Science.gov

Sample records for adsorbed layer thickness

  1. Characterization of the surface-active components of sugar beet pectin and the hydrodynamic thickness of the adsorbed pectin layer.

    PubMed

    Siew, Chee Kiong; Williams, Peter A; Cui, Steve W; Wang, Qi

    2008-09-10

    The fraction of sugar beet pectin (SBP) adsorbed onto limonene oil droplets during emulsification has been isolated, and its chemical and physicochemical characteristics have been determined. While the SBP sample itself was found to contain 2.67 and 1.06% protein and ferulic acid, respectively, the adsorbed fraction contained 11.10% protein and 2.16% ferulic acid. The adsorbed fraction was also found to have a higher degree of acetylation, notably at the C2 position on the galacturonic acid residues, and was also found to contain a higher proportion of neutral sugars, which are present in the ramified side chains of the pectin molecules. The thickness of the layer of SBP adsorbed onto polystyrene latex particles was studied by dynamic light scattering and was found to increase with increasing surface coverage. It was found to have a value of approximately 140 nm at plateau coverage, which closely corresponded to the hydrodynamic diameter of the pectin chains. The adsorbed layer thickness was found to be sensitive to pH and the presence of electrolyte. The thickness at a surface coverage of approximately 20 mg/m(2) in the absence of electrolyte at pH approximately 4 was 107 nm and at pH 8.8 was 70 nm, while at pH approximately 4 in the presence of 10 mM NaCl the thickness was found to be 70 nm. It was concluded that the SBP molecules form multilayers at the surface due to electrostatic interaction between the positively charged protein moieties and the galacturonic acid residues. The removal of calcium from the SBP had no effect on the adsorbed layer thickness; hence, multilayer formation due to calcium ion cross-linking was considered unlikely.

  2. Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2014-05-01

    We report an optical method for measuring the thickness of the water layer adsorbed onto the surface of a high-Q fused-silica microresonator. Light from a tunable diode laser operating near 1550 nm is coupled into the microresonator to excite whispering-gallery modes (WGMs). By observing thermal distortion or even bistability of the WGM resonances caused by absorption in the water layer, the contribution of that absorption to the total loss is determined. Thereby, the thickness of the water layer is found to be ˜0.1 nm (approximately one monolayer). This method is further extended to measure the desorption rate of the adsorbed water, which is roughly exponential with a decay time of ˜40 h when the fused-silica microresonator is held in a vacuum chamber at low pressure.

  3. Physicochemical controls on adsorbed water film thickness in unsaturated geological media

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.

    2011-08-01

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here the problem of adsorbed water film thickness is examined by combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable and showed that pendular rings within drained porous media retain most of the "residual" water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double-layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double-layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (<10 mol m-3) on surfaces with higher-magnitude electrostatic potentials (more negative than ≈-50 mV). Adsorbed water films are predicted to usually range in thickness from ≈1 to 20 nm in drained pores and fractures of unsaturated environments.

  4. Structure of polymer layers adsorbed from concentrated solutions

    NASA Astrophysics Data System (ADS)

    Auvray, Loïc; Auroy, Philippe; Cruz, Margarida

    1992-06-01

    We study by neutron scattering the interfacial strucuture of poly(dimethylsiloxane) layers irreversibly adsorbed from concentrated solutions or melts. We first measure the thickness h of the layers swollen by a good solvent as a function of the chain polymerisation index N and of the polymer volume fraction in the initial solution Φ. The relation h ≈ N^{0.8}Φ^{0.3}, recently predicted from an analogy between irreversibly adsorbed layers and grafted polymer brushes, describes well our results. We can therefore deduce that there is at least one large loop of about N monomers per adsorbed chain. We also study the shape of the polymer concentration profile in the layers by measuring on two samples the polymer-solid partial structure factor, that is proportional to the Fourier transform of the profile. The model of pseudobrushes predicts a concentration decay varying with the distance of the wall z as z^{-2/5}. This power law profile accounts quantitatively for the angular variation of the polymer-solid cross structure factor but it is difficult to distinguish it without anbiguity from less singular profiles. It implies that the adsorption of PDMS onto silica is sufficiently strong and fast to quench completely the loop distribution in the initial layer. Nous étudions par diffusion de neutrons la structure interfaciale de couches de poly(diméthylsiloxane) irréversiblement adsorbées sur de la silice à partir de solutions semidiluées et de fondus. Nous mesurons d'abord l'épaisseur h des couches gonflées par un bon solvant en fonction du degré de polymérisation des chaînes N et de la fraction volumique dans la solution initiale Φ. La relation h≈ N^{0.8}Φ^{0.3} récemment prédite à partir de l'analogie entre couches irréversiblement adsorbées et brosses de polymères greffés décrit bien nos résultats. Nous en déduisons qu'il existe au moins une grande boucle d'environ N monomères par chaîne adsorbée. Nous étudions aussi la forme du profil de

  5. Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication.

    PubMed

    Yamada, Shinji; Fujihara, Ami; Yusa, Shin-ichi; Tanabe, Tadao; Kurihara, Kazue

    2015-11-10

    The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(α-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is

  6. Dynamics in Adsorbed Homopolymer Layers: Entanglements and Osmotic Effects

    NASA Astrophysics Data System (ADS)

    Santore, Maria; Mubarekyan, Ervin

    2001-03-01

    This work seeks the dynamic mechanism for the exchange of homopolymer chains between a dilute solution and a layer adsorbed at the solid-liquid interface. With the model system of polyethylene oxide (PEO) adsorbed onto silica from aqueous solution, it is shown that the behavior of saturated interfaces compared to starved layers reveals an interesting trend: The characteristic self exchange time is dependent only on coverage, not molecular weight, for chains of 100K or less. Therefore, it is concluded that classical entanglements do not play a role below 100K. For all molecular weights, when the coverage of 0.2 mg/m2 is exceeded, the interfacial dynamics become slow. At lower coverages, chains lie flat in train, with no loops or tails, and no lateral interactions either. The onset of slow dynamics at higher coverages may be a result of both surface crowding and the resistance of loops and tails to new chains approaching the layer.

  7. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  8. Adsorbed layers and the origin of Amontons' laws

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2000-03-01

    Three hundred years ago, Amontons wrote down phenomenogical friction laws that are still used today. They state that the friction is proportional to load, and independent of the dimensions of the contacting surfaces. The molecular underpinning of these laws has remained unclear. Indeed, exact analytic results and experiments in ultra-high vacuum indicate that the static friction between clean crystalline surfaces almost always vanishes in the thermodynamic limit. Of course any surface exposed to air is typically coated by a thin layer of hydrocarbons, water and other small molecules. Simulations are presented that show that these layers naturally produce static and kinetic friction forces that are consistent with Amontons' laws and other aspects of macroscopic experiments.(G. He, M. H. Muser and M. O. Robbins, Science 284, 1650 (1999).) For example, the friction is only weakly dependent on parameters that are not controlled in most experiments, such as the areal density of adsorbed molecules, their length, the orientation of the surfaces and the direction of sliding. The kinetic friction is of the same order as the static friction and varies only logarithmically with velocity.

  9. The origin and characterization of conformational heterogeneity in adsorbed polymer layers

    NASA Astrophysics Data System (ADS)

    Douglas, Jack F.; Schneider, Hildegard M.; Frantz, Peter; Lipman, Robert; Granick, Steve

    1997-09-01

    The equilibration of polymer conformations tends to be sluggish in polymer layers adsorbed onto highly attractive substrates, so the structure of these layers must be understood in terms of the layer growth process rather than equilibrium theory. Initially adsorbed chains adopt a highly flattened configuration while the chains which arrive later must adapt their configurations to the increasingly limited space available for adsorption. Thus, the chains adsorbed in the late stage of deposition are more tenuously attached to the surface. This type of non-equilibrium growth process is studied for polymethylmethacrylate (PMMA) adsorbed on oxidized silicon where the segmental attraction is strong (0953-8984/9/37/005/img7/segment) and for polystyrene (PS) adsorbed on oxidized silicon from a carbon tetrachloride solution where the segmental attraction is relatively weak (0953-8984/9/37/005/img8/segment). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR - ATR). In both cases, the chains arriving first adsorbed more tightly, became flattened (as measured by the dichroic ratio), and occupied a disproportionately large fraction of the surface. This non-uniform structure persisted indefinitely for the strongly adsorbed PMMA chains, while the PS chains exhibited a gradual evolution, presumably reflecting an equilibration of the adsorbed layer occurring after long times. On the theoretical side, the initial heterogeneity of these adsorbed polymer layers is modelled using a random sequential adsorption (RSA) model where the size of the adsorbing species is allowed to adapt to the surface space available at the time of adsorption. The inhomogeneity in the size of adsorbing species (hemispheres) in this model is similar to the distribution of chain contacts in our measurements on adsorbed polymer layers. Owing to extensive variance around the mean, conformations having the mean number of chain contacts are least probable, which

  10. Cooperation between adsorbates accounts for the activation of atomic layer deposition reactions.

    PubMed

    Shirazi, Mahdi; Elliott, Simon D

    2015-04-14

    Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4-H2O and HfCl4-H2O and growth of Al2O3 from Al(CH3)3-H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this 'cooperative' mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD.

  11. Activity of lactoperoxidase when adsorbed on protein layers.

    PubMed

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  12. Wind-tunnel simulation of thick turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2012-06-01

    An experimental study aimed at revealing the possibility of simulation, in a subsonic wind tunnel, of enhanced Reynolds numbers Re** via modeling a thick flat-plate boundary layer possessing the properties of a Clauser-equilibrium shear flow is reported. We show that turbulators prepared in the form of variable-height cylinders of height h and diameter d = 3 mm and installed in two rows along the normal to the streamlined wall offer rather an efficient means for modification of turbulent boundary layer in solving the problem. In the majority of cases, mean and fluctuating characteristics of the boundary layer exhibit values typical of naturally developing turbulent boundary layers at a distance of 530 cylinder diameters. The profiles of mean velocity with artificially enhanced boundary-layer thickness can be well approximated, in the law-of-the-wall variables, with the well-known distribution of velocities for canonical boundary layer.

  13. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  14. Rupture force of adsorbed self-assembled surfactant layers. Effect of the dielectric exchange force

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-08-01

    The tip applied force necessary to obtain tip/substrate contact, i.e., rupture force between adsorbed layers of self-assembled surfactant films and atomic force microscope (AFM) tips in water has been measured. A substantial contribution of this rupture force is due to the dielectric exchange force (DEF). The DEF model is in agreement with the observation that the surfactant layer rupture forces are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  15. Transparent layer thickness measurement using low-coherence interference microscopy

    NASA Astrophysics Data System (ADS)

    Kühnhold, P.; Nolvi, A.; Tereschenko, S.; Kassamakov, I.; Hæggström, E.; Lehmann, P.

    2015-05-01

    The investigation of transparent optical layers is a growing field of application of white-light interferometry. Robust algorithms exist that extract the signal components from different layers inside a transparent structure. The separated signal contributions are then evaluated individually. Two contradicting situations have to be accounted for when low-coherence interferometry is used to measure layer structures. First, with a low NA system and a short coherence light source, the optical path difference between the layers is measured. Second, if a high NA interferometer and a long coherence light source is used, the limited depth of focus limits the correlogram width. In this case, the layer thickness is underestimated. In this paper a 2.2 μm thick reference layer is studied. This layer was measured with different interferometric systems: Michelson and Mirau interferometers with magnifications from 5x to 100x. Furthermore, light sources with different temporal coherence length were used. If lateral resolution is unimportant, the combination of a low NA measuring system and a low coherence length light source provides a larger distance between the signal contributions from different boundary layers and therefore better separation, bias correction, and higher accuracy, compared to a high NA system. The interferometer system can be calibrated by measuring the layer thickness of a small structure with respect to a substrate. Such a calibration permits performing measurements with a high NA interferometer and a low coherence light source. The main contribution of this paper is to compare and discuss results of these different options of layer thickness measurement with respect to measurement accuracy and uncertainty influences.

  16. Automated segmentation of intraretinal layers from spectral-domain macular OCT: reproducibility of layer thickness measurements

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Sonka, Milan; Garvin, Mona K.

    2011-03-01

    Changes in intraretinal layer thickness occur in a variety of diseases such as glaucoma, macular edema and diabetes. To segment the intraretinal layers from macular spectral-domain OCT (SD-OCT) scans, we previously introduced an automated multiscale 3-D graph search method and validated its performance by computing unsigned border positioning differences when compared with human expert tracings. However, it is also important to study the reproducibility of resulting layer thickness measurements, as layer thickness is a commonly used clinical parameter. In this work, twenty eight (14 x 2) repeated macular OCT volumes were acquired from the right eyes of 14 normal subjects using two Zeiss-Cirrus SD-OCT scanners. After segmentation of 10 intraretinal layers and rigid registration of layer thickness maps from the repeated OCT scans, the thickness difference of each layer was calculated. The overall mean global and regional thickness differences of 10 intraretinal layers were 0.46 +/- 0.25 μm (1.70 +/- 0.72 %) and 1.16 +/- 0.84 μm (4.03 +/- 2.05 %), respectively. No specific local region showed a consistent thickness difference across the layers.

  17. A Proposal of Evaluation of Frost Layer Thickness

    NASA Astrophysics Data System (ADS)

    Yotsumoto, Hiroyuki; Ishihara, Isao; Tanio, Kenichi; Matsumoto, Ryosuke

    The frosting is an unsteady phenomenon occurs simultaneously with heat and mass transfer. Both the heat and water vapor in the humid air reach the surface of the frost layer and transfer to the cold surface. The frost surface plays an important role as an interface of heat and mass transfer between air-flow and ice-air composite solid layer. However, since the frost layer surface consists of ice and air, and is rough and unsteady, any specific definition of the frost layer thickness is not found. This paper tried to give the definition. The frost layer thickness was measured by using a micro photo-sensing device combined with a light emitter and receiver traversing normal to the frost surface. During traversing the device, a peak response from the device indicates the vertical position corresponding to the maximum frost area exposed to the emitted light i.e. air around the frost inside the frost layer. This position is defined as the frost layer position and it could give an effective frost layer.

  18. Near independence of OLED operating voltage on transport layer thickness

    SciTech Connect

    Swensen, James S.; Wang, Liang; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

    2013-01-01

    We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (α-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

  19. Compression response of thick layer composite laminates with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Smith, Barry T.; Maiden, Janice

    1992-01-01

    Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.

  20. Leidenfrost point and estimate of the vapour layer thickness

    NASA Astrophysics Data System (ADS)

    Gianino, Concetto

    2008-11-01

    In this article I describe an experiment involving the Leidenfrost phenomenon, which is the long lifetime of a water drop when it is deposited on a metal that is much hotter than the boiling point of water. The experiment was carried out with high-school students. The Leidenfrost point is measured and the heat laws are used to estimate the thickness of the vapour layer, d≈0.06 mm, which prevents the drop from touching the hotplate.

  1. Optical reflectivity and Raman scattering in few-layer-thick graphene highly doped by K and Rb.

    PubMed

    Jung, Naeyoung; Kim, Bumjung; Crowther, Andrew C; Kim, Namdong; Nuckolls, Colin; Brus, Louis

    2011-07-26

    We report the optical reflectivity and Raman scattering of few layer (L) graphene exposed to K and Rb vapors. Samples many tens of layers thick show the reflectivity and Raman spectra of the stage 1 bulk alkali intercalation compounds (GICs) KC(8) and RbC(8). However, these bulk optical and Raman properties only begin to appear in samples more than about 15 graphene layers thick. The 1 L to 4 L alkali exposed graphene Raman spectra are profoundly different than the Breit-Wigner-Fano (BWF) spectra of the bulk stage 1 compounds. Samples less than 10 layers thick show Drude-like plasma edge reflectivity dip in the visible; alkali exposed few layer graphenes are significantly more transparent than intrinsic graphene. Simulations show the in-plane free electron density is lower than in the bulk stage 1 GICs. In few layer graphenes, alkalis both intercalate between layers and adsorb on the graphene surfaces. Charge transfer electrically dopes the graphene sheets to densities near and above 10(+14) electrons/cm(2). New intrinsic Raman modes at 1128 and 1264 cm(-1) are activated by in-plane graphene zone folding caused by strongly interacting, locally crystalline alkali adlayers. The K Raman spectra are independent of thickness for L = 1-4, indicating that charge transfer from adsorbed and intercalated K layers are similar. The Raman G mode is downshifted and significantly broadened from intrinsic graphene. In contrast, the Rb spectra vary strongly with L and show increased doping by intercalated alkali as L increases. Rb adlayers appear to be disordered liquids, while intercalated layers are locally crystalline solids. A significant intramolecular G mode electronic resonance Raman enhancement is observed in K exposed graphene, as compared with intrinsic graphene. PMID:21682332

  2. A study of the factors effecting layer thickness uniformity and layer breakup in microlayered coextruded films

    NASA Astrophysics Data System (ADS)

    Ghumman, Bhavjit Singh

    Microlayer coextrusion offers the opportunity to economically commercialize the production of nanometer thick film. A major obstacle towards commercialization is the non-uniform thickness of these layers and their breakup into droplets, which is also known as a scattering instability. Prior research had indicated a strong interaction between material properties and process parameters. Therefore, the focus of this research effort was to better understand and then identify the coextrusion parameters and material properties that governed the layer non-uniformity and scattering. Initial studies had indicated that there existed an interaction between the two extruders, which gave rise to pressure fluctuations and non-uniform flow. The interaction of the two extruders was studied by analyzing the pressure signals at the two extruders and the junction of the two streams. A response surface method was used to analyze the two extruders individually, the number of layer multiplying elements and finally the interaction between the two extruders and the effect they had on pressure, surging, flow rate and torque. Although the interaction of the two extruders did result in higher backpressures, it did not decrease the output. The output was independent of the screw speed of the other extruder, however it did influence the melting mechanics along the screw. The more shear sensitive PMMA showed a greater degree of sensitivity than the Newtonian PC. The influence of primary; coextrusion, and secondary; chill roll, processing on the final layer thickness was studied in a second set of experiments. For this purpose primary coextrusion process parameters such as screw speed ratio, die temperature and core melt temperature were changed and the effect on the layer thickness uniformity was studied. Similarly secondary process parameters such as nip gap and chill roll speed were also investigated. Thickness was measured using an Atomic Force Microscope (AFM). The screw speed ratio was the

  3. Tensile strength of thin resin composite layers as a function of layer thickness.

    PubMed

    Alster, D; Feilzer, A J; De Gee, A J; Davidson, C L

    1995-11-01

    As a rule, cast restorations do not allow for free curing contraction of the resin composite luting cement. In a rigid situation, the resulting contraction stress is inversely proportional to the resin layer thickness. Adhesive technology has demonstrated, however, that thin joints may be considerably stronger than thicker ones. To investigate the effects of layer thickness and contraction stress on the tensile strength of resin composite joints, we cured cylindrical samples of a chemically initiated resin composite (Clearfil F2) in restrained conditions and subsequently loaded them in tension. The samples had a diameter of 5.35 mm and thicknesses of 50, 100, 200, 300, 400, 500, 600, and 700 microns, 1.4 mm, or 2.7 mm. None of the samples fractured due to contraction stress prior to tensile loading. Tensile strength decreased gradually from 62 +/- 2 MPa for the 50-microns layer to 31 +/- 4 MPa for the 2.7-mm layer. The failures were exclusively cohesive in resin for layers between 50 and 400 microns thick. Between 500 and 700 microns, the failures were cohesive or mixed adhesive/cohesive, while the 1.4- and 2.7-mm layers always failed in a mixed adhesive/cohesive mode. For the resin composite tested, the contraction stress did not endanger the cohesive strength. It was concluded that if adhesion to tooth structure were improved, thinner adhesive joints might enhance the clinical success of luted restorations.

  4. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  5. Neutron supermirrors: an accurate theory for layer thickness computation

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-11-01

    We present a new theory for the computation of Super-Mirror stacks, using accurate formulas derived from the classical optics field. Approximations are introduced into the computation, but at a later stage than existing theories, providing a more rigorous treatment of the problem. The final result is a continuous thickness stack, whose properties can be determined at the outset of the design. We find that the well-known fourth power dependence of number of layers versus maximum angle is (of course) asymptotically correct. We find a formula giving directly the relation between desired reflectance, maximum angle, and number of layers (for a given pair of materials). Note: The author of this article, a classical opticist, has limited knowledge of the Neutron world, and begs forgiveness for any shortcomings, erroneous assumptions and/or misinterpretation of previous authors' work on the subject.

  6. Ultrasonic eggshell thickness measurement for selection of layers.

    PubMed

    Kibala, Lucyna; Rozempolska-Rucinska, Iwona; Kasperek, Kornel; Zieba, Grzegorz; Lukaszewicz, Marek

    2015-10-01

    This study aimed to develop a methodology for using ultrasonic technology (USG) to record eggshell thickness for selection of layers. Genetic correlations between eggshell strength and its thickness have been reported to be around 0.8, making shell thickness a selection index candidate element. Applying ultrasonic devices to measure shell thickness leaves an egg intact for further handling. In this study, eggs from 2 purebred populations of Rhode Island White (RIW) and Rhode Island Red (RIR) hens were collected on a single day in the 33rd week of the farm laying calendar from 2,414 RIR and 4,525 RIW hens. Beginning from the large end of the egg, measurements were taken at 5 latitudes: 0º (USG0), 45º (USG45), 90º (USG90), 135º (USG135), and 180º (USG180). To estimate the repeatability of readings, measurements were repeated at each parallel on 3 meridians. Electronic micrometer measurement ( EMM: ) were taken with an electronic micrometer predominantly at the wider end of eggs from 2,397 RIR and 4,447 RIW hens. A multiple-trait statistical model fit the fixed effect of year-of-hatch × hatch-within-year, and random effects due to repeated measurements (except EMM) and an animal's additive genetic component. The shell was thinnest in the region where chicks break it upon hatching (USG0, USG45). Heritabilities of shell thickness in different regions of the shell ranged from 0.09 to 0.19 (EMM) in RIW and from 0.12 to 0.23 (EMM) in RIR and were highest for USG45 and USG0. Because the measurement repeatabilities were all above 0.90, our recommendation for balancing egg strength against hatching ease is to take a single measurement of USG45. Due to high positive genetic correlations between shell thickness in different regions of the shell its thickness in the pointed end region will be modified accordingly, in response to selection for USG45.

