensity of the Q2 (0) pure vibrational mode is found to be anomalously large, most likely arising through mode coupling to the MOF-5 framework.

  19. Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter.

    PubMed

    Nuernberg, Giselle B; Moreira, Marcelo A; Ernani, Paulo R; Almeida, Jaime A; Maciel, Tais M

    2016-12-01

    Confined poultry production is an important livestock activity, which generates large amounts of waste associated with the potential for environmental pollution and ammonia (NH3) emissions. The release of ammonia negatively affects poultry production and decreases the N content of wastes that could be used as soil fertilizers. The objective of this study was to evaluate a low-cost, simple and rapid method to simulate ammonia emissions from poultry litter as well as to quantify the reduction in the ammonia emissions to the environment employing two adsorbent zeolites, a commercial Cuban zeolite (CZ) and a ground basalt Brazilian rock containing zeolite (BZ). The experiments were conducted in a laboratory, in 2012-2013. The zeolites were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), physical adsorption of N2 (BET) and scanning electron microscopy (SEM). Ammonia released from poultry litter and its simulation from NH4OH solution presented similar capture rates of 7.99 × 10(-5) and 7.35 × 10(-5) mg/h, respectively. Both zeolites contain SiO2 and Al2O3 as major constituents, with contents of 84% and 12% in the CZ, and 51% and 12% in the BZ, respectively, besides heulandite groups. Their BET surface areas were 89.4 and 11.3 m(2) g(-1), respectively, and the two zeolites had similar surface morphologies. The zeolites successfully adsorbed the ammonia released, but CZ was more efficient than BZ, since to capture all of the ammonia 5 g of CZ and 20 g of BZ were required. This difference is due to higher values for the superficial area, porosity, CEC and acid site strength of CZ relatively to BZ. The proposed methodology was shown to be an efficient method to simulate and quantify the ammonia released from poultry litter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Atmospheric fate of oil matter adsorbed on sea salt particles under UV light

    NASA Astrophysics Data System (ADS)

    Vaitilingom, M.; Avij, P.; Huang, H.; Valsaraj, K. T.

    2014-12-01

    The presence of liquid petroleum hydrocarbons at the sea water surface is an important source of marine pollution. An oil spill in sea-water will most likely occur due to an involuntary accident from tankers, offshore platforms, etc. However, a large amount of oil is also deliberately spilled in sea-water during the clean-out process of tank vessels (e.g. for the Mediterranean Sea, 490,000 tons/yr). Moreover, the pollution caused by an oil spill does not only affect the aquatic environment but also is of concern for the atmospheric environment. A portion of the oil matter present at the sea-water surface is transported into the atmosphere viaevaporation and adsorption at the surface of sea spray particles. Few studies are related to the presence of oil matter in airborne particles resulting from their adsorption on sea salt aerosols. We observed that the non-volatile oil matter was adsorbed at the surface of sea-salt crystals (av. size of 1.1 μm). Due to their small size, these particles can have a significant residence time in the atmosphere. The hydrocarbon matter adsorbed at the surface of these particles can also be transformed by catalyzers present in the atmosphere (i.e. UV, OH, O3, ...). In this work, we focused on the photo-oxidation rates of the C16 to C30alkanes present in these particles. We utilized a bubble column reactor, which produced an abundance of small sized bubbles. These bubbles generated droplets upon bursting at the air-salt water interface. These droplets were then further dried up and lifted to the top of the column where they were collected as particles. These particles were incubated in a controlled reactor in either dark conditions or under UV-visible light. The difference of alkane content analyzed by GC-MS between the particles exposed to UV or the particles not exposed to UV indicated that up to 20% in mass was lost after 20 min of light exposure. The degradation kinetics varied for each range of alkanes (C16-20, C21-25, C26

  1. Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages.

    PubMed

    Maciel, Joana; Oliveira, Marta I; Colton, Erica; McNally, Amy K; Oliveira, Carla; Anderson, James M; Barbosa, Mário A

    2014-01-01

    Macrophages are phagocytic cells with great importance in guiding multiple stages of inflammation and tissue repair. By producing a large number of biologically active molecules, they can affect the behavior of other cells and events, such as the foreign body response and angiogenesis. Since protein adsorption to biomaterials is crucial for the inflammatory process, we addressed the ability of the pro-inflammatory molecule fibrinogen (Fg) to modulate macrophage behavior toward tissue repair/regeneration. For this purpose, we used chitosan (Ch) as a substrate for Fg adsorption. Freshly isolated human monocytes were seeded on Ch substrates alone or previously adsorbed with Fg, and allowed to differentiate into macrophages for 10 days. Cell adhesion and morphology, formation of foreign body giant cells (FBGC), and secretion of a total of 80 cytokines and growth factors were evaluated. Both substrates showed similar numbers of adherent macrophages along differentiation as compared with RGD-coated surfaces, which were used as positive controls. Fg did not potentiate FBGC formation. In addition, actin cytoskeleton staining revealed the presence of punctuate F-actin with more elongated and interconnecting cells on Ch substrates. Antibody array screening and quantification of inflammation- and wound-healing-related factors indicated an overall reduction in Ch-based substrates versus RGD-coated surfaces. At late times, most inflammatory agents were down-regulated in the presence of Fg, in contrast to growth factor production, which was stimulated by Fg. Importantly, on Ch+Fg substrates, fully differentiated macrophages produced significant amounts of macrophage inflammatory protein-1delta (MIP-1δ), platelet-derived growth factor-BB, bone morphogenetic protein (BMP)-5, and BMP-7 compared with Ch alone. In addition, other important factors involved in bone homeostasis and wound healing, such as growth hormone, transforming growth factor-β3, and insulin-like growth factor

  2. Adsorbed Fibrinogen Enhances Production of Bone- and Angiogenic-Related Factors by Monocytes/Macrophages

    PubMed Central

    Maciel, Joana; Oliveira, Marta I.; Colton, Erica; McNally, Amy K.; Oliveira, Carla; Anderson, James M.

    2014-01-01

    Macrophages are phagocytic cells with great importance in guiding multiple stages of inflammation and tissue repair. By producing a large number of biologically active molecules, they can affect the behavior of other cells and events, such as the foreign body response and angiogenesis. Since protein adsorption to biomaterials is crucial for the inflammatory process, we addressed the ability of the pro-inflammatory molecule fibrinogen (Fg) to modulate macrophage behavior toward tissue repair/regeneration. For this purpose, we used chitosan (Ch) as a substrate for Fg adsorption. Freshly isolated human monocytes were seeded on Ch substrates alone or previously adsorbed with Fg, and allowed to differentiate into macrophages for 10 days. Cell adhesion and morphology, formation of foreign body giant cells (FBGC), and secretion of a total of 80 cytokines and growth factors were evaluated. Both substrates showed similar numbers of adherent macrophages along differentiation as compared with RGD-coated surfaces, which were used as positive controls. Fg did not potentiate FBGC formation. In addition, actin cytoskeleton staining revealed the presence of punctuate F-actin with more elongated and interconnecting cells on Ch substrates. Antibody array screening and quantification of inflammation- and wound-healing-related factors indicated an overall reduction in Ch-based substrates versus RGD-coated surfaces. At late times, most inflammatory agents were down-regulated in the presence of Fg, in contrast to growth factor production, which was stimulated by Fg. Importantly, on Ch+Fg substrates, fully differentiated macrophages produced significant amounts of macrophage inflammatory protein-1delta (MIP-1δ), platelet-derived growth factor-BB, bone morphogenetic protein (BMP)-5, and BMP-7 compared with Ch alone. In addition, other important factors involved in bone homeostasis and wound healing, such as growth hormone, transforming growth factor-β3, and insulin-like growth factor

  3. TRMM project contamination control using molecular adsorbers

    SciTech Connect

    Straka, S.; Chen, P.; Thomson, S.; Bettini, R.; Triolo, J.; Carosso, N.

    1996-03-01

    The Tropical Rainfall Measuring Mission (TRMM) is a spacecraft under development by the National Aeronautics and Space Administration (NASA) and the National Space Development Agency of Japan (NASDA) and is scheduled for launch in August 1997. The spacecraft design includes the use of numerous optical instruments and the thermal control surfaces. In addition to the inherent contamination sensitivities of the optical and thermal systems, TRMM has had the added challenge of designing systems to function at a relatively low altitude (350 km), with solar exposure. Under these conditions, high atomic oxygen densities and potentially high levels of backscattered contamination (self-contamination), as well as UV photopolymerization effects, all pose major threats to sensitive TRMM elements. In considering the various contamination control paths to follow, the TRMM project management has opted for pursuing a relatively new, but very promising technology for the TRMM spacecraft in order to lower the on-orbit contamination levels. TRMM will be incorporating Molecular Adsorbers as part of the basic spacecraft design. This paper will summarize the TRMM requirements, describe the Molecular Adsorbers being fabricated for the mission, and discuss the expected benefits of this method of on-orbit contamination control. {copyright} {ital 1996 American Institute of Physics.}

  4. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  5. TRMM project contamination control using molecular adsorbers

    NASA Astrophysics Data System (ADS)

    Straka, Sharon; Chen, Philip; Thomson, Shaun; Bettini, Ron; Triolo, Jack; Carosso, Nancy

    1996-03-01

    The Tropical Rainfall Measuring Mission (TRMM) is a spacecraft under development by the National Aeronautics and Space Administration (NASA) and the National Space Development Agency of Japan (NASDA) and is scheduled for launch in August 1997. The spacecraft design includes the use of numerous optical instruments and the thermal control surfaces. In addition to the inherent contamination sensitivities of the optical and thermal systems, TRMM has had the added challenge of designing systems to function at a relatively low altitude (350 km), with solar exposure. Under these conditions, high atomic oxygen densities and potentially high levels of backscattered contamination (self-contamination), as well as UV photopolymerization effects, all pose major threats to sensitive TRMM elements. In considering the various contamination control paths to follow, the TRMM project management has opted for pursuing a relatively new, but very promising technology for the TRMM spacecraft in order to lower the on-orbit contamination levels. TRMM will be incorporating Molecular Adsorbers as part of the basic spacecraft design. This paper will summarize the TRMM requirements, describe the Molecular Adsorbers being fabricated for the mission, and discuss the expected benefits of this method of on-orbit contamination control.

  6. Storage stability of ketones on carbon adsorbents.

    PubMed

    Prado, C; Alcaraz, M J; Fuentes, A; Garrido, J; Periago, J F

    2006-09-29

    Activated coconut carbon constitutes the more widely used sorbent for preconcentration of volatile organic compounds in sampling workplace air. Water vapour is always present in the air and its adsorption on the activated carbon surface is a serious drawback, mainly when sampling polar organic compounds, such as ketones. In this case, the recovery of the compounds diminishes; moreover, ketones can be decomposed during storage. Synthetic carbons contain less inorganic impurities and have a lower capacity for water adsorption than coconut charcoal. The aim of this work was to evaluate the storage stability of various ketones (acetone, 2-butanone, 4-methyl-2-pentanone and cyclohexanone) on different activated carbons and to study the effect of adsorbed water vapour under different storage conditions. The effect of storage temperature on extraction efficiencies was significant for each ketone in all the studied sorbents. Recovery was higher when samples were stored at 4 degrees C. The results obtained for storage stability of the studied ketones showed that the performance of synthetic carbons was better than for the coconut charcoals. The water adsorption and the ash content of the carbons can be a measure of the reactive sites that may chemisorb ketones or catalize their decomposition. Anasorb 747 showed good ketone stability at least for 7 days, except for cyclohexanone. After 30-days storage, the stability of the studied ketones was excellent on Carboxen 564. This sorbent had a nearly negligible ash content and the adsorbed water was much lower than for the other sorbents tested.

  7. Photodecomposition of chloromethanes adsorbed on silica surfaces

    NASA Technical Reports Server (NTRS)

    Ausloos, P.; Rebbert, R. E.; Glasgow, L.

    1977-01-01

    Irradiation of CCl4, CFCl3, and CF2Cl2 in the presence of C2H6 in vessels containing silica sand or fused quartz tubing results in the formation of chlorine-containing products. The formation of these compounds occurs at wavelengths extending up to approximately 400 nm, that is, at wavelengths well beyond the absorption threshold of the chloromethanes in the gas phase. It is suggested that CCl4 adsorbed on silica surfaces photodissociates to yield CCl3 and CCl2 species. The poor material balance obtained in these experiments indicates that several of the chlorine-containing fragments are strongly adsorbed on the surface. At a CCl4 pressure of 13 Pa (0.1 torr), photolysis with 366 nm light in the presence of sand results in the decomposition of one molecule for every 10,000 photons striking the surface. Under otherwise identical conditions, the photon-induced breadkdown of CFCl3 and CF2Cl2 is respectively only 10% or 3% as efficient.

  8. Natural adsorbents of dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Rahmani, Meryem; El Hajjaji, souad; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Contamination of natural waters is a current environmental problem and lot of work has been done to find methods for its, prevention and remediation such as ionic exchange, adsorption on active carbon, filtration, electrolysis, biodegradation …etc. Adsorption is one of the most applied methods according to its effectiveness and easy management. Some adsorbents with good properties such as active alumina, zeolites, crop residues … etc, are suitable to substitute usual active carbon. This study aimed at the removal of dyes using oil shale as natural support, and its optimization by factorial experiment. Three factors were considered namly:pollutant concentration, pH and weight of the adsorbent. Tests have been performed with cationic and anionic dyes. Experimental results show that pseudo-first-order kinetic model provided the best fit to the experimental data for the adsorption by the oil shale. Langmuir, Freundlich and Temkin isotherm models were tested to fit experimental data, the adsorption equilibrium was well described by Freundlich isotherm for methylorange and Temkin for methyl blue. Analysis were completed by oil shale characterization educing XRD, IR, XRF techniques, and cationic exchange capacity.

  9. 29 CFR 4219.13 - Amount of liability for de minimis amounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Amount of liability for de minimis amounts. 4219.13 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.13 Amount of liability for de minimis amounts. An employer that is liable for de minimis amounts shall be liable to the plan for the amount by...

