Science.gov

Sample records for adsorbed gas molecules

  1. The entropies of adsorbed molecules.

    PubMed

    Campbell, Charles T; Sellers, Jason R V

    2012-10-31

    Adsorbed molecules are involved in many reactions on solid surface that are of great technological importance. As such, there has been tremendous effort worldwide to learn how to predict reaction rates and equilibrium constants for reactions involving adsorbed molecules. Theoretical calculation of both the rate and equilibrium constants for such reactions requires knowing the entropy and enthalpy of the adsorbed molecule. While much effort has been devoted to measuring and calculating the enthalpies of well-defined adsorbates, few measurements of the entropies of adsorbates have been reported. We present here a new way to determine the standard entropies of adsorbed molecules (S(ad)(0)) on single crystal surfaces from temperature programmed desorption data, prove its accuracy by comparison to entropies measured by equilibrium methods, and apply it to published data to extract new entropies. Most importantly, when combined with reported entropies, we find that at high coverage, they linearly track the entropy of the gas-phase molecule at the same temperature (T), such that S(ad)(0)(T) = 0.70 S(gas)(0)(T) - 3.3R (R = the gas constant), with a standard deviation of only 2R over a range of 50R. These entropies, which are ~2/3 of the gas, are huge compared to most theoretical predictions. This result can be extended to reliably predict prefactors in the Arrhenius rate constant for surface reactions involving such species, as proven here for desorption. PMID:23033909

  2. Does Moisture Influence the Chemical Detection of Gas Molecules Adsorbed on Single-Wall Carbon Nanotubes?

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2009-03-01

    In this work, the role of water in the detection of hydrazine (N2H4) by a single-wall carbon nanotube (SWCNT) is investigated using first principles electronic structure calculations (DFT/GGA--USPP)[1]. This calculation is undertaken to interpret the experimental resistivity measurements for N2H4 adsorbed on SWCNT that reveal an n-type behavior [2]. Our preliminary theoretical studies of the adsorption of N2H4 on SWCNT revealed physisorption for N2H4 and an unaltered band structure for the SWCNT [3]. This prompted us to look into the role of water on the bonding of N2H4 to the SWCNT. We found that, by introducing a monolayer of water film on the (8,0) SWCNT, the adsorption of N2H4 can introduce occupied states near the Fermi level, exhibiting an n-type behavior. However, the introduction of just few water molecules was not sufficient to influence the electronic structure of N2H4/SWCNT. Presently, we are studying the influence of water films on the chemical detection of a variety of other gas molecules (N2, NH3, etc.) by SWCNTs, and the results from such studies will also be reported. [1]. G. Kresse et al. Phys. Rev. B 54, 11169 (1996). [2]. S. Desai, et al. (APS, March 2008). [3]. M. Yu, et al. (APS, March 2008).

  3. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS{sub 2}

    SciTech Connect

    Zhou, Changjie; Zhu, Huili; Yang, Weihuang

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS{sub 2} upon adsorption of various gas molecules (H{sub 2}, O{sub 2}, H{sub 2}O, NH{sub 3}, NO, NO{sub 2}, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS{sub 2} with a low degree of charge transfer and accept charge from the monolayer, except for NH{sub 3}, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS{sub 2} are not significantly altered upon adsorption of H{sub 2}, H{sub 2}O, NH{sub 3}, and CO, whereas the lowest unoccupied molecular orbitals of O{sub 2}, NO, and NO{sub 2} are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS{sub 2}. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS{sub 2}. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  4. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  5. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  6. Isomerization reactions on single adsorbed molecules.

    PubMed

    Morgenstern, Karina

    2009-02-17

    Molecular switches occur throughout nature. In one prominent example, light induces the isomerization of retinal from the compact 11-cis form to the elongated all-trans form, a conversion that triggers the transformation of light into a neural impulse in the eye. Applying these natural principles to synthetic systems offers a promising way to construct smaller and faster nanoelectronic devices. In such systems, electronic switches are essential components for storage and logical operations. The development of molecular switches on the single-molecule level would represent a major step toward incorporating molecules as building units into nanoelectronic circuits. Molecular switches must be both reversible and bistable. To meet these requirements, a molecule must have at least two different thermally stable forms and a way to repeatedly interconvert between those forms based on changes in light, heat, pressure, magnetic or electric fields, pH, mechanical forces, or electric currents. The conversion should be connected to a measurable change in electronic, optical, magnetic, or mechanical properties. Because isomers can differ significantly in physical and chemical properties, isomerization could serve as a molecular switching mechanism. Integration of molecular switches into larger circuits will probably require arranging them on surfaces, which will require a better understanding of isomerization reactions in these environments. In this Account, we describe our scanning tunneling microscopy studies of the isomerization of individual molecules adsorbed on metal surfaces. Investigating chlorobenzene and azobenzene derivatives on the fcc(111) faces of Ag, Cu, and Au, we explored the influence of substituents and the substrate on the excitation mechanism of the isomerization reaction induced by inelastically tunneling electrons. We achieved an irreversible configurational (cis-trans) isomerization of individual 4-dimethyl-amino-azobenzene-4-sulfonic acid molecules on Au

  7. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  8. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  9. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  10. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127

  11. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  12. Spectroscopic observations of the displacement dynamics of physically adsorbed molecules-CO on C60

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqing; Yates, John T.

    2016-10-01

    In this paper, we observed physically adsorbed CO molecules on C60 surface being displaced by impinging noble gas atoms (He, Ne, Ar, Kr), either through a dynamic displacement process or an exothermic replacement process, depending on their adsorption energies. This displacement mechanism could shift from one to the other depending on the surface coverage and temperature. Furthermore, rotational energy of the impinging molecules may also contribute to the dynamic displacement process by supplying additional energy.

  13. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  14. Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks

    SciTech Connect

    Chen, Ying-Pin; Liu, Yangyang; Liu, Dahuan; Bosch, Mathieu; Zhou, Hong-Cai

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas–gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  15. Detection of Ordered Molecules Adsorbed on Graphene: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhang, Xue-Qing; Li, Hui

    2014-11-01

    Graphene has been demonstrated to be able to detect individual gas molecules [Schedin et al. Nat. Mater. 6 (2007) 652], which has attracted a lot of sensor research activities. Here we report for the first time that graphene is capable of detecting the ordering degree of absorbed water molecules. The efficiency of doping varies from the degrees of molecular ordering. The simulated results show that the highly ordered water molecules contribute more to the doping effect, which reduces the conductance of the water/graphene system.

  16. UV-induced protonation of molecules adsorbed on ice surfaces at low temperature.

    PubMed

    Moon, Eui-Seong; Lee, Chang-Woo; Kim, Joon-Ki; Park, Seong-Chan; Kang, Heon

    2008-05-21

    UV irradiation of ice films adsorbed with methylamine molecules induces protonation of the adsorbate molecules at low temperature (50-130 K). The observation indicates that long-lived protonic defects are created in the ice film by UV light, and they transfer protons to the adsorbate molecules via tunneling mechanism at low temperature. The methylammonium ion formed by proton transfer remains to be stable at the ice surface. It is suggested that this solid-phase protonation might play a significant role in the production of molecular ions in interstellar clouds.

  17. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  18. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  19. Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces.

    PubMed

    Sykes, E Charles H; Han, Patrick; Kandel, S Alex; Kelly, Kevin F; McCarty, Gregory S; Weiss, Paul S

    2003-12-01

    Adsorbate interactions and reactions on metal surfaces have been investigated using scanning tunneling microscopy. The manners in which adsorbates perturb the surface electronic structure in their vicinity are discussed. The effects these perturbations have on other molecules are shown to be important in overlayer growth. Interactions of molecules with surface steps are addressed, and each molecule's electron affinity is shown to dictate its adsorption sites at step edges. Standing waves emanating from steps are demonstrated to effect transient molecular adsorption up to 40 A away from the step edge. Halobenzene derivatives are used to demonstrate how the surface is important in aligning reactive intermediates.

  20. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  1. Auger electron spectroscopy as a tool for measuring intramolecular charges of adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.

    A way for the determination of the values of intramolecular charges of adsorbed molecules of some binary dielectrics, based on Auger electron spectroscopy (AES), is proposed. These values can be obtained from the coverage dependences of the ratios of intensities of anion KL 23L 23 and KL 1L 1 Auger transitions, which are sensitive to the amount of charge at the 2p-orbitals. As an example, MgO adsorbed on Mo(110) is presented.

  2. Auger electron spectroscopy as a tool for measuring intramolecular charges of adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.

    1993-10-01

    A way for the determination of the values of intramolecular charges of adsorbed molecules of some binary dielectrics, based on Auger electron spectroscopy (AES), is proposed. These values can be obtained from the coverage dependences of the ratios of intensities of anion KL 23L 23 and KL 1L 1 Auger transitions, which are sensitive to the amount of charge at the 2p-orbitals. As an example, MgO adsorbed on Mo(110) is presented.

  3. A molecule detector: Adsorbate induced conductance gap change of ultra-thin silicon nanowire

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Zhang, X. Q.; Li, H.; Taft, C. A.; Paiva, G.

    2009-03-01

    Inspired by the work of Lieber and co-workers [F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, MRS Bull. 32 (2007) 142], we present a general discussion of the possibility of using atomic-chain scaled Si nanowires to detect molecules. Surface-modified Si nanowires were optimized by density functional theory (DFT) calculations. The electronic transport properties of the whole system, including Si nanowires and adsorbed molecules, sandwiched between two gold electrodes are investigated by means of non-equilibrium Green's function (NEGF) formalism. However, the overall transport properties, including current-voltage ( I- V) and conductance-voltage ( G- V) characteristics hardly show adsorbate sensitivity. Interestingly, our results show that the conductance gap clearly varies with the different adsorbates. Therefore different molecules can cause differences in the conductance gap compared with the bare Si nanowire. The results provide valuable information regarding the development of atomic-chain scaled molecular detectors.

  4. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Kim, Seonghwan; Van Neste, C. W.; Lee, Moonchan; Jeon, Sangmin; Thundat, Thomas

    2014-01-01

    A rapid method of obtaining photoacoustic spectroscopic signals for trace amounts of surface adsorbed molecules using a nanostructured coupled resonator array is described. Explosive molecules adsorbed on a nanoporous anodic aluminum oxide cantilever, which has hexagonally ordered nanowells with diameters and well-to-well distances of 35 nm and 100 nm, respectively, are excited using pulsed infrared (IR) light with a frequency matching the common mode resonance frequency of the coupled resonator. The common mode resonance amplitudes of the coupled resonator as a function of illuminating IR wavelength present a photoacoustic IR absorption spectrum representing the chemical signatures of the adsorbed explosive molecules. In addition, the mass of the adsorbed molecules as an orthogonal signal for quantitative analysis is determined by measuring the variation of the localized, individual mode resonance frequency of a cantilever on the array. The limit of detection of the ternary mixture of explosive molecules (1:1:1 of trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) is estimated to be ˜100 ng cm-2. These multi-modal signals enable us to perform quantitative and rapid chemical sensing and analysis in ambient conditions.

  5. Local electric field and configuration of CO molecules adsorbed on a nanostructured surface with nanocones

    NASA Astrophysics Data System (ADS)

    You, Rong-Yi; Huang, Xiao-Jing

    2009-09-01

    Based on the nanostructured surface model that the (platinum, Pt) nanocones grow out symmetrically from a plane substrate, the local electric field near the conical nanoparticle surface is computed and discussed. On the basis of these results, the adsorbed CO molecules are modelled as dipoles, and three kinds of interactions, i.e. interactions between dipoles and local electric field, between dipoles and dipoles, as well as between dipoles and nanostructured substrate, are taken into account. The spatial configuration of CO molecules adsorbed on the nanocone surface is then given by Monte-Carlo simulation. Our results show that the CO molecules adsorbed on the nanocone surface cause local agglomeration under the action of an external electric field, and this agglomeration becomes more compact with decreasing conical angle, which results in a stronger interaction among molecules. These results serve as a basis for explaining abnormal phenomena such as the abnormal infrared effect (AIRE), which was found when CO molecules were adsorbed on the nanostructured transit ion-metal surface.

  6. Calibrating the Bending of Molecule Adsorbed Nanoscale Si Cantilevers with a Modified Stoney Formula

    NASA Astrophysics Data System (ADS)

    Zang, Ji; Liu, Feng

    2007-03-01

    Fundamental understanding of mechanical bending of molecule adsorbed nanoscale thin films is of both scientific and technological importance. Our current understanding, however, is limited within macroscopic analysis that neglects the atomic details of film structure and surface effects. Here, we report atomistic simulation and theoretical analysis of bending of freestanding nanometer-thick silicon (Si) films induced by adsorption of hydrogen and acetylene molecules. It reveals the dominant role of atomic surface structure and surface stress in governing their bending behavior. We show that the bending curvature of molecule adsorbed Si nanofilm does not follow the classical Stoney formula, and we develop a modified Stoney formula by taking into account of the effects arising from atomic surface reconstruction and surface stress. Our findings suggest that re-calibration has to be made in detecting trace amount of molecules by nanoscale Si mechanochemical sensors.

  7. Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption

    SciTech Connect

    Feng, X.; Pan, C.Y.; McMinis, C.W.; Ivory, J.; Ghosh, D.

    1998-07-01

    Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption (PSA) was studied experimentally. The high efficiency of hollow-fiber-based adsorbers for gas separation was illustrated by hydrogen separation using fine-powder-activated carbon and molecular sieve as adsorbents. The adsorption equilibrium and dynamics of the hollow-fiber adsorbers were determined. The pressure drop of the gas flowing through the adsorbers was also examined. The adsorbers were tested for hydrogen separation from nitrogen, carbon dioxide, and a multicomponent gas mixture simulating ammonia synthesis purge gas. The PSA systems using the hollow-fiber adsorbers were very effective for hydrogen purification. The high separation efficiency is derived from the fast mass-transfer rate and low pressure drop, two key features of hollow-fiber-based adsorbers.

  8. Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator.

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer. PMID:27159732

  9. Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator.

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer.

  10. Electrostatic model for treating long-range lateral interactions between polar molecules adsorbed on metal surfaces

    NASA Astrophysics Data System (ADS)

    Kokalj, Anton

    2011-07-01

    A classical polarizable point-dipole model for the adsorption of polar molecules on metal surfaces is presented. The main usefulness of the model is that lattice sums are represented by simple functions in closed form. This allows a simple extrapolation of adsorption energies of polar molecules—as calculated by first-principles calculations employing periodic boundary conditions—to the zero-coverage limit. Such an extrapolation is rather important for the proper evaluation of adsorption energy of highly polar molecules, because their long-range lateral interactions can extend beyond the nearest-neighbor distances of 50 bohrs. Moreover, the dependence of the adsorption energy on the orientation and configuration of molecular dipoles can be straightforwardly analyzed. It is demonstrated that an accumulation of polar molecules on the surface is favored provided that the molecular dipoles point parallel to the surface in the adsorbed state, whereas adsorbed molecules displaying dipoles oriented perpendicular to the surface would prefer to stay well separated due to repulsive lateral interactions. Further, the model is used to analyze the density-functional theory (DFT) calculated data of two polar molecules, triazole and benzotriazole, adsorbed onto Cu(111) surface. The DFT-calculated adsorption energies are about -0.5 eV, and it is shown that the main contribution to the molecule-surface bonding comes from the dipole-dipole electrostatic interactions.

  11. Thermodynamics of the adsorption of organic compounds from the gas phase over a monolayer of liquid crystal formed on the surface of a carbon adsorbent

    NASA Astrophysics Data System (ADS)

    Kopytin, K. A.; Bykov, E. S.; Onuchak, L. A.; Kudryashov, S. Yu.; Kuvshinova, S. A.; Burmistrov, V. A.

    2015-04-01

    Inverse gas-solid chromatography is used to study the adsorption of vapors of organic compounds with different structures and polarities on a carbon adsorbent modified with a monolayer of 4-(3-hydroxypropyloxy)-4'-formylazobenzene (HPOFAB) polar LIQUID crystal. The resulting thermodynamic characteristics of adsorption on the original and modified adsorbents are compared. The effect the nature and structure of adsorbate molecules and the liquid crystal modifier have on the thermodynamic characteristics of adsorption is considered.

  12. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  13. Vibrational dynamics of fullerene molecules adsorbed on metal surfaces studied with synchrotron infrared radiation

    SciTech Connect

    P. Rudolf; R. Raval; P. Dumas; Gwyn P. Williams

    2002-04-01

    Infrared (IR) spectroscopy of chemisorbed C{sub 60} on Ag (111), Au (110) and Cu (100) reveals that a non-IR-active mode becomes active upon adsorption, and that its frequency shifts proportionally with the charge transferred from the metal to the molecule by about 5 cm{sup -1} per electron. The temperature dependence of the frequency and the width of this IR feature have also been followed for C{sub 60>}/Cu (100) and were found to agree well with a weak anharmonic coupling (dephasing) to a low-frequency mode, which we suggest to be the frustrated translational mode of the adsorbed molecules.

    Additionally, the adsorption is accompanied by a broadband reflectance change, which is interpreted as due to the scattering of conduction electrons of the metal surface by the adsorbate. The reflectance change allows determination of the friction coefficient of the C{sub 60} molecules, which results in rather small values ({approx}2 x 10{sup 9}s{sup -1} for Ag and Au, and {approx}1.6 x 10{sup 9}s{sup -1} for Cu), consistent with a marked metallic character of the adsorbed molecules.

    Pre-dosing of alkali atoms onto the metal substrates drastically changes the IR spectra recorded during subsequent C{sub 60} deposition: anti-absorption bands, as well as an increase of the broadband reflectance, occur and are interpreted as due to strong electron-phonon coupling with induced surface states.

  14. A theoretical study of hydrogen diffraction following photodissociation of adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Kosloff, Ronnie; Zeiri, Yehuda

    1992-08-01

    A new probe of surface structure is presented which is based on the photodissociation of hydrogen from an adsorbate molecule. The event creates an atomic hydrogen fragment, positioned between the adsorbate layer and the solid surface. Due to its light mass, the hydrogen dynamics is quantum mechanical in nature. A useful image is of the hydrogenic wave function behaving like a liquid able to fill all cracks. The coherent character of the hydrogenic wave function is crucial in the ability of the photodissociation experiment to act as a probe. A series of case studies has been carried out whose aim is to reveal the relation between the structure of the surface and the asymptotic energy resolved angular distribution of the hydrogen fragment. The dynamics of the hydrogen atom motion was modeled by the time dependent Schrödinger equation. The cases studied include the dissociation of a single HBr adsorbate on flat and corrugated surfaces. A broad specular peak was observed, in addition to diffraction peaks which can be correlated with the corrugation. Moreover, selective adsorption peaks, which can be correlated with the attractive part of the surface potential, have been identified. Systems in which the hydrogenic wave function scatters from several adsorbates were also investigated. It was found that the scattering is dominated by the trapping of the wave function by unstable periodic orbits. The quantization rules of these periodic orbits have been identified, creating a link between the structure of the adsorbates and the asymptotic angular distributions.

  15. On the interplay between chemical reactions and phase transitions for molecules adsorbed on solid surfaces

    NASA Astrophysics Data System (ADS)

    Stiles, M.; Metiu, H.

    1986-02-01

    There is a large body of experimental evidence suggesting that the rate of product formation in a reaction between adsorbed molecules is deeply modified when one of the reagents undergoes a phase transition or, more broadly speaking, an aggregation of some kind. Specific examples are: H2 and CO oxidation; methanol transformation into a methoxy radical on O/Cu; the water reaction with oxygen to form 2OH; the decomposition of N2O on Pt(111) which is affected by a phase transition in the outermost Pt layer; and the oxidation of Ni7. It is suspected that similar effects might operate on supported metal catalysts. We use Monte Carlo simulations to examine the manner in which reagent aggregation affects the reaction rate between molecules adsorbed on a solid surface. We discuss the temperature and concentration dependence of the rate of product formation.

  16. Orientation and heat capacity of horizontally adsorbed molecules in electric fields

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Yen

    2014-02-01

    The orientation and the heat capacity of horizontally adsorbed molecules are investigated in static electric fields. We evaluate the energy spectrum and the wave function to probe the rotational characteristics of the molecule. Numerical results indicate that the electric field and the effect of quantum confinement lead to anticrossing behaviors in the energy levels. The orientation reveals a stepped feature due to the anticrossing in the ground state. Moreover, the heat capacity displays two peaks near the anticrossing. By means of comparison, each peak of the heat capacity corresponds to a particular degree of orientation.

  17. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    NASA Astrophysics Data System (ADS)

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-02-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.

  18. Homeotropic orientation of a nematic liquid crystal by bent-core molecules adsorbed on its surface

    NASA Astrophysics Data System (ADS)

    Hwang, Jiyong; Yang, Seungbin; Lee, Hyojin; Kim, Jongyoon; Lee, Ji-Hoon; Kang, Shin-Woong; Choi, E.-Joon

    2015-06-01

    We reported the promotion of a homeotropic alignment of a nematic liquid crystal (NLC) by bent-core liquid-crystal (BLC) Molecules adsorbed its surface. The BLC was mixed at various concentrations with the NLC, and the mixtures were injected into an empty cell with a cell gap of 13 μm. Although the pure NLC showed a heterogeneous orientation, the BLC-NLC mixture was gradually transformed to a homeotropic alignment with increasing concentration of the BLC. We investigated the surface topography of the samples by using an atomic force microscopy (AFM) and found that the BLC molecules were segregated into a polyimide (PI) surface and formed protrusion domains with diameters of 50-100 nm. The BLC protrusions might promote the homeotropic orientation of the NLC molecules.

  19. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    PubMed Central

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  20. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    SciTech Connect

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  1. First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Yu, Lei; Gui, Yingang; Hu, Weihua

    2016-03-01

    We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF6), namely, H2S, SO2, SOF2, and SO2F2, adsorbed on pristine and Au-embedded graphene based on the revised Perdew-Burke-Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF2 and SO2F2 exhibit a strong chemisorption interaction with Au-graphene, while H2S and SO2 exhibit quasi-molecular binding effects. Only H2S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. Magnetic moments fluctuate substantially in the original Au-graphene when H2S and SO2 are adsorbed. While the adsorption effects of SOF2 and SO2F2 generate magnetism quenching. The charge transfer mechanism is also discussed in this paper. These results will shed light on the valuable application of Au-embedded graphene for selective gas sensing and spintronics.

  2. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  3. Single-Molecule Magnets: Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator (Adv. Mater. 26/2016).

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    In Tb(Pc)2 single-molecule magnets, where Pc is phthalocyanine, adsorbed on magnesium oxide, the fluctuations of the terbium magnetic moment are strongly suppressed in contrast to the adsorption on silver. On page 5195, J. Dreiser and co-workers investigate that the molecules are perfectly organized by self-assembly, as seen in the scanning tunnelling microscopy image (top part of the design). The molecules are probed by circularly polarized X-rays depicted as green spirals. PMID:27383020

  4. Single-Molecule Magnets: Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator (Adv. Mater. 26/2016).

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    In Tb(Pc)2 single-molecule magnets, where Pc is phthalocyanine, adsorbed on magnesium oxide, the fluctuations of the terbium magnetic moment are strongly suppressed in contrast to the adsorption on silver. On page 5195, J. Dreiser and co-workers investigate that the molecules are perfectly organized by self-assembly, as seen in the scanning tunnelling microscopy image (top part of the design). The molecules are probed by circularly polarized X-rays depicted as green spirals.

  5. Room temperature differential conductance measurements of triethylamine molecules adsorbed on Si(001).

    PubMed

    Naitabdi, Ahmed; Rochet, François; Carniato, Stéphane; Bournel, Fabrice; Gallet, Jean-Jacques

    2016-08-17

    We have measured the differential conductance of the triethylamine molecule (N(CH2CH3)3) adsorbed on Si(001)-2 × 1 at room temperature using scanning tunneling spectroscopy. Triethylamine can be engaged in a dative bonding with a silicon dimer, forming a Si-Si-N(CH2CH3)3 unit. We have examined the datively bonded adduct, either as an isolated molecule, or within an ordered molecular domain (reconstructed 4 × 2). The differential conductance curves, supported by DFT calculations, show that in the explored energy window (±2.5 near the Fermi level) the main features stem from the uncapped dangling bonds of the reacted dimer and of the adjacent unreacted ones that are electronically coupled The formation of a molecular domain, in which one dimer in two is left unreacted, is reflected in a shift of the up dimer atom occupied level away from the Fermi level, likely due to an increased π-bonding strength. In stark contrast with the preceding, pairs of dissociated molecule (a minority species) are electronically decoupled from the dimer dangling bond states. DFT calculation show that the lone-pair of the Si-N(CH2CH3)2 is a shallow level, that is clearly seen in the differential conductance curve. PMID:27499070

  6. Structure and dynamics of monolayer films of squalane molecules adsorbed on a solid surface

    NASA Astrophysics Data System (ADS)

    D. T Enevoldsen, A.; Hansen, F. Y.; Diama, A.; Taub, H.

    2003-03-01

    Squalane is a branched alkane (C_30H_62). It consists of a straight chain with 24 carbon atoms, as in tetracosane (C_24H_50), and has six methyl side groups. Branched polymers such as squalane are thought to be better lubricants than n-alkanes. At low temperature, our molecular dynamics (MD) simulations show that the molecules form an ordered monolayer which melts at approximately 325 K compared to the tetracosane monolayer melting point of ˜ 340 K. Our MD simulations indicate the same melting mechanism in the squalane monolayer that was found previously for tetracosane (F. Y. Hansen and H. Taub, Phys. Rev. Lett. 69, 652 (1992).) They also show that the adsorbed molecules are distorted from an all-trans carbon backbone in contrast to what was found for tetracosane. This may explain why the Bragg diffraction peaks were observed to be broader for the squalane monolayer than for tetracosane (D. Fuhrmann, A. P. Graham, L. Criswell, H. Mo, B. Matthies, K. W. Herwig, and H. Taub, Surf. Sci. 482-485, 77 (2001).). The diffusive motion in a squalane monolayer has been investigated by both quasielastic neutron scattering and MD simulations and compared to the dynamics in tetracosane monolayers. Focus will be on differences in the dynamics.

  7. Brownian dynamics simulation of peeling a strongly-adsorbed polymer molecule from a frictionless substrate.

    PubMed

    Iliafar, Sara; Vezenov, Dmitri; Jagota, Anand

    2013-02-01

    We used brownian dynamics to study the peeling of a polymer molecule, represented by a freely jointed chain, from a frictionless surface in an implicit solvent with parameters representative of single-stranded DNA adsorbed on graphite. For slow peeling rates, simulations match the predictions of an equilibrium statistical thermodynamic model. We show that deviations from equilibrium peeling forces are dominated by a combination of Stokes (viscous) drag forces acting on the desorbed section of the chain and a finite rate of hopping over a desorption barrier. Characteristic velocities separating equilibrium and nonequilibrium regimes are many orders of magnitude higher than values accessible in force spectroscopy experiments. Finite probe stiffness resulted in disappearance of force spikes due to desorption of individual links predicted by the statistical thermodynamic model under displacement control. Probe fluctuations also masked sharp transitions in peeling force between blocks of distinct sequences, indicating limitation in the ability of single-molecule force spectroscopy to distinguish small differences in homologous molecular structures.

  8. Electronic structure and binding geometry of tetraphenylporphyrin-derived molecules adsorbed on metal and metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Coh, Senia

    Tetraphenylporphyrin (TPP)-derived molecules have been studied extensively as efficient photosensitizers when chemisorbed on the metal oxide substrates in dye-sensitized solar cells. Still, many fundamental electronic properties of the dye/oxide interface are not understood and need careful consideration. In this thesis we present a comprehensive study of the electronic structure, energy level alignment and the adsorption geometry of the TPP-derived dye molecules adsorbed on TiO2(110), ZnO(1120) and Ag(100) single crystal surfaces using ultra-high vacuum (UHV) based surface sensitive techniques. The alignment of the molecular energy levels with respect to the TiO 2 and ZnO band edges for all TPP-derived molecules we studied was found to be insensitive to either the nature of the functional groups located on the phenyl rings, presence of zinc as a central metal ion and different binding geometry of the molecules. Binding geometry, molecule-molecule interaction and the aggregation effects in the adsorbed layer, that were observed in the UV-visible spectra of the molecules adsorbed on ZnO substrate were not observed in the ultraviolet photoemission (UPS) and inverse photoemission (IPS) spectra of the occupied and unoccupied molecular states. Using near edge X-ray absorption fine structure (NEXAFS) and scanning tunneling microscopy (STM), binding geometry of the two representative TPP-derivatives was directly determined to be upright, with the porphyrin ring under large angle with respect to the surface for the p-ZnTCPP molecules and with the porphyrin ring parallel to the surface for the m-ZnTCPP molecules. We observe that the energies and the energy level alignment of the ZnTPP molecular levels measured in UPS and IPS depend on the substrate on which the molecules are adsorbed (Ag(100) or TiO2(110) single crystal surfaces). The differences are attributed to different charge screening properties of these two materials. Image charges created in the substrates during

  9. Determination of maximal amount of minor gases adsorbed in a shale sample by headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2014-02-01

    In this paper, we present a novel method for determining the maximal amount of ethane, a minor gas species, adsorbed in a shale sample. The method is based on the time-dependent release of ethane from shale samples measured by headspace gas chromatography (HS-GC). The study includes a mathematical model for fitting the experimental data, calculating the maximal amount gas adsorbed, and predicting results at other temperatures. The method is a more efficient alternative to the isothermal adsorption method that is in widespread use today.

  10. Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges.

    PubMed

    Senesac, Larry R; Yi, Dechang; Greve, Anders; Hales, Jan H; Davis, Zachary J; Nicholson, Don M; Boisen, Anja; Thundat, Thomas

    2009-03-01

    Although micromechanical sensors enable chemical vapor sensing with unprecedented sensitivity using variations in mass and stress, obtaining chemical selectivity using the micromechanical response still remains as a crucial challenge. Chemoselectivity in vapor detection using immobilized selective layers that rely on weak chemical interactions provides only partial selectivity. Here we show that the very low thermal mass of micromechanical sensors can be used to produce unique responses that can be used for achieving chemical selectivity without losing sensitivity or reversibility. We demonstrate that this method is capable of differentiating explosive vapors from nonexplosives and is additionally capable of differentiating individual explosive vapors such as trinitrotoluene, pentaerythritol tetranitrate, and cyclotrimethylenetrinitromine. This method, based on a microfabricated bridge with a programmable heating rate, produces unique and reproducible thermal response patterns within 50 ms that are characteristic to classes of adsorbed explosive molecules. We demonstrate that this micro-differential thermal analysis technique can selectively detect explosives, providing a method for fast direct detection with a limit of detection of 600x10(-12) g.

  11. Micro differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges

    SciTech Connect

    Senesac, Larry R; Yi, Dechang; Greve, Anders; Hales, Jan; Davis, Zachary; Nicholson, Don M; Boisen, Anja; Thundat, Thomas George

    2009-01-01

    Although micromechanical sensors enable chemical vapor sensing with unprecedented sensitivity using variations in mass and stress, obtaining chemical selectivity using the micromechanical response still remains as a crucial challenge. Chemoselectivity in vapor detection using immobilized selective layers that rely on weak chemical interactions provides only partial selectivity. Here we show that the very low thermal mass of micromechanical sensors can be used to produce unique responses that can be used for achieving chemical selectivity without losing sensitivity or reversibility. We demonstrate that this method is capable of differentiating explosive vapors from nonexplosives and is additionally capable of differentiating individual explosive vapors such as trinitrotoluene, pentaerythritol tetranitrate, and cyclotrimethylenetrinitromine. This method, based on a microfabricated bridge with a programmable heating rate, produces unique and reproducible thermal response patterns within 50 ms that are characteristic to classes of adsorbed explosive molecules. We demonstrate that this micro-differential thermal analysis technique can selectively detect explosives, providing a method for fast direct detection with a limit of detection of 600 x 10{sup -12} g.

  12. Direct comparison of the electronic coupling efficiency of sulfur and selenium alligator clips for molecules adsorbed onto gold electrodes

    NASA Astrophysics Data System (ADS)

    Patrone, L.; Palacin, S.; Bourgoin, J. P.

    2003-05-01

    Scanning tunneling microscopy experiments have been performed to compare the electronic coupling provided by S and by Se used as alligator clips for bisthiol- and biselenol-terthiophene molecules adsorbed onto gold. The molecules were inserted in a dodecanethiol (DT) self-assembled monolayer. Their apparent height above the dodecanethiol matrix was used as a measure of the electronic coupling strength corresponding to S and Se, respectively. We show that the insertion behaviors of the two molecules are qualitatively the same, and that Se provides systematically a better coupling link than S, whatever the tunneling conditions.

  13. Direct comparison of the electronic coupling efficiency of sulfur and selenium anchoring groups for molecules adsorbed onto gold electrodes

    NASA Astrophysics Data System (ADS)

    Patrone, L.; Palacin, S.; Bourgoin, J. P.; Lagoute, J.; Zambelli, T.; Gauthier, S.

    2002-08-01

    We performed air and ultra-high vacuum scanning tunneling microscopy experiments in order to compare the electronic coupling provided by S and by Se used as alligator clips for bisthiol- and biselenol-terthiophene molecules adsorbed onto gold. The molecules were inserted in a dodecanethiol self-assembled monolayer. Their apparent height above the dodecanethiol matrix was used as a measure of the electronic coupling strength corresponding to S and Se, respectively. We show that the insertion behaviors of the two molecules are qualitatively the same, and that Se provides systematically a better coupling link than S whatever the tunneling conditions.

  14. Infrared spectroscopy of water clusters co-adsorbed with hydrogen molecules on a sodium chloride film

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Fukutani, Katsuyuki

    2016-06-01

    Hydrogen gas containing a trace of water vapor was dosed on a vacuum-evaporated sodium chloride film at 13 K, and water clusters formed on the substrate were investigated by infrared absorption spectroscopy. Absorption bands due to (H2O)n clusters with n = 3-6 and an induced absorption band due to hydrogen were clearly observed. With increasing gas dosage, the intensities of the cluster bands increased linearly while the intensity of the hydrogen band was constant. This suggests that the water clusters were formed in two-dimensional matrices of hydrogen. We found that the water clusters did exist on the surface upon heating even after the hydrogen molecules had desorbed. A further rise of the substrate temperature up to 27 K yielded the formation of larger clusters, (H2O)n with n > 6 . We also discuss the origins of the two bands of the trimer in terms of pseudorotation and a metastable isomer.

  15. Tunneling Spectroscopy Studies of Urea, Thiourea, and Selected Phosphonate Molecules Adsorbed on Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Crowder, Charles D.

    Experimental and calculated inelastic electron tunneling intensities were compared for several of the vibrational modes of thiourea adsorbed on aluminum oxide. The partial charge model of Kirtley, Scalapino, and Hansma was used to compute the theoretical intensities of each mode. The required partial charges were determined using a method developed by Momany. Essentially, the Coulomb potential resulting from point charges located at atom sites was fitted to the quantum mechanical electrostatic potential of a molecule calculated from Hartree-Fock theory. The effect of a vibrational mode pattern on the electrostatic potential of a molecule was investigated. This effect could not be acceptably modeled with a single point charge located on each atom, so one charge was used to represent the positive nucleus of each atom and a second charge was used to represent the valence cloud. The valence charge was allowed to move independently of the nuclear charge during a molecular vibration, and the motions of the two charges were found to be very different for hydrogen atoms. This model gave very reasonable agreement between the theoretical and observed relative intensities for the in plane vibrational modes of thiourea. An acceptable set of out of plane force constants could not be found. This caused problems in the interpretation of the out of plane relative intensities. Based on the in plane modes, it was concluded that thiourea bonded to aluminum oxide with the sulfur atom near the oxide and the sulfur-carbon bond perpendicular to the aluminum oxide surface. Quantum mechanical electrostatic potentials were also calculated for urea, phosphoric acid (PA), methylphosphonic acid (MPA), hydroxymethylphosphonic acid (HMP), and nitrotrismethylphosphonic acid (NTMP). Electron tunneling spectra were taken for PA, HMP and NTMP, and the observed frequencies were compared to values obtained from Fourier transform infrared, infrared and Raman spectroscopy. Upward shifts in the P=O and P

  16. Effects of molecule-insulator interaction on geometric property of a single phthalocyanine molecule adsorbed on an ultrathin NaCl film

    NASA Astrophysics Data System (ADS)

    Miwa, Kuniyuki; Imada, Hiroshi; Kawahara, Shota; Kim, Yousoo

    2016-04-01

    The adsorption structure and orientation of a metal-free phthalocyanine (H2Pc ) and a magnesium phthalocyanine (MgPc) on a bilayer of NaCl films were investigated both theoretically and experimentally by means of first-principles calculations based on density functional theory and by scanning tunneling microscopy. H2Pc is adsorbed with its center over the sodium cation, and H-N bonds in the molecule are aligned with the [100] or [010] surface direction of a bilayer (001)-terminated NaCl film. The most stable structures of MgPc on the NaCl film show two kinds of orientations corresponding to the molecule rotated by ±7∘ relative to the [110] surface direction, with the Mg cation positioned over the chlorine anion in both cases. The energetic barrier for switching between these orientations is as low as 9.0 meV, and during an STM measurement, an orientational change of MgPc can be observed. The interaction between the adsorbed molecule and the NaCl film were analyzed in terms of dispersion interaction, Mg-Cl chemical bonding, and electrostatic interaction. It is found that the small electrostatic interaction between the molecule and the film gives a dominant contribution to determining the molecular orientation. Our detailed and comprehensive studies of the molecule-insulator interaction will provide knowledge to understand and control the properties of molecules on an insulating material.

  17. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  18. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  19. Preparation of sodium humate/{alpha}-aluminum oxide adsorbents for flue gas desulfurization

    SciTech Connect

    Sun, Z.G.; Gao, H.Y.; Hu, G.X.; Li, Y.H.

    2009-06-15

    A new composite adsorbent of sodium humate (HNa)=alpha-aluminium oxide ({alpha}-Al{sub 2}O{sub 3}) for flue gas desulfurization (FGD) was prepared using the impregnation method. Both the adsorbent of {alpha}-Al{sub 2}O{sub 3} and HNa={alpha}-Al{sub 2}O{sub 3} were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), and scanning electron microscope (SEM). Desulfurization activity of the adsorbent impregnated with ammonia (NH{sub 4}OH) was investigated in a fixed-bed quartz reactor. Experimental results indicate that HNa, which coats the {alpha}-Al{sub 2}O{sub 3} fibers impregnated with HNa solution, improved the property of {alpha}-Al{sub 2}O{sub 3} support for FGD. On the other hand, the HNa-coating on the adsorbent of HNa/{alpha}-Al{sub 2}O{sub 3} impregnated with NH{sub 4}OH played an important role in enhancing the desulfurization property of the {alpha}-Al{sub 2}O{sub 3}. Due to the strong adsorption capability of HNa, more NH{sub 4}OH was adsorbed in the adsorbent of HNa/{alpha}-Al{sub 2}O{sub 3} the longer a high sulfur dioxide (SO{sub 2}) conversation rate was maintained. In addition, because the desulfurization product was a compound fertilizer consisting of ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}), ammonium humate (HNH{sub 4}), and HNa, the recycling use of {alpha}-Al{sub 2}O{sub 3} was also easily achieved. Thus, this study can provide a new cost-effective way to remove SO{sub 2} from flue gas.

  20. Measuring the Speed of Molecules in a Gas.

    ERIC Educational Resources Information Center

    Ivanov, Dragia T.

    1996-01-01

    Presents a method to measure the mass of a definite amount of a gas that occupies a known volume at a given pressure in order to determine experimentally the root mean square speed of molecules of a gas. (JRH)

  1. Adsorbing H₂S onto a single graphene sheet: A possible gas sensor

    SciTech Connect

    Reshak, A. H.; Auluck, S.

    2014-09-14

    The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causes to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.

  2. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  3. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent.

    PubMed

    Zhao, Yi; Shen, Yanmei; Ma, Guoyi; Hao, Rongjie

    2014-01-01

    CO2 separation by molecularly imprinted adsorbent from coal-fired flue gas after desulfurization system has been studied. The adsorbent was synthesized by molecular imprinted technique, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as the template, functional monomer, and cross-linker, respectively. According to the conditions of coal-fired flue gas, the influencing factors, including adsorption temperature, desorption temperature, gas flow rate, and concentrations of CO2, H2O, O2, SO2, and NO, were studied by fixed bed breakthrough experiments. The experimental conditions were optimized to gain the best adsorption performance and reduce unnecessary energy consumption in future practical use. The optimized adsorption temperature, desorption temperature, concentrations of CO2, and gas flow rate are 60 °C, 80 °C, 13%, and 170 mL/min, respectively, which correspond to conditions of practical flue gases to the most extent. The CO2 adsorption performance was nearly unaffected by H2O, O2, and NO in the flue gas, and was promoted by SO2 within the emission limit stipulated in the Chinese emission standards of air pollutants for a thermal power plant. The maximum CO2 adsorption capacity, 0.57 mmol/g, was obtained under the optimized experimental conditions, and the SO2 concentration was 150 mg/m(3). The influence mechanisms of H2O, O2, SO2, and NO on CO2 adsorption capacity were investigated by infrared spectroscopic analysis. PMID:24410306

  4. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  5. Adsorbed states of chlorophenol on Cu(110) and controlled switching of single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Okuyama, H.; Kitaguchi, Y.; Hattori, T.; Ueda, Y.; Ferrer, N. G.; Hatta, S.; Aruga, T.

    2016-06-01

    A molecular junction of substituted benzene (chlorophenol) is fabricated and controlled by using a scanning tunneling microscope (STM). Prior to the junction formation, the bonding geometry of the molecule on the surface is characterized by STM and electron energy loss spectroscopy (EELS). EELS shows that the OH group of chlorophenol is dissociated on Cu(110) and that the molecule is bonded nearly flat to the surface via an O atom, with the Cl group intact. We demonstrate controlled contact of an STM tip to the "available" Cl group and lift-up of the molecule while it is anchored to the surface via an O atom. The asymmetric bonding motifs of the molecule to the electrodes allow for reversible control of the junction.