  7. Estimating Active Layer Thickness from Remotely Sensed Surface Deformation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Zhang, T.; Wahr, J. M.

    2010-12-01

    We estimate active layer thickness (ALT) from remotely sensed surface subsidence during thawing seasons derived from interferometric synthetic aperture radar (InSAR) measurements. Ground ice takes up more volume than ground water, so as the soil thaws in summer and the active layer deepens, the ground subsides. The volume of melted ground water during the summer thaw determines seasonal subsidence. ALT is defined as the maximum thaw depth at the end of a thawing season. By using InSAR to measure surface subsidence between the start and end of summer season, one can estimate the depth of thaw over a large area (typically 100 km by 100 km). We developed an ALT retrieval algorithm integrating InSAR-derived surface subsidence, observed soil texture, organic matter content, and moisture content. We validated this algorithm in the continuous permafrost area on the North Slope of Alaska. Based on InSAR measurements using ERS-1/2 SAR data, our estimated values match in situ measurements of ALT within 1--10 cm at Circumpolar Active Layer Monitoring (CALM) sites within the study area. The active layer plays a key role in land surface processes in cold regions. Current measurements of ALT using mechanical probing, frost/thaw tubes, or inferred from temperature measurements are of high quality, but limited in spatial coverage. Using InSAR to estimate ALT greatly expands the spatial coverage of ALT observations.

  8. Tracing the sub-photospheric layers of optically thick winds

    NASA Astrophysics Data System (ADS)

    Graefener, G.

    2013-06-01

    Towards the end of their evolution hot massive stars develop strong stellar winds and appear as emission line stars, such as WR stars or LBVs. The quanitative description of the mass loss in these important pre-SN phases is hampered by unkowns such as wind clumping and porosity, and by an incomplete theoretical understanding of optically thick stellar winds. Even the stellar radii in these phases are badly undestood as they are often variable (LBVs), or deviate from theoretical expectations (WR stars). Here we present a new semi-empirical method that helps to tackle these problems. By analysing a large sample of Galactic WR stars we gain information about deep wind layers near the sonic point which are otherwise not directly observable. We find evidence that these layers are clumped, with clumping factors comparable to the ones observed in the winds of WR stars. Moreover, density and temperature near the sonic point seem to follow a relation which is ubiqitous for optically thick winds, and which may be responsible for the peculiar radius properties of these objects.

  9. Thickness-induced structural phase transformation of layered gallium telluride.

    PubMed

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications. PMID:27198938

  10. Thickness-induced structural phase transformation of layered gallium telluride.

    PubMed

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  11. Fabrication of Micro-Lens Array using a Chemically Adsorbed Monomolecular Layer

    NASA Astrophysics Data System (ADS)

    Okada, Kazushi; Oohira, Fumikazu; Hosogi, Maho; Hashiguchi, Gen; Mihara, Yutaka; Ogawa, Kazufumi; Shiwaku, Kazuya

    We proposed a new method of patterning a chemically adsorbed monomolecular layer on the substrate and then dropping UV cure material to form a lens shape using oil repellent effect of this film. The curvature radius of the lens was controlled by the amount of the dropped UV cure material. Using this method, a micro-lens array of various radiuses was fabricated. The formed micro-lens array shapes are transferred by the electro-plating and then the micro dies are fabricated, which are used for molding the plastic lens array. The optical characteristic of the molded micro-lens was evaluated.

  12. Retinal nerve fiber layer and ganglion cell layer thickness in patients receiving systemic isotretinoin therapy.

    PubMed

    Sekeryapan, Berrak; Dılek, Nursel; Oner, Veysi; Turkyılmaz, Kemal; Aslan, Mehmet Gokhan

    2013-10-01

    To evaluate the effect of oral isotretinoin therapy on retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness by spectral domain optical coherence tomography (OCT). This prospective study included newly diagnosed nodulocystic acne patients about to receive isotretinoin treatment. Macular average GCL thickness and peripapillary average, temporal, nasal, inferior, and superior quadrant RNFL thickness were measured by OCT before and after isotretinoin treatment. Pre- and post-treatment measurements were compared with paired t test. Fifty-six eyes of 28 patients were included. The mean duration of the treatment was 6.5 ± 1.3 months. The mean average GCL thickness was 90.04 ± 5.87 (80-96) μm at baseline and 90.75 ± 6.34 (81-96) μm after treatment. The mean average RNFL thickness was 93.25 ± 6.06 μm (84-107) before treatment and 93.05 ± 5.54 μm (82-106) after treatment. There were no statistically significant differences between pre- and post-treatment values (all p > 0.05). A 6-month course of systemic isotretinoin therapy seems to have no unfavorable effect on retinal ganglion cells; however, larger studies with longer follow-up periods are needed to be conclusive.

  13. Adsorbate-catalyzed layer-by-layer metal dissolution in inert electrolyte: Pd(100)-c(2 × 2)-I

    NASA Astrophysics Data System (ADS)

    Schimpf, Jane A.; Abreu, Juan B.; Carrasquillo, Arnaldo; Soriaga, Manuel P.

    1994-08-01

    Studies on the corrosion of Pd in inert ( halide-free) H 2SO 4 solution, catalyzed by a single adsorbed layer of iodine, have been extended to a Pd(100) single-crystal electrode that contained an ordered c(2 × 2) adlattice of iodine. Experimental measurements were based upon a combination of linear-sweep voltammetry, potential-step coulometry, low-energy electron diffraction, and Auger electron spectroscopy. As was earlier noted with polycrystalline electrodes, Pd dissolution occurred only when iodine was present on the surface. More significantly, neither the coverage nor the ordered structure of the iodine adlattice was affected by the dissolution process. These observations strongly suggest that the iodine-catalyzed corrosion occurs one layer at a time.

  14. Effect of the interplay between protein and surface on the properties of adsorbed protein layers.

    PubMed

    Ouberai, Myriam M; Xu, Kairuo; Welland, Mark E

    2014-08-01

    Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. PMID:24780165

  15. Coalescence behavior of oil droplets coated in irreversibly-adsorbed surfactant layers.

    PubMed

    Reichert, Matthew D; Walker, Lynn M

    2015-07-01

    Coalescence between oil caps with irreversibly adsorbed layers of nonionic surfactant is characterized in deionized water and electrolyte solution. The coalescence is characterized using a modified capillary tensiometer allowing for accurate measurement of the coalescence time. Results suggest two types of coalescence behavior, fast coalescence at low surface coverages that are independent of ionic strength and slow coalescence at high coverage. These slow coalescence events (orders of magnitude slower) are argued to be due to electric double layer forces or more complicated stabilization mechanisms arising from interfacial deformation and surface forces. A simple film drainage model is used in combination with measured values for interfacial properties to quantify the interaction potential between the two interfaces. Since this approach allows the two caps to have the same history, interfacial coverage and curvature, the results offer a tool to better understand a mechanism that is important to emulsion stability.

  16. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents.

    PubMed

    Li, Changming; Wei, Min; Evans, David G; Duan, Xue

    2014-11-01

    Layered double hydroxides (LDHs) are a class of anion clays consisting of brucite-like host layers and interlayer anions, which have attracted increasing interest in the fields of catalysis/adsorption. By virtue of the versatility in composition, morphology, and architecture of LDH materials, as well as their unique structural properties (intercalation, topological transformation, and self-assembly with other functional materials), LDHs display great potential in the design and fabrication of nanomaterials applied in photocatalysis, heterogeneous catalysis, and adsorption/separation processes. Taking advantage of the structural merits and various control synthesis strategies of LDHs, the active center structure (e.g., crystal facets, defects, geometric and electronic states, etc.) and macro-nano morphology can be facilely manipulated for specific catalytic/adsorbent processes with largely enhanced performances. In this review, the latest advancements in the design and preparation of LDH-based functional nanomaterials for sustainable development in catalysis and adsorption are summarized.

  17. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirofumi; Arima, Ryo; Fukumori, Minoru; Tanaka, Daisuke; Negishi, Ryota; Kobayashi, Yoshihiro; Kasai, Seiya; Yamada, Toyo Kazu; Ogawa, Takuji

    2015-07-01

    A simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs). Further sonication allowed each dGNR to be unpeeled into two sGNRs. Purification performed using a high-speed centrifuge ensured that more than 99% of the formed GNRs were sGNRs. The changes induced in the electrical properties of the obtained sGNR by the absorption of nanoparticles of planar molecule, naphthalenediimide (NDI), were investigated. The shape of the I-V curve of the sGNRs varied with the number of NDI nanoparticles adsorbed. This was suggestive of the existence of a band gap at the narrow-necked part near the NDI-adsorbing area of the sGNRs.

  18. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles

    PubMed Central

    Tanaka, Hirofumi; Arima, Ryo; Fukumori, Minoru; Tanaka, Daisuke; Negishi, Ryota; Kobayashi, Yoshihiro; Kasai, Seiya; Yamada, Toyo Kazu; Ogawa, Takuji

    2015-01-01

    A simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs). Further sonication allowed each dGNR to be unpeeled into two sGNRs. Purification performed using a high-speed centrifuge ensured that more than 99% of the formed GNRs were sGNRs. The changes induced in the electrical properties of the obtained sGNR by the absorption of nanoparticles of planar molecule, naphthalenediimide (NDI), were investigated. The shape of the I-V curve of the sGNRs varied with the number of NDI nanoparticles adsorbed. This was suggestive of the existence of a band gap at the narrow-necked part near the NDI-adsorbing area of the sGNRs. PMID:26205209

  19. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles.

    PubMed

    Tanaka, Hirofumi; Arima, Ryo; Fukumori, Minoru; Tanaka, Daisuke; Negishi, Ryota; Kobayashi, Yoshihiro; Kasai, Seiya; Yamada, Toyo Kazu; Ogawa, Takuji

    2015-01-01

    A simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs). Further sonication allowed each dGNR to be unpeeled into two sGNRs. Purification performed using a high-speed centrifuge ensured that more than 99% of the formed GNRs were sGNRs. The changes induced in the electrical properties of the obtained sGNR by the absorption of nanoparticles of planar molecule, naphthalenediimide (NDI), were investigated. The shape of the I-V curve of the sGNRs varied with the number of NDI nanoparticles adsorbed. This was suggestive of the existence of a band gap at the narrow-necked part near the NDI-adsorbing area of the sGNRs. PMID:26205209

  20. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  1. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  2. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  3. Path-integral Monte Carlo simulation of the second layer of 4He adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Pierce, Marlon; Manousakis, Efstratios

    1999-02-01

    We have developed a path-integral Monte Carlo method for simulating helium films and apply it to the second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite interactions that are found from potentials which realistically describe the interatomic interactions. The Monte Carlo sampling is over both particle positions and permutations of particle labels. From the particle configurations and static structure factor calculations, we find that this layer possesses, in order of increasing density, a superfluid liquid phase, a 7×7 commensurate solid phase that is registered with respect to the first layer, and an incommensurate solid phase. By applying the Maxwell construction to the dependence of the low-temperature total energy on the coverage, we are able to identify coexistence regions between the phases. From these, we deduce an effectively zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and torsional oscillator measurements, and demonstrate that the experimentally observed disruption of the superfluid phase is caused by the growth of the commensurate phase. We further observe that the superfluid phase has a transition temperature consistent with the two-dimensional value. Promotion to the third layer occurs for densities above 0.212 atom/Å 2, in good agreement with experiment. Finally, we calculate the specific heat for each phase and obtain peaks at temperatures in general agreement with experiment.

  4. Adsorbed films of three-patch colloids: Continuous and discontinuous transitions between thick and thin films

    NASA Astrophysics Data System (ADS)

    Dias, C. S.; Araújo, N. A. M.; Telo da Gama, M. M.

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed.

  5. Adsorbed films of three-patch colloids: continuous and discontinuous transitions between thick and thin films.

    PubMed

    Dias, C S; Araújo, N A M; Telo da Gama, M M

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed.

  6. Thickness of the Meniscal Lamellar Layer: Correlation with Indentation Stiffness and Comparison of Normal and Abnormally Thick Layers by Using Multiparametric Ultrashort Echo Time MR Imaging.

    PubMed

    Choi, Ja-Young; Biswas, Reni; Bae, Won C; Healey, Robert; Im, Michael; Statum, Sheronda; Chang, Eric Y; Du, Jiang; Bydder, Graeme M; D'Lima, Darryl; Chung, Christine B

    2016-07-01

    Purpose To determine the relationship between lamellar layer thickness on ultrashort echo time (UTE) magnetic resonance (MR) images and indentation stiffness of human menisci and to compare quantitative MR imaging values between two groups with normal and abnormally thick lamellar layers. Materials and Methods This was a HIPAA-compliant, institutional review board-approved study. Nine meniscal pieces were obtained from seven donors without gross meniscal pathologic results (mean age, 57.4 years ± 14.5 [standard deviation]). UTE MR imaging and T2, UTE T2*, and UTE T1ρ mapping were performed. The presence of abnormal lamellar layer thickening was determined and thicknesses were measured. Indentation testing was performed. Correlation between the thickness and indentation stiffness was assessed, and mean quantitative MR imaging values were compared between the groups. Results Thirteen normal lamellar layers had mean thickness of 232 μm ± 85 and indentation peak force of 1.37 g ± 0.87. Four abnormally thick lamellar layers showed mean thickness of 353.14 μm ± 98.36 and peak force 0.72 g ± 0.31. In most cases, normal thicknesses showed highly positive correlation with the indentation peak force (r = 0.493-0.912; P < .001 to .05). However, the thickness in two abnormal lamellar layers showed highly negative correlation (r = -0.90, P < .001; and r = -0.23, P = .042) and no significant correlation in the others. T2, UTE T2*, and UTE T1ρ values in abnormally thick lamellar layers were increased compared with values in normal lamellar layers, although only the UTE T2* value showed significant difference (P = .010). Conclusion Variation of lamellar layer thickness in normal human menisci was evident on two-dimensional UTE images. In normal lamellar layers, thickness is highly and positively correlated with surface indentation stiffness. UTE T2* values may be used to differentiate between normal and abnormally thickened lamellar layers. (©) RSNA, 2016.

  7. Obtaining Thickness Maps of Corneal Layers Using the Optimal Algorithm for Intracorneal Layer Segmentation

    PubMed Central

    Rabbani, Hossein; Kazemian Jahromi, Mahdi; Jorjandi, Sahar; Mehri Dehnavi, Alireza; Hajizadeh, Fedra; Peyman, Alireza

    2016-01-01

    Optical Coherence Tomography (OCT) is one of the most informative methodologies in ophthalmology and provides cross sectional images from anterior and posterior segments of the eye. Corneal diseases can be diagnosed by these images and corneal thickness maps can also assist in the treatment and diagnosis. The need for automatic segmentation of cross sectional images is inevitable since manual segmentation is time consuming and imprecise. In this paper, segmentation methods such as Gaussian Mixture Model (GMM), Graph Cut, and Level Set are used for automatic segmentation of three clinically important corneal layer boundaries on OCT images. Using the segmentation of the boundaries in three-dimensional corneal data, we obtained thickness maps of the layers which are created by these borders. Mean and standard deviation of the thickness values for normal subjects in epithelial, stromal, and whole cornea are calculated in central, superior, inferior, nasal, and temporal zones (centered on the center of pupil). To evaluate our approach, the automatic boundary results are compared with the boundaries segmented manually by two corneal specialists. The quantitative results show that GMM method segments the desired boundaries with the best accuracy. PMID:27247559

  8. Free energy of electrical double layers: Entropy of adsorbed ions and the binding polynomial

    SciTech Connect

    Stigter, D.; Dill, K.A. )

    1989-09-07

    The authors adapt the method of binding polynomials to general problems of binding equilibria of ions to polybases, polyacids, and mixed polyelectrolytes, such as proteins and other colloids. For spherical particles with a smeared charge the interaction effects are taken into account using the Poisson-Boltzmann equation, which is shown to differ little from the Debye-Hueckel approximation under conditions met in most protein solutions. Examples are given of the salt dependence of pH titration equilibria. Binding polynomials produce an extra term in the free energy of the electrical double layer, which arises from the entropy of the adsorbed ions. The maximum term method applied to the binding polynominal yields an expression which is similar to that derived by the charging process of Chan and Mitchell. Applications to monolayers and to polyelectrolyte gels are also discussed.

  9. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    PubMed Central

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  10. Inconsistent correlation of seismic layer 2a and lava layer thickness in oceanic crust.

    PubMed

    Christeson, Gail L; McIntosh, Kirk D; Karson, Jeffrey A

    2007-01-25

    At mid-ocean ridges with fast to intermediate spreading rates, the upper section of oceanic crust is composed of lavas overlying a sheeted dyke complex. These units are formed by dykes intruding into rocks overlying a magma chamber, with lavas erupting at the ocean floor. Seismic reflection data acquired over young oceanic crust commonly image a reflector known as 'layer 2A', which is typically interpreted as defining the geologic boundary between lavas and dykes. An alternative hypothesis is that the reflector is associated with an alteration boundary within the lava unit. Many studies have used mapped variability in layer 2A thickness to make inferences regarding the geology of the oceanic crust, including volcanic construction, dyke intrusion and faulting. However, there has been no link between the geologic and seismological structure of oceanic crust except at a few deep drill holes. Here we show that, although the layer 2A reflector is imaged near the top of the sheeted dyke complex at fast-spreading crust located adjacent to the Hess Deep rift, it is imaged significantly above the sheeted dykes section at intermediate-spreading crust located near the Blanco transform fault. Although the lavas and underlying transition zone thicknesses differ by about a factor of two, the shallow seismic structure is remarkably similar at the two locations. This implies that seismic layer 2A cannot be used reliably to map the boundary between lavas and dykes in young oceanic crust. Instead we argue that the seismic layer 2A reflector corresponds to an alteration boundary that can be located either within the lava section or near the top of the sheeted dyke complex of oceanic crust.

  11. Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations.

    PubMed

    Biktasheva, I V; Dierckx, H; Biktashev, V N

    2015-02-13

    A scroll wave in a very thin layer of excitable medium is similar to a spiral wave, but its behavior is affected by the layer geometry. We identify the effect of sharp variations of the layer thickness, which is separate from filament tension and curvature-induced drifts described earlier. We outline a two-step asymptotic theory describing this effect, including asymptotics in the layer thickness and calculation of the drift of so-perturbed spiral waves using response functions. As specific examples, we consider drift of scrolls along thickness steps, ridges, ditches, and disk-shaped thickness variations. Asymptotic predictions agree with numerical simulations.

  12. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    PubMed

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110 nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420 ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50 ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20 nm and about 110 nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio.

  13. Retinal nerve fiber layer thickness and retinal vessel calibers in children with thalassemia minor

    PubMed Central

    Acer, Semra; Balcı, Yasemin I; Pekel, Gökhan; Ongun, Tuğba T; Polat, Aziz; Çetin, Ebru N; Yağcı, Ramazan

    2016-01-01

    Objectives: Evaluation of the peripapillary retinal nerve fiber layer thickness, subfoveal choroidal thickness, and retinal vessel caliber measurements in children with thalassemia minor. Methods: In this cross-sectional and comparative study, 30 thalassemia minor patients and 36 controls were included. Heidelberg spectral domain optical coherence tomography was used for peripapillary retinal nerve fiber layer thickness, subfoveal choroidal thickness, and retinal vessel caliber measurements. Results: There was no statistically significant difference in retinal nerve fiber layer thickness and subfoveal choroidal thickness between the two groups (p > 0.05). There was no correlation between retinal nerve fiber layer thickness and hemoglobin values. Both the arterioral and venular calibers were higher in thalassemia minor group (p < 0.05). Conclusion: There is increased retinal arterioral and venular calibers in children with thalassemia minor compared with controls. PMID:27540484

  14. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  15. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    PubMed Central

    Pedano, M. L.; Rivas, G. A.

    2005-01-01

    In this work we present a critical study of the nucleic acid layer immobilized at glassy carbon electrodes. Different studies were performed in order to assess the nature of the interaction between DNA and the electrode surface. The adsorption and electrooxidation of DNA demonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. The DNA layer immobilized at a freshly polished glassy carbon electrode was very stable even after applying highly negative potentials. The electron transfer of potassium ferricyanide, catechol and dopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlled potential conditions) and thick (obtained by casting the glassy carbon surface with highly concentrated DNA solutions) DNA layers was slower than that at the bare glassy carbon electrode, although this effect was dependent on the thickness of the layer and was not charge selective. Raman experiments showed an important decrease of the vibrational modes assigned to the nucleobases residues, suggesting a strong interaction of these residues with the electrode surface. The hybridization of oligo(dG)21 and oligo(dC)21 was evaluated from the guanine oxidation signal and the reduction of the redox indicator Co(phen)33+. In both cases the chronopotentiometric response indicated that the compromise of the bases in the interaction of DNA with the electrode surface is too strong, preventing further hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in a direct and very sensitive way, but not to be used for the preparation of biorecognition layers by direct adsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  16. Metaporous layer to overcome the thickness constraint for broadband sound absorption

    SciTech Connect

    Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young

    2015-05-07

    The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.

  17. Effects of Membrane- and Catalyst-layer-thickness Nonuniformitiesin Polymer-electrolyte Fuel Cells

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2006-09-01

    In this paper, results from mathematical, pseudo 2-D simulations are shown for four different along-the-channel thickness distributions of both the membrane and cathode catalyst layer. The results and subsequent analysis clearly demonstrate that for the membrane thickness distributions, cell performance is affected a few percent under low relative-humidity conditions and that the position along the gas channel is more important than the local thickness variations. However, for the catalyst-layer thickness distributions, global performance is not impacted, although for saturated conditions there is a large variability in the local temperature and performance depending on the thickness.

  18. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  19. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis

    PubMed Central

    Chan, Tommy C. Y.; Ye, Cong; Ng, Paul KF; Li, Emmy Y. M.; Yuen, Hunter K. L.; Jhanji, Vishal

    2015-01-01

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44–83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis. PMID:26184418

  20. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis.

    PubMed

    Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal

    2015-01-01

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis. PMID:26184418

  1. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Jones, A.O.F.; Scherwitzl, B.; Fian, A.; Głowacl, E.D.; Stadlober, B.; Winkler, A.

    2016-01-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90–95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10−3cm2/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  2. Subdivision of thick sedimentary units into layers for simulation of groundwater flow.