  10. 29 CFR 4219.13 - Amount of liability for de minimis amounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Amount of liability for de minimis amounts. 4219.13 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.13 Amount of liability for de minimis amounts. An employer that is liable for de minimis amounts shall be liable to the plan for the amount by...

  11. 29 CFR 4219.13 - Amount of liability for de minimis amounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Amount of liability for de minimis amounts. 4219.13 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.13 Amount of liability for de minimis amounts. An employer that is liable for de minimis amounts shall be liable to the plan for the amount by...

  12. 29 CFR 4219.13 - Amount of liability for de minimis amounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Amount of liability for de minimis amounts. 4219.13 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.13 Amount of liability for de minimis amounts. An employer that is liable for de minimis amounts shall be liable to the plan for the amount by...

  13. 29 CFR 4219.13 - Amount of liability for de minimis amounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Amount of liability for de minimis amounts. 4219.13 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.13 Amount of liability for de minimis amounts. An employer that is liable for de minimis amounts shall be liable to the plan for the amount by...

  14. Ability of inactivated yeast powder to adsorb patulin from apple juice.

    PubMed

    Guo, Caixia; Yue, Tianli; Hatab, Shaimaa; Yuan, Yahong

    2012-03-01

    This study aimed to investigate the adsorption of patulin from apple juice, using two types of inactivated yeast powder: laboratory-prepared yeast powder (LYP) and commercial yeast powder (CYP). The effects of incubation time, pH, incubation temperature, adsorbent amount, and initial concentration of patulin and the stability of the yeast-mycotoxin complex were assessed. The results showed that the efficiencies of the two yeast types in adsorbing patulin were similar. The ability of the powders to remove patulin increased with longer incubation times, and patulin concentration was below detectable levels with LYP and CYP at approximately 36 and 30 h, respectively. The highest removal of patulin was achieved at pH 5.0 for both powder types, and there were no significant differences in patulin decrease at different temperatures (4, 29, and 37°C). Additionally, the adsorption percentage of patulin increased significantly with the increase of absorbent amount and decrease of initial concentration of patulin. Stability of the yeast-patulin complex was assessed, and patulin was more stable when washed in phosphate-buffered saline (pH 4.0) than in absolute ethyl alcohol. These results suggest that inactivated yeast powder has potential as a novel and promising adsorbent to bind patulin effectively.

  15. Treatment of malachite green-containing wastewater using poultry feathers as adsorbent.

    PubMed

    Beak, Mi H; Ijagbemi, Christianah O; Kim, Dong S

    2009-04-01

    The feasibility of using feathers, a waste from poultry as an absorbent for malachite green in dye wastewater was studied. The batch adsorption tests were shown to be influenced by the concentration of the dye, reaction temperature, solution pH, and pre-treatment with ethanol. In order to establish the equilibrium state of the process, a kinetic study was conducted for an optimal practice of adsorption treatment process. The adsorption reached equilibrium within 120 min in the range of dye concentration studied. It was found that the adsorption rate increases especially at low concentrations of dye and the adsorption data fitted well to the first-order reaction kinetics over all dye concentration range. Absolute amount of adsorbed malachite green at equilibrium condition decreased as concentration decreases. Adsorption of malachite green on poultry feathers fitted well to the Langmuir isotherm model. As temperature increases, the adsorbed amount of malachite green at equilibrium also increased, indicating an endothermic adsorption reaction. In addition, the color removal of malachite green rapidly increased with increase in dye's water pH. The pre-treatment of adsorbent with ethanol produced initial slow rate of malachite green removal but after about 100 min of reaction time, same removal rate was observed compare with the untreated feathers.

  16. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents.

  17. Bubble-surface interactions with graphite in the presence of adsorbed carboxymethylcellulose.

    PubMed

    Wu, Jueying; Delcheva, Iliana; Ngothai, Yung; Krasowska, Marta; Beattie, David A

    2015-01-21

    The adsorption of carboxymethylcellulose (CMC), and the subsequent effect on bubble-surface interactions, has been studied for a graphite surface. CMC adsorbs on highly oriented pyrolytic graphite (HOPG) in specific patterns: when adsorbed from a solution of low concentration it forms stretched, isolated and sparsely distributed chains, while upon adsorption from a solution of higher concentration, it forms an interconnected network of multilayer features. The amount and topography of the adsorbed CMC affect the electrical properties as well as the wettability of the polymer-modified HOPG surface. Adsorption of CMC onto the HOPG surface causes the zeta potential to be more negative and the modified surface becomes more hydrophilic. This increase in both the absolute value of zeta potential and the surface hydrophilicity originates from the carboxymethyl groups of the CMC polymer. The effect of the adsorbed polymer layer on wetting film drainage and bubble-surface/particle attachment was determined using high speed video microscopy to monitor single bubble-surface collision, and single bubble Hallimond tube flotation experiments. The time of wetting film drainage and the time of three-phase contact line spreading gets significantly longer for polymer-modified HOPG surfaces, indicating that the film rupture and three-phase contact line expansion were inhibited by the presence of polymer. The effect of longer drainage times and slower dewetting correlated with reduced flotation recovery. The molecular kinetic (MK) model was used to quantify the effect of the polymer on dewetting dynamics, and showed an increase in the jump frequency for the polymer adsorbed at the higher concentration.

  18. Adsorbed gels versus brushes: viscoelastic differences.

    PubMed

    Dutta, Amit K; Belfort, Georges

    2007-03-13

    It is of fundamental importance to be able to easily distinguish between the viscoelastic properties of a molecular gel (noncovalent cross-linked three-dimensional polymer structure) and a brush (polymer structure that emanates from a surface in three dimensions without cross-linking). This has relevance in biology and in designing surfaces with desired chemical and viscoelastic properties for nano and genomic technology applications. Agarose and thiol-tagged poly(ethylene glycol) were chosen as model systems, as they are known, on adsorption, to behave like a molecular gel and brush, respectively. Here, we focus on their viscoelastic differences using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in resonance frequency and dissipation for three overtones using QCM-D were fitted with the Voigt viscoelastic model to calculate the shear viscosity and shear modulus for the adsorbed agarose gel and the PEG brush. At a surface coverage of 500 ng/cm2, the shear viscosities and shear moduli were 0.0025 +/- 0.0002 Pa-s and 2.0 +/- 0.17 x 105 Pa and 0.0010 +/- 0.0001 Pa-s and 5.0 +/- 0.3 x 104 Pa for the gel and brush, respectively. Thus, the adsorbed agarose gel layer was far more rigid than that of the covalently bound PEG brush due to its cross-linked network. Also, the diffusivity of agarose and PEG in solution was compared during adsorption onto a bare gold surface. The estimated value for the effective diffusivity of the PEG (without a thiol tag) and of the agarose gel was on the order of 10(-11) and 10(-15) m2/s, respectively. This low diffusivity for agarose supports the contention that it exists as a molecular gel with a H-bonded cross-linked network in aqueous solution. With the methods used here, it is relatively easy to distinguish the differences in viscoelastic properties between an adsorbed gel and brush.

  19. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  20. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  1. 31 CFR 235.5 - Reclamation amounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Reclamation amounts. 235.5 Section 235.5 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... ON DESIGNATED DEPOSITARIES § 235.5 Reclamation amounts. Amounts received by way of reclamation on...

  2. 31 CFR 235.5 - Reclamation amounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Reclamation amounts. 235.5 Section 235.5 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... ON DESIGNATED DEPOSITARIES § 235.5 Reclamation amounts. Amounts received by way of reclamation on...

  3. 31 CFR 235.5 - Reclamation amounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Reclamation amounts. 235.5 Section 235.5 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... ON DESIGNATED DEPOSITARIES § 235.5 Reclamation amounts. Amounts received by way of reclamation on...

  4. 31 CFR 235.5 - Reclamation amounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Reclamation amounts. 235.5 Section 235.5 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... ON DESIGNATED DEPOSITARIES § 235.5 Reclamation amounts. Amounts received by way of reclamation on...

  5. 31 CFR 235.5 - Reclamation amounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Reclamation amounts. 235.5 Section 235.5 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... ON DESIGNATED DEPOSITARIES § 235.5 Reclamation amounts. Amounts received by way of reclamation on...

  6. Interaction of sodium polyacrylate adsorbed on TiO2 with cationic and anionic surfactants.

    PubMed

    Li, Haiyan; Tripp, Carl P

    2004-11-23

    Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify the structures formed during the adsorption of sodium polyacrylate (NaPA) on charged TiO2 particles and to determine the subsequent interaction of the adsorbed polymer structure with cationic and anionic surfactants. The nature of the polymer structure was deduced from the adsorbed amount in tandem with the information obtained from monitoring the change in the relative intensity of the COO- and COOH infrared bands. In particular, it is found that the relative number of COO- and COOH groups on the polymer backbone for the adsorbed state differs from that of the same polymer in solution. This difference is due to a shift in the population of COO-/COOH groups on the polymer backbone that arises when the COO- groups bind to positively charged sites on the surface. A change in the number COO-/COOH groups on the polymer is thus related to a change in the bound fraction of polymer. It is shown that the initial NaPA approaching the bare surface adopts a flat conformation with high bound fraction. Once the bare sites on the surface are covered, the accommodation of additional polymer on the surface requires the existing adsorbed layer to adopt a conformation with a lower bound fraction. When the adsorbed NaPA is probed with a solution containing the anionic surfactant sodium dodecyl sulfate (SDS), the SDS competes for surface sites and displaces some of the bound NaPA segments from the surface, giving rise to an polymer layer adsorbed with an even lower bound fraction. In contrast, addition of a solution containing the cationic surfactant cetyltrimethylammonium bromide (CTAB) results in the binding of the surfactant directly to the free COO- sites on the adsorbed polymer backbone. Confirmation of a direct interaction of the CTAB headgroup with the free COO- groups of the polymer is provided by intensity changes in the headgroup IR bands of the CTAB.

  7. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2017-04-10

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  8. The persistence length of adsorbed dendronized polymers

    NASA Astrophysics Data System (ADS)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A. Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-01

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role.The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth

  9. Trends in adsorbate induced core level shifts

    NASA Astrophysics Data System (ADS)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  10. The condensation of water on adsorbed viruses.

    PubMed

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to <50 nm. The viruses preserved their shape after a condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  11. Testing of chemically treated adsorbent air purifiers

    SciTech Connect

    Kelly, T.J. . Dept. of Atmospheric Science and Applied Technology); Kinkead, D.A. )

    1993-07-01

    New highly sensitive continuous monitors permit testing of air filters at parts-per-billion contaminant concentrations. This article describes testing of air purification filters intended for use in the National Archives 2 building in College Park, Maryland, using a test procedure that simulates the actual conditions of use. This test demonstrates both the effectiveness of the adsorbers at low contaminant levels, and the capability of existing instruments for conducting such tests. ASHRAE TC 2.3 (Gaseous Air Contaminants and Gas Contaminant Removal Equipment) is currently sponsoring research projects (follow-on studies to ASHRAE Project RP-674) aimed at developing a standard that will test and rate the performance of different types of gas phase air purification equipment at low concentrations. The work detailed in this article represents a first of this type of testing and a technical benchmark that may aid in the further development of ASHRAE gas phase performance standards.

  12. Preparation of adsorbent for phosphate recovery from aqueous solutions based on condensed tannin gel.

    PubMed

    Ogata, Takeshi; Morisada, Shintaro; Oinuma, Yasumi; Seida, Yoshimi; Nakano, Yoshio

    2011-08-30

    We have synthesized an iron-loaded tannin gel as an adsorbent for phosphate recovery in aqueous solutions. The use of the tannin gel prepared from condensed tannin, which is a ubiquitous and inexpensive natural polymer, is not only cost effective and environment-friendly, but interesting because the phosphate-adsorbed gel can be expected to use directly as a fertilizer. The amount of iron loaded into the tannin gel oxidized by nitric acid was much larger than that into the non-oxidized tannin gel. This increase in the amount of the loaded iron resulted in the significant increase in the adsorption amount of phosphate onto the gel. Mössbauer spectroscopy indicated that the morphology of iron in the gel is a mono-type complex, which is formed as a result of the reaction between Fe(III) and the oxidized tannin gel with carbonyl groups. The iron-loaded tannin gel showed the adsorption selectivity for phosphate over other anions and the pH independence of phosphate adsorption in the wide range of initial pH 3-12. The phosphate adsorption isotherm for the iron-loaded tannin gel followed the Freundlich equation with constants of K(F)=2.66 and 1/n=0.31, rather than the Langmuir equation. The adsorption amount of phosphate on iron weight basis for the iron-loaded tannin gel is 31.3mg-P/g-Fe, which indicates that iron in the gel was efficiently used for the phosphate adsorption compared with other phosphate adsorbents, such as iron hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Preparation of magnetic graphene/mesoporous silica composites with phenyl-functionalized pore-walls as the restricted access matrix solid phase extraction adsorbent for the rapid extraction of parabens from water-based skin toners.

    PubMed

    Feng, Jianan; He, Xinying; Liu, Xiaodan; Sun, Xueni; Li, Yan

    2016-09-23

    In this work, phenyl-functionalized magnetic graphene/mesoporous silica composites (MG-mSiO2-Ph) were prepared and applied as restricted access matrix solid phase extraction (RAM-SPE) adsorbents to determine the parabens in commercially available retail cosmetics. MG-mSiO2-Ph composites were synthesized by a surfactant-mediated co-condensation reaction in which mesoporous silica with phenyl-functionalized pore-walls was coated on a magnetic graphene sheet. The obtained nano-composites were proven to be of sufficient quality for an ideal RAM-SPE adsorbent with a large specific surface area of 369m(2)g(-1), uniform mesopores of 2.8nm, and special phenyl-functionalized pore-walls. Parabens, such as methyl paraben, ethyl paraben and propyl paraben, were extracted from water-based skin toners using one step of the RAM-SPE and were then analysed by a HPLC-DAD system. The SPE conditions were optimized by studying the parameters, such as the adsorbent amount, elution solvent type, adsorption time and desorption time, that influence the extraction efficiency. For each analyte, there were good linearities of approximately 0.10-120μgmL(-1) with determination coefficients (R(2))>0.995. The sensitivity was as low as 0.01-0.025μgmL(-1) for the LOD, and the percent recoveries were 98.37-105.84%. The intra-day and inter-day RSDs were 1.44-6.11% (n=6) and 3.12-11.70% (n=6), respectively. The results indicated that this method with novel RAM-SPE adsorbents is sensitive and convenient. The results also offered an attractive alternative for the extraction and determination of paraben preservatives in a complex matrix, such as cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies.