  6. Heavy meromyosin molecules extending more than 50 nm above adsorbing electronegative surfaces.

    PubMed

    Persson, Malin; Albet-Torres, Nuria; Ionov, Leonid; Sundberg, Mark; Höök, Fredrik; Diez, Stefan; Månsson, Alf; Balaz, Martina

    2010-06-15

    In the in vitro motility assay, actin filaments are propelled by surface-adsorbed myosin motors, or rather, myosin motor fragments such as heavy meromyosin (HMM). Recently, efforts have been made to develop actomyosin powered nanodevices on the basis of this assay but such developments are hampered by limited understanding of the HMM adsorption geometry. Therefore, we here investigate the HMM adsorption geometries on trimethylchlorosilane- [TMCS-] derivatized hydrophobic surfaces and on hydrophilic negatively charged surfaces (SiO(2)). The TMCS surface is of great relevance in fundamental studies of actomyosin and both surface substrates are important for the development of motor powered nanodevices. Whereas both the TMCS and SiO(2) surfaces were nearly saturated with HMM (incubation at 120 microg mL(-1)) there was little actin binding on SiO(2) in the absence of ATP and no filament sliding in the presence of ATP. This contrasts with excellent actin-binding and motility on TMCS. Quartz crystal microbalance with dissipation (QCM-D) studies demonstrate a HMM layer with substantial protein mass up to 40 nm above the TMCS surface, considerably more than observed for myosin subfragment 1 (S1; 6 nm). Together with the excellent actin transportation on TMCS, this strongly suggests that HMM adsorbs to TMCS mainly via its most C-terminal tail part. Consistent with this idea, fluorescence interference contrast (FLIC) microscopy showed that actin filaments are held by HMM 38 +/- 2 nm above the TMCS-surface with the catalytic site, on average, 20-30 nm above the surface. Viewed in a context with FLIC, QCM-D and TIRF results, the lack of actin motility and the limited actin binding on SiO(2) shows that HMM adsorbs largely via the actin-binding region on this surface with the C-terminal coiled-coil tails extending >50 nm into solution. The results and new insights from this study are of value, not only for the development of motor powered nanodevices but also for the

  7. Evidence of conformational changes in adsorbed lysozyme molecule on silver colloids.

    PubMed

    Chandra, Goutam; Ghosh, Kalyan S; Dasgupta, Swagata; Roy, Anushree

    2010-10-01

    In this article, we discuss metal-protein interactions in the Ag-lysozyme complex by spectroscopic measurements. The analysis of the variation in relative intensities of SERS bands reveals the orientation and the change in conformation of the protein molecules on the Ag surface with time. The interaction kinetics of metal-protein complexes has been analyzed over a period of 3h via Raman measurements. Our analysis indicates that the Ag nanoparticles most likely interact with Trp123 which is in close proximity to Phe34 of the lysozyme molecule.

  8. Tunneling properties of nonplanar molecules in a gas medium

    SciTech Connect

    Bahrami, Mohammad; Bassi, Angelo

    2011-12-15

    We propose a simple, general, and accurate formula for analyzing the tunneling between classical configurations of a nonplanar molecule in a gas medium, as a function of the thermodynamic parameters of the gas. We apply it to two interesting cases: (i) the shift to zero frequency of the inversion line of ammonia, upon an increase in the pressure of the gas; and (ii) the destruction of the coherent tunneling of D{sub 2}S{sub 2} molecules in a He gas. In both cases, we compare our analysis with previous theoretical and experimental results.

  9. Poultry manure as raw material for mercury adsorbents in gas applications

    SciTech Connect

    Klasson, K.T.; Lima, I.M.; Boihem, L.L.

    2009-09-30

    The quantity of poultry manure generated each year is large, and technologies that take advantage of the material should be explored. At the same time, increased emphasis on the reduction of mercury emissions from coal-fired electric power plants has resulted in environmental regulations that may, in the future, require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream, where they could adsorb the mercury. The sorbents (now containing mercury) would be removed via filtration or other means from the flue gas. Our preliminary work has demonstrated that activated carbon made from poultry manure can adsorb mercury from air with good efficiency. In laboratory experiments, an activated carbon made from turkey cake manure removed the majority of elemental mercury from a hot air stream. Other activated carbons made from chicken and turkey litter manure were also efficient. In general, unwashed activated carbons made from poultry manure were more efficient in removing mercury than their acid-washed counterparts. The results suggest that the adsorption of mercury was mainly due to chemisorption on the surface of the carbon. Other potential uses for the activated carbons are the removal of mercury from air and natural gas.

  10. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.

    PubMed

    Zheng, Anmin; Huang, Shing-Jong; Liu, Shang-Bin; Deng, Feng

    2011-09-01

    A brief review is presented on acidity characterization of solid acid catalysts by means of solid-state phosphor-31 magic-angle-spinning nuclear magnetic resonance ((31)P MAS NMR) spectroscopy using phosphor-containing molecules as probes. It is emphasized that such a simple approach using (31)P MAS NMR of adsorbed phosphorous probe molecules, namely trimethylphosphine (TMP) and trialkylphosphine oxides (R(3)PO), represents a unique technique in providing detailed qualitative and quantitative features, viz. type, strength, distribution, and concentration of acid sites in solid acid catalysts. In particular, it will be shown that when applied with a proper choice of probe molecules with varied sizes and results obtained from elemental analysis, the amounts and locations (intracrystalline vs. extracrystalline) of different types (Brønsted vs. Lewis) of acid sites may be determined. In addition, by incorporating the NMR results with that obtained from theoretical density functional theory (DFT) calculations, correlations between the (31)P chemical shifts (δ(31)P) and acidic strengths of Brønsted and Lewis acid sites may also be derived, facilitating a suitable acidity scale for solid acid catalysts.

  11. Existence of hydration forces in the interaction between apoferritin molecules adsorbed on silica surfaces.

    PubMed

    Valle-Delgado, J J; Molina-Bolívar, J A; Galisteo-González, F; Gálvez-Ruiz, M J; Feiler, A; Rutland, M W

    2005-10-11

    The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such interactions. It has been observed that the interaction at low salt concentrations is dominated by electrical double layer (at large distances) and steric forces (at short distances), the latter being due to compression of the protein layers. The DLVO theory fits these experimental data quite well. However, a non-DLVO repulsive interaction, prior to contact of the protein layers, is observed at high salt concentration above the isoelectric point of the protein. This behavior could be explained if the presence of hydration forces in the system is assumed. The inclusion of a hydration term in the DLVO theory (extended DLVO theory) gives rise to a better agreement between the theoretical fits and the experimental results. These results seem to suggest that the hydration forces play a very important role in the stability of the proteins in the physiological media.

  12. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids

    NASA Astrophysics Data System (ADS)

    Wang, D.-S.; Kerker, M.

    1981-08-01

    Equations are derived and calculations are presented for the electrodynamic mechanism of enhanced Raman scattering by molecules at the surface of prolate and oblate spheroids in the small-particle limit. The molecules may be arbitrarily distributed; the particles may be arbitrarily oriented. Calculations are presented for a monolayer distributed over randomly oriented spheroids. The effects of particle shape are considered for Ag, Au, and Cu hydrosols. The peak enhancement moves to longer wavelengths, and in the case of Au and Cu the magnitude of the enhancement increases strikingly as the eccentricity increases. The relation between the dependence of the Raman enhancement upon excitation wavelength and the extinction spectra is discussed, including the precariousness of extrapolating such relations beyond the small-particle limit.

  13. Hindered and modulated rotational states and spectra of adsorbed diatomic molecules

    SciTech Connect

    Shih, Y.T.; Chuu, D.S.; Mei, W.N.

    1996-10-01

    Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscillatory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also found that the rotational levels were grouped into bands when the azimuthal modulation strength was increased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and agreement with the previous experiment was obtained. {copyright} {ital 1996 The American Physical Society.}

  14. Infrared spectra of gas-phase polycyclic aromatic hydrocarbon molecules

    SciTech Connect

    Zhang, Keqing; Guo, B.; Bernath, P.F.

    1995-12-31

    Recording the spectra of gas-phase polycyclic aromatic hydrocarbon molecules is of great astronomical interest. Infrared spectra of gas-phase naphthalene, pyrene, and chrysene were obtained in absorption and emission. The band positions and relative intensities were measured and compared with theoretical calculations. These data will be compared to the astronomical observations of the unidentified infrared emission bands.

  15. Novel simulated moving-bed adsorber for the fractionation of gas mixtures.

    PubMed

    Rao, D P; Sivakumar, S V; Mandal, Susmita; Kota, Sridevi; Ramaprasad, B S G

    2005-03-25

    The separation of propylene-propane mixture is an energy intensive operation commercially practiced using cryogenic distillation. The separation by pressure swing adsorption has been studied as an alternative. A fixed-bed pressure swing adsorption yields the heavy component as a pure product. The product recovery and the productivity are not high. In a moving-bed process, because of the counter-current solid-gas contact, the separation achieved is similar to that of the fractionation by distillation. Although the moving-bed operation offers the upper limit for the performance of a cyclic adsorptive process, due to mechanical complexities in the handling of solids the 'simulated' moving-bed is preferred. By moving the inlet and outlet ports of streams located along the length of the bed, a moving-bed process can be realized in a fixed bed. We describe here a 'moving-port' system which permits injection or withdrawal of the fluid along the axial direction in a fixed bed. A fixed bed embedded with the moving-port systems emulates a simulated moving-bed adsorber. The proposed adsorber can fractionate a binary gas mixture into two product streams with high purities. It is similar to the Sorbex process of UOP but does not have the eluent as an additional separating agent. A parametric study indicates that high purity products and a higher productivity by an order of magnitude can be achieved with simulated moving-beds compared to the fixed beds.

  16. Switching orientation of adsorbed molecules: Reverse domino on a metal surface

    NASA Astrophysics Data System (ADS)

    Braatz, C. R.; Esat, T.; Wagner, C.; Temirov, R.; Tautz, F. S.; Jakob, P.

    2016-01-01

    A thus far unknown phase of 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA) on Ag(111), characterized by an all perpendicular orientation of the planar molecules and bound to the Ag substrate through the carboxyl oxygen atoms has been identified using infrared absorption spectroscopy and scanning tunneling microscopy. Its formation process requires second layer NTCDA to squeeze into empty spaces between relaxed monolayer NTCDA molecules. Remarkably, this process causes initially parallel oriented NTCDA to likewise adopt the new, highly inclined adsorption geometry. According to our SPA-LEED and STM findings, the new phase displays a distinct long range order and shows a pronounced tendency to form 1D rows or narrow islands. We suggest that extra NTCDA preferentially transforms into the upright configuration close to existing islands and attaches to them, i.e. the transformation process proceeds in a directed and recurrent manner (reverse domino scenario). Identical processing starting with a compressed NTCDA/Ag(111) monolayer leads to a purely parallel oriented bilayer, that is, the NTCDA monolayer phase is retained and merely acts as a passive template for bilayer NTCDA. The new vertical NTCDA phase represents an unusual molecular system with π-orbitals oriented parallel to a metal surface. A substantially reduced coupling of these orbitals to Ag(111) electronic levels is conjectured, which will have a major impact on intermolecular couplings and electronically excited state lifetimes.

  17. Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles.

    PubMed

    Heleg-Shabtai, Vered; Zifman, Adi; Kendler, Shai

    2012-01-01

    The improvements in Raman instrumentation have led to the development of -portable, simple to operate, Raman instruments that can be used for on-site analysis of substances relevant for homeland security purposes such as chemical and biological warfare and explosives materials.Raman spectroscopy, however, suffers from limited sensitivity which can be overcome by Surface-Enhanced Raman Spectroscopy (SERS). SERS can enhance the Raman signal of a target molecule by 6-10 orders of magnitude. The increased sensitivity, together with Raman's molecular recognition capabilities and the availability of portable Raman instruments make SERS a powerful analytical tool for on site detection.In this work we studied the effect of target molecules and SERS-active substrate properties on the obtained SERS, using a field portable Raman spectrometer. Also reported herein is the SERS detection of the chemical warfare agent sulfur mustard (HD, 2,2 dichloroethyl sulfide). This study may serve as a basis for the development of SERS platform for homeland security purposes.

  18. A quantum gas of polar molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    Moses, Steven A.

    Ultracold polar molecules, because of their long-range, spatially anisotropic interactions, are a new quantum system in which to study novel many-body phenomena. In our lab, we have produced the first quantum gas of 40K 87Rb polar molecules. These molecules were found to undergo exothermic chemical reactions, and this led to interesting studies of chemistry near absolute zero. By creating the molecules at individual sites of a 3D optical lattice, we completely suppress these chemical reactions, and the polar molecule gas becomes stable and lives for tens of seconds. This thesis documents our efforts to explore coherent, many-body phenomena resulting from long-range dipolar interactions in the lattice. By encoding a spin-1/2 system in the rotational states of the molecules, we were able to realize spin-exchange interactions based on a spin Hamiltonian, which is one of the first steps in studying quantum magnetism with polar molecules. While this study was the first realization of such coherent dipolar interactions with polar molecules in a lattice, its full potential was limited by the low lattice filling fractions. Using our ability to exquisitely control the initial atomic gas mixture, we loaded a Mott insulator of Rb and a band insulator of K into the lattice. This quantum synthesis approach led to significantly higher molecular filling fractions and represents the first fully connected system of polar molecules in an optical lattice. This low-entropy quantum gas of polar molecules opens the door to interesting quantum simulations, which should be attainable in the next generation of the experiment.

  19. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    NASA Astrophysics Data System (ADS)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  20. Can CO2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube?

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Kuang, Xiao-Yu; Ding, Li-Ping; Yang, Jing; Zhong, Ming-Min

    2013-11-01

    The adsorption of carbon dioxides (CO2) is very important in environmental and industrial applications. The boron nitride nanotube (BNNT) with large surface and polarity may be a good candidate as CO2 capture. Unfortunately, the pristine BNNT is almost inert to the highly stable CO2. To renew technical applications of BNNT for CO2 adsorption, we explore the possibility of CO2 adsorption on various (n, 0) (n = 6, 8, 10, 12 and 14) Al-doped BNNT by density functional theory (DFT) calculations. The results show that the Al-doped BNNT could be a potential CO2 adsorption material, and the CO2 adsorption energies are independent of BNNT diameters. Furthermore, the interactions between CO2 and exemplified (6, 0) Al-doped BNNT are investigated by density of states (DOS) and electron density. We found the interaction between CO2 and AlB-BNNT is stronger than that of CO2 and AlN-BNNT. The adsorption of CO2 can induce new density of state, as well as a local charge fluctuation due to more electron density redistribution on the atoms near CO2 molecule.

  1. Glass transition of adsorbed stereoregular PPMA by inverse gas chromatography at infinite dilution

    NASA Astrophysics Data System (ADS)

    Hamieh, T.; Rezzaki, M.; Grohens, Y.; Schultz, J.

    1998-10-01

    In this paper, we used inverse gas chromatography (IGC) at infinite dilution that proved to be a powerful technique to determine glass transition and other transitions of PMMA adsorbed on α-alumina. We highlighted the glass transition temperature of the system PMMA/α-Al2O3 with defined polymer tacticity at various covered surface fractions. Thus, the Tg of the adsorbed isotactic PMMA increases strongly as compared to the bulk value. The study of the physical chemical properties of PMMA/α-alumina revealed an important difference in the acidic and basic behaviour, in Lewis terms, of aluminium oxide covered by various concentrations of PMMA. It appears that there is a stabilisation of the physical chemical properties of PMMA/α-Al2O3 for a surface coverage above 50%. This study also highlighted an important effect of the tacticity of the polymer on the acid-base character of the system PMMA/Al2O3. Dans cet article, nous montrons que la chromatographie gazeuse inverse (CGI) à dilution infinie se révèle être une technique très intéressante pour la détermination de la transition vitreuse de polymères stéréoréguliers adsorbés sur des substrats solides tels que l'alumine. Nous avons mis en évidence des transitions attribuées aux phénomènes de relaxation béta, transition vitreuse et autres transitions des systèmes PMMA/Al2O3 de tacticité définie à différents taux de recouvrement. Ainsi, la Tg du PMMA isotactique adsorbé augmente de façon significative par rapport a celle du polymère massique. L'étude des propriétés physico-chimiques du système PMMA/Al2O3, révèle une différence importante dans le comportement acido-basique, au sens de Lewis, de l'alumine pour de taux de recouvrement en PMMA variables. Il apparaît qu'il y a stabilisation des propriétés physico-chimiques de PMMA/Al2O3 pour un taux de recouvrement en PMMA supérieur à 50 %. Cette étude a montré également une influence importante de la tacticité du polymère sur le

  2. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    SciTech Connect

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

  3. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE PAGES

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequenciesmore » relevant to PSA vessel operation.« less

  4. Effect of side by side interactions on the thermodynamic properties of adsorbed CO molecules on the Ni(111) surface: a cluster model study

    NASA Astrophysics Data System (ADS)

    Shamkhali, Amir N.; Parsafar, Gholamabbas

    2010-05-01

    The effect of electrostatic interactions on vibrational frequencies and thermodynamic properties of CO adsorbate on the Ni(111) surface is calculated by taking the first and second nearest-neighbour interactions into account. In order to obtain reasonable results, the cluster model of various surface adsorption sites with CO adsorbate is partially optimized, using Density Functional Theory and also the MP2 method for the hcp site. Comparison between DFT and MP2 results shows that DFT results are more reliable for this system. The stretching and bending frequencies of CO adsorbate are calculated using both Partial Hessian Analysis and Cluster-Adsorbate Coupling methods. Stretching and bending frequencies are both shifted by the side by side interactions. The coupling of surface phonons and adsorbate vibrations reduces the side effects. The largest side effects on the vibrational internal energy, isochoric heat capacity, entropy and total Helmholtz free energy of adsorbed CO molecule calculated using the CAC method are found for 0.5 ML coverage. The results of the CAC method are better, but the PHA method can be used as a simple upper bound estimation. The adsorptive phase acts as an intelligent material in such a way that it changes its configuration in order to reduce the side effects.

  5. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO₂ capture from flue gas.

    PubMed

    Rezaei, Fateme; Lively, Ryan P; Labreche, Ying; Chen, Grace; Fan, Yanfang; Koros, William J; Jones, Christopher W

    2013-05-01

    Amine/silica/polymer composite hollow fiber adsorbents are produced using a novel reactive post-spinning infusion technique, and the obtained fibers are shown to capture CO2 from simulated flue gas. The post-spinning infusion technique allows for functionalization of polymer/silica hollow fibers with different types of amines during the solvent exchange step after fiber spinning. The post-spinning infusion of 3-aminopropyltrimethoxysilane (APS) into mesoporous silica/cellulose acetate hollow fibers is demonstrated here, and the materials are compared with hollow fibers infused with poly(ethyleneimine) (PEI). This approach results in silica/polymer composite fibers with good amine distribution and accessibility, as well as adequate porosity retained within the fibers to facilitate rapid mass transfer and adsorption kinetics. The CO2 adsorption capacities for the APS-infused hollow fibers are shown to be comparable to those of amine powders with similar amine loadings. In contrast, fibers that are spun with presynthesized, amine-loaded mesoporous silica powders show negligible CO2 uptake and low amine loadings because of loss of amines from the silica materials during the fiber spinning process. Aminosilica powders are shown to be more hydrophilic than the corresponding amine containing composite hollow fibers, the bare polymer as well as silica support. Both the PEI-infused and APS-infused fibers demonstrate reduced CO2 adsorption upon elevating the temperature from 35 to 80 °C, in accordance with thermodynamics, whereas PEI-infused powders show increased CO2 uptake over that temperature range because of competing diffusional and thermodynamic effects. The CO2 adsorption kinetics as probed via TGA show that the APS-infused hollow fiber adsorbents have more rapid uptake kinetics than their aminosilica powder analogues. The adsorption performance of the functionalized hollow fibers is also assessed in CO2 breakthrough experiments. The breakthrough results show a

  6. Line broadening of confined CO gas: from molecule-wall to molecule-molecule collisions with pressure.

    PubMed

    Hartmann, J-M; Boulet, C; Auwera, J Vander; El Hamzaoui, H; Capoen, B; Bouazaoui, M

    2014-02-14

    The infrared absorption in the fundamental band of CO gas confined in porous silica xerogel has been recorded at room temperature for pressures between about 5 and 920 hPa using a high resolution Fourier transform spectrometer. The widths of individual lines are determined from fits of measured spectra and compared with ab initio predictions obtained from requantized classical molecular dynamics simulations. Good agreement is obtained from the low pressure regime where the line shapes are governed by molecule-wall collisions to high pressures where the influence of molecule-molecule interactions dominates. These results, together with those obtained with a simple analytical model, indicate that both mechanisms contribute in a practically additive way to the observed linewidths. They also confirm that a single collision of a molecule with a wall changes its rotational state. These results are of interest for the determination of some characteristics of the opened porosity of porous materials through optical soundings.

  7. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  8. The prebiotic molecules observed in the interstellar gas

    PubMed Central

    Thaddeus, P

    2006-01-01

    Over 130 molecules have been identified in the interstellar gas and circumstellar shells, the largest among them is a carbon chain with 13 atoms and molecular weight of 147 (twice that of the simplest amino acid glycine). The high reliability of astronomical identifications, as well as the fairly accurate quantitative analysis which can often be achieved, is emphasized. Glycine itself has been claimed, but a recent analysis indicates that few, if any, of the astronomical radio lines attributed to glycine are actually from that molecule. Polycyclic aromatic hydrocarbons (PAHs) have long been proposed as the source of the unidentified infrared bands between 3 and 16 μm, but no single PAH has been identified in space, partly because PAHs generally have weak or non-existent radio spectra. A remarkable exception is the non-planar corannulene molecule (C20H10) that has a strong radio spectrum; in the rich molecular cloud TMC-1, it is found that less than 10−5 of the carbon is contained in this molecule, suggesting that PAHs are not the dominant large molecules in the interstellar gas, as has been claimed. Owing to inherent spectroscopic limitations, determining the structures of the large molecules in space may require capture of the dust grains, which are continually entering the outer Solar System. PMID:17008209

  9. The prebiotic molecules observed in the interstellar gas.

    PubMed

    Thaddeus, P

    2006-10-29

    Over 130 molecules have been identified in the interstellar gas and circumstellar shells, the largest among them is a carbon chain with 13 atoms and molecular weight of 147 (twice that of the simplest amino acid glycine). The high reliability of astronomical identifications, as well as the fairly accurate quantitative analysis which can often be achieved, is emphasized. Glycine itself has been claimed, but a recent analysis indicates that few, if any, of the astronomical radio lines attributed to glycine are actually from that molecule. Polycyclic aromatic hydrocarbons (PAHs) have long been proposed as the source of the unidentified infrared bands between 3 and 16 microm, but no single PAH has been identified in space, partly because PAHs generally have weak or non-existent radio spectra. A remarkable exception is the non-planar corannulene molecule (C20H10) that has a strong radio spectrum; in the rich molecular cloud TMC-1, it is found that less than 10-5 of the carbon is contained in this molecule, suggesting that PAHs are not the dominant large molecules in the interstellar gas, as has been claimed. Owing to inherent spectroscopic limitations, determining the structures of the large molecules in space may require capture of the dust grains, which are continually entering the outer Solar System. PMID:17008209

  10. Analysis of volatile lunar compounds: The study of gas retention time on Carbosieve SIII adsorbent with respect to temperature

    NASA Astrophysics Data System (ADS)

    Aseev, S. A.; Gerasimov, M. V.; Zaitsev, M. A.; Sapgir, A. G.

    2016-09-01

    This work presents the study of the characteristic retention times on Carbosieve SIII adsorbent for several permanent gases CO2, CO, CH4, N2 with respect to the temperature of cooling of adsorption accumulators. To perform this work, a laboratory model of a gas chromatograph that included all key components of a standard instrument has been designed.

  11. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  12. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    NASA Astrophysics Data System (ADS)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  13. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    NASA Astrophysics Data System (ADS)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  14. Gas separation device based on electrical swing adsorption

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-10-26

    A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

  15. A high phase-space-density gas of polar molecules.

    PubMed

    Ni, K-K; Ospelkaus, S; de Miranda, M H G; Pe'er, A; Neyenhuis, B; Zirbel, J J; Kotochigova, S; Julienne, P S; Jin, D S; Ye, J

    2008-10-10

    A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.

  16. Quantum gas of deeply bound ground state molecules.

    PubMed

    Danzl, Johann G; Haller, Elmar; Gustavsson, Mattias; Mark, Manfred J; Hart, Russell; Bouloufa, Nadia; Dulieu, Olivier; Ritsch, Helmut; Nägerl, Hanns-Christoph

    2008-08-22

    Molecular cooling techniques face the hurdle of dissipating translational as well as internal energy in the presence of a rich electronic, vibrational, and rotational energy spectrum. In our experiment, we create a translationally ultracold, dense quantum gas of molecules bound by more than 1000 wave numbers in the electronic ground state. Specifically, we stimulate with 80% efficiency, a two-photon transfer of molecules associated on a Feshbach resonance from a Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range electrostatic bond of the Feshbach molecule is coherently transformed into a tight chemical bond. We demonstrate coherence of the transfer in a Ramsey-type experiment and show that the molecular sample is not heated during the transfer. Our results show that the preparation of a quantum gas of molecules in specific rovibrational states is possible and that the creation of a Bose-Einstein condensate of molecules in their rovibronic ground state is within reach. PMID:18719277

  17. Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

    NASA Astrophysics Data System (ADS)

    Nie, Zhengwei; Lin, Yuyi; Jin, Xiaoyi

    2016-09-01

    Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5-4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.

  18. Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

    NASA Astrophysics Data System (ADS)

    Nie, Zhengwei; Lin, Yuyi; Jin, Xiaoyi

    2016-05-01

    Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5-4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.

  19. Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study.

    PubMed

    Li, Hongxing; Huang, Min; Cao, Gengyu

    2016-06-01

    Sulfur vacancy (SV) is one of the most typical defects in two-dimensional monolayer MoS2, leading to reactive sites. We presented a systematic study of the adsorption behaviors of gas molecules, CO2, N2, H2O, CO, NH3, NO, O2, H2 and NO2, on monolayer MoS2 with single SV by first-principles calculations. It was found that CO2, N2 and H2O molecules physisorbed at the proximity of single SV. Our adsorption energy calculations and charge transfer analysis showed that the interactions between CO2, N2 and H2O molecules and defective MoS2 are stronger than the cases of CO2, N2 and H2O molecules adsorbed on pristine MoS2, respectively. The defective MoS2 based gas sensors may be more sensitive to CO2, N2 and H2O molecules than pristine MoS2 based ones. CO, NO, O2 and NH3 molecules were found to chemisorb at the S vacancy site and thus modify the electronic properties of defective monolayer MoS2. Magnetism was induced upon adsorption of NO molecules and the defective states induced by S vacancy can be completely removed upon adsorption of O2 molecules, which may provide some helpful information for designing new MoS2 based nanoelectronic devices in future. The H2 and NO2 molecules were found to dissociate at S vacancy. The dissociation of NO2 molecules resulted in O atoms located at the S vacancy site and NO molecules physisorbed on O-doped MoS2. The calculated results showed that NO2 molecules can help heal the S vacancy of the MoS2 monolayer.

  20. Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules

    SciTech Connect

    Go, Clark Kendrick C.; Maquiling, Joel T.

    2010-07-28

    Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

  1. A theoretical study of rotational and translational diffusion dynamics of molecules with a six-fold point symmetry adsorbed on a hexagonal lattice by neutron scattering.

    PubMed

    Calvo-Almazán; Miret-Artés; Fouquet

    2012-03-14

    A complete analytical model for the rotational and translational diffusion of molecules with a six-fold point symmetry on a hexagonal lattice is presented. It can be applied, in particular, to the diffusion of benzene molecules adsorbed flat on the basal plane of graphite in the case of incoherent scattering. Under the weak hindered approximation, the classical mechanics framework and making use of the van Hove formalism of correlation functions, the intermediate scattering function and its Fourier transform, the scattering law, are both obtained. They can be expressed as sums of exponential decays or Lorentzian functions, respectively, containing the contribution of each of the dynamical processes taking place. In the case of benzene lying flat on the substrate we expect translational diffusion, continuous rotations of isolated molecules and hindered rotations of molecules within clusters. Each particular diffusive mechanism can be recognized owing to its particular signature in the dependence of the quasi-elastic broadening on the momentum transfer.

  2. Energy loss in gas-surface dynamics: Electron-hole pair and phonon excitation upon adsorbate relaxation

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M.

    2016-09-01

    We study the effect of electron and phonon degrees of freedom on the relaxation dynamics of adsorption processes in gas-surface systems by using ab initio molecular dynamics that incorporates an electronic friction force (AIMDEF). As representative cases we have chosen three systems with different adsorption energies and adsorbate-to-surface atom mass ratios: H on Pd(1 0 0), N on Ag(1 1 1), and N2 on Fe(1 1 0). We show, through inspection of the total energies and trajectories of the hot adsorbates on the surface, that electron-hole (e-h) pair excitations dominate relaxation of the light gas species, while the phonon channel is dominant for the heavy species. In the latter case e-h pairs become more important at the final thermalization stages.

  3. Optics of a gas of coherently spinning molecules.

    PubMed

    Steinitz, Uri; Prior, Yehiam; Averbukh, Ilya Sh

    2014-01-10

    We consider the optical properties of a gas of molecules that are brought to fast unidirectional spinning by a pulsed laser field. It is shown that a circularly polarized probe light passing through the medium inverts its polarization handedness and experiences a frequency shift controllable by the sense and the rate of molecular rotation. Our analysis is supported by two recent experiments on the laser-induced rotational Doppler effect in molecular gases and provides a good qualitative and quantitative description of the experimental observations. PMID:24483895

  4. The diffusion of individual molecules within a gas

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1986-01-01

    The Direct Simulation Monte Carlo method is used to study the positional history of the individual molecules in a gas that is homogeneous at the macroscopic level and is in Maxwellian equilibrium at the microscopic level. The behavior at small times is characterized by 'persistence of velocity' effects, and a 'random walk' type of dispersal occurs over a longer timescale. It is shown that the rate of dispersal can be directly related to the self-diffusion coefficient. In addition, the diffusion coefficients are obtained directly from one-dimensional calculations, and the local Knudsen number at which the Chapman-Enskog theory breaks down is determined. Results are presented for both simple gases and gas mixtures.

  5. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability

    NASA Astrophysics Data System (ADS)

    Tan, Yun-Liang; Teng, Gui-Rong; Zhang, Ze

    2010-01-01

    A modified Lattice-Boltzmann method is proposed by considering the Klinkenberg effect and adsorbability-desorbability for the purpose of simulating methane gas seepage in fissured coal. The results show that the Klinkenberg effect has a little influence on methane gas seepage in fissured coal, so it can be neglected in engineering computations for simplicity. If both the Klinkenberg effect and the adsorbability-desorbability are considered, the Klinkenberg influence on gas pressure decreases as the Darcy coefficient increases. It is found by gas drainage simulations that near a drainage hole, the effect of adsorption and desorption cannot be neglected, and the location of the drainage hole has a great influence on drainage efficient λ when the hole is just located at the mid-zone of the coal seam, λ is 0.691808; when the hole is excursion down to 1.0 m from the mid-zone of coal seam, λ decreases to 0.668631; when the hole is excursion up or down to 2.0 m from the mid-zone of coal seam, λ decreases to 0.632917. The simulations supply an effective approach for optimizing the gas drainage hole location.

  6. Correlations of Henry's Law Gas-Solid Virial Coefficients and Chromatographic Retention Times for Hydrocarbons and Halocarbons Adsorbed on Carbopack C Carbon.

    PubMed

    Rybolt; Logan; Milburn; Thomas; Waters

    1999-12-01

    Second gas-solid virial coefficients were determined at 403.5 +/- 0.5 K for 6 adsorbates, including butane, chloroform, trichlorofluoromethane (Freon 11), bromochloromethane, 1-chloro-2-methylpropane, and dibromodifluoromethane. For another 11 adsorbates, including dichlorodifluoromethane (Freon 12), chlorodifluoromethane (Freon 22), methyl chloride, methylene chloride, propane, n-pentane, n-hexane, carbon tetrachloride, 1,2-dichloropropane, butyl chloride, and cyclohexane, B(2s) was measured over a range of temperatures between 308 and 494 K. These values were found using gas-solid chromatography with Carbopack C (Supelco Inc.), a graphitized carbon black powder, as the adsorbent. We find that both the ln B(2s) values and the gas-solid interaction energies are effectively correlated with adsorbate-calculated molar refractivity, r(2) = 0.947 and r(2) = 0.964, respectively. Dipole moment alone provides a nearly random correlation of ln B(2s) and, if used with molar refractivity, gives r(2) = 0.970 for the 17 hydrocarbon and alkyl halide (halocarbon) adsorbates. A theoretical equation was developed that predicts a quantitative structure retention relationship (QSRR) used to correlate ln B(2s) values with molar refractivity. B(2s) values are directly proportional to the retention times of the adsorbates. Using one-surface and two-surface models, a calculation of the surface area of the Carbopack C for each of the 17 adsorbates provided a check on the consistency of the analysis as the adsorbate was varied. Copyright 1999 Academic Press.

  7. First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Jaiswal, Neeraj K.; Sharma, Varun

    2014-09-01

    The present work exhibits density functional theory (DFT) based first-principles calculations to explore the sensing properties of bare armchair boron nitride nanoribbons (ABNNR) for PH3 gas molecules. Edges of the ribbon were considered as the sites of possible adsorption with two different configurations i.e. adsorption at one edge and adsorption at both edges of the ribbon. It is revealed that B atoms of the ribbons are more energetically favorable sites for the adsorption of PH3 molecules as compared with N atoms. The adsorption of PH3 affects the electronic properties of nanoribbons. One edge PH3 adsorbed ribbons are metallic whereas in both edges PH3 adsorption, the band gap is decreased than that of bare ribbon. The changes in electronic properties caused by PH3 adsorption are further supported by the current-voltage (I-V) characteristics of the considered configurations. The results show that ABNNR can serve as a potential candidate for PH3 sensing applications.

  8. Polarity of an MCM-41 adsorbent surface modified with methyl and phenyl groups based on data from gas chromatography

    NASA Astrophysics Data System (ADS)

    Sukhareva, D. A.; Gus'kov, V. Yu.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2016-02-01

    The polarity of an MCM-41 adsorbent surface and organosilylated composites based on it with grafted trimethylsilane and dimethylphenylsilane groups is studied via inverse gas chromatography at infinite dilution. The dispersion and specific components of the value proportional to the Helmholtz adsorption energy are calculated, and a comparative analysis of the surface polarity of MCM-41 and its modified analogs relative to the commercially available C-120 silica gel is performed. The electrostatic and donor-acceptor components of the specific Helmholtz adsorption energy are calculated through linear decomposition of the adsorption energy. It is established that MCM-41 is less polar than C-120. The modification of the initial adsorbent surface leads to a reduction in polarity, due mainly to the weakening of induction and orientation interactions. It is concluded that the surfaces of the modified samples retain the ability to form hydrogen bonds.

  9. Phosphonic Acid Adsorbates Tune the Surface Potential of TiO2 in Gas and Liquid Environments.

    PubMed

    Rivest, Jessy B; Li, Guo; Sharp, Ian D; Neaton, Jeffrey B; Milliron, Delia J

    2014-07-17

    Controlled attachment of molecules to the surface of a material can alter the band structure energies with respect to the surrounding environment via a combination of intrinsic and bonding-induced dipoles. Here, we demonstrate that the surface potential of an application-relevant material, anatase TiO2, can be tuned over a broad energy range of ∼1 eV using a family of dipolar phosphonic acid-based adsorbates. Using TiO2 as an example, we show with photoelectron spectroscopy that these adsorbates are stable in a liquid environment (propylene carbonate). More interestingly, the tunability is substantially retained and follows trends in the computed bound dipole. The electrochemical surface potential is shown to vary over 600 meV, the highest range in electrolytes to the best of our knowledge. Using density functional theory calculations, we rationalize the measured trends and show that the effective dipole upon molecular adsorption and not the intrinsic dipole of the isolated molecules correlates with observed changes in surface potential. Control of the effective dipole, through judicious choice of robust surface species, can allow in situ tuning of energy levels and functionality at active surfaces for energy conversion and storage, biosensing, and molecular electronics.

  10. NMR of molecules partially oriented in the gas phase

    NASA Astrophysics Data System (ADS)

    van Zijl, Peter C. M.; MacLean, C.; Skoglund, Cynthia; Bothner-By, Aksel A.

    The vapor phase 2H NMR spectra of monodeuterobenzene and pentadeuterofluorobenzene were recorded at 14.1 T. Reduction of the collision time, and thus of the linewidth, was accomplished by compressing the gas to 10.8 atm with ethane. The molecules are aligned by the field of the spectrometer and, as a consequence, quadrupolar couplings are recorded. Differences from the liquid-phase spectra arise in some of the quadrupolar splittings as well as in the scalar D-F couplings. It is rationalized that the deviating quadrupolar interaction cannot be caused by interactions resulting from incomplete quenching of the rotation, but originates from environmental effects on the quadrupolar coupling in the liquid. The results agree with recent microwave experiments.

  11. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule?

    PubMed

    Aleksandrov, Hristiyan A; Neyman, Konstantin M; Hadjiivanov, Konstantin I; Vayssilov, Georgi N

    2016-08-10

    The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt(0), with C-O vibrational frequencies in the region 2018-2077 cm(-1), suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm(-1). This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches. PMID:27444400

  12. Adsorption of two gas molecules at a single metal site in a metal–organic framework

    SciTech Connect

    Runčevski, Tomče; Kapelewski, Matthew T.; Torres-Gavosto, Rodolfo M.; Tarver, Jacob D.; Brown, Craig M.; Long, Jeffrey R.

    2016-01-01

    One strategy to markedly increase the gas storage capacity of metal-organic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules--specifically hydrogen, methane, or carbon dioxide.

  13. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOEpatents

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  14. Buffer Gas Cooled Molecule Source for Cpmmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Grimes, David; Barnum, Timothy J.; Klein, Ethan; Field, Robert W.

    2014-06-01

    We have built a new molecular beam source that implements 20 K Neon buffer gas cooling for the study of the spectra of small molecules. In particular, laser ablation of BaF2 pellets has been optimized to produce a molecular beam of BaF with a number density more than 100 times greater than what we have previously obtained from a typical Smalley-type photoablation supersonic beam source. Moreover, the forward beam velocity of 150 m/s in our apparatus represents an approximate 10-fold reduction, improving spectroscopic resolution from 500 kHz to better than 50 kHz at 100 GHz in a chirped-pulse millimeter-wave experiment in which resolution is limited by Doppler broadening. Novel improvements in our buffer gas source and advantages for CPmmW spectroscopy studies will be discussed. We thank David Patterson, John Barry, John Doyle, and David DeMille for help in the design of our source.

  15. The role of Cu atoms on silver electrodes in surface enhanced Raman scattering from pyridine: Giant enhancement by a minority of adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Moerl, Ludwig; Pettinger, Bruno

    1982-08-01

    Surface enhanced Raman scattering (SERS) has been studied for pyridine molecules adsorbed at Ag electrodes covered with submonolayers of Cu ( θ = 0.003 - 0.1). Depending on the amount of Cu coverage the frequencies of the breathing vibrations shift, and new breathing modes appear. Obviously two types of pyridine complexes are formed, differing in the nature of the bonding provided either by copper or silver surface atoms. The generation and quenching behaviour of SERS at rough electrodes evidence the importance of metastable atomic surface structures for SERS and indicate the cooperation of local and non-local enhancement processes. Since active sites can be stabilized with traces of Cu at the silver electrode, the enhancement factor on a molecular basis appears to be by one order of magnitude larger than earlier anticipated, and ranges from 2 × 10 6 to 1.6 × 10 7 for an exciting wavelength at 514.5 nm or 647.1 nm, respectively.

  16. David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

    NASA Astrophysics Data System (ADS)

    Krim, Jacqueline

    2015-03-01

    Studies of the fundamental origins of friction have undergone rapid progress in recent years, with the development of new experimental and computational techniques for measuring and simulating friction at atomic length and time scales. The increased interest has sparked a variety of discussions and debates concerning the nature of the atomic-scale and quantum mechanisms that dominate the dissipative process by which mechanical energy is transformed into heat. Measurements of the sliding friction of physisorbed monolayers and bilayers can provide information on the relative contributions of these various dissipative mechanisms. Adsorbed films, whether intentionally applied or present as trace levels of physisorbed contaminants, moreover are ubiquitous at virtually all surfaces. As such, they impact a wide range of applications whose progress depends on precise control and/or knowledge of surface diffusion processes. Examples include nanoscale assembly, directed transport of Brownian particles, material flow through restricted geometries such as graphene membranes and molecular sieves, passivation and edge effects in carbon-based lubricants, and the stability of granular materials associated with frictional and frictionless contacts. Work supported by NSFDMR1310456.

  17. Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Baia, M.; Toderas, F.; Baia, L.; Popp, J.; Astilean, S.

    2006-04-01

    Gold colloidal nanoparticles were immobilized upon a glass substrate and their morphology and optical properties are analyzed with TEM and UV-Vis absorption spectroscopy. The substrate suitability for surface-enhanced Raman spectroscopy (SERS) in visible and near-infrared spectral region is demonstrated with four excitation lines using p-aminothiophenol. The SERS spectra of probing molecules exhibit a clear signature of electromagnetic and charge-transfer enhancement mechanisms, which critically depend on the laser lines. The large tunability of surface plasmon excitation combined with the advantage of highly chemical affinity to gold of probe molecules recommends this SERS-active system as a useful model for probing the mechanisms of Raman enhancement.

  18. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Galperin, Michael; Nitzan, Abraham

    2016-06-01

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases when the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.

  19. Activated carbon fiber cloth adsorber with cryogenic condensation to capture and recover MEK and toluene from gas streams

    SciTech Connect

    Reece, C.S.; Lordgooei, M.; Rood, M.J.

    1998-12-31

    The Clean Air Act Amendments (CAAAs) of 1990 mandate reductions in emissions of toxic volatile organic compounds (TVOCs) to the atmosphere. These regulations have stimulated interest in developing new technologies to remove, capture, and recover TVOCs from air for reuse. A laboratory-scale activated carbon fiber cloth (ACFC)-cryogenic air quality control device was developed and operated to remove, capture, and recover methyl ethyl ketone (MEK) and toluene from gas streams. The system was tested with gas streams at room temperature, ambient pressure, and TVOC concentrations near 1000 ppmv in air. The relative humidity of the inlet gas stream was controlled to either 0 or 90%. The fixed bed adsorber contained 19.2 g of ACFC with a cross-sectional area of 16 cm2. The superficial gas velocity through the bed was 5.2 cm/sec, with a pressure drop near 23 cm H{sub 2}O. Breakthrough times for MEK were between 5.5 and 6.0 hr for dry inlet gas streams. Breakthrough times decreased by 36% at 90% RH. Comparable results were obtained for tests with toluene. Once the ACFC was saturated, it was regenerated in a low flow rate stream of N{sub 2} using electrothermal desorption. The gas stream emitted from the fixed bed during regeneration had TVOC concentrations near the saturation values for the compounds of interest. The TVOCs were then recovered for reuse with a cryogenic condenser between 203 and 233 K. Laboratory-scale tests demonstrate that the ACFC-cryogenic condensation system can operate consistently at low inlet TVOC concentrations generated over 18 hr periods. Results from the laboratory-scale system indicate this new device allows for successful removal, capture, and recovery of TVOCs such as MEK and toluene from simulated industrial gas streams, at low and high relative humidity conditions. No contamination of TVOC in the adsorption-regeneration-recovery process was detected by mass spectrometry.

  20. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    NASA Astrophysics Data System (ADS)

    Jiao, Juntao; Xiao, Dengming; Zhao, Xiaoling; Deng, Yunkun

    2016-05-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method. supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)

  1. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    SciTech Connect

    Larriba-Andaluz, Carlos Hogan, Christopher J.

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements.

  2. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules.

    PubMed

    Larriba-Andaluz, Carlos; Hogan, Christopher J

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements. PMID:25416874

  3. Performance of the TPSS Functional on Predicting Core Level Binding Energies of Main Group Elements Containing Molecules: A Good Choice for Molecules Adsorbed on Metal Surfaces.