    USGS Publications Warehouse

    Weiss, J.S.; Williamson, A.K.

    1985-01-01

    Subdividing thick sedimentary units into model layers based solely on stratigraphy can lead to serious violation of groundwater flow modeling restraints and produce erroneous results. Borehole geophysical data can be used to suggest relative permeabilities and delineate model layers that are more likely to have uniform hydraulic properties than layers delineated by stratigraphic definitions alone. The uniformity within layers emphasizes the permeability contrast between layers, thereby allowing a quasi three-dimensional approach. These methods are applied to the thick sedimentary units of the Gulf Coastal Plain, USA.-from Authors

  3. The Effect of Axial Length on the Thickness of Intraretinal Layers of the Macula

    PubMed Central

    Szigeti, Andrea; Tátrai, Erika; Varga, Boglárka Enikő; Szamosi, Anna; DeBuc, Delia Cabrera; Nagy, Zoltán Zsolt; Németh, János; Somfai, Gábor Márk

    2015-01-01

    Purpose The aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis. Methods Fifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values. Results Total retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001). Conclusions Our results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies. PMID:26544553

  4. Direct determination of the thickness of stratospheric layers from single-channel satellite radiance measurements.

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.; Gelman, M. E.

    1972-01-01

    The direct use of measured radiances for determining the thickness of stratospheric layers is investigated. Layers based at 100-10 mb, with upper boundaries at 10-0.5 mb, are investigated using a carefully selected family of stratospheric temperature profiles and computed radiances. On the basis of physical reasoning, a high correlation of thickness with radiance is anticipated for deep layers, such as the 100- to 2-mb layer (from about 15 to 43 km), that emit a substantial part of the infrared energy reaching a satellite radiometer in a particular channel. Empirical regression curves relating thickness and radiance are developed and are compared with blackbody curves obtained by substituting the blackbody temperature in the hydrostatic equation. Maximum thickness-radiance correlation is found, for each infrared channel, for the layer having the best agreement of empirical and blackbody curves.

  5. An ultrasonic theoretical and experimental approach to determine thickness and wave speed in layered media.

    PubMed

    de Sousa, Ana Valéria Greco; Pereira, Wagner Coelho de Albuquerque; Machado, João Carlos

    2007-02-01

    This work presents an ultrasonic method to characterize the layers of a stratified medium, using independent measurements of wave speed and thickness of each layer. The model, based on geometrical acoustics, includes refraction. Two transducers are used: one active (3.4 MHz) and a hydrophone as a receptor, which is moved laterally through 15 positions. The distance between the transducers and the delay between the echoes, from the interfaces separating the layers, received by them are used to estimate the speed and thickness. Three types of layered phantoms were used: Ph1 made with alcohol/acrylic, Ph2 made with polyvinyl chloride/water/acrylic, and Ph3 made with acrylic/water/polyvinyl chloride. The experimental results for speed of sound and layer thickness presented an experimental mean relative error, for thickness and wave speed, lower than 7.0% and 6.6%, respectively. PMID:17328335

  6. Effect of layer thickness on the properties of nickel thermal sprayed steel

    NASA Astrophysics Data System (ADS)

    Nurisna, Zuhri; Triyono, Muhayat, Nurul; Wijayanta, Agung Tri

    2016-03-01

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni-5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  7. Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid-liquid interface.

    PubMed

    Dutta, Amit K; Nayak, Arpan; Belfort, Georges

    2008-08-01

    The real-time changes in viscoelasticity of adsorbed poly(L-lysine) (PLL) and adsorbed histone (lysine rich fraction) due to cross-linking by glutaraldehyde and corresponding release of associated water were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D) and attenuated total reflection Fourier transform infrared spectroscopy (ATR/FTIR). The kinetics of PLL and histone adsorption were measured through changes in mass adsorbed onto a gold-coated quartz surface from changes in frequency and dissipation and using the Voigt viscoelastic model. Prior to cross-linking, the shear viscosity and shear modulus of the adsorbed PLL layer were approximately 3.0 x 10(-3) Pas and approximately 2.5 x 10(5) Pa, respectively, while after cross-linking, they increased to approximately 17.5 x 10(-3) Pas and approximately 2.5 x 10(6) Pa, respectively. For the adsorbed histone layer, shear viscosity and shear modulus increased modestly from approximately 1.3 x 10(-3) to approximately 2.0 x 10(-3) Pas and from approximately 1.2 x 10(4) to approximately 1.6 x 10(4) Pa, respectively. The adsorbed mass estimated from the Sauerbrey equation (perfectly elastic) and the Voigt viscoelastic model differ appreciably prior to cross-linking whereas after cross-linking they converged. This is because trapped water molecules were released during cross-linking. This was confirmed experimentally via ATR/FTIR measurements. The variation in viscoelastic properties increased substantially after cross-linking presumably due to fluctuation of the randomly cross-linked network structure. An increase in fluctuation of the viscoelastic properties and the loss of imbibed water could be used as a signature of the formation of a cross-linked network and the amount of cross-linking, respectively. PMID:18508070

  8. Thickness measurement of multi-layer conductive coatings using multifrequency eddy current techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Dejun; Yu, Yating; Lai, Chao; Tian, Guiyun

    2016-07-01

    To ensure the key structural performance in high-temperature and high-stress environments, thermal barrier coatings (TBCs) are often adopted in engineering. The thickness of these multi-layer conductive coatings is an important quality indicator. In order to measure the thickness of multi-layer conductive coatings, a new measurement approach is presented using eddy current testing techniques, and then, an inversion algorithm is proposed and proved efficient and applicable, of which the maximum experimental relative error is within 10%. Therefore, the new approach can be effectively applied to thickness measurement of multi-layer conductive coatings such as TBCs.

  9. Work function variation of MoS{sub 2} atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules

    SciTech Connect

    Kim, Jong Hun; Kim, Jae Hyeon; Park, Jeong Young E-mail: jeongypark@kaist.ac.kr; Lee, Jinhwan; Hwang, C. C.; Lee, Changgu E-mail: jeongypark@kaist.ac.kr

    2015-06-22

    The electrical properties of two-dimensional atomic sheets exhibit remarkable dependences on layer thickness and surface chemistry. Here, we investigated the variation of the work function properties of MoS{sub 2} films prepared with chemical vapor deposition (CVD) on SiO{sub 2} substrates with the number of film layers. Wafer-scale CVD MoS{sub 2} films with 2, 4, and 12 layers were fabricated on SiO{sub 2}, and their properties were evaluated by using Raman and photoluminescence spectroscopies. In accordance with our X-ray photoelectron spectroscopy results, our Kelvin probe force microscopy investigation found that the surface potential of the MoS{sub 2} films increases by ∼0.15 eV when the number of layers is increased from 2 to 12. Photoemission spectroscopy (PES) with in-situ annealing under ultra high vacuum conditions was used to directly demonstrate that this work function shift is associated with the screening effects of oxygen or water molecules adsorbed on the film surface. After annealing, it was found with PES that the surface potential decreases by ∼0.2 eV upon the removal of the adsorbed layers, which confirms that adsorbed species have a role in the variation in the work function.

  10. Physiological variation of segmented OCT retinal layer thicknesses is short-lasting.

    PubMed

    Balk, Lisanne; Mayer, Markus; Uitdehaag, Bernard M J; Petzold, Axel

    2013-12-01

    The application of spectral domain optical coherence tomography as a surrogate for neurodegeneration in a range of neurological disorders demands better understanding of the physiological variation of retinal layer thicknesses, which may mask any value of this emerging outcome measure. A prospective study compared retinal layer thicknesses between control subjects (n = 15) and runners (n = 27) participating in a 10-km charity run. Three scans were performed using an eye-tracking function (EBF) and automated scan registration for optimal precision at (1) baseline, (2) directly after the run, and (3) following a rehydration period. Retinal layer segmentation was performed with suppression of axial retinal vessel signal artifacts. Following the run, there was an increase in the relative retinal nerve fibre layer (p = 0.018), the combined inner plexiform/ganglion cell layer (p = 0.038), and the outer nuclear layer (p = 0.018) in runners compared to controls. The initial increase of thickness in the outer nuclear layer of runners (p < 0.0001) was likely related to (noncompliant) rehydration during exercise. Following a period of rest and rehydration, the difference in thickness change for all retinal layers, except the retinal nerve fibre layer (RNFL) (p < 0.05), disappeared between the two groups. There is a quantifiable change in the axial thickness of retinal layersthat which can be explained by an increase in the cellular volume. This effect may potentially be caused by H2O volume shifts.

  11. Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR

    NASA Astrophysics Data System (ADS)

    Hu, Jinhui; Vennapusa, Pavana K. R.; White, David J.; Beresnev, Igor

    2016-07-01

    Experimental results from field and laboratory investigations using a ground-coupled ground penetrating radar (GPR), dielectric measurement, magnetic imaging tomography (MIT) and dynamic cone penetrometer (DCP) tests are presented. Dielectric properties of asphalt pavement and stabilised and unstabilised pavement foundation materials were evaluated in the laboratory in frozen and unfrozen conditions. Laboratory test results showed that dielectric properties of materials back-calculated from GPR in comparison to dielectric gauge measurements are strongly correlated and repeatable. For chemically stabilised materials, curing time affected the dielectric properties of the materials. Field tests were conducted on asphalt pavement test sections with different foundation materials (stabilised and unstabilised layers), drainage conditions and layer thicknesses. GPR and MIT results were used to determine asphalt layer thicknesses and were compared with measured core thicknesses, while GPR and DCP were used to assess foundation layer profiles. Asphalt thicknesses estimated from GPR showed an average error of about 11% using the dielectric gauge values as input. The average error reduced to about 4% when calibrated with cores thicknesses. MIT results showed thicknesses that are about 9% higher than estimated using GPR. Foundation layer thicknesses could not be measured using GPR due to variations in moisture conditions between the test sections, which is partly attributed to variations in gradation and drainage characteristics of the subbase layer.

  12. Influence of the alignment layer and the liquid crystal layer thickness on the characteristics of electrically controlled optical modulators

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, V. N.; Konshina, E. A.; Kostomarov, D. S.; Fedorov, M. A.; Amosova, L. P.; Gavrish, E. O.

    2009-06-01

    The screening effect of the amorphous hydrogenated carbon (a-C:H) alignment layer and its dependence on the thickness of a dual-frequency nematic liquid crystal (NLC) layer have been studied. Optimization of the a-C:H layer thickness allows a threshold voltage for the optical S-effect to be reduced and the characteristic switching time and relaxation time of 0.5 and 2.5 ms, respectively, to be obtained for a phase retardation of 2π at a wavelength of 0.86 μm.

  13. Dilatational rheology of beta-casein adsorbed layers at liquid-fluid interfaces.

    PubMed

    Maldonado-Valderrama, Julia; Fainerman, Valentin B; Galvez-Ruiz, M José; Martín-Rodriguez, Antonio; Cabrerizo-Vílchez, Miguel A; Miller, Reinhard

    2005-09-22

    The rheological behavior of beta-casein adsorption layers formed at the air-water and tetradecane-water interfaces is studied in detail by means of pendant drop tensiometry. First, its adsorption behavior is briefly summarized at both interfaces, experimentally and also theoretically. Subsequently, the experimental dilatational results obtained for a wide range of frequencies are presented for both interfaces. An interesting dependence with the oscillation frequency is observed via the comparative analysis of the interfacial elasticity (storage part) and the interfacial viscosity (loss part) for the two interfaces. The analysis of the interfacial elasticities provides information on the conformational transitions undergone by the protein upon adsorption at both interfaces. The air-water interface shows a complex behavior in which two maxima merge into one as the frequency increases, whereas only a single maximum is found at the tetradecane interface within the range of frequencies studied. This is interpreted in terms of a decisive interaction between the oil and the protein molecules. Furthermore, the analysis of the interfacial viscosities provides information on the relaxation processes occurring at both interfaces. Similarly, substantial differences arise between the gaseous and liquid interfaces and various possible relaxation mechanisms are discussed. Finally, the experimental elasticities obtained for frequencies higher than 0.1 Hz are further analyzed on the basis of a thermodynamic model. Accordingly, the nature of the conformational transition given by the maximum at these frequencies is discussed in terms of different theoretical considerations. The formation of a protein bilayer at the interface or the limited compressibility of the protein in the adsorbed state are regarded as possible explanations of the maximum.

  14. Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor

    NASA Astrophysics Data System (ADS)

    Theuer, M.; Beigang, R.; Grischkowsky, D.

    2010-08-01

    We report on the layer thickness determination on dielectrically coated metal cylinders using terahertz (THz) time-domain spectroscopy. A considerable sensitivity increase of up to a factor of 150 is obtained for layers down to 2.5 μm thickness by introducing an experimental geometry based on a two-cylinder waveguide sensor. The layer attached on one metal cylinder is guided in contact with the second metal cylinder in the THz beam waist. This approach uses concepts of adiabatic THz wave compression and the advantages of THz waveguides. The results are compared to measurements on free-standing layers.

  15. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  16. Quantification of the effect of oil layer thickness on entrainment of surface oil.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Dijkstra, Klaas; Murk, Albertinka J

    2015-07-15

    This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity "surrogate MC252 oil" we used, entrainment rate is directly proportional to layer thickness. Furthermore, the volume of stably suspended small oil droplets increases with energy input (plunge height) and is mostly proportional to layer thickness. Oil pre-treated with dispersants (dispersant-oil ratio ranges from 1:50 to 1:300) is greatly entrained in such large amounts of small droplets that quantification was impossible with the camera system. Very low interfacial tension causes entrainment by even minor secondary surface disturbances. Our results indicate that the effect of oil layer thickness should be included in oil entrainment and dispersion modelling. PMID:26002094

  17. Microstructure evolution with varied layer thickness in magnetron-sputtered Ni/C multilayer films

    PubMed Central

    Peng, Jichang; Li, Wenbin; Huang, Qiushi; Wang, Zhanshan

    2016-01-01

    The microstructure evolution of magnetron-sputtered Ni/C multilayers was investigated by varying the Ni and C layer thickness in the region of a few nanometers. For the samples having 2.6-nm-thick C layers, the interface width increases from 0.37 to 0.81 nm as the Ni layer thickness decreases from 4.3 to 1.3 nm. Especially for the samples with Ni layers less than 2.0 nm, the interface width changes significantly due to the discontinuously distributed Ni crystallites. For the samples having 2.8-nm-thick Ni layers, the interface width increases from 0.37 to 0.59 nm when the C layer thickness decreases from 4.3 to 0.7 nm. The evolution of interface microstructures with varied Ni and C layers is explained based on a proposed simple growth model of Ni and C layers. PMID:27515586

  18. Electro-Physical Technique for Post-Fabrication Measurements of CMOS Process Layer Thicknesses

    PubMed Central

    Marshall, Janet C.; Vernier, P. Thomas

    2007-01-01

    This paper1 presents a combined physical and electrical post-fabrication method for determining the thicknesses of the various layers in a commercial 1.5 μm complementary-metal-oxide-semiconductor (CMOS) foundry process available through MOSIS. Forty-two thickness values are obtained from physical step-height measurements performed on thickness test structures and from electrical measurements of capacitances, sheet resistances, and resistivities. Appropriate expressions, numeric values, and uncertainties for each layer of thickness are presented, along with a systematic nomenclature for interconnect and dielectric thicknesses. However, apparent inconsistencies between several of the physical and electrical results for film thickness suggest that further uncertainty analysis is required and the effects of several assumptions need to be quantified. PMID:27110468

  19. Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease.

    PubMed

    Lee, Jee-Young; Kim, Jae Min; Ahn, Jeeyun; Kim, Han-Joon; Jeon, Beom S; Kim, Tae Wan

    2014-01-01

    Defective visual information processing from both central and peripheral pathways is one of the suggested mechanisms of visual hallucination in Parkinson's disease (PD). To investigate the role of retinal thinning for visual hallucination in PD, we conducted a case-control study using spectral domain optical coherence tomography. We examined a representative sample of 61 patients with PD and 30 healthy controls who had no history of ophthalmic diseases. General ophthalmologic examinations and optical coherence tomography scans were performed in each participant. Total macular thickness and the thickness of each retinal layer on horizontal scans through the fovea were compared between the groups. In a comparison between patients with PD and healthy controls, there was significant parafoveal inner nuclear layer thinning, whereas other retinal layers, including the retinal nerve fiber layer, as well as total macular thicknesses were not different. In terms of visual hallucinations among the PD subgroups, only retinal nerve fiber layer thickness differed significantly, whereas total macular thickness and the thickness of other retinal layers did not differ. The retinal nerve fiber layer was thinnest in the group that had hallucinations without dementia, followed by the group that had hallucinations with dementia, and the group that had no hallucinations and no dementia. General ophthalmologic examinations did not reveal any significant correlation with hallucinations. There were no significant correlations between retinal thicknesses and duration or severity of PD and medication dosages. The results indicate that retinal nerve fiber layer thinning may be related to visual hallucination in nondemented patients with PD. Replication studies as well as further studies to elucidate the mechanism of thinning are warranted.

  20. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    NASA Astrophysics Data System (ADS)

    Hutchinson, David; Mathews, Jay; Sullivan, Joseph T.; Akey, Austin; Aziz, Michael J.; Buonassisi, Tonio; Persans, Peter; Warrender, Jeffrey M.

    2016-05-01

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer's law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  1. Hybrid layer thickness and morphology: Influence of cavity preparation with air abrasion.

    PubMed

    Barceleiro, Marcos Oliveira; de Mello, Jose Benedicto; Porto, Celso Luis de Angelis; Dias, Katia Regina Hostilio Cervantes; de Miranda, Mauro Sayao

    2011-01-01

    Dentinal surfaces prepared with air abrasion have considerably different characteristics from those prepared with conventional instruments. Different hybrid layer morphology and thickness occur, which can result in differences in the quality of restorations placed on dentinal surfaces prepared with a diamond bur compared to surfaces prepared using air abrasion. The objective of this study was to compare the hybrid layer thickness and morphology formed utilizing Scotchbond Multi-Purpose Plus (SBMP) on dentin prepared with a diamond bur in a high-speed handpiece and on dentin prepared using air abrasion. Flat dentin surfaces obtained from five human teeth were prepared using each method, then treated with the dentin adhesive system according to manufacturer's instructions. After a layer of composite was applied, specimens were sectioned, flattened, polished, and prepared for scanning electron microscopy. Ten different measurements of hybrid layer thickness were obtained along the bonded surface in each specimen. SBMP produced a 3.43 ± 0.75 µm hybrid layer in dentin prepared with diamond bur. This hybrid layer was regular and found consistently. In the air abrasion group, SBMP produced a 4.94 ± 1.28 µm hybrid layer, which was regular and found consistently. Statistical ANOVA (P = 0.05) indicated that there was a statistically significant difference between the groups. These data indicate that the air abrasion, within the parameters used in this study, provides a thick hybrid layer formation.

  2. Hybrid layer thickness and morphology: Influence of cavity preparation with air abrasion.

    PubMed

    Barceleiro, Marcos Oliveira; de Mello, Jose Benedicto; Porto, Celso Luis de Angelis; Dias, Katia Regina Hostilio Cervantes; de Miranda, Mauro Sayao

    2011-01-01

    Dentinal surfaces prepared with air abrasion have considerably different characteristics from those prepared with conventional instruments. Different hybrid layer morphology and thickness occur, which can result in differences in the quality of restorations placed on dentinal surfaces prepared with a diamond bur compared to surfaces prepared using air abrasion. The objective of this study was to compare the hybrid layer thickness and morphology formed utilizing Scotchbond Multi-Purpose Plus (SBMP) on dentin prepared with a diamond bur in a high-speed handpiece and on dentin prepared using air abrasion. Flat dentin surfaces obtained from five human teeth were prepared using each method, then treated with the dentin adhesive system according to manufacturer's instructions. After a layer of composite was applied, specimens were sectioned, flattened, polished, and prepared for scanning electron microscopy. Ten different measurements of hybrid layer thickness were obtained along the bonded surface in each specimen. SBMP produced a 3.43 ± 0.75 µm hybrid layer in dentin prepared with diamond bur. This hybrid layer was regular and found consistently. In the air abrasion group, SBMP produced a 4.94 ± 1.28 µm hybrid layer, which was regular and found consistently. Statistical ANOVA (P = 0.05) indicated that there was a statistically significant difference between the groups. These data indicate that the air abrasion, within the parameters used in this study, provides a thick hybrid layer formation. PMID:22313931

  3. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGES

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  4. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  5. JKR adhesive contact for a transversely isotropic layer of finite thickness

    NASA Astrophysics Data System (ADS)

    Argatov, I. I.; Borodich, F. M.; Popov, V. L.

    2016-02-01

    A frictionless contact interaction with a circular area of contact between an arbitrary axisymmetric rigid probe and a transversely isotopic elastic layer deposited on a substrate is studied in the framework of the JKR (Johnson, Kendall, and Roberts) adhesion theory. Under the assumption that the diameter of the contact area is less than the thickness of the elastic layer, the forth-order asymptotic model is explicitly written out. The effect of the layer thickness and the material anisotropy is taken into account via the asymptotic coefficients, which are integral characteristics of the elastic layer and also depend on the boundary conditions at the layer/substrate interface. A special case of an isotropic elastic layer bonded to an isotropic elastic half-space is considered in detail.

  6. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  7. Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy

    PubMed Central

    Lee, Ju-Yeun; Cho, Kyuyeon; Park, Kyung-Ah; Oh, Sei Yeul

    2016-01-01

    The aims of this study were 1) To evaluate retinal nerve fiber layer (fRNFL) thickness and ganglion cell layer plus inner plexiform layer (GCIPL) thickness at the fovea in eyes affected with traumatic optic neuropathy (TON) compared with contralateral normal eyes, 2) to further evaluate these thicknesses within 3 weeks following trauma (defined as “early TON”), and 3) to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP), mean deviation (MD) and visual field index (VFI) in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3–36%) in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05). Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5–10%) in the early TON eyes than that in the control eyes (all p<0.01). A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI) (r = -0.70 to 0.84). Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas) was most correlated with these five visual function parameters (r = -0.70 to 0.71). Therefore, evaluation of morphological

  8. Multi-layer graphene oxide alone and in a composite with nanosilica: Preparation and interactions with polar and nonpolar adsorbates

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Turov, V. V.; Zarko, V. I.; Goncharuk, O. V.; Matkovsky, A. K.; Prykhod'ko, G. P.; Nychiporuk, Yu. M.; Pakhlov, E. M.; Krupska, T. V.; Balakin, D. Yu.; Charmas, B.; Andriyko, L. S.; Skubiszewska-Zięba, J.; Marynin, A. I.; Ukrainets, A. I.; Kartel, M. T.