    PubMed

    Hassani, Aydin; Khataee, Alireza; Karaca, Semra; Shirzad-Siboni, Mehdi

    2015-01-01

    Surfactant-modified montmorillonites (MMT) were prepared using trimethyloctylammonium bromide (TMOAB) and employed as a nanosized adsorbent to remove diazinon from aqueous solutions. The prepared adsorbent was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The dependence of removal efficiency on initial diazinon concentration, amount of adsorbent, pH of the solution and ionic strength was investigated. The affinity sequence for ion adsorption on TMOAB/MMT was in the order: without anion> sodium carbonate> sodium bicarbonate> sodium sulphate> sodium chloride. The adsorption kinetic and isotherm were best fit by a pseudo-second-order kinetic and Langmuir isotherm models, respectively.

  15. Formation Process of Eosin Y-Adsorbing ZnO Particles by Electroless Deposition and Their Photoelectric Conversion Properties.

    PubMed

    Nagaya, Satoshi; Nishikiori, Hiromasa; Mizusaki, Hideaki; Wagata, Hajime; Teshima, Katsuya

    2015-06-03

    The thin films consisting of crystalline ZnO particles were prepared on fluorine-doped tin oxide electrodes by electroless deposition. The particles were deposited from an aqueous solution containing zinc nitrate, dimethyamine-borane, and eosin Y at 328 K. As the Pd particles were adsorbed on the substrate, not only the eosin Y monomer but also the dimer and debrominated species were rapidly adsorbed on the spherical ZnO particles, which were aggregated and formed secondary particles. On the other hand, in the absence of the Pd particles, the monomer was adsorbed on the flake-shaped ZnO particles, which vertically grew on the substrate surface and had a high crystallinity. The photoelectric conversion efficiency was higher for the ZnO electrodes containing a higher amount of the monomer during light irradiation.

  16. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial

    PubMed Central

    Arriagada, Francisco; Correa, Olosmira; Günther, Germán; Nonell, Santi; Mura, Francisco; Olea-Azar, Claudio

    2016-01-01

    Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased. PMID:27812111

  17. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial.

    PubMed

    Arriagada, Francisco; Correa, Olosmira; Günther, Germán; Nonell, Santi; Mura, Francisco; Olea-Azar, Claudio; Morales, Javier

    2016-01-01

    Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.

  18. Efficiency of sepiolite in broilers diet as uranium adsorbent.

    PubMed

    Mitrović, Branislava M; Jovanović, Milijan; Lazarević-Macanović, Mirjana; Janaćković, Djordje; Krstić, Nikola; Stojanović, Mirjana; Mirilović, Milorad

    2015-05-01

    The use of phosphate mineral products in animal nutrition, as a major source of phosphor and calcium, can lead to uranium entering the food chain. The aim of the present study was to determine the protective effect of natural sepiolite and sepiolite treated with acid for broilers after oral intake of uranium. The broilers were contaminated for 7 days with 25 mg/uranyl nitrate per day. Two different adsorbents (natural sepiolite and sepiolite treated with acid) were given via gastric tube immediately after the oral administration of uranium. Natural sepiolite reduced uranium distribution by 57% in kidney, 80% in liver, 42% in brain, and 56% in muscle. A lower protective effect was observed after the administration of sepiolite treated with acid, resulting in significant damage of intestinal villi in the form of shortening, fragmentation, and necrosis, and histopathological lesions on kidney in the form of edema and abruption of epithelial cells in tubules. When broilers received only sepiolite treated with acid (no uranyl nitrate), shortening of intestinal villi occurred. Kidney injuries were evident when uranium concentrations in kidney were 0.88 and 1.25 µg/g dry weight. It is concluded that adding of natural sepiolite to the diets of broilers can reduce uranium distribution in organs by significant amount without adverse side effects.

  19. The amount effect and marginal value.

    PubMed

    Rachlin, Howard; Arfer, Kodi B; Safin, Vasiliy; Yen, Ming

    2015-07-01

    The amount effect of delay discounting (by which the value of larger reward amounts is discounted by delay at a lower rate than that of smaller amounts) strictly implies that value functions (value as a function of amount) are steeper at greater delays than they are at lesser delays. That is, the amount effect and the difference in value functions at different delays are actually a single empirical finding. Amount effects of delay discounting are typically found with choice experiments. Value functions for immediate rewards have been empirically obtained by direct judgment. (Value functions for delayed rewards have not been previously obtained.) The present experiment obtained value functions for both immediate and delayed rewards by direct judgment and found them to be steeper when the rewards were delayed--hence, finding an amount effect with delay discounting.

  20. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  1. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.

    PubMed

    Hlavay, József; Polyák, Klára

    2005-04-01

    A novel type adsorbent was prepared by in situ precipitation of Fe(OH)3 on the surface of activated Al2O3 as a support material. The iron content of the adsorbent was 0.31+/-0.003% m/m (56.1 mmol/g); its mechanical and chemical stability proved to be appropriate in solutions. The total capacity of the adsorbent was 0.12 mmol/g, and the pH of zero point of charge, pH(zpc) = 6.9+/-0.3. Depending on the pH of solutions, the adsorbent can be used for binding of both anions and cations, if pH(eq) < pH(zpc) anions are sorbed on the surface of adsorbent (S) through [SOH2+] and [SOH] groups. A graphical method was used for the determination of pH(iep) (isoelectric points) of the adsorbent and values of pH(iep) = 6.1+/-0.3 for As(III) and pH(iep) = 8.0+/-0.3 for As(V) ions were found. The amount of surface charged groups (Q) was about zero within the a pH range of 6.5-8.6, due to the practically neutral surface formed on the adsorption of As(V) ions. At acidic pH (pH 4.7), Q = 0.19 mol/kg was obtained. The adsorption of arsenate and arsenite ions from solutions of 0.1-0.4 mmol/L was represented by Langmuir-type isotherms. A great advantage of the adsorbent is that it can be used in adsorption columns, and low waste technology for removal of arsenic from drinking water can be developed.

  2. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate.

    PubMed

    Iyota, Hidemi; Krastev, Rumen

    2009-04-01

    The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride-sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.

  3. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue.

    PubMed

    Li, Leilei; Liu, Feng; Duan, Huimin; Wang, Xiaojiao; Li, Jianbo; Wang, Yanhui; Luo, Chuannan

    2016-05-01

    The hydroxy-functionalized ionic liquids (ILs) modified with magnetic chitosan/grapheneoxide (MG-ILs-OH) were synthesized. The surface morphology of MG-ILs-OH was characterized by transmission electron microscopy, X-ray diffraction, thermo gravimetric analysis and Fourier transform infrared spectroscopy techniques. It was found that the adsorption kinetics is well fitted by a pseudo-second-order model and the adsorption isotherms agree well with the Langmuir model, and the MG-ILs-OH could be repeatedly used by simple treatment. The results showed that the addition of ILs-OH can largely increase the adsorption sites (hydroxy and amino groups) and adsorption properties. The MG-ILs-OH were used as adsorbent for the removal of methylene blue (MB) and Cr(VI) from simulated wastewater with a fast solid-liquid separation in the presence of external magnetic field. The maximum obtained adsorption capacities of MB and Cr(VI) were 243.31 and 107.99 mg/g, respectively. The application of MG-ILs-OH could effectively solve the problem that the adsorbent only adsorb similar adsorbate. Copyright © 2016. Published by Elsevier B.V.

  4. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents.

    PubMed

    Ding, Rui; Zhang, Pengfei; Seredych, Mykola; Bandosz, Teresa J

    2012-09-01

    Sewage sludge- and waste oil sludge-derived materials were tested as adsorbents of pharmaceuticals from diluted water solutions. Simultaneous retention of eleven antibiotics plus two anticonvulsants was examined via batch adsorption experiments. Virgin and exhausted adsorbents were examined via thermal and FTIR analyses to elucidate adsorption mechanisms. Maximum adsorption capacities for the 6 materials tested ranged from 80 to 300 mg/g, comparable to the adsorption capacities of antibiotics on various activated carbons (200-400 mg/g) reported in the literature. The performance was linked to surface reactivity, polarity and porosity. A large volume of pores similar in size to the adsorbate molecules with hydrophobic carbon-based origin of pore walls was indicated as an important factor promoting the separation process. Moreover, the polar surface of an inorganic phase in the adsorbents attracted the functional groups of target molecules. The presence of reactive alkali metals promoted reaction with acidic groups, formation of salts and their precipitation in the pore system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions.

    PubMed

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan; Zhang, Chaoliang; Wang, Xu; Liu, Xiangyang

    2016-04-05

    To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Qe) for Cu(2+) of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300°C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Enhanced CO2 adsorptive performance of PEI/SBA-15 adsorbent using phosphate ester based surfactants as additives.

    PubMed

    Cheng, Dandan; Liu, Yue; Wang, Haiqiang; Weng, Xiaole; Wu, Zhongbiao

    2015-12-01

    In this study, a series of polyetherimide/SBA-15: 2-D hexagonal P6mm, Santa Barbara USA (PEI/SBA-15) adsorbents modified by phosphoric ester based surfactants (including tri(2-ethylhexyl) phosphate (TEP), bis(2-ethylhexyl) phosphate (BEP) and trimethyl phosphonoacetate (TMPA)) were prepared for CO2 adsorption. Experimental results indicated that the addition of TEP and BEP had positive effects on CO2 adsorption capacity over PEI/SBA-15. In particular, the CO2 adsorption amount could be improved by around 20% for 45PEI-5TEP/SBA-15 compared to the additive-free adsorbent. This could be attributed to the decrease of CO2 diffusion resistance in the PEI bulk network due to the interactions between TEP and loaded PEI molecules, which was further confirmed by adsorption kinetics results. In addition, it was also found that the cyclic performance of the TEP-modified adsorbent was better than the surfactant-free one. This could be due to two main reasons, based on the results of in situ DRIFT and TG-DSC tests. First and more importantly, adsorbed CO2 species could be desorbed more rapidly over TEP-modified adsorbent during the thermal desorption process. Furthermore, the enhanced thermal stability after TEP addition ensured lower degradation of amine groups during adsorption/desorption cycles.

  7. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal.

    PubMed

    Rovani, Suzimara; Censi, Monique T; Pedrotti, Sidnei L; Lima, Eder C; Cataluña, Renato; Fernandes, Andreia N

    2014-04-30

    A new activated carbon (AC) material was prepared by pyrolysis of a mixture of coffee grounds, eucalyptus sawdust, calcium hydroxide and soybean oil at 800°C. This material was used as adsorbent for the removal of the endocrine disruptor compounds 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solutions. The carbon material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), N2 adsorption/desorption curves and point of zero charge (pHPZC). Variables including the initial pH of the adsorbate solutions, adsorbent masses and contact time were optimized. The optimum range of initial pH for removal of endocrine disruptor compounds (EDC) was 2.0-11.0. The kinetics of adsorption were investigated using general order, pseudo first-order and pseudo-second order kinetic models. The Sips isotherm model gave the best fits of the equilibrium data (298K). The maximum amounts of E2 and EE2 removed at 298K were 7.584 (E2) and 7.883mgg(-1) (EE2) using the AC as adsorbent. The carbon adsorbent was employed in SPE (solid phase extraction) of E2 and EE2 from aqueous solutions.

  8. Spatial distribution of protein molecules adsorbed at a polyelectrolyte multilayer

    NASA Astrophysics Data System (ADS)

    Jackler, Guido; Czeslik, Claus; Steitz, Roland; Royer, Catherine A.

    2005-04-01

    The spatial distribution of protein molecules interacting with a planar polyelectrolyte multilayer was determined using neutron reflectometry. Staphylococcal nuclease (SNase) was used as model protein that was adsorbed to the multilayer at 22°C and 42°C . At each temperature, the protein solution was adjusted to pD -values of 4.9 and 7.5 to vary the net charge of the protein molecules. The multilayer was built up on a silicon wafer by the deposition of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) in the order Si-PEI-PSS- (PAH-PSS)5 . Applying the contrast variation technique, two different neutron reflectivity curves were measured at each condition of temperature and pD -value. From the analysis of the curves, protein density profiles normal to the interface were recovered. Remarkably, it has been found that SNase is partially penetrating into the polyelectrolyte multilayer after adsorption at all conditions studied. The measured neutron reflectivities are consistent with a penetration depth of 50Å at pD=4.9 and 25Å at pD=7.5 . Since SNase has an isoelectric point of pH=9.5 , it carries a net positive charge at both pD -values and interacts with the PSS final layer under electrostatic attraction conditions. However, when increasing the temperature, the amount of adsorbed protein is increasing at both pD -values indicating the dominance of entropic driving forces for the protein adsorption. Interestingly, at pD=4.9 where the protein charge is relatively high, this temperature-induced mass increase of immobilized protein is more pronounced within the polyelectrolyte multilayer, whereas at pD=7.5 , closer to the isoelectric point of SNase, raising the temperature has mainly the effect to accumulate protein molecules outside the polyelectrolyte multilayer at the water interface. It is suggested that the penetration of SNase into the polyelectrolyte multilayer is related to a complexation mechanism. The

  9. Kinetic study of lead adsorption to composite biopolymer adsorbent

    SciTech Connect

    Seki, H.; Suzuki, A.

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M.G. Rao and A.K. Gupta was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for both the cases was well described and average apparent lead diffusion coefficients of about 6 {times} 10{sup {minus}6} and 7 {times} 10{sup {minus}6} cm{sup 2}/s were found for the spherical and membranous adsorbents, respectively.