    PubMed

    Pueyo Bellafont, Noèlia; Viñes, Francesc; Illas, Francesc

    2016-01-12

    Here we explored the performance of Hartree-Fock (HF), Perdew-Burke-Ernzerhof (PBE), and Tao-Perdew-Staroverov-Scuseria (TPSS) functionals in predicting core level 1s binding energies (BEs) and BE shifts (ΔBEs) for a large set of 68 molecules containing a wide variety of functional groups for main group elements B → F and considering up to 185 core levels. A statistical analysis comparing with X-ray photoelectron spectroscopy (XPS) experiments shows that BEs estimations are very accurate, TPSS exhibiting the best performance. Considering ΔBEs, the three methods yield very similar and excellent results, with mean absolute deviations of ∼0.25 eV. When considering relativistic effects, BEs deviations drop approaching experimental values. So, the largest mean percentage deviation is of 0.25% only. Linear trends among experimental and estimated values have been found, gaining offsets with respect to ideality. By adding relativistic effects to offsets, HF and TPSS methods underestimate experimental values by solely 0.11 and 0.05 eV, respectively, well within XPS chemical precision. TPSS is posed as an excellent choice for the characterization, by XPS, of molecules on metal solid substrates, given its suitability in describing metal substrates bonds and atomic and/or molecular orbitals.

  4. Evaluation and Application of a Solid Adsorbent Method for Monitoring Exposure to Volatile Organic Compounds from Oil and Gas Operations.

    NASA Astrophysics Data System (ADS)

    Smith, K. R.; Helmig, D.; Thompson, C. R.; Wang, W.; Terrell, R. M.; Lewis, A. C.

    2014-12-01

    Residential communities are being increasingly impacted by emissions from oil and gas development and this has driven the need for simple, effective, and low-cost methods for air quality monitoring. Primary emissions from oil and gas production consist of volatile organic compounds (VOCs) ranging from the short chain alkanes and alkenes to aromatic and semi-volatile species; many of these are a concern from both an air quality and public health viewpoint, as they can lead to local ozone pollution and increased risk of cancer or respiratory illness. The fate of hydrocarbons once in the atmosphere is ultimately oxidation through to CO2 and water, adding to the greenhouse gas burden. Measurement techniques that are capable of identifying and quantifying the full range of primary emissions of concern are required to assess community exposure to air toxics and to better inform residents, as well as local and state legislators. Here, we present evaluation of a low-cost air monitoring technique using stainless steel diffusion cartridges containing multiple solid adsorbents. Over the course of a three-month period in summer of 2014, cartridges were deployed at five monitoring sites located around Boulder County in the Northern Colorado Front Range, and exposed to ambient air for periods of up to four days along with concurrent sampling using stainless steel SUMMA canisters. Samples collected with both methods were subsequently analyzed for VOCs by GC-FID and the results were compared to determine the accuracy and precision of the diffusion cartridge method. Results of this evaluation show that the diffusion cartridge method has the potential to be a simple and low-cost solution for widespread exposure monitoring in communities near oil and gas development regions. Such measurements may also provide supporting evidence on wider effects on greenhouse gas emissions from oil and gas development operations.

  5. Comparison of nutshell granular activated carbons to commercial adsorbents for the purge-and-trap gas chromatographic analysis of volatile organic compounds.

    PubMed

    Wartelle, L H; Marshall, W E; Toles, C A; Johns, M M

    2000-05-26

    Granular activated carbons (GACs) made from agricultural by-products were investigated as adsorbents for short path thermal desorption gas chromatographic analysis of selected polar and nonpolar organic compounds. GACs made from macadamia nut, black walnut and hazelnut shells were compared to four commercially available adsorbents, namely, Tenax TA, Carboxen 569, Carbosieve SIII and coconut charcoal for their properties in purge-and-trap analysis. Adsorption values and breakthrough volumes were calculated for compounds from C3 and C6-C10. GACs derived from macadamia nut shells were found to adsorb and desorb between 80% (benzene) and 277% (ethylbenzene) more acetone (C3), benzene (C6), toluene (C7), ethyl- (C8), n-propyl- (C9), or sec.-butylbenzenes (C10) purged from water at the 100 ppb level than the commercial adsorbents tested. PMID:10893033

  6. Optical and electronic properties of SO2 molecule adsorbed on Si-doped (8, 0) boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Guo, Shuang-Shuang; Wei, Xiu-Mei; Zhang, Jian-Min; Zhu, Gang-Qiang; Guo, Wan-Jin

    2016-09-01

    The study of the optical properties of pristine BNNT, Si-doped BNNTs and SO2 molecule adsorption on Si-doped BNNTs is that, to our knowledge, few relevant research have ever been found. In this paper, the adsorption behaviors of Sulfur dioxide (SO2) molecule on Si-doped Boron nitride nanotubes (BNNTs) are investigated applying the first-principles calculations. The main contribution of this paper is that the foremost investigation for the optical properties of the pristine BNNT, Si-doped BNNTs and SO2 adsorption on Si-doped BNNTs. Additionally, the electronic properties and the structural properties are also presented. In our calculations of optical properties, the dielectric constant, the refractive index and the absorption coefficient are obtained. Comparing the pristine BNNT, our results indicate that, the blue-shifts (in the main peaks of the dielectric constant of SiB -BNNT and SO2-SiB -BNNT), and the red-shifts (in the main peaks of the refractive index of SiN -BNNT and SO2-SiN -BNNT) are appeared. Under these conditions, Si-doped BNNT and Si-doped BNNT with SO2 adsorption, the gaps are reduced both for the speculated optical band gaps and the electronic structure band gaps.

  7. Henry`s law gas-solid chromatography and correlations of virial coefficients for hydrocarbons, chlorofluorocarbons, ethers, and sulfur hexafluoride adsorbed onto carbon

    SciTech Connect

    Rybolt, T.R.; Epperson, M.T.; Weaver, H.W.; Thomas, H.E.; Clare, S.E.; Manning, B.M.; McClung, J.T.

    1995-07-01

    Gas-solid chromatography was used to determine the Henry`s law second gas-solid virial coefficients within the temperature range of 314--615 K for ethane, propane, butane, isobutane, pentane, hexane, heptane, chloromethane, dichloromethane, trichloromethane, tetrachloromethane, trichlorofluoromethane (Freon 11), chlorodifluoromethane (Freon 22), dichlorodifluoromethane (Freon 12), methyl ether, ethyl ether, and sulfur hexafluoride with Carbopack B, a microporous carbon adsorbent. The temperature dependence of the second gas-solid virial coefficients of these adsorbates was used in conjunction with analyses based on a graphical method, a single-surface numeric integration method, a single-surface analytic expression method, and a two-surface analytic expression method to determine the gas-solid interaction energies and other parameters. The interaction energies were correlated with a ratio of the critical temperature divided by the square root of the critical pressure. The four methods were compared in their abilities to successfully calculate second gas-solid virial coefficient values.

  8. THE APPLICATION OF HIGH RESOLUTION ELECTRON ENERGY LOSS SPECTROSCOPY TO THE CHARACTERIZATION OF ADSORBED MOLECULES ON RHODIUM SINGLE CRYSTAL SURFACES

    SciTech Connect

    Dubois, L.H.; Somorjai, G.A.

    1980-01-01

    The scattering of low energy electrons by metal surfaces has been studied for many years now. The electron's ease of generation and detection and high surface sensitivity (low penetration depth) make it an ideal probe for surface scientists. The impinging electron can interact with the surface in basically two ways: it can either elastically reflect (or diffract) from the surface without losing energy or lose a portion of it's incident energy and inelastically scatter. In this paper we will be concerned with only one of many possible inelastic scattering processes: the loss of the electron's energy to the vibrational modes of atoms and molecules chemisorbed on the surface. This technique is known as high resolution electron energy loss spectroscopy (or ELS, EELS, HRELS, HREELS, etc.).

  9. Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument.

    PubMed

    Chang, Yu-Chang; Bai, Hsunling; Li, Shou-Nan; Kuo, Chun-Nan

    2011-01-01

    A meso-structured Al-MCM-41 material was impregnated with bromocresol green (BG) dye and then incorporated into a UV-Vis DRA spectroscopic instrument for the online detection of ammonia gas. The absorption response of the Al-MCM-41/BG ammonia sensing material was very sensitive at the optical absorption wavelength of 630 nm. A high linear correlation was achieved for ppmv and sub-ppmv levels of ammonia gas. The response time for the quantitative detection of ammonia gas concentrations ranging from 0.25 to 2.0 ppmv was only a few minutes. The lower detection limit achieved was 0.185 ppmv. The color change process was fully reversible during tens of cycling tests. These features together make this mesoporous Al-MCM-41 material very promising for optical sensing applications.

  10. Adsorption of two gas molecules at a single metal site in a metal–organic framework

    SciTech Connect

    Runčevski, Tomče; Kapelewski, Matthew T.; Torres-Gavosto, Rodolfo M.; Tarver, Jacob D.; Brown, Craig M.; Long, Jeffrey R.

    2016-01-01

    One strategy to markedly increase the gas storage capacity of metal–organic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules—specifically hydrogen, methane, or carbon dioxide.

  11. Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...

  12. Evaluation of two adsorbents for diffusive sampling and thermal desorption-gas chromatographic analysis of monoterpenes in air.

    PubMed

    Sunesson, A L; Sundgren, M; Levin, J O; Eriksson, K; Carlson, R

    1999-02-01

    Tube type samplers with two different adsorbents, Chromosorb 106 and Tenax TA, were evaluated by laboratory experiments and field tests for simultaneous diffusive sampling of alpha-pinene, beta-pinene and delta 3-carene and subsequent thermal desorption-gas chromatographic analysis. No statistically significant effects of exposure time, concentrations of monoterpenes or relative humidity were found for samplers with Chromosorb 106 when running a factorial design, with the exception of the adsorption of delta 3-carene, for which some weak effects were noted. Samplers with Tenax TA were affected by the sampling time as well as the concentration for all terpenes, with a strong interaction effect between these two factors. The terpenes showed good storage stability on both adsorbents. No effect of back-diffusion was noted when using Chromosorb 106, while Tenax TA showed some back-diffusion effects. The uptake rates, in ml min-1, for the terpenes on Chromosorb 106 were 0.36 for alpha-pinene, 0.36 for beta-pinene and 0.40 for delta 3-carene. The corresponding average values on Tenax TA were 0.30 for alpha-pinene, 0.32 for beta-pinene and 0.38 for delta 3-carene. The field validation proved that diffusive sampling on Chromosorb 106 agreed well with pumped sampling on charcoal for stationary samples, while the personal samples indicated a discrepancy of 25% between Chromosorb 106 and charcoal samples. Tenax TA generally gave lower results than Chromosorb 106 in all field samples. Samplers packed with Chromosorb 106 could be used to monitor terpene levels in workplaces such as sawmills. The major advantages with this method are the sampling procedure, which is simple to perform compared to other techniques, the easily automated analysis procedure and the possibility to reuse the samplers.

  13. Adsorbents for capturing mercury in coal-fired boiler flue gas.

    PubMed

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R

    2007-07-19

    This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.

  14. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  15. Direct Observation of a Gas Molecule (H2, Ar) Swallowed by C60

    SciTech Connect

    Sawa, H.; Kakiuchi, T.; Wakabayashi, Y.; Murata, Y.; Murata, M.; Komatsu, K.; Yakigaya, K.; Takagi, H.; Dragoe, N.

    2007-01-19

    Various types of endohedral fullerene complexes are known to date. The well known metallofullerenes are generally produced by arc-discharge method, but the use of such extremely drastic conditions is apparently not suitable for encapsulation of unstable molecules or gases. We recently succeeded in incorporation of a H2 molecule or an Ar atom in 100% into a C60. In order to observe the endohedral gas molecule directly, the X-ray diffraction analysis using synchrotron radiation were carried out. We observed a gas molecule encapsulated in each fullerene cage using structure analysis and the maximum entropy method. These gas molecules are floating inside of the hollow cavities and are completely isolated from the outside.

  16. Volatile garlic odor components: gas phases and adsorbed exhaled air analysed by headspace gas chromatography-mass spectrometry.

    PubMed

    Laakso, I; Seppänen-Laakso, T; Hiltunen, R; Müller, B; Jansen, H; Knobloch, K

    1989-06-01

    Combined headspace gas chromatography-mass spectrometry (HSGC-MS) was used in the analysis of garlic volatile compounds. Twenty major components were identified in the gas phases enriched by fresh, sliced garlic cloves ( ALLIUM SATIVUM L, Allioceae, Liliidae). Suspended dry garlic powder and crushed garlic, incubated in vegetable oil, revealed a different pattern since mainly the amounts of di- and trisulfides were decreased. The considerable compositional differences found in the analyses for the gas phase of garlic cloves, kept in oil, are likely associated with the poor stability of allicin in a lipophilic environment; a marked increase in the amounts of 2-propene-1-thiol, acetic acid, and ethanol was observed in the gas phase, whereas trisulfides were present in traces only. The occurrence of 2-propene-1-thiol and diallyl disulfide, the two principal sulfur components in exhaled air, also may indicate a rapid degradation of most garlic volatile components probably caused by the enzymatically active human salivary or digestive system. PMID:17262412

  17. Carbon-supported ionic liquids as innovative adsorbents for CO₂ separation from synthetic flue-gas.

    PubMed

    Erto, Alessandro; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco; Balsamo, Marco; Lancia, Amedeo; Montagnaro, Fabio

    2015-06-15

    Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization.

  18. Carbon-supported ionic liquids as innovative adsorbents for CO₂ separation from synthetic flue-gas.

    PubMed

    Erto, Alessandro; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco; Balsamo, Marco; Lancia, Amedeo; Montagnaro, Fabio

    2015-06-15

    Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization. PMID:25710387

  19. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry.

    PubMed

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke

    2015-05-01

    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%. PMID:25677048

  20. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry.

    PubMed

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke

    2015-05-01

    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%.

  1. Chemical Potential of Triethylene Glycol Adsorbed on Surfaces Relevant to Gas Transport and Processing - Studies Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Olsen, R.; Sjöblom, S.; Leirvik, K. N.; Kuznetsova, T.

    2014-12-01

    Natural gas will inevitably contain trace amounts of water and other impurities during different stages of processing and transport. Glycols, such as triethylene glycol (TEG), will in many cases follow the water. The glycol contents of the gas can originate from preceding glycol-drying units or it can be a residue from the direct injection of glycols used to prevent hydrate formation. Thus, it is important to know how glycol contents will affect the different paths leading to hydrate formation. Glycols may in some cases dominate the condensed water phase. If this occurs, it will lead to the well-documented shift in the hydrate stability curve, due to the altered activity of the water. A great deal of information on the molecular path of a glycol through the system can be obtained from calculating the chemical potential. Due to difficulties in measuring interfacial chemical potentials, these often need to be estimated using theoretical tools. We used molecular dynamics (MD) to study how TEG behaves in the vicinity of mineral surfaces such as calcite and hematite. Many methods exist for estimating chemical potentials based on MD trajectories. These include techniques such as free energy perturbation theory (FEP) and thermodynamic integration (TI). Such methods require sufficient sampling of configurations where free energy is to be estimated. Thus, it can be difficult to estimate chemical potentials on surfaces. There are several methods to circumvent this problem, such as blue moon sampling and umbrella sampling. These have been considered and the most important have been used to estimate chemical potentials of TEG adsorbed on the mineral surfaces. The resulting chemical potentials were compared to the chemical potential of TEG in bulk water, which was estimated using temperature thermodynamic integration.

  2. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  3. Sensitized anti-Stokes luminescence centers in microcrystals of Zn0.6Cd0.4S solid solutions with adsorbed dye molecules and few-atomic silver clusters

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, O. V.; Kosyakova, E. A.; Leonova, L. Yu.; Smirnov, M. S.; Evlev, A. B.; Latyshev, A. N.; Utekhin, A. N.

    2008-03-01

    The sensitized anti-Stokes luminescence excited by radiation with wavelengths from 610 to 750 nm and flux densities of 1014 1015 quanta/(cm2·s) is detected for microcrystals of Zn 0.6 Cd 0.4 S solid solutions with adsorbed organic malachite green and methylene blue dye molecules. The position of its excitation spectra coincides with that of the absorption spectra of adsorbed dye molecules, which suggests the cooperative mechanism of its occurrence. The possibility of amplification of the anti-Stokes luminescence by means of adsorption of silver atoms and few-atomic silver clusters, in addition to the dye molecules, on the Zn 0.6 Cd 0.4 S surface is investigated. It is assumed that in the latter case, the anti-Stokes luminescence is excited as a result of two-quantum optical transitions with electron or electron excitation energy transfer from the dye molecules adsorbed on the Zn 0.6 Cd 0.4 S surface to silver atoms and few-atomic silver clusters creating deep local states with photoionization energies of 1.8 2.0 eV in the gap.

  4. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research

    PubMed Central

    2011-01-01

    Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology "Any sufficiently advanced technology is indistinguishable from magic". -Arthur C. Clarke PMID:22146602

  5. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research.

    PubMed

    Mychaskiw, George

    2011-09-06

    Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology"Any sufficiently advanced technology is indistinguishable from magic".-Arthur C. Clarke.

  6. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research.

    PubMed

    Mychaskiw, George

    2011-01-01

    Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology"Any sufficiently advanced technology is indistinguishable from magic".-Arthur C. Clarke. PMID:22146602

  7. Characterisation of the Ru/MgF2 catalyst with adsorbed O2, NO, CO probe molecules by EPR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Goslar, J.; Wojciechowska, M.; Zieliński, M.

    2006-07-01

    Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst during O2, NO, and CO adsorption at room temperature on 1 wt% Ru/MgF2 catalysts prepared from Ru3(CO)12 . Both EPR and IR results provided clear evidence for the interaction between surface ruthenium and probe molecules. No EPR signals due to ruthenium (Ru) species were recorded at 300 and 77 K after H2-reduction of the catalyst at 673 K. However, at 4.2 K a very weak EPR spectrum due to low-spin (4d5) Ru3+ complexes was detected. A weak anisotropic O2 radicals signal with g∣∣=2.017 and g⊥=2.003 superimposed on a broad (ΔBpp=120 mT), slightly asymmetric line at g=2.45(1) was identified after O2 admission to the reduced sample. Adsorption of NO gives only a broad, Gaussian-shaped EPR line at g=2.43(1) indicating that the admission of NO, similarly to O2 adsorption, brings about an oxidation of Ru species in the course of the NO decomposition reaction. Introduction of NO over the CO preadsorbed catalyst leads to EPR spectrum with parameters g⊥=1.996, g∣∣=1.895, and A⊥N=2.9 mT assigned to surface NO species associated with Ru ions. The IR spectra recorded after adsorption of NO or CO probe molecules showed the bands in the range of frequency characteristic of ruthenium nitrosyl, nitro, and nitrate/nitrite species and the bands characteristic of ruthenium mono-and multicarbonyls, respectively. Addition of CO after NO admission to the catalyst leads to appearance in the IR spectrum, beside the ones characteristic of NO adsorption, the bands which can be attributed to Ru CO2 and Ru NCO species, indicating that the reaction between NO and CO occurs. These species were also detected after CO adsorption followed by NO adsorption, additionally to the band at 1850 cm-1 being due to cis type ▪ species.

  8. Organic molecules in the gas phase of dense interstellar clouds.

    PubMed

    Irvine, W M

    1995-03-01

    Since a previous COSPAR review on this subject, the number of molecular species identified by astronomers in dense interstellar clouds or in the envelopes expelled by evolved stars has grown from about eighty to approximately one hundred. Recent detections in stellar envelopes include the radical CP, the second phosphorus-containing astronomical molecule; SiN, the first astronomical molecule with a Si-N bond; and the HCCN radical. In the dense interstellar clouds recent detections or verifications of previous possible identifications include the H3O+ ion, which is a critical intermediary in the production of H2O and O2; the CCO radical, which is isoelectronic with HCCN; the SO+ ion, which appears to be diagnostic of shock chemistry; two new isomers of cyanoacetylene, HCCNC and CCCNH; and the two cumulenes H2C3 and H2C4. Some recent work is also described on the mapping of interstellar clouds in multiple molecular transitions in order to separate variations in chemical abundance from gradients in physical parameters.

  9. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  10. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-01-01

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data. PMID:27213313

  11. Generation and orientation of organoxenon molecule H-Xe-CCH in the gas phase

    SciTech Connect

    Poterya, Viktoriya; Votava, Ondrej; Farnik, Michal; Oncak, Milan; Slavicek, Petr; Buck, Udo; Friedrich, Bretislav

    2008-03-14

    We report on the first observation of the organoxenon HXeCCH molecule in the gas phase. This molecule has been prepared in a molecular beam experiment by 193 nm photolysis of an acetylene molecule on Xe{sub n} clusters (n{approx_equal}390). Subsequently the molecule has been oriented via the pseudo-first-order Stark effect in a strong electric field of the polarized laser light combined with the weak electrostatic field in the extraction region of a time-of-flight spectrometer. The experimental evidence for the oriented molecule has been provided by measurements of its photodissociation. For comparison, photolysis of C{sub 2}H{sub 2} on Ar{sub n} clusters (n{approx_equal}280) has been measured. Here the analogous rare gas molecule HArCCH could not be generated. The interpretation of our experimental findings has been supported by ab initio calculations. In addition, the experiment together with the calculations reveals information on the photochemistry of the HXeCCH molecule. The 193 nm radiation excites the molecule predominantly into the 2 {sup 1}{sigma}{sup +} state, which cannot dissociate the Xe-H bond directly, but the system evolves along the Xe-C coordinate to a conical intersection of a slightly nonlinear configuration with the dissociative 1 {sup 1}{pi} state, which then dissociates the Xe-H bond.

  12. Creation of a low-entropy quantum gas of polar molecules in an optical lattice.

    PubMed

    Moses, Steven A; Covey, Jacob P; Miecnikowski, Matthew T; Yan, Bo; Gadway, Bryce; Ye, Jun; Jin, Deborah S

    2015-11-01

    Ultracold polar molecules, with their long-range electric dipolar interactions, offer a unique platform for studying correlated quantum many-body phenomena. However, realizing a highly degenerate quantum gas of molecules with a low entropy per particle is challenging. We report the synthesis of a low-entropy quantum gas of potassium-rubidium molecules (KRb) in a three-dimensional optical lattice. We simultaneously load into the optical lattice a Mott insulator of bosonic Rb atoms and a single-band insulator of fermionic K atoms. Then, using magnetoassociation and optical state transfer, we efficiently produce ground-state molecules in the lattice at those sites that contain one Rb and one K atom. The achieved filling fraction of 25% should enable future studies of transport and entanglement propagation in a many-body system with long-range dipolar interactions. PMID:26542566

  13. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules.

    PubMed

    Boll, Rebecca; Rouzée, Arnaud; Adolph, Marcus; Anielski, Denis; Aquila, Andrew; Bari, Sadia; Bomme, Cédric; Bostedt, Christoph; Bozek, John D; Chapman, Henry N; Christensen, Lauge; Coffee, Ryan; Coppola, Niccola; De, Sankar; Decleva, Piero; Epp, Sascha W; Erk, Benjamin; Filsinger, Frank; Foucar, Lutz; Gorkhover, Tais; Gumprecht, Lars; Hömke, André; Holmegaard, Lotte; Johnsson, Per; Kienitz, Jens S; Kierspel, Thomas; Krasniqi, Faton; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Moshammer, Robert; Müller, Nele L M; Rudek, Benedikt; Savelyev, Evgeny; Schlichting, Ilme; Schmidt, Carlo; Scholz, Frank; Schorb, Sebastian; Schulz, Joachim; Seltmann, Jörn; Stener, Mauro; Stern, Stephan; Techert, Simone; Thøgersen, Jan; Trippel, Sebastian; Viefhaus, Jens; Vrakking, Marc; Stapelfeldt, Henrik; Küpper, Jochen; Ullrich, Joachim; Rudenko, Artem; Rolles, Daniel

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.

  14. Formation of van der Waals molecules in buffer-gas-cooled magnetic traps [corrected].

    PubMed

    Brahms, N; Tscherbul, T V; Zhang, P; Kłos, J; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-07-16

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10(12)  cm(-3). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T(-6) thermal dependence of the spin-change rate of silver (Ag) trapped in dense (3)He is accounted for by the formation and spin change of Ag(3)He van der Waals molecules, thus providing indirect evidence for molecular formation in a buffer-gas trap.

  15. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  16. Infrared fibre ring laser for spectroscopic application of gas molecules

    NASA Astrophysics Data System (ADS)

    Ryu, Han Young; Suh, Ho Suhng

    2006-09-01

    We fabricated erbium-doped fiber ring laser with a new structure that can operate in C- & L-band wavelength region in the optical communication band. We performed the absorption spectroscopy of acetylene ( 13C IIH II) and hydrogen cyanide (H 13C 14N) by using a low noise erbium-doped fiber ring laser and measured absorption spectra of more than fifty transition lines of these gases with an excellent signal to noise ratio (SNR). The wavelength of this laser can be continuously tuned over 102 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity with a novel cavity structure and the optimal gain medium length. The acetylene cell and the hydrogen cyanide cells were fabricated with gas pressure of 120 torr and 250 torr and length of 5 cm and 15 cm, respectively. The pressure broadening coefficients of acetylene transition lines are obtained using this fiber ring laser and an external cavity laser diode.

  17. PAHs molecules and heating of the interstellar gas

    NASA Technical Reports Server (NTRS)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  18. Extending the range of low energy electron diffraction (LEED) surface structure determination: Co-adsorbed molecules, incommensurate overlayers and alloy surface order studied by new video and electron counting LEED techniques

    SciTech Connect

    Ogletree, D.F.

    1986-11-01

    LEED multiple scattering theory is briefly summarized, and aspects of electron scattering with particular significance to experimental measurements such as electron beam coherence, instrument response and phonon scattering are analyzed. Diffuse LEED experiments are discussed. New techniques that enhance the power of LEED are described, including a real-time video image digitizer applied to LEED intensity measurements, along with computer programs to generate I-V curves. The first electron counting LEED detector using a ''wedge and strip'' position sensitive anode and digital electronics is described. This instrument uses picoampere incident beam currents, and its sensitivity is limited only by statistics and counting times. Structural results on new classes of surface systems are presented. The structure of the c(4 x 2) phase of carbon monoxide adsorbed on Pt(111) has been determined, showing that carbon monoxide molecules adsorb in both top and bridge sites, 1.85 +- 0.10 A and 1.55 +- 0.10 A above the metal surface, respectively. The structure of an incommensurate graphite overlayer on Pt(111) is analyzed. The graphite layer is 3.70 +- 0.05 A above the metal surface, with intercalated carbon atoms located 1.25 +- 0.10 A above hollow sites supporting it. The (2..sqrt..3 x 4)-rectangular phase of benzene and carbon monoxide coadsorbed on Pt(111) is analyzed. Benzene molecules adsorb in bridge sites parallel to and 2.10 +- 0.10 A above the surface. The carbon ring is expanded, with an average C-C bond length of 1.72 +- 0.15 A. The carbon monoxide molecules also adsorb in bridge sites. The structure of the (..sqrt..3 x ..sqrt..3) reconstruction on the (111) face of the ..cap alpha..-CuAl alloy has been determined.

  19. Composite thermochemistry of gas phase U(VI)-containing molecules

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2014-12-28

    Reaction energies have been calculated for a series of reactions involving UF{sub 6}, UO{sub 3}, UO{sub 2}(OH){sub 2}, and UO{sub 2}F{sub 2} using coupled cluster singles and doubles with perturbative triples, CCSD(T), with a series of correlation consistent basis sets, including newly developed pseudopotential (PP)- and all-electron (AE) Douglas-Kroll-Hess-based sets for the U atom. The energies were calculated using a Feller-Peterson-Dixon composite approach in which CCSD(T) complete basis set (CBS) limits were combined with a series of additive contributions for spin-orbit coupling, outer-core correlation, and quantum electrodynamics effects. The calculated reaction enthalpies (both PP and AE) were combined with the accurately known heat of formation of UF{sub 6} to determine the enthalpies of formation of UO{sub 3}, UO{sub 2}(OH){sub 2}, and UO{sub 2}F{sub 2}. The contribution to the reaction enthalpies due to correlation of the 5s5p5d electrons of U was observed to be very slowly convergent with basis set and at the CBS limit their impact on the final enthalpies was on the order of 1 kcal/mol or less. For these closed shell molecules, spin-orbit effects contributed about 1 kcal/mol to the final enthalpies. Interestingly, the PP and AE approaches yielded quite different spin-orbit contributions (similar magnitude but opposite in sign), but the total scalar plus spin-orbit results from the two approaches agreed to within ∼1 kcal/mol of each other. The final composite heat of formation for UO{sub 2}F{sub 2} was in excellent agreement with experiment, while the two results obtained for UO{sub 3} were just outside the ±2.4 kcal/mol error bars of the currently recommended experimental value. An improved enthalpy of formation (298 K) for UO{sub 2}(OH){sub 2} is predicted from this work to be −288.7 ± 3 kcal/mol, compared to the currently accepted experimental value of −292.7 ± 6 kcal/mol.

  20. Footprint organization of chiral molecules on metallic surfaces

    NASA Astrophysics Data System (ADS)

    Uñac, R. O.; Rabaza, A. V. Gil; Vidales, A. M.; Zgrablich, G.

    2007-10-01

    We study the behavior of chiral molecules adsorbed on clean metallic surfaces using a lattice-gas model and Monte Carlo simulation. The aim is to model and simulate the structure (footprints and organization) formed by molecules on the surface as they adsorb. The model, which is applicable to chiral species like S- and R-alanine, or similar, discloses the conditions to generate different ordered phases that have been observed in experiments by other authors. In our model, each enantiomer may adsorb in two different configurations (species) and several effects are taken into account: inhibition, blockage of neighboring adsorptive sites (steric effects) and promotion of sites representing, in some sense, modifications in the surface properties due to molecule-surface interactions. These adsorption rules are inspired by the enantiomeric character of adsorbed species. We perform a systematic study of the different phases formed in order to qualitatively understand the mechanism for the formation of adsorbate structures experimentally found by other authors.

  1. Sensitive indoor air monitoring of monoterpenes using different adsorbents and thermal desorption gas chromatography with mass-selective detection.

    PubMed

    Hollender, Juliane; Sandner, Frank; Möller, Manfred; Dott, Wolfgang

    2002-07-12

    A simple method using active trapping on adsorbents and thermal desorption followed by GC-MS analysis was developed for the indoor air monitoring of monoterpenes. The study was carried out using a dynamically generated atmosphere consisting of 11 monoterpenes: camphene, camphor, delta 3-carene, 1,8-cineol, limonene, linalool, alpha-pinene, beta-pinene, alpha-terpinene, gamma-terpinene, fenchyl alcohol. The influence of the different adsorbents Tenax TA, Tenax GR, Carbosieve SIII, Chromosorb 106 on the yield of six selected monoterpenes at indoor air concentrations was studied. The adsorbent Tenax GR gave relatively the best yields followed by Tenax TA. Detection limits of approximately 1 microgram m3 were determined with Tenax GR for most of the monoterpenes.

  2. Laboratory Studies of Stabilities of Heterocyclic Aromatic Molecules: Suggested Gas Phase Ion-Molecule Routes to Production in Interstellar Gas Clouds

    NASA Technical Reports Server (NTRS)

    Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.

    2006-01-01

    Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.

  3. Bombardment of gas molecules on single graphene layer at high temperature

    SciTech Connect

    Murugesan, Ramki; Park, Jae Hyun; Ha, Dong Sung

    2014-12-09

    Graphite is widely used as a material for rocket-nozzle inserts due to its excellent thermo-physical properties as well as low density. During the operation of rockets, the surface of the graphite nozzle is subjected to very high heat fluxes and the undesirable erosion of the surface occurs due to the bombardment of gas molecules with high kinetic energy, which causes a significant reduction of nozzle performance. However, the understanding and quantification of such bombardment is not satisfactory due to its complexity: The bond breaking-forming happens simultaneously for the carbon atoms of graphene, some gas molecules penetrate through the surface, some of them are reflected from the surface, etc. In the present study, we perform extensive molecular dynamics (MD) simulations to examine the bombardment phenomena in high temperature environment (several thousand Kelvin). Advanced from the previous studies that have focused on the bombardment by light molecules (e.g., H{sub 2}), we will concentrate on the impact by realistic molecules (e.g., CO{sub 2} and H{sub 2}O). LAMMPS is employed for the MD simulations with NVE ensemble and AIREBO potential for graphene. The molecular understanding of the interaction between graphene and highly energetic gas molecules will enable us to design an efficient thermo-mechanical protection system.

  4. Bombardment of gas molecules on single graphene layer at high temperature

    NASA Astrophysics Data System (ADS)

    Murugesan, Ramki; Park, Jae Hyun; Ha, Dong Sung

    2014-12-01

    Graphite is widely used as a material for rocket-nozzle inserts due to its excellent thermo-physical properties as well as low density. During the operation of rockets, the surface of the graphite nozzle is subjected to very high heat fluxes and the undesirable erosion of the surface occurs due to the bombardment of gas molecules with high kinetic energy, which causes a significant reduction of nozzle performance. However, the understanding and quantification of such bombardment is not satisfactory due to its complexity: The bond breaking-forming happens simultaneously for the carbon atoms of graphene, some gas molecules penetrate through the surface, some of them are reflected from the surface, etc. In the present study, we perform extensive molecular dynamics (MD) simulations to examine the bombardment phenomena in high temperature environment (several thousand Kelvin). Advanced from the previous studies that have focused on the bombardment by light molecules (e.g., H2), we will concentrate on the impact by realistic molecules (e.g., CO2 and H2O ). LAMMPS is employed for the MD simulations with NVE ensemble and AIREBO potential for graphene. The molecular understanding of the interaction between graphene and highly energetic gas molecules will enable us to design an efficient thermo-mechanical protection system.

  5. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S.

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  6. A Gas Chromatography Experiment for Proving the Application of Quantum Symmetry Restrictions in Homonuclear Diatomic Molecules.

    ERIC Educational Resources Information Center

    Dosiere, M.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which gas chromatography is used to prove the application of quantum symmetry restrictions in homonuclear diatomic molecules. Comparisons between experimental results and theoretical computed values show good agreement, within one to two…

  7. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J.; Gutierrez, F. A.; Matamala, A. R.; Denton, C. D.; Vargas, P.; Valdes, J. E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H2+, immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au <1 0 0> with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35 a.u. from the first atomic layer of the solid.

  8. Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial

    SciTech Connect

    White, Mark D.; Lee, Won Suk

    2014-05-14

    A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapid exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate guest

  9. Analyte induced water adsorbability in gas phase biosensors: the influence of ethinylestradiol on the water binding protein capacity.

    PubMed

    Snopok, Borys; Kruglenko, Ivanna

    2015-05-01

    An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings. PMID:25763411

  10. Inorganic-organic phase arrangement as a factor affecting gas-phase desulfurization on catalytic carbonaceous adsorbents.

    PubMed

    Ansari, Adil; Bandosz, Teresa J

    2005-08-15

    Dried sewage sludge was physically mixed with waste paper (paper-to-sludge ratios from 25% to 75%). To increase the catalytic activity, from 1% to 6% calcium hydroxide was added to the mixtures. Then the precursors were carbonized at 950 degrees C. The performance of materials as H2S adsorbents was tested using a home-developed dynamic breakthrough test. The samples, before and after the adsorption process, were characterized by adsorption of nitrogen, potentiometric titration, thermal analysis, XRF, and SEM. Differences in the performance were linked to the surface properties. Itwas found that mixing paper with sludge increases the amount of H2S adsorbed/oxidized in comparison with that adsorbed/oxidized by the adsorbents obtained from pure precursors (sludge or waste paper) and the capacity is comparable to those of the best activated carbons existing on the market. Although both sewage sludge and waste paper provide the catalytic centers for hydrogen sulfide oxidation, the dispersion of the catalyst and its location within accessible pores is an important factor. The presence of cellulose in the precursor mixture leads to the formation of a light macroporous char whose particles physically separate the inorganic catalytic phase of the sewage sludge origin, decreasing the density of the adsorbent and thus providing more space for storage of oxidation products. This, along with calcium, contributes to a significant increase in the capacity of the materials as hydrogen sulfide adsorbents. On their surface about 30 wt % H2S can be adsorbed, mainly as elemental sulfur or sulfates. The results demonstrate the importance of the composition and arrangement of inorganic/ organic phases for the removal of hydrogen sulfide. The interesting finding is that although some microporosity is necessary to increase the storage area for oxidation products, the carbonaceous phase does not need to be highly microporous. It is important that it provides space for deposition of sulfur

  11. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  12. Formation and dynamics of van der Waals molecules in buffer-gas traps.

    PubMed

    Brahms, Nathan; Tscherbul, Timur V; Zhang, Peng; Kłos, Jacek; Forrey, Robert C; Au, Yat Shan; Sadeghpour, H R; Dalgarno, A; Doyle, John M; Walker, Thad G

    2011-11-14

    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxation is too slow to affect trap lifetimes. However, (3)He-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag(3)He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps. Finally, we discuss the possibilities for spectroscopic detection of these complexes, including a calculation of expected spectra for Ag(3)He, and report on our spectroscopic search for Ag(3)He, which produced a null result.

  13. Organic molecules in ices and their release into the gas phase

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith; Oberg, Karin I.; Garrod, Robin; van Dishoeck, Ewine; Rajappan, Mahesh; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues

    2015-08-01

    Organic molecules in the early stages of star formation are mainly produced in icy mantles surrounding interstellar dust grains. Identifying these complex organics and quantifying their abundance during the evolution of young stellar objects is of importance to understand the emergence of life. Simple molecules in ices, up to methanol in size, have been identified in the interstellar medium through their mid-IR vibrations, but band confusion prevents detections of more complex and less abundant organic molecules in interstellar ices. The presence of complex organics on grains can instead be indirectly inferred from observations of their rotational lines in the gas phase following ice sublimation.Thermal sublimation of protostellar ices occurs when icy grains flow toward a central protostar, resulting in the formation of a hot-core or a hot-corinos. The high degree of chemical complexity observed in these dense and warm regions can be the results of i) direct synthesis on the grains followed by desorption, but also to ii) the desorption of precursors from the ice followed by gas-phase chemistry. I will show how spatially resolved millimetric observations of hot cores and cooler protostellar environments, coupled to ice observations can help us pinpoint the ice or gas-phase origin of these organic species.Organic molecules have also recently been observed in cold environments where thermal desorption can be neglected. The presence of these cold molecules in the gas phase is most likely due to non-thermal desorption processes induced by, for e.g., photon-, electron-, cosmic-ray-irradiation, shock, exothermic reactions... I will present laboratory and observational efforts that push our current understanding of these non-thermal desorption processes and how they could be use to quantify the amount of organics in ices.

  14. High Resolution Rovibrational Spectroscopy of Large Molecules Using Infrared Frequency Combs and Buffer Gas Cooling

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Spaun, Ben; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-06-01

    We have recently demonstrated the integration of cavity-enhanced direct frequency comb spectroscopy with buffer gas cooling to acquire high resolution infrared spectra of translationally and rotationally cold (˜10 K) gas-phase molecules. Here, we extend this method to significantly larger systems, including naphthalene (C10H_8), a prototypical polyaromatic hydrocarbon, and adamantane (C10H_{16}), the fundamental building block of diamonoids. To the authors' knowledge, the latter molecule represents the largest system for which rotationally resolved spectra in the CH stretch region (3 μm) have been obtained. In addition to the measured spectra, we present several details of our experimental methods. These include introducing non-volatile species into the cold buffer gas cell and obtaining broadband spectra with single comb mode resolution. We also discuss recent modifications to the apparatus to improve its absorption sensitivity and time resolution, which facilitate the study of both larger molecular systems and cold chemical dynamics. B. Spaun, et al. Probing buffer-gas cooled molecules with direct frequency comb spectroscopy in the mid-infrared, WF02, 70th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL, 2015.

  15. Site-Specific Fragmentation of Polystyrene Molecule Using Size-Selected Ar Gas Cluster Ion Beam

    NASA Astrophysics Data System (ADS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-04-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (Eatom); the Eatom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between Eatom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting Eatom of size-selected GCIB may realize site-specific bond breaking within a molecule.

  16. Resilience of gas-phase anharmonicity in the vibrational response of adsorbed carbon monoxide and breakdown under electrical conditions

    NASA Astrophysics Data System (ADS)

    Dabo, Ismaila

    2012-07-01

    In surface catalysis, the adsorption of carbon monoxide on transition-metal electrodes represents the prototype of strong chemisorption. Notwithstanding significant changes in the molecular orbitals of adsorbed CO, spectroscopic experiments highlight a close correlation between the adsorbate stretching frequency and equilibrium bond length for a wide range of adsorption geometries and substrate compositions. In this work, we study the origins of this correlation, commonly known as Badger's rule, by deconvoluting and examining the contributions from the adsorption environment to the intramolecular potential using first-principles calculations. Noting that intramolecular anharmonicity is preserved upon CO chemisorption, we show that Badger's rule for adsorbed CO can be expressed solely in terms of the tabulated Herzberg spectroscopic constants of isolated CO. Moreover, although it had been previously established using finite-cluster models that Badger's rule is not affected by electrical conditions, we find here that Badger's rule breaks down when the electrified surface is represented as a periodic slab. Examination of this breakdown in terms of anharmonic contributions from the effective surface charge reveals limitations of conventional finite-cluster models in describing electrical conditions at metal electrodes.

  17. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  18. Ultraviolet and electron radiation induced fragmentation of adsorbed ferrocene

    SciTech Connect

    Welipitiya, D.; Green, A.; Woods, J.P.; Dowben, P.A.; Robertson, B.W.; Byun, D.; Zhang, J.

    1996-06-01

    From thermal desorption spectroscopy we find that ferrocene, Fe(C{sub 5}H{sub 5}){sub 2}, adsorbs and desorbs associatively on Ag(100). Photoemission results indicate that the initially adsorbed surface species closely resembles that of molecular ferrocene. The shift in photoemission binding energies relative to the gas phase is largely independent of the molecular orbital. We find that ultraviolet light does lead to partial fragmentation of the ferrocene and that the molecular fragments are much more strongly bound to the surface than the associatively adsorbed ferrocene. Since fragmentation occurs only in the presence of incident radiation, selective area deposition from this class of molecules is possible. Using a focused electron beam in a scanning transmission electron microscope, we show that selective area deposition of features with resolution of a few hundred angstroms is readily achieved. {copyright} {ital 1996 American Institute of Physics.}

  19. Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures

    SciTech Connect

    Grimes, R.W.

    1994-06-01

    This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

  20. Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres

    NASA Astrophysics Data System (ADS)

    Bilger, C.; Rimmer, P.; Helling, Ch.

    2013-11-01

    We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust-forming atmospheres of brown dwarfs and giant gas planets. The inner atmospheric regions that form the inner boundary for thermochemical gas-phase models are investigated. Results from DRIFT-PHOENIX atmosphere simulations, which include the feedback of phase-non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abundances, are utilized. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolyyne molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4 and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon sink. We determine chemical relaxation time-scales to evaluate if hydrocarbon molecules can be affected by transport-induced quenching. Our results suggest that a considerable amount of C2H6 and C2H2 could be expected in the upper atmospheres not only of giant gas planets, but also of brown dwarfs. However, the exact quenching height strongly depends on the data source used. These results will have an impact on future thermokinetic studies, as they change the inner boundary condition for those simulations.