    2016-11-01

    Freeze-dried multi-layer graphene oxide (MLGO), produced from natural flake graphite using ionic hydration method, demonstrates strong interactions of functionalized carbon sheets with polar or nonpolar adsorbates or co-adsorbates depending on the characteristics of dispersion media. Interactions of MLGO with a mixture of water and n-decane in chloroform media provide specific surface area (Su) in contact with unfrozen liquids greater than 1000 m2/g corresponding to stacks with 3-5 carbon layers. Electrostatic interactions between functionalized carbon sheets in dried MLGO are very strong. Therefore, nonpolar molecules (benzene, decane, nitrogen) cannot penetrate between the sheets. Water molecules can effectively penetrate between the sheets, especially if MLGO is located in weakly polar CDCl3 medium. In this case, n-decane molecules (co-adsorbate) can also penetrate into the sheet stacks and locate around nonpolar fragments of the sheets. The Su value of MLGO being in contact with unfrozen water can reach 360 m2/g, but upon co-adsorption of water with decane Su = 930 m2/g, i.e., hydrophobic interactions of the mentioned fragments with decane are stronger that with co-adsorbed water. Water alone (0.25 or 0.5 g/g) bound to MLGO in a mixture with fumed silica A-300 in air or CDCl3 media can provide Su = 30-50 m2/g. Pores in wetted MLGO or MLGO/A-300 mainly correspond to mesopores. Nanosilica does not provide significant opening of the MLGO sheet stacks during their mechanical mixing.

  9. Change of retinal nerve fiber layer thickness in patients with nonarteritic inflammatory anterior ischemic optic neuropathy.

    PubMed

    Liu, Tingting; Bi, Hongsheng; Wang, Xingrong; Wang, Guimin; Li, Haiyan; Wu, Hui; Qu, Yi; Wen, Ying; Cong, Chenyang; Wang, Daoguang

    2012-12-15

    In this study, 16 patients (19 eyes) with nonarteritic anterior ischemic optic neuropathy in the acute stage (within 4 weeks) and resolving stage (after 12 weeks) were diagnosed by a series of complete ophthalmic examinations, including fundus examination, optical coherence tomography and fluorescein fundus angiography, and visual field defects were measured with standard automated perimetry. The contralateral uninvolved eyes were used as controls. The retinal nerve fiber layer thickness was determined by optical coherence tomography which showed that the mean retinal nerve fiber layer thickness and the retinal nerve fiber layer thickness from temporal, superior, nasal and inferior quadrants were significantly higher for all measurements in the acute stage than the corresponding normal values. In comparison, the retinal nerve fiber layer thickness from each optic disc quadrant was found to be significantly lower when measured at the resolving stages, than in the control group. Statistical analysis on the correlation between optic disc nerve fiber layer thickness and visual defects demonstrated a positive correlation in the acute stage and a negative correlation in the resolving stage. Our experimental findings indicate that optical coherence tomography is a useful diagnostic method for nonarteritic anterior ischemic optic neuropathy and can be used to evaluate the effect of treatment.

  10. Assessment of Layer Thickness and Interface Quality in CoP Electrodeposited Multilayers.

    PubMed

    Lucas, Irene; Ciudad, David; Plaza, Manuel; Ruiz-Gómez, Sandra; Aroca, Claudio; Pérez, Lucas

    2016-07-27

    The magnetic properties of CoP electrodeposited alloys can be easily controlled by layering the alloys and modulating the P content of the different layers by using pulse plating in the electrodeposition process. However, because of its amorphous nature, the study of the interface quality, which is a limitation for the optimization of the soft magnetic properties of these alloys, becomes a complex task. In this work, we use Rutherford backscattering spectroscopy (RBS) to determine that electrodeposited Co0.74P0.26/Co0.83P0.17 amorphous multilayers with layers down to 20 nm-thick are composed by well-defined layers with interfacial roughness below 3 nm. We have also determined, using magnetostriction measurements, that 4 nm is the lower limitation for the layer thickness. Below this thickness, the layers are mixed and the magnetic behavior of the multilayered films is similar to that shown by single layers, thus going from in-plane to out-of-plane magnetic anisotropy. Therefore, these results establish the range in which the magnetic properties of these alloys can be controlled by layering. PMID:27381897

  11. Focusing of dipole radiation by a negative index chiral layer. 1. A thick layer as compared with the wavelength

    SciTech Connect

    Guzatov, D V; Klimov, V V

    2014-09-30

    We have derived and investigated the analytical expressions for the fields of scattered radiation of an electric dipole source by a chiral (bi-isotropic) layer with arbitrary permittivity and permeability and arbitrary thickness. It is shown that in the negativeindex chiral layer the focus spot of dipole radiation is split due to excitation of right- and left-hand circularly polarised waves. The conditions are found under which the waves with one of the polarisations can be suppressed, which leads to a substantial improvement of the focusing properties of the chiral layer. (metamaterials)

  12. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  13. Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium.

    PubMed

    Boruah, Sourabh; Paskoff, Glenn R; Shender, Barry S; Subit, Damien L; Salzar, Robert S; Crandall, Jeff R

    2015-08-01

    The human calvarium is a sandwich structure with two dense layers of cortical bone separated by porous cancellous bone. The variation of the three dimensional geometry, including the layer thicknesses and the volume fraction of the cancellous layer across the population, is unavailable in the current literature. This information is of particular importance to mathematical models of the human head used to simulate mechanical response. Although the target geometry for these models is the median geometry of the population, the best attempt so far has been the scaling of a unique geometry based on a few median anthropometric measurements of the head. However, this method does not represent the median geometry. This paper reports the average three dimensional geometry of the calvarium from X-ray computed tomography (CT) imaging and layer thickness and trabecular volume fraction from micro CT (μCT) imaging of ten adult male post-mortem human surrogates (PMHS). Skull bone samples have been obtained and μCT imaging was done at a resolution of 30 μm. Monte Carlo simulation was done to estimate the variance in these measurements due to the uncertainty in image segmentation. The layer thickness data has been averaged over areas of 5mm(2). The outer cortical layer was found to be significantly (p < 0.01; Student's t test) thicker than the inner layer (median of thickness ratio 1.68). Although there was significant location to location difference in all the layer thicknesses and volume fraction measurements, there was no trend. Average distribution and the variance of these metrics on the calvarium have been shown. The findings have been reported as colormaps on a 2D projection of the cranial vault. PMID:25920690

  14. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode

    NASA Astrophysics Data System (ADS)

    Lee, Hee Sang; Woo, Seong Ihl

    2016-07-01

    It is necessary for transparent conducting electrodes used in dye-sensitized or perovskite solar cells to have high thermal stability which is required when TiO2 is coated on the electrode. AZO films with their low-cost and good TCO properties are unfortunately unstable above 300 °C in air because of adsorbed oxygen. In this paper, the thermal stability of AZO films is enhanced by depositing an oxygen barrier on AZO films to block the oxygen. As the barrier material, SnO2 is used due to its high heat stability, electrical conductivity, and transmittance. Moreover, when the SnO2 is grown as amorphous phase, the protective effect become greater than the crystalline phase. The thermal stability of the amorphous-SnO2/AZO films varies depending on the thickness of the amorphous SnO2 layer. Because of the outstanding oxygen blocking properties of amorphous SnO2, its optimal thickness is very thin and it results in only a slight decrease in transmittance. The sheet resistance of the amorphous-SnO2/AZO film is 5.4 Ω sq-1 after heat treatment at 500 °C for 30 min in air and the average transmittance in the visible region is 83.4%. The results show that the amorphous-SnO2/AZO films have thermal stability with excellent electrical and optical properties. [Figure not available: see fulltext.

  15. Measurement of the dead layer thickness in a p-type point contact germanium detector

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  16. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  17. Significant thickness dependence of the thermal resistance between few-layer graphenes

    NASA Astrophysics Data System (ADS)

    Ni, Yuxiang; Chalopin, Yann; Volz, Sebastian

    2013-08-01

    The inter-layer resistance in few layer graphene (FLG) is an unknown intrinsic property that affects the heat removal efficiency of FLG-based thermal devices. Here we present data that demonstrates the layer number dependence of the resistance between FLGs, by using molecular dynamics simulations. The resistance was found to decrease as the layer number increases. FLGs with larger thicknesses are proposed to be advantageous in heat spreading owing to their lower contact resistances. The observed properties do not depend on temperature, which is crucial for FLG based structures to retain a stable heat removal efficiency while working at a large temperature range.

  18. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185°C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40°C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  19. Diurnal changes in retinal nerve fiber layer thickness with obstructive sleep apnea/hypopnea syndrome

    PubMed Central

    Chirapapaisan, Niphon; Likitgorn, Techawit; Pleumchitchom, Mintra; Sakiyalak, Darin; Banhiran, Wish; Saiman, Manatsawin; Chuenkongkaew, Wanicha

    2016-01-01

    AIM To compare the retinal nerve fiber layer (RNFL) thickness in the morning and evening in Thai patients with varying degrees of obstructive sleep apnea/hypopnea syndrome (OSAHS). METHODS In this cross-sectional study, potential OSAHS patients at Siriraj Hospital underwent polysomnography to determine the severity of OSAHS and an eye examination (including best corrected visual acuity, slit-lamp examination, and Goldmann applanation tonometry). RNFL thickness was recorded once in the morning and once in the evening, using spectral domain optical coherence tomography. Thickness was expressed as an average and given for each quadrant. Patients with ocular or systemic diseases that might affect RNFL thickness were excluded. RESULTS Forty-one eyes of 41 patients were classified into 4 OSAHS groups. The average and mean RNFL thickness in most of the four quadrants of the severe OSAHS group trended toward being less than those in the comparable quadrants of the other groups in both the morning and evening. In the moderate OSAHS group, the average RNFL thickness and temporal and superior quadrant thickness in the morning were significantly higher than in the evening (P=0.01, P=0.01, and P=0.03, respectively). In the severe OSAHS group, the inferior quadrant thickness in the morning was significantly higher than in the evening (P=0.03). CONCLUSION The RNFL thickness in the morning was higher than in the evening in moderate OSAHS. PMID:27500104

  20. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities.

  1. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses.

    PubMed

    Sirc, Jakub; Kubinova, Sarka; Hobzova, Radka; Stranska, Denisa; Kozlik, Petr; Bosakova, Zuzana; Marekova, Dana; Holan, Vladimir; Sykova, Eva; Michalek, Jiri

    2012-01-01

    Polyvinyl alcohol nanofibers incorporating the wide spectrum antibiotic gentamicin were prepared by Nanospider™ needleless technology. A polyvinyl alcohol layer, serving as a drug reservoir, was covered from both sides by polyurethane layers of various thicknesses. The multilayered structure of the nanofibers was observed using scanning electron microscopy, the porosity was characterized by mercury porosimetry, and nitrogen adsorption/desorption measurements were used to determine specific surface areas. The stability of the gentamicin released from the electrospun layers was proved by high-performance liquid chromatography (HPLC) and inhibition of bacterial growth. Drug release was investigated using in vitro experiments with HPLC/MS quantification, while the antimicrobial efficacy was evaluated on Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. Both experiments proved that the released gentamicin retained its activity and showed that the retention of the drug in the nanofibers was prolonged with the increasing thickness of the covering layers. PMID:23071393

  2. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities. PMID:26682698

  3. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  4. Physiological variation of retinal layer thickness is not caused by hydration: a randomised trial.

    PubMed

    Balk, Lisanne J; Oberwahrenbrock, Timm; Uitdehaag, Bernard M J; Petzold, Axel

    2014-09-15

    There is evidence for physiological variation of retinal thicknesses as determined by optical coherence tomography (OCT). We tested if such changes could be explained by hydration and would exceed what may be expected from normal ageing. Subjects (n=26) of a previous study were re-assessed and were randomised to 3 groups of a hydration escalation trial (no hydration, 1× hydration, 2× hydration). Automated retinal layer segmentations were performed for the macular retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL) and outer nuclear layer (ONL). The averaged volumes were calculated for the central foveola, 3 mm and 6 mm circles of the ETDRS grid. Following oral hydration there were no significant differences of retinal layer thicknesses between the three randomised groups in any of the ETDRS regions at any time-point. Ageing related changes were significant over an 18 month period for the GCL. The negative outcome of this trial implies that, until the causes for the observed variation are resolved, investigators may need to accept, and include into trial power calculations, a small degree of variation (<1%) of quantitative SD-OCT imaging either due to human physiology or instrument/software related factors.

  5. Lack of Correlation Between Diabetic Macular Edema and Thickness of the Peripapillary Retinal Nerve Fibre Layer

    PubMed Central

    Alkuraya, Hisham S.; Al-Gehedan, Saeed M.; Alsharif, Abdulrahman M.; Alasbali, Tariq; Lotfy, Nancy M.; Khandekar, Rajiv

    2016-01-01

    Introduction: We compared the thickness of the peripapillary retinal nerve fiber layer (RNFL) in patients with diabetic macular edema (DME) and/against the thickness in the normal population. Methods: This cross-sectional study compared the RNFL thickness in patients with DME (DME group) using optical coherence tomography (OCT) to a comparable group of healthy (nondiabetic) patients (control group). Measurements were performed in different/the four peripapillary quadrants and in the macula region for the fovea, parafoveal, and perifoveal areas. The mean RNFL thickness was compared between both groups. Results: There were fifty eyes of fifty nonglaucomatous diabetic patients with DME (29 with nonproliferative diabetic retinopathy [PDR] and 21 with PDR), and fifty eyes in the control group. The macular regions were significantly thicker in the DME group compared to the control group. The central foveal thickness was 149 μ thicker in eyes with DME compared to the control group (P < 0.001). The difference in total RNFL thickness between groups was not significant (4.4 μ [95% confidence interval: −3.1 to +12]). The between-group differences in peripapillary RNFL thickness by age group, glycemic control, history of intravitreal treatments, and refractive errors were not statistically significant (P > 0.05, all comparisons). Conclusion: Peripapillary RNFL thickness measurements were not significantly influenced by DME. Hence, OCT parameters could be used to monitor/early detect glaucomatous eyes even in the presence of DME. PMID:27555707

  6. Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit

    NASA Astrophysics Data System (ADS)

    Rodenhausen, K. B.; Kasputis, T.; Pannier, A. K.; Gerasimov, J. Y.; Lai, R. Y.; Solinsky, M.; Tiwald, T. E.; Wang, H.; Sarkar, A.; Hofmann, T.; Ianno, N.; Schubert, M.

    2011-10-01

    Analysis techniques are needed to determine the quantity and structure of materials composing an organic layer that is below an ultra-thin film limit and in a liquid environment. Neither optical nor acoustical techniques can independently distinguish between thickness and porosity of ultra-thin films due to parameter correlation. A combined optical and acoustical approach yields sufficient information to determine both thickness and porosity. We describe application of the combinatorial approach to measure single or multiple organic layers when the total layer thickness is small compared to the wavelength of the probing light. The instrumental setup allows for simultaneous in situ spectroscopic ellipsometry and quartz crystal microbalance dynamic measurements, and it is combined with a multiple-inlet fluid control system for different liquid solutions to be introduced during experiments. A virtual separation approach is implemented into our analysis scheme, differentiated by whether or not the organic adsorbate and liquid ambient densities are equal. The analysis scheme requires that the film be assumed transparent and rigid (non-viscoelastic). We present and discuss applications of our approach to studies of organic surfactant adsorption, self-assembled monolayer chemisorption, and multiple-layer target DNA sensor preparation and performance testing.

  7. Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit.

    PubMed

    Rodenhausen, K B; Kasputis, T; Pannier, A K; Gerasimov, J Y; Lai, R Y; Solinsky, M; Tiwald, T E; Wang, H; Sarkar, A; Hofmann, T; Ianno, N; Schubert, M

    2011-10-01

    Analysis techniques are needed to determine the quantity and structure of materials composing an organic layer that is below an ultra-thin film limit and in a liquid environment. Neither optical nor acoustical techniques can independently distinguish between thickness and porosity of ultra-thin films due to parameter correlation. A combined optical and acoustical approach yields sufficient information to determine both thickness and porosity. We describe application of the combinatorial approach to measure single or multiple organic layers when the total layer thickness is small compared to the wavelength of the probing light. The instrumental setup allows for simultaneous in situ spectroscopic ellipsometry and quartz crystal microbalance dynamic measurements, and it is combined with a multiple-inlet fluid control system for different liquid solutions to be introduced during experiments. A virtual separation approach is implemented into our analysis scheme, differentiated by whether or not the organic adsorbate and liquid ambient densities are equal. The analysis scheme requires that the film be assumed transparent and rigid (non-viscoelastic). We present and discuss applications of our approach to studies of organic surfactant adsorption, self-assembled monolayer chemisorption, and multiple-layer target DNA sensor preparation and performance testing. PMID:22047284

  8. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors. PMID:27403803

  9. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-07-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  10. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  11. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    PubMed Central

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors. PMID:27403803

  12. Photoinduced Reconfiguration Cycle in a Molecular Adsorbate Layer Studied by Femtosecond Inner-Shell Photoelectron Spectroscopy

    SciTech Connect

    Dachraoui, H.; Michelswirth, M.; Bartz, P.; Pfeiffer, W.; Heinzmann, U.; Siffalovic, P.; Schaefer, C.; Schnatwinkel, B.; Mattay, J.; Drescher, M.

    2011-03-11

    A time-resolved study of core-level chemical shifts in a monolayer of aromatic molecules reveals complex photoinduced reaction dynamics. The combination of electron spectroscopy for chemical analysis and ultrashort pulse excitation in the extreme ultraviolet allows performing time-correlated 4d-core-level spectroscopy of iodine atoms that probe the local chemical environment in the adsorbate molecule. The selectivity of the method unveils metastable molecular configurations that appear about 50 ps after the excitation and are efficiently quenched back to the ground state.

  13. Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo

    2014-01-01

    Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…

  14. Relationship between Retinal Layer Thickness and the Visual Field in Early Age-Related Macular Degeneration

    PubMed Central

    Acton, Jennifer H.; Smith, R. Theodore; Hood, Donald C.; Greenstein, Vivienne C.

    2012-01-01

    Purpose. To quantify and compare the structural and functional changes in subjects with early age-related macular degeneration (AMD), using spectral-domain optical coherence tomography (SD-OCT) and microperimetry. Methods. Twenty-one eyes of 21 subjects with early AMD were examined. MP-1 10-2 visual fields (VFs) and SD-OCT line and detail volume scans were acquired. The thicknesses of the outer segment (OS; distance between inner segment ellipsoid band and upper retinal pigment epithelium [RPE] border) and RPE layers and elevation of the RPE from Bruch's membrane were measured using a computer-aided manual segmentation technique. Thickness values were compared with those for 15 controls, and values at locations with VF total deviation defects were compared with values at nondefect locations at equivalent eccentricities. Results. Sixteen of 21 eyes with AMD had VF defects. Compared with controls, line scans showed significant thinning of the OS layer (P = 0.006) and thickening and elevation of the RPE (P = 0.037, P = 0.002). The OS layer was significantly thinner in locations with VF defects compared with locations without defects (P = 0.003). There was a negligible difference between the retinal layer thickness values of the 5 eyes without VF defects and the values of normal controls. Conclusions. In early AMD, when VF defects were present, there was significant thinning of the OS layer and thickening and elevation of the RPE. OS layer thinning was significantly associated with decreased visual sensitivity, consistent with known photoreceptor loss in early AMD. For AMD subjects without VF defects, thickness values were normal. The results highlight the clinical utility of both SD-OCT retinal layer quantification and VF testing in early AMD. PMID:23074210

  15. Subharmonic excitation in amplitude modulation atomic force microscopy in the presence of adsorbed water layers

    SciTech Connect

    Santos, Sergio; Barcons, Victor; Verdaguer, Albert; Chiesa, Matteo

    2011-12-01

    In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.

  16. Observation of spin-glass behavior in nickel adsorbed few layer graphene

    SciTech Connect

    Mitra, Sreemanta; Mondal, Oindrila; Banerjee, Sourish; Chakravorty, Dipankar

    2013-01-14

    Nickel-adsorbed graphene was prepared by first synthesizing graphite oxide (GO) by modified Hummers' method and then reducing a solution containing both GO and Ni{sup 2+}. Energy dispersive X-ray spectroscopy analysis showed 31 at. % nickel was present. Magnetization measurements under both dc and ac magnetic fields were carried out in the temperature range 2 K to 300 K. The zero field cooled and field cooled magnetization data showed a pronounced irreversibility at a temperature around 20 K. The analysis of the ac susceptibility data was carried out by both Vogel-Fulcher as well as power law. From dynamic scaling analysis, the microscopic flipping time {tau}{sub 0}{approx}10{sup -13}s and critical exponent z{nu}=5.9{+-}0.1 were found, indicating the presence of conventional spin glass in the system. The spin glass transition temperature was estimated as 19.5 K. Decay of thermoremanent magnetization was explained by stretched exponential function with a value of the exponent as 0.6. From the results, it is concluded that nickel adsorbed graphene behaves like a spin-glass.

  17. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    PubMed

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values. PMID:18479000

  18. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores.

    PubMed

    Faille, Christine; Ronse, Annette; Dewailly, Etienne; Slomianny, Christian; Maes, Emmanuel; Krzewinski, Frédéric; Guerardel, Yann

    2014-01-01

    This study was designed to establish the presence and function of the mucous layer surrounding spores of Bacillus subtilis. First, an external layer of variable thickness and regularity was often observed on B. subtilis spores. Further analyses were performed on B. subtilis 98/7 spores surrounded by a thick layer. The mechanical removal of the layer did not affect their resistance to heat or their ability to germinate but rendered the spore less hydrophilic, more adherent to stainless steel, and more resistant to cleaning. This layer was mainly composed of 6-deoxyhexoses, ie rhamnose, 3-O-methyl-rhamnose and quinovose, but also of glucosamine and muramic lactam, known also to be a part of the bacterial peptidoglycan. The specific hydrolysis of the peptidoglycan using lysozyme altered the structure of the required mucous layer and affected the physico-chemical properties of the spores. Such an outermost mucous layer has also been seen on spores of B. licheniformis and B. clausii isolated from food environments.