  10. Metal adsorbent for alkaline etching aqua solutions of Si wafer

    NASA Astrophysics Data System (ADS)

    Tamada, Masao; Ueki, Yuji; Seko, Noriaki; Takeda, Toshihide; Kawano, Shin-ichi

    2012-08-01

    High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h-1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing.

  11. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  12. 45 CFR 32.8 - Amounts withheld.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... paragraph (b) of this section. The employer may use the SF-329C “Wage Garnishment Worksheet” to calculate... garnishment order up to 15% of the debtor's disposable pay; or (2) The amount set forth in 15 U.S.C. 1673(a)(2) (Maximum allowable garnishment). The amount set forth at 15 U.S.C. 1673(a)(2) is the amount by which...

  13. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  14. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    NASA Astrophysics Data System (ADS)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  15. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    SciTech Connect

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T.; Saito, Tomonori; Brown, Suree; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  16. Melting in adsorbed films. Final report

    SciTech Connect

    1997-08-01

    This grant ran from February 1, 1981 to January 31, 1995. It resulted in a rich output of experimental results that will have a lasting impact on the field of phase transitions in lower dimensions. It produced 33 formal publications and 7 pH.D. theses. It has also opened the door for ongoing research, for which continued funding is being sought. The scientific output of the project has been detailed in a series of progress reports that need not be summarized here. Instead the author has appended to this report a list of all the publications and theses arising out of this grant, plus copies of those papers published in the last two years. The most recent paper, published in Physical Review Letters in January 1995, the last month of the grant, explains the remarkable phenomenon of reentrant layering in thin adsorbed films, and opens a dramatic new class of possible phases and phase transitions at crystal surfaces. Perhaps the most important consequence of this grant is the fine group of scientists it produced.

  17. Photoreduction of methylviologen adsorbed on silver

    SciTech Connect

    Feilchenfeld, H.; Chumanov, G.; Cotton, T.M. |

    1996-03-21

    Methylviologen adsorbed on a roughened silver electrode is reduced to its cation radical upon irradiation with laser light at liquid nitrogen temperature. Surface-enhanced Raman scattering (SERS) spectra were obtained with different excitation wavelengths between 406 and 752 nm and compared to those obtained at room temperature in an electrochemical cell under potential control. From two-color experiments, in which one laser frequency was used to generate the radical and a second to excite the SERS spectra, it was determined that radical formation occurs mainly with excitation in the blue spectral region. A comparison of the SERS spectra of the dication and cation radical forms of methylviologen with their solution spectra suggests that the former interacts more strongly with the surface than the latter. The cation radical appears to be stable for several hours in liquid nitrogen but has a short lifetime at room temperature. Two mechanisms for the photoreduction are discussed: plasmon-assisted electron transfer from the metal to the methylviologen dication and formation of a resonance charge transfer complex. The current experimental data are insufficient to determine the particular role of these mechanisms. 23 refs., 9 figs.

  18. NASA Applications of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.

  19. Bowl inversion of surface-adsorbed sumanene.

    PubMed

    Jaafar, Rached; Pignedoli, Carlo A; Bussi, Giovanni; Aït-Mansour, Kamel; Groening, Oliver; Amaya, Toru; Hirao, Toshikazu; Fasel, Roman; Ruffieux, Pascal

    2014-10-01

    Bowl-shaped π-conjugated compounds offer the possibility to study curvature-dependent host-guest interactions and chemical reactivity in ideal model systems. For surface-adsorbed π bowls, however, only conformations with the bowl opening pointing away from the surface have been observed so far. Here we show for sumanene on Ag(111) that both bowl-up and bowl-down conformations can be stabilized. Analysis of the molecular layer as a function of coverage reveals an unprecedented structural phase transition involving a bowl inversion of one-third of the molecules. On the basis of scanning tunneling microscopy (STM) and complementary atomistic simulations, we develop a model that describes the observed phase transition in terms of a subtle interplay between inversion-dependent adsorption energies and intermolecular interactions. In addition, we explore the coexisting bowl-up and -down conformations with respect to host-guest binding of methane. STM reveals a clear energetic preference for methane binding to the concave face of sumanene.

  20. Imaging the wave functions of adsorbed molecules.

    PubMed

    Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F Stefan; Ramsey, Michael G; Puschnig, Peter

    2014-01-14

    The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.

  1. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of...

  2. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of...

  3. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of...

  4. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of...

  5. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of...

  6. 40 CFR 152.404 - Fee amounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Fee amounts. 152.404 Section 152.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Registration Fees § 152.404 Fee amounts. The fee prescribed by the...

  7. 40 CFR 152.404 - Fee amounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fee amounts. 152.404 Section 152.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Registration Fees § 152.404 Fee amounts. The fee prescribed by the...

  8. 40 CFR 152.404 - Fee amounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Fee amounts. 152.404 Section 152.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Registration Fees § 152.404 Fee amounts. The fee prescribed by the...

  9. 40 CFR 152.404 - Fee amounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Fee amounts. 152.404 Section 152.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Registration Fees § 152.404 Fee amounts. The fee prescribed by the...

  10. 46 CFR 308.100 - Insured amount.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.100 Insured amount. An applicant for war risk hull insurance shall state the amount of insurance desired but any payment of claim for damage to or actual or...

  11. 46 CFR 308.403 - Insured amounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... total amount of war risk insurance obtainable from companies authorized to do an insurance business in a... authorized to do an insurance business in a State of the United States. (c) Maximum liability. The amount of... MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War...

  12. 46 CFR 308.403 - Insured amounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... total amount of war risk insurance obtainable from companies authorized to do an insurance business in a... authorized to do an insurance business in a State of the United States. (c) Maximum liability. The amount of... MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War...

  13. 23 CFR 1335.8 - Grant amounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Grant amounts. 1335.8 Section 1335.8 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE HIGHWAY SAFETY DATA IMPROVEMENTS § 1335.8 Grant amounts. (a) Start-up grant. A State that qualifies for a start-up grant under §...

  14. 23 CFR 1335.8 - Grant amounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Grant amounts. 1335.8 Section 1335.8 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE HIGHWAY SAFETY DATA IMPROVEMENTS § 1335.8 Grant amounts. (a) Start-up grant. A State that qualifies for a start-up grant under §...

  15. 20 CFR 617.34 - Amount.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... WORKERS UNDER THE TRADE ACT OF 1974 Job Search Allowances § 617.34 Amount. (a) Computation. The amount of a job search allowance shall be 90 percent of the total costs of each of the following allowable transportation and subsistence items: (1) Travel. The more cost effective mode of travel reasonably available...

  16. 20 CFR 617.34 - Amount.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... WORKERS UNDER THE TRADE ACT OF 1974 Job Search Allowances § 617.34 Amount. (a) Computation. The amount of a job search allowance shall be 90 percent of the total costs of each of the following allowable transportation and subsistence items: (1) Travel. The more cost effective mode of travel reasonably available...

  17. 20 CFR 617.34 - Amount.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... WORKERS UNDER THE TRADE ACT OF 1974 Job Search Allowances § 617.34 Amount. (a) Computation. The amount of a job search allowance shall be 90 percent of the total costs of each of the following allowable... job search; or (ii) The cost per mile at the prevailing mileage rate authorized under the...

  18. 20 CFR 617.34 - Amount.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Federal travel regulations (see 41 CFR part 101-7) for the locality where the job search is... WORKERS UNDER THE TRADE ACT OF 1974 Job Search Allowances § 617.34 Amount. (a) Computation. The amount of a job search allowance shall be 90 percent of the total costs of each of the following...

  19. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-28

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.

  20. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    NASA Astrophysics Data System (ADS)

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.

  1. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    PubMed Central

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater. PMID:26818070

  2. Preparation and evaluation of Ricinus communis agglutinin affinity adsorbents using polymeric supports.

    PubMed

    Cartellieri, S; Helmholz, H; Niemeyer, B

    2001-08-01

    A practicable and efficient procedure for preparation of Ricinus communis agglutinin (RCA) affinity adsorbents has been developed. For immobilization of RCA two different polymer-based supports, Toyopearl and TSKgel (TosoHaas), were used. RCA has been successfully immobilized onto these supports with amounts of coupled ligand between 15 and 23 mg/g dry support and corresponding coupling yields of 69-93% (w/w). The prepared affinity adsorbents were characterized concerning their binding capacity for the glycoprotein asialofetuin (ASF) and accessibility of the ligand binding sites. The high accessibility of 80% showed that steric hindrance was negligible at the present ligand density. RCA-Toyopearl was successfully applied in affinity chromatography of glycoproteins indicating its high specificity. A long-term stability test proved no change in capacity for a period of at least 12 months. High-performance affinity chromatography (HPLAC) was carried out using RCA-TSKgel. Experimental results showed that the prepared adsorbents are suitable for selective separation of glycoproteins and oligosaccharides and therefore can be used for investigations of adsorption characteristics of glycoconjugates and for laboratory-scale preparations.

  3. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents.

    PubMed

    Damjanović, Ljiljana; Rakić, Vesna; Rac, Vladislav; Stošić, Dušan; Auroux, Aline

    2010-12-15

    This work reports results on phenol adsorption from aqueous solutions on synthetic BEA (β) and MFI (ZSM-5) zeolites, studied by heat-flow microcalorimetry. For the sake of comparison, the adsorption was performed on activated carbon, a solid customarily used for removal of phenol from water. The obtained values of heats evolved during phenol adsorption indicate the heterogeneity of active sites present on the investigated systems for the adsorption of phenol. In addition, the amounts of adsorbed pollutant were determined and presented in the form of adsorption isotherms, which were interpreted using Langmuir, Freundlich, Dubinin-Astakov and Sips' equations. The latter was found to express high level of agreement with experimental data. The results obtained in this work reveal that the adsorption of phenol on zeolites depends on both Si/Al ratio and on the pore size. Hydrophobic zeolites that possess higher contents of Si show higher affinities for phenol adsorption. Among investigated zeolites, zeolite β possesses the highest capacity for adsorption of phenol. The possibility of regeneration of used adsorbents was investigated by thermal desorption technique. It has been shown that in the case of β zeolite the majority of adsorbed phenol is easily released in the low temperature region.

  4. Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films

    NASA Astrophysics Data System (ADS)

    Matetskiy, A. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Gruznev, D. V.; Eremeev, S. V.; Zotov, A. V.; Saranin, A. A.

    2017-06-01

    Changes of the electronic band structure of Bi(111) films on Si(111) induced by Cs and Sn adsorption have been studied using angle-resolved photoemission spectroscopy and density functional theory calculations. It has been found that small amounts of Cs when it presents at the surface in a form of the adatom gas leads to shifting of the surface and quantum well states to the higher binding energies due to the electron donation from adsorbate to the Bi film. In contrast, adsorbed Sn dissolves into the Bi film bulk upon heating and acts as an acceptor dopant, that results in shifting of the surface and quantum well states upward to the lower binding energies. These results pave the way to manipulate with the Bi thin film electron band structure allowing to achieve a certain type of conductivity (electron or hole) with a single spin channel at the Fermi level making the adsorbate-modified Bi a reliable base for prospective spintronics applications.

  5. Adsorption / Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    Adsorption / desorption behavior of water vapor onto desiccant rotor has been investigated to improve the desiccant cooling system by means of computer simulation. In this paper, we paid attention to the relationship between the equilibrium amount of water adsorbed onto the desiccant material and the relative humidity, that is adsorption isotherm as a principal characteristic feature of adsorbent. Considering actual adsorbents, five types of adsorption isotherms were assumed to clarify the influence of adsorption isotherm on the dehumidifying performance. After the investigation on the influences of some operating conditions on the dehumidifying performance at each selected adsorption isotherm, it was found that higher dehumidifying performance and reduction of length of desiccant rotor could be achieved by selecting appropriate adsorption isotherm. It was also predicted that S-shaped adsorption isotherm which is raised sharply at relative humidity around 15 % could produce the lowest air humidity at regeneration air temperature 80 °C. Moreover influence of the intraparticle diffusion coefficient which significantly influence on the adsorption / desorption rate was discussed choosing two adsorption isotherm from the above five isotherms. It seems that effective range of the intraparticle diffusion coefficient for the significant improvement of the dehumidifying performance was strongly influenced by the shape of adsorption isotherm.

  6. Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid.

    PubMed

    Ricci, Maria; Segura, Juan José; Erickson, Blake W; Fantner, Georg; Stellacci, Francesco; Voïtchovsky, Kislon

    2015-07-14

    The interaction of organic molecules with the surface of calcite plays a central role in many geochemical, petrochemical, and industrial processes and in biomineralization. Adsorbed organics, typically fatty acids, can interfere with the evolution of calcite when immersed in aqueous solutions. Here we use atomic force microscopy in liquid to explore in real-time the evolution of the (1014) surface of calcite covered with various densities of stearic acid and exposed to different saline solutions. Our results show that the stearic acid molecules tend to act as "pinning points" on the calcite's surface and slow down the crystal's restructuring kinetics. Depending on the amount of material adsorbed, the organic molecules can form monolayers or bilayer islands that become embedded into the growing crystal. The growth process can also displaces the organic molecules and actively concentrate them into stacked multilayers. Our results provide molecular-level insights into the interplay between the adsorbed fatty acid molecules and the evolving calcite crystal, highlighting mechanisms that could have important implications for several biochemical and geochemical processes and for the oil industry.

  7. Sleep and Delinquency: Does the Amount of Sleep Matter?

    ERIC Educational Resources Information Center

    Clinkinbeard, Samantha S.; Simi, Pete; Evans, Mary K.; Anderson, Amy L.

    2011-01-01

    Sleep, a key indicator of health, has been linked to a variety of indicators of well-being such that people who get an adequate amount generally experience greater well-being. Further, a lack of sleep has been linked to a wide range of negative developmental outcomes, yet sleep has been largely overlooked among researchers interested in adolescent…

  8. Sleep and Delinquency: Does the Amount of Sleep Matter?

    ERIC Educational Resources Information Center

    Clinkinbeard, Samantha S.; Simi, Pete; Evans, Mary K.; Anderson, Amy L.