  1. The gas phase origin of complex organic molecules precursors in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2016-05-01

    Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.

  2. Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings.

    PubMed

    Hjertenæs, Eirik; Trinh, Thuat T; Koch, Henrik

    2016-07-21

    We present chemically accurate potential energy curves of CH4, CO2 and H2 moving through hexagonal water rings, calculated by CCSD(T)/aug-cc-pVTZ with counterpoise correction. The barriers are extracted from a potential energy surface obtained by allowing the water ring to expand while the gas molecule diffuses through. State-of-the-art XC-functionals are evaluated against the CCSD(T) potential energy surface.

  3. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent.

  4. Rotational relaxation of fluoromethane molecules in low-temperature collisions with buffer-gas helium

    NASA Astrophysics Data System (ADS)

    Li, Xingjia; Xu, Liang; Yin, Yanning; Xu, Supeng; Xia, Yong; Yin, Jianping

    2016-06-01

    We propose a method to study the rotational relaxation of polar molecules [here taking fluoromethane (CH3F ) as an example] in collisions with 3.5 K buffer-gas helium (He) atoms by using an electrostatic guiding technique. The dependence of the guiding signal of CH3F on the injected He flux and the dependence of the guiding efficiency of CH3F on its rotational temperature are investigated both theoretically and experimentally. By comparing the experimental and simulated results, we find that the translational and rotational temperatures of the buffer-gas cooled CH3F molecules can reach to about 5.48 and 0.60 K, respectively, and the ratio between the translational and average rotational collisional cross sections of CH3F -He is γ =σt/σr=36.49 ±6.15 . In addition, the slowing, cooling, and boosting effects of the molecular beam with different injected He fluxes are also observed and their forming conditions are investigated in some detail. Our study shows that our proposed method can not only be used to measure the translational and rotational temperatures of the buffer-gas cooled molecules, but also to measure the ratio of the translational collisional cross section to the average rotational collisional cross section, and even to measure the average rotational collisional cross section when the translational collisional cross section is measured by fitting the lifetime of molecule signal to get a numerical solution from the diffusion equation of buffer-gas He atoms in the cell.

  5. HIGH RESOLUTION SPECTROSCOPY IN THE GAS PHASE: Even Large Molecules Have Well-Defined Shapes

    NASA Astrophysics Data System (ADS)

    Pratt, David W.

    1998-10-01

    A review of recent high-resolution microwave, infrared, and optical spectroscopy experiments demonstrates that remarkable progress has been made in the past 20 years in determining the equilibrium geometries of large polyatomic molecules and their clusters in the gas phase, and how these geometries change when the photon is absorbed. A special focus is on the dynamical information that can be obtained from such studies, particularly of electronically excited states.

  6. Gas phase reactions of CH(3)(+) with a series of homo- and heterocyclic molecules.

    PubMed

    Fondren, L Dalila; Adams, Nigel G; Stavish, Leah

    2009-01-22

    In gas phase ion chemistry, the growth of larger molecules is known to occur through association of ions and neutrals. Where the ion attaches to the neutral is important because it can influence the possibility of additional associations, effectively enabling or terminating further molecular growth. This was investigated by using a Selected Ion Flow Tube (SIFT) at 300 K to study the reactions of CH(3)(+) with the following series of single-ring homocyclic and heterocyclic molecules: benzene (C(6)H(6)), cyclohexane (C(6)H(12)), pyridine (C(5)H(5)N), pyrimidine (C(4)H(4)N(2)), piperidine (C(5)H(11)N), 1,4-dioxane (C(4)H(8)O(2)), furan (C(4)H(4)O), pyrrole (C(4)H(5)N), and pyrrolidine (C(4)H(9)N). Most of the reactions, except for 1,4-dioxane, pyrrole, and pyrrolidine, proceed at the gas kinetic rate. In the ion product distributions, charge transfer, hydride ion abstraction, proton transfer, fragmentation, and association were observed. In particular, proton transfer is seen to be small in all cases even though these channels are energetically favorable. Association is appreciable when the molecules are aromatic (except for furan) and nonexistent when there are no pi electrons in the ring. CH(3)(+) ions are an important intermediate in molecular synthesis in interstellar clouds and in the Titan ionosphere and ring molecules have also been detected in these media. The significance of the studied reactions to these media is discussed. PMID:19090756

  7. Gas phase reactions of CH(3)(+) with a series of homo- and heterocyclic molecules.

    PubMed

    Fondren, L Dalila; Adams, Nigel G; Stavish, Leah

    2009-01-22

    In gas phase ion chemistry, the growth of larger molecules is known to occur through association of ions and neutrals. Where the ion attaches to the neutral is important because it can influence the possibility of additional associations, effectively enabling or terminating further molecular growth. This was investigated by using a Selected Ion Flow Tube (SIFT) at 300 K to study the reactions of CH(3)(+) with the following series of single-ring homocyclic and heterocyclic molecules: benzene (C(6)H(6)), cyclohexane (C(6)H(12)), pyridine (C(5)H(5)N), pyrimidine (C(4)H(4)N(2)), piperidine (C(5)H(11)N), 1,4-dioxane (C(4)H(8)O(2)), furan (C(4)H(4)O), pyrrole (C(4)H(5)N), and pyrrolidine (C(4)H(9)N). Most of the reactions, except for 1,4-dioxane, pyrrole, and pyrrolidine, proceed at the gas kinetic rate. In the ion product distributions, charge transfer, hydride ion abstraction, proton transfer, fragmentation, and association were observed. In particular, proton transfer is seen to be small in all cases even though these channels are energetically favorable. Association is appreciable when the molecules are aromatic (except for furan) and nonexistent when there are no pi electrons in the ring. CH(3)(+) ions are an important intermediate in molecular synthesis in interstellar clouds and in the Titan ionosphere and ring molecules have also been detected in these media. The significance of the studied reactions to these media is discussed.

  8. Quantum theory of IR spectroscopy of dipole-forbidden vibrational modes of adsorbed molecules on the surface of a metal in the frequency range of the anomalous skin effect

    SciTech Connect

    Volokitin, A.I.; Persson, B.N.J.

    1995-09-01

    A completely quantum-mechanical calculation of the IR spectrum for the dipole-forbidden vibrational modes of adsorbed molecules on a metal surface is performed. IT is shown for broad-band metals with a simple band structure that the asymmetry of the line shape is determined by nonlocal effects, while the nonadiabaticity makes a small contribution. In the region of the limiting anomalous skin effect ({omega}/{omega}{sub 1}{much_lt} 1, where {omega} is the frequency of the IR radiation, {omega}{sub 1}={upsilon}{sub F}/{delta}, {upsilon}{sub F} is the Fermi velocity, {delta}=c/{omega}{sub p} is the depth of the skin layer, and {omega}{sub p} is the plasma frequency) the broad-band absorption spectrum caused by the adsorbed molecules has an asymptotic limit {omega}{sup O}. The theory is compared with new absolute measurements of the IR spectrum of the CO/Cu(100) system. 20 refs., 2 figs.

  9. Buffer Gas Modifiers Effect Resolution in Ion Mobility Spectrometry through Selective Ion-Molecule Clustering Reactions

    PubMed Central

    Fernández-Maestre, Roberto; Wu, Ching; Hill, Herbert H.

    2013-01-01

    RATIONALE When polar molecules (modifiers) are introduced into the buffer gas of an ion mobility spectrometer, most ion mobilities decrease due to the formation of ion-modifier clusters. METHODS We used ethyl lactate, nitrobenzene, 2-butanol, and tetrahydrofuran-2-carbonitrile as buffer gas modifiers and electrospray ionization ion mobility spectrometry (IMS) coupled to quadrupole mass spectrometry. Ethyl lactate, nitrobenzene, and tetrahydrofuran-2-carbonitrile had not been tested as buffer gas modifiers and 2-butanol had not been used with basic amino acids. RESULTS The ion mobilities of several diamines (arginine, histidine, lysine, and atenolol) were not affected or only slightly reduced when these modifiers were introduced into the buffer gas (3.4% average reduction in an analyte's mobility for the three modifiers). Intramolecular bridges caused limited change in the ion mobilities of diamines when modifiers were added to the buffer gas; these bridges hindered the attachment of modifier molecules to the positive charge of ions and delocalized the charge, which deterred clustering. There was also a tendency towards large changes in ion mobility when the mass of the analyte decreased; ethanolamine, the smallest compound tested, had the largest reduction in ion mobility with the introduction of modifiers into the buffer gas (61%). These differences in mobilities, together with the lack of shift in bridge-forming ions, were used to separate ions that overlapped in IMS, such as isoleucine and lysine, and arginine and phenylalanine, and made possible the prediction of separation or not of overlapping ions. CONCLUSIONS The introduction of modifiers into the buffer gas in IMS can selectively alter the mobilities of analytes to aid in compound identification and/or enable the separation of overlapping analyte peaks. PMID:22956312

  10. Targeted adsorption of molecules in the colon with the novel adsorbent-based medicinal product, DAV132: A proof of concept study in healthy subjects.

    PubMed

    de Gunzburg, Jean; Ducher, Annie; Modess, Christiane; Wegner, Danilo; Oswald, Stefan; Dressman, Jennifer; Augustin, Violaine; Feger, Céline; Andremont, Antoine; Weitschies, Werner; Siegmund, Werner

    2015-01-01

    During antibiotic treatments, active residuals reaching the colon profoundly affect the bacterial flora resulting in the emergence of resistance. To prevent these effects, we developed an enteric-coated formulated activated-charcoal based product, DAV132, meant to deliver its adsorbent to the ileum and neutralize antibiotic residues in the proximal colon. In a randomized, control, crossover study, the plasma pharmacokinetics of the probe drugs amoxicillin (500 mg) absorbed in the proximal intestine, and sulfapyridine (25 mg) metabolized from sulfasalazine in the cecum and rapidly absorbed, were compared after a single administration in 18 healthy subjects who had received DAV132, uncoated formulated activated charcoal (FAC) or water 16 and 8 hours before, concomitantly with the probe drugs, and 8 hours thereafter. The AUC0-96 h of amoxicillin was reduced by more than 70% when it was taken with FAC, but bioequivalent when it was taken with water or DAV132. By contrast, the AUC0-96 h of sulfapyridine was reduced by more than 90% when administered with either FAC or DAV132 in comparison with water. The results show that DAV132 can selectively adsorb drug compounds in the proximal colon, without interfering with drug absorption in the proximal small intestine, thereby constituting a proof of concept that DAV132 actually functions in humans.

  11. Comment on “Equilibrium constants and rate constants for adsorbates: Two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models”

    DOE PAGES

    Savara, Aditya

    2016-08-15

    The paper by Campbell et al. was recently brought to my attention. This comment is written to provide greater clarity to the community to prevent misconceptions regarding the entropies being discussed in that work and to clarify the differences between the adsorbate standard states suggested by Campbell and by Savara.

  12. [Analysis of organochlorine pesticides and pyrethroid pesticides in vegetables by gas chromatography-electron capture detection coupled with solid-phase extraction using multiwalled carbon nanotubes as adsorbent].

    PubMed

    Zhao, Haixiang; Jia, Yanxia; Ding, Mingyu; Sun, Dajiang; Zhao, Mengbin

    2011-05-01

    A multi-residue analytical method based on solid-phase extraction (SPE) with multiwalled carbon nanotubes (MWCNTs) as adsorbent was developed. The determination of 6 organochlorine pesticides and 7 pyrethroid pesticides in vegetables (including cucumber, cherry tomato, cabbage, lettuce, purple cabbage, leek, shallot and onion) was carried out by gas chromatography-electron capture detection (GC-ECD). The GC-ECD method used two columns (HP-50 and HP-1) and two ECD detectors. The HP-50 column was used for the analysis and the HP-1 column for validation. The clean-up conditions were optimized. The analytes were extracted by acetonitrile, and the extract was cleaned up by the MWCNTs SPE cartridge. The extract was re-dissolved by hexane, eluted with acetone-hexane (7:3, v/v) from the columns. The recoveries were over 70% for the 11 pesticides in the 13 pesticides. The results indicated that the MWCNTs SPE cartridge was efficient for 8 vegetable samples, because it reduced the contamination of the coloring materials to GC-ECD. The experimental results showed the MWCNTs SPE cartridge can adsorb the coloring materials and the eluant was nearly colorless.

  13. [Analysis of organochlorine pesticides and pyrethroid pesticides in vegetables by gas chromatography-electron capture detection coupled with solid-phase extraction using multiwalled carbon nanotubes as adsorbent].

    PubMed

    Zhao, Haixiang; Jia, Yanxia; Ding, Mingyu; Sun, Dajiang; Zhao, Mengbin

    2011-05-01

    A multi-residue analytical method based on solid-phase extraction (SPE) with multiwalled carbon nanotubes (MWCNTs) as adsorbent was developed. The determination of 6 organochlorine pesticides and 7 pyrethroid pesticides in vegetables (including cucumber, cherry tomato, cabbage, lettuce, purple cabbage, leek, shallot and onion) was carried out by gas chromatography-electron capture detection (GC-ECD). The GC-ECD method used two columns (HP-50 and HP-1) and two ECD detectors. The HP-50 column was used for the analysis and the HP-1 column for validation. The clean-up conditions were optimized. The analytes were extracted by acetonitrile, and the extract was cleaned up by the MWCNTs SPE cartridge. The extract was re-dissolved by hexane, eluted with acetone-hexane (7:3, v/v) from the columns. The recoveries were over 70% for the 11 pesticides in the 13 pesticides. The results indicated that the MWCNTs SPE cartridge was efficient for 8 vegetable samples, because it reduced the contamination of the coloring materials to GC-ECD. The experimental results showed the MWCNTs SPE cartridge can adsorb the coloring materials and the eluant was nearly colorless. PMID:21847981

  14. Ultrafast electron diffraction from laser-aligned molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Yang, Jie

    Ultrafast electron diffraction has emerged since the end of last century, and has become an increasingly important tool for revealing great details of molecular dynamics. In comparison to spectroscopic techniques, ultrafast electron diffraction directly probes time-resolved structure of target molecules, and therefore can potentially provide "molecular movies" of the reactions being studied. These molecular movies are critical for understanding and ultimately controlling the energy conversion pathways and efficiencies of photochemical processes. In this dissertation, I have focused on ultrafast electron diffraction from gas-phase molecules, and have investigated several long-standing challenges that have been preventing researchers from being able to achieve 3-D molecular movies of photochemical reactions. The first challenge is to resolve the full 3-D structure for molecules in the gas phase. The random orientation of molecules in the gas phase smears out the diffraction signal, which results in only 1-D structural information being accessible. The second challenge lies in temporal resolution. In order to resolve coherent nuclear motions on their natural time scale, a temporal resolution of ˜200 femtosecond or better is required. However, due to experimental limitations the shortest temporal resolution that had been achieved was only a few picoseconds in early 2000, by Zewail group from Caltech. The first challenge is tackled by laser-alignment. In the first half of the dissertation, I approach this method both theoretically and experimentally, and demonstrate that by using a short laser pulse to transiently align target molecules in space, 3-D molecular structure can be reconstructed ab-initio from diffraction patterns. The second half of the dissertation presents two experiments, both of which are important steps toward imaging coherent nuclear motions in real time during photochemical reactions. The first experiment simultaneously resolves molecular alignment

  15. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; et al

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, andmore » CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  16. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    SciTech Connect

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; Fang, Youxing

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, and CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.

  17. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    PubMed

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules. PMID:27346242

  18. Adsorptive removal of methylene blue by CuO-acid modified sepiolite as effective adsorbent and its regeneration with high-temperature gas stream.

    PubMed

    Su, Chengyuan; Wang, Liang; Chen, Menglin; Huang, Zhi; Lin, Xiangfeng

    2016-01-01

    In this study, the dynamic adsorption of methylene blue dye onto CuO-acid modified sepiolite was investigated. Meanwhile, the equilibrium and kinetic data of the adsorption process were studied to understand the adsorption mechanism. Furthermore, a high-temperature gas stream was applied to regenerate the adsorbent. The results showed that the Langmuir isotherm model was applied to describe the adsorption process. The positive value of enthalpy change indicated that the adsorption process was endothermic in nature. In the dynamic adsorption process, the best adsorption performance was achieved when the ratio of column height to diameter was 2.56 and the treatment capacity was 6 BV/h. The optimal scenario for regeneration experiments was the regeneration temperature of 550-650 °C, the space velocity of 100 min(-1) and the regeneration time of 10 min. The effective adsorption of CuO-acid modified sepiolite was kept for 12 cycles of adsorption and regeneration. PMID:27533859

  19. Polaron-molecule transitions in a two-dimensional Fermi gas

    SciTech Connect

    Parish, Meera M.

    2011-05-15

    We address the problem of a single 'spin-down' impurity atom interacting attractively with a spin-up Fermi gas in two dimensions (2D). We consider the case where the mass of the impurity is greater than or equal to the mass of a spin-up fermion. Using a variational approach, we resolve the questions raised by previous studies and show that there is, in fact, a transition between polaron and molecule (dimer) ground states in 2D. For the molecule state, we use a variational wave function with a single particle-hole excitation on the Fermi sea and we find that its energy matches that of the exact solution in the limit of infinite impurity mass. Thus, we expect the variational approach to provide a reliable tool for investigating 2D systems.

  20. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  1. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent. Previously announced in STAR as N84-16955

  2. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  3. Laser-driven rotational dynamics of gas-phase molecules: Control and applications

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming

    In this thesis, our work on developing new techniques to measure and enhance field-free molecular alignment and orientation is described. Non-resonant femtosecond laser pulses are used to align and orient rotationally-cold gas-phase molecules. The time-dependent Schrodinger equation is solved to simulate the experimental results. A single-shot kHz velocity map imaging (VMI) spectrometer is developed for characterizing 1D and 3D alignment. Stimulated by a novel metric for 3D alignment proposed by Makhija et al. [Phys. Rev. A 85,033425 (2012)], a multi-pulse scheme to improve 3D alignment is demonstrated experimentally on difluoro-iodobenzene molecules and the best field-free 3D alignment is achieved. A degenerate four wave mixing probe is developed to overcome limitations in VMI measurement; experiments on different types of molecules show good agreement with computational results. Highly aligned linear molecules are used for high harmonic generation experiments. Due to the high degree of alignment, fractional revivals, variation of revival structure with harmonic order and the shape resonance and Cooper minimum in the photoionization cross section of molecular nitrogen are all observed directly in experiment for the first time. Enhanced orientation from rotationally cold heteronuclear molecules is also demonstrated. We follow the theory developed by Zhang et al. [Phys. Rev. A 83, 043410 (2011)] and demonstrate experimentally for the first time that for rotationally cold carbon monoxide an aligning laser pulse followed by a two-color laser pulse can increase field-free orientation level by almost a factor of three compared to using just the two-color pulse.

  4. Evaluation of gaseous fluorocarbon adsorption isotherms on porous adsorbents under high pressure

    SciTech Connect

    Kaliappan, S.; Furuya, E.G.; Noll, K.E.; Chang, H.T.; Wang, H.C.

    1996-11-01

    In this study data have been collected to aid in the design of a control system that will remove fluorocarbons by adsorbing onto porous adsorbents. A bench scale experimental adsorption system had been designed using high accuracy MKS pressure transducers of 10,000 torr (two nos.) and a 100 torr connected to digital readout units. Tetrafluoromethane (CF{sub 4}) one of the fluorinated carbon family has been selected to evaluate the adsorption characteristics on porous adsorbents. The CF{sub 4} was charged to a sample reservoir in the test system at 200 psig pressure and at 22 C was allowed into an adsorption chamber at small increment of pressure rise. The pressure drop, using a Valydine PS 309 differential pressure gauge from the sample reservoir and the pressure buildup in the adsorption chamber were measured and the amount of CF{sub 4} adsorbed onto the adsorbents was calculated using ideal gas law. Various adsorbents, molecular sieve 13X, Silicagel (14 x 20), Beads Activated Carbon, Granular Activated Carbons PCB 6 x 16, BPL 4 x 10, F300, and F400 had been studied. It has been found that GAC-PCB 6 x 16 has the highest adsorbing capacity of 0.51 gm/gm at the conditions established. GAC-F300 had the second highest adsorbing capacity of 0.413 gm/gm, among all the adsorbents tested. The isotherms were analyzed using several equations employing both two parameters and three parameters. The relationship between the constants and physical properties of adsorbent solids and adsorbate molecules is discussed. The result of this study will be utilized to design a pressure swing fluorocarbon adsorption system that can be economically (using recycle of the collected fluorocarbons) applied to fluorocarbon removal in the electronic industry.

  5. Shape resonances, overtones, and electron energy loss spectroscopy of gas phase and physisorbed diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.

    1983-10-01

    Electron energy loss spectra of O2 and N2 physisorbed on metallic substrates showing a series of high overtone losses have recently been reported. In the case of N2, the intense overtone excitation is credited to the formation of a well-known temporary negative ion state with a resonance lifetime ˜10-15 s for gas phase N2-. The principal distinction between the gaseous and physisorbed molecule EELS spectrum is a significant depletion of the overtone intensity which has been attributed to a surface-induced decrease in the resonance lifetime. In the present work, a time dependent quantum mechanical model applicable to vibrational excitation in resonance scattering is outlined which quantitatively accounts for the observed spectra and, in particular, the surface modifications to the gas phase results. The essential feature of the model is one in which the intramolecular dynamics of the intermediate state is characterized by nuclear propagation over a harmonic potential curve spatially displaced from the ground state curve for a time duration equal to the resonance lifetime. The resulting calculated overtone spectra agree well with the experimentally observed ones. The results suggest that the physisorbed N-2 lifetime is about 40% of that of the free molecule.

  6. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  7. Gas-phase basicities of polyfunctional molecules. Part 4: Carbonyl groups as basic sites.

    PubMed

    Bouchoux, Guy

    2015-01-01

    This article constitutes the fourth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435). This fourth part is devoted to carbonyl containing polyfunctional molecules. After a short reminder of the methods of determination of gas-phase basicity and the underlying physicochemical concepts, specific examples are examined under two major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) ketones, diketones, ketoalcohols, and ketoethers are considered. A second chapter describes the protonation energetic of gaseous acids and derivatives including diacids, diesters, diamides, anhydrides, imides, ureas, carbamates, amino acid derivatives, and peptides. Experimental data were re-evaluated according to the presently adopted basicity scale. Structural and energetic information given by G3 and G4 quantum chemistry computations on typical systems are presented.

  8. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.

  9. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range. PMID:27661721

  10. Studying interactions of gas molecules with nanomaterials loaded in a microwave resonant cavity

    NASA Astrophysics Data System (ADS)

    Anand, Aman

    A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1-9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomaterials, there was a different response in the shifts of the probe signal for each cycle of gassing and degassing of the cavity. This dissertation suggests that microwave spectroscopy of a complex medium of gases and carbon nanotubes can be used as a highly sensitive technique to determine the complex dielectric response of different polar as well as non-polar gases when subjected to intense electromagnetic fields within the cavity. Also, as part of the experimental work, a range of other micro-porous materials was tested using the residual gas analysis (RGA) technique to determine their intrinsic absorption/adsorption characteristics when under an ultra-high vacuum environment. The scientific results obtained from this investigation, led to the development of a chemical biological sensor prototype. The method proposed is to develop operational sensors to detect toxin gases for homeland security applications and also develop sniffers to detect toxin drugs for law enforcement agency personnel.

  11. Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange.

    PubMed

    García-Mata, Carlos; Lamattina, Lorenzo

    2013-03-01

    Specialized guard cells modulate plant gas exchange through the regulation of stomatal aperture. The size of the stomatal pore is a direct function of the volume of the guard cells. The transport of solutes across channels in plasma membrane is a crucial process in the maintenance of guard cell water status. The fine tuned regulation of that transport requires an integrated convergence of multiple endogenous and exogenous signals perceived at both the cellular and the whole plant level. Gasotransmitters are novel signaling molecules with key functions in guard cell physiology. Three gasotransmitters, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S) are involved in guard cell regulatory processes. These molecules are endogenously produced by plant cells and are part of the guard cells responses to drought stress conditions through ABA-dependent pathways. In this review, we summarize the current knowledge of gasotransmitters as versatile molecules interacting with different components of guard cell signaling network and propose them as players in new paradigms to study ABA-independent guard cell responses to water deficit.

  12. Gas-phase ion/molecule reactions of corannulene, a fullerene subunit

    SciTech Connect

    Becker, H.; Schwarz, H. ); Javahery, G.; Petrie, S.; Bohme, D.K. ); Cheng, P.C.; Scott, L.T. )

    1993-12-01

    Corannulene is intriguing, not only because of its highly-strained bowl-like structure, but also as a subunit of C[sub 60] and other fullerenes. The carbon skeleton of corannulene appears several times in C[sub 60], and its curvature mimics the curvature of C[sub 60]. Inspired by this curiosity, and having previously investigated ion/molecule reactions of C[sub 60] cations, we began an unprecedented experimental investigation of ion/molecule reactions of corannulene. Here we report the first observations of gas-phase ion/molecule reactions with corannulene: reactions of the corannulene cation (cor[sup [sm bullet]+]) with C[sub 60] and of neutral corannulene with Ar[sup [sm bullet]+], cor[sup [sm bullet]+], C[sub 60][sup [sm bullet]+], C[sub 60][sup 2+], and C[sub 60][sup [sm bullet]3+]. Both electronic and topographical features are expected to be of consequence in many of these reactions. 22 refs., 1 tab.

  13. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  14. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first- principles study

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Li, C. Y.; Liu, L. L.; Zhou, B.; Zhang, Q. K.; Chen, Z. Q.; Tang, Z.

    2016-09-01

    Adsorption of small gas molecules (O2, NO, NO2 and NH3) on transition-metal Cu atom embedded monolayer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  15. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  16. Control of Pre-Tilt Angles of Liquid Crystal Molecules Using a Chemically Adsorbed Monomolecular Layer as an Alignment Film in Liquid Crystal Cells

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazufumi; Ohtake, Tadashi; Nomura, Takaiki

    2002-11-01

    Photoaligned monomolecular layers containing two materials were formed to control pre-tilt angles (θp) of liquid crystal molecules for twisted nematic (TN) type liquid crystal displays (LCDs) by a chemical adsorption (CA) technique and a photoalignment technique. One was a new chlorosilane type surfactant, 4‧-(6-trichlorosilyloxyhexyloxy) chalcone (CO), having photopolymerizablity, and the other was a surfactant having a straight carbon chain (SC). Although we tried screening six different surfectants as an additive to CO, a surfactant having a long straight hydrocarbon chain (octadecyl-trichlorosilane: C18) was the most suitable for the TN type LCDs. By changing the molecular ratio of CO and C18, pre-tilt angles of liquid crystal molecules in a test liquid crystal (LC) cell could be controlled from 0 to 8° with perfect mono-domain alignment. When surfactants having short hydrocarbon chains and those having fluorocarbon chains were used, the quality of the TN type LC cells obtained was not good.

  17. Interaction of gas molecules with crystalline polymer separation membranes: Atomic-scale modeling and first-principles calculations

    SciTech Connect

    Sergey N. Rashkeev; Eric S. Peterson

    2011-11-01

    Carbon dioxide (CO2)-induced plasticization can significantly decrease the gas separation performance of membranes in high-temperature or high pressure conditions, such as industrial methane (CH4) separations. In this paper, we investigated the crystalline phase of three polymers (polybenzimidazole (PBI), Bis(isobutylcarboxy)polybenzimidazole (PBI-Butyl), and KaptonTM) and interactions between gas molecules (CO2 and N2) and these polymers. A novel, molecular dynamics (MD) based, computational technique was employed to find unknown crystalline structures of these polymer materials. The interaction of CO2 and N2 gases with these crystals was studied by first-principles calculations and by classical MD simulations. The results showed that the packing structure and the interlayer coupling in polymer crystals determine the permeability and diffusivity of gas molecules. This methodology also allows prediction of plastic swelling in these materials caused by gas molecules absorbed in the polymer matrix.

  18. Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments.

    PubMed

    Larriba-Andaluz, Carlos; Fernández-García, Juan; Ewing, Michael A; Hogan, Christopher J; Clemmer, David E

    2015-06-14

    A pending issue in linking ion mobility measurements to ion structures is that the collisional cross section (CCS, the measured structural parameter in ion mobility spectrometry) of an ion is strongly dependent upon the manner in which gas molecules effectively impinge on and are reemitted from ion surfaces (when modeling ions as fixed structures). To directly examine the gas molecule impingement and reemission processes and their influence, we measured the CCSs of positively charged ions of room temperature ionic liquids 1-ethyl-3-methylimidazolium dicyanamide (EMIM-N(CN)2) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) in N2 using a differential mobility analyzer-mass spectrometer (DMA-MS) and in He using a drift tube mobility spectrometer-mass spectrometer (DT-MS). Cluster ions, generated via electrosprays, took the form (AB)N(A)z, spanning up to z = 20 and with masses greater than 100 kDa. As confirmed by molecular dynamics simulations, at the measurement temperature (∼300 K), such cluster ions took on globular conformations in the gas phase. Based upon their attained charge levels, in neither He nor N2 did the ion-induced dipole potential significantly influence gas molecule-ion collisions. Therefore, differences in the CCSs measured for ions in the two different gases could be primarily attributed to differences in gas molecule behavior upon collision with ions. Overwhelmingly, by comparison of predicted CCSs with selected input impingement-reemission laws to measurements, we find that in N2, gas molecules collide with ions diffusely--they are reemitted at random angles relative to the gas molecule incoming angle--and inelastically. Meanwhile, in He, gas molecules collide specularly and elastically and are emitted from ion surfaces at determined angles. The results can be rationalized on the basis of the momentum transferred per collision; in the case of He, individual gas molecule collisions minimally perturb the atoms within a cluster ion

  19. Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments.

    PubMed

    Larriba-Andaluz, Carlos; Fernández-García, Juan; Ewing, Michael A; Hogan, Christopher J; Clemmer, David E

    2015-06-14

    A pending issue in linking ion mobility measurements to ion structures is that the collisional cross section (CCS, the measured structural parameter in ion mobility spectrometry) of an ion is strongly dependent upon the manner in which gas molecules effectively impinge on and are reemitted from ion surfaces (when modeling ions as fixed structures). To directly examine the gas molecule impingement and reemission processes and their influence, we measured the CCSs of positively charged ions of room temperature ionic liquids 1-ethyl-3-methylimidazolium dicyanamide (EMIM-N(CN)2) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) in N2 using a differential mobility analyzer-mass spectrometer (DMA-MS) and in He using a drift tube mobility spectrometer-mass spectrometer (DT-MS). Cluster ions, generated via electrosprays, took the form (AB)N(A)z, spanning up to z = 20 and with masses greater than 100 kDa. As confirmed by molecular dynamics simulations, at the measurement temperature (∼300 K), such cluster ions took on globular conformations in the gas phase. Based upon their attained charge levels, in neither He nor N2 did the ion-induced dipole potential significantly influence gas molecule-ion collisions. Therefore, differences in the CCSs measured for ions in the two different gases could be primarily attributed to differences in gas molecule behavior upon collision with ions. Overwhelmingly, by comparison of predicted CCSs with selected input impingement-reemission laws to measurements, we find that in N2, gas molecules collide with ions diffusely--they are reemitted at random angles relative to the gas molecule incoming angle--and inelastically. Meanwhile, in He, gas molecules collide specularly and elastically and are emitted from ion surfaces at determined angles. The results can be rationalized on the basis of the momentum transferred per collision; in the case of He, individual gas molecule collisions minimally perturb the atoms within a cluster ion

  20. X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Küpper, Jochen; Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V.; Adolph, Marcus; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bostedt, Christoph; Bozek, John; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Delmas, Tjark; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Gorkhover, Tais; Gumprecht, Lars; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Holl, Peter; Hömke, Andre; Kimmel, Nils; Krasniqi, Faton; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Moshammer, Robert; Reich, Christian; Rudek, Benedikt; Santra, Robin; Schlichting, Ilme; Schmidt, Carlo; Schorb, Sebastian; Schulz, Joachim; Soltau, Heike; Spence, John C. H.; Starodub, Dmitri; Strüder, Lothar; Thøgersen, Jan; Vrakking, Marc J. J.; Weidenspointner, Georg; White, Thomas A.; Wunderer, Cornelia; Meijer, Gerard; Ullrich, Joachim; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N.

    2014-02-01

    We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.

  1. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  2. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  3. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  4. Basic data of polyatomic ion-molecule systems for flue gas discharge modelling

    NASA Astrophysics Data System (ADS)

    Nelson, D.; Benhenni, M.; Yousfi, M.; Eichwald, O.

    2001-11-01

    In the presence of an external electric field, ion transport coefficients (ion mobility and diffusion coefficients) are closely related to the ion-neutral interaction potential. A new generalized potential model, coupled to an optimized Monte Carlo technique, has been developed for the determination of the transport coefficients of polyatomic ions in weakly ionized gases. This corresponds to the polyatomic ion-molecule systems which can affect the electrical behaviour of the flue gas discharges used for the non-thermal plasma reactor for pollution control. The ion-molecule interaction has been described by a rigid core potential model which is adapted for both polar and non-polar systems and also symmetric and asymmetric systems. Momentum transfer cross sections are then determined using a semi-classical approach. The corresponding sets of cross sections including the dominant processes in our intermediate ion energy range (elastic and mainly charge transfer in certain cases) are used in the Monte Carlo code to calculate the ion transport coefficients over a wide range of reduced electric field E/N. These ion transport data fit quite well the drift tube measurements available in the literature for the CO2+/CO2 system, and also for certain weakly polar cases. The case of the H2O+/H2O system is then considered thus giving in this highly polar system the ion swarm data for the first time in the literature. Finally, we have considered with quite good reliability some asymmetric systems such as CO2+/N2 and N2+/CO2 whose ion data are also needed for flue gas discharge modelling.

  5. Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules.

    PubMed

    Hellmann, Robert; Vesovic, Velisa

    2015-12-01

    The viscomagnetic effect for two linear molecules, N2 and CO2, has been calculated in the dilute-gas limit directly from the most accurate ab initio intermolecular potential energy surfaces presently available. The calculations were performed by means of the classical trajectory method in the temperature range from 70 K to 3000 K for N2 and 100 K to 2000 K for CO2, and agreement with the available experimental data is exceptionally good. Above room temperature, where no experimental data are available, the calculations provide the first quantitative information on the magnitude and the behavior of the viscomagnetic effect for these gases. In the presence of a magnetic field, the viscosities of nitrogen and carbon dioxide decrease by at most 0.3% and 0.7%, respectively. The results demonstrate that the viscomagnetic effect is dominated by the contribution of the jj¯ polarization at all temperatures, which shows that the alignment of the rotational axes of the molecules in the presence of a magnetic field is primarily responsible for the viscomagnetic effect.

  6. Simulations of the fluid phase of nitrogen molecules adsorbed on the basal planes of graphite: structural and dynamical effects of the corrugation in the holding potential.

    NASA Astrophysics Data System (ADS)

    Hansen, F. Y.; Bruch, L. W.; Taub, H.

    1997-03-01

    A discrepancy between calculated (F. Y. Hansen, L.W. Bruch and H. Taub, Phys. Rev. B. 52), 8515 (1995) and experimental melting temperatures of submonolayer films was traced to the intermolecular potentials. These have been tested by comparing molecular dynamics simulations of isosteric heats of adsorption in fluid films with experimental measurements (J. Piper, J. A. Morrison, C. Peters and Y. Ozaki, J. Chem. Soc., Faraday Trans. 1, 79), 2863 (1983). The effect of the corrugation in the holding potential on the fluid phases has also been evaluated in a series of simulations. For films on a model uncorrugated graphite surface the melting temperature is lowered by 7 K. Contrary to what is found for films on the corrugated surface, these simulations show that there is a region of liquid--gas coexistence, demonstrating that this is a normal triple point system. Diffusion constants in these fluids are larger than for the fluids on the corrugated graphite surface. At low coverages, a crossover from activated diffusion to nonactivated diffusion is seen. The damping of the hydrodynamic modes causing the long--time tails in the velocity correlation function seems to be a little stronger on a corrugated surface than on a smooth surface.

  7. Effects of surface water on gas sorption capacities of gravimetric sensing layers analyzed by molecular descriptors of organic adsorbates.

    PubMed

    Sugimoto, Iwao; Mitsui, Kouta; Nakamura, Masayuki; Seyama, Michiko

    2011-02-01

    The gas sorption capacities of sputtered carbonaceous films are evaluated with quartz crystal resonators. These films are sensitive to 20 ppm organic vapors and exhibit structure-dependent responses. Films derived from synthetic polymers are hydrophobic, whereas films derived from biomaterials are amphiphilic or hydrophilic. Polyethylene (PE) film has an extremely high sorption capacity for a wide range of vapors. Transient sorption responses are investigated using a humidified carrier by employing carboxylic acid esters, whose aliphatic groups are systematically changed. Small esters with a higher affinity to water induce negative U-shaped responses from amphiphilic films derived from biomaterials. On the other hand, polymeric films exhibit positive exponential response curves. Even if the concentrations are decreased, the response intensities are enhanced with the incremental expansion of carbon chains of aliphatic groups. Only fluoropolymer film shows the opposite tendency. The modeling of quantitative structure property relationships has indicated that the sorption capacities of the PE film to the carboxylic acid esters are fundamentally governed by electrostatic interactions. The intermolecular attractive forces are basically attributable to interactions between the positively polarized sites in esters and the negatively polarized/charged sites in PE film.

  8. Detection of the Elusive Triazane Molecule (N3 H5 ) in the Gas Phase.

    PubMed

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M; Sun, Bing-Jian; Chen, Shih-Hua; Chang, Agnes H-H; Kaiser, Ralf I

    2015-10-26

    We report the detection of triazane (N3 H5 ) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3 ) and hydrazine (N2 H4 ) of fundamental importance for the understanding of the stability of single-bonded chains of nitrogen atoms and a potential key intermediate in hydrogen-nitrogen chemistry. The experimental results along with electronic-structure calculations reveal that triazane presents a stable molecule with a nitrogen-nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 μs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron-time-of-flight mass spectrometer. Isotopic substitution experiments exploiting [D3 ]-ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5 ]-triazane (N3 D5 ).

  9. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  10. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  11. Fundamental adsorption characteristics of carbonaceous adsorbents for 1,2,3,4-tetrachlorobenzene in a model gas of an incineration plant

    SciTech Connect

    Kenichiro Inoue; Katsuya Kawamoto

    2005-08-01

    Carbonaceous adsorbents such as activated carbon have been used to reduce the emission of organic pollutants from municipal solid wastes incineration plants. However, with this method, the amount and type of adsorbent to be used are based only on empirical results, which may lead to overuse of the adsorbents. The fundamental adsorption characteristics of several kinds of activated carbon, activated coke, and carbide wood were examined using 1,2,3,4-tetrachlorobenzene as an adsorbate. The removal performance and various equilibrium adsorption characteristics of these adsorbents were analyzed using laboratory-scale adsorption equipment. The equilibrium adsorption amount increased by a factor of 1.9-3.2 at 150{sup o}C compared with that at 190{sup o}C. The effect of the moisture content on adsorption capacity was relatively small in comparison with that of the temperature. The micropore volume for pore diameters of 2 nm or less was the most important factor governing the adsorption capacity for all adsorbents. Activated carbon showed superior adsorption ability compared to activated coke and carbide wood, although all adsorbents were sufficient for practical use. 45 refs., 10 figs., 6 tabs.

  12. Cytosine neutral molecules and cation-radicals in the gas-phase

    NASA Astrophysics Data System (ADS)

    Wolken, Jill K.; Yao, Chunxiang; Turecek, Frantisek; Polce, Michael J.; Wesdemiotis, Chrys

    2007-11-01

    Gas-phase cytosine molecules and cation-radicals represent a complex system of several nearly isoenergetic tautomers within each group. Computational methods differ in ordering the relative enthalpies of neutral cytosine tautomers. At our highest level of theory, CCSD(T)/aug-cc-pVTZ calculations find an enol form, anti-2-hydroxy-4-aminopyrimidine (2), to be the most stable neutral tautomer in the gas-phase, followed by its rotamer, syn-2-hydroxy-4-aminopyrimidine (3), the canonical oxo-form, 4-amino-1,2-dihydropyrimidin-2(1H)-one (1), imino-forms, 2-oxo-4-iminodihydro(1H,3H)pyrimidine (4 and 5), and another oxo-form, 4-amino-dihydropyrimidin-2(3H)-one (6). Other tautomers, such as anti-anti, syn-syn and syn-anti-2-hydroxy-4-iminodihydro(3H,4H)pyrimidines (7-9), are less stable. The adiabatic ionization energies of the major cytosine tautomers have been calculated to be 8.71, 8.64, 8.62, 8.58, 8.64, and 8.31 eV for 1, 2, 3, 4, 5, and 6, respectively. Cytosine cation-radicals show very close relative energies that increase in the order of 6+ (most stable) <2+ [approximate] 3+ < 4+ [approximate] 7+ [approximate] 1+ < 5+. In addition, distonic ions having radical centers at C-5 (10+) and C-6 (11+ are found as low-energy isomers of 1+-7+. Metastable cytosine cation-radicals undergo ring-cleavage dissociations by eliminations of CO (major) and HNCO (minor). The energetics of these and other higher-energy dissociations, including the pertinent transition states, have been established by high-level ab initio and density functional theory calculations and plausible mechanisms have been proposed. Collisional neutralization of cytosine cation-radicals with trimethylamine and dimethyldisulfide as electron donors forms stable molecules that are detected as cation-radicals following collisional reionization. The dissociations observed upon neutralization-reionization mainly include ring-cleavages followed by loss of NCO, HNCO, and formation of C2H3N, C2H2N, and CO neutral

  13. Metastable BrO2+ and NBr2+ molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Aoto, Yuri Alexandre; de Oliveira-Filho, Antonio Gustavo S.; Franzreb, Klaus; Ornellas, Fernando R.

    2011-03-01

    The doubly positively charged gas-phase molecules BrO2+ and NBr2+ have been produced by prolonged high-current energetic oxygen (17 keV 16O-) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH4Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m/z values in positive ion mass spectra for ion flight times of roughly ˜12 μs through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO2+ and NBr2+, and a manifold of excited electronic states. NBr2+ and BrO2+, in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 × 104 cm-1 (3.38 eV) and 1.62 × 104 cm-1 (2.01 eV); their fragmentation channels into two monocations lie 2.31 × 103 cm-1 (0.29 eV) and 2.14 × 104 cm-1 (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr2+ (v″ < 35) and BrO2+ (v″ < 18) are large enough to be considered stable against tunneling. For NBr2+, we predicted Re = 3.051 a0 and ωe = 984 cm-1; for BrO2+, we obtained 3.033 a0 and 916 cm-1, respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO2+ and NBr2+ are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Λ + S) states is also discussed.

  14. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  15. β-cyclodextrin functionalized meso-/macroporous magnetic titanium dioxide adsorbent as extraction material combined with gas chromatography-mass spectrometry for the detection of chlorobenzenes in soil samples.