  19. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores.

    PubMed

    Faille, Christine; Ronse, Annette; Dewailly, Etienne; Slomianny, Christian; Maes, Emmanuel; Krzewinski, Frédéric; Guerardel, Yann

    2014-01-01

    This study was designed to establish the presence and function of the mucous layer surrounding spores of Bacillus subtilis. First, an external layer of variable thickness and regularity was often observed on B. subtilis spores. Further analyses were performed on B. subtilis 98/7 spores surrounded by a thick layer. The mechanical removal of the layer did not affect their resistance to heat or their ability to germinate but rendered the spore less hydrophilic, more adherent to stainless steel, and more resistant to cleaning. This layer was mainly composed of 6-deoxyhexoses, ie rhamnose, 3-O-methyl-rhamnose and quinovose, but also of glucosamine and muramic lactam, known also to be a part of the bacterial peptidoglycan. The specific hydrolysis of the peptidoglycan using lysozyme altered the structure of the required mucous layer and affected the physico-chemical properties of the spores. Such an outermost mucous layer has also been seen on spores of B. licheniformis and B. clausii isolated from food environments. PMID:25115519

  20. Time-frequency analysis for ultrasonic measurement of liquid-layer thickness

    NASA Astrophysics Data System (ADS)

    Jiao, Jingpin; Liu, Wenhua; Zhang, Jie; Zhang, Qiang; He, Cunfu; Wu, Bin

    2013-02-01

    Lubricant film thickness is one of the most important parameters to indicate the operating condition of machine elements, such as mechanical seals and hydrostatic slideway. When ultrasonic waves illuminate the interfaces between the substrates and a lubricant film, it will be reflected due to the change of the material properties at the interfaces. These reflected ultrasonic waves contain information about film thickness. In this paper, wavelet transform modulus maximum method was explored to extract the film thickness from its reflection ultrasonic signals. The performance of different wavelet functions within various scale factors was experimentally investigated, and the optimal wavelet function with the optimal scale factor was pointed out. It has been shown that the measurement error is less than 5% when the thickness of liquid layer is within a certain range.

  1. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  2. Layer thickness and period as design parameters to tailor pyroelectric properties in ferroelectric superlattices

    SciTech Connect

    Misirlioglu, I. B.; Alpay, S. P.

    2014-10-27

    We theoretically examine the pyroelectric properties of ferroelectric-paraelectric superlattices as a function of layer thickness and configuration using non-linear thermodynamics coupled with electrostatic and electromechanical interactions between layers. We specifically study PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/SrTiO{sub 3} superlattices. The pyroelectric properties of such constructs consisting of relatively thin repeating units are shown to exceed the pyroelectric response of monolithic PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} films. This is related to periodic internal electric fields generated due to the polarization mismatch between layers that allows tailoring of the shift in the transition temperature. Our results indicate that higher and electric field sensitive pyroresponse can be achieved from layer-by-layer engineered ferroelectric heterostructures.

  3. Optical coherence tomography layer thickness characterization of a mock artery during angioplasty balloon deployment

    NASA Astrophysics Data System (ADS)

    Azarnoush, Hamed; Vergnole, Sébastien; Boulet, Benoît; Lamouche, Guy

    2011-03-01

    Optical coherence tomography (OCT) is used to study the deformation of a mock artery in an angioplasty simulation setup. An OCT probe integrated in a balloon catheter provides intraluminal real-time images during balloon inflation. Swept-source OCT is used for imaging. A 4 mm semi-compliant polyurethane balloon is used for experiments. The balloon is inflated inside a custom-built multi-layer artery phantom. The phantom has three layers to mock artery layers, namely, intima, media and adventitia. Semi-automatic segmentation of phantom layers is performed to provide a detailed assessment of the phantom deformation at various inflation pressures. Characterization of luminal diameter and thickness of different layers of the mock artery is provided for various inflation pressures.

  4. Influence of emissive layer thickness on electrical characteristics of polyfluorene copolymer based polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Das, D.; Gopikrishna, P.; Singh, A.; Dey, A.; Iyer, P. K.

    2016-04-01

    Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (RP) and the parallel capacitance (CP). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m2.

  5. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  6. The Thickness of Seismogenic Layer Under the Areas Surrounding the Ordos Block, Northern China

    NASA Astrophysics Data System (ADS)

    Qin, C.

    - A seismic approach was used to calculate the thickness distribution of the seismogenic layer under the block Ordos in northern China. This block was chosen because of its stability, the complicated tectonics around its boundaries and the completeness of the data set. Several strong earthquakes occurred in this area in the 20th century, with the largest one (Haiyuan, M= 8.4, 1920) in the southwest of the Ordos. Most of the large faults around the Ordos are strike-slip ones. The breaking point (i.e., the saturation of earthquake magnitudes Mc) of the self-similarity from small to large events based on the Gutenberg-Richter relation is calculated. Under the assumption of the L model which expresses that the offset is proportional to the length of the fault (Scholz, 1982, 1990, 1994), the thickness (Wc) of the seismogenic layer is directly related to Mc. To display smoothly the change of the thickness of the seismogenic layer and to ensure the reliability of the results, a moving cell of 150 events, with a moving step of 0.1 degree, was adopted. To take advantage of the existing data set, the ``mean value method,'' which is based on the latest complete data information to make the existing data set a `complete' one, was used to extrapolate it so that the data covers the whole time period. The results show that the average thickness of the seismogenic layer in the southwest, in the northwest and in the east of the Ordos is around 30, 9 and 17km, respectively. The thickness generally decreases from the southwest to the northeast. This kind of spatial variation is in agreement with the maximum depth distribution of large amounts of microearthquakes, with the correlation coefficient to be about 0.88, and the Moho depth.

  7. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination.

  8. Influence of homo buffer layer thickness on the quality of ZnO epilayers.

    PubMed

    Eid, E A; Fouda, A N

    2015-10-01

    ZnO buffer layers with different thicknesses were deposited on a-plane sapphire substrates at 300 °C. ZnO epilayers were grown on ZnO buffers at 600 °C by radio-frequency magnetron sputtering and vacuum annealed at 900 °C for an hour. Influence of nucleation layer thickness on the structural and quality of ZnO thin films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The best ZnO film quality was obtained with the ZnO buffer layer of 45 nm thick which provided the smoothest surface with RMS value of 0.3 nm. X-ray diffraction measurements reveal that the films have a single phase wurtzite structure with (0001) preferred crystal orientation. As evident from narrow FWHM of ZnO (0002) rocking curve, ZnO buffer can serve as a good template for the growth of high-quality ZnO films with little tilt. In addition, the micro-Raman scattering measurements at room temperature revealed the existence of Raman active phonon modes of ZnO; A1(TO), A1(LO) and E2(high). The latter two modes were not observed in thin buffer layer beside the dis-appearance of E2(low) mode in all films. PMID:25950638

  9. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting.

    PubMed

    Sun, Yongfu; Cheng, Hao; Gao, Shan; Liu, Qinghua; Sun, Zhihu; Xiao, Chong; Wu, Changzheng; Wei, Shiqiang; Xie, Yi

    2012-12-19

    Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi(2)Se(3) single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi(2)Se(3) SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.

  10. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination. PMID:27253271

  11. Retinal Nerve Fiber Layer Thickness Measurement Comparison Using Spectral Domain and Swept Source Optical Coherence Tomography

    PubMed Central

    Ha, Ahnul; Lee, Seung Hyen; Lee, Eun Ji

    2016-01-01

    Purpose To investigate the retinal nerve fiber layer (RNFL) thickness concordance when measured by spectral domain (SD) and swept source (SS) optical coherence tomography (OCT), and to compare glaucoma-discriminating capability. Methods RNFL thicknesses were measured with the scan circle, centered on the optic nerve head, in 55 healthy, 41 glaucoma suspected, and 87 glaucomatous eyes. The RNFL thickness measured by the SD-OCT (sdRNFL thickness) and SS-OCT (ssRNFL thickness) were compared using the t-test. Bland-Altman analysis was performed to examine their agreement. We compared areas under the receiver operating characteristics curve and examined sdRNFL and ssRNFL thickness for discriminating glaucomatous eyes from healthy eyes, and from glaucoma suspect eyes. Results The average ssRNFL thickness was significantly greater than sdRNFL thickness in healthy (110.0 ± 7.9 vs. 100.1 ± 6.8 µm, p < 0.001), glaucoma suspect (96.8 ± 9.3 vs. 89.6 ± 7.9 µm, p < 0.001), and glaucomatous eyes (74.3 ± 14.2 vs. 69.1 ± 12.4 µm, p = 0.011). Bland-Altman analysis showed that there was a tendency for the difference between ssRNFL and sdRNFL to increase in eyes with thicker RNFL. The area under the curves of the average sdRNFL and ssRNFL thickness for discriminating glaucomatous eyes from healthy eyes (0.984 vs. 0.986, p = 0.491) and glaucoma suspect eyes (0.936 vs. 0.918, p = 0.132) were comparable. Conclusions There was a tendency for ssRNFL thickness to increase, compared with sdRNFL thickness, in eyes with thicker RNFL. The ssRNFL thickness had comparable diagnostic capability compared with sdRNFL thickness for discriminating glaucomatous eyes from healthy eyes and glaucoma suspect eyes. PMID:27051263

  12. Density determination of nano-layers depending to the thickness by non-destructive method

    SciTech Connect

    Gacem, A.; Doghmane, A.; Hadjoub, Z.

    2013-12-16

    Non-destructive tests used to characterize and observe the state of the solids near the surface or at depth, without damaging them or damaging them. Density is frequently used to follow the variations of the physical structure of the samples, as well as in the calculation of quantity of material required to fill a given volume, and it is also used to determine the homogeneity of a sample. However, the measurement of the acoustic properties (density, elastic constants,…) of a thin film whose thickness is smaller than several atomic layers is not easy to perform. For that reason, we expose in this work the effects of the thicknesses of thin films on the evolution of the density, where several samples are analyzed. The samples selected structures are thin films deposited on substrates, these coatings have thicknesses varying from a few atomic layers to ten or so micrometers and can change the properties of the substrate on which they are deposited. To do so, we considered a great number of layers (Cr, Al, SiO{sub 2}, ZnO, Cu, AlN, Si{sub 3}N{sub 4}, SiC) deposited on different substrates (Al{sub 2}O{sub 3}, Cu and Quartz). It is first shown that the density exhibits a dispersive behaviour. Such a behaviour is characterized by an initial increase (or decrease) followed by a saturated region. Further investigations of these dependences led to the determination of a semi-empirical universal relations, ρ=f(h/λ{sub T}), for all the investigated layer/substrate combination. Such expression could be of great importance in the density prediction of even layers thicknesses.

  13. Lidar Descriptions of Mixing-Layer Thickness Characteristics in a Complex Terrain/Coastal Environment.

    NASA Astrophysics Data System (ADS)

    McElroy, James L.; Smith, Ted B.

    1991-05-01

    Airborne lidar and supplementary measurements made during a major study of air chemistry in southern California (SCCCAMP 1985) provided a rare opportunity to examine atmospheric boundary-layer structure in a coastal area with complex terrain. This structure results from a combination of daytime heating or convection in the boundary layer (CBL), the intrusion of a marine layer into the inland areas, the thermal internal boundary layer (TIBL) formed within the marine onshore flow, inland growth of the TIBL, interactions of the CBL and the TIBL, and airflow interactions with terrain features.Measurements showed offshore mixing-layer thicknesses during SCCCAMP to be quite uniform spatially and day to day at 100-200 m. Movement of this layer onshore occurred readily with terrain that sloped gradually upward (e.g., to 300 m MSL at 50 km inland), but was effectively blocked by a 400-500 m high coastal ridge. In the higher terrain beyond the coastal ridge, aerosol layers aloft were often created as a result of deep convection and of a combination of onshore flow and heated, upslope airflow activity. Such aerosol layers can extend far offshore when embedded in reverse circulations aloft.The forward boundary of the marine layer was quite sharp, resembling a miniature cold front. Within the marine layer the onshore flow initiates a TIBL at the coastline, which increases in depth with distance inland due to roughness and convective influences. A coherent marine layer with imbedded TIBL was maintained for inland distances of 20-50 km, depending on terrain. Intense heating occurred inland prior to the arrival and undercutting by the marine front. The resulting, effective mixing layer increased in thickness from a few hundred meters to nearly two kilometers in a very short distance.Comparisons of a representative, physically based TIBL and convective mixing-layer models with observed data indicate that they generally do a credible job of estimating the depth of the marine layer

  14. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  15. Retinal Nerve Fibre Layer and Macular Thicknesses in Adults with Hyperopic Anisometropic Amblyopia

    PubMed Central

    Yakar, Konuralp; Alan, Aydın; Alp, Mehmet Hanifi; Ceylan, Tolga

    2015-01-01

    Objectives. This study compared the macular and retinal nerve fibre layer (RNFL) thicknesses and optic nerves of eyes with reduced vision due to anisometropia with the contralateral healthy eyes in adults using optical coherence tomography (OCT). Methods. This cross-sectional study was conducted in Atatürk State Hospital, Sinop, Turkey. Macular and RNFL thicknesses, optic nerve disc area, cup area, and horizontal and vertical cup-to-disc ratios obtained using a NIDEK RS-3000 SLO spectral domain OCT device were compared between the amblyopic and fellow eyes in 30 adults with anisometropic amblyopia 18–55 years old who were seen in our clinic with unilateral poor vision. Results. The mean macular thickness was 266.90 ± 23.22 µm in the amblyopic eyes and 263.90 ± 22.84 µm in the fellow eyes, and the mean RNFL thickness was 111.90 ± 12.9 and 109.70 ± 9.42 µm, respectively. The two thicknesses did not differ significantly between the amblyopic and fellow eyes. There were also no significant differences between the eyes in disc area, cup area, and horizontal-vertical cup/disc ratios. Conclusion. There does not seem to be a difference in macular thickness, peripapillary RNFL, or optic disc structures between the amblyopic and fellow eyes in adults. PMID:26064676

  16. X-ray Reflectivity Studies of Adsorbed Proteins on Langmuir Layers

    NASA Astrophysics Data System (ADS)

    Málková, Šárka; Pingali, Sai V.; Long, Fei; Cho, Wonhwa; Schlossman, Mark L.

    2002-03-01

    Synchrotron X-ray reflectivity is used to study the interaction of the C2 domain of cytosolic phospholipase A2 (cPLA_2-C2) with a phospholipid membrane. SOPC (1-steraoyl-2-oleoyl-sn-glycero-3-phosphocholine) monolayer has been chosen as our model membrane. SOPC monolayer is supported on a buffered, Ca^2+ containing aqueous solution. The original phospholipid layer, which can be described by a two layer model roughened by capillary wave theory, is modified and a three layer model is necessary to fit the data after the protein is injected. The data analysis indicates that a third layer attached to the phospholipid headgroup region is formed. This additional layer corresponds to proteins bound to the phospholipid. The mechanism of the protein binding to the lipid depends on the initial lipid pressure with adsorption being less pronounced at higher pressures. Two control experiments are performed. Buffer containing no Ca^2+ is used in the first and F35/L39A mutant of cPLA_2-C2 (the mutation is in the region containing ligands for multiple Ca^2+ ions) is used in the second. Reflectivity curves do not show any evidence of protein adsorption to the phospholipid monolayer in any of our two control experiments. Our results thus support the idea that the initial pressure of the lipid, Ca^2+ ions and Ca^2+ binding sites of cPLA_2-C2 are important factors for the membrane binding of this protein.

  17. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    NASA Astrophysics Data System (ADS)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-09-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells ( p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency ( η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  18. Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gunes, D.; Nazih-Anous, N.

    1983-01-01

    A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.

  19. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    NASA Astrophysics Data System (ADS)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-07-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells (p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency (η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  20. Thickness of Saturn's ring current determined from north-south Cassini passes through the current layer

    NASA Astrophysics Data System (ADS)

    Kellett, S.; Bunce, E. J.; Coates, A. J.; Cowley, S. W. H.

    2009-04-01

    We investigate magnetic field and plasma electron data from six Cassini orbits during which, unique within the mission to date, the spacecraft passed almost directly north-south through Saturn's equatorial plane within the ring current region of the middle magnetosphere. Three passes took place in the postnoon sector and three took place in the postmidnight sector, each at radial distances of ˜9, ˜12, and ˜15 R S . (R S is Saturn's radius, equal to 60,268 km). These data allow for the first time an essentially direct determination of the north-south field and plasma structure in this region at approximately constant radius and local time. The dayside data indicate the presence of an equatorial current disk with a near constant half-thickness of ˜1.5 R S . Comparison of the magnetic data with simultaneous electron spectrograms shows that the current layer is located within a significantly broader layer of hot plasma. More variable conditions are found on the nightside. In the inner region a thin equatorial current layer of half-thickness ˜0.5 R S is found embedded at the center of a much broader layer of current and plasma. In the central and outer passes the current sheet corresponds to essentially the whole of the hot equatorial electron layer, with a half-thickness of ˜2.5 R S for the central pass, falling strongly to ˜0.4 R S for the outer pass. The data also provide confirmatory evidence of northward displacements of the center of the current layer from Saturn's equatorial plane in the outer regions, on both the dayside and the nightside of the planet.

  1. Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal.

    PubMed

    Koriche, Yamina; Darder, Margarita; Aranda, Pilar; Semsari, Saida; Ruiz-Hitzky, Eduardo

    2014-07-21

    Functional bionanocomposites based on two layered silicates, the commercial montmorillonite known as Cloisite®Na and a natural bentonite from Algeria, were prepared by intercalation of cationic starch, synthesized with two different degrees of substitution, 0.85 and 0.55. After characterization of the prepared bionanocomposites by XRD and zeta potential measurements, batch studies were conducted to evaluate the adsorption capacity of hexavalent chromium anions from aqueous solution. The adsorption isotherms, adsorption kinetics, and the effect of pH on the process were studied. The removal efficiency was evaluated in the presence of competing anions such as NO3(-), ClO4(-), SO4(2-) and Cl(-). In order to regenerate the adsorbent for its repeated use, the regeneration process was studied in two different extractant solutions, 0.1 M NaCl at pH 10 and 0.28 M Na2CO3 at pH 12. PMID:24658793

  2. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    PubMed

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (<0.01 cc/m(2)·day·atm)) in these nanocoatings, buffered cationic chitosan (CH) and vermiculite clay (VMT) were deposited using layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.

  3. Mointoring Thickness Deviations in Planar Multi-Layered Elastic Structures Using Impedance Signatures

    SciTech Connect

    Fisher, K A

    2007-01-26

    In this letter, a low frequency ultrasonic resonance technique that operates in the (20 - 80 kHz) regime is presented that demonstrates detection of thickness changes on the order of +/- 10{micro}m. This measurement capability is a result of the direct correlation between the electrical impedance of an electro-acoustic transducer and the mechanical loading it experiences when placed in contact with a layered elastic structure. The relative frequency shifts of the resonances peaks can be estimated through a simple one-dimensional transmission model. Separate experimental measurements confirm this technique to be sensitive to subtle changes in the underlying layered elastic structure.

  4. Measurement of thermal noise in multilayer coatings with optimized layer thickness

    SciTech Connect

    Villar, Akira E.; Black, Eric D.; DeSalvo, Riccardo; Libbrecht, Kenneth G.; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Pinto, Innocenzo M.; Pierro, Vincenzo; Galdi, Vincenzo; Principe, Maria; Taurasi, Ilaria

    2010-06-15

    A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.

  5. Correlation of Retinal Nerve Fiber Layer Thickness and Visual Fields in Glaucoma: A broken stick model

    PubMed Central

    Alasil, Tarek; Wang, Kaidi; Yu, Fei; Field, Matthew G.; Lee, Hang; Baniasadi, Neda; de Boer, Johannes F.; Coleman, Anne L.; Chen, Teresa C.

    2015-01-01

    Purpose To determine the retinal nerve fiber layer (RNFL) thickness at which visual field (VF) damage becomes detectable and associated with structural loss. Design Retrospective cross-sectional study. Methods Eighty seven healthy and 108 glaucoma subjects (one eye per subject) were recruited from an academic institution. All patients had VF examinations (Swedish Interactive Threshold Algorithm 24-2 test of the Humphrey visual field analyzer 750i; Carl Zeiss Meditec, Dublin, CA) and spectral domain optical coherence tomography RNFL scans (Spectralis, Heidelberg Engineering, Heidelberg, Germany). Comparison of RNFL thicknesses values with VF threshold values showed a plateau of VF threshold values at high RNFL thickness values and then a sharp decrease at lower RNFL thickness values. A broken stick statistical analysis was utilized to estimate the tipping point at which RNFL thickness values are associated with VF defects. The slope for the association between structure and function was computed for data above and below the tipping point. Results The mean RNFL thickness value that was associated with initial VF loss was 89 μm. The superior RNFL thickness value that was associated with initial corresponding inferior VF loss was 100 μm. The inferior RNFL thickness value that was associated with initial corresponding superior VF loss was 73 μm. The differences between all the slopes above and below the aforementioned tipping points were statistically significant (p<0.001). Conclusions In open angle glaucoma, substantial RNFL thinning or structural loss appears to be necessary before functional visual field defects become detectable. PMID:24487047

  6. Thickness effects on the Coulomb drag rate in double quantum layer systems

    NASA Astrophysics Data System (ADS)

    Vazifehshenas, T.; Eskourchi, A.

    2007-02-01

    In this paper, we have investigated the effect of quantum layer thickness on Coulomb drag phenomenon in a double quantum well (DQW) system, in which the electrons momentum can transfer from one layer to another. We have applied the full random phase approximation (RPA) in dynamical dielectric matrix of this coupled two-dimensional electron gas (2DEG) system in order to obtain an improved result for temperature-dependent rate of momentum transfer. We have calculated the drag rate transresistivity for various well thicknesses at low and intermediate temperatures in Fermi-scale and for different electron gas densities. It has been obtained that the Coulomb drag rate increases with increasing the well width when the separation between the wells remains unchanged.

  7. An Integrated Observational and Model Synthesis Approach to Examine Dominant Environmental Controls on Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Coon, E.; Painter, S. L.; Harp, D. R.; Wilson, C. J.