    2011-01-01

    Sleep, a key indicator of health, has been linked to a variety of indicators of well-being such that people who get an adequate amount generally experience greater well-being. Further, a lack of sleep has been linked to a wide range of negative developmental outcomes, yet sleep has been largely overlooked among researchers interested in adolescent…

  9. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater.

    PubMed

    Luo, Shenglian; Xu, Xiangli; Zhou, Guiyin; Liu, Chengbin; Tang, Yanhong; Liu, Yutang

    2014-06-15

    A high performance sorbent, oligomer-linked graphene oxide (GO) composite, was prepared through simple cross-linking reactions between GO sheets and poly3-aminopropyltriethoxysilane (PAS) oligomers as crosslinking agents. The three-dimensional PAS oligomers prevented GO sheets from aggregation, provided foreign molecules with easier access, and introduced a large amount of amino functional groups. The morphology, structure and property of the PAS-GO composite were determined by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourie transform infrared (FTIR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The adsorption performance of PAS-GO was investigated in removing Pb(II) ions from water. Compared to 3-aminopropyltriethoxysilane functionalized GO (AS-GO) which was prepared by the direct reaction between 3-aminopropyltriethoxysilane and GO, PAS-GO exhibited much higher adsorptivity toward Pb(II) with the maximum adsorption capacity of 312.5mg/g at 303 K and furthermore the maximum adsorption capacity increased with increasing temperature. The adsorption could be conducted in a wide pH range of 4.0-7.0. Importantly, PAS-GO had a priority tendency to adsorb Pb, Cu and Fe from a mixed solution of metal ions, especially from a practical industrial effluent.

  10. Development of Composite Adsorbents for LLW Treatment and Their Adsorption Properties for Cs and Sr - 13127

    SciTech Connect

    Susa, Shunsuke; Mimura, Hitoshi; Ito, Yoshiyuki; Saito, Yasuo

    2013-07-01

    In this study, the composite adsorbents (KCoFC-NM (NM: natural mordenite), KCoFC-SG (SG: porous silica gel), AMP-SG and so on) were prepared by impregnation-precipitation methods. As for the distribution properties, the largest K{sub d,Cs} value of 3.8 x 10{sup 4} cm{sup 3}/g was obtained for KCoFC-SG (Davi.) composite. KCoFC-SG (NH, MB5D) and T-KCFC also had relatively large K{sub d,Cs} values above 1.0 x 10{sup 4} cm{sup 3}/g. The uptake rate of Cs{sup +} ions was examined by batch method. KCoFC-SG (NH, MB5D) and AMP-SG (Davi.) had relatively large uptake rate of Cs{sup +}, and the uptake attained equilibrium within 1 h. The maximum uptake capacity of Cs{sup +} ions was estimated to be above 0.5 mmol/g for KCoFC-NM and KCoFC-CP composites. KCoFC-X composite had a relatively large uptake capacity of Cs{sup +} ions (0.23 mmol/g > 0.17 mmol/g (T-KCFC)) and this composite also had a selectivity towards Sr{sup 2+} ions; KCoFC-X is effective adsorbent for both Cs{sup +} and Sr{sup 2+} ions. The largest value of K{sub d,Sr} was estimated to be 218 cm{sup 3}/g for titanic acid-PAN. Titanic acid-PAN had the largest uptake rate of Sr{sup 2+} ions, and the uptake attained equilibrium within 8 h. Adsorbability of other nuclides was further examined by batch method. All adsorbents had adsorbability for Rb{sup +} and RuNO{sup 3+} ions. KCoFC-SG (NH), KCoFC-CP and T-KCFC had higher selectivity towards Cs{sup +} than other adsorbents; these adsorbents had adsorbability to Cs{sup +} ions even in the presence of Ba{sup 2+}, Ca{sup 2+} and Mg{sup 2+} ions. The separation factor of K{sub d,Sr}/K{sub d,Ba} for titanic acid-PAN was about 1, indicating that the K{sub d,Sr} for titanic acid-PAN tends to decrease with Ba{sup 2+} concentration. As for the breakthrough properties, the largest 5 % breakpoint and 5 % breakthrough capacity of Cs{sup +} ions were estimated to be 47.1 cm{sup 3} and 0.07 mmol/g for the column of KCoFC-SG (NH), respectively. The order of 5 % breakthrough capacity

  11. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  12. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  13. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  14. Novel adhesion properties of irreversibly adsorbed polymer chains

    NASA Astrophysics Data System (ADS)

    Chen, Zhizhao; Sen, Mani; Cheung, Justin; Barkley, Deborah; Jiang, Naisheng; Zeng, Wenduo; Endoh, Maya K.; Koga, Tadanori

    The stability of thin polymer films on solids is of vital interest in traditional technologies and in new emerging nanotechnologies. We recently found that nanoscale structures of polymer chains adsorbed onto a silicon (Si) substrate (``adsorbed nanolayers'') play a crucial role in the thermal stability of the film. To understand the adhesion mechanism at the adsorbed polymer-free polymer interface, we mimicked the interface by preparing bilayers where a 200 nm-thick polymer film and an adsorbed nanolayer, both prepared on Si, were pressed together at high temperature. The bilayers were then subjected to an adhesion test by measuring the critical normal force required to separate the two films. Polystyrene was used as a model. The results are intriguing as they show an absence of adhesion between the ``flattened'' adsorbed chains, which lie flat on the solid, and the chemically identical free chains. On the other hand, the ``loosely adsorbed'' polymer chains, which are formed as a result of limited adsorption space on the solid surface, do display a degree of adhesion with the bulk polymer. We postulate that the loosely adsorbed chains act as ``connectors'' which promote adhesion effectively across the solid-polymer interface. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  15. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion.

    PubMed

    Zhang, Liudi; Casey, Brendan; Galanakis, Dennis K; Marmorat, Clement; Skoog, Shelby; Vorvolakos, Katherine; Simon, Marcia; Rafailovich, Miriam H

    2017-03-02

    Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry.

  16. Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study.

    PubMed

    Titov, Evgenii; Saalfrank, Peter

    2016-05-19

    Molecular photoswitches such as azobenzenes, which undergo photochemical trans ↔ cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule-surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based coupled-cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an example: The low-lying singlet excited states in the isolated trans monomer and dimer as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further

  17. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  18. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  19. Mysterious Lattice Rotations in Adsorbed Monolayers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.

    1997-03-01

    Lattice rotations due to a mismatch in structure have been observed in film growth for many years, probably beginning in the 1930's with the Nishiyama-Wasserman and Kurdjumov-Sachs orientations observed when fcc(111) films grow on bcc(110) surfaces, or vice versa. Early analysis of this problem was carried out with the aid of Moiré patterns and the observation that the preferred lattice orientations are those which maximize the Moiré fringe spacing. Later energy calculations indicated that the structures which were predicted by the the Moiré technique actually do correspond to energy minima. Epitaxial rotation in adsorbed monolayers is a conceptually simpler problem since in principle it involves only two planes of atoms, and it was first observed in 1977 for Ar on a graphite surface(C. G. Shaw, M. D. Chinn, S. C. Fain, Jr. Phys. Rev. Lett. 41 (1978) 955.). This observation came only a few months after a new theory, based on the expected elastic behavior of an overlayer, was developed by A. D. Novaco and J. P. McTague(A. D. Novaco and J. P. McTague, Phys. Rev. Lett. 38 (1977) 1286.), and the agreement with the experimental results was remarkable. It was later shown that a few symmetry principles similar to those used for the film growth studies sometimes can also predict the observed structures. However, the situation for incommensurate layers physisorbed on metal surfaces currently looks bleak. None of the existing theories or models appears to describe the experimental results. New data for physisorbed gases on metal surfaces will be presented, along with some half-baked (and probably wrong) ideas for what might be happening. This work was supported by NSF.

  20. Validation of adsorbents for sample preconcentration in compound-specific isotope analysis of common vapor intrusion pollutants.

    PubMed

    Klisch, Monika; Kuder, Tomasz; Philp, R Paul; McHugh, Thomas E

    2012-12-28

    Isotope ratios of volatile organic compounds (VOCs) in the environment are often of interest in contaminant fate studies. Adsorbent preconcentration-thermal desorption of VOCs can be used to collect environmental vapor samples for compound-specific isotope analysis (CSIA). While active adsorbent samplers offer logistic benefits in handling large volumes of air, their performance in preserving VOCs isotope ratios was not previously tested under sampling conditions corresponding to typical indoor air sampling conditions. In this study, the performance of selected adsorbents was tested for preconcentration of TCE (for determination of C and Cl isotope ratios), PCE (C and Cl) and benzene (C and H). The key objective of the study was to identify the adsorbent(s) permitting preconcentration of the target VOCs present in air at low μg/m(3) concentrations, without significant alteration of their isotope ratios. Carboxen 1016 was found to perform well for the full range of tested parameters. Carboxen 1016 can be recommended for sampling of TCE, PCE and benzene, for CSIA, from air volumes up to 100 L. Variable extent of isotope ratio alteration was observed in the preconcentration of the target VOCs on Carbopack B and Carbopack X, resulting from partial analyte loss via adsorbent bed breakthrough and (possibly) via incomplete desorption. The results from testing the Carbopack B and Carbopack X highlight the need of adsorbent performance validation at conditions fully representative of actual sample collection conditions, and caution against extrapolation of performance data toward more challenging sampling conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand-Receptor Bonds.

    PubMed

    Song, Lei; Sjollema, Jelmer; Norde, Willem; Busscher, Henk J; van der Mei, Henny C

    2015-09-29

    Bacteria adhering to surfaces exhibit nanoscopic vibrations that depend on the viscoelasticity of the bond. The quantification of the nanoscopic vibrations of bacteria adhering to surfaces provides new opportunities to better understand the properties of the bond through which bacteria adhere and the mechanisms by which they resist detachment. Often, however, bacteria do not adhere to bare surfaces but to adsorbed protein films, on which adhesion involves highly specific ligand-receptor binding next to nonspecific DLVO interaction forces. Here we determine the contribution of adsorbed salivary protein and fibronectin films to vibrations exhibited by adhering streptococci and staphylococci, respectively. The streptococcal strain used has the ability to adhere to adsorbed salivary proteins films through antigen I/II ligand-receptor binding, while the staphylococcal strain used adheres to adsorbed fibronectin films through a proteinaceous ligand-receptor bond. In the absence of ligand-receptor binding, electrostatic interactions had a large impact on vibration amplitudes of adhering bacteria on glass. On an adsorbed salivary protein film, vibration amplitudes of adhering streptococci depended on the film softness as determined by QCM-D and were reduced after film fixation using glutaraldehyde. On a relatively stiff fibronectin film, cross-linking the film in glutaraldehyde hardly reduced its softness, and accordingly fibronectin film softness did not contribute to vibration amplitudes of adhering staphylococci. However, fixation of the staphylococcus-fibronectin bond further decreased vibration amplitudes, while fixation of the streptococcus bond hardly impacted vibration amplitudes. Summarizing, this study shows that both the softness of adsorbed protein films and the properties of the bond between an adhering bacterium and an adsorbed protein film play an important role in bacterial vibration amplitudes. These nanoscopic vibrations reflect the viscoelasticity of the

  2. Microfungal alkylation and volatilization of selenium adsorbed by goethite.

    PubMed

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael

    2010-01-01

    Selenium adsorbed in the oxyanionic form by Fe-oxides like goethite is considered of benefit for long-term stabilization of (79)Se under near field conditions of radionuclide waste disposal sites. However, microbe-mediated volatilization of the uranium fission product (79)Se has not yet been considered for risk assessment based on the use of the water-solid distribution coefficient K(D). We have performed incubation experiments in a ternary system selenium-microbe-goethite and show that mycobiota including the common black microfungi genera Alternaria alternata are capable of volatilizing the Se even if immobilized by goethite. The microfungi were incubated in a standardized nutrient broth suspension with 10 g L(-1) of the oxide target under defined conditions. Volatile organic selenium (VOSe) species formed in the head space of the culture flasks were sampled and measured directly by a cryotrapping cryofocusing gas chromatographic system coupled with ICP-MS detection (CT-CF-GC-ICP-MS). Alkylated VOSe species were found at the tens to hundreds ng m(-3) levels dominated by dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). The total amount of DMSe released into the 80-mL headspace volume within the 21 days of incubation was up to 1.12 +/- 0.17 nmol and 0.48 +/- 0.12 nmol for systems without and with goethite amendment, respectively. Alkylation rates of up to 0.1 mumol Se per day and g biomass cannot be neglected as a potential fission product mobilization pathway, unless the inherent radioactivity is proven to prevent any such microbial activity on the long-term. Otherwise it may lead to an onsite accumulation of (79)Se through evapoconcentration in the enclosed underground caverns.

  3. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    PubMed Central

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-01-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices. PMID:27554975

  4. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    DOE PAGES

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE ismore » observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less

  5. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    SciTech Connect

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  6. Adsorbed Methane Film Properties in Nanoporous Carbon Monoliths

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Chada, Nagaraju; Beckner, Matthew; Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Carbon briquetting can increase methane storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed natural gas vehicle storage tank. To optimize methane storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis temperature. We found that carbon-to-binder ratio and pyrolysis temperature both have large influences on monolith uptakes. We have been able to optimize these parameters for high methane storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument. The saturated film density and the film thickness was determined using linear extrapolation on the high pressure excess adsorption isotherms. The saturated film density was also determined using the monolayer Ono-Kondo model. Film densities ranged from ca. 0.32 g/cm3 - 0.37 g/cm3.The Ono-Kondo model also determines the binding energy of methane. Binding energies were also determined from isosteric heats calculated from the Clausius-Clapeyron equation and compared with the Ono-Kondo model method. Binding energies from Ono-Kondo were ca. 7.8 kJ/mol - 10 kJ/mol. Work funded by California Energy Commission Contract #500-08-022.

  7. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  8. Dynamics of a globular protein adsorbed to liposomal nanoparticles.