    PubMed

    Zhang, Jiabin; Gan, Ning; Chen, Si; Pan, Muyun; Wu, Dazhen; Cao, Yuting

    2015-07-01

    A high-performance and selective adsorbent was developed for simultaneous extraction of 6 chlorobenzenes residues in soil samples by using magnetic solid phase extraction (MSPE) combined with automated SPE followed by gas chromatography-mass spectrometry (GC-MS). The adsorbent was synthesized by grafting carboxymethyl-β-cyclodextrin (CM-β-CD) on the surface of porous core-shell magnetic Fe3O4@flower like TiO2 microspheres (Fe3O4@fTiO2-CMCD), used as a carrier. The main factors (adsorbent amount, adsorption time, elution solvent, elution volume, and elution flow rate) affecting the extraction efficiency were investigated in detail. The adsorbent exhibited high loading capacity (25.6 mg g(-1) for 1,3-dichlorobenzene). This maybe due to meso-/macroporous TiO2 having high specific surface area; as a carrier of the β-cyclodextrin film, it could obviously increase the number of recognition sites. The newly developed adsorbent also showed good selectivity towards chlorobenzenes based on host-guest interactions between β-cyclodextrin (on adsorbent's surface) and targets, which can minimize complex matrix interference in soil samples. The proposed method was successfully applied for the analysis of environmental soil samples with recovery ranging from 87.3 to 104.3%. All target compounds showed good linearities with correlation coefficients (r) higher than 0.996. The limits of quantitation for the 6 CBs were 0.03-0.09 μg kg(-1). These findings confirmed meso-/macroporous structure Fe3O4@fTiO2-CMCD as a highly effective extraction material for use in trace CB analyses in complex soil samples.

  16. β-cyclodextrin functionalized meso-/macroporous magnetic titanium dioxide adsorbent as extraction material combined with gas chromatography-mass spectrometry for the detection of chlorobenzenes in soil samples.

    PubMed

    Zhang, Jiabin; Gan, Ning; Chen, Si; Pan, Muyun; Wu, Dazhen; Cao, Yuting

    2015-07-01

    A high-performance and selective adsorbent was developed for simultaneous extraction of 6 chlorobenzenes residues in soil samples by using magnetic solid phase extraction (MSPE) combined with automated SPE followed by gas chromatography-mass spectrometry (GC-MS). The adsorbent was synthesized by grafting carboxymethyl-β-cyclodextrin (CM-β-CD) on the surface of porous core-shell magnetic Fe3O4@flower like TiO2 microspheres (Fe3O4@fTiO2-CMCD), used as a carrier. The main factors (adsorbent amount, adsorption time, elution solvent, elution volume, and elution flow rate) affecting the extraction efficiency were investigated in detail. The adsorbent exhibited high loading capacity (25.6 mg g(-1) for 1,3-dichlorobenzene). This maybe due to meso-/macroporous TiO2 having high specific surface area; as a carrier of the β-cyclodextrin film, it could obviously increase the number of recognition sites. The newly developed adsorbent also showed good selectivity towards chlorobenzenes based on host-guest interactions between β-cyclodextrin (on adsorbent's surface) and targets, which can minimize complex matrix interference in soil samples. The proposed method was successfully applied for the analysis of environmental soil samples with recovery ranging from 87.3 to 104.3%. All target compounds showed good linearities with correlation coefficients (r) higher than 0.996. The limits of quantitation for the 6 CBs were 0.03-0.09 μg kg(-1). These findings confirmed meso-/macroporous structure Fe3O4@fTiO2-CMCD as a highly effective extraction material for use in trace CB analyses in complex soil samples. PMID:25990351

  17. Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Lin, Y.S.

    1995-02-01

    Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface area of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.

  18. Benzyne-related mechanisms in the gas phase ion/molecule reactions of haloarenes

    NASA Astrophysics Data System (ADS)

    Linnert, Harrald V.; Riveros, José M.

    1994-12-01

    The low pressure ion/molecule reactions of NH-2, OHt- and MeO- with bromobenzene have been studied by Fourier transform ion cyclotron resonance to elucidate gas phase benzyne mechanisms. For OHt- and MeO-, the main reaction consists of benzyne elimination initiated by abstraction of an ortho proton and the subsequent formation of a solvated halide ion. Experiments with monodeuterated bromobenzenes suggest that reactions with OHt- are the result of long-lived complexes with extensive scrambling of hydrogen and deuterium. For NH-2, formation of all the isomeric bromophenide ions occurs without hydrogen-deuterium scrambling, revealing weak building in the collision complexes. The o-bromophenide ions are shown to react with other substrates by bromide transfer rather than by proton transfer, and evidence is presented that the meta and para isomers undergo isomerization to the ortho upon reaction with substrates of similar acidities. The [Delta]H0acid of bromobenzene is estimated to be 384.4 kcal mol- from bracketing experiments. An extension of these reactions to 1- and 2-bromonaphthalene provides an estimate for the heats of formation of 1,2-dehydronaphthalene (122 kcal mol-) and the 2,3-dehydronaphthalene (126 kcal mol-).

  19. Collision lifetimes of polyatomic molecules at low temperatures: Benzene–benzene vs benzene–rare gas atom collisions

    SciTech Connect

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  20. Paramagnetic dioxovanadium(IV) molecules inside the channels of zeolite BEA--EPR screening of VO2 reactivity toward small gas-phase molecules.

    PubMed

    Pietrzyk, Piotr; Góra-Marek, Kinga

    2016-04-14

    Interaction of small gas-phase molecules (NO, N2O, O2, CO) with VO2 radicals inside the channels of a dealuminated SiBEA zeolite was investigated by means of electron paramagnetic resonance (EPR), infrared (IR), and mass (QMS) spectroscopies to provide direct insights into the chemistry of a unique paramagnetic state of vanadium - VO2 molecules. A facile way of forming VO2 inside the channels of SiBEA via thermal reduction of VO2(+) precursor cations was shown. Dioxovanadium(IV) was identified based on its unusual EPR signal which, as compared with the typical monooxovanadium(IV) (VO(2+) cation), is featured by rhombic symmetry and a positive Aiso value leading to a hyperfine splitting as large as 32 mT. VO2 molecules exhibit reducing properties transforming N2O and O2 into vanadium intrachannel cage adducts comprising of reactive oxygen species (O(-) and O2(-), respectively). Interaction with CO led to its oxidation to CO2, while paramagnetic NO acted as a scavenger for VO2 radicals producing diamagnetic adducts. The observed reactivity was rationalized in terms of spin-pairing, electron transfer, and oxygen transfer processes. As a result new chemical pathways of vanadium reactivity were demonstrated which were not observed so far either in the homogeneous molecular systems or supported vanadium materials. PMID:26983648

  1. Spectroscopy and dynamics of small molecules in the gas phase: Application of theory

    NASA Astrophysics Data System (ADS)

    Kaledin, Alexey Leonid

    Four branches of gas-phase chemistry are studied with high-levels of ab initio electronic structure theory and nuclear dynamics. Each branch, organized as a chapter of the dissertation, is represented by a collection of case studies relevant to a particular field of chemistry. The calculations are presented, and the results are discussed for the main purpose of helping interpret the available laboratory observations. The first chapter deals with the electronic spectroscopy of triatomic radicals and molecules, namely Cl3, Cl3- and IHBr-. Revealing results were obtained for Cl3, proving that it actually is a very weakly bound complex formation between a Cl atom and a Cl2 molecule. Also, very interesting findings are reported for photodetachment spectra of Cl3- and IHBr-. The second chapter provides a glance into the current trends of unimolecular photodecomposition of chemically (and environmentally) important species. Examples include isocyanic acid (HNCO), chlorine peroxide (ClCOCl) and ketene (CH2CO). Particularly worthy of attention are the findings on the ketene dissociation in its triplet electronic state. We prove that the dissociation dynamics is governed by surface-hopping, a non-statistical process, and that statistical theories should not be applied for calculating the unimolecular rate constant. In the third chapter, a study of a chemical laser is presented. The process under investigation is electronic energy exchange between an excited state oxygen, O2(a1Δg), and a ground state iodine atom, I(2P3/2). The key conclusion is that at low temperatures (100-300 K) the energy exchange is very efficient, which is consonant with experimental observations. Finally, in chapter four, we discuss recent advances of theory in ro-vibrational spectroscopy of atom-diatom and diatom-diatom types of Van der Waals complexes. In particular, new potential energy surfaces are reported for CN( X2Σ+)- H2 and CH(A 2Δ)-Ar complexes. Ultimately, their ro-vibrational structures

  2. Absolute configuration assignment of a chiral molecule in the gas phase using foil-induced Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Herwig, Philipp; Zawatzky, Kerstin; Schwalm, Dirk; Grieser, Manfred; Heber, Oded; Jordon-Thaden, Brandon; Krantz, Claude; Novotný, Oldřich; Repnow, Roland; Schurig, Volker; Vager, Zeev; Wolf, Andreas; Trapp, Oliver; Kreckel, Holger

    2014-11-01

    Chiral molecules exist in two configurations that are nonsuperposable mirror images of one another. The underlying molecular structure is referred to as the absolute configuration. In chiral environments, the handedness of molecules influences their chemical characteristics dramatically, and therefore the determination of absolute configurations is of fundamental interest in organic chemistry and biology. Commonly applied techniques to assign absolute configuration are anomalous single-crystal x-ray diffraction and vibrational circular dichroism. However, these techniques become increasingly more challenging when applied to molecules that are made out of light atoms exclusively. Furthermore, there is no established method to determine the absolute handedness of gas-phase molecules that are not optically active. In this work, we apply the foil-induced Coulomb explosion imaging technique to determine directly the absolute configuration of the chiral molecule trans-2,3-dideuterooxirane (C2OD2H2) in the gas phase. The experiment leads to the definitive assignment of the (R ,R ) configuration to an enantio-selected dideuterooxirane sample with a statistical confidence of 5 σ . As the handedness of trans-2,3-dideuterooxirane is unambiguously linked by chemical synthesis to the stereochemical key reference glyceraldehyde, our results provide an independent verification of the absolute configuration of the stereochemical reference standard.

  3. Anomalous Enhancement of Mechanical Properties in the Ammonia Adsorbed Defective Graphene

    PubMed Central

    Ma, Fengxian; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Chen, Ying; Chen, Zhongfang; Du, Aijun

    2016-01-01

    Pure graphene is known as the strongest material ever discovered. However, the unavoidable defect formation in the fabrication process renders the strength of defective graphene much lower (~14%) than that of its perfect counterpart. By means of density functional theory computations, we systematically explored the effect of gas molecules (H2, N2, NH3, CO, CO2 and O2) adsorption on the mechanical strength of perfect/defective graphene. The NH3 molecule is found to play a dominant role in enhancing the strength of defective graphene by up to ~15.6%, while other gas molecules decrease the strength of graphene with varying degrees. The remarkable strength enhancement can be interpreted by the decomposition of NH3, which saturates the dangling bond and leads to charge redistribution at the defect site. The present work provides basic information for the mechanical failure of gas-adsorbed graphene and guidance for manufacturing graphene-based electromechanical devices. PMID:27667709

  4. Kinetics, mechanism, and dynamics of the gas-phase H(D) atom reaction with adsorbed D(H) atom on Pt(111)

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Young; Lee, Jihwa

    2000-08-01

    We have investigated the kinetics of the abstraction reaction H(D)+Dad(Had)/Pt(111) at 100 K and saturation coverage (θsat=0.95±0.06 ML) using an H(D) atom beam, in which the angle-integrated and angle-resolved product desorption rates were simultaneously monitored with two mass spectrometers. HD molecules are formed by the abstraction reaction as well as by the secondary hot atom (s-HA) reactions, Ds*(Hs*)+Had(Dad)→HD, where Ds*(Hs*) is a collisionally excited surface D(H) atom. The two reaction components of HD show quite distinct angular distributions; while the former component is sharply forward-peaked to be represented by cos12(θf-3°), the latter component preferentially desorbs at large desorption angles centered at θf˜45°. The two HD formation reactions also exhibit distinct kinetics, which could be separately identified by properly selecting the desorption angle. Concurrent desorption of D2(H2) formed by a homonuclear s-HA reaction was also observed with a relatively large yield amounting to 37%(31%) of the initially adsorbed D(H) atoms. The angular distribution of D2 is very similar to that of HD formed by the s-HA reactions. Varying the beam incidence angle has no effect on the reaction rate constants and the product branching ratio. From a kinetic analysis, we estimate a cross section σabst=1.30±0.07(1.49±0.11) Å2 for HD formation by abstraction in H(D)-on-Dad(Had) reaction. For D2(H2) formation, an effective cross section for generating reactive Ds*(Hs*) atom is estimated as σ*=1.87±0.08(1.61±0.24) Å2. These values can be translated into the probabilities Pabst=0.19(0.21), Pex=0.27(0.23), Pads=0.73(0.67), and Pscatt=0.08(0.12) for abstraction reaction, s-HA generation, adsorption, and scattering of an incident H(D) atom, respectively. The isotope effects are small and the corresponding cross sections differ at most by 15%. The mechanism-dependent product angular distributions are discussed in terms of the different reaction dynamics

  5. Using Zn/Al layered double hydroxide as a novel solid-phase extraction adsorbent to extract polycyclic aromatic hydrocarbons at trace levels in water samples prior to the determination of gas chromatography-mass spectrometry.

    PubMed

    Liu, Yan-Long; Zhou, Jia-Bin; Zhao, Ru-Song; Chen, Xiang-Feng

    2012-09-01

    This paper demonstrates, for the first time, the great potential of using Zn/Al layered double hydroxide intercalated sodium dodecyl benzene sulfonate (Zn/Al-SDBS-LDH) as a solid-phase extraction (SPE) material in the extraction of persistent organic pollutants prior to the determination of gas chromatography-mass spectrometry in environmental water samples. Zn/Al-SDBS-LDH, a relatively inexpensive and simply prepared material, was synthesized and used as a SPE adsorbent to quantitatively determine the concentration of five polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Factors affecting extraction efficiency, such as, eluent type, eluent volume, flow rate of sample, sample volume, and amount of adsorbent, were investigated and optimized in detail. Experimental results indicate that there is an excellent linear relationship between peak area and the concentration of PAHs over the range of 5-500 ng L(-1), and the precisions (relative standard deviation (RSD)) were 2.5-6.3% under the optimum conditions. Based on the ratio of chromatographic signal-to-base line noise (S/N = 3), the limits of detection could reach 1.2-3.2 ng L(-1). This novel method was successfully applied to the analysis of PAHs in environmental water samples. As such, we show here that the use of Zn/Al-SDBS-LDH as SPE adsorbent materials, coupled with gas chromatography-mass spectrometry, is an excellent improvement in the routine analysis of PAHs at trace levels in the environment.

  6. Fourier transform ion cyclotron resonance mass spectrometric study of gas-phase ion-molecule reactions

    SciTech Connect

    Yin, Winnie Weixin.

    1993-01-01

    Gas-phase ion-molecule reactions of rare earth (include Sc, Y, and all the lanthanide series) metal ion (except Pm[sup +]) reactions with benzene and alkyl benzene ligands were systematically studied by FT/ICR mass spectrometry. An electronic configuration d[sup 1]s[sup 1] was found to be necessary for the ions to insert into C-C and/or C-H bonds of alkyl groups of the ligands. When the promotion energy for the transition groups of the ligands. When the promotion energy for the transition f[sup n]s[sup 1] [yields] f[sup n[minus]1]d[sup 1]s[sup 1] was large, no reaction resulting from activation was observed. Some of the rare earth metal ions do not activate C-C or C-H bond of saturated hydrocarbons, but are rather reactive with alkyl groups of aromatic ligands. Most of the rare earth ions only from intact complex ions with benzene, while Sc[sup +], Y[sup +], La[sup +] and Ce[sup +] form metal-benzyne ions. Rare earth metal ions are quite oxophilic and readily react with background oxygen containing species when the reactions with organic ligand(s). A hyperbolic ion trap for ET/ICR mass spectrometry was evaluated experimentally and compared with the most commonly used cubic ion trap. The hyperbolic trap offers several advantages over the cubic ion trap. The hyperbolic trap offers several advantages over the cubic trap: improved mass resolving power, improved mass accuracy for wide-range mass spectra, and elimination of frequency shift due to different ion cyclotron radius. But z-ejection is more pronounced in the hyperbolic than in the cubic trap.

  7. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  8. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  9. Diffusion, thermalization, and optical pumping of YbF molecules in a cold buffer-gas cell

    NASA Astrophysics Data System (ADS)

    Skoff, S. M.; Hendricks, R. J.; Sinclair, C. D. J.; Hudson, J. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.

    2011-02-01

    We produce YbF molecules with a density of 1018 m-3 using laser ablation inside a cryogenically cooled cell filled with a helium buffer gas. Using absorption imaging and absorption spectroscopy we study the formation, diffusion, thermalization, and optical pumping of the molecules. The absorption images show an initial rapid expansion of molecules away from the ablation target followed by a much slower diffusion to the cell walls. We study how the time constant for diffusion depends on the helium density and temperature and obtain values for the YbF-He diffusion cross section at two different temperatures. We measure the translational and rotational temperatures of the molecules as a function of time since formation, obtain the characteristic time constant for the molecules to thermalize with the cell walls, and elucidate the process responsible for limiting this thermalization rate. Finally, we make a detailed study of how the absorption of the probe laser saturates as its intensity increases, showing that the saturation intensity is proportional to the helium density. We use this to estimate collision rates and the density of molecules in the cell.

  10. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  11. A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules

    NASA Astrophysics Data System (ADS)

    Gröbner, M.; Weinmann, P.; Meinert, F.; Lauber, K.; Kirilov, E.; Nägerl, H.-C.

    2016-10-01

    We present a new quantum gas apparatus for ultracold mixtures of K and Cs atoms and ultracold samples of KCs ground-state molecules. We demonstrate the apparatus' capabilities by producing Bose-Einstein condensates of ? and ? in a manner that will eventually allow sequential condensation within one experimental cycle, precise sample overlap and magnetic association of atoms into KCs molecules. The condensates are created independently without relying on sympathetic cooling. Our approach is universal and applicable to other species combinations when the two species show dramatically different behavior in terms of loss mechanisms and post laser cooling temperatures, i.e. species combinations that make parallel generation of quantum degenerate samples challenging. We give an outlook over the next experiments involving e.g. sample mixing, molecule formation and transport into a science chamber for high-resolution spatial imaging of novel quantum-many body phases based on K-Cs.

  12. Mesoporous Silica: A Suitable Adsorbent for Amines

    PubMed Central

    2009-01-01

    Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices. PMID:20628459

  13. Cooperative Reformable Channel System with Unique Recognition of Small Gas Molecules in a two-dimensional ZIF-membrane

    NASA Astrophysics Data System (ADS)

    Motevalli, Benyamin; Taherifar, Neda; Liu, Zhe

    We report a cooperative reformable channel system in a coordination porous polymer, named as ZIF-L. Three types of local flexible ligands coexist in the crystal structure of this polymer, resulting in ultra-flexibility. The reformable channel is able to regulate permeation of a nonspherical guest molecule, such as N2 or CO2, based on its longer molecular dimension, which is in a striking contrast to conventional molecular sieves that regulate the shorter cross-sectional dimension of the guest molecules. Our density functional theory (DFT) calculations reveal that the guest molecule induces dynamic motion of the flexible ligands, leading to the channel reformation, and then the guest molecule reorientates itself to fit in the reformed channel. Such a unique ``induced fit-in'' mechanism causes the gas molecule to pass through 6 membered-ring windows in the c- crystal direction of ZIF-L with its longer axis parallel to the window plane. Our experimental permeance of N2 through the ZIF-L membranes is about three times greater than that of CO2, supporting the DFT simulation predictions.

  14. Optically pumped gas laser using electronic transitions in the NaRb molecule

    SciTech Connect

    Kaslin, V.M.; Yakushev, O.F.

    1983-12-01

    Laser superradiance was achieved for the first time as a result of an electronic transition in a diatomic heteronuclear molecule as a result of direct optical pumping. This superradiance was observed in the region of 670 nm due to a transition to the ground state X/sup 1/..sigma../sup +/ of the intermetallic alkali molecule NaRb pumped by radiation from a pulsed copper vapor laser (lambda = 510.6 nm).

  15. Formation of Complex Organics by Gas Phase and Intracluster Ion-Molecule Reactions Involving Acetylene and Hydrogen Cyanide

    NASA Astrophysics Data System (ADS)

    El-Shall, S.; Hamed, A.; Soliman, A. R.; Momoh, P. O.

    2011-05-01

    Many complex organics including polycyclic aromatic hydrocarbons are present in flames and combustion processes as well as in interstellar clouds and solar nebulae. Here, we present evidence for the formation of complex covalent organics by gas phase and intracluster reactions of the benzene, phenylium, pyridine, pyrimidine, phenylacetylene and benzonitrile cations with acetylene and hydrogen cyanide molecules. These reactions are studied using mass-selected ion mobility, chemical reactivity, collisional dissociation, and ab initio calculations. Measurements of collision cross sections in helium provide structural information on the adducts and allow probing structural changes at different temperatures (isomerization). We observed multiple additions of five acetylene molecules on the pyridine cation at room temperature. This is a remarkable result considering that only two acetylene molecules were added to the phenyl cation and no addition was observed on the benzene cation at room temperature. The experimental results are in full agreement with the ab initio calculations which predict that the first and second acetylenes add to the pyridine ion in barrierless, highly exothermic reactions. Similar reactions have been observed for the pyrimidine radical cation although the extent of the addition reactions is limited to only two acetylene molecules at room temperature. The results provide the first evidence for the incorporation of nitrogen in the formation cyclic hydrocarbons via the gas phase reactions of pyridine and pyrimidine ions with acetylene molecules. In addition, the formation of covalent adducts in the ionized acetylene/HCN system will be reported for the first time. Sequential reactions leading to the formation of pyridine and pyrimidine radical cations and higher adducts are observed over a wide range of temperature and pressure. The formation of these covalent adducts may represent a general class of addition reactions that can form complex

  16. The Sample Analysis At Mars Gas Chromatograph (sam-gc) Ability To Detect Organic Molecules At The Mars Surface

    NASA Astrophysics Data System (ADS)

    Francois, Pascaline; Coll, P.; Szopa, C.; Buch, A.; Sternberg, R.; Cabane, M.; Mahaffy, P.

    2012-10-01

    The environmental conditions on Mars might have been favorable for the emergence of Life. The search for clues of a prebiotic chemistry or a biological activity represents one of the main objectives of the Mars Science Laboratory (MSL) mission. The Sample Analysis at Mars Gas Chromatograph (SAM-GC), aboard Curiosity rover, is dedicated to organic molecules research in atmospheric and solid samples. This instrument is constituted of six complementary chromatographic columns which have been selected to provide a broad range of separation and detection capability (volatile, refractory and chiral molecules). In order to treat and interpret the SAM-GC in situ results, it is necessary: (1) to determine the instrument ability to detect targets molecules under the instrument operating conditions and (2) to create a chromatographic and mass spectra data base to help their identification. With this aim we first selected molecules which might be analyzed with SAM-GC using the following criteria: (1) abundance at the Mars surface (2) astrobiological interest, (3) formation during the sample preparation. Then we characterized these target molecules on a laboratory gas chromatograph mass spectrometer (GC-MS) using a Chirasildex (30m x 0,25mm x 0,25µm) column dedicated to the enantiomeric separation and a CLP (30m x 0,25mm x 0,25µm) generalist columns which will be probably the first to be used on Mars. In a second step, we will use a SAM-GC mock-up to mimick the environmental conditions (pressure and temperature) inside Curiosity rover and study its variation impact on analyzes. Finally, we will present a study carried out on a Martian analogs, as Atacama samples.

  17. Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property

    SciTech Connect

    Yang, Ji-Min; Liu, Qing; Sun, Wei-Yin

    2014-10-15

    Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were successfully obtained by solvothermal method. The products were characterized by powder X-ray diffraction (PXRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), inductively coupled plasma optical emission spectrometer (ICP-OES), elemental analysis, UV–vis and infrared (IR) spectroscopy. The factors influencing the crystal morphology and size were investigated. The gas sorption measurements reveal that highly crystalline particles have large Langmuir surface area. It was found that the Co(II)-doped MOF-5 shows enhanced hydrostability and the sorption profiles of the Co(II)-doped MOF-5 nano/microcrystals are dependent on the morphology and size of the particles. Porous Co(II)-doped MOF-5 is stable upon the removal of guest molecules and exhibits different colour with accommodating different solvent molecule, which means that it can act as solvatochromic sensing materials for recognition of solvent molecules. - Graphical abstract: Co(II)-doped MOF-5 nano/microcrystals with different shapes and sizes were synthesized by a facile hydrothermal method, which not only enhance gas sorption properties and structural stability of MOFs towards moisture, but also act as new sensing materials for sensing small molecules. - Highlights: • Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were obtained. • Co(II)-doped MOF-5 nano/microcrystals enhance the structural stability towards moisture. • Co(II)-doped MOF-5 can act as new sensing material for sensing small molecules.

  18. Creation of an Ultracold Gas of Ground-State Dipolar 23Na 87 Molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier; Wang, Dajun

    2016-05-01

    We report the successful production of an ultracold sample of absolute ground-state 23Na 87Rb molecules. Starting from weakly bound Feshbach molecules formed via magnetoassociation, the lowest rovibrational and hyperfine level of the electronic ground state is populated following a high-efficiency and high-resolution two-photon Raman process. The high-purity absolute ground-state samples have up to 8000 molecules and densities of over 1011 cm-3 . By measuring the Stark shifts induced by external electric fields, we determined the permanent electric dipole moment of the absolute ground-state 23Na 87Rb and demonstrated the capability of inducing an effective dipole moment over 1 D. Bimolecular reaction between ground-state 23Na 87Rb molecules is endothermic, but we still observed a rather fast decay of the molecular sample. Our results pave the way toward investigation of ultracold molecular collisions in a fully controlled manner and possibly to quantum gases of ultracold bosonic molecules with strong dipolar interactions.

  19. Creation of an Ultracold Gas of Ground-State Dipolar ^{23}Na^{87}Rb Molecules.

    PubMed

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier; Wang, Dajun

    2016-05-20

    We report the successful production of an ultracold sample of absolute ground-state ^{23}Na^{87}Rb molecules. Starting from weakly bound Feshbach molecules formed via magnetoassociation, the lowest rovibrational and hyperfine level of the electronic ground state is populated following a high-efficiency and high-resolution two-photon Raman process. The high-purity absolute ground-state samples have up to 8000 molecules and densities of over 10^{11}  cm^{-3}. By measuring the Stark shifts induced by external electric fields, we determined the permanent electric dipole moment of the absolute ground-state ^{23}Na^{87}Rb and demonstrated the capability of inducing an effective dipole moment over 1 D. Bimolecular reaction between ground-state ^{23}Na^{87}Rb molecules is endothermic, but we still observed a rather fast decay of the molecular sample. Our results pave the way toward investigation of ultracold molecular collisions in a fully controlled manner and possibly to quantum gases of ultracold bosonic molecules with strong dipolar interactions. PMID:27258875

  20. Characterization of a DAPI-RIT-DAPI system for gas-phase ion/molecule and ion/ion reactions.

    PubMed

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  1. Characterization of a DAPI-RIT-DAPI System for Gas-Phase Ion/Molecule and Ion/Ion Reactions

    NASA Astrophysics Data System (ADS)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10-1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  2. Molecule-based kinetic Monte Carlo modeling of hydrotreating processes applied to Light Cycle Oil gas oils

    NASA Astrophysics Data System (ADS)

    Kolb, Max; Pereira de Oliveira, Luis; Verstraete, Jan

    2013-03-01

    A novel kinetic modeling strategy for refining processes for heavy petroleum fractions is proposed. The approach allows to overcome the notorious lack of molecular details in describing the petroleum fractions. The simulation of the reactions process consists of a two-step procedure. In the first step, a mixture of molecules representing the feedstock of the process is generated via two sucessive molecular reconstruction algorithms. The first algorithm, termed stochastic reconstruction, generates an equimolar set of molecules with the appropriate analytical properties via a Monte Carlo method. The second algorithm, called reconstruction by entropy maximization, adjusts the molar fractions of the generated molecules in order to further improve the properties of the mixture. In the second step, a kinetic Monte Carlo method is used to simulate the effect of the refining reactions on the previously generated set of molecules. The full two-step methodology has been applied to the hydrotreating of LCO gas oils and to the hydrocracking of vacuum residues from different origins (e.g. Athabasca).

  3. The role of multiparticle correlations and Cooper pairing in the formation of molecules in an ultracold gas of Fermi atoms with a negative scattering length

    SciTech Connect

    Babichenko, V. S. Kagan, Yu.

    2012-11-15

    The influence of multiparticle correlation effects and Cooper pairing in an ultracold Fermi gas with a negative scattering length on the formation rate of molecules is investigated. Cooper pairing is shown to cause the formation rate of molecules to increase, as distinct from the influence of Bose-Einstein condensation in a Bose gas on this rate. This trend is retained in the entire range of temperatures below the critical one.

  4. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  5. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  6. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis

    NASA Astrophysics Data System (ADS)

    Liu, Changran; Li, Zhigang; Wang, Hai

    2016-08-01

    Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973), 10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes.

  7. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis.

    PubMed

    Liu, Changran; Li, Zhigang; Wang, Hai

    2016-08-01

    Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973)10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes.

  8. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis.

    PubMed

    Liu, Changran; Li, Zhigang; Wang, Hai

    2016-08-01

    Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973)10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes. PMID:27627388

  9. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  10. Removal of formaldehyde by adsorption and plasma treatment of mineral adsorbent

    NASA Astrophysics Data System (ADS)

    Saulich, K.; Müller, S.

    2013-01-01

    Formaldehyde is a harmful ambient air pollutant which can be produced by incomplete combustion processes, e.g. in power plants or automobiles. In this work a cycled adsorption and discharge process using mineral granulate in a packed bed dielectric barrier discharge plasma reactor was applied for formaldehyde (99 ppm) removal from gas streams. The mineral granulate used consisted of 80% halloysite and showed a good adsorption capacity for formaldehyde. In the discharge step, the adsorbed formaldehyde molecules were decomposed to COx and hydrocarbons in a N2 plasma at a low input discharge power of 2.2 W. The decomposition performance on adsorbed formaldehyde molecules was studied depending on space-time, a specific oxygen fraction of the carrier gas and the influence of temperature. With rising N2 space times in the discharge area, the total amount of decomposed formaldehyde molecules increased and the decomposition reaction mechanism shifted to CO2 formation. An oxygen fraction in the carrier gas further raised the oxidized amount of formaldehyde to CO2. The mineral granulate showed satisfied regeneration ability during the cycled plasma process.

  11. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    SciTech Connect

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A.; Yates, John T.; Cole, Milton W.; Johnson, J. Karl

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  12. Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Kochetov, I. V.

    2016-10-01

    A new version of optical actinometry (OA) is used to determine the concentrations of water molecules and their fragments in hollow cathode discharge plasma in moist inert gases. Use is made of two actinometer particles, namely, the atoms Xe and Ar, for concurrent measurements of the concentrations of the H2O molecule and its fragments O, H, and OH. A self-consistent method is suggested for the determination of particle concentrations with due regard for the quenching of the emitting states. The temporal behavior of particles during discharge glow is studied. Noted are fast variations (lasting from a few to a few tens of s) in the concentrations of all the particles, followed by their stabilization (within a few to a few tens of mins). The scheme of the processes responsible for the observed dynamics of the plasma composition is discussed.

  13. Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Shirley, Wilbur E.; Anderson, Brandon M.; Clark, Charles W.; Wilson, Ryan M.

    2014-10-01

    We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram.

  14. Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan; Shirley, Wilbur; Anderson, Brandon; Clark, Charles

    2015-03-01

    We discuss the ground state phases of a rotating two-component, or binary Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of non-trivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram.

  15. Half-quantum vortex molecules in a binary dipolar Bose gas.

    PubMed

    Shirley, Wilbur E; Anderson, Brandon M; Clark, Charles W; Wilson, Ryan M

    2014-10-17

    We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram.

  16. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Kanamori-Kataoka, Mieko; Seto, Yasuo

    2015-09-01

    To establish adequate on-site solvent trapping of volatile chemical warfare agents (CWAs) from air samples, we measured the breakthrough volumes of CWAs on three adsorbent resins by an elution technique using direct electron ionization mass spectrometry. The trapping characteristics of Tenax(®) TA were better than those of Tenax(®) GR and Carboxen(®) 1016. The latter two adsorbents showed non-reproducible breakthrough behavior and low VX recovery. The specific breakthrough values were more than 44 (sarin) L/g Tenax(®) TA resin at 20°C. Logarithmic values of specific breakthrough volume for four nerve agents (sarin, soman, tabun, and VX) showed a nearly linear correlation with the reciprocals of their boiling points, but the data point of sulfur mustard deviated from this linear curve. Next, we developed a method to determine volatile CWAs in ambient air by thermal desorption-gas chromatography (TD-GC/MS). CWA solutions that were spiked into the Tenax TA(®) adsorbent tubes were analyzed by a two-stage TD-GC/MS using a Tenax(®) TA-packed cold trap tube. Linear calibration curves for CWAs retained in the resin tubes were obtained in the range between 0.2pL and 100pL for sarin, soman, tabun, cyclohexylsarin, and sulfur mustard; and between 2pL and 100pL for VX and Russian VX. We also examined the stability of CWAs in Tenax(®) TA tubes purged with either dry or 50% relative humidity air under storage conditions at room temperature or 4°C. More than 80% sarin, soman, tabun, cyclohexylsarin, and sulfur mustard were recovered from the tubes within 2 weeks. In contrast, the recoveries of VX and Russian VX drastically reduced with storage time at room temperature, resulting in a drop to 10-30% after 2 weeks. Moreover, we examined the trapping efficiency of Tenax TA(®) adsorbent tubes for vaporized CWA samples (100mL) prepared in a 500mL gas sampling cylinder. In the concentration range of 0.2-2.5mg/m(3), >50% of sarin, soman, tabun, cyclohexylsarin, and HD were

  17. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Kanamori-Kataoka, Mieko; Seto, Yasuo

    2015-09-01

    To establish adequate on-site solvent trapping of volatile chemical warfare agents (CWAs) from air samples, we measured the breakthrough volumes of CWAs on three adsorbent resins by an elution technique using direct electron ionization mass spectrometry. The trapping characteristics of Tenax(®) TA were better than those of Tenax(®) GR and Carboxen(®) 1016. The latter two adsorbents showed non-reproducible breakthrough behavior and low VX recovery. The specific breakthrough values were more than 44 (sarin) L/g Tenax(®) TA resin at 20°C. Logarithmic values of specific breakthrough volume for four nerve agents (sarin, soman, tabun, and VX) showed a nearly linear correlation with the reciprocals of their boiling points, but the data point of sulfur mustard deviated from this linear curve. Next, we developed a method to determine volatile CWAs in ambient air by thermal desorption-gas chromatography (TD-GC/MS). CWA solutions that were spiked into the Tenax TA(®) adsorbent tubes were analyzed by a two-stage TD-GC/MS using a Tenax(®) TA-packed cold trap tube. Linear calibration curves for CWAs retained in the resin tubes were obtained in the range between 0.2pL and 100pL for sarin, soman, tabun, cyclohexylsarin, and sulfur mustard; and between 2pL and 100pL for VX and Russian VX. We also examined the stability of CWAs in Tenax(®) TA tubes purged with either dry or 50% relative humidity air under storage conditions at room temperature or 4°C. More than 80% sarin, soman, tabun, cyclohexylsarin, and sulfur mustard were recovered from the tubes within 2 weeks. In contrast, the recoveries of VX and Russian VX drastically reduced with storage time at room temperature, resulting in a drop to 10-30% after 2 weeks. Moreover, we examined the trapping efficiency of Tenax TA(®) adsorbent tubes for vaporized CWA samples (100mL) prepared in a 500mL gas sampling cylinder. In the concentration range of 0.2-2.5mg/m(3), >50% of sarin, soman, tabun, cyclohexylsarin, and HD were

  18. Strongly aligned gas-phase molecules at free-electron lasers

    DOE PAGES

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sebastien; Bucksbaum, Philip; et al

    2015-09-16

    Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less

  19. Strongly aligned gas-phase molecules at free-electron lasers

    SciTech Connect

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sebastien; Bucksbaum, Philip; Chapman, Henry N.; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E.; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thogersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Kupper, Jochen

    2015-09-16

    Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  20. Strongly aligned gas-phase molecules at free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sébastien; Bucksbaum, Philip; Chapman, Henry N.; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E.; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thøgersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Küpper, Jochen

    2015-10-01

    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of < {{cos}}2{θ }2{{D}}> =0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  1. ON THE RELATIVE 'TRANSPARENCY' OF GAS-PHASE CORONENE MOLECULES TO LOW-ENERGY ELECTRONS: EFFECTS ON THE INTERSTELLAR MEDIUM

    SciTech Connect

    Carelli, F.; Gianturco, F. A.

    2011-12-20

    Free, gas-phase polycyclic aromatic hydrocarbons (PAHs) are understood to play an important role in the interstellar medium (ISM), as they are thought to significantly contribute to both diffused and unidentified infrared interstellar bands. They are also considered fundamental blocks of the interstellar dust, whose nature has important implications for a plethora of physical and chemical nanoscopic processes within the ISM. Since free electrons represent a versatile alternative way to transport energy in the interstellar space, in this paper we compute from quantum scattering methods the angular redistributions of free electrons by gas-phase coronene molecules, the latter of which are believed to be one of the most representative PAHs, in order to assess their role in describing the efficiency of electron deflection by this molecule. The associated rates can provide useful information about the coupling mechanism between external radio-frequency fields and complex molecular plasmas containing neutral and ionized PAHs. They can also yield information on the possible presence of such species in the dust phase of the medium.

  2. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  3. Gas phase chemical kinetics at high temperature of carbonaceous molecules: application to circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Gardez, A.; Saidani, G.; Georges, R.; Rowe, B.; Reddy, K. P. J.

    2011-05-01

    Circumstellar shells of evolved stars are a theater of extremely rich physical and chemical processes. More than seventy molecules of varied nature have been identified in the envelopes through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals and a significant number are unique to the circumstellar medium. However, observational data remain scarce and more than half of the detected species have been observed in only one object, the nearby carbon star IRC + 10216. Chemical kinetic models are needed to describe the formation of molecules in evolved circumstellar outflows. Upcoming terrestrial telescopes such as ALMA will increase the spatial resolution by several orders of magnitude and provide a wealth of data. The determination of relevant laboratory kinetics data is critical to keep up with the development of the observations and of the refinement of chemical models. Today, the majority of reactions studied in the laboratory are the ones involved in combustion and concerning light hydrocarbons. Our objective is to provide the scientific community with rate coefficients of reactions between abundant species in these warm environments. Cyanopolyynes from HC_2N to HC_9N have all been detected in carbon rich circumstellar envelopes in up to 10 sources for HC_3N. Neutral-neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures. Our approach aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high enthalpy source (Moudens et al. 2011) with a flow tube and a pulsed laser photolysis and laser induced fluorescence system to probe the undergoing chemical reactions. The high enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane, propene

  4. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet. PMID:26374054

  5. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  6. Experimental and Numerical Investigation of Guest Molecule Exchange Kinetics based on the 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.

    2015-12-01

    In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.

  7. Greenhouse Gas Molecule CO2 Detection Using a Capacitive Micromachined Ultrasound Transducer.

    PubMed

    Barauskas, Dovydas; Pelenis, Donatas; Virzonis, Darius; Baltrus, John P; Baltrusaitis, Jonas

    2016-07-01

    We manufactured and tested a capacitive micromachined ultrasound transducer (CMUT)-based sensor for CO2 detection at environmentally relevant concentrations using polyethylenimine as a CO2 binding material. The assembly of a sensing chip was 10 × 20 mm, and up to 5 gases can potentially be detected simultaneously using a masking technique and different sensing materials. The limit of detection was calculated to be 0.033 CO2 vol % while the limit of quantification was calculated to be 0.102%. The sensor exhibited a linear response between 0.06% and 0.30% CO2 while concentrations close to those in flue gas can also be measured using dilution with inert gas. PMID:27321769

  8. Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules

    PubMed Central

    Hasty, Jeff; Tsimring, Lev

    2016-01-01

    The Turing instability was proposed more than six decades ago as a mechanism leading to spatial patterning, but it has yet to be exploited in a synthetic biology setting. Here we characterize the Turing instability in a specific gene circuit that can be implemented in vitro or in populations of clonal cells producing short-range activator N-Acyl homoserine lactone (AHL) and long-range inhibitor hydrogen peroxide (H2O2) gas. Slowing the production rate of the AHL-degrading enzyme, AiiA, generates stable fixed states, limit cycle oscillations and Turing patterns. Further tuning of signaling parameters determines local robustness and controls the range of unstable wavenumbers in the patterning regime. These findings provide a roadmap for optimizing spatial patterns of gene expression based on familiar quorum and gas sensitive E. coli promoters. The circuit design and predictions may be useful for (re)programming spatial dynamics in synthetic and natural gene expression systems. PMID:27148743

  9. Using specialized adsorbents for remediation

    SciTech Connect

    Hochmuth, D.P.; Grant, A.

    1995-11-01

    This paper describes two remediation case studies in which specialized adsorbents were used. In one case, the adsorbents were used to treat effluent from a soil vapor extraction system. In the other case, the adsorbents were used to treat air from a groundwater air stripper. The specialized adsorbents effectively removed volatile organic compounds from each air stream.

  10. Gas-phase Reactions of Polycyclic Aromatic Hydrocarbon Anions with Molecules of Interstellar Relevance

    NASA Astrophysics Data System (ADS)

    Demarais, Nicholas J.; Yang, Zhibo; Martinez, Oscar; Wehres, Nadine; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-02-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C6H- 5), naphthalenide (C10H- 7), and anthracenide (C14H- 9) with atomic H, H2, and D2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O2, CO2, N2O, C2H2, CH3OH, CH3CN, (CH3)2CO, CH3CHO, CH3Cl, and (CH3CH2)2O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  11. An index of the literature for bimolecular gas phase cation-molecule reaction kinetics

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.

    2003-01-01

    This is an index to the literature for gas phase bimolecular positive ionmolecule reactions. Over 2300 references are cited. Reaction rate coefficients and product distributions of the reactions are abstracted out of the original citations where available. This index is intended to cover the literature from 1936 to 2003. This is a continuation of several surveys: the original (Huntress Astrophys. J. Suppl. Ser., 33, 495 (1977)), an expansion (Anicich and Huntress, Astrophys. J. Suppl. Ser. 62, 553 (1986)), a supplement (Anicich, Astrophys. J. Suppl. Ser. 84, 215 (1993)), and an evaluation (Anicich, V. G. J. Phys. Chem. Ref. Data 22,1469 (1993b). The Table of reactions is listed by reactant ion.