    2015-12-01

    The active layer thickness (ALT) - the annual maximum depth of soil with above 0°C temperatures - in part determines the volume of carbon-rich stores available for decomposition and therefore potential greenhouse gas release into the atmosphere from Arctic tundra. However, understanding and predicting ALT in polygonal tundra landscapes is difficult due to the complex nature of hydrothermal atmospheric-surface-subsurface interactions in freezing/thawing soil. Simply deconvolving effects of single environmental controls on ALT is not possible with measurements alone as processes act in concert to drive thaw depth formation. Process-rich models of thermal hydrological dynamics, conversely, are a valuable tool for understanding the dominant controls and uncertainties in predicting permafrost conditions. By integrating observational data with known physical relationships to form process-rich models, synthetic experiments can then be used to explore a breadth of environmental conditions encountered and the effect of each environmental attribute may be assessed. Here a process rich thermal hydrology model, The Advanced Terrestrial Simulator, has been created and calibrated using observed data from Barrow, AK. An ensemble of 1D thermal hydrologic models were simulated that span a range of three environmental factors 1) thickness of organic rich soil, 2) snow depth, and 3) soil moisture content, to investigate the role of each factor on ALT. Results show that organic layer thickness acts as a strong insulator and is the dominant control of ALT, but the strength of the effect of organic layer thickness is also dependent on the saturation state. Using the ensemble results, the effect of peat thickness on ALT was then examined on a 2D domain. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and

  8. Theoretical Determination of The Optimum Thickness of Perylene Layer in Bilayer Phthalocyanine/Perylene Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Pratiwi, Herlina; Siahaan, Timothy; Satriawan, Mirza; Nurwantoro, Pekik; Triyana, Kuwat

    2009-09-01

    We do theoretical study on thickness of the active layers in a heterojunction bilayer thin film photovoltaic device based on copper phthalocyanine (CuPc)/perylene that gives the highest Incident Photon to Current Efficiency (IPCE). The device we study consists Glass (1 mm)/ITO (Indium Tin Oxide, 120 nm)/CuPc (50 nm)/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride, x nm)/Ag (40 nm), where x is the thickness of the PTCDA layer that we calculate here. The calculation is based on assumption that the photocurrent generation process is the result of the creation of photogenerated excitons, which difuse before dissociated at the CuPc/PTCDA interface following the diffusion equation, by internal optical electric field that comes from light exposure. We also assume that almost all photocurrent is created in the CuPc/PTCDA interface. Because the order of the thickness of the active layers is the same or smaller than of the wavelength of visible light, we take into account the effect of reflection and interference in the calculation of internal optical electric field distribution inside the device by making use complex indices of refraction of the active materials in our calculation. The modulus of it is proportional with the number generated excitons. The general solution of the exciton diffusion equation was used for calculating the photocurrent and the IPCE. Here, we find the optimum thickness of PTCDA layer that gives greatest IPCE at the wavelength of 344 nm and 467 nm, which are the wavelengths at which the absorption coefficients of CuPc and PTCDA, respectively, reach the maximum values.

  9. Oscillating layer thickness and vortices generated in oscillation of finite plate

    NASA Astrophysics Data System (ADS)

    Sin, V. K.; Wong, I. K.

    2016-06-01

    Moving mesh strategy is used in the model of flow induced by oscillating finite plate through software - COMSOL Multiphysics. Flow is assumed to be laminar and arbitrary Lagrangian-Eulerian method is used for moving mesh in the simulation. Oscillating layer thickness is found which is different from the analytical solution by 2 to 3 times depends on the oscillating frequency. Vortices are also observed near the oscillating finite plate because of the edge effect of the finite plate.

  10. Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements

    PubMed Central

    Carbonelli, Michele; La Morgia, Chiara; Savini, Giacomo; Cascavilla, Maria Lucia; Borrelli, Enrico; Chicani, Filipe; do V. F. Ramos, Carolina; Salomao, Solange R.; Parisi, Vincenzo; Sebag, Jerry; Bandello, Francesco; Sadun, Alfredo A.; Carelli, Valerio; Barboni, Piero

    2015-01-01

    Purpose To investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON). Methods All patients with molecularly confirmed MON, i.e. Leber’s Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections. Results MM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls. Conclusion The prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces. PMID:26047507

  11. Spectroscopic detection of atom-surface interactions in an atomic-vapor layer with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Whittaker, K. A.; Keaveney, J.; Hughes, I. G.; Sargsyan, A.; Sarkisyan, D.; Adams, C. S.

    2015-11-01

    We measure the resonance line shape of atomic-vapor layers with nanoscale thickness confined between two sapphire windows. The measurement is performed by scanning a probe laser through resonance and collecting the scattered light. The line shape is dominated by the effects of Dicke narrowing, self-broadening, and atom-surface interactions. By fitting the measured line shape to a simple model we discuss the possibility to extract information about the atom-surface interaction.

  12. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects

    PubMed Central

    Zhang, Chunwei; Tatham, Andrew J.; Abe, Ricardo Y.; Hammel, Na’ama; Belghith, Akram; Weinreb, Robert N.; Medeiros, Felipe A.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Zangwill, Linda M.

    2016-01-01

    Purpose To investigate macular ganglion cell–inner plexiform layer (mGCIPL) thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL) defects on stereophotographs. Methods 112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES) subjects had standard automated perimetry (SAP), optical coherence tomography (OCT) imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs. Result 47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001) and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000). The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior) mGCIPL was thinnest in the same hemiretina in 26 eyes (90%). Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001) and inferior mGCIPL (P = 0.030) compared to glaucomatous eyes without a visible RNFL defect. Conclusion The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect. PMID:27537107

  13. The Use of Bowman’s Layer Vertical Topographic Thickness Map in the Diagnosis of Keratoconus

    PubMed Central

    Shousha, Mohamed Abou; Perez, Victor L.; Canto, Ana Paula Fraga Santini; Vaddavalli, Pravin K.; Sayyad, Fouad El; Cabot, Florence; Feuer, William J.; Wang, Jianhua; Yoo, Sonia H.

    2014-01-01

    Purpose To evaluate the use of Bowman’s layer (BL) vertical topographic thickness maps in diagnosing keratoconus (KC). Design Prospective, case control, interventional case series. Participants 42 eyes; 22 eyes of 15 normal subjects and 20 eyes of 15 KC patients. Intervention BL 2-dimensional 9 mm vertical topographic thickness maps were created using custom-made ultra high-resolution optical coherence tomography. Main Outcome Measures BL average and minimum thicknesses of the inferior half of the cornea, Bowman’s ectasia index (BEI; defined as BL minimum thickness of the inferior half of the cornea divided by BL average thickness of the superior half of the cornea multiplied by 100), BEI-Max (defined as BL minimum thickness of the inferior half of the cornea divided by BL maximum thickness of the superior half of the cornea multiplied by 100), KC patients’ Keratometric astigmatism (Ast-K) and average keratometric readings (Avg-K). Results In KC patients, BL vertical thickness maps disclosed localized relative inferior thinning of the BL. Inferior BL average thickness (normal=15±2, KC=12±3 μm), inferior BL minimum thickness (normal=13±2, KC=7±3 μm), BEI (normal=91±7, KC=48±14) and BEI-Max (normal=75±8; KC=40±13) all showed highly significant differences in KC compared to normal subjects (P<0.001). Receiver-operating characteristics (ROC) curve analysis showed excellent predictive accuracy for BEI and BEI-max with 100% sensitivity and specificity (area under the curve or AUC of 1) with cut-off values of 80 and 60, respectively. AUC of inferior BL average thickness and minimum thickness were 0.87 and 0.96 with sensitivity of 80% and 93%, respectively and specificity of 93% and 93%, respectively. Inferior BL average thickness, inferior BL minimum thickness, BEI and BEI-Max correlated highly to Ast-K (R=−0.72; −0.82; −0.84 and −0.82, respectively; P<0.001) and to Avg-K (R=−0.62; P<0.001, R=−0.59; P=0.001, R=−0.60; P<0.001 and R=−0.59, P

  14. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents.

  15. To determine ice layer thickness of Europa by high energy neutrino

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.; Tanaka, H. K.

    2010-12-01

    Europa, the second closest Galilean satellite is one of the targets which are suspected to have an internal ocean. Detection and characterization of the internal ocean is one of the main subjects for Europa orbiter exploration. Although the gravitational data has shown the thickness of the surface H2O layer of 80-170km[1], it can not determine the phase of H2O. The variations in the magnetic field associated with the induced current in the internal ocean can determine the thickness of the layer of ice if satellite's orbits satisfy the required conditions. Observations of tidal amplitude forced by Jupiter can also resolve the thickness of the surface lithosphere[2]. At moment because of the lack of observational constraints there exist two contrasting models:thick ice layer model and thin model. Here we propose new method to detect the ocean directly based on the radiation by high energy neutrino interacted with matter. Schaefer et al[3] have proposed a similar method to determine ice layer thickness. We will focus on the detection of internal ocean for Europa and present the method is suitable for actual situations of Europa exploration by numerical simulations. Neutrino is famous for its traveling at long distance without any interaction with matter. When high energy neutrinos traverse in Europa hadronic showers are produced by the weak interaction with the nucleons that makes the body of Europa. These hadronic showers induces excess electrons. Because of these excess electrons, Cherenkov photons are emitted. When this radiation occurs in the ice layer, radiations whose wave length is over 10cm should be coherent because the scale of the shower becomes small (a few cm) in the ice, which is called as Askaryan effect[3]. Thus, the intensity of the radiation whose frequency is a few GHz should be enhanced. Since ice has a much longer attenuation length than water, the radiations which occur in the surface ice layer could be detected by the antenna outside Europa but

  16. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.

    PubMed

    Hartono, Tri; Wang, Shaobin; Ma, Qing; Zhu, Zhonghua

    2009-05-01

    Layer structured graphite oxide (GO) was prepared from graphite using the Hummers-Offeman method, characterised using N(2) adsorption, XRD, XPS, SEM(TEM), and FT-IR, and tested for humic acid (HA) adsorption in aqueous solution. XRD, XPS, and FT-IR measurements indicate the formation of layered structure with strong functional groups of GO. It is also found that the GO exhibits strong and much higher adsorption capacity of HA than graphite. The maximum adsorption capacity of the GO from the Langmuir isotherm is 190 mg/g, higher than activated carbon. For the adsorption, several parameters will affect the adsorption such as solid loading and pH. HA adsorption will decrease with increasing pH and an optimum GO loading is required for maximum adsorption. PMID:19233379

  17. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Minjung; Han, Songhee; Kim, Jung Hwa; Lee, Jae-Ung; Lee, Zonghoon; Cheong, Hyeonsik

    2016-09-01

    Orthorhombic tungsten ditelluride (WTe2), with a distorted 1T structure, exhibits a large magnetoresistance that depends on the orientation, and its electrical characteristics changes from semimetallic to insulating as the thickness decreases. Through polarized Raman spectroscopy in combination with transmission electron diffraction, we establish a reliable method to determine the thickness and crystallographic orientation of few-layer WTe2. The Raman spectrum shows a pronounced dependence on the polarization of the excitation laser. We found that the separation between two Raman peaks at ∼90 cm‑1 and at 80–86 cm‑1, depending on thickness, is a reliable fingerprint for determination of the thickness. For determination of the crystallographic orientation, the polarization dependence of the A 1 modes, measured with the 632.8 nm excitation, turns out to be the most reliable. We also discovered that the polarization behaviors of some of the Raman peaks depend on the excitation wavelength as well as thickness, indicating a close interplay between the band structure and anisotropic Raman scattering cross section.

  18. Enhancing cell-free layer thickness by bypass channels in a wall.

    PubMed

    Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T

    2016-07-26

    When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices. PMID:26803337

  19. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Minjung; Han, Songhee; Kim, Jung Hwa; Lee, Jae-Ung; Lee, Zonghoon; Cheong, Hyeonsik

    2016-09-01

    Orthorhombic tungsten ditelluride (WTe2), with a distorted 1T structure, exhibits a large magnetoresistance that depends on the orientation, and its electrical characteristics changes from semimetallic to insulating as the thickness decreases. Through polarized Raman spectroscopy in combination with transmission electron diffraction, we establish a reliable method to determine the thickness and crystallographic orientation of few-layer WTe2. The Raman spectrum shows a pronounced dependence on the polarization of the excitation laser. We found that the separation between two Raman peaks at ˜90 cm-1 and at 80-86 cm-1, depending on thickness, is a reliable fingerprint for determination of the thickness. For determination of the crystallographic orientation, the polarization dependence of the A 1 modes, measured with the 632.8 nm excitation, turns out to be the most reliable. We also discovered that the polarization behaviors of some of the Raman peaks depend on the excitation wavelength as well as thickness, indicating a close interplay between the band structure and anisotropic Raman scattering cross section.

  20. Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles

    NASA Astrophysics Data System (ADS)

    Menga, N.; Afferrante, L.; Carbone, G.

    2016-10-01

    In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal substrates is investigated within the framework of Green's functions approach. The periodic Green's functions are determined by means of a novel formalism, which can be applied, in general, to either 2D and 3D viscoelastic periodic contacts, regardless of the contact geometry and boundary conditions. Specifically, two different configurations are considered here: a free layer with a uniform pressure applied on the top, and a layer rigidly confined on the upper boundary. It is shown that the thickness affects the contact behavior differently, depending on the boundary conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes more and more compliant as thickness is reduced. We find that, in partial contact, the layer thickness and the boundary conditions significantly affect the frictional behavior. In fact, at low contact penetrations, the confined layer shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed at large contact penetrations. Furthermore, for confined layers, the sliding speed related to the friction coefficient peak is shifted as the contact penetration increases. However, once full contact is established, the friction coefficient shows a unique behavior regardless of the layer thickness and boundary conditions.

  1. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  2. On-line thickness measurement for two-layer systems on polymer electronic devices.

    PubMed

    Grassi, Ana Perez; Tremmel, Anton J; Koch, Alexander W; El-Khozondar, Hala J

    2013-11-18

    During the manufacturing of printed electronic circuits, different layers of coatings are applied successively on a substrate. The correct thickness of such layers is essential for guaranteeing the electronic behavior of the final product and must therefore be controlled thoroughly. This paper presents a model for measuring two-layer systems through thin film reflectometry (TFR). The model considers irregular interfaces and distortions introduced by the setup and the vertical vibration movements caused by the production process. The results show that the introduction of these latter variables is indispensable to obtain correct thickness values. The proposed approach is applied to a typical configuration of polymer electronics on transparent and non-transparent substrates. We compare our results to those obtained using a profilometer. The high degree of agreement between both measurements validates the model and suggests that the proposed measurement method can be used in industrial applications requiring fast and non-contact inspection of two-layer systems. Moreover, this approach can be used for other kinds of materials with known optical parameters.

  3. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Burov, E. B.

    2003-08-01

    Plate flexure is a phenomenon that describes how the lithosphere responds to long-term (>105 yr) geological loads. By comparing the flexure in the vicinity of ice, volcano, and sediment loads to predictions based on simple plate models it has been possible to estimate the effective elastic thickness of the lithosphere, Te. In the oceans, Te is the range 2-50 km and is determined mainly by plate and load age. The continents, in contrast, are characterised by Te values of up to 80 km and greater. Rheological considerations based on data from experimental rock mechanics suggest that Te reflects the integrated brittle, elastic and ductile strength of the lithosphere. Te differs, therefore, from the seismogenic layer thickness, Ts, which is indicative of the depth to which anelastic deformation occurs as unstable frictional sliding. Despite differences in their time scales, Te and Ts are similar in the oceans where loading reduces the initial mechanical thickness to values that generally coincide with the thickness of the brittle layer. They differ, however, in continents, which, unlike oceans, are characterised by a multi-layer rheology. As a result, Te≫Ts in cratons, many convergent zones, and some rifts. Most rifts, however, are characterised by a low Te that has been variously attributed to a young thermal age of the rifted lithosphere, thinning and heating at the time of rifting, and yielding due to post-rift sediment loading. Irrespective of their origin, the Wilson cycle makes it possible for low values to be inherited by foreland basins which, in turn, helps explain why similarities between Te and Ts extend beyond rifts into other tectonic regions such as orogenic belts and, occasionally, the cratons themselves.

  4. Impact of silicon epitaxial thickness layer in high power diode devices

    NASA Astrophysics Data System (ADS)

    Mee, Cheh Chai; Arshad, M. K. Md.; Hashim, U.; Fathil, M. F. M.

    2016-07-01

    The p-i-n diode is one of the earliest semiconductor devices developed for power circuit application. It is formed with the intrinsically doped i.e. i-layer sandwiched between the p-type and n-type layers. In this paper, we focus on the integration of the intrinsic region of silicon p-i-n diode to the current-voltage characteristics. In our structure, n-type refers to the bulk substrate and intrinsic region refers to the epitaxial layer of the silicon substrate. We make a thickness variation in the intrinsic region of p-i-n diode and how it affects diode performance. An additional layer is added on the epitaxial layer during the process to control the diffusion from the bottom of bulk substrate. Result shows that intrinsic layer optimization has successfully enhances the diode device robustness in terms of diode current-voltage characteristics, which reflects better manufacturing yield and improve the final product performance.

  5. Extended triple layer modeling of arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Green, Peter G; Darby, Jeannie L

    2010-05-01

    The extended triple layer model (ETLM), which is consistent with spectroscopic and theoretical molecular evidence, is first systematically tested for its capability to model adsorption of arsenate and phosphate, a strong competitor, on a common goethite-based granular porous adsorptive media (Bayoxide E33 (E33)) in water treatment systems under a wide range of solution conditions. Deprotonated bidentate-binuclear, protonated bidentate-binuclear, and deprotonated monodentate complexes are chosen as surface species for both arsenate and phosphate. The estimated values of the ETLM parameters of arsenate for the adsorbent are close to those for pure goethite minerals previously determined by others. The ETLM predictions for arsenate and phosphate adsorption basically agree with experimental results over a wide range of pH, surface coverage, and solid concentrations. High background electrolyte concentration (i.e., I = 0.1 M), however, was found to strongly impact arsenate and phosphate adsorption on E33 probably because of the porous structure of the adsorbent, which cannot be observed for pure goethite minerals and could not be completely modeled by the ETLM. Prediction of phosphate adsorption isotherms at higher pH were relatively poor, and this may suggest searching for alternative surface species for phosphate. Since adsorption equilibrium constants of major coexisting ions encountered in water treatment systems for goethite minerals have been estimated by others, the application of ETLM theory to this common goethite-based adsorptive media will enable us to understand how those coexisting ions macroscopically and thermodynamically interact with arsenate and phosphate in the environment of adsorptive water treatment system in a way consistent with molecular and spectroscopic evidence.

  6. Attenuation Tomography of Body Waves in Thickness-varying Layered Media

    NASA Astrophysics Data System (ADS)

    Cao, H.; Zhou, H.

    2006-12-01

    The intrinsic attenuation of seismic waves, which is quantified as inverse to the quality factor (Q) of a medium, is a well-publicized and yet poorly studied subject. While it is common to deduce Q values from measured dispersion data for surface waves, previous studies on the intrinsic attenuation of body waves have relied on measurements of the waveform of first arrivals or reflections. Better understanding is needed for both solid Earth geophysics and applied seismology to quantify the contributing factors to seismic attenuation and decompose Q from other factors because Q is closely related to rock property and fluid saturation. This study focuses on forward modeling and tomographic inversion for the Q values in thickness-varying layered media. Many of the existing theoretical Q models work in such media. Our work is an extension of the deformable- layer tomography (Zhou, 2004) to dissipative media. In the first phase of this study, we evaluated, through numerical modeling the various factors contributing to the attenuation of body waves. Theoretically, there are intrinsic attenuation, which is related to rock and pore fluid properties, and attenuation due to wave propagation effects, such as geometrical spreading and energy partition across interfaces (transmission and reflection). We made several representative numerical models, and conducted forward modeling using both wave theory and ray theory to quantify the amount of the attenuation of body waves due to different factors. In the second phase, we are integrating the forward modeling with the deformable-layer tomography algorithm to develop means to invert for Q distribution in thickness-varying layer media. While the deformable-layer tomography determines layer velocities and geometry, the current work intends to invert for Q values of the thickness-varying model layers as well as parameters associated with interface energy partition and geometric spreading. In the third phase, we plan to apply the

  7. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer

    SciTech Connect

    Wang, L. F. Ye, W. H. Liu, Jie; He, X. T.; Guo, H. Y.; Wu, J. F. Zhang, W. Y.

    2014-12-15

    A weakly nonlinear (WN) model has been developed for the Rayleigh-Taylor instability of a finite-thickness incompressible fluid layer (slab). We derive the coupling evolution equations for perturbations on the (upper) “linearly stable” and (lower) “linearly unstable” interfaces of the slab. Expressions of temporal evolutions of the amplitudes of the perturbation first three harmonics on the upper and lower interfaces are obtained. The classical feedthrough (interface coupling) solution obtained by Taylor [Proc. R. Soc. London A 201, 192 (1950)] is readily recovered by the first-order results. Our third-order model can depict the WN perturbation growth and the saturation of linear (exponential) growth of the perturbation fundamental mode on both interfaces. The dependence of the WN perturbation growth and the slab distortion on the normalized layer thickness (kd) is analytically investigated via the third-order solutions. Comparison is made with Jacobs-Catton's formula [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988)] of the position of the “linearly unstable” interface. Using a reduced formula, the saturation amplitude of linear growth of the perturbation fundamental mode is studied. It is found that the finite-thickness effects play a dominant role in the WN evolution of the slab, especially when kd < 1. Thus, it should be included in applications where the interface coupling effects are important, such as inertial confinement fusion implosions and supernova explosions.

  8. Superconducting layer thickness dependence of magnetic relaxation property in CVD processed YGdBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2011-11-01

    One of the most important properties of coated conductors for Superconducting Magnetic Energy Storage (SMES) is the relaxation property of persistent superconducting current. This property can be quantitatively characterized by the apparent pinning potential U0∗. In this paper, the dependence of U0∗ on the thickness of superconducting layer d is investigated in the range of 0.33-1.43 μm at the temperature range of 20-30 K and in magnetic fields up to 6.5 T for Y 0.7Gd 0.3Ba 2Cu 3O 7- δ coated conductors. It was found that the value of critical current density did not appreciably depend on d at 20 K. This indicates that no structural deterioration of superconducting layer occurs during the process of increasing thickness. U0∗ increases and then tends to decrease with an increasing magnetic field. The magnetic field at which U0∗ starts to decrease increases with increasing thickness. This property was analyzed using the flux creep-flow model. Application of scaling law is examined for the dependence of U0∗ on magnetic field and temperature. It was found that the dependence could be expressed using scaling parameters B,U0 peak∗ in the temperature range 20-30 K.