    PubMed

    Ceccon, Alberto; Lelli, Moreno; D'Onofrio, Mariapina; Molinari, Henriette; Assfalg, Michael

    2014-09-24

    A solution-state NMR method is proposed to investigate the dynamics of proteins that undergo reversible association with nanoparticles (NPs). We applied the recently developed dark-state exchange saturation transfer experiment to obtain residue-level dynamic information on a NP-adsorbed protein in the form of transverse spin relaxation rates, R2bound. Based on dynamic light scattering, fluorescence, circular dichroism, and NMR spectroscopy data, we show that the test protein, human liver fatty acid binding protein, interacts reversibly and peripherally with liposomal NPs without experiencing significant structural changes. The significant but modest saturation transfer from the bound state observed at 14.1 and 23.5 T static magnetic fields, and the small determined R2bound values were consistent with a largely unrestricted global motion at the lipid surface. Amino acid residues displaying faster spin relaxation mapped to a region that could represent the epitope of interaction with an extended phospholipid chain constituting the protein anchor. These results prove that atomic-resolution protein dynamics is accessible even after association with NPs, supporting the use of saturation transfer methods as powerful tools in bionanoscience.

  9. Adsorbed polymers under flow. A stochastic dynamical system approach

    NASA Astrophysics Data System (ADS)

    Armstrong, Robert; Jhon, Myung S.

    1985-09-01

    Recent experiments have shown that porous filters preadsorbed with polymer molecules exhibit an anomalously high pressure drop at high rates of flow. We have modeled the adsorbed polymers as dynamical systems and have found that the introduction of hydrodynamic interaction between molecules destabilizes at a high applied shear. As a direct result this instability will cause the molecules to unravel and stretch far into the cross section of the pore, and thus by inference, cause the observed anomalously high pressure drop. Although much of this paper is devoted to the stability characteristics of the deterministic system, Brownian motion is also considered, and an account of the statistics of the Brownian system when the deterministic system becomes unstable is given. The examples revealed in this paper are not of sufficient complexity to calculate with any accuracy the magnitude of this anomalous pressure drop. We simply present a procedure by which a large variety of more complex models could be undertaken and their ultimate effect clearly understood.

  10. Volumetric Interpretation of Protein Adsorption: Ion-Exchange Adsorbent Capacity, Protein pI, and Interaction Energetics

    PubMed Central

    Noh, Hyeran; Yohe, Stefan; Vogler, Erwin A.

    2008-01-01

    Adsorption of lysozyme (Lys), human serum albumin (HSA), and immunoglobulin G (IgG) to anion- and cation-exchange resins is dominated by electrostatic interactions between protein and adsorbent. The solution-depletion method of measuring adsorption shows, however, that these proteins do not irreversibly adsorb to ion-exchange surfaces, even when the charge disparity between adsorbent and protein inferred from protein pI is large. Net-positively-charged Lys (pI = 11) and net-negatively-charged HSA (pI = 5.5) adsorb so strongly to sulfopropyl sepharose (SP; a negatively-charged, strong cation exchange resin, −0.22 mmol/mL exchange capacity) that both resist displacement by net-neutral IgG (pI = 7.0) in simultaneous adsorption-competition experiments. By contrast, IgG readily displaces both Lys and HSA adsorbed either to quarternary-ammonium sepharose (Q; a positively-charged, strong anion exchanger, + 0.22 mmol/mL exchange capacity) or octadecyl sepharose (ODS, a neutral hydrophobic resin, 0 mmol/mL exchange capacity). Thus it is concluded that adsorption results do not sensibly correlate with protein pI and that pI is actually a rather poor predictor of affinity for ion-exchange surfaces. Adsorption of Lys, HSA, and IgG to ion-exchange resins from stagnant solution leads to adsorbed multi-layers, into-or-onto which IgG adsorbs in adsorption-competition experiments. Comparison of adsorption to ion-exchange resins and neutral ODS leads to the conclusion that the apparent standard free-energy-of-adsorption ΔGadso of Lys, HSA, and IgG is not large in comparison to thermal energy due to energy-compensating interactions between water, protein, and ion-exchange surfaces that leaves a small net ΔGadso. Thus water is found to control protein adsorption to a full range of substratum types spanning hydrophobic (poorly water wettable) surfaces, hydrophilic surfaces bearing relatively-weak Lewis acid/base functionalities that wet with (hydrogen bond to) water but do not

  11. 12 CFR 313.95 - Amounts withheld.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CORPORATE DEBT COLLECTION Administrative Wage Garnishment § 313.95 Amounts withheld. (a) Upon receipt of the... orders with priority, the following shall apply: (1) Unless otherwise provided by federal...

  12. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-06-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  13. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment.

    PubMed

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-12-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  14. [AFM study on microtopography of NOM and newly formed hydrous manganese dioxide adsorbed on mica].

    PubMed

    Guo, Jin; Ma, Jun; Shi, Xue-hua

    2006-05-01

    With the methods of mica adsorbing, the microtopography of the newly formed hydrous manganese dioxide was perfectly captured. The tapping mode AFM study results revealed that the newly formed hydrous manganese dioxide possesses a perforated sheet (with a thickness of 0-1.75 nm) as well as some spheric particle structures compared with the hydrous manganese dioxide with 2 h aging time, which demonstrated that the newly formed hydrous manganese dioxide have a large surface area and adsorption capacity. When 1 mmol/L newly formed hydrous manganese dioxide was added, the microtopography of NOM molecules shifted from loosely dispersed pancake shape (with adsorption height of 5-8.5 nm) to densely dispersed and uniform spheric structure. NOM was prone to adsorb on the surface of the newly formed hydrous manganese dioxide, which provided a valid proof for the coagulation-aid mechanism of permanganate preoxidation.

  15. Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review

    NASA Astrophysics Data System (ADS)

    Yang, Xuetong; Xia, Ling; Song, Shaoxian

    2017-07-01

    Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.

  16. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    PubMed

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  17. Chemical Sputtering of GaN Crystal with a Chlorine-Adsorbed Layer

    NASA Astrophysics Data System (ADS)

    Harafuji, Kenji; Kawamura, Katsuyuki

    2010-08-01

    A molecular dynamics simulation has been carried out to investigate the chemical sputtering of wurtzite-type GaN(0001) surfaces with and without a Cl-adsorbed layer. Sputtering of crystalline atoms is examined with Ar impacts at energies less than 250 eV. Ga sputtering does not take place at all on the clean surface without Cl-adsorption. On the other hand, Ga sputtering yield has a large finite value for Ar impact on the Cl-adsorbed surface. Generally, Ga is sputtered in the form of Ga-Cl2, and sometimes in the form of Ga-Cl, Ga-N-Cl, Ga-N, and Ga-N-Ga-Cl2. Ga atoms are not singly sputtered. Atoms escape from the surface in the time range of 200-3000 fs after the impact of the incident Ar atom. The shorter and longer escape times correspond to physical and chemical sputtering, respectively.

  18. 23 CFR 1335.8 - Grant amounts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Grant amounts. 1335.8 Section 1335.8 Highways NATIONAL... § 1335.8 Grant amounts. (a) Start-up grant. A State that qualifies for a start-up grant under § 1335.7(a) of this part shall be eligible to receive $25,000. (b) Initiation grant. A State that qualifies for...

  19. Unusual amount of (-)-mesquitol from the heartwood of Prosopis juliflora.

    PubMed

    Sirmah, Peter; Dumarçay, Stéphane; Masson, Eric; Gérardin, Philippe

    2009-01-01

    A large amount of flavonoid has been extracted and isolated from the heartwood of Prosopis juliflora, an exogenous wood species of Kenya. Structural and physicochemical elucidation based on FTIR, (1)H and (13)C NMR, GC-MS and HPLC analysis clearly demonstrated the presence of (-)-mesquitol as the sole compound without any noticeable impurities. The product was able to slow down oxidation of methyl linoleate induced by AIBN. The important amount and high purity of (-)-mesquitol present in the acetonic extract of P. juliflora could therefore be of valuable interest as a potential source of antioxidants from a renewable origin.

  20. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  1. Radiation grafted adsorbents for newly emerging environmental applications

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  2. New insights into perfluorinated adsorbents for analytical and bioanalytical applications.

    PubMed

    Marchetti, Nicola; Guzzinati, Roberta; Catani, Martina; Massi, Alessandro; Pasti, Luisa; Cavazzini, Alberto

    2015-01-01

    Perfluorinated (F-) adsorbents are generally prepared by bonding perfluoro-functionalized silanes to silica gels. They have been employed for a long time essentially as media for solid-phase extraction of F-molecules or F-tagged molecules in organic chemistry and heterogeneous catalysis. More recently, this approach has been extended to proteomics and metabolomics. Owing to their unique physicochemical properties, namely fluorophilicity and proteinophilicity, and a better understanding of some fundamental aspects of their behavior, new applications of F-adsorbents in the field of environmental science and bio-affinity studies can be envisaged. In this article, we revisit the most important features of F-adsorbents by focusing, in particular, on some basic information that has been recently obtained through (nonlinear) chromatographic studies. Finally, we try to envisage new applications and possibilities that F-adsorbents will allow in the near future.

  3. Method of coating aluminum substrates with solid adsorbent

    SciTech Connect

    Dunn, S.R.; McKeon, M.J.; Cohen, A.P.; Behan, A.S.

    1992-06-09

    This patent describes a method of coating a surface of an aluminum substrate with a layer of solid adsorbent selected from the group consisting of crystalline molecular sieves, activated alumina, and mixtures thereof. It comprises heating the surface in an oxygen containing atmosphere to a temperature of at least about 200{degrees} C and sufficient to enable bonding of the solid adsorbent to the surface, contacting the heated surface with a slurry comprising the adsorbent and a binder selected from the group consisting of volclay, kaolin, sepiolite, attapulgite, silicates, aluminates, activated alumina, and mixtures thereof in a suspending liquid to form a slurry-coated surface, and removing sufficient liquid to form an adsorbent coating thereon.

  4. Removal of adsorbed gases with CO2 snow

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    1991-09-01

    During the outgassing of orbiting astronomical observatories, the condensation of molecular species on optical surfaces can create difficulties for astronomers. The problem is particularly severe in ultraviolet astronomy where the adsorption of only a few atomic layers of some substances can be very damaging. In this paper the removal of adsorbed atomic layers using carbon dioxide snow is discussed. The rate of removal of adsorbed layers of isopropyl alcohol, Freon TF, and deionized distilled water on Teflon substrates was experimentally determined. The removal of fingerprints (containing fatty acids such as stearic acid) from optical surfaces is also demonstrated. The presence and rate of removal of the multilayers was monitored by detecting the molecular dipole field of adsorbed molecular species. For isopropyl alcohol, Freon TF (trichlorotrifluoroethane), and water adsorbed multilayers were removed in under 1.5 seconds. Fingerprint removal was much more difficult and required 20 seconds of spraying with a mixture of carbon dioxide snow flakes and atomized microdroplets of isopropyl alcohol.

  5. Magnetic exchange effects of adsorbates on thin Fe(110) films

    NASA Astrophysics Data System (ADS)

    Getzlaff, Mathias; Schönhense, Gerd

    1995-07-01

    An angle and spin resolved photoemission study with very different species on iron is presented. It was carried out with iodine, benzene, and xenon on thin magnetized Fe(110) films grown layer-by-layer on W(110) by molecular beam epitaxy. For atomically adsorbed iodine a strong hybridization occurs, leading to exchange split I 5p x and 5p z bands reflecting an induced magnetic moment of the iodine overlayer. The molecular adsorbate benzene shows no exchange splittings neither for the σ nor for the π orbitals being involved into the bonding to the substrate thus indicating a weaker hybridization between adsorbate and substrate bands. For physisorbed xenon, however, spin splittings occur for both 5p levels due to a nonvanishing net magnetic moment of the ionic hole states leading to a magnetic coupling between substrate and adsorbate ion.

  6. Effect of interfacial properties on the activation volume of adsorbed enzymes.

    PubMed

    Schuabb, Vitor; Cinar, Süleyman; Czeslik, Claus

    2016-04-01

    We have studied the enzymatic activities of α-chymotrypsin (α-CT) and horseradish peroxidase (HRP) that are adsorbed on various chemically modified planar surfaces under aqueous solution. The enzymes were adsorbed on bare quartz, hydrophobic poly(styrene) (PS), positively charged poly(allylamine hydrochloride) (PAH), and negatively charged poly(styrene sulfonate) (PSS). Activation volumes of the enzymes at the aqueous-solid interfaces were determined by using high-pressure total internal reflection fluorescence (TIRF) spectroscopy. Apparently, the pressure response of the adsorbed enzymes strongly depends on the interfacial properties. α-CT can be activated by pressure (increasing enzymatic rate) on negatively charged surfaces like quartz and PSS, whereas HRP is activated by pressure on hydrophobic PS. Corresponding negative activation volumes of -29 mL mol(-1) for α-CT on quartz, -23 mL mol(-1) for α-CT on PSS, and -35 mL mol(-1) for HRP on PS are found. In addition, the absolute activities of α-CT and HRP on quartz, PS, PAH and PSS were determined by UV absorption at ambient pressure. Remarkably, large activities are found on those surfaces that are associated with negative activation volumes. However, Fourier transform infrared (FTIR) spectra collected in attenuated total reflection (ATR) mode do not indicate major adsorption induced conformational changes of the enzymes at any interface studied. Overall, the results of this study show that the activity of immobilized enzymes can largely be enhanced by the right combination of adsorbent material and applied pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Residence time determination for adsorbent beds of different configurations

    SciTech Connect

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  8. Structure of water adsorbed on a single graphene sheet

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Martí, J.

    2008-08-01

    We present the result of molecular-dynamics simulations of water adsorbed on top of a single graphene layer at temperatures between 25 and 50°C . The analysis of the energy per particle and the density profiles indicate that the behavior of the adsorbed liquid is similar to the case of multiple graphene layers (graphite) with the only difference being the values of configurational energy. Other structural properties, such as stability ranges, hydrogen bond distributions, and molecular orientations are also presented.

  9. Synthesis and optimization of a new starch-based adsorbent for dehumidification of air in a pressure-swing dryer

    SciTech Connect

    Anderson, L.E.; Gulati, M.; Westgate, P.J.; Kvam, E.P.; Bowman, K.; Ladisch, M.R.