  12. Formation of metallacyclic C[sub 60] derivatives via gas-phase ion-molecule reactions

    SciTech Connect

    Kan, S.Z.; Byun, Y.G.; Freiser, B.S. )

    1995-01-25

    In this paper we report the gas-phase reactions of C[sub 60] with Fe(benzyne)[sup +] in which metallacyclic C[sub 80] derivatives are formed. All experiments were performed on an Extrel FTMS-2000 dual cell Fourier transform ion cyclotron resonance mass spectrometer equipped with a 3 T superconducting magnet. The ion-trapping potential was set at 2 V. A Bayard-Alpert ion gauge was used to monitor pressure. Fe[sup +] was generated by laser desorption of the pure iron metal target using a Quanta-Ray Nd:YAG laser operated at its fundamental output (1064 nm). 43 refs., 1 fig.

  13. Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination.

    PubMed

    Mahpishanian, Shokouh; Sereshti, Hassan

    2016-04-22

    In this research, a magnetic three dimensional-graphene nanocomposite (3D-G-Fe3O4) was prepared, characterized and used as an effective nanoadsorbent in magnetic solid-phase extraction (MSPE) of eight organophosphorus pesticides (OPPs) from juice samples prior to gas chromatography-nitrogen phosphorous detection (GC-NPD). The properties and morphology of 3D-G-Fe3O4 were characterized by scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). The main experimental parameters affecting extraction recoveries including extraction time, amount of adsorbent, pH of sample solution, salt concentration and desorption conditions were carefully studied and optimized. The results showed wide linear concentration ranges with determination coefficients between 0.9973 and 0.9999. The limits of detection (S/N=3) of the method and limits of quantification (S/N=10) were from 1.2 to 5.1 ng L(-1) and 3.4-17.0 ng L(-1), respectively. The intra-day and inter-day RSDs were 2.6-5.1% and 3.5-6.9%, respectively. The method was successfully applied to the analysis of OPPs in fruit juices (apple, orange, grape, sour-cherry and apricot) with recoveries in range of 86.6-107.5%. The GC-NPD results were confirmed by gas chromatography-mass spectrometry (GC-MS). The results demonstrated that with combination of highly interconnected 3D network structure and magnetism property of adsorbent, 3D-G-Fe3O4 aerogel exhibited exceptional extraction ability towards the OPPs. PMID:27018186

  14. Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination.

    PubMed

    Mahpishanian, Shokouh; Sereshti, Hassan

    2016-04-22

    In this research, a magnetic three dimensional-graphene nanocomposite (3D-G-Fe3O4) was prepared, characterized and used as an effective nanoadsorbent in magnetic solid-phase extraction (MSPE) of eight organophosphorus pesticides (OPPs) from juice samples prior to gas chromatography-nitrogen phosphorous detection (GC-NPD). The properties and morphology of 3D-G-Fe3O4 were characterized by scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). The main experimental parameters affecting extraction recoveries including extraction time, amount of adsorbent, pH of sample solution, salt concentration and desorption conditions were carefully studied and optimized. The results showed wide linear concentration ranges with determination coefficients between 0.9973 and 0.9999. The limits of detection (S/N=3) of the method and limits of quantification (S/N=10) were from 1.2 to 5.1 ng L(-1) and 3.4-17.0 ng L(-1), respectively. The intra-day and inter-day RSDs were 2.6-5.1% and 3.5-6.9%, respectively. The method was successfully applied to the analysis of OPPs in fruit juices (apple, orange, grape, sour-cherry and apricot) with recoveries in range of 86.6-107.5%. The GC-NPD results were confirmed by gas chromatography-mass spectrometry (GC-MS). The results demonstrated that with combination of highly interconnected 3D network structure and magnetism property of adsorbent, 3D-G-Fe3O4 aerogel exhibited exceptional extraction ability towards the OPPs.

  15. Dissociation degree of nitrogen molecule in low-pressure microwave-discharge nitrogen plasma with various rare-gas admixtures

    NASA Astrophysics Data System (ADS)

    Kuwano, Kei; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2016-08-01

    The dissociation degree of nitrogen molecules is examined in a microwave discharge nitrogen-rare gas mixture plasma with a total discharge pressure of 1 Torr, by actinometry measurement. Although the spectral line from the excited nitrogen atoms is overlapped by the band spectrum of the N2 first positive system (1PS), the subtraction of the 1PS spectrum fitted theoretically can successfully extract the atomic nitrogen line, which enables actinometry measurement. The nitrogen dissociation degree decreases with increasing mixture ratio of Ar to Kr, whereas it increases with He, which is attributed to the variations in the electron temperature and density. When we dilute the nitrogen with neon, however, we find an anomalous increase in the nitrogen dissociation degree by several orders of magnitude even at a downstream region in the discharge tube. The reason for the dissociation enhancement upon adding neon is discussed in terms of atomic and molecular processes in the plasma.

  16. Linear tension of two-dimensional drops on planar adsorbent faces

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Zaytseva, E. S.; Rabinovich, A. B.

    2016-06-01

    The size dependence of the linear tension of round two-dimensional equilibrium drops in the vapor phase on a homogeneous surface of an adsorbent is studied at the pressure of saturated two-dimensional vapor. The calculations are based on the lattice gas model in a quasi-chemical approximation with allowance for the correlation effects of the nearest interacting molecules. Methods for calculating linear tension using the equimolecular reference line are considered. Temperature dependences of the linear tension are studied for metastable and equilibrium drops. It is found that the differences between the thermodynamic properties of two types of drops are slight over a wide range of variation in drop radii.

  17. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  18. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  19. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-01

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications.

  20. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-01

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. PMID:26141277

  1. Normal Auger spectra of iodine in gas phase alkali iodide molecules

    NASA Astrophysics Data System (ADS)

    Hu, Zhengfa; Caló, Antonio; Kukk, Edwin; Aksela, Helena; Aksela, Seppo

    2005-06-01

    Molecular normal Auger electron spectra following the iodine 4d ionization in gas-phase alkali iodides were investigated both experimentally and theoretically. The Auger electron spectra for LiI, NaI and KI were recorded using electron impact, and for RbI by using photo-excitation. These Auger spectra were analyzed in detail and compared to the referenced normal Auger spectra of HI [L. Karlsson, S. Svensson, P. Baltzer, M. Carlsson-Göthe, M.P. Keane, A. Naves de Brito, N. Correia, B. Wannberg, J. Phys. B 22 (1989) 3001]. An energy shift toward higher kinetic energy and a narrowing in linewidth are observed in the Auger spectra series revealing the effect of the changing environment from covalently bonded HI to ionic alkali iodide compounds. The experimental results are also compared with the theoretical ab initio calculations and with the Auger spectra of I -, computed with the multiconfiguration Hartree-Fock (MCHF) method.

  2. Kohn-Sham approach to Fermi gas superfluidity: The bilayer of fermionic polar molecules

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco

    2016-05-01

    By using a well-established "ab initio" theoretical approach developed in the past to quantitatively study the superconductivity of condensed matter systems, based on the Kohn-Sham density functional theory, I study the superfluid properties and the BCS-BEC crossover of two parallel bi-dimensional layers of fermionic dipolar molecules, where the pairing mechanism leading to superfluidity is provided by the interlayer coupling between dipoles. The finite temperature superfluid properties of both the homogeneous system and one where the fermions in each layer are confined by a square optical lattice are studied at half filling conditions, and for different values of the strength of the confining optical potential. The T = 0 results for the homogeneous system are found to be in excellent agreement with diffusion Monte Carlo results. The superfluid transition temperature in the BCS region is found to increase, for a given interlayer coupling, with the strength of the confining optical potential. A transition occurs at sufficiently small interlayer distances, where the fermions becomes localized within the optical lattice sites in a square geometry with an increased effective lattice constant, forming a system of localized composite bosons. This transition should be signaled by a sudden drop in the superfluid fraction of the system.

  3. GAS-PHASE REACTIONS OF POLYCYCLIC AROMATIC HYDROCARBON ANIONS WITH MOLECULES OF INTERSTELLAR RELEVANCE

    SciTech Connect

    Demarais, Nicholas J.; Yang Zhibo; Martinez, Oscar; Wehres, Nadine; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Zhibo.Yang@Colorado.edu E-mail: Nadine.Wehres@Colorado.edu E-mail: Theodore.Snow@Colorado.edu

    2012-02-10

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C{sub 6}H{sup -}{sub 5}), naphthalenide (C{sub 10}H{sup -}{sub 7}), and anthracenide (C{sub 14}H{sup -}{sub 9}) with atomic H, H{sub 2}, and D{sub 2} using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O{sub 2}, CO{sub 2}, N{sub 2}O, C{sub 2}H{sub 2}, CH{sub 3}OH, CH{sub 3}CN, (CH{sub 3}){sub 2}CO, CH{sub 3}CHO, CH{sub 3}Cl, and (CH{sub 3}CH{sub 2}){sub 2}O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  4. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  5. H-bonding of an NH3 gas molecule to H2O/Pt(111) — A barrier-free path

    NASA Astrophysics Data System (ADS)

    Henkelman, Graeme; Feibelman, Peter J.

    2016-02-01

    Does an OH-flipping barrier hinder H-bond formation between a gas phase molecule and a water monolayer whose free OH ligands point toward a substrate? According to density functional theory calculations for water on Pt(111) the answer is yes, when the molecule is CO or N2, but no when it is NH3. The difference is the relatively strong attraction of the NH3 lone pair to free OH ligands.

  6. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  7. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    DOE PAGES

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less

  8. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    SciTech Connect

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.

  9. First-principles study of Au-Cu alloy surface changes induced by gas adsorption of CO, NO, or O2.

    PubMed

    Dhifallah, Marwa; Dhouib, Adnene; Aldulaijan, Sarah; D I Renzo, Francesco; Guesmi, Hazar

    2016-07-14

    The surface composition of bimetallics can be strongly altered by adsorbing molecules where the metal with the strongest interaction with the adsorbate segregates into the surface. To investigate the effect of reactive gas on the surface composition of Au-Cu alloy, we examined by means of density functional theory to study the segregation behavior of copper in gold matrices. The adsorption mechanisms of CO, NO, and O2 gas molecules on gold, copper, and gold-copper low index (111), (100), and (110) surfaces were analyzed from energetic and electronic points of view. Our results show a strong segregation of Cu toward the (110) surface in the presence of all adsorbed molecules. Interestingly, the Cu segregation toward the (111) and (100) surface could occur only in the presence of CO and at a lower extent in the presence of NO. The analysis of the electronic structure highlights the different binding characters of adsorbates inducing the Cu segregation. PMID:27421421

  10. First-principles study of Au-Cu alloy surface changes induced by gas adsorption of CO, NO, or O2

    NASA Astrophysics Data System (ADS)

    Dhifallah, Marwa; Dhouib, Adnene; Aldulaijan, Sarah; D. I. Renzo, Francesco; Guesmi, Hazar

    2016-07-01

    The surface composition of bimetallics can be strongly altered by adsorbing molecules where the metal with the strongest interaction with the adsorbate segregates into the surface. To investigate the effect of reactive gas on the surface composition of Au-Cu alloy, we examined by means of density functional theory to study the segregation behavior of copper in gold matrices. The adsorption mechanisms of CO, NO, and O2 gas molecules on gold, copper, and gold-copper low index (111), (100), and (110) surfaces were analyzed from energetic and electronic points of view. Our results show a strong segregation of Cu toward the (110) surface in the presence of all adsorbed molecules. Interestingly, the Cu segregation toward the (111) and (100) surface could occur only in the presence of CO and at a lower extent in the presence of NO. The analysis of the electronic structure highlights the different binding characters of adsorbates inducing the Cu segregation.

  11. Evaluation of Chemical Interactions between Small Molecules in the Gas Phase Using Chemical Force Microscopy

    PubMed Central

    Lee, Jieun; Ju, Soomi; Kim, In Tae; Jung, Sun-Hwa; Min, Sun-Joon; Kim, Chulki; Sim, Sang Jun; Kim, Sang Kyung

    2015-01-01

    Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction. PMID:26690165

  12. Evaluation of Chemical Interactions between Small Molecules in the Gas Phase Using Chemical Force Microscopy.

    PubMed

    Lee, Jieun; Ju, Soomi; Kim, In Tae; Jung, Sun-Hwa; Min, Sun-Joon; Kim, Chulki; Sim, Sang Jun; Kim, Sang Kyung

    2015-12-04

    Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction.

  13. Adsorbates in a Box: Titration of Substrate Electronic States

    NASA Astrophysics Data System (ADS)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  14. Theoretical prediction of new noble-gas molecules FNgBNR (Ng = Ar, Kr, and Xe; R = H, CH3, CCH, CHCH2, F, and OH).

    PubMed

    Chen, Jien-Lian; Yang, Chang-Yu; Lin, Hsiao-Jing; Hu, Wei-Ping

    2013-06-28

    We have computationally predicted a new class of stable noble-gas molecules FNgBNR (Ng = Ar, Kr, Xe; R = H, CH3, CCH, CHCH2, F, and OH). The FNgBNR were found to have compact structures with F-Ng bond lengths of 1.9-2.2 Å and Ng-B bond lengths of ~1.8 Å. The endoergic three-body dissociation energies of FNgBNH to F + Ng + BNH were calculated to be 12.8, 31.7, and 63.9 kcal mol(-1), for Ng = Ar, Kr, and Xe, respectively at the CCSD(T)/CBS level. The energy barriers of the exoergic two-body dissociation to Ng + FBNH were calculated to be 16.1, 24.0, and 33.2 kcal mol(-1) for Ng = Ar, Kr, and Xe, respectively. Our results showed that the dissociation energetics is relatively insensitive to the identities of the terminal R groups. The current study suggested that a wide variety of noble-gas containing molecules with different types of R groups can be thermally stable at low temperature, and the number of potentially stable noble-gas containing molecules would thus increase very significantly. It is expected some of the FNgBNR molecules could be identified in future experiments under cryogenic conditions in noble-gas matrices or in the gas phase.

  15. Ion Molecule Reactions of Gas-Phase Chromium Oxyanions:CrxOyHz- + O2

    SciTech Connect

    Anita K. Gianotto; Brittany D. M. Hodges; Peter de B. Harrington; Anthony Appelhans; John E. Olson; Gary S. Groenewold

    2003-10-01

    Chromium oxyanions, CrxOyHz-, were generated in the gas-phase using a quadrupole ion trap secondary ion mass spectrometer (IT-SIMS), where they were reacted with O2. Only CrO2- of the Cr1OyHz- envelope was observed to react with oxygen, producing primarily CrO3-. The rate constant for the reaction of CrO2- with O2 was 38% of the Langevin collision constant at 310 K. CrO3-, CrO4-, and CrO4H- were unreactive with O2 in the ion trap. In contrast, Cr2O4- was observed to react with O2 producing CrO3- + CrO3 via oxidative degradation at a rate that was 15% efficient. The presence of background water facilitated the reaction of Cr2O4- + H2O to form Cr2O5H2-; the hydrated product ion Cr2O5H2- reacted with O2 to form Cr2O6- (with concurrent elimination of H2O) at a rate that was 6% efficient. Cr2O5- also reacted with O2 to form Cr2O7- (4% efficient) and Cr2O6- + O (2% efficient); these reactions proceeded in parallel. By comparison, Cr2O6- was unreactive with O2, and in fact, no further O2 addition could be observed for any of the Cr2O6Hz- anions. Generalizing, CrxOyHz- species that have low coordinate, low oxidation state metal centers are susceptible to O2 oxidation. However, when the metal coordination is >3, or when the formal oxidation state is =5, reactivity stops.

  16. Gas-solid heterogeneous nitration of fluoranthene and chrysene adsorbed on airborne particulate matter under photo irradiation in the presence of nitrogen dioxide

    SciTech Connect

    Inazu, Koji; Kobayashi, Takaaki; Hisamatsu, Yoshiharu

    1996-12-31

    Nitration of two polycyclic aromatic hydrocarbons (PAHs), fluoranthene (FL) and chrysene (CH), adsorbed on airborne particulate matter, standard environmental samples, and eight kinds of inorganic particulate matter were carried out under photo irradiation or non irradiation in the presence of nitrogen dioxide to assess the feasibility of atmospheric nitroarene formation from these arenes. Both a closed circulation and a flow system at atmospheric pressure were employed. In the case of FL, degradation rate and yield of total nitrated products were accelerated by photo irradiation on any support by a factor of more than five and more than eight, respectively. The presence of oxygen in the reaction atmosphere also promoted them by a factor of at least four and six, respectively. Under the air containing 10 ppm of nitrogen dioxide, degradation of both of the PAHs on all the support obeyed first-order reaction with respect to their concentration. The shortest half life was observed on ZnO and the longest one was observed on soda feldspar which is one of the standard rock minerals. It was ascertained that these differences in the reactivity of PAHs were due to the chemical composition of them according to the results of the reactions on various types of Al{sub 2}O{sub 3}. The yield and distribution of isomeric nitrated products also strongly depended on the chemical composition of support. On the other hand 2-nitroFL and 6-nitroCH were still the most abundant nitrated product under photo irradiation for most of support. The maximum yield of 2-nitroFL and 6-nitroCH were 6.4% on MgO and 27.8% on Al{sub 2}O{sub 3}, respectively. Since such a considerable formation of these two nitroarenes each of which is one of the most abundant nitroarenes detected in the airborne particles was observed, this heterogeneous nitration can be regarded as an important pathway in atmospheric nitroarene formation.

  17. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  18. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  19. [Determination of six phthalate acid esters in camellia oil by gas chromatography-mass spectrometry coupled with solid-phase extraction using single-walled carbon nanotubes as adsorbent].

    PubMed

    Zhang, Fan; Li, Zhonghai; Zhang, Ying; Huang, Zhiqiang; Wang, Xiaosong

    2014-07-01

    An analytical method based on solid-phase extraction with single-walled carbon nanotubes (SWCNTs) as adsorbent was developed for the simultaneous determination of six phthalate acid esters (PAEs) in camellia oil by gas chromatography-mass spectrometry (GC-MS). The samples were diluted by hexane and then cleaned up with a glass SWCNTs solid phase extraction (SPE) column. The PAEs were measured by GC-MS in selected ion monitoring (SIM) mode, using external standard method for quantitative analysis. The important factors affecting extraction efficiency, such as the dilution volume of hexane, the type of adsorbent material, the dosage of SWCNTs, the volume of wash solution, the type and volume of elution solution were optimized. The optimal conditions were as follows: the dilution volume of hexane was 5 mL, the dosage of SWCNTs was 0.6 g, the wash solution was 20 mL hexane, and the elution solution was 5 mL toluene. The six PAEs had a good linear range from 0.05 mg/L to 1.0 mg/L, with the correlation coefficients (r) all above 0.999 9. The average recoveries of the six targets in spiked camellia oil (from 0.05 mg/kg to 1.0 mg/kg) ranged from 86.4% to 111.7% with the relative standard deviations (RSDs) from 4.2% to 10.4%. The developed method is accurate, quick and suitable for the determination of the six PAEs in camellia oil.

  20. New insights into perfluorinated adsorbents for analytical and bioanalytical applications.

    PubMed

    Marchetti, Nicola; Guzzinati, Roberta; Catani, Martina; Massi, Alessandro; Pasti, Luisa; Cavazzini, Alberto

    2015-01-01

    Perfluorinated (F-) adsorbents are generally prepared by bonding perfluoro-functionalized silanes to silica gels. They have been employed for a long time essentially as media for solid-phase extraction of F-molecules or F-tagged molecules in organic chemistry and heterogeneous catalysis. More recently, this approach has been extended to proteomics and metabolomics. Owing to their unique physicochemical properties, namely fluorophilicity and proteinophilicity, and a better understanding of some fundamental aspects of their behavior, new applications of F-adsorbents in the field of environmental science and bio-affinity studies can be envisaged. In this article, we revisit the most important features of F-adsorbents by focusing, in particular, on some basic information that has been recently obtained through (nonlinear) chromatographic studies. Finally, we try to envisage new applications and possibilities that F-adsorbents will allow in the near future. PMID:25358910

  1. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  2. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  3. Hemoglobin: a gas transport molecule that is hormonally regulated in the ovarian follicle in mice and humans.

    PubMed

    Brown, Hannah M; Anastasi, Marie R; Frank, Laura A; Kind, Karen L; Richani, Dulama; Robker, Rebecca L; Russell, Darryl L; Gilchrist, Robert B; Thompson, Jeremy G

    2015-01-01

    An increasing number of nonerythroid tissues are found to express hemoglobin mRNA and protein. Hemoglobin is a well-described gas transport molecule, especially for O2, but also for NO, CO2, and CO, and also acts as a reactive oxygen species scavenger. We previously found Hba-a1 and Hbb mRNA and protein at high levels within mouse periovulatory cumulus cells, but not in cumulus following in vitro maturation. This led us to investigate the temporal and spatial regulation in follicular cells during the periovulatory period. Cumulus-oocyte complexes were collected from equine chorionic gonadotropin/human chorionic gonadotropin-treated peripubertal SV129 female mice and collected and analyzed for gene expression and protein localization at a variety of time points over the periovulatory period. A further cohort matured in vitro with different forms of hemoglobin (ferro- and ferrihemoglobin) under different O2 atmospheric conditions (2%, 5%, and 20% O2) were subsequently fertilized in vitro and cultured to the blastocyst stage. Murine mRNA transcripts for hemoglobin were regulated by stimulation of the ovulatory cascade, in both granulosa and cumulus cells, and expression of HBA1 and HBB was highly significant in human granulosa and cumulus, but erythrocyte cell marker genes were not. Several other genes involved in hemoglobin function were similarly luteinizing hormone-regulated, including genes for heme biosynthesis. Immunohistochemistry revealed a changing localization pattern of HBA-A1 protein in murine cumulus cells and oocytes following the ovulatory signal. Significantly, no positive staining for HBA-A1 protein was observed within in vitro-matured oocytes, but, if coincubated with ferro- or ferrihemoglobin, cytoplasmic HBA-A1 was observed, similar to in vivo-derived oocytes. Addition of ferro-, but not ferrihemoglobin, had a small, positive effect on blastocyst yield, but only under either 2% or 20% O2 gas atmosphere. The identification of hemoglobin within

  4. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  5. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  6. Radial diffusion and penetration of gas molecules and aerosol particles through laminar flow reactors, denuders, and sampling tubes.

    PubMed

    Knopf, Daniel A; Pöschl, Ulrich; Shiraiwa, Manabu

    2015-04-01

    Flow reactors, denuders, and sampling tubes are essential tools for many applications in analytical and physical chemistry and engineering. We derive a new method for determining radial diffusion effects and the penetration or transmission of gas molecules and aerosol particles through cylindrical tubes under laminar flow conditions using explicit analytical equations. In contrast to the traditional Brown method [Brown, R. L. J. Res. Natl. Bur. Stand. (U. S.) 1978, 83, 1-8] and CKD method (Cooney, D. O.; Kim, S. S.; Davis, E. J. Chem. Eng. Sci. 1974, 29, 1731-1738), the new approximation developed in this study (known as the KPS method) does not require interpolation or numerical techniques. The KPS method agrees well with the CKD method under all experimental conditions and also with the Brown method at low Sherwood numbers. At high Sherwood numbers corresponding to high uptake on the wall, flow entry effects become relevant and are considered in the KPS and CKD methods but not in the Brown method. The practical applicability of the KPS method is demonstrated by analysis of measurement data from experimental studies of rapid OH, intermediate NO3, and slow O3 uptake on various organic substrates. The KPS method also allows determination of the penetration of aerosol particles through a tube, using a single equation to cover both the limiting cases of high and low deposition described by Gormley and Kennedy (Proc. R. Ir. Acad., Sect. A. 1949, 52A, 163-169). We demonstrate that the treatment of gas and particle diffusion converges in the KPS method, thus facilitating prediction of diffusional loss and penetration of gases and particles, analysis of chemical kinetics data, and design of fluid reactors, denuders, and sampling lines. PMID:25744622

  7. Surface enhanced Raman scattering of pyrazole adsorbed on silver colloids

    NASA Astrophysics Data System (ADS)

    Muniz-Miranda, Maurizio; Neto, Natale; Sbrana, Giuseppe

    1999-05-01

    SERS spectra of pyrazole adsorbed on silver hydrosol at different pH values and on silver colloidal substrate deposited on filters were obtained and interpreted on the basis of the existence of three forms in equilibrium, cationic, neutral and anionic. SERS data indicate that the neutral molecule is preferentially adsorbed in acidic environment, pyrazolide anion is instead favoured over all the other pH values. Addition of chloride anions induces the formation of reaction products when pyrazole is adsorbed on silver hydrosols, while this effect is missing on dry silver substrate.

  8. The gas phase ion/molecule chemistry of four carbanions generated from vinylene carbonate and its methyl and dimethyl derivatives

    NASA Astrophysics Data System (ADS)

    Robinson, Marin S.; Breitbeil, Fred W.

    1992-09-01

    The gas phase ion/molecule chemistry of four carbanions generated by the reaction of vinylene carbonate, and its methyl and dimethyl derivatives with hydroxide ion has been investigated. From the parent the sole product is the ketenyl anion, HC[triple bond; length as m-dash]C---O-, arising from vinylic proton abstraction and loss of CO2. From the dimethyl derivative, abstraction of an allylic proton from one of the methyl groups followed by loss of CO2 leads exclusively to CH2=CC(O)CH3. Both pathways are observed for the monomethyl derivative, leading to a mixture of the ions CH3C[triple bond; length as m-dash]C---O- and CH2=CCHO. The ketenyl and methyl ketenyl ions do not exchange hydrogen for deuterium with D2O or CH3OD, but they do react with CS2 and COS to form the corresponding thioketenyl anions, HC[triple bond; length as m-dash]C---S- and CH3C=C---S-. The ions CH2=CC(O)CH3 and CH2=CCHO exchange one and three hydrogen atoms for deuterium atoms with D2O respectively, and react with CS2 to form thioketenyl anions by addition and loss of thioformaldehyde. Possible mechanisms for these reactions are discussed.

  9. Interactions of Sn2+ dopant ions located on surface sites of anatase-type TiO2 with adsorbed H2S molecules studied using 119Sn Mössbauer spectroscopic probe

    NASA Astrophysics Data System (ADS)

    Fabritchnyi, P. B.; Afanasov, M. I.; Astashkin, R. A.; Wattiaux, A.; Labrugère, C.

    2014-11-01

    Information provided by 119Sn2+ Mössbauer probe ions, located on surface sites of anatase-type TiO2 microcrystals exposed, at room temperature, to a H2S/H2 mixture, has permitted to conclude that the interaction of H2S molecules with the substrate surface leads to the dissociation of a fraction of the absorbate molecules. This gives rise to the formation of elemental sulfur which oxidizes the neighboring Sn2+ ions, the produced Sn4+ ions being found coordinated only by S2- anions. Subsequent exposure to ambient air is shown to result in the oxidation of S2- ions, yielding both S0 and SO42--like species, with concomitant stabilization of Sn4+ ions in coordination polyhedra where they are surrounded by only oxygen anions.

  10. Detecting the mass and position of an adsorbate on a drum resonator

    PubMed Central

    Zhang, Y.; Zhao, Y. P.

    2014-01-01

    The resonant frequency shifts of a circular membrane caused by an adsorbate are the sensing mechanism for a drum resonator. The adsorbate mass and position are the two major (unknown) parameters determining the resonant frequency shifts. There are infinite combinations of mass and position which can cause the same shift of one resonant frequency. Finding the mass and position of an adsorbate from the experimentally measured resonant frequencies forms an inverse problem. This study presents a straightforward method to determine the adsorbate mass and position by using the changes of two resonant frequencies. Because detecting the position of an adsorbate can be extremely difficult, especially when the adsorbate is as small as an atom or a molecule, this new inverse problem-solving method should be of some help to the mass resonator sensor application of detecting a single adsorbate. How to apply this method to the case of multiple adsorbates is also discussed. PMID:25294971

  11. Orbital tomography for highly symmetric adsorbate systems

    NASA Astrophysics Data System (ADS)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  12. Surface Ionization Gas Detection at SnO2 Surfaces

    NASA Astrophysics Data System (ADS)

    Krenkow, A.; Oberhüttinger, C.; Habauzit, A.; Kessler, M.; Göbel, J.; Müller, G.

    2009-05-01

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO2 surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  13. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  14. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  15. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    PubMed Central

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  16. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  17. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  18. Solid phase extraction with silicon dioxide microsphere adsorbents in combination with gas chromatography-electron capture detection for the determination of DDT and its metabolites in water samples.

    PubMed

    Zhou, Qingxiang; Wu, Wei; Xie, Guohong

    2013-01-01

    The goal of the present study was to investigate the feasibility of silicon dioxide (SiO(2)) microspheres without special modification to enrich dichlorodiphenyltrichloroethane (DDT) and its main metabolites, p,p'-dichlorodiphenyl-2,2-dichloroethylene (p,p'-DDD) and p,p'-dichlorodiphenyldichloroethylene (DDE) in combination with gas chromatography-electron-capture detection. The experimental results indicated that an excellent linear relationship between the recoveries and the concentrations of DDT and its main metabolites was obtained in the range of 0.2-30 ng mL(-1) and the correlation coefficients were in the range of 99.96-99.99%. The detection limits based on the ratio of signal to the baseline noise (S/N = 3) were 2.2, 2.9, 3.8 and 4.1 ng L(-1) for p,p'-DDD, p,p'-DDT, o,p'-DDT, and p,p'-DDE, respectively. The precisions of the proposed method were all below 10% (n = 6). Four real water samples were utilized for validation of the proposed method, and satisfactory spiked recoveries in the range of 72.4-112.9% were achieved. These results demonstrated that the developed method was a simple, sensitive, and robust analytical method for the monitoring of pollutants in the environment. PMID:23356340

  19. Solid phase extraction with silicon dioxide microsphere adsorbents in combination with gas chromatography-electron capture detection for the determination of DDT and its metabolites in water samples.

    PubMed

    Zhou, Qingxiang; Wu, Wei; Xie, Guohong

    2013-01-01

    The goal of the present study was to investigate the feasibility of silicon dioxide (SiO(2)) microspheres without special modification to enrich dichlorodiphenyltrichloroethane (DDT) and its main metabolites, p,p'-dichlorodiphenyl-2,2-dichloroethylene (p,p'-DDD) and p,p'-dichlorodiphenyldichloroethylene (DDE) in combination with gas chromatography-electron-capture detection. The experimental results indicated that an excellent linear relationship between the recoveries and the concentrations of DDT and its main metabolites was obtained in the range of 0.2-30 ng mL(-1) and the correlation coefficients were in the range of 99.96-99.99%. The detection limits based on the ratio of signal to the baseline noise (S/N = 3) were 2.2, 2.9, 3.8 and 4.1 ng L(-1) for p,p'-DDD, p,p'-DDT, o,p'-DDT, and p,p'-DDE, respectively. The precisions of the proposed method were all below 10% (n = 6). Four real water samples were utilized for validation of the proposed method, and satisfactory spiked recoveries in the range of 72.4-112.9% were achieved. These results demonstrated that the developed method was a simple, sensitive, and robust analytical method for the monitoring of pollutants in the environment.

  20. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    PubMed Central

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-01-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis. PMID:25960309

  1. Self-organization of monodentate organic molecules on a solid surface - A Monte Carlo and transfer-matrix study

    NASA Astrophysics Data System (ADS)

    Akimenko, S. S.; Gorbunov, V. A.; Myshlyavtsev, A. V.; Fefelov, V. F.

    2015-09-01

    A lattice gas model of monodentate organic molecules on a solid surface in terms of pair directional interactions has been developed. As a special case of the constructed model the self-organization of CaTBPP on Au(111) surface was studied with Monte Carlo and transfer-matrix methods in the grand canonical ensemble. It is shown that the adsorbed molecules tend to form dimers when the hydrogen bonding between the molecules is relatively strong. Phase behavior of the system in this case can be characterized as the hierarchical self-assembly process. The self-assembly is led by the repulsive interactions between the building blocks those are the dimers of the adsorbate molecules stabilized with the strong hydrogen bonding. When hydrogen bonding is weak, a cross-like structure appears at moderate surface coverages.

  2. [Magnetic multi-walled carbon nanotubes as a solid phase extraction adsorbent for the determination of 13 phthalate acid esters in water samples by gas chromatography-mass spectrometry].

    PubMed

    Fu, Shanliang; Ding, Li; Zhu, Shaohua; Jiao, Yanna; Gong, Qiang; Chen, Jitao; Wang, Libing

    2011-08-01

    A method based on solid phase extraction (SPE) with magnetic multi-walled carbon nanotubes (MWCNTs) as adsorbent was developed for the determination of 13 phthalate acid esters (PAEs) in water samples by gas chromatography-mass spectrometry (GC-MS). The factors affecting the extraction efficiency, such as extraction time, pH of water sample, desorption solvent, and desorption time, were carefully investigated. The optimized conditions were as follows: extraction time, 10 min; pH of water samples, 5 - 7; desorption solvent, 2 mL acetone; desorption time, 5 min. The extraction efficiencies were 89.7% - 100.5% under the optimized conditions. The method was sensitive with the detection limits (S/N = 3) between 0.08 -0.47 microg/L for the 13 PAEs. The developed method was successfully applied for the analysis of tap water, bottle drinking water and lake water, and none of the 13 PAEs was detected. The recoveries ranged from 84.5% to 107.5% for the 3 real spiked samples, and the relative standard deviations were between 1.9% and 12.8%. The developed method has proved convenient, time-saving, accurate, sensitive, and environmental-friendly, and can be used for the determination of PAEs in water samples.

  3. Luminescence characteristics of Xe{sub 2}Cl excimer molecules under pumping the dense Xe-CCl{sub 4} gas mixtures with a pulsed electron beam

    SciTech Connect

    Mis'kevich, A I; Jinbo, Guo

    2013-05-31

    Temporal and spectral characteristics of the luminescence of dense Xe-CCl{sub 4} gas mixtures of different composition, excited by a 5-ns pulsed electron beam, were measured. The energy of the electrons amounted to 150 keV and the electron beam current pulse amplitude was 5 A. The gas mixtures were used containing Xe (38-700 Torr) and CCl{sub 4} (0.03-0.3 Torr). The studies were performed within the wavelength range 200-1200 nm using a MAYA-2000Pro diffraction grating spectrometer and a RIGOL DS 5022 ME fast digital oscilloscope. The luminescence lifetimes of the excimer molecules XeCl* (band with {lambda}{sub max} = 308 nm) and Xe{sub 2}Cl* (band with {lambda}{sub max} = 486 nm) were measured, as well as the constants of quenching by the components of the gas mixture for Xe{sub 2}Cl* molecules. A model of plasma-chemical processes for dense Xe-CCl{sub 4} gas mixtures with a very low content of the CCl{sub 4} donor is proposed. It is shown that in such 'poor' mixtures Xe{sub 2}Cl* molecules are mainly produced as a result of recombination of the Xe{sub 2}{sup +} and Cl{sup -} ions. (active media)

  4. Selective detection of toxic cyanogen gas in the presence of O2, and H2O molecules using a AlN nanocluster

    NASA Astrophysics Data System (ADS)

    Solimannejad, Mohammad; Kamalinahad, Saeedeh; Shakerzadeh, Ehsan

    2016-08-01

    The interaction of cyanogen molecule with Al12N12 nanocage has been studied using density functional theory (DFT) at CAM-B3LYP/6-31+G(d) level. Geometric, electronic structure and natural bond orbitals (NBO) analysis display that adsorption of cyanogen onto exterior surface of Al12N12 is physisorption with adsorption energy (Eads) equal to -55.36 kJ/mol. UV-vis study shows a high intensity peak in 388.9 nm due to interaction of gas with nanocage. It is expected that Al12N12 will be used in designing novel materials for potential applications to detect toxic cyanogen molecule.

  5. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  6. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  7. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  8. High-voltage thermionic polaron emission in the presence of adsorbed nonmetal nanofilm on a cathode

    NASA Astrophysics Data System (ADS)

    Barengolts, Yu. A.; Beril, S. I.

    2016-07-01

    The equation of thermionic emission has been derived, which takes into account the presence of thin films of adsorbed gas-environment molecules on a cathode under conditions of high-voltage gas discharge. It is shown that the consideration of electron polaron tunneling mechanism leads to a significant (by more than an order of magnitude) decrease in the emission-current density. A comparison with the classical Richardson-Schottky equation is performed. The role of the polaron effect is shown to strongly increase with an increase in the applied electric field strength and a decrease in temperature, which is due to an increase in the electron work function because of polaron nature.

  9. Study of Molecular-Shape Selectivity of Zeolites by Gas Chromatography

    ERIC Educational Resources Information Center

    Chao, Pei-Yu; Chuang, Yao-Yuan; Ho, Grace Hsiuying; Chuang, Shiow-Huey; Tsai, Tseng-Chang; Lee, Chi-Young; Tsai, Shang-Tien; Huang, Jun-Fu

    2008-01-01

    A sorption experiment using a gas chromatograph is described that can help students understand the "molecular-shape selectivity" behavior of zeolites in the subnano regime. Hexane isomers are used as probe molecules to demonstrate the sorption phenomena. In the experiment, a zeolite adsorbs certain hexane isomers with molecular sizes smaller than…

  10. Effective Thermal Conductivity of Adsorbent Packed Beds

    NASA Astrophysics Data System (ADS)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  11. Synthesis of Pure and N-substituted Cyclic Hydrocarbons (e.g. Pyrimidine) via Gas-Phase Ion-Molecule Reactions

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Peverati, Roberto; Head-Gordon, Martin; Lee, Timothy J.

    2015-08-01

    Large polyatomic carbonaceous molecules, known as polycyclic aromatic hydrocarbons, are known to exist in the outflows of carbon stars. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions, including positive and negative ions, are in relative abundance in the high radiation fields present under such conditions. Hence, barrierless ion-molecule interactions may play a major role in guiding molecules towards each other and initiating reactions. We study these condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. By employing accurate quantum chemical methods we have investigated the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules. We have also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge as well as how nitrogen atoms are incorporated into the carbon ring during growth. Specifically, we explored the mechanisms by which the synthesis of pyrimidine will be feasible in the gas phase in conjunction with ion-mobility experiments. We have used accurate ab initio coupled cluster theory, Møller-Plesset and Z-averaged perturbation theories, density functional theory, and coupled cluster theory quantum chemical methods together with large correlation consistent basis sets in these investigations. We found that a series of hydrocarbons with a specific stoichiometric composition prefers cyclic molecule formation rather than chains. Some of the association products we investigated have large oscillator strengths for charge-transfer type electronic excitations in the near infrared and visible regions of

  12. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+).

    PubMed

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl(3)(+) was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl(3)(+) could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl(3)(+) with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M+CCl(3) - HCl](+) for aromatic hydrocarbons, [M - OH](+) for saturated cyclic ether, ketone, and alcoholic compounds, [M - H](+) ion for monoterpenes, M(·+) for sesquiterpenes, [M - CH(3)CO](+) for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl(3)(+) were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds. PMID:21952897

  13. Ion-Molecule Reaction of Gas-Phase Chromium Oxyanions: CrxOyHz- + H2O

    SciTech Connect

    Gianotto, Anita Kay; Hodges, Brittany DM; Benson, Michael Timothy; Harrington, Peter Boves; Appelhans, Anthony David; Olson, John Eric; Groenewold, Gary Steven

    2003-08-01

    Chromium oxyanions having the general formula CrxOyHz- play a key role in many industrial, environmental, and analytical processes, which motivated investigations of their intrinsic reactivity. Reactions with water are perhaps the most significant, and were studied by generating CrxOyHz- in the gas phase using a quadrupole ion trap secondary ion mass spectrometer. Of the ions in the Cr1OyHz envelope (y = 2, 3, 4; z = 0, 1), only CrO2- was observed to react with H2O, producing the hydrated CrO3H2- at a slow rate (~0.07% of the ion-molecule collision constant at 310 K). CrO3-, CrO4-, and CrO4H- were unreactive. In contrast, Cr2O4-, Cr2O5-, and Cr2O5H2- displayed a considerable tendency to react with H2O. Cr2O4- underwent sequential reactions with H2O, initially producing Cr2O5H2- at a rate that was ~7% efficient. Cr2O5H2- then reacted with a second H2O by addition to form Cr2O6H4- (1.8% efficient) and by OH abstraction to form Cr2O6H3- (0.6% efficient). The reactions of Cr2O5- were similar to those of Cr2O5H2-: Cr2O5- underwent addition to form Cr2O6H2- (3% efficient) and OH abstraction to form Cr2O6H- (<1% efficient). By comparison, Cr2O6- was unreactive with H2O, and in fact, no further H2O addition could be observed for any of the Cr2O6Hz- anions. Hartree-Fock ab initio calculations showed that reactive CrxOyHz- species underwent nucleophilic attack by the incoming H2O molecules, which produced an initially formed adduct in which the water O was bound to a Cr center. The experimental and computational studies suggested that Cr2OyHz- species that have bi- or tricoordinated Cr centers are susceptible to attack by H2O; however, when the metal becomes tetracoordinate, reactivity stops. For the Cr2OyHz- anions the lowest energy structures all contained rhombic Cr2O2 rings with pendant O atoms and/or OH groups. The initially formed [Cr2Oy- + H2O] adducts underwent H rearrangement to a gem O atom to produce stable dihydroxy structures. The calculations indicated that

  14. Adsorption of monomers on microspherical structures of thermal heterocomplex molecules from amino ACIDS

    NASA Astrophysics Data System (ADS)

    Honda, Hajime; Sakurazawa, Shigeru; Dekikimura, H.; Imai, Eiichi; Matsuno, Koichiro

    1995-10-01

    The surface of a microspherical structure formed in the aqueous suspension of thermal heterocomplex molecules made by heating aspartic acid and proline can adsorb basic amino acids such as histidine, lysine and arginine. It can also adsorb adenine, cytosine, adenosine and cytidine. Electrostatic interactions acting between those monomers to be adsorbed and the adsorbing surface are responsible for the adsorption.

  15. Effect of the internal motions of an adsorbate on the characteristics of adsorption for structurally heterogenous surfaces of slit-like pores

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2016-01-01

    The effect of internal motions of an adsorbate on the local characteristics of adsorption and layering phase diagrams are studied for structurally heterogeneous surfaces of slit-like pores. A molecular model describing adsorbate distributions inside slit-like pores, which is based on discrete distribution functions (lattice gas model), is used for the calculation. Molecular distributions are calculated by the Lennard-Jones potential (12-6) in a quasi-chemical approximation reflecting the effects of direct correlations of interacting particles and for the combined interaction of an adsorbate with walls in the average potential approximation (9-3) and the short-range Lennard-Jones potential for structurally heterogeneous surface areas. The conclusion is made that internal motions reflect the vibrational motion of molecules within a modified quasi-dimer model and a displacement of the adsorbate during its translational motion inside cells. It was found that the taking into account of internal motions decreases the critical temperature of adsorbate layering in slit-like pores.

  16. Kronecker-product periodic systems of small gas-phase molecules and the search for order in atomic ensembles of any phase.

    PubMed

    Hefferlin, Ray

    2008-11-01

    The periodic law, manifested in the chart of the elements, is so fundamental in chemistry and related areas of physics that the question arises "Might periodicity among molecules also be embodied in a periodic system?" This review paper details how a particular periodic system of gas-phase diatomic molecules, allowing for the forecasting of thousands of new data, was developed. It can include ionized and even quarked-nuclei molecules and it coincides with locality (averaging) and the additivity found in some data; it has interesting vector properties, and it may be related in challenging ways to partial order. The review then explains how periodic systems for triatomic and four-atomic species are evolving along a similar path. The systems rest largely upon exhaustive comparisons of tabulated data, relate to some extent to the octet rule, and include reducible representations of the dynamic group SO(4) in higher spaces. Finally, the paper shows how periodicity can be quantified in data for larger molecules. Data for properties of homologous or substituted molecules, in any phase, are quantified with a vector index, and the index for one set can be transformed into that for another set.