  9. Decreased retinal nerve fiber layer thickness in patients with obstructive sleep apnea syndrome

    PubMed Central

    Sun, Cheng-Lin; Zhou, Li-Xiao; Dang, Yalong; Huo, Yin-Ping; Shi, Lei; Chang, Yong-Jie

    2016-01-01

    Abstract Objective: To investigate the changes of retinal nerve fiber layer (RNFL) thickness in obstructive sleep apnea syndrome (OSAS) patients. Methods: Relevant studies were selected from 3 major literature databases (PubMed, Cochrane Library, and EMBASE) without language restriction. Main inclusion criteria is that a case-control study in which RNFL thickness was measured by a commercial available optical coherence tomography (OCT) in OSAS patients. Meta-analysis was performed using STATA 12.0 software. Efficacy estimates were evaluated by weighted mean difference with corresponding 95% confidence intervals (CIs). Primary outcome evaluations were: the average changes of RNFL thickness in total OSAS patients, subgroup analysis of RNFL thickness changes in patients of different OSAS stages, and subgroup analysis of 4-quadrant RNFL thickness changes in total OSAS patients. Results: Of the initial 327 literatures, 8 case-control studies with 763 eyes of OSA patients and 474 eyes of healthy controls were included (NOS scores ≥6). For the people of total OSAS, there had an average 2.92 μm decreased RNFL thickness compared with controls (95% CI: −4.61 to −1.24, P = 0.001). For subgroup analysis of OSAS in different stages, the average changes of RNFL thickness in mild, moderate, severe, and moderate to severe OSAS were 2.05 (95% CI: −4.40 to 0.30, P = 0.088), 2.32 (95% CI: −5.04 to 0.40, P = 0.094), 4.21 (95% CI: −8.36 to −0.06, P = 0.047), and 4.02 (95% CI: −7.65 to −0.40, P = 0.03), respectively. For subgroup analysis of 4-quadrant, the average changes of RNFL thickness in Superior, Nasal, Inferior, and Temporal quadrant were 2.43 (95% CI: −4.28 to −0.57, P = 0.01), 1.41 (95% CI: −3.33 to 0.51, P = 0.151), 3.75 (95% CI: −6.92 to −0.59, P = 0.02), and 0.98 (95% CI: −2.49 to 0.53, P = 0.203), respectively. Conclusion: Our study suggests that RNFL thickness in OSAS patients is much thinner than

  10. Electrocaloric properties of ferroelectric-paraelectric superlattices controlled by the thickness of paraelectric layer in a wide temperature range

    SciTech Connect

    Ma, D. C.; Lin, S. P.; Chen, W. J.; Zheng, Yue Xiong, W. M.; Wang, Biao

    2014-10-15

    As functions of the paraelectric layer thickness, misfit strain and temperature, the electrocaloric properties of ferroelectric-paraelectric superlattices are investigated using a time-dependent Ginzburg-Landau thermodynamic model. Ferroelectric phase transition driven by the relative thickness of the superlattice is found to dramatically impact the electrocaloric response. Near the phase transition temperature, the magnitude of the electrocaloric effect is maximized and shifted to lower temperatures by increasing the relative thickness of paraelectric layer. Theoretical calculations also imply that the electrocaloric effect of the superlattices depends not only on the relative thickness of paraelectric layer but also on misfit strain. Furthermore, control of the relative thickness of paraelectric layer and the misfit strain can change availably both the magnitude and the temperature sensitivity of the electrocaloric effect, which suggests that ferroelectric-paraelectric superlattices may be promising candidates for use in cooling devices in a wide temperature range.

  11. Retinal Nerve Fiber Layer Thickness in Children with Optic Pathway Gliomas

    PubMed Central

    Avery, Robert A.; Liu, Grant T.; Fisher, Michael J.; Quinn, Graham E.; Belasco, Jean B.; Phillips, Peter C.; Maguire, Maureen G.; Balcer, Laura J.

    2010-01-01

    Purpose To determine the relation of high-contrast visual acuity (VA) and low-contrast letter acuity with retinal nerve fiber layer (RNFL) thickness in children with optic pathway gliomas. Design Cross-sectional convenience sample, with prospective data collection, from a tertiary care children’s hospital of patients with optic pathway gliomas associated with Neurofibromatosis type 1, sporadic OPG and Neurofibromatosis type 1 without OPG. Methods Patients performed best corrected VA testing using surrounded HOTV optotypes and low-contrast letter acuity (5%, 2.5% and 1.25% low contrast Sloan letter charts). Mean RNFL thickness (microns) was measured by a Stratus optical coherence tomography (Carl Zeiss Meditec, Dublin, CA) using the fast RNFL thickness protocol. Eyes were classified as having abnormal vision if they had high-contrast VA > 0.1 logMAR or visual field loss. The association of subject age, glioma location and RNFL thickness with both VA and low-contrast letter acuity scores was evaluated by one-way analysis of variance and linear regression, using the generalized estimating equation approach to account for within-patient intereye correlations. Results Eighty-nine eyes of patients with optic pathway gliomas were included and 41 were classified as having abnormal VA or visual field loss. Reduced RNFL thickness was significantly associated with higher logMAR scores for both VA (P < 0.001) and all low-contrast letter acuity charts (P < 0.001) when accounting for age and glioma location. Conclusions Eyes of most children with optic pathway gliomas and decreased RNFL thickness had abnormal visual acuity or visual field loss. PMID:21232732

  12. Is Retinal Nerve Fiber Layer Thickness Change Related to Headache Lateralization in Migraine?

    PubMed Central

    Demirci, Seden; Tok, Levent; Tok, Ozlem; Demirci, Serpil; Kutluhan, Süleyman

    2016-01-01

    Purpose To evaluate retinal nerve fiber layer (RNFL) thickness in migraine patients with unilateral headache. Methods A total of 58 patients diagnosed with migraine headache consistently occurring on the same side and 58 age- and sex-matched healthy subjects were evaluated in this cross-sectional study. RNFL thickness was measured using spectral-domain optical coherence tomography, and the side with the headache was com-pared with the contralateral side as well as with the results of healthy subjects. Results The mean patient age was 33.05 ± 8.83 years, and that of the healthy subjects was 31.44 ± 8.64 years (p = 0.32). The mean duration of disease was 10.29 ± 9.03 years. The average and nasal RNFL thicknesses were significantly thinner on the side of headache and on the contralateral side compared to control eyes (p < 0.05, for all). Thinning was higher on the side of the headache compared to the contralateral side; however, this difference was not statistically significant. Conclusions The RNFL thicknesses were thinner on the side of the headache compared to the contralateral side in the migraine patients with unilateral headache, but this difference was not statistically significant. PMID:27051262

  13. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.

    PubMed

    Hsieh, Tzu H; Keh, Huan J

    2010-10-01

    An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.

  14. A metal-oxide-semiconductor radiation dosimeter with a thick and defect-rich oxide layer

    NASA Astrophysics Data System (ADS)

    Liu, Hongrui; Yang, Yuhao; Zhang, Jinwen

    2016-04-01

    Enhancing the density of defects in the oxide layer is the main factor in improving the sensitivity of a metal-oxide-semiconductor (MOS) radiation dosimeter. This paper reports a novel MOS dosimeter with a very thick and defect-rich oxide layer fabricated by MEMS technology. The category of defects in SiO2 and their possible effect on the radiation dose sensing was analyzed. Then, we proposed combining deep-reactive-ion etching, thermal oxidation and low pressure chemical vapor deposition to realize an oxide layer containing multiple and large interfaces which can increase defects significantly. The trench-and-beam structure of silicon was considered in detail. The fabrication process was developed for obtaining a thick and compact MEMS-made SiO2. Our devices were irradiated by γ-rays of 60Co at 2 Gy per minute for 2 h and a thermally stimulated current (TSC) method was used to determine the readout of the dosimeters. Results show that there is a peak current of about 450 nA, indicating a total TSC charge of 158 μC and sensitivity of 1.1 μC mm-3·Gy, which is 40 times the sensitivity of previous MOS dosimeters.

  15. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    PubMed

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers.

  16. Thickness-Dependent Dielectric Constant of Few-Layer In₂Se₃ Nanoflakes.

    PubMed

    Wu, Di; Pak, Alexander J; Liu, Yingnan; Zhou, Yu; Wu, Xiaoyu; Zhu, Yihan; Lin, Min; Han, Yu; Ren, Yuan; Peng, Hailin; Tsai, Yu-Hao; Hwang, Gyeong S; Lai, Keji

    2015-12-01

    The dielectric constant or relative permittivity (ε(r)) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured ε(r) increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  17. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Spheres with Arbitrary Double-Layer Thickness.

    PubMed

    Keh; Ding

    2000-07-15

    The sedimentation in a homogeneous suspension of charged spherical particles with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model. Overlap of the double layers of adjacent particles is allowed, and the polarization effect in the double layer surrounding each particle is considered. The electrokinetic equations that govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. An analytical expression for the settling velocity of the charged sphere in closed form is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged spheres is also derived by using the requirement of zero net electric current. Our results demonstrate that the effects of overlapping double layers are quite significant, even for the case of thin double layers. Copyright 2000 Academic Press.

  18. The impact of layer thickness on the performance of additively manufactured lapping tools

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2015-10-01

    Lower cost additive manufacturing (AM) machines which have emerged in recent years are capable of producing tools, jigs, and fixtures that are useful in optical fabrication. In particular, AM tooling has been shown to be useful in lapping glass workpieces. Various AM machines are distinguished by the processes, materials, build times, and build resolution they provide. This research investigates the impact of varied build resolution (specifically layer resolution) on the lapping performance of tools built using the stereolithographic assembly (SLA) process in 50 μm and 100 μm layer thicknesses with a methacrylate photopolymer resin on a high resolution desktop printer. As with previous work, the lapping tools were shown to remove workpiece material during the lapping process, but the tools themselves also experienced significant wear on the order of 2-3 times the mass loss of the glass workpieces. The tool wear rates for the 100 μm and 50 μm layer tools were comparable, but the 50 μm layer tool was 74% more effective at removing material from the glass workpiece, which is attributed to some abrasive particles being trapped in the coarser surface of the 100 um layer tooling and not being available to interact with the glass workpiece. Considering the tool wear, these additively manufactured tools are most appropriate for prototype tooling where the low cost (<$45) and quick turnaround make them attractive when compared to a machined tool.

  19. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  20. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lauri, Janne; Bykov, Alexander; Fabritius, Tapio

    2016-04-01

    A high-speed optical coherence tomography (OCT) with 1-μm axial resolution was applied to assess the thickness of a cell-free layer (CFL) and a spatial distribution of red blood cells (RBC) next to the microchannel wall. The experiments were performed in vitro in a plain glass microchannel with a width of 2 mm and height of 0.2 mm. RBCs were suspended in phosphate buffered saline solution at the hematocrit level of 45%. Flow rates of 0.1 to 0.5 ml/h were used to compensate gravity induced CFL. The results indicate that OCT can be efficiently used for the quantification of CFL thickness and spatial distribution of RBCs in microcirculatory blood flow.

  1. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  2. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    SciTech Connect

    Yersak, Alexander S.; Lee, Yung C.; Spencer, Joseph A.; Groner, Markus D.

    2014-01-15

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.

  3. Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper.

    PubMed

    Louis, Yoann; Cmuk, Petra; Omanović, Dario; Garnier, Cédric; Lenoble, Véronique; Mounier, Stéphane; Pizeta, Ivanka

    2008-01-01

    The influence of an adsorbed layer of the natural organic matter (NOM) on voltammetric behaviour of copper on a mercury drop electrode in natural water samples was studied. The adsorption of NOM strongly affects the differential pulse anodic stripping voltammogram (DPASV) of copper, leading to its distortion. Phase sensitive ac voltammetry confirmed that desorption of adsorbed NOM occurs in general at accumulation potentials more negative than -1.4V. Accordingly, an application of negative potential (-1.6V) for a very short time at the end of the accumulation time (1% of total accumulation time) to remove the adsorbed NOM was introduced in the measuring procedure. Using this protocol, a well-resolved peak without interferences was obtained. It was shown that stripping chronopotentiogram of copper (SCP) in the depletive mode is influenced by the adsorbed layer in the same manner as DPASV. The influence of the adsorbed NOM on pseudopolarographic measurements of copper and on determination of copper complexing capacity (CuCC) was demonstrated. A shift of the peak potential and the change of the half-peak width on the accumulation potential (for pseudopolarography) and on copper concentration in solution (for CuCC) were observed. By applying a desorption step these effects vanished, yielding different final results.

  4. Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order

    NASA Astrophysics Data System (ADS)

    Vlaminck, V.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

    2013-08-01

    Voltages generated from inverse spin Hall and anisotropic magnetoresistance effects via spin pumping in ferromagnetic (F)/nonmagnetic (N) bilayers are investigated by means of a broadband ferromagnetic resonance approach. Varying the nonmagnetic layer thickness enables the determination of the spin diffusion length in Pd of 5.5 ± 0.5 nm. We also observe a systematic change of the voltage line shape when reversing the stacking order of the F/N bilayer, which is qualitatively consistent with expectations from spin Hall effects. However, even after independent calibration of the precession angle, systematic quantitative discrepancies in analyzing the data with spin Hall effects remain.

  5. Measured Propagation Characteristics of Finite Ground Coplanar Waveguide on Silicon with a Thick Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Tentzeris, Emmanouil M.; Williams, W. O. (Technical Monitor)

    2002-01-01

    Measured propagation characteristics of Finite Ground Coplanar (FGC) waveguide on silicon substrates with resistivities spanning 3 orders of magnitude (0.1 to 15.5 Ohm cm) and a 20 micron thick polyimide interface layer is presented as a function of the FGC geometry. Results show that there is an optimum FGC geometry for minimum loss, and silicon with a resistivity of 0.1 Ohm cm has greater loss than substrates with higher and lower resistivity. Lastly, substrates with a resistivity of 10 Ohm cm or greater have acceptable loss.

  6. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and ..gamma..-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs.

  7. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  8. Changes in cortical thickness in the frontal lobes in schizophrenia are a result of thinning of pyramidal cell layers.

    PubMed

    Williams, M R; Chaudhry, R; Perera, S; Pearce, R K B; Hirsch, S R; Ansorge, O; Thom, M; Maier, M

    2013-02-01

    Decreased cortical thickness and reduced activity as measured by fMRI in the grey matter of the subgenual cingulate cortex have been reported in schizophrenia and bipolar disorder, and cortical grey matter loss has been reliably reported in the frontal and temporal lobes in schizophrenia. The aim of this study was to examine the thickness of each of the six cortical layers in the subgenual cingulate cortex, five frontal lobe and four temporal lobe gyri. We examined two separate cohorts. Cohort 1 examines the subgenual cingulate cortex (SCC) in schizophrenia (n = 10), bipolar disorder (n = 15) and major depressive disorder (n = 20) against control subjects (n = 19). Cohort two examines frontal and temporal gyri in schizophrenia (n = 16), major depressive disorder (n = 6) against matched controls (n = 32). The cohorts were selected with identical clinical criteria, but underwent different tissue processing to contrast the effect of chemical treatment on tissue shrinkage. Measurements of layer I-VI thickness were taken from cresyl-violet- and haematoxylin-stained sections in cohort one and from cresyl-violet- and H&E-stained sections in cohort two. SCC cortical thickness decreased in male subjects with bipolar disorder (p = 0.048), and male schizophrenia cases showed a specific decrease in the absolute thickness of layer V (p = 0.003). Compared to controls, the relative thickness of layer V in the crown of the SCC decreased in schizophrenia (p < 0.001). A significant decrease in total cortical thickness was observed across the frontal lobe in schizophrenia (p < 0.0001), with specific pyramidal layer thinning in layers III (p = 0.0001) and V (p = 0.005). There was no effect of lateralization. No changes were noted in temporal lobe cortical thickness. This study demonstrates diminished pyramidal layer thickness resulting in decreased frontal lobe thickness in schizophrenia.

  9. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron

    PubMed Central

    Ramaswamy, Srikanth; Markram, Henry

    2015-01-01

    The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local axonal and dendritic arborization, the TTL5 neuron encompasses various local neocortical neurons and thereby defines the dimensions of neocortical microcircuitry. The TTL5 neuron integrates input across all neocortical layers and is the principal output pathway funneling information flow to subcortical structures. Several studies over the past decades have investigated the anatomy, physiology, synaptology, and pathophysiology of the TTL5 neuron. This review summarizes key discoveries and identifies potential avenues of research to facilitate an integrated and unifying understanding on the role of a central neuron in the neocortex. PMID:26167146

  10. Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.

    2015-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.

  11. Adsorption isotherms and structure of cationic surfactants adsorbed on mineral oxide surfaces prepared by atomic layer deposition.

    PubMed

    Wangchareansak, Thipvaree; Craig, Vincent S J; Notley, Shannon M

    2013-12-01

    The adsorption isotherms and aggregate structures of adsorbed surfactants on smooth thin-film surfaces of mineral oxides have been studied by optical reflectometry and atomic force microscopy (AFM). Films of the mineral oxides of titania, alumina, hafnia, and zirconia were produced by atomic layer deposition (ALD) with low roughness. We find that the surface strongly influences the admicelle organization on the surface. At high concentrations (2 × cmc) of cetyltrimethylammonium bromide (CTAB), the surfactant aggregates on a titania surface exhibit a flattened admicelle structure with an average repeat distance of 8.0 ± 1.0 nm whereas aggregates on alumina substrates exhibit a larger admicelle with an average separation distance of 10.5 ± 1.0 nm. A wormlike admicelle structure with an average separation distance of 7.0 ± 1.0 nm can be observed on zirconia substrates whereas a bilayered aggregate structure on hafnia substrates was observed. The change in the surface aggregate structure can be related to an increase in the critical packing parameter through a reduction in the effective headgroup area of the surfactant. The templating strength of the surfaces are found to be hafnia > alumina > zirconia > titania. Weakly templating surfaces are expected to have superior biocompatibility.

  12. Numerical simulations of Richtmyer{endash}Meshkov instabilities in finite-thickness fluid layers

    SciTech Connect

    Mikaelian, K.O.

    1996-05-01

    Direct numerical simulations of Richtmyer{endash}Meshkov instabilities in shocked fluid layers are reported and compared with analytic theory. To investigate new phenomena such as freeze-out, interface coupling, and feedthrough, several new configurations are simulated on a two-dimensional hydrocode. The basic system is an {ital A}/{ital B}/{ital A} combination, where {ital A} is air and {ital B} is a finite-thickness layer of freon, SF{sub 6}, or helium. The middle layer {ital B} has perturbations either on its upstream or downstream side, or on both sides, in which case the perturbations may be in phase (sinuous) or out of phase (varicose). The evolution of such perturbations under a Mach 1.5 shock is calculated, including the effect of a reshock. Recently reported gas curtain experiments [J. M. Budzinski {ital et} {ital al}., Phys. Fluids {bold 6}, 3510 (1994)] are also simulated and the code results are found to agree very well with the experiments. A new gas curtain configuration is also considered, involving an initially sinuous SF{sub 6} or helium layer and a new pattern, opposite mushrooms, is predicted to emerge. Upon reshock a relatively simple sinuous gas curtain is found to evolve into a highly complex pattern of nested mushrooms. {copyright} {ital 1996 American Institute of Physics.}

  13. Coupled annealing temperature and layer thickness effect on strengthening mechanisms of Ti/Ni multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Wang, Junlan

    2016-03-01

    A systematic study was performed on mechanical and microstructural properties of Ti/Ni multilayers with layer thickness from 200 nm to 6 nm and annealing temperature from room temperature to 500 °C. Based on the observed hardness evolution, a coupled layer-thickness and annealing-temperature dependent strengthening mechanism map is proposed. For as-deposited films, the deformation behavior follows the traditional trend of dislocation mediated strengthening to grain boundary mediated softening with decreasing layer thickness. For annealed films, grain boundary relaxation is considered to be the initial strengthening mechanism with higher activation temperature required for thicker layers. Under further annealing, solid solution hardening, intermetallic precipitation hardening, and fully intermixed alloy structure continue to strengthen the thin layered films, while recrystallization and grain-growth lead to the eventual softening of thick layered films. For the films with intermediate layer thickness, a strong orientation dependent hardness behavior is exhibited under high temperature annealing due to mechanism switch from grain growth softening to intermetallic precipitation hardening when changing the loading orientation from perpendicular to parallel to the layer interfaces.

  14. Atomic force microscopy study of the interaction between adsorbed poly(ethylene oxide) layers: effects of surface modification and approach velocity.

    PubMed

    McLean, Scott C; Lioe, Hadi; Meagher, Laurence; Craig, Vincent S J; Gee, Michelle L

    2005-03-15

    The interaction forces between layers of the triblock copolymer Pluronic F108 adsorbed onto hydrophobic radio frequency glow discharge (RFGD) thin film surfaces and hydrophilic silica, in polymer-free 0.15 M NaCl solution, have been measured using the atomic force microscope (AFM) colloid probe technique. Compression of Pluronic F108 layers adsorbed on the hydrophobic RFGD surfaces results in a purely repulsive force due to the steric overlap of the layers, the form of which suggests that the PEO chains adopt a brush conformation. Subsequent fitting of these data to the polymer brush models of Alexander-de Gennes and Milner, Witten, and Cates confirms that the adsorbed Pluronic F108 adsorbs onto hydrophobic surfaces as a polymer brush with a parabolic segment density profile. In comparison, the interaction between Pluronic F108 layers adsorbed on silica exhibits a long ranged shallow attractive force and a weaker steric repulsion. The attractive component is reasonably well described by van der Waals forces, but polymer bridging cannot be ruled out. The weaker steric component of the force suggests that the polymer is less densely packed on the surface and is less extended into solution, existing as polymeric isolated mushrooms. When the surfaces are driven together at high piezo ramp velocities, an additional repulsive force is measured, attributable to hydrodynamic drainage forces between the surfaces. In comparing theoretical predictions of the hydrodynamic force to the experimentally obtained data, agreement could only be obtained if the flow profile of the aqueous solution penetrated significantly into the polymer brush. This finding is in line with the theoretical predictions of Milner and provides further evidence that the segment density profile of the adsorbed polymer brush is parabolic. A velocity dependent additional stepped repulsive force, reminiscent of a solvation oscillatory force, is also observed when the adsorbed layers are compressed under high

  15. Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device

    SciTech Connect

    Kim, Jaehwan; Min, Daehong; Jang, Jongjin; Lee, Kyuseung; Chae, Sooryong; Nam, Okhyun

    2014-10-28

    In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface. To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.