    1996-04-01

    Corn grits selectivity adsorb water from many types of organic vapors and are used commercially to dry 2.8 billion L of fuel-grade fermentation ethanol annually. Evaluation of grits in a pressure-swing dryer at 308 kPa, combined with analyses of their physical properties, showed that the specific surface of the grits (0.5 m{sup 2}/g) limited steady-state drying of air to a dewpoint of {minus}20 C. By selectivity taking advantage of the best features of the natural material, a new class of natural adsorbents with a higher affinity for water was then synthesized using materials derived from corn: starch and cob flour. The chemical composition of the synthesized adsorbent was determined, as well as specific physical properties. Scanning electron microscopy showed the synthesized adsorbent surface had a large number of macropores (10--25 {mu}m in diameter) unlike corn grits which have limited porosity. This material gave reasonable and reproducible results similar to those obtained with molecular sieves using a commercially available pressure-swing air dryer. After 70 h of operation at 30 psi, the new adsorbent provided air at a dewpoint of {minus}63 C. The methods for preparing this material and an explanation of its performance in terms of macroscopic and microscopic structural characteristics are described.

  10. Formulation of Aminosilica Adsorbents into 3D-Printed Monoliths and Evaluation of Their CO2 Capture Performance.

    PubMed

    Thakkar, Harshul; Eastman, Stephen; Al-Mamoori, Ahmed; Hajari, Amit; Rownaghi, Ali A; Rezaei, Fateme

    2017-03-01

    Amine-based materials have represented themselves as a promising class of CO2 adsorbents; however, their large-scale implementation requires their formulation into suitable structures. In this study, we report formulation of aminosilica adsorbents into monolithic structures through a three-dimensional (3D) printing technique. In particular, 3D-printed monoliths were fabricated using presynthesized silica-supported tetraethylenepentamine (TEPA) and poly(ethylenimine) (PEI) adsorbents using three different approaches. In addition, a 3D-printed bare silica monolith was prepared and post-functionalized with 3-aminopropyltrimethoxysilane (APS). Characterization of the obtained monoliths indicated that aminosilica materials retained their characteristics after being extruded into 3D-printed configurations. Adsorptive performance of amine-based structured adsorbents was also investigated in CO2 capture. Our results indicated that aminosilica materials retain their structural, physical, and chemical properties in the monoliths. In addition, the aminosilica monoliths exhibited adsorptive characteristics comparable to their corresponding powders. This work highlights the importance of adsorbent materials formulations into practical contactors such as monoliths, as the scalabale technology platform, that could facilitate rapid deployment of adsorption-based CO2 capture processes on commercial scales.

  11. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    SciTech Connect

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  12. Adsorbates effects in H^- - Na/Cu(111) collisions

    NASA Astrophysics Data System (ADS)

    Bahrim, Bogdana; Yu, Song

    2008-03-01

    The (111) faces of Cu, Ag and Au present a band gap that extends just below the vacuum level at the γ gpoint [1]. The effect is to forbid electrons with energies in a certain range to be transferred into the metal along the surface normal. Thus, the presence of a band gap should dramatically influence various experiments in ion-surface collisions involving electron capture or loss. In recent years, this topic received a great interest [2 -- 4]. Adsorbates deposition makes the electron dynamics at such surfaces to be even more complex. We analyze some interesting adsorbates effects: (1) projectile energy levels and widths are strongly perturbed when this approaches close to an adsorbate atom; (2) scattering by adsorbates may be used to laterally confine surface state electrons; (3) adsorbates may enhance the band gap effect; (4) adsorbates tend to couple the surface states to the bulk states. Results for the H^- projectile interacting with a Na/Cu(111) surface are reported. [1] E.V. Chulkov, V.M. Silkin and P.M. Echenique 1999 Surf. Sci. 437, 330. [2] A.G. Borisov, A.K. Kazansky and J.P. Gauyacq 1999 Phys. Rev. B. 59, 10935. [3] H.S. Chakraborty, T. Niederhausen and U. Thumm 2004 Phys. Rev. A. 70, 052903. [4] B. Bahrim, B. Makarenko and J.W. Rabalais 2005 Surface Sci. 594, 62.

  13. Application of Silver Impregnated Iodine Adsorbent to Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Fukasawa, Tetsuo; Nakamura, Tomotaka; Kondo, Yoshikazu; Funabashi, Kiyomi

    Radioactive iodine is one of the most important nuclides to be prevented for release from nuclear facilities and many facilities have off-gas treatment systems to minimize the volatile nuclides dispersion to the environment. Silver impregnated inorganic adsorbents were known as inflammable and stable fixing materials for iodine and the authors started to develop 25 years ago a kind of inorganic adsorbent that has better capability compared with conventional ones. Aluminum oxide (Alumina) was selected as a carrier material and silver nitrate as an impregnated one. Pore diameters were optimized to avoid the influence of impurities such as humidity in the off-gas stream at lower temperatures. Experiments and improvements were alternately conducted for the new adsorbent. The tests were carried out in various conditions to confirm the performance of the developed adsorbent, which clarified its good ability to remove iodine. Silver nitrate impregnated alumina adsorbent (AgA) has about twice the capacity for iodine adsorption and higher iodine removal efficiency at relatively high humidity than conventional ones. The AgA chemically and stably fixes radioactive iodine and fits the storage and disposal of used adsorbent. AgA is now and will be applied to nuclear power plants, reprocessing plants, and research facilities.

  14. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

    NASA Astrophysics Data System (ADS)

    Frunza, Stefan; Frunza, Ligia; Ganea, Constantin Paul; Zgura, Irina; Brás, Ana Rita; Schönhals, Andreas

    2016-02-01

    Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species ns was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees.

  15. The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Shaw, Wendy J.

    2010-03-15

    Amelogenin and amelogenin splice variants are believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to it’s function. We have studied the adsorption of LRAP, a splice variant of amelogenin which may also contribute to enamel function, onto model self-assembled monolayers on gold containing of COOH, CH3, and NH2 end groups. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline (PBS) and solutions at saturation with calcium phosphate contained aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and structures. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both calcium phosphate and PBS solutions. Adsorption was also promoted onto COOH surfaces when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies suggested that the protein adsorbed onto all surfaces as LRAP monomers. We propose that the monomers adsorb onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces, structures that may be important in the biomineralization of tooth enamel.

  16. Study for Reduction of Outgassing Property of Adsorbed Water Gas for Improved Surface Finished Titanium Material

    NASA Astrophysics Data System (ADS)

    Takeda, Masatoshi; Kurisu, Hiroki; Uchida, Takashi; Yamamoto, Setsuo; Ishizawa, Katsunobu; Nomura, Takeru; Eda, Takahiro; Murashige, Nobuyuki

    This paper addresses the development of the surface finishing for a titanium material and the study for the reduction of outgassing property of adsorbed water (H2O) molecules. Developed surface finishing is composed of the buffing for the reduction of the surface roughness and improved chemical polishing for the thick surface oxide layer compared with the chemical polishing so far. The surface roughness of the surface finished titanium material is reduced 35% and the thickness of the surface oxide layer increases by 30%. The total amount of thermal desorbed H2O gas for the new surface finished titanium is reduced 30%. It is considered that the origin for the decrease of the amount of desorption H2O gas is the reduction of the adsorption sites due to the decrease of the surface roughness and the reduction of adsorption energy of H2O gas due to the strong surface oxidation for a titanium material.

  17. 75 FR 58407 - Medicare Program; Medicare Appeals; Adjustment to the Amount in Controversy Threshold Amounts for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... to the Amount in Controversy Threshold Amounts for Calendar Year 2011 AGENCY: Centers for Medicare... July of the preceding year involved and rounded to the nearest multiple of $10. B. Calendar Year 2011... judicial review will rise to $1,300 for the 2011 calendar year. These updated amounts are based on the...

  18. 77 FR 59618 - Medicare Program; Medicare Appeals; Adjustment to the Amount in Controversy Threshold Amounts for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... to the Amount in Controversy Threshold Amounts for Calendar Year 2013 AGENCY: Centers for Medicare... for requests for ALJ hearings and judicial review filed on or after January 1, 2013. The calendar year... nearest multiple of $10. B. Calendar Year 2013 The AIC threshold amount for ALJ hearing requests...

  19. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    PubMed

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

  20. Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement

    Treesearch

    Curtis H. Flather; Michael Bevers

    2002-01-01

    A discrete reaction-diffusion model was used to estimate long-term equilibrium populations of a hypothetical species inhabiting patchy landscapes to examine the relative importance of habitat amount and arrangement in explaining population size. When examined over a broad range of habitat amounts and arrangements, population size was largely determined by a pure amount...

  1. Expanded graphite loaded with lanthanum oxide used as a novel adsorbent for phosphate removal from water: performance and mechanism study.

    PubMed

    Zhang, Ling; Gao, Yan; Li, Mengxue; Liu, Jianyong

    2015-01-01

    A novel adsorbent of expanded graphite (EG) loaded with lanthanum oxide (EG-LaO) was prepared for phosphate removal from water and characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The effects of impregnation time, La3+ concentration, activation time, and activation temperature on the phosphate removal performance of the adsorbent were studied for optimization of preparation conditions. Isothermal adsorption studies suggested that the Langmuir model fits the experimental data well. Adsorption kinetics investigation showed that the pseudo-second-order model fits the experimental data quite well, indicating that the adsorption process is mainly a process of chemical adsorption, and chloride ions compete to react with the active sites of the adsorbent but do not prevent phosphate from adsorbing onto EG-LaO. The adsorption mechanism studies were performed by a pH dependence study of the adsorption amount. The results demonstrated that the probable mechanisms of phosphate adsorption on EG-LaO were electrostatic and Lewis acid-base interactions in addition to ion exchange.

  2. Preparation of an adsorbent from pumice stone and its adsorption potential for removal of toxic recalcitrant contaminants.

    PubMed

    Asgari, Ghorban; Rahmani, Ali Reza

    2013-05-29

    In recent years, proficient treatment of wastewaters containing recalcitrant and toxic compounds such as phenol has been a challenge. This study introduced and evaluated an efficient option for treating such wastewater. This experimental study was performed on phenol removal as a recalcitrant and toxic compound in aqueous solutions in 2011. The pumice stone was collected from a local mine. Collected samples were crushed and granulated using standard sieves (mesh size of 20). CuSO4 was used to modify prepared samples. The chemical composition and the surface area of the modified pumice were evaluated using X-ray fluorescence and N2 gas via Brunauer-Emmett-Teller isotherm and Belsorb software. Different parameters including of pH (3-12), contact time (20-120 min), phenol concentration (25-400 mg/L) and adsorbent dosage (0.25-1 g/L) were examined in a batch reactor. 93.5% of the phenol was removed under optimum experimental conditions of pH 3 and a 0.5 g/L adsorbent dose after 60 min contact time. The experimental adsorption isotherm the best fit with Freundlich equation model. The maximum amount of phenol adsorption onto modified pumice (MP) was 15.8 mg/g. Modified pumice is effective adsorbent for the removal of phenol from aqueous solution. Accordingly, it is feasible and promise adsorbent for treating polluted phenol streams.

  3. Adherence of platelets to in situ albumin-binding surfaces under flow conditions: role of surface-adsorbed albumin.

    PubMed

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-08-01

    Surfaces that preferentially bind human serum albumin (HSA) were generated by grafting albumin-binding linear peptide (LP1) onto silicon surfaces. The research aim was to evaluate the adsorption pattern of proteins and the adhesion of platelets from platelet-poor plasma and platelet-rich plasma, respectively, by albumin-binding surfaces under physiological shear rate (96 and 319 s(-1)) conditions. Bound proteins were quantified using enzyme-linked immunosorbent assays (ELISAs) and two-dimensional gel electrophoresis. A ratio of ∼1000:100:1 of adsorbed HSA, human immunoglobulin (HIgG) and human fibrinogen (HFib) was noted, respectively, on LP1-functionalized surfaces, and a ratio of ∼5:2:1 of the same was noted on control surfaces, as confirmed by ELISAs. The surface-adsorbed von Willebrand factor was undetectable by sensitive ELISAs. The amount of adhered platelets correlated with the ratio of adsorbed HSA/HFib. Platelet morphology was more rounded on LP1-functionalized surfaces when compared to control surfaces. The platelet adhesion response on albumin-binding surfaces can be explained by the reduction in the co-adsorption of other plasma proteins in a surface environment where there is an excess of albumin molecules, coupled with restrictions in the conformational transitions of other surface-adsorbed proteins into hemostatically active forms.

  4. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies.

  5. Assessment of fibronectin conformation adsorbed to polytetrafluoroethylene surfaces from serum protein mixtures and correlation to support of cell attachment in culture.

    PubMed

    Grainger, David W; Pavon-Djavid, Graciella; Migonney, Veronique; Josefowicz, Marcel

    2003-01-01

    Surfaces of polytetrafluoroethylene (PTFE) were exposed to buffered aqueous solutions containing radio-labeled human fibronectin ([125I]Fn), Fn/bovine serum albumin (BSA) binary mixtures of various ratios or whole human plasma dilutions for 1 h. Total adsorbed Fn and albumin adsorption following rinsing was quantified on this surface. 125I-labeled monoclonal antibodies against either the tenth type-III Fn repeat unit (containing the cell-binding RGDS integrin recognition motif) or the Fn amino-terminal domain were used to probe the accessibility of each of these respective Fn regions post-adsorption. Human umbilical vein endothelial cells (HUVECs) were cultured on PTFE surfaces pre-exposed to each of these protein adsorption conditions and compared to identical conditions on tissue culture polystyrene (TCPS). Fn adsorption to PTFE is dependent upon the concentration of albumin co-adsorbing from solution: albumin out-competes Fn for PTFE surface sites even at non-physiological Fn/HSA ratios 10-100-fold biased in Fn. Antibodies against Fn do not readily recognize Fn adsorbed on PTFE as the HSA co-adsorption concentration in either binary mixtures or in plasma increases, indicating albumin masking of adsorbed Fn. At Fn/HSA ratios rich in Fn (1:1, 1:100), albumin co-adsorption actually improves anti-Fn antibody recognition of adsorbed Fn. HUVEC attachment efficiency to PTFE after protein adsorption correlates with amounts of Fn adsorbed and levels of anti-Fn antibody recognition of Fn on PTFE, linking cell attachment to integrin recognition of both adsorbed Fn density and Fn adsorbed conformation on PTFE surfaces.