  17. Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond

    PubMed Central

    Staniforth, Michael; Stavros, Vasilios G.

    2013-01-01

    In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach. PMID:24204191

  18. Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond.

    PubMed

    Staniforth, Michael; Stavros, Vasilios G

    2013-11-01

    In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach.

  19. Boron nitride as a selective gas adsorbent

    SciTech Connect

    Janik, J.F.; Ackerman, W.C.; Paine, R.T.; Hua, D.W.; Maskara, A.; Smith, D.M. )

    1994-02-01

    A series of eight porous boron nitride materials with nitrogen/BET surface areas of 437-712 m[sup 2]/g have been produced using polymeric precursors varied by systematic synthesis modifications. All samples exhibit type I isotherms indicating that a majority of the porosity occurs in pores with radius less than 1.0 nm. Carbon dioxide adsorption at 273 K was analyzed using the Dubinin-Radushkevich (D-R) and Dubinin-Astakov (D-A) equations. Significant differences between BET/N[sub 2] and D-R/CO[sub 2] surface areas are observed. Adsorption of carbon dioxide and methane is measured at 273 K over the pressure range of 0-800 Torr, and significant differences in adsorption selectivity are observed. Although all eight samples have similar BET surface areas, the carbon dioxide uptake at 273 K and 800 Torr varies from 9.5 to 125 cm[sup 3]/g. Differences in the chemical and physical structure of the samples are probed with Fourier transform IR, X-ray diffraction, and small angle X-ray scattering measurements. CH[sub 4]/CO[sub 2] selectivity correlates with both the radius of gyration obtained from SAXS and the D-A coefficient from CO[sub 2] adsorption. 16 refs., 9 figs., 1 tab.

  20. Neutral gas temperature measurements of high-power-density fluorocarbon plasmas by fitting swan bands of C{sub 2} molecules

    SciTech Connect

    Bai Bo; Sawin, Herbert H.; Cruden, Brett A.

    2006-01-01

    The neutral gas temperature of fluorocarbon plasmas in a remote toroidal transformer-coupled source was measured to be greater than 5000 K, under the conditions of a power density greater than 15 W/cm{sup 3} and pressures above 2 torr. The rovibrational bands of C{sub 2} molecules (swan bands, d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) were fitted to obtain the rotational temperature that was assumed to equal the translational temperature. This rotational-translational temperature equilibrium assumption was supported by the comparison with the rotational temperature of second positive system of added N{sub 2}. For the same gas mixture, the neutral gas temperature is nearly a linear function of plasma power, since the conduction to chamber wall and convection are the major energy-loss processes, and they are both proportional to neutral gas temperature. The dependence of the neutral gas temperature on O{sub 2} flow rate and pressure can be well represented through the power dependence, under the condition of constant current operation. An Arrhenius type of dependence between the etching rate of oxide film and the neutral gas temperature is observed, maybe indicating the importance of the pyrolytic dissociation in the plasma formation process when the temperature is above 5000 K.

  1. Singlet and triplet Bardeen-Cooper-Schrieffer pairs in a gas of two-species fermionic polar molecules

    SciTech Connect

    Shi, T.; Zhang, J.-N.; Sun, C.-P.; Yi, S.

    2010-09-15

    Taking into account the deformation of the Fermi surface, we investigate the spin-singlet and -triplet BCS pairings in a mixture of fermionic polar molecules with two different hyperfine states. In particular, we explore the relation between the critical temperatures and the Fock-exchange interaction. We also show that, by tuning short-range interaction between interspecies molecules, the singlet- and triplet-paired superfluids may coexist.

  2. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  3. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time.

  4. Nitrogen Molecule Adsorption on Cationic Tantalum Clusters and Rhodium Clusters and Desorption from Their Nitride Clusters Studied by Thermal Desorption Spectrometry.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-06-23

    Adsorption and desorption of N2 molecules onto cationic Ta and Rh clusters in the gas phase were investigated in the temperature range of 300-1000 K by using thermal desorption spectrometry in combination with density functional theory (DFT) calculations. For Ta6(+), the first N2 molecule was found to adsorb dissociatively, and it remained adsorbed when Ta6(+)N2 was heated to 1000 K. In contrast, the second and the subsequent N2 molecules adsorbed weakly as a molecular form and were released into the gas phase when heated to 600 K. The difference can be explained in terms of the activation barrier between the molecular and dissociative forms. On the other hand, when Ta clusters were generated in the presence of N2 gas by the laser ablation of a Ta rod, isomeric clusters, TanNm(+), having heat resistivity were formed. For Rh6(+), N2 adsorbed molecularly at 300 K and desorbed totally at 450 K. These results were consistent with the DFT calculations, indicating that the dissociative adsorption of N2 is endothermic. PMID:27276438

  5. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry

    PubMed Central

    Silber, David; Kowalski, Piotr M.; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-01-01

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface. PMID:27686286

  6. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry

    NASA Astrophysics Data System (ADS)

    Silber, David; Kowalski, Piotr M.; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-01

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface.

  7. Structure and Reactivity of Adsorbed Fibronectin Films on Mica

    PubMed Central

    Hull, James R.; Tamura, Glen S.; Castner, David G.

    2007-01-01

    Understanding the interactions of adsorbed fibronectin (Fn) with other biomolecules is important for many biomedical applications. Fn is found in almost all body fluids, in the extracellular matrix, and plays a fundamental role in many biological processes. This study found that the structure (conformation, orientation) and reactivity of Fn adsorbed onto mica is dependent on the Fn surface concentration. Atomic force microscopy and x-ray photoelectron spectroscopy were used to determine the surface coverage of adsorbed Fn from isolated molecules at low surface coverage to full monolayers at high surface coverage. Both methods showed that the thickness of Fn film continued to increase after the mica surface was completely covered, consistent with Fn adsorbed in a more upright conformation at the highest surface-Fn concentrations. Time-of-flight secondary ion mass spectrometry showed that relative intensities of both sulfur-containing (cystine, methionine) and hydrophobic (glycine, leucine/isoleucine) amino acids varied with changing Fn surface coverage, indicating that the conformation of adsorbed Fn depended on surface coverage. Single-molecule force spectroscopy with collagen-related peptides immobilized onto the atomic force microscope tip showed that the specific interaction force between the peptide and Fn increases with increasing Fn surface coverage. PMID:17890402

  8. Leonardite char adsorbents

    DOEpatents

    Knudson, C.L.

    1993-10-19

    A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750 C in the presence of a flow of an inert gas. 1 figure.

  9. Leonardite char adsorbents

    DOEpatents

    Knudson, Curtis L.

    1993-01-01

    A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750.degree. C. in the presence of a flow of an inert gas.

  10. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    PubMed

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  11. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    PubMed

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes. PMID:26523809

  12. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-01

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  13. Pine Pyrolysis Vapor Phase Upgrading Over ZSM-5 Catalyst: Effect of Temperature, Hot Gas Filtration, and Hydrogen Donor Molecule on the Rate of Deactivation of Catalyst

    SciTech Connect

    Mukarakate, C.; Zhang, X.; Nimlos, M.; Robichaud, D.; Donohoe, B.

    2013-01-01

    The conversion of primary vapors from pine pyrolysis over a ZSM-5 catalyst was characterized using a micro-reactor coupled to a molecular beam mass spectrometer (MBMS) to allow on-line measurement of the upgraded vapors. This micro-reacor-MBMS system was used to investigate the effects of hot gas filtration, temperature and hydrogen donor molecules on the rate of deactivation of the UPV2 catalyst. Our results show that the life of catalyst is significantly improved by using better filtration. Temperature had an effect on both product distribution and catalyst deactivation. The hydrogen donor molecules (HDM) used in this study show better reduction in catalyst deactivation rates at high temperatures.

  14. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOEpatents

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  15. Surface Ionization Gas Detection at SnO{sub 2} Surfaces

    SciTech Connect

    Krenkow, A.; Oberhuettinger, C.; Habauzit, A.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-05-23

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO{sub 2} surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  16. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre

    2016-05-01

    Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

  17. Laboratory Studies on the Formation of Carbon-Bearing Molecules in Extraterrestrial Environments: From the Gas Phase to the Solid State

    NASA Technical Reports Server (NTRS)

    Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.

    2006-01-01

    A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides

  18. One-dimensional channels constructed from per-hydroxylated pillar[6]arene molecules for gas and vapour adsorption.

    PubMed

    Ogoshi, Tomoki; Sueto, Ryuta; Yoshikoshi, Kumiko; Yamagishi, Tada-aki

    2014-12-14

    Per-hydroxylated pillar[6]arene molecules formed highly ordered one-dimensional channels with a diameter of 6.7 Å. The channels can capture various gases, such as CO2, N2 and n-butane, and vapours of saturated hydrocarbons such as n-hexane and cyclohexane. PMID:25339195

  19. Intercomparison of stratospheric water vapor observed by satellite experiments - Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.

  20. Nature, strength, and consequences of indirect adsorbate interactions on metals

    SciTech Connect

    BOGICEVIC,ALEXANDER; OVESSON,S.; HYLDGAARD,P.; LUNDQVIST,B.I.; JENNISON,DWIGHT R.

    2000-02-14

    Atoms and molecules adsorbed on metals affect each other even over considerable distances. In a tour-de-force of density-functional methods, the authors establish the nature and strength of such indirect interactions, and explain for what adsorbate systems they can critically affect important materials properties. These perceptions are verified in kinetic Monte Carlo simulations of epitaxial growth, and help rationalize a cascade of recent experimental reports on anomalously low diffusion prefactors. The authors focus their study on two metal systems: Al/Al(111) and Cu/Cu(111).

  1. First-principles study of NO adsorbed Ni(100) surface.

    PubMed

    Mu, X; Sun, X; Li, H M; Ding, Z J

    2010-11-01

    The geometric, electronic and magnetic properties of NO molecules adsorbed on the Ni(100) surface are investigated by the first-principles calculation on the basis of the density functional theory (DFT). The NO molecules are predicted to be chemisorbed at hollow site with an upright configuration at 0.125 ML and 0.5 ML coverages. After adsorption, the magnetic moment is significantly suppressed for surface Ni atom and almost quenched for NO molecule. This behavior can be reasonably explained by the difference of the backdonation process between the spin-up and spin-down electronic states, which is demonstrated by the spin-resolved differential charge density map.

  2. Calculation of the Standard Molal Thermodynamic Properties of Crystalline, Liquid, and Gas Organic Molecules at High Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Owens, Christine E.; Knox, Annette M.; Richard, Laurent

    1998-03-01

    Calculation of the thermodynamic properties of organic solids, liquids, and gases at high temperatures and pressures is a requisite for characterizing hydrothermal metastable equilibrium states involving these species and quantifying the chemical affinities of irreversible reactions of organic molecules in natural gas, crude oil, kerogen, and coal with minerals and organic, inorganic, and biomolecular aqueous species in interstitial waters in sedimentary basins. To facilitate calculations of this kind, coefficients for the Parameters From Group Contributions (PFGC) equation of state have been compiled for a variety of groups in organic liquids and gases. In addition, molecular weights, critical temperatures and pressures, densities at 25°C and 1 bar, transition, melting, and boiling temperatures ( Tt,Pr, Tm,Pr, and Tv,Pr, respectively) and standard molal enthalpies of transition (Δ H° t,Pr), melting (Δ H° m,Pr), and vaporization (Δ H° v,Pr) of organic species at 1 bar ( Pr) have been tabulated, together with an internally consistent and comprehensive set of standard molal Gibbs free energies and enthalpies of formation from the elements in their stable state at 298.15 K ( Tr) and Pr (Δ G° f and Δ H° f, respectively). The critical compilation also includes standard molal entropies ( S°) and volumes ( V°) at Tr and Pr, and standard molal heat capacity power function coefficients to compute the standard molal thermodynamic properties of organic solids, liquids, and gases as a function of temperature at 1 bar. These properties and coefficients have been tabulated for more than 500 crystalline solids, liquids, and gases, and those for many more can be computed from the equations of state group additivity algorithms. The crystalline species correspond to normal alkanes (C nH 2( n+1) ) with carbon numbers ( n, which is equal to the number of moles of carbon atoms in one mole of the species) ranging from 5 to 100, and 23 amino acids including glycine (C 2H 5NO

  3. Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshiteru; Shiraishi, Kenji; Kasu, Makoto; Sato, Hisashi

    2013-03-01

    We revealed a mechanism of hole doping into hydrogen (H) terminated diamond by the adsorption of inorganic molecules, based on first-principle calculation. Electron transfer from H-terminated diamond to adsorbate molecules was found in the case that the energy level of unoccupied molecular orbitals in an adsorbate molecule is below or around the valence band maximum of H-terminated diamond. The amount of doped hole carriers depends on the energy level of unoccupied molecular orbital of adsorbate molecules. The mechanism can explain the experimentally observed dependence of increasing hole sheet concentration at H-terminated diamond surface on the species of adsorbate molecule.

  4. Chemisorption on surfaces — an historical look at a representative adsorbate: carbon monoxide

    NASA Astrophysics Data System (ADS)

    Yates, John T.

    1994-01-01

    The study of the interaction of molecules with clean surfaces extends back to the work of Irving Langmuir. In this historical account, the development of selected experimental methods for the study of molecular adsorption will be discussed. This will be done by historically reviewing research on one of the most well-studied adsorbate molecules, carbon monoxide. Many of the modern surface science techniques have first been used to study chemisorbed carbon monoxide, and the CO molecule is employed even today as a test molecule for currently developing surface measurement instruments such as the low temperature STM. In addition to being a good test molecule for new surface measurement techniques, adsorbed carbon monoxide is one of the centrally important molecules in the field of heterogeneous catalysis where the production of synthetic fuels and useful organic molecules often depends on the catalytic behavior of the adsorbed CO molecule. Interestingly, the carbon monoxide molecule also serves as a bridge between surface chemistry on the transition metals and the field of organometallic chemistry. Concepts about the chemical bonding and the reactive behavior of CO chemisorbed on transition metal surfaces and CO bound in transition metal carbonyls link these two fields together in a significant manner. The carbon monoxide molecule has been the historical focal point of many endeavors in surface chemistry and surface physics, and research on adsorbed carbon monoxide well represents many of the key advances which characterize the first thirty years of the development of surface science.

  5. Air stripper VOC treatment using specialized adsorbents

    SciTech Connect

    Craven, C.N.; Blystone, P.G.; Grant, A.

    1994-12-31

    Abatement of volatile organic compound (VOC) emissions is required by federal, state and local regulatory agencies. Sources of VOC emissions include air stripping processes at groundwater remediation and industrial wastewater operations. The Purus A2000 system is an innovative emission control system that utilizes specialized adsorbent resins, on-site regeneration and solvent recovery for abatement of VOCs. This paper describes two applications in which air stripper off-gas is treated by the Purus A2000 Adsorption System. The first is a groundwater remediation pump-and-treat operation in which the air stripper off-gas contains chlorinated solvents. At the second site, benzene and styrene emissions from an industrial wastewater air stripper operation were successfully treated. At both sites the recovered solvent was recycled. Capital and operating costs will be compared to other treatment methods.

  6. Evaluating the Translational Temperature of Molecules Laser-desorbed after Online Concentration Using Multiphoton Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Miura, Shuhei; Uchimura, Tomohiro

    2016-01-01

    We describe a new technique for evaluating the translational temperature of molecules by applying online concentration via analyte adsorption/laser desorption, which is a sample-introduction technique for resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS). In the present study, analyte molecules were adsorbed via a narrowed capillary tip once, and then the flow of the carrier gas containing the analyte was stopped. After laser desorption, the ion signals induced by REMPI were monitored. Finally, the translational temperature could be calculated from the velocity distribution of the desorbed molecules by applying a Maxwell distribution. PMID:27682410

  7. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.

  8. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation. PMID:27264846

  9. Concentrating materials covered by molecular imprinted nanofiltration layer with reconfigurability prepared by a surface sol-gel process for gas-selective detection.

    PubMed

    Imahashi, Masahiro; Hayashi, Kenshi

    2013-09-15

    Sensors that recognize molecules are acquired for the comprehensive detection of great many kinds of gases. Adsorbents with high molecular recognition and condensation ability were developed for selective gas sensing with a molecular imprinting technique. Developed adsorbents have multilayer structures consisted of a chemically modified polymer layer on the surface of a substrate covered by a TiO2 gel monolayer by the surface sol-gel process. Ellipsometry measurements showed that the 6-nm-thick layers deposited on the substrate. Cavities of molecular templates were imprinted on these layers, and thus, the film acts as a molecular gas filter without concentrating ability, which could form specific binding sites for various molecules that confirmed using solid-phase microextraction and gas chromatography-mass spectrometry. Gases were selectively absorbed into an accumulating adsorption layer and other gas molecules were blocked by the nanofiltration. These developed adsorbents enabled effective concentration ability and the filtration of gases or odors. In addition, these filters possess the flexibility to be easily configured with specific surface properties to interact with volatile molecules under appropriate conditions. A successful multiplex filter, imprinted simultaneously on an adsorbent with different sites, was demonstrated.

  10. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  11. Search for organic molecules on Mars with the Gas Chromatograph-Mass Spectrometer of the Sample Analysis at Mars experiment onboard the MSL 2011 Curiosity rover

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Francois, P.; Coll, P. J.; Cabane, M.; Coscia, D.; Teinturier, S.; Stalport, F.; Buch, A.; Mahaffy, P. R.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.

    2012-12-01

    In past times, life might have emerged under Martian conditions milder than the present ones, and left some remnants at the surface. Even if this did not happen, prebiotic molecules may have been preserved in the soil, and they might be similar to those that prevailed on the Earth surface some 3.5 to 4 billion years ago. NASA's MSL2011 rover Curiosity will explore the surface and subsurface of Mars, seeking traces of prebiotic or biological activity. Organic signatures are among the main signatures of interest in this frame, and they will be among the main targets of the Gas Chromatograph Quadrupole Mass Spectrometer (GC-QMS) which constitutes the core of the Sample Analysis at Mars (SAM) analytical laboratory, developed by the NASA/GSFC in collaboration with the University of Paris (Fr) and the JPL. The main goal of this instrumentation is indeed to determine molecular abundances and isotopic ratios of organic molecules present in the collected samples, by analyzing gases either sampled from the atmosphere, or obtained from soil processing, either by physical heating or chemical reactions. In order to prepare for the interpretation of the data obtained in situ with the GCQMS of SAM, and due to the complexity of this instrumentation, a number of calibrations are required to determine the exact behaviour of each part of this instrumentation, that is required to correctly treat the signal and obtain a correct interpretation of it. In order to prepare the SAM-GC in situ results treatment and interpretation, it is necessary: (1) to determine the instrument ability to detect targets molecules under the instrument operating conditions and (2) to create data bases to help for the identification and quantification of the molecules that could be detected with SAM. With this aim we first selected molecules which might be analyzed with SAM-GC using the following criteria: (1) abundance at the Mars surface (2) astrobiological interest, (3) formation during the sample

  12. A Robust Highly Interpenetrated Metal−Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules

    SciTech Connect

    Zhang, Zhangjing; Xiang, Shengchang; Chen, Yu-Sheng; Ma, Shengqian; Lee, Yongwoo; Phely-Bobin, Thomas; Chen, Banglin

    2010-10-22

    A three-dimensional microporous metal-organic framework, Zn{sub 5}(BTA){sub 6}(TDA){sub 2} {center_dot} 15DMF {center_dot} 8H{sub 2}O (1; HBTA = 1,2,3-benzenetriazole; H{sub 2}TDA = thiophene-2,5-dicarboxylic acid), comprising pentanuclear [Zn{sub 5}] cluster units, was obtained through an one-pot solvothermal reaction of Zn(NO{sub 3}){sub 2}, 1,2,3-benzenetriazole, and thiophene-2,5-dicarboxylate. The activated 1 displays type-I N{sub 2} gas sorption behavior with a Langmuir surface area of 607 m{sup 2} g{sup -1} and exhibits interesting selective gas adsorption for C{sub 2}H{sub 2}/CH{sub 4} and CO{sub 2}/CH{sub 4}.

  13. Laser-induced gas-surface interactions

    NASA Astrophysics Data System (ADS)

    Chuang, T. J.

    Chemical reactions in homogeneous systems activated by laser radiation have been extensively investigated for more than a decade. The applications of lasers to promote gas-surface interactions have just been realized in recent years. The purpose of this paper is to examine the fundamental processes involved in laser-induced gas-surface chemical interactions. Specifically, the photon-enhanced adsorption, adsorbate-adsorbate and adsorbate-solid reactions, product formation and desorption processes are discussed in detail. The dynamic processes involved in photoexcitation of the electronic and vibrational states, the energy transfer and relaxation in competition with chemical interactions are considered. These include both single and multiple photon adsorption, and fundamental and overtone transitions in the excitation process, and inter- and intra-molecular energy transfer, and coupling with phonons, electron-hole pairs and surface plasmons in the energy relaxation process. Many current experimental and theoretical studies on the subject are reviewed and discussed with the goal of clarifying the relative importance of the surface interaction steps and relating the resulting concepts to the experimentally observed phenomena. Among the many gas-solid systems that have been investigated, there has been more extensive use of CO adsorbed on metals, and SF 6 and XeF 2 interactions with silicon as examples to illustrate the many facets of the electronically and vibrationally activated surface processes. Results on IR laser stimulated desorption of C 5H 5N and C 5D 5N molecules from various solid surfaces are also presented. It is clearly shown that rapid intermolecular energy exchange and molecule to surface energy transfer can have important effects on photodesorption cross sections and isotope selectivities. It is concluded that utilization of lasers in gas-surface studies not only can provide fundamental insight into the mechanism and dynamics involved in heterogeneous

  14. Carbon adsorbents from products of solid fuel processing

    SciTech Connect

    Pokonova, Yu.V.; Grabovskii, A.I.

    1995-01-10

    Total shale phenols (mixture of alkylresorcinols) or their solution in commercial-grade furfural can be used for forming carbon adsorbents with high mechanical strength (up to 97%), high microporosity (up to 0.41 cm{sup 3}{center_dot}cm{sup -3}), and higher sorption capacity. Samples with medium burnout exhibit higher selectivity (than those molded from conventional wood tar) in the recovery of noble metals from multicomponent metal salt solutions. In these parameters they surpass commercial adsorbents as well. Samples with low burnout exhibit high selectivity and separation ability with respect to gas mixtures.

  15. High capacity cryogel-type adsorbents for protein purification.

    PubMed

    Singh, Naveen Kumar; Dsouza, Roy N; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2014-08-15

    Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties.

  16. High capacity cryogel-type adsorbents for protein purification.

    PubMed

    Singh, Naveen Kumar; Dsouza, Roy N; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2014-08-15

    Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties. PMID:24980092

  17. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  18. Highly Sensitive Capacitive Gas Sensing at Ionic Liquid-Electrode Interfaces.

    PubMed

    Wang, Zhe; Guo, Min; Mu, Xiaoyi; Sen, Soumyo; Insley, Thomas; Mason, Andrew J; Král, Petr; Zeng, Xiangqun

    2016-02-01

    We have developed an ultrasensitive gas-detection method based on the measurement of a differential capacitance of electrified ionic liquid (IL) electrode interfaces in the presence and absence of adsorbed gas molecules. The observed change of differential capacitance has a local maximum at a certain potential that is unique for each type of gas, and its amplitude is related to the concentration of the gas molecules. We establish and validate this gas-sensing method by characterizing SO2 detection at ppb levels with less than 1.8% signal from other interfering species (i.e., CO2, O2, NO2, NO, SO2, H2O, H2, and cyclohexane, tested at the same concentration as SO2). This study opens a new avenue of utilizing tunable electrified IL-electrode interfaces for selective sensing of molecules with a kinetic size resolution of 0.1 Å.

  19. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  20. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  1. Concentration quenching of rhodamine 6G fluorescence in the adsorbed state

    SciTech Connect

    Zemskii, V.I.; Meshkovskii, I.K.; Sokolov, I.A.

    1985-08-01

    Porous glass to which molecules of organic dyes have been added is a promising active solid medium for tunable lasers. The spectroluminescent characteristics of samples of porous glass activated with rhodamine 6G molecules have been studied. It is shown that molecules of rhodamine 6G adsorbed in porus glass retain their capacity for fluorescence with a high quantum yield. Fixation of rhodamine 6G molecules on the pore walls interferes with their association in the concentration range up to 10/sup 19/ cm/sup -3/. Concentration quenching of fluorescence is observed starting with a concentration of dye molecules of 5 x 10/sup 15/ cm/sup -3/; this is explained by inductive-resonance energy transfer between monomeric molecules under conditions of inhomogeneous broadening of the electronic spectra of the adsorbed molecules.

  2. Sticking of Molecules on Nonporous Amorphous Water Ice

    NASA Astrophysics Data System (ADS)

    He, Jiao; Acharyya, Kinsuk; Vidali, Gianfranco

    2016-05-01

    Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on nonporous amorphous solid water. The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King-Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas-grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.

  3. Controlled growth of conical nickel oxide nanocrystals and their high performance gas sensing devices for ammonia molecule detection.

    PubMed

    Wang, Jian; Yang, Fan; Wei, Xiaowei; Zhang, Yafei; Wei, Liangming; Zhang, Jianjun; Tang, Qifeng; Guo, Biao; Xu, Lei

    2014-08-21

    NiO nanocones with good symmetry and highly ordered structure on NiO foil substrate have been successfully fabricated via a facile wet chemical approach combined with subsequent high temperature oxidation. These organized conical superstructures grow only along a certain direction and be controlled via the self-assembly and oriented attachment of a nucleus, which mainly rely on the similar surface energies and the extent of lattice matching of the oriented attached surfaces. During high temperature oxidation, the electric field created via the Ni(2+) and O(2-) facilitates Ni(2+) diffusion outward along the grain boundaries and O(2-) diffusion inward toward to meet the Ni(2+) ions, forming NiO. The as-grown NiO nanocones are 50-350 nm in diameter and 50-400 nm in height. The tip diameter of the nanocone is about 30 nm and the apex angle of the nanocone is about 40°. Meanwhile, we systematically investigated the gas sensing properties of the sensors based on the as-fabricated NiO foil covered with nanocone arrays for ammonia detection at room temperature. The results show that the gas sensing devices have outstanding sensitivity, reproducibility and selectivity, which are mainly because of the excellent connection between the NiO sensing materials and the Au electrodes, the strong electron donating ability of ammonia and the large active surface of selective physisorption for ammonia.

  4. A DFT study on the adsorption of CO and CO{sub 2} molecules on Pt{sub 4} and Ir{sub 4} clusters

    SciTech Connect

    Munieswaran, P.; Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh; Saranya, C.; Mahendran, M.

    2015-06-24

    We analyze the electronic structure and adsorption binding energy of CO and CO{sub 2} molecules adsorbed on Ir{sub 4} and Pt{sub 4} clusters by using Density functional theory (DFT). It is found that the Ir{sub 4} cluster has more adsorption binding energy than Pt{sub 4} cluster. We show that the Ir and Ir - supported materials are good catalytic materials and could be useful for gas sensor applications.

  5. Thermodynamics of the adsorption of organic molecules on graphitized carbon black modified with a monolayer of 5-hydroxy-6-methyluracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ivanov, S. P.; Shaikhitdinova, Yu. F.; Kudasheva, F. Kh.

    2016-10-01

    Thermodynamic characteristics of the adsorption of alkanes, alcohols, arenes, and esters on graphitized carbon black with a deposited monolayer (0.17%) of 5-hydroxy-6-methyluracil are studied by means of inverse gas chromatography at infinite dilution. It is established that size effects (violation of the additivity of molar changes in internal energy and the entropy of adsorption for pairs of molecules of one homologous series that differ by one methyl group) are observed when organic molecules are adsorbed on the surface of the resulting adsorbent. The size effects are similar to those observed when 1% 5-hydroxy-6-methyluracil is deposited on graphitized carbon black. It is concluded that the observed violation of additivity is associated with cavities in the supramolecular structure.

  6. Gas-phase NO2 and NO3 clustering with C2H5ONO2 and SO2 molecules - Experimental and semi-empirical MO studies

    NASA Astrophysics Data System (ADS)

    Wlodek, S.; Luczynski, Z.; Wincel, H.

    1983-04-01

    The results of high-pressure continuous-ionization mass-spectrometer experiments are reported: NO2(-) and NO3(-) ions produced by electron impact were made to interact with ethyl nitrate and SO2 molecules at 200-380 K and 0.2-2.0 torr in H2 or CH4 bath gas, and the 1 or 2-kV-accelerated ions were mass analyzed using a magnetic-sector instrument. The thermodynamic parameters calculated for the five reactions considered are presented in a table, van't Hoff plots are shown, and the mechanisms involved in the solvation reactions are discussed. Probable structures for the clusters, based on the INDO and CNDO/2 semiempirical calculations of Wlodek et al. (1982), are illustrated. These reactions are considered of interest in studying smog formation and the removal of SO2, NO, and NO2 from industrial exhaust gases by radiation treatment.

  7. Experimental and theoretical study on gas-phase ion/molecule reactions of silver trimer cation, Ag{sub 3}{sup +}, with 12-crown-4

    SciTech Connect

    Kumondai, Kousuke; Toyoda, Michisato; Ishihara, Morio; Katakuse, Itsuo; Takeuchi, Takae; Ikeda, Mai; Iwamoto, Kenichi

    2005-07-08

    The reaction mechanisms of silver trimer cation, Ag{sub 3}{sup +}, with 12-crown-4 (12C4) were studied experimentally and theoretically. Using a cylindrical ion trap time-of-flight mass spectrometer, gas-phase ion/molecule reactions of Ag{sub 3}{sup +} with 12C4 were observed. Metal-ligand complexes of [Ag(12C4)]{sup +}, [Ag{sub 3}(12C4)]{sup +} and [Ag{sub 3}(12C4){sub 2}]{sup +}, and of [Ag(12C4){sub 2}]{sup +} and [Ag{sub 3}(12C4){sub 3}]{sup +}, were observed as the reaction intermediates and terminal products, respectively. The formations of the [Ag(12C4)]{sup +} and [Ag(12C4){sub 2}]{sup +} complexes indicated that the neutral dimer (Ag{sub 2}) had been eliminated from the trimer cation. From the results of ab initio calculations at the HF/LanL2DZ level of theory and the experiments, it is suggested that three 12C4 molecules can attach to Ag{sub 3}{sup +} through consecutive reactions and that neutral Ag{sub 2} can be easily eliminated from [Ag{sub 3}(12C4)]{sup +}.

  8. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    NASA Astrophysics Data System (ADS)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  9. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    NASA Astrophysics Data System (ADS)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  10. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  11. A theoretical study of the interaction of hydrogen and oxygen with palladium or gold adsorbed on pyridine-like nitrogen-doped graphene.

    PubMed

    Rangel, Eduardo; Magana, Luis Fernando; Sansores, Luis Enrique

    2014-12-15

    The interaction of H2 and O2 molecules in the presence of nitrogen-doped graphene decorated with either a palladium or gold atom was investigated by using density functional theory. It was found that two hydrogen molecules were adsorbed on the palladium atom. The interaction of these adsorbed hydrogen molecules with two oxygen molecules generates two hydrogen peroxide molecules first through a Eley-Rideal mechanism and then through a Langmuir-Hinshelwood mechanism. The barrier energies for this reaction were small; therefore, we expect that this process may occur spontaneously at room temperature. In the case of gold, a single hydrogen molecule is adsorbed and dissociated on the metal atom. The interaction of the dissociated hydrogen molecule on the surface with one oxygen molecule generates a water molecule. The competitive adsorption between oxygen and hydrogen molecules slightly favors oxygen adsorption.

  12. Collisional properties of cold spin-polarized nitrogen gas: Theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules

    SciTech Connect

    Tscherbul, T. V.; Dalgarno, A.; Klos, J.; Zygelman, B.; Pavlovic, Z.; Hummon, M. T.; Lu, H.-I.; Tsikata, E.; Doyle, J. M.

    2010-10-15

    We report a combined experimental and theoretical study of collision-induced dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped samples of {sup 14}N and {sup 15}N atoms with densities (5{+-}2)x10{sup 12} cm{sup -3} and measure their magnetic relaxation rates at milli-Kelvin temperatures. These measurements, together with rigorous quantum scattering calculations based on accurate ab initio interaction potentials for the {sup 7}{Sigma}{sub u}{sup +} electronic state of N{sub 2} demonstrate that dipolar relaxation in N+N collisions occurs at a slow rate of {approx}10{sup -13} cm{sup 3}/s over a wide range of temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are insensitive to small variations of the interaction potential and to the magnitude of the spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We find consistency between the calculated and experimentally determined rates. Our results suggest that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.

  13. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-19

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  14. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-01

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  15. Contacting organic molecules by soft methods: towards molecule-based electronic devices.

    PubMed

    Haick, Hossam; Cahen, David

    2008-03-01

    Can we put organic molecules to use as electronic components? The answer to this question is to no small degree limited by the ability to contact them electrically without damaging the molecules. In this Account, we present some of the methods for contacting molecules that do not or minimally damage them and that allow formation of electronic junctions that can become compatible with electronics from the submicrometer to the macroscale. In "Linnaean" fashion, we have grouped contacting methods according to the following main criteria: (a) is a chemical bond is required between contact and molecule, and (b) is the contact "ready-made", that is, preformed, or prepared in situ? Contacting methods that, so far, seem to require a chemical bond include spin-coating a conductive polymer and transfer printing. In the latter, a metallic pattern on an elastomeric polymer is mechanically transferred to molecules with an exposed terminal group that can react chemically with the metal. These methods allow one to define structures from several tens of nanometers size upwards and to fabricate devices on flexible substrates, which is very difficult by conventional techniques. However, the requirement for bifunctionality severely restricts the type of molecules that can be used and can complicate their self-assembly into monolayers. Methods that rely on prior formation of the contact pad are represented by two approaches: (a) use of a liquid metal as electrode (e.g., Hg, Ga, various alloys), where molecules can be adsorbed on the liquid metal and the molecularly modified drop is brought into contact with the second electrode, the molecules can be adsorbed on the second electrode and then the liquid metal brought into contact with them, or bilayers are used, with a layer on both the metal and the second electrode and (b) use of preformed metal pads from a solid substrate and subsequent pad deposition on the molecules with the help of a liquid. These methods allow formation of

  16. Calcium decorated and doped phosphorene for gas adsorption

    NASA Astrophysics Data System (ADS)

    Lalitha, Murugan; Nataraj, Yuvarani; Lakshmipathi, Senthilkumar

    2016-07-01

    In this paper, we present the results from first-principles study based on the electronic structure and adsorption characteristics of CH4, CO2, H2 and NH3 adsorbed on Ca decorated/doped phosphorene. Our study finds that phosphorene exhibits n-type behaviour on decorating calcium, and p-type on doping calcium. Gas molecules are physisorbed on both pristine and calcium-mediated phosphorene, visible through their lower binding energy and charge transfer values. Ca decorated phosphorene is suitable for hydrogen storage due to its higher binding energy for H2. Ca doped structures shows increased binding affinity towards CH4 and NH3 in zigzag1 direction and armchair directions respectively. The extracts of our study implies that Ca doped phosphorene possess increased binding affinity towards gas molecules, and the results are highly helpful for gas adsorption and to design gas sensors based on calcium doped or decorated phosphorene.

  17. Time-Dependent Theory of Laser-Induced Desorption of Small Molecules from Metals, and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Saalfrank, Peter

    1998-03-01

    As an alternative to ``ordinary'', i.e., thermally induced chemistry at the interface of a molecular gas and a solid substrate, surface photochemistry has gained importance in recent years. In this talk, we describe our efforts towards a quantum--dynamical theory of laser--induced elementary processes at adsorbate--covered metal surfaces. First, using time--dependent open--system reduced density matrix theory and nuclear wave packet methods, the indirect (``hot--electron mediated''), ultraviolet/visible--laser induced desorption of small molecules (nitric oxide or ammonia) from metal substrates (platinum or copper) will be addressed. We model both the single-- (DIET, ``desorption induced by electronic transitions'' -- use of continuous wave lasers) and multiple--excitation limits (DIMET, M=``multiple'' -- use of femtosecond lasers). Based on our simulations, the lifetimes of adsorbate electronic states will be estimated, experimental observations will be rationalized, and strategies for the active control of photochemical reactions at surfaces will be proposed. For the example system ammonia/copper, alternatives to the UV/visible--laser induced adsorbate photochemistry will be explored in which the adsorbate remains electronically unexcited. For instance, using laser pulses in the infrared, desorption can also be enforced by ``vibrational ladder climbing''. An analogous, modified strategy can be used to achieve isomerization of adsorbed species. Finally, as the reverse process to desorption, IR laser--induced adsorption will be considered.

  18. Optical detection of adsorbed CO2 and other gases on ferroelectric surfaces using second harmonic generation (SHG)

    NASA Astrophysics Data System (ADS)

    Cabrera, Guerau; Chen, Disheng; Jambunathan, Karthik; Xu, Ruijuan; Cabrera, Alejandro; Martin, Lane; Holcomb, Mikel

    2013-03-01

    Due to their polar surfaces, ferroelectrics may provide an ideal way to detect and collect gas molecules, useful for applications such as gas sensing and pollution mitigation. Since ferroelectric materials have a high reliability (at least 109 switching cycles) these sensors could be used for prolonged periods of time without failure. Second harmonic generation (SHG) allows us to determine the spatial orientation of surface adsorbates and to monitor in realtime the kinetics of adsorption/desorption. In preliminary experiments we see a variation of SHG signal from the surface of PbZrTiO3 (PZT) (100 nm film 20% Zr, 80% Ti) when dosed with 1 atm of N2 or CO2. There is a 21% increase in signal when dosed with N2 with respect to signal in vacuum and there is a 19.9% increase in signal when dosed with CO2 with respect to signal in vacuum. Further studies will be performed to determine the orientation of these molecules on the surface of this device. Experiments will also be performed while polarizing the device with an external electric field to determine the effect of polarization on adsorption/desorption of molecules.

  19. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu

    2015-11-01

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  20. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks.

    PubMed

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V; Ku Kang, Jeung; Yaghi, Omar M; Terasaki, Osamu

    2015-11-26

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of 'extra adsorption domains'-that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically. PMID:26550825

  1. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  2. Determination of delta9-tetrahydrocannabinol in indoor air as an indicator of marijuana cigarette smoking using adsorbent sampling and in-injector thermal desorption gas chromatography-mass spectrometry.

    PubMed

    Chou, Su-Lien; Ling, Yong-Chien; Yang, Mo-Hsiung; Pai, Chung-Yen

    2007-08-13

    The marijuana leaves are usually mixed with tobaccos and smoked at amusement places in Taiwan. Recently, for investigation-legal purposes, the police asked if we can identify the marijuana smoke in a KTV stateroom (a private room at the entertainment spot for singing, smoking, alcohol drinking, etc.) without marijuana residues. A personal air-sampler pump fitted with the GC liner-tube packed with Tenax-TA adsorbent was used for air sampling. The GC-adsorbent tube was placed in the GC injector port and desorbed directly, followed by GC-MS analysis for the determination of delta9-tetrahydrocannabinol (delta9-THC) in indoor air. The average desorption efficiency and limit of detection for delta9-THC were 89% and 0.1 microg m(-3), respectively, approximately needing 1.09 mg of marijuana leaves smoked in an unventilated closed room (3.0 m x 2.4 m x 2.7 m) to reach this level. The mean delta9-THC contained in the 15 marijuana plants seized from diverse locations was measured to be 0.32%. The delta9-THC in room air can be successfully identified from mock marijuana cigarettes, mixtures of marijuana and tobacco, and an actual case. The characteristic delta9-THC peak in chromatogram can serve as the indicator of marijuana. Positive result suggests marijuana smoking at the specific scene in the recent past, facilitating the formulation of further investigation.

  3. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    NASA Astrophysics Data System (ADS)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  4. Smart Adsorbents with Photoregulated Molecular Gates for Both Selective Adsorption and Efficient Regeneration.

    PubMed

    Cheng, Lei; Jiang, Yao; Yan, Ni; Shan, Shu-Feng; Liu, Xiao-Qin; Sun, Lin-Bing

    2016-09-01

    Selective adsorption and efficient regeneration are two crucial issues for adsorption processes; unfortunately, only one of them instead of both is favored by traditional adsorbents with fixed pore orifices. Herein, we fabricated a new generation of smart adsorbents through grafting photoresponsive molecules, namely, 4-(3-triethoxysilylpropyl-ureido)azobenzene (AB-TPI), onto pore orifices of the support mesoporous silica. The azobenzene (AB) derivatives serve as the molecular gates of mesopores and are reversibly opened and closed upon light irradiation. Irradiation with visible light (450 nm) causes AB molecules to isomerize from cis to trans configuration, and the molecular gates are closed. It is easy for smaller adsorbates to enter while difficult for the larger ones, and the selective adsorption is consequently facilitated. Upon irradiation with UV light (365 nm), the AB molecules are transformed from trans to cis isomers, promoting the desorption of adsorbates due to the opened molecular gates. The present smart adsorbents can consequently benefit not only selective adsorption but also efficient desorption, which are exceedingly desirable for adsorptive separation but impossible for traditional adsorbents with fixed pore orifices. PMID:27559985

  5. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica.

  6. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica. PMID:27220375

  7. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  8. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  9. Selective Response of Mesoporous Silicon to Adsorbants with Nitro Groups

    SciTech Connect

    McLeod, John A.; Kurmaev, Ernst Z.; Sushko, Petr V.; Boyko, Teak D.; Levitsky, Igor A.; Moewes, Alexander

    2012-01-30

    We demonstrate that the electronic structure of mesoporous silicon is affected by adsorption of nitrobased explosive molecules in a compound-selective manner. This selective response is demonstrated by probing the adsorption of two nitro-based molecular explosives (trinitrotoluene and cyclotrimethylenetrinitramine) and a nonexplosive nitro-based aromatic molecule (nitrotoluene) on mesoporous silicon using soft X-ray spectroscopy. The Si atoms strongly interact with adsorbed molecules to form Si-O and Si-N bonds, as evident from the large shifts in emission energy present in the Si L2,3 X-ray emission spectroscopy (XES) measurements. Furthermore, we find that the energy gap (band gap) of mesoporous silicon changes depending on the adsorbant, as estimated from the Si L2,3 XES and 2p X-ray absorption spectroscopy (XAS) measurements. Our ab initio molecular dynamics calculations of model compounds suggest that these changes are due to spontaneous breaking of the nitro groups upon contacting surface Si atoms. This compound-selective change in electronic structure may provide a powerful tool for the detection and identification of trace quantities of airborne explosive molecules.

  10. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  11. Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors.