  6. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    SciTech Connect

    Das, S.; Oyola, Y.; Mayes, Richard T.; Janke, Chris J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked with 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.

  7. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.

    PubMed

    Bang, Sunbaek; Patel, Manish; Lippincott, Lee; Meng, Xiaoguang

    2005-07-01

    A novel granular titanium dioxide (TiO2) was evaluated for the removal of arsenic from groundwater. Laboratory experiments were carried out to investigate the adsorption capacity of the adsorbent and the effect of anions on arsenic removal. Batch experimental results showed that more arsenate [As(V)] was adsorbed on TiO2 than arsenite [As(III)] in US groundwater at pH 7.0. The adsorption capacities for As(V) and As(III) were 41.4 and 32.4 mgg(-1) TiO2, respectively. However, the adsorbent had a similar adsorption capacity for As(V) and As(III) (approximately 40 mgg(-1)) when simulated Bangladesh groundwater was used. Silica (20 mgl(-1)) and phosphate (5.8 mgl(-1)) had no obvious effect on the removal of As(V) and As(III) by TiO2 at neutral pH. Point-of-entry (POE) filters containing 3 l of the granular adsorbent were tested for the removal of arsenic from groundwater in central New Jersey, USA. Groundwater was continuously passed through the filters at an empty bed contact time (EBCT) of 3 min. Approximately 45,000 bed volumes of groundwater containing an average of 39 microgl(-1) of As(V) was treated by the POE filter before the effluent arsenic concentration increased to 10 microgl(-1). The total treated water volumes per weight of adsorbent were about 60,000 l per 1 kg of adsorbent. The field filtration results demonstrated that the granular TiO2 adsorbent was very effective for the removal of arsenic in groundwater.

  8. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  9. Organosilica Nanoparticles with an Intrinsic Secondary Amine: An Efficient and Reusable Adsorbent for Dyes

    PubMed Central

    2017-01-01

    Nanomaterials are promising tools in water remediation because of their large surface area and unique properties compared to bulky materials. We synthesized an organosilica nanoparticle (OSNP) and tuned its composition for anionic dye removal. The adsorption mechanisms are electrostatic attraction and hydrogen bonding between the amine on OSNP and the dye, and the surface charge of the OSNP can be tuned to adsorb either anionic or cationic dyes. Using phenol red as a model dye, we studied the effect of the amine group, pH, ionic strength, time, dye concentration, and nanomaterial mass on the adsorption. The theoretical maximum adsorption capacity was calculated to be 175.44 mg/g (0.47 mmol/g), which is higher than 67 out of 77 reported adsorbents. The experimental maximum adsorption capacity is around 201 mg/g (0.53 mmol/g). Furthermore, the nanoparticles are highly reusable and show stable dye removal and recovery efficiency over at least 10 cycles. In summary, the novel adsorbent system derived from the intrinsic amine group within the frame of OSNP are reusable and tunable for anionic or cationic dyes with high adsorption capacity and fast adsorption. These materials may also have utility in drug delivery or as a carrier for imaging agents. PMID:28422482

  10. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 24 CFR 201.10 - Loan amounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... loans. (1) The total principal obligation for a loan to purchase a new manufactured home shall not... to purchase a new manufactured home and a lot on which to place the home shall not exceed the sum of... IMPROVEMENT AND MANUFACTURED HOME LOANS Loan and Note Provisions § 201.10 Loan amounts. (a) Property...

  12. 33 CFR 135.203 - Amount required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Amount required. 135.203 Section 135.203 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OFFSHORE OIL POLLUTION COMPENSATION FUND...

  13. 33 CFR 135.203 - Amount required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Amount required. 135.203 Section 135.203 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OFFSHORE OIL POLLUTION COMPENSATION FUND...

  14. 33 CFR 135.203 - Amount required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Amount required. 135.203 Section 135.203 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OFFSHORE OIL POLLUTION COMPENSATION FUND...

  15. 33 CFR 133.7 - Requests: Amount.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quantity and composition of the oil, weather conditions and customary costs of similar services in the... POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...

  16. 33 CFR 133.7 - Requests: Amount.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quantity and composition of the oil, weather conditions and customary costs of similar services in the... POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...

  17. 33 CFR 133.7 - Requests: Amount.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quantity and composition of the oil, weather conditions and customary costs of similar services in the... POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...

  18. 14 CFR 1300.13 - Guarantee amount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Guarantee amount. 1300.13 Section 1300.13 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN PROGRAM Minimum Requirements and Application Procedures §...

  19. 7 CFR 1421.304 - Payment amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three...

  20. 7 CFR 1421.304 - Payment amount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... complete program application to CCC. For triticale, the grazing rate will be equal to the loan deficiency... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...

  1. 33 CFR 133.7 - Requests: Amount.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event... quantity and composition of the oil, weather conditions and customary costs of similar services in...

  2. 33 CFR 133.7 - Requests: Amount.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event... quantity and composition of the oil, weather conditions and customary costs of similar services in...

  3. 21 CFR 1309.11 - Fee amounts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., IMPORTERS AND EXPORTERS OF LIST I CHEMICALS Fees for Registration and Reregistration § 1309.11 Fee amounts..., or export a List I chemical, the applicant shall pay an annual fee of $1,147. Effective Date Note: At 77 FR 15250, Mar. 15, 2012, § 1309.11 was revised, effective April 16, 2012. For the convenience...

  4. 31 CFR 50.95 - Final amount.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Final amount. 50.95 Section 50.95 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Cap... insurers based on an adjusted PLRP, and aggregate insured losses still remain within the cap on annual...

  5. 20 CFR 617.45 - Amount.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Amount. 617.45 Section 617.45 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TRADE ADJUSTMENT ASSISTANCE FOR... weight authorized under the Federal travel regulations (see 41 CFR part 101-7), between such locations...

  6. 7 CFR 1421.304 - Payment amount.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...

  7. 7 CFR 1421.304 - Payment amount.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...

  8. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  9. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  10. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  11. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  12. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  13. Sequence-defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100)

    SciTech Connect

    Tao, Jinhui; Buchko, Garry W.; Shaw, Wendy J.; De Yoreo, Jim; Tarasevich, Barbara J.

    2015-11-03

    The interactions between proteins and surfaces are critical to a number of important processes including biomineralization, the biocompatibility of biomaterials, and the function of biosensors. Although many proteins exist as monomers or small oligomers, amelogenin is a unique protein that self-assembles into supramolecular structures called “nanospheres,” aggregates of 100’s of monomers that are 20-60 nm in diameter. The nanosphere quaternary structure is observed in solution, however, the quaternary structure of amelogenin adsorbed onto hydroxyapatite (HAP) surfaces is not known even though it may be important to amelogenin’s function in forming highly elongated and intricately assembled HAP crystallites during enamel formation. We report studies of the interactions of the enamel protein, amelogenin (rpM179), with a well-defined (100) face prepared by synthesis of large crystals of HAP. High resolution, in-situ atomic force microscopy (AFM) was used to directly observe protein adsorption onto HAP at the molecular level within an aqueous solution environment. Our study shows that the amelogenin nanospheres disassemble onto the HAP surface, breaking down into oligomeric (25-mer) subunits of the larger nanosphere. In some cases, the disassembly event is directly observed by in situ imaging for the first time. Quantification of the adsorbate amounts by size analysis led to the determination of a protein binding energy (17.1 kbT) to a specific face of HAP (100). The kinetics of disassembly are greatly slowed in aged solutions, indicating there are time-dependent increases in oligomer-oligomer binding interactions within the nanosphere. A small change in the sequence of amelogenin by the attachment of a histidine tag to the N-terminus of rpM179 to form rp(H)M180 results in the adsorption of a complete second layer on top of the underlying first layer. Our research elucidates how supramolecular protein structures interact and break down at surfaces and how small

  14. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation.

    PubMed

    Chen, Bao; Wang, Zhouhua; Quan, Guilan; Peng, Xinsheng; Pan, Xin; Wang, Rongchang; Xu, Yuehong; Li, Ge; Wu, Chuanbin

    2012-01-01

    A liquisolid technique has been reported to be a new approach to improve the release of poorly water-soluble drugs for oral administration. However, an apparent limitation of this technique is the formulation of a high dose because a large amount of liquid vehicle is needed, which finally results in a low-dose liquisolid formulation. Silica as an absorbent has been used extensively in liquisolid formulations. Although nanoparticle silica can be prepared and used to improve liquid adsorption capacity, loading a high dose of drug into a liquisolid is still a challenge. With the aim of improving adsorption capacity and accordingly achieving high drug loading, ordered mesoporous silica with a high surface area and narrow pore size distribution was synthesized and used in a liquisolid formulation. Ordered mesoporous silica was synthesized and its particle size and morphology were tailored by controlling the concentration of cetyltrimethyl ammonium bromide. The ordered mesoporous silica synthesized was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, small-angle x-ray diffraction, wide angle x-ray diffraction, and nitrogen adsorption-desorption measurements. The liquid adsorption capacity of ordered mesoporous silica was subsequently compared with that of conventional silica materials using PEG400 as the model liquid. Carbamazepine was chosen as a model drug to prepare the liquisolid formulation, with ordered mesoporous silica as the adsorbent material. The preparation was evaluated and compared with commercially available fast-release carbamazepine tablets in vitro and in vivo. Characterization of the ordered mesoporous silica synthesized in this study indicated a huge Brunauer-Emmett-Teller surface area (1030 m(2)/g), an ordered mesoporous structure with a pore size of 2.8 nm, and high adsorption capacity for liquid compared with conventional silica. Compared with fast-release commercial

  15. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation

    PubMed Central

    Chen, Bao; Wang, Zhouhua; Quan, Guilan; Peng, Xinsheng; Pan, Xin; Wang, Rongchang; Xu, Yuehong; Li, Ge; Wu, Chuanbin

    2012-01-01

    Background A liquisolid technique has been reported to be a new approach to improve the release of poorly water-soluble drugs for oral administration. However, an apparent limitation of this technique is the formulation of a high dose because a large amount of liquid vehicle is needed, which finally results in a low-dose liquisolid formulation. Silica as an absorbent has been used extensively in liquisolid formulations. Although nanoparticle silica can be prepared and used to improve liquid adsorption capacity, loading a high dose of drug into a liquisolid is still a challenge. With the aim of improving adsorption capacity and accordingly achieving high drug loading, ordered mesoporous silica with a high surface area and narrow pore size distribution was synthesized and used in a liquisolid formulation. Methods Ordered mesoporous silica was synthesized and its particle size and morphology were tailored by controlling the concentration of cetyltrimethyl ammonium bromide. The ordered mesoporous silica synthesized was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, small-angle x-ray diffraction, wide angle x-ray diffraction, and nitrogen adsorption-desorption measurements. The liquid adsorption capacity of ordered mesoporous silica was subsequently compared with that of conventional silica materials using PEG400 as the model liquid. Carbamazepine was chosen as a model drug to prepare the liquisolid formulation, with ordered mesoporous silica as the adsorbent material. The preparation was evaluated and compared with commercially available fast-release carbamazepine tablets in vitro and in vivo. Results Characterization of the ordered mesoporous silica synthesized in this study indicated a huge Brunauer–Emmett–Teller surface area (1030 m2/g), an ordered mesoporous structure with a pore size of 2.8 nm, and high adsorption capacity for liquid compared with conventional silica. Compared with fast

  16. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Young; Xu, Pan; Camillone, Nina R.; White, Michael G.; Camillone, Nicholas

    2016-07-01

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate-adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate-substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate-substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, ηel, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of ηel largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  17. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift

  18. Transition from a molecular to a metallic adsorbate system:mCore-hole creation and decay dynamics for CO coordinated to Pd

    NASA Astrophysics Data System (ADS)

    Sandell, A.; Libuda, J.; Brüauthwiler, P. A.; Andersson, S.; Bäautumer, M.; Maxwell, A. J.; M&; Artensson, N.; Freund, H.-J.

    1997-03-01

    Two alternative methods to experimentally monitor the development of a CO-adsorption system that gradually changes from molecular to metallic are presented: firstly by adsorption of CO on Pd islands of increasing size deposited under UHV conditions, and secondly by growth of a Pd carbonyl-like species, formed by Pd deposition in CO atmosphere. The change in screening dynamics as a function of the number of metal atoms was investigated, using x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and core-hole-decay techniques. For CO adsorbed on UHV-deposited islands, the electronic properties of the whole CO-Pd complex is strongly dependent on island size and CO coverage: large amounts of CO result in a reduced screening ability, and small effects characteristic of molecular systems can be detected even for islands containing about 100 Pd atoms. If about half of the CO overlayer is desorbed, the CO-Pd complex exhibits a relaxation upon core ionization that is nearly as efficient as for metallic systems, even for the smallest islands (of the order of 10 Pd atoms). The growth of the carbonyl-like compound proceeds via formation of Pd-Pd bonds and has a relatively well-defined local structure. It is demonstrated that the properties of this compound approach those of an extended system for increasing coverages, and it may therefore also serve as an important link between a carbonyl and CO adsorbed on a metallic surface. A brief discussion is also given in which the results are discussed in terms of electronic properties of the thin alumina film versus bulk alumina and the applicability of the former to the construction of model catalysts.

  19. Natural material adsorbed onto a polymer to enhance immune function

    PubMed Central

    Reinaque, Ana Paula Barcelos; França, Eduardo Luzía; Scherer, Edson Fredulin; Côrtes, Mayra Aparecida; Souto, Francisco José Dutra; Honorio-França, Adenilda Cristina

    2012-01-01

    Background In this study, we produced poly(ethylene glycol) (PEG) microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood. Methods The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy. Results Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture. Conclusion This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function. PMID:22956861

  20. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization.

    PubMed

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A

    2014-06-17

    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.