    PubMed

    Cinelli, Giuseppe; Avino, Pasquale; Notardonato, Ivan; Centola, Angela; Russo, Mario Vincenzo

    2014-03-01

    An analytical method based on solid-phase extraction (SPE) with Amberlite XAD-2 adsorbent used as stationary phase for determining phthalate esters (PAEs) in hydroalcoholic food beverages by GC-FID (and peak confirmation by GC-IT/MS) has been set up. The XAD-2 resin shows excellent properties for determining PAEs in solutions at very large alcoholic range (10-40% v/v): 500mL of hydroalcoholic solution spiked with a PAE mixture solution (20pgμL(-1) of each PAE) and containing 25gL(-1) of NaCl are passed onto a cartridge containing 500mg XAD-2 adsorbent and re-extracted for GC analysis. The effects of NaCl concentration (0, 12, 25 and 50gL(-1)) and different solvents (CS2, toluene, acetone, n-hexane, ethyl acetate) are extensively studied as well the PAE recoveries both in hydroalcoholic aqueous solutions (ranging between 94% and 103% with a Relative Standard Deviation, RSD, below 8.3) and spiked (5, 10 and 25pgμL(-1) of each PAE) real samples (between 90% and 106% with a RSD below 9.9). The correlation coefficients (R(2)) of each PAE vary between 0.9830 and 0.9950 and they are calculated in the linear range 5-100pgμL(-1). The limits of detection (LOD) in GC-FID vary between 1.21 and 2.51pgμL(-1) (RSD⩽11.1) whereas the Limits of Quantification (LOQ) range between 2.42 and 5.03pgμL(-1) (RSD⩽8.9) whereas the infra-day and inter-day repeatabilities calculated as RSD for hydroalcoholic solutions, are between 6.5% and 13.7%. PMID:24176330

  12. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  13. Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene

    NASA Astrophysics Data System (ADS)

    Bagsican, Filchito Renee; Zhang, Xiang; Ma, Lulu; Wang, Minjie; Murakami, Hironaru; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro; Tonouchi, Masayoshi; Kawayama, Iwao

    2016-11-01

    We have studied coherent terahertz (THz) emission from graphene-coated surfaces of three different semiconductors—InP, GaAs, and InAs—to provide insight into the influence of O2 adsorption on charge states and dynamics at the graphene/semiconductor interface. The amplitude of emitted THz radiation from graphene-coated InP was found to change significantly upon desorption of O2 molecules by thermal annealing, while THz emission from bare InP was nearly uninfluenced by O2 desorption. In contrast, the amount of change in the amplitude of emitted THz radiation due to O2 desorption was essentially the same for graphene-coated GaAs and bare GaAs. However, in InAs, neither graphene coating nor O2 adsorption/desorption affected the properties of its THz emission. These results can be explained in terms of the effects of adsorbed O2 molecules on the different THz generation mechanisms in these semiconductors. Furthermore, these observations suggest that THz emission from graphene-coated semiconductors can be used for probing surface chemical reactions (e.g., oxidation) as well as for developing O2 gas sensor devices.

  14. Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene

    NASA Astrophysics Data System (ADS)

    Bagsican, Filchito Renee; Zhang, Xiang; Ma, Lulu; Wang, Minjie; Murakami, Hironaru; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro; Tonouchi, Masayoshi; Kawayama, Iwao

    2016-07-01

    We have studied coherent terahertz (THz) emission from graphene-coated surfaces of three different semiconductors—InP, GaAs, and InAs—to provide insight into the influence of O2 adsorption on charge states and dynamics at the graphene/semiconductor interface. The amplitude of emitted THz radiation from graphene-coated InP was found to change significantly upon desorption of O2 molecules by thermal annealing, while THz emission from bare InP was nearly uninfluenced by O2 desorption. In contrast, the amount of change in the amplitude of emitted THz radiation due to O2 desorption was essentially the same for graphene-coated GaAs and bare GaAs. However, in InAs, neither graphene coating nor O2 adsorption/desorption affected the properties of its THz emission. These results can be explained in terms of the effects of adsorbed O2 molecules on the different THz generation mechanisms in these semiconductors. Furthermore, these observations suggest that THz emission from graphene-coated semiconductors can be used for probing surface chemical reactions (e.g., oxidation) as well as for developing O2 gas sensor devices.

  15. The Effect of a Covalent and a Noncovalent Small-Molecule Inhibitor on the Structure of Abg β-Glucosidase in the Gas-Phase

    NASA Astrophysics Data System (ADS)

    Rajabi, Khadijeh; Douglas, D. J.

    2013-06-01

    The effects of binding two small-molecule inhibitors to Agrobacterium sp. strain ATCC 21400 (Abg) β-glucosidase on the conformations and stability of gas-phase ions of Abg have been investigated. Biotin-iminosugar conjugate (BIC) binds noncovalently to Abg while 2,4-dinitro-2-deoxy-2-fluoro-β- d-glucopyranoside (2FG-DNP) binds covalently with loss of DNP. In solution, Abg is a dimer. Mass spectra show predominantly dimer ions, provided care is taken to avoid dissociation of dimers in solution and dimer ions in the ion sampling interface. When excess inhibitor, either covalent or noncovalent, is added to solutions of Abg, mass spectra show peaks almost entirely from 2:2 inhibitor-enzyme dimer complexes. Tandem mass spectrometry experiments show similar dissociation channels for the apo-enzyme and 2FG-enzyme dimers. The +21 dimer produces +10 and +11 monomers. The internal energy required to dissociate the +21 2FG-enzyme to its monomers (767 ± 30 eV) is about 36 eV higher than that for the apo-enzyme dimer (731 ± 6 eV), reflecting the stabilization of the free enzyme dimer by the 2FG inhibitor. The primary dissociation channels for the noncovalent BIC-enzyme dimer are loss of neutral and charged BIC. The internal energy required to induce loss of BIC is 482 ± 8 eV, considerably less than that required to dissociate the dimers. For a given charge state, ions of the covalent and noncovalent complexes have about 15 % and 25 % lower cross sections, respectively, compared with the apo-enzyme. Thus, binding the inhibitors causes the gas-phase protein to adopt more compact conformations. Noncovalent binding surprisingly produces the greatest change in protein ion conformation, despite the weaker inhibitor binding.

  16. Mechanism of dialkyl phthalates removal from aqueous solution using γ-cyclodextrin and starch based polyurethane polymer adsorbents.

    PubMed

    Okoli, Chukwunonso Peter; Adewuyi, Gregory Olufemi; Zhang, Qian; Diagboya, Paul N; Guo, Qingjun

    2014-12-19

    Phthalate esters have been known as potent endocrine disruptors and carcinogens; and their removal from water have been of considerable concern recently. In the present study, γ-cyclodextrin polyurethane polymer (GPP), γ-cyclodextrin/starch polyurethane copolymer (GSP), and starch polyurethane polymer (SPP) have been synthesized and characterized. Their adsorption efficiencies for the removal of dimethyl phthalate (DMP) and diethyl phthalate (DEP) from aqueous solutions were investigated. The characterization results showed the success of the synthesis. The isotherms were L-type, and both the Langmuir and Freundlich adsorption isotherm gave good fittings to the adsorption data. Adsorption mechanisms suggested that these adsorbents spontaneously adsorb phthalate molecules driven mainly by enthalpy change, and the adsorption process was attributed to multiple adsorbent-adsorbate interactions such as hydrogen bonding, π-π stacking, and pore filling. The results showed that starch and γ-cyclodextrin polyurethane polymer adsorbents have excellent potential as adsorbent materials for the removal of phthalates from the contaminated water.

  17. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    PubMed

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-01

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction.

  18. Monte Carlo lattice models for adsorbed polymer conformation

    NASA Technical Reports Server (NTRS)

    Good, B. S.

    1985-01-01

    The adhesion between a polymer film and a metal surface is of great technological interest. However, the prediction of adhesion and wear properties of polymer coated metals is quite difficult because a fundamental understanding of the polymer surface interaction does not yet exist. A computer model for the conformation of a polymer molecule adsorbed on a surface is discussed. The chain conformation is assumed to be described by a partially directed random walk on a three dimensional simple cubic lattice. An attractive surface potential is incorporated into the model through the use of a random walk step probability distribution that is anisotropic in the direction normal to the attractive surface. The effects of variations in potential characteristics are qualitatively included by varying both the degree of anisotropy of the step distribution and the range of the anisotropy. Polymer conformation is characterized by the average end to end distance, average radius of gyration, and average number of chain segments adsorbed on the surface.

  19. Adsorbate-induced curvature and stiffening of graphene.

    PubMed

    Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H

    2015-01-14

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  20. Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems

    PubMed Central

    Yang, Y. T.; Callegari, C.; Feng, X. L.; Roukes, M. L.

    2013-01-01

    Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption–desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems. PMID:21388120

  1. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-01

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance.

  2. Adsorbate-Induced Curvature and Stiffening of Graphene

    PubMed Central

    2014-01-01

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon–carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  3. NEXAFS spectra of aromatic molecules by plane-wave calculations

    NASA Astrophysics Data System (ADS)

    Fratesi, Guido; Brivio, Gian Paolo

    2013-03-01

    Near-edge x-ray absorption fine structure (NEXAFS) is a powerful technique which allows one to determine several important properties of organic molecules, both in the gas phase and in the bulk or adsorbed one and especially, by performing angle-dependent measurements with polarized x-rays, to the absolute orientation of molecules. This calls for the association of measured peaks to specific transitions, which can be guided by theory. To this respect, the use of numerically-efficient yet accurate first-principles simulations in determining the spectral features is desirable, aiming at simulating fairly large systems such as molecules interacting with metal/dielectric surfaces. We consider here a technique from the literature to derive effectively the spectrum from density-functional theory, using pseudopotentials and plane wave basis sets, that was mostly applied to bulk systems. The basic aspects to its applicability to molecular systems will be discussed, taking as examples benzene, pentacene, and related molecules and comparing to experimental and theoretical data in the literature with special emphasis on the spectrum dependence on the photon polarization.

  4. Adsorption of diazinon and hinosan molecules on the iron-doped boron nitride nanotubes surface in gas phase and aqueous solution: A computational study

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Rezainejad, Hamid

    2016-02-01

    In this study, the geometric structures and electronic properties of two widely used organophosphorus pesticides, diazinon and hinosan, boron nitride nanotubes (BNNTs) and Fe doped boron nitride nanotubes (FeBNNTs) as adsorbents of these pesticides are studied by density functional theory calculation as well as dispersion correction by Grimme method. The results show that Fe doping in boron nitride nanotubes structures increases the potency of nanotubes to adsorb mentioned pesticides, especially when Fe atom located instead of N atom. Comparing the adsorption energies of diazinon on FeBNNTs with ones for hinosan demonstrate that the adsorption of hinosan is energetically more favorable by FeBNNTs. Assessment of adsorption energies in aqueous solution confirmed significant decrease in their values compared to ones in gaseous phase. However, the adsorption of diazinon and hinosan on both BNNTs and FeBNNTs are exothermic. So, BNNTs and FeBNNTs may be promising candidates as appropriate adsorbents for adsorbing diazinon and hinosan. Also, the results of calculations have revealed that van der Waals interaction energies are remarkably large in adsorption of diazinon and hinosan on all boron nitride nanotubes.

  5. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  6. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.

    , whereby newly formed molecules leave the surface without equilibrating, and (ii) a partially accommodated fraction that shares vibrational, rotational, and translational energy with the liquid surface before returning to the gas phase. Finally, a velocity map ion imaging apparatus has been implemented to investigate reaction dynamics in crossed molecular beams. Resonantly enhanced multiphoton ionization (REMPI) results in rotational, vibrational, and electronic state selectivity. Velocity map imaging measurements provide differential cross sections and information about the internal energy distribution of the undetected collision partner.

  7. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  8. On the reactive uptake of gaseous PAH molecules by micron-sized atmospheric water droplets

    NASA Astrophysics Data System (ADS)

    Raja, S.; Valsaraj, K. T.

    2006-10-01

    A falling droplet reactor was used to study the heterogeneous oxidation of gaseous PAH molecules adsorbed on a 92 μm diameter water droplet by ozone. The dynamic partition constant for the PAH between the droplet and air and the first-order surface rate constant was measured. The increase in uptake with ozone concentration was due to increased mass transfer via surface reaction of co-adsorbed ozone and PAH. The surface rate constant was rationalized through the Langmuir-Hinshelwood mechanism. The rate constant was smaller for phenanthrene than naphthalene. The main reaction products identified in the aqueous phase indicated the peroxidic route for surface reaction of ozone with PAH. The heterogeneous reaction rate of ozone with adsorbed phenanthrene at the air-water interface of a 92-μm droplet was estimated to be 9300 times larger than the homogeneous reaction of ozone with phenanthrene in the gas phase and it was 76 times larger than the homogeneous oxidation by hydroxyl radical in the gas phase. For naphthalene that is more volatile, however, the homogeneous reaction with hydroxyl was more important. Increased organic carbon added to the droplet increased both the partition constant for phenanthrene and surface reaction with ozone. The partition constant for a droplet formed from actual fog water was much larger than for pure distilled water.

  9. DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Tabari, Leila

    2015-01-01

    Using density functional theory (DFT), we have investigated the adsorption of picric acid (PA) molecule on the surface of (8,0) single-walled ZnO nanotube (ZnONT). The results show that the PA molecule can be chemisorbed on the surface of ZnONT with adsorption energies of -82.01 and -75.26 kJ/mol in gas and aqueous phase, respectively. Frontier molecular orbital analysis show that HOMO/LUMO gap of ZnONT reduces from 1.66 and 1.75 eV in the pristine nanotube to 0.83 and 0.72 eV in PA-adsorbed form in gas and aqueous phase, respectively. It suggests that the process can affect the electronic properties of the studied nanotube which would lead to its conductance change upon the adsorption of PA molecule. The modifying effect on the electrical conductance of ZnONT underlies the working mechanism of gas sensors for detecting the PA molecules. Analyses of the adsorption behavior of the electrically charged ZnONT toward PA molecule in the gas phase show that the PA molecule can be strongly adsorbed on the negatively charged ZnONT surface with significant adsorption energy (-135.1 kJ/mol). However, from the HOMO/LUMO gap changes, it can be concluded that the positive ZnONT might sensitively detect the PA molecule in comparison to the negative tube. These results can provide helpful information for experimental investigation to develop novel nanotube-based sensors.

  10. Evidence for adsorbate-enhanced field emission from carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Murray, P. T.; Back, T. C.; Cahay, M. M.; Fairchild, S. B.; Maruyama, B.; Lockwood, N. P.; Pasquali, M.

    2013-07-01

    We used residual gas analysis (RGA) to identify the species desorbed during field emission (FE) from a carbon nanotube (CNT) fiber. The RGA data show a sharp threshold for H2 desorption at an external field strength that coincides with a breakpoint in the FE data. A comprehensive model for the gradual transition of FE from adsorbate-enhanced CNTs at low bias to FE from CNTs with reduced H2 adsorbate coverage at high bias is developed which accounts for the gradual desorption of the H2 adsorbates, alignment of the CNTs at the fiber tip, and importance of self-heating effects with applied bias.

  11. Bowl inversion of surface-adsorbed sumanene.

    PubMed

    Jaafar, Rached; Pignedoli, Carlo A; Bussi, Giovanni; Aït-Mansour, Kamel; Groening, Oliver; Amaya, Toru; Hirao, Toshikazu; Fasel, Roman; Ruffieux, Pascal

    2014-10-01

    Bowl-shaped π-conjugated compounds offer the possibility to study curvature-dependent host-guest interactions and chemical reactivity in ideal model systems. For surface-adsorbed π bowls, however, only conformations with the bowl opening pointing away from the surface have been observed so far. Here we show for sumanene on Ag(111) that both bowl-up and bowl-down conformations can be stabilized. Analysis of the molecular layer as a function of coverage reveals an unprecedented structural phase transition involving a bowl inversion of one-third of the molecules. On the basis of scanning tunneling microscopy (STM) and complementary atomistic simulations, we develop a model that describes the observed phase transition in terms of a subtle interplay between inversion-dependent adsorption energies and intermolecular interactions. In addition, we explore the coexisting bowl-up and -down conformations with respect to host-guest binding of methane. STM reveals a clear energetic preference for methane binding to the concave face of sumanene. PMID:25181621

  12. Photoexcitation of adsorbates on metal surfaces: One-step or three-step

    SciTech Connect

    Petek, Hrvoje

    2012-09-07

    In this essay we discuss the light-matter interactions at molecule-covered metal surfaces that initiate surface photochemistry. The hot-electron mechanism for surface photochemistry, whereby the absorption of light by a metal surface creates an electron-hole pair, and the hot electron scatters through an unoccupied resonance of adsorbate to initiate nuclear dynamics leading to photochemistry, has become widely accepted. Yet, ultrafast spectroscopic measurements of molecule-surface electronic structure and photoexcitation dynamics provide scant support for the hot electron mechanism. Instead, in most cases the adsorbate resonances are excited through photoinduced substrate-to-adsorbate charge transfer. Based on recent studies of the role of coherence in adsorbate photoexcitation, as measured by the optical phase and momentum resolved two-photon photoemission measurements, we examine critically the hot electron mechanism, and propose an alternative description based on direct charge transfer of electrons from the substrate to adsorbate. The advantage of this more quantum mechanically rigorous description is that it informs how material properties of the substrate and adsorbate, as well as their interaction, influence the frequency dependent probability of photoexcitation and ultimately how light can be used to probe and control surface femtochemistry.

  13. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  14. Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces.

    PubMed

    Barthel, Anthony J; Al-Azizi, Ala'; Surdyka, Nicholas D; Kim, Seong H

    2014-03-25

    The adsorption of vapor molecules plays an important role in countless fields and is increasingly realized to be critical in tribology, which encompasses adhesion, friction, and wear of surfaces. This feature article reviews experimental methods for quantifying gas and vapor adsorption on flat solid surfaces under equilibrium conditions (ambient pressure and temperature) as well as the effects of these adsorbates on the adhesion, friction, and wear of various materials. Particular attention is given to species that are present in the ambient environment such as water (humidity) and organic vapors. These adsorbed species can have drastic yet varied influences on tribology depending on the surface chemistry of materials. Despite prolonged and ubiquitous observations in a broad range of materials and vapors, a fundamental understanding of the effect of adsorbed gases and vapors on the adhesion, friction, and wear of surfaces has begun only recently through surface-sensitive characterization. PMID:24180252

  15. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents

    SciTech Connect

    Zhang, W.M.; Xu, Z.W.; Pan, B.C.; Hong, C.H.; Jia, K.; Jiang, P.J.; Zhang, Q.J.; Pan, B.J.

    2008-09-15

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, {pi}-{pi} stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  16. Molecular adsorbates as probes of the local properties of doped graphene

    PubMed Central

    Pham, Van Dong; Joucken, Frédéric; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Sporken, Robert; Santos, Maria Cristina dos; Lagoute, Jérôme

    2016-01-01

    Graphene-based sensors are among the most promising of graphene’s applications. The ability to signal the presence of molecular species adsorbed on this atomically thin substrate has been explored from electric measurements to light scattering. Here we show that the adsorbed molecules can be used to sense graphene properties. The interaction of porphyrin molecules with nitrogen-doped graphene has been investigated using scanning tunneling microscopy and ab initio calculations. Molecular manipulation was used to reveal the surface below the adsorbed molecules allowing to achieve an atomic-scale measure of the interaction of molecules with doped graphene. The adsorbate’s frontier electronic states are downshifted in energy as the molecule approaches the doping site, with largest effect when the molecule sits over the nitrogen dopant. Theoretical calculations showed that, due to graphene’s high polarizability, the adsorption of porphyrin induces a charge rearrangement on the substrate similar to the image charges on a metal. This charge polarization is enhanced around nitrogen site, leading to an increased interaction of molecules with their image charges on graphene. Consequently, the molecular states are stabilized and shift to lower energies. These findings reveal the local variation of polarizability induced by nitrogen dopant opening new routes towards the electronic tuning of graphene. PMID:27097555

  17. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    SciTech Connect

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  18. Concentration-dependent surface-enhanced Raman scattering of 2-benzoylpyridine adsorbed on colloidal silver particles.

    PubMed

    Chowdhury, Joydeep; Ghosh, Manash

    2004-09-01

    Surface-enhanced Raman scattering (SERS) of 2-benzoylpyridine (2-BP) adsorbed on silver hydrosols has been investigated. It has been observed that with a small change in the adsorbate concentration, the SER spectra of 2-BP show significant change in their features, indicating different orientational changes of the different part of the flexible molecule on the colloidal silver surface with adsorbate concentration. The time dependence of the SER spectra of the molecule has been explained in terms of aggregation of colloidal silver particles and co-adsorption and replacement kinetics of the adsorbed solute and solvent molecules on the silver surface. The broad long-wavelength band in the absorption spectra of the silver sol due to solute-induced coagulation of colloidal silver particles is found to be red-shifted with the increase in adsorbate concentration. The surface-enhanced Raman excitation profiles indicate that the resonance of the Raman excitation radiation with the new aggregation band contributes more to the SERS intensity than that with the original sol band.

  19. Adsorption energies for a nanoporous carbon from gas-solid chromatography and molecular mechanics.

    PubMed

    Rybolt, Thomas R; Ziegler, Katherine A; Thomas, Howard E; Boyd, Jennifer L; Ridgeway, Mark E

    2006-04-01

    Gas-solid chromatography was used to obtain second gas-solid virial coefficients, B2s, in the temperature range 342-613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N2 BET surface area of 995 m2/g. The temperature dependence of B2s was used to determine experimental values of the gas-solid interaction energy, E*, for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas-solid interaction energy, E*(cal), for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E*(cal), were compared and correlated to the experimental E* values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E*(cal) and E* values was provided by a 0.50 nm nanoporous model using MM2 parameters.

  20. Determination of trace level genotoxic impurities in small molecule drug substances using conventional headspace gas chromatography with contemporary ionic liquid diluents and electron capture detection.

    PubMed

    Ho, Tien D; Yehl, Peter M; Chetwyn, Nik P; Wang, Jin; Anderson, Jared L; Zhong, Qiqing

    2014-09-26

    Ionic liquids (ILs) were used as a new class of diluents for the analysis of two classes of genotoxic impurities (GTIs), namely, alkyl/aryl halides and nitro-aromatics, in small molecule drug substances by headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD). This novel approach using ILs as contemporary diluents greatly broadens the applicability of HS-GC for the determination of high boiling (≥ 130°C) analytes including GTIs with limits of detection (LOD) ranging from 5 to 500 parts-per-billion (ppb) of analytes in a drug substance. This represents up to tens of thousands-fold improvement compared to traditional HS-GC diluents such as dimethyl sulfoxide (DMSO) and dimethylacetamide (DMAC). Various ILs were screened to determine their suitability as diluents for the HS-GC/ECD analysis. Increasing the HS oven temperatures resulted in varying responses for alkyl/aryl halides and a significant increase in response for all nitroaromatic GTIs. Linear ranges of up to five orders of magnitude were found for a number of analytes. The technique was validated on two active pharmaceutical ingredients with excellent recovery. This simple and robust methodology offers a key advantage in the ease of method transfer from development laboratories to quality control environments since conventional validated chromatographic data systems and GC instruments can be used. For many analytes, it is a cost effective alternative to more complex trace analytical methodologies like LC/MS and GC/MS, and significantly reduces the training needed for operation.

  1. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  2. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  3. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    SciTech Connect

    Birmingham, J.T. |

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  4. Carbon fibers: Thermochemical recovery from advanced composite materials and activation to an adsorbent

    NASA Astrophysics Data System (ADS)

    Staley, Todd Andrew

    This research addresses an expanding waste disposal problem brought about by the increasing use of advanced composite materials, and the lack of technically and environmentally viable recycling methods for these materials. A thermochemical treatment process was developed and optimized for the recycling of advanced composite materials. Counter-current gasification was employed for the treatment of carbon fiber reinforced-epoxy resin composite wastes. These materials were treated, allowing the reclamation of the material's valuable components. As expected in gasification, the organic portion of the waste was thermochemically converted to a combustible gas with small amounts of organic compounds that were identified by GC/MS. These compounds were expected based on data in the literature. The composites contain 70% fiber reinforcement, and gasification yielded approximately 70% recovered fibers, representing nearly complete recovery of fibers from the waste. Through SEM and mechanical testing, the recovered carbon fibers were found to be structurally and mechanically intact, and amenable to re-use in a variety of applications, some of which were identified and tested. In addition, an application was developed for the carbon fiber component of the waste, as an activated carbon fiber adsorbent for the treatment of wastewaters. This novel class of adsorbent was found to have adsorption rates, for various organic molecules, up to a factor of ten times those of commercial granular activated carbon, and adsorption capacities similar to conventional activated carbons. Overall, the research addresses an existing environmental waste problem, employing a thermochemical technique to recycle and reclaim the waste. Components of the reclaimed waste material are then employed, after further modification, to address other existing and potential environmental waste problems.

  5. Modeling adsorption and reactions of organic molecules at metal surfaces.

    PubMed

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  6. Modeling adsorption and reactions of organic molecules at metal surfaces.

    PubMed

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  7. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

    PubMed Central

    2014-01-01

    Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic

  8. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  9. Accuracy of density functional theory in the prediction of carbon dioxide adsorbent materials.

    PubMed

    Cazorla, Claudio; Shevlin, Stephen A

    2013-04-01

    Density functional theory (DFT) has become the computational method of choice for modeling and characterization of carbon dioxide adsorbents, a broad family of materials which at present are urgently sought after for environmental applications. The description of polar carbon dioxide (CO(2)) molecules in low-coordinated environments like surfaces and porous materials, however, may be challenging for local and semi-local DFT approximations. Here, we present a thorough computational study in which the accuracy of DFT methods in describing the interactions of CO(2) with model alkali-earth-metal (AEM, Ca and Li) decorated carbon structures, namely anthracene (C(14)H(10)) molecules, is assessed. We find that gas-adsorption energies and equilibrium structures obtained with standard (i.e. LDA and GGA), hybrid (i.e. PBE0 and B3LYP) and van der Waals exchange-correlation functionals of DFT dramatically differ from the results obtained with second-order Møller-Plesset perturbation theory (MP2), an accurate computational quantum chemistry method. The major disagreements found can be mostly rationalized in terms of electron correlation errors that lead to wrong charge-transfer and electrostatic Coulomb interactions between CO(2) and AEM-decorated anthracene molecules. Nevertheless, we show that when the concentration of AEM atoms in anthracene is tuned to resemble as closely as possible the electronic structure of AEM-decorated graphene (i.e. an extended two-dimensional material), hybrid exchange-correlation DFT and MP2 methods quantitatively provide similar results. PMID:23361567

  10. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  11. Influences of Dilute Organic Adsorbates on the Hydration of Low-Surface-Area Silicates.

    PubMed

    Sangodkar, Rahul P; Smith, Benjamin J; Gajan, David; Rossini, Aaron J; Roberts, Lawrence R; Funkhouser, Gary P; Lesage, Anne; Emsley, Lyndon; Chmelka, Bradley F

    2015-07-01

    Competitive adsorption of dilute quantities of certain organic molecules and water at silicate surfaces strongly influence the rates of silicate dissolution, hydration, and crystallization. Here, we determine the molecular-level structures, compositions, and site-specific interactions of adsorbed organic molecules at low absolute bulk concentrations on heterogeneous silicate particle surfaces at early stages of hydration. Specifically, dilute quantities (∼0.1% by weight of solids) of the disaccharide sucrose or industrially important phosphonic acid species slow dramatically the hydration of low-surface-area (∼1 m(2)/g) silicate particles. Here, the physicochemically distinct adsorption interactions of these organic species are established by using dynamic nuclear polarization (DNP) surface-enhanced solid-state NMR techniques. These measurements provide significantly improved signal sensitivity for near-surface species that is crucial for the detection and analysis of dilute adsorbed organic molecules and silicate species on low-surface-area particles, which until now have been infeasible to characterize. DNP-enhanced 2D (29)Si{(1)H}, (13)C{(1)H}, and (31)P{(1)H} heteronuclear correlation and 1D (29)Si{(13)C} rotational-echo double-resonance NMR measurements establish hydrogen-bond-mediated adsorption of sucrose at distinct nonhydrated and hydrated silicate surface sites and electrostatic interactions with surface Ca(2+) cations. By comparison, phosphonic acid molecules are found to adsorb electrostatically at or near cationic calcium surface sites to form Ca(2+)-phosphonate complexes. Although dilute quantities of both types of organic molecules effectively inhibit hydration, they do so by adsorbing in distinct ways that depend on their specific architectures and physicochemical interactions. The results demonstrate the feasibility of using DNP-enhanced NMR techniques to measure and assess dilute adsorbed molecules and their molecular interactions on low

  12. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  13. First-principles study of SO2 molecule adsorption on the pristine and Mn-doped boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Deng, Zun-Yi; Zhang, Jian-Min; Xu, Ke-Wei

    2015-08-01

    To exploit the potential application of nitride nanotube (BNNT), the adsorption of sulfur dioxide (SO2) on pristine and Mn-doped BNNT was theoretically studied using first-principles approach based on density functional theory (DFT). The most stable adsorption geometry, adsorption energy, magnetic moment, charge transfer and density of states of these systems are discussed. SO2 molecule is weakly adsorbed on the pristine BNNT. The Mn-doped BNNT show high reactivity toward SO2 regardless of the MnB site or MnN site adsorption. The larger formation energies and analysis of density of states show the SO2 molecules are chemically bonded to Mn-doped BNNT and the covalent interaction between the SO2 molecule and Mn atom can be formed. Therefore, the Mn-doped BNNT can be used as SO2 gas sensor manufacturing raw materials, and it may be a potential material for nanodevice applications.

  14. A study of surface enhanced Raman scattering for furfural adsorbed on silver surface

    NASA Astrophysics Data System (ADS)

    Jia, Ting-jian; Li, Peng-wei; Shang, Zhi-guo; Zhang, Ling; He, Ting-chao; Mo, Yu-jun

    2008-02-01

    The normal Raman spectrum (NRS) and the surface enhanced Raman scattering (SERS) spectrum of furfural in silver colloid were recorded and analyzed in this paper. The assignment of these bands to furfural molecules was performed by density functional theory (DFT) calculation. The data of the SERS by comparing with the one of NRS show that furfural molecules are adsorbed on the silver surface via the nonbonding electrons of the carbonyl oxygen.

  15. Pyrolyzed feather fibers for adsorbent and high temperature applications

    NASA Astrophysics Data System (ADS)

    Senoz, Erman

    used in applications such as adsorption, storage, and separation of small gas molecules. The maximum excess H2 storage capacity was 1.5 wt% at 77 K and at pressures below 2 MPa. The notable H2 adsorption of PCFF below 1 MPa can be justified by the abundance of microporosity and the nanopores available for H2 penetration. In the second step of the pyrolysis the protein matrix went through a series of transformations including cyclization and aromatization reactions above the melting point. A partially cyclic carbon-nitrogen framework (carbon/nitrogen ratio=2.38) supported by double and triple bonds and oxygen functionalities is the suggested structural model for the PCFF. The useful fibers and adsorbents produced from CFF in this dissertation can encourage researchers to use high temperature heat treatments on keratin-based fibers. Also, the identified pyrolysis mechanisms can serve as a guide for producing materials with desired properties from protein-based materials, particularly in textile, high performance composite and catalyst industries.

  16. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  17. Loosely-Bound Diatomic Molecules.

    ERIC Educational Resources Information Center

    Balfour, W. J.

    1979-01-01

    Discusses concept of covalent bonding as related to homonuclear diatomic molecules. Article draws attention to the existence of bound rare gas and alkaline earth diatomic molecules. Summarizes their molecular parameters and offers spectroscopic data. Strength and variation with distance of interatomic attractive forces is given. (Author/SA)

  18. Silicene as a highly sensitive molecule sensor for NH3, NO and NO2.

    PubMed

    Hu, Wei; Xia, Nan; Wu, Xiaojun; Li, Zhenyu; Yang, Jinlong

    2014-04-21

    On the basis of first-principles calculations, we demonstrate the potential application of silicene as a highly sensitive molecule sensor for NH3, NO, and NO2 molecules. NH3, NO and NO2 molecules chemically adsorb on silicene via strong chemical bonds. With distinct charge transfer from silicene to molecules, silicene and chemisorbed molecules form charge-transfer complexes. The adsorption energy and charge transfer in NO2-adsorbed silicene are larger than those of NH3- and NO-adsorbed silicones. Depending on the adsorbate types and concentrations, the silicene-based charge-transfer complexes exhibit versatile electronic properties with tunable band gap opening at the Dirac point of silicene. The calculated charge carrier concentrations of NO2-chemisorbed silicene are 3 orders of magnitude larger than intrinsic charge carrier concentration of graphene at room temperature. The results present a great potential of silicene for application as a highly sensitive molecule sensor.

  19. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  20. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  1. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  2. Falling microbead counter-flow process for separating gas mixtures

    SciTech Connect

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-07-07

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  3. Falling microbead counter-flow process for separating gas mixtures

    SciTech Connect

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-10-27

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  4. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  5. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  6. Gaseous mixed adsorbed films of octadecanol and cholesterol at the oil/water interface

    SciTech Connect

    Matubayasi, Norihiro; Azumaya, Susumu; Kanaya, Kazuhiko

    1992-08-01

    Gaseous/expanded and expanded/condensed phase transitions have been observed in adsorbed films of cholesterol at oil/water interfaces, while only the expanded/condensed phase transition has been observed in adsorbed films of octadecanol. To confirm that the octadecanol films do not exhibit the gaseous/expanded transition and to make clear the gaseous adsorbed film, the interfacial tension was measured in a dilute concentration region as a function of the total concentration and composition of the octadecanol-cholesterol mixture at 25{degrees}C. The result indicated that the gaseous films are expressed by the two-dimensional ideal gas law and the gaseous/expanded transition at oil/water interfaces cannot be observed for octadecanol. Further, the mixed adsorbed film was shown to be enriched with cholesterol which is more surface active than octadecanol. 20 refs., 5 figs.

  7. Density-functional investigation of the geometric and electronic structure of ethylene oxide adsorbed on Si(100)

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Qing-Fang; Yang, Cui-Hong; Wei, Yue-Ling; Zhu, Xing-Feng; Rao, Wei-Feng

    2016-05-01

    The geometric and electronic structures of the ethylene oxide (EO) molecule adsorbed on Si(100)-(2 × 1) surface were investigated by using the density-functional theory calculations. All possible adsorbed structures were considered and it was found that only four adsorption structures are stable. The calculations of the formation energy revealed the most stable conformation and demonstrated that the nature of Si-O bond significantly affects the stability of adsorption systems. The analysis of corresponding electronic structures showed that two adsorbed structures are still semiconductor compounds but the other two are not. In particular, the EO after adsorbing was found to be connected via a ring-opening reaction where the molecule forms a five-membered ring together with the surface of dimer silicon atoms, and the produced five-membered ring is almost perpendicular to the silicon surface.

  8. Impact of temperature and electrical potentials on the stability and structure of collagen adsorbed on the gold electrode

    NASA Astrophysics Data System (ADS)

    Meiners, Frank; Ahlers, Michael; Brand, Izabella; Wittstock, Gunther

    2015-01-01

    The morphology and structure of collagen type I adsorbed on gold electrodes were studied as a function of electrode potential and temperature by means of capacitance measurements, polarization modulation infrared reflection-absorption spectroscopy and scanning force microscopy at temperatures of 37 °C, 43 °C and 50 °C. The selected temperatures corresponded to the normal body temperature, temperature of denaturation of collagen molecules and denaturation of collagen fibrils, respectively. Independently of the solution temperature, collagen was adsorbed on gold electrodes in the potential range - 0.7 V < E < 0.4 V vs. Ag/AgCl, where the protein film was very stable. Fragments of collagen molecules made a direct contact to the gold surface and water was present in the film. Protein molecules were oriented preferentially with their long axis towards the gold surface. Collagen molecules in the adsorbed state preserved their native triple helical structure even at temperatures corresponding to collagen denaturation in aqueous solutions. Application of E < - 0.75 V vs. Ag/AgCl leads to the swelling of the protein film by water and desorption from the electrode surface. IR spectra provided no evidence of the thermal denaturation of adsorbed collagen molecules. A temperature increase to 50 °C leads to a distortion of the collagen film. The processes of aggregation and fibrilization were preferred over thermal denaturation for collagen adsorbed on the electrode surface and exposed to changing potentials.

  9. Characterization of carbon cryogel microspheres as adsorbents for VOC.

    PubMed

    Yamamoto, Takuji; Kataoka, Sho; Ohmori, Takao

    2010-05-15

    Adsorption characteristics of carbon cryogel microspheres (CC microspheres) with controlled porous structure composed of mesopores (2 nmadsorbents for a volatile organic compound (VOC). The amount of toluene, as a model VOC, adsorbed on the CC microspheres could be changed by varying either the size of the mesopores or the volume of the micropores. The peak temperature of the temperature-programmed desorption profiles of toluene from the CC microspheres was higher than that from granular activated carbon (GAC) with numerous micropores, indicating that toluene is adsorbed more strongly on CC microspheres than on GAC. To permit the practical use of CC microspheres, the adsorption characteristic of moisture on CC microspheres and GAC were evaluated. The effect of adsorption of moisture on the gas permeation property of an adsorption module prepared from the CC microspheres was also examined. PMID:20042276

  10. Heterogeneous Ozonolysis of Surface Adsorbed Lignin Pyrolysis Products

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.

    2012-12-01

    Biomass combustion releases semi-volatile organic compounds into the troposphere, including many phenols and methoxyphenols as the result of lignin pyrolysis. Given their relatively low vapor pressures, these compounds readily adsorb on inorganic and organic aerosol substrates where they may alter aerosol properties and undergo heterogeneous chemistry. We use infrared spectroscopy (DRIFTS and ATR-FTIR) to monitor the adsorption and subsequent heterogeneous ozonolysis of model lignin pyrolysis products, including catechol, eugenol, and 4-propylguaiacol. Ozonolysis reaction kinetics were compared on various inorganic substrates - such as Al2O3 and NaCl, which serve as mineral and sea salt aerosol substrates, respectively - and as a function of ozone concentration and relative humidity. Following in situ FTIR analysis, the adsorbed organics were extracted and analyzed using gas chromatography-mass spectroscopy to identify reaction products and quantify product branching ratios. Ozonolysis of catechol and 4-propylguaiacol readily resulted in ring cleavage forming dicarboxylic acids (e.g., muconic acid). Eugenol ozonolysis proceeded rapidly at the alkene side chain producing homovanillic acid and homovanillin in an approximate 2:1 branching ratio at 0% RH; ring cleavage was also observed. For all lignin pyrolysis products, heterogeneous ozonolysis was faster on NaCl versus Al2O3. Implications for the atmospheric chemistry of semi-volatile methoxylphenols adsorbed on aerosol substrates will be discussed.

  11. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  12. Many-body dispersion effects in the binding of adsorbates on metal surfaces.

    PubMed

    Maurer, Reinhard J; Ruiz, Victor G; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches. PMID:26374001

  13. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-01

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  14. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell.

    PubMed

    Sigot, Léa; Ducom, Gaëlle; Benadda, Belkacem; Labouré, Claire

    2016-01-01

    Biogas contains trace compounds detrimental for solid oxide fuel cell (SOFC) application, especially sulphur-containing compounds and volatile organic silicon compounds (VOSiCs). It is therefore necessary to remove these impurities from the biogas for fuelling an SOFC. In this paper, dynamic lab-scale adsorption tests were performed on synthetic polluted gas to evaluate the performance of a polishing treatment to remove hydrogen sulphide (H2S - sulphur compound) and octamethylcyclotetrasiloxane (D4 - VOSiC). Three kinds of adsorbents were tested: an activated carbon, a silica gel (SG) and a zeolite (Z). Z proved to be the best adsorbent for H2S removal, with an adsorbed quantity higher than [Formula: see text] at the SOFC tolerance limit. However, as concerns D4 removal, SG was the most efficient adsorbent, with an adsorbed quantity of about 184 mgD4/gSG at the SOFC tolerance limit. These results could not be explained by structural characteristics of the adsorbents, but they were partly explained by chemical interactions between the adsorbate and the adsorbent. In these experiments, internal diffusion was the controlling step, Knudsen diffusion being predominant to molecular diffusion. As Z was also a good adsorbent for D4 removal, competition phenomena were investigated with Z for the simultaneous removal of H2S and D4. It was shown that H2S retention was dramatically decreased in the presence of D4, probably due to D4 polymerization resulting in pore blocking.

  15. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  16. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  17. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    PubMed

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  18. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    NASA Astrophysics Data System (ADS)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  19. A new and simple approach to determine the abundance of hydrogen molecules on interstellar ice mantles

    NASA Astrophysics Data System (ADS)

    Hincelin, U.; Chang, Q.; Herbst, E.

    2015-02-01

    Context. Water is usually the main component of ice mantles, which cover the cores of dust grains in cold portions of dense interstellar clouds. When molecular hydrogen is adsorbed onto an icy mantle through physisorption, a common assumption in gas-grain rate-equation models is to use an adsorption energy for molecular hydrogen on a pure water substrate. However, at high density and low temperature, when H2 is efficiently adsorbed onto the mantle, its surface abundance can be strongly overestimated if this assumption is still used. Unfortunately, the more detailed microscopic Monte Carlo treatment cannot be used to study the abundance of H2 in ice mantles if a full gas-grain network is utilized. Aims: We present a numerical method adapted for rate-equation models that takes into account the possibility that an H2 molecule can, while diffusing on the surface, find itself bound to another hydrogen molecule, with a far weaker bond than the H2-water bond, which can lead to more efficient desorption. We label the ensuing desorption "encounter desorption". Methods: The method is implemented first in a simple system consisting only of hydrogen molecules at steady state between gas and dust using the rate-equation approach and comparing the results with the results of a microscopic Monte Carlo calculation. We then discuss the use of the rate-equation approach with encounter desorption embedded in a complete gas-grain chemical network. Results: For the simple system, the rate-equation model with encounter desorption reproduces the H2 granular coverage computed by the microscopic Monte Carlo model at 10 K for a gas density from 104 to 1012 cm-3, and yields up to a factor 4 difference above 1012 cm-3. The H2 granular coverage is also reproduced by a complete gas-grain network. We use the rate-equation approach to study the gas-grain chemistry of cold dense regions with and without the encounter desorption mechanism. We find that the grain surface and gas phase species can be

  20. Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid.

    PubMed

    Ricci, Maria; Segura, Juan José; Erickson, Blake W; Fantner, Georg; Stellacci, Francesco; Voïtchovsky, Kislon

    2015-07-14

    The interaction of organic molecules with the surface of calcite plays a central role in many geochemical, petrochemical, and industrial processes and in biomineralization. Adsorbed organics, typically fatty acids, can interfere with the evolution of calcite when immersed in aqueous solutions. Here we use atomic force microscopy in liquid to explore in real-time the evolution of the (1014) surface of calcite covered with various densities of stearic acid and exposed to different saline solutions. Our results show that the stearic acid molecules tend to act as "pinning points" on the calcite's surface and slow down the crystal's restructuring kinetics. Depending on the amount of material adsorbed, the organic molecules can form monolayers or bilayer islands that become embedded into the growing crystal. The growth process can also displaces the organic molecules and actively concentrate them into stacked multilayers. Our results provide molecular-level insights into the interplay between the adsorbed fatty acid molecules and the evolving calcite crystal, highlighting mechanisms that could have important implications for several biochemical and geochemical processes and for the oil industry.