  16. Imaging spectroscopy with Ta/Al DROIDs: Performance for different Al trapping layer thicknesses

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Peacock, A.; Kozorezov, A. G.

    2006-04-01

    To overcome the limited field of view, which can be achieved with single superconducting tunneling junction (STJ) arrays, distributed read-out imaging devices (DROIDs) are being developed. DROIDs consist of a superconducting absorber strip with proximized STJs on either end. The ratio of the two signals from the STJs provides information on the absorption position, and the sum signal is a measure for the energy of the absorbed photon. In our devices, the absorber is an epitaxial Ta strip that extends underneath the Ta/Al read-out STJs. Thus, the bottom electrode of the STJs is an integral part of the absorber. Due to the proximity effect, the STJs have a lower energy gap than the absorber, causing trapping of quasiparticles (QPs) in the STJs. The trapping will change with thicker Al layers because the energy gap of the devices will decrease. A series of 50×200 μm 2 and 20×200 μm 2 absorbers (including 50×50 μm 2 STJs) and different Al trapping layer thicknesses, ranging from 65 to 130 nm, have been tested. The devices have been illuminated with 6 keV 55Fe photons. The position resolution is found to improve with increasing Al thickness. It is found that the current model needs to be adapted for DROIDs to account for different injection of QPs into the STJ and extra losses to the absorber.

  17. Effect of optic nerve sheath fenestration for idiopathic intracranial hypertension on retinal nerve fiber layer thickness.

    PubMed

    Starks, Victoria; Gilliland, Grant; Vrcek, Ivan; Gilliland, Connor

    2016-01-01

    The objective of the study was to evaluate whether optic nerve sheath fenestration in patients with idiopathic intracranial hypertension was associated with improvement in visual field pattern deviation and optical coherence tomography retinal nerve fiber layer thickness.The records of 13 eyes of 11 patients who underwent optic nerve sheath fenestration were reviewed. The subjects were patients of a clinical practice in Dallas, Texas. Charts were reviewed for pre- and postoperative visual field pattern deviation (PD) and retinal nerve fiber layer thickness (RNFL).PD and RNFL significantly improved after surgery. Average PD preoperatively was 8.51 DB and postoperatively was 4.80 DB (p = 0.0002). Average RNFL preoperatively was 113.63 and postoperatively was 102.70 (p = 0.01). The preoperative PD and RNFL did not correlate strongly.Our results demonstrate that PD and RNFL are improved after optic nerve sheath fenestration. The pre- and postoperative RNFL values were compared to the average RNFL value of healthy optic nerves obtained from the literature. Post-ONSF RNFL values were significantly closer to the normal value than preoperative. RNFL is an objective parameter for monitoring the optic nerve after optic nerve sheath fenestration. This study adds to the evidence that OCT RNFL may be an effective monitoring tool for patients with IIH and that it continues to be a useful parameter after ONSF.

  18. Moderately large vibrations of doubly curved shallow open shells composed of thick layers

    NASA Astrophysics Data System (ADS)

    Adam, Christoph

    2007-02-01

    This paper addresses nonlinear flexural vibrations of shallow shells composed of three thick layers with different shear flexibility, which are symmetrically arranged with respect to the middle surface. The considered shell structures of polygonal planform are hard hinged simply supported (i.e. all in-plane rotations and the bending moment vanish) with the edges fully restraint against displacements in any direction. The kinematic field equations are formulated by layerwise application of a first-order shear deformation theory. A modification of Berger's theory is employed to model the nonlinear characteristics of the structural response. The continuity of the transverse shear stress across the interfaces is specified according to Hooke's law, and subsequently the equations of motion of this higher order problem can be derived in analogy to a homogeneous single-layer shear deformable shallow shell. Numerical results of rectangular shallow shells in nonlinear steady-state vibration are presented for various ratios of shell rise to thickness, and non-dimensional load amplitude.

  19. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning.

    PubMed

    Fang, Ming; Ho, Johnny C

    2015-09-22

    Transistors have already been made three-dimensional (3D), with device channels (i.e., fins in trigate field-effect transistor (FinFET) technology) that are taller, thinner, and closer together in order to enhance device performance and lower active power consumption. As device scaling continues, these transistors will require more advanced, fabrication-enabling technologies for the conformal deposition of high-κ dielectric layers on their 3D channels with accurate position alignment and thickness control down to the subnanometer scale. Among many competing techniques, area-selective atomic layer deposition (AS-ALD) is a promising method that is well suited to the requirements without the use of complicated, complementary metal-oxide semiconductor (CMOS)-incompatible processes. However, further progress is limited by poor area selectivity for thicker films formed via a higher number of ALD cycles as well as the prolonged processing time. In this issue of ACS Nano, Professor Stacy Bent and her research group demonstrate a straightforward self-correcting ALD approach, combining selective deposition with a postprocess mild chemical etching, which enables selective deposition of dielectric films with thicknesses and processing times at least 10 times larger and 48 times shorter, respectively, than those obtained by conventional AS-ALD processes. These advances present an important technological breakthrough that may drive the AS-ALD technique a step closer toward industrial applications in electronics, catalysis, and photonics, etc. where more efficient device fabrication processes are needed. PMID:26351731

  20. Reliability of thickness of oxide layer of stainless steels with chromium using cellular automaton model

    SciTech Connect

    Lan, K. C.; Chen, Y.; Yu, G. P.; Hung, T. C.

    2012-07-01

    A cellular automaton (CA) model based on the stochastic approach was proposed to simulate the process of oxidation and corrosion of stainless steels with different contents of chromium in-flowing lead bismuth eutectic (LBE). Chromium is a crucial alloying element added in stainless steels and nickel based alloys which have been proposed to be used in advanced nuclear reactors to improve resistance of the oxidation and corrosion. To verify the reliability of the thickness of the oxide layer by CA model, the influence of the stochastic character on the simulating results was investigated as changing parameter of chromium content of structure material in this study. Ten independent simulations were run for each specific environment. A stable and reasonable results were obtained according to the chi-square of goodness-of-fit test, the chi-square of the thickness of oxide layer for each case were significant smaller than critical chi-square value with a confidence level of 95% ({Chi}{sup 2}{alpha}, v = {Chi}{sup 2} 0.05,9 = 16.92). (authors)

  1. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  2. Nanometer-resolution electron microscopy through micrometers-thick water layers

    PubMed Central

    de Jonge, Niels; Poirier-Demers, Nicolas; Demers, Hendrix; Peckys, Diana B.; Drouin, Dominique

    2010-01-01

    Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 µm. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening, as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid, and in materials science to study the interaction of solid:liquid interfaces at the nanoscale. PMID:20542380

  3. Enhancement in Magnetoelectric Effects at Thickness Modes of Layered Ferromagnets and Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Bichurin, M. I.; Petrov, V. M.; Laletsin, V. M.; Srinivasan, G.; Nan, C. W.

    2006-03-01

    Magnetoelectric (ME) effects in magnetic - piezoelectric heterostructures are caused by mechanical coupling between magnetic and piezoelectric layers. We reported earlier on the theory and observation of a resonant enhancement in the ME effects when the electrical subsystem is driven to resonance, i.e., electromechanical resonance (EMR) associated with radial acoustic modes [1]. Here we discuss the theory and data for ME effects associated with thickness EMR modes. Profiles of ME voltage coefficients versus frequency were estimated for trilayers based lead zirconate titanate and the following ferromagnetic phases: cobalt ferrite, nickel ferrite and lithium ferrite and Fe, Co and Ni. The results are compared with data on samples 10 mm in diameter and 2 mm in thickness. An enhacement in the ME voltage due to radial modes is observed at 350 kHz. A similar behavior due to the thickness mode is observed at 1.5-2 MHz, in agreement with the theory. Calculated ME voltage coefficients versus frequency profiles are in excellent agreement with data. - supported by an NSF grant. [1] D. A. Filippov, M. I. Bichurin, V. M. Petrov, V. M. Laletin, G. Srinivasan, Phys. Solid State 46, 1674, (2004).

  4. Interplay of solvent additive concentration and active layer thickness on the performance of small molecule solar cells.

    PubMed

    Love, John A; Collins, Samuel D; Nagao, Ikuhiro; Mukherjee, Subhrangsu; Ade, Harald; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2014-11-19

    A relationship between solvent additive concentration and active layer thickness in small-molecule solar cells is investigated. Specifically, the additive concentration must scale with the amount of semiconductor material and not as absolute concentration in solution. Devices with a wide range of active layers with thickness up to 200 nm can readily achieve efficiencies close to 6% when the right concentration of additive is used.

  5. Interpretation of Isopycnal Layer Thickness Advection in Terms of Eddy-Topography Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Chuanyu; Koehl, Armin; Stammer, Detlef

    2013-04-01

    Spatially varying amplitude of the eddy isopycnal layer thickness diffusivity Kgm and the layer thickness advection Kgmskew of the modified Gent and McWilliams parameterization are estimated using two different approaches: the adjoint estimation from a global data assimilation system and the inversion calculation according to divergent buoyancy eddy flux-mean buoyancy gradient relation using results from idealized eddy resolving numerical models with various bottom topographies. This work focuses on the properties of Kgmskew. From the adjoint estimation, large Kgmskew values are found along meandering currents and predominantly positive (negative) over the deep ocean and negative (positive) over seamounts in the southern (northern) hemisphere, implying close relation to the 'Neptune effect" parameterization by Holloway in which the eddy induced mean velocity stream function is represented by -fHL, where H is the bottom depth, f the Coriolis parameter and L a length scale. In the inversion calculation, divergent buoyancy eddy fluxes are obtained by removing the rotational components from the total buoyancy eddy fluxes through Helmholtz-Hodge decomposition. Though subject to topographic length scale, the inversed Kgmskew reveals characteristics of both f and H, and interactions with the mean current, inter-confirming the adjoint estimation results. Applying this parameterization for Kgmskew in the general circulation model produces cold domes and anti-cyclonic circulations over seamounts, which reduces common model biases there. By construction, the original thickness advection Kgmskew redistributes potential energy and the original "Neptune effect" parameterization improves potential vorticity conservation, applying the latter into the former as suggested in the present study thus more correctly reproduces the potential vorticity structure over a sloping topography while conserving the total potential energy.

  6. Investigation of the uncertainties of the estimated optical constants and thickness of very thin semiconductor layers

    NASA Astrophysics Data System (ADS)

    Gushterova, P.; Hristov, B.; Sharlandjiev, P.

    2010-04-01

    We recently developed an approach to the estimation of the complex permittivity (epsilon) and thickness (d) of very thin layers using measurements of their transmittance, front-side reflectance and back-side reflectance. The approach is based on a limited expansion of the Abelès characteristic matrix elements and is especially designed for characterization of very thin layers. In this paper we investigate the uncertainties of the estimated real part of epsilon (epsilon1), the imaginary part of epsilon (epsilon2) and d of semiconductor thin layers that are due to the methodological error and the experimental uncertainties in the optical quantities measured. It is shown that the effect of the uncertainties in the measurable quantities is significantly stronger than that of the methodical error and increases considerably with the decrease of the ratio d/λ (λ being the wavelength). An efficient two-step procedure is proposed to reduce this effect. First, we supply a criterion for determination of d with the lowest uncertainty from the ensemble of estimations constructed on a wavelength by wavelength basis. This is crucial for the next step: the estimation of epsilon1 and epsilon2. The approach proposed ensures estimation of epsilon1, epsilon2 and d with the highest accuracy, limited only by the methodological error.

  7. Layer thickness dependence of anisotropic coupling in Gd/Y superlattices

    NASA Astrophysics Data System (ADS)

    Tsui, F.; Flynn, C. P.; Salamon, M. B.; Borchers, J. A.; Erwin, R. W.; Rhyne, J. J.

    1992-02-01

    The asymmetry of spin-coupling through nonmagnetic yttrium interlayers in b-axis Gd/Y MBE superlattices grown on [101¯0] Y substrates has been examined using SQUID magnetometry and neuron scattering. For c-axis Gd/Y superlattices, the Gd layers align ferromagnetically or antiferromagnetically across the intervening layers depending in an oscillatory manner on the Y thickness with interlayer coupling strengths of approximately 1 kOe. Neutron scans for b-[Gd 43 Å|Y 52 Å] 85 demonstrate that the Gd moments anti-align across the Y in zero field. The Gd layers in samples b-[Gd 47 Å|Y 42 Å] 50 and b-Gd 60 Å|Y 26 Å] 80 with thinner Y interlayers are aligned at temperatures less than 90 K. The saturation fields obtained for these samples are 80, 35 and 20 Oe at 150 K, respectively. This result suggests that the antiferromagnetic coupling mechanism is much weaker than that for the c-axis superlattices. We will compare models for the coupling based on RKKY and dipolar interactions.

  8. Differentiation of magma oceans and the thickness of the depleted layer on Venus

    NASA Technical Reports Server (NTRS)

    Solomatov, V. S.; Stevenson, D. J.

    1993-01-01

    Various arguments suggest that Venus probably has no asthenosphere, and it is likely that beneath the crust there is a highly depleted and highly viscous mantle layer which was probably formed in the early history of the planet when it was partially or completely molten. Models of crystallization of magma oceans suggest that just after crystallization of a hypothetical magma ocean, the internal structure of Venus consists of a crust up to about 70 km thickness, a depleted layer up to about 500 km, and an enriched lower layer which probably consists of an undepleted 'lower mantle' and heavy enriched accumulates near the core-mantle boundary. Partial or even complete melting of Venus due to large impacts during the formation period eventually results in differentiation. However, the final result of such a differentiation can vary from a completely differentiated mantle to an almost completely preserved homogeneous mantle depending on competition between convection and differentiation: between low viscosity ('liquid') convection and crystal settling at small crystal fractions, or between high viscosity ('solid') convection and percolation at large crystal fractions.

  9. Influence of CHx thickness layer on the sensing properties of CHx/PS/Si structure against CO2 gas

    NASA Astrophysics Data System (ADS)

    Zouadi, N.; Belhousse, S.; Bradaî, D.; Cheraga, H.; Ouchabane, M.; Keffous, A.; Sam, S.; Gabouze, N.

    2013-11-01

    In this work, we report a study on the influence of hydrocarbon groups (CHx) thickness layer on sensing properties of CHx/Porous Silicon (PS)/Si structures against CO2 gas. The hydrocarbon groups were deposited by plasma of methane-argon mixture. The properties of these structures are investigated by current-voltage, current-time and capacitance-voltage measurements from where a different behaviour depending on CHx layer thickness has been observed. The results show that current-voltage and impedance-voltage characteristics are modified by the gas reactivity on the CHx/PS surface. As the CHx layer thickness increases, the series resistance and the ideality factor of the structure increase. In addition, the response and recovery times of the sensor decrease with increasing the CHx thickness. Finally, the results point out the effect of CHx coating on the sensitivity of the CHx/PS/Si sensor.

  10. Electrical characteristics of Au/n-GaAs structures with thin and thick SiO{sub 2} dielectric layer

    SciTech Connect

    Altuntas, H.; Altindal, S.; Corekci, S.; Ozturk, M. K.; Ozcelik, S.

    2011-10-15

    The aim of this study, to explain effects of the SiO{sub 2} insulator layer thickness on the electrical properties of Au/n-GaAs Shottky barrier diodes (SBDs). Thin (60 A) and thick (250 A) SiO{sub 2} insulator layers were deposited on n-type GaAs substrates using the plasma enganced chemical vapour deposition technique. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics have been carried out at room temperature. The main electrical parameters, such as ideality factor (n), zero-bias barrier height ({phi}{sub Bo}), series resistance (R{sub s}), leakage current, and interface states (N{sub ss}) for Au/SiO{sub 2}/n-GaAs SBDs have been investigated. Surface morphologies of the SiO{sub 2} dielectric layer was analyzed using atomic force microscopy. The results show that SiO{sub 2} insulator layer thickness very affects the main electrical parameters. Au/n-GaAs SBDs with thick SiO{sub 2} insulator layer have low leakage current level, small ideality factor, and low interface states. Thus, Au/n-GaAs SBDs with thick SiO{sub 2} insulator layer shows better diode characteristics than other.

  11. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  12. Million year old ice found under meter thick debris layer in Antarctica

    NASA Astrophysics Data System (ADS)

    Bibby, Theodore; Putkonen, Jaakko; Morgan, Daniel; Balco, Greg; Shuster, David L.

    2016-07-01

    Cosmogenic nuclide measurements associated with buried glacier ice in Ong Valley, in the Transantarctic Mountains, suggest the preservation of ancient ice. There are three glacial tills on the valley floor which have formed from the concentration of regolith contained within sublimating glacier ice. Two tills are less than 1 m thick and underlain by ice. Measurements of cosmogenic 10Be, 26Al, and 21Ne show that (i) the youngest buried ice unit and corresponding till are at least 11-13 ka, (ii) another ice unit and corresponding intermediate-age till are at least 1.1 Ma old under any circumstances and most likely older than 1.78 Ma, and (iii) the oldest till is at least 1.57 Ma and most likely greater than 2.63 Ma. These observations highlight the longevity of ice under thin debris layers and the potential to sample ancient ice for paleoclimate/paleoatmosphere information close to the present land surface.

  13. Thick escaping magnetospheric ion layer in magnetopause reconnection with MMS observations

    NASA Astrophysics Data System (ADS)

    Nagai, T.; Kitamura, N.; Hasegawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.; Avanov, L. A.; Chandler, M. O.; Coffey, V.; Sauvaud, J. A.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Oka, M.; Genestreti, K. J.; Burch, J. L.

    2016-06-01

    The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.

  14. Preliminary experimental research on friction characteristics of a thick gravitational casted babbit layer on steel substrate

    NASA Astrophysics Data System (ADS)

    Paleu, V.; Georgescu, S.; Baciu, C.; Istrate, B.; Baciu, E. R.

    2016-08-01

    The ability of the antifriction materials to withstand with no lubrication for a while can be a solution for the catastrophic failure of automotive journal bearings from the internal combustion engines in accidental breakdown of the oil pump. A thick layer of antifriction material (babbit) was deposited by gravitational casting on a steel disk substrate. Four tribological disk samples coated with babbit are tested against a steel shoe on Amsler tribometer at different speeds and loads in dry friction. The values of the friction coefficient versus speed and load are presented, the obtained results indicating a mild wear regime, recommending the new babbit as a possible coating for the bushes of the journal bearings in automotive internal combustion engines. Further tests must be dedicated to the establishment of the wear intensity of the steel shoe - babbit disk tribological pair, both for motor oil lubricated and dry friction conditions.

  15. How oil properties and layer thickness determine the entrainment of spilled surface oil.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2016-09-15

    Viscosity plays an important role in dispersion of spilled surface oil, so does adding chemical dispersants. For seven different oil grades, entrainment rate and initial droplet size distribution were investigated using a plunging jet apparatus with coupled camera equipment and subsequent image analysis. We found that amount of oil entrained is proportional to layer thickness and largely independent of oil properties: A dispersant dose of 1:200 did not result in a significantly different entrainment rate compared to no dispersants. Oil viscosity had a minor to no influence on entrainment rate, until a certain threshold above which entrainment was impeded. The mean droplet size scales with the modified Weber number as described by Johansen. The obtained results can help improve dispersion algorithms in oil spill fate and transport models, to aid making an informed decision about application of dispersants.

  16. How oil properties and layer thickness determine the entrainment of spilled surface oil.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2016-09-15

    Viscosity plays an important role in dispersion of spilled surface oil, so does adding chemical dispersants. For seven different oil grades, entrainment rate and initial droplet size distribution were investigated using a plunging jet apparatus with coupled camera equipment and subsequent image analysis. We found that amount of oil entrained is proportional to layer thickness and largely independent of oil properties: A dispersant dose of 1:200 did not result in a significantly different entrainment rate compared to no dispersants. Oil viscosity had a minor to no influence on entrainment rate, until a certain threshold above which entrainment was impeded. The mean droplet size scales with the modified Weber number as described by Johansen. The obtained results can help improve dispersion algorithms in oil spill fate and transport models, to aid making an informed decision about application of dispersants. PMID:27345705

  17. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  18. Dependence of the Carrier Transport Characteristics on the Buried Layer Thickness in Ambipolar Double-Layer Organic Field-Effect Transistors Investigated by Electrical and Optical Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2013-05-01

    By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.

  19. The Anterior Chamber Depth and Retinal Nerve Fiber Layer Thickness in Children

    PubMed Central

    Lee, Jacky W. Y.; Yau, Gordon S. K.; Woo, Tiffany T. Y.; Yick, Doris W. F.; Tam, Victor T. Y.; Yuen, Can Y. F.

    2014-01-01

    Purpose. To investigate the correlation of anterior chamber depth (ACD) with the peripapillary retinal nerve fiber layer (RNFL) thickness, age, axial length (AL), and spherical equivalent in children. Subjects. Consecutive subjects aged 4 to 18 were recruited. Visually disabling eye conditions were excluded. Only the right eye was included for analysis. The ACD was correlated with RNFL thickness, age, spherical equivalent, and AL for all subjects. Subjects were then divided into 3 groups based on their postcycloplegic spherical equivalent: myopes (<−1.0 D), emmetropes (≥−1.0 to ≤+1.0 D), and hyperopes (>+1.0 D). The ACD was compared among the 3 groups before and after age adjustment. Results. In 200 subjects (mean age 7.6 ± 3.3 years), a deeper ACD was correlated with thinner global RNFL (r = −0.2, r2 = 0.06, P = 0.0007), older age (r = 0.4, r2 = 0.1, P < 0.0001), myopic spherical equivalent (r = −0.3, r2 = 0.09, P < 0.0001), and longer AL (r = 0.5, r2 = 0.2, P < 0.0001). The ACD was deepest in myopes (3.5 ± 0.4 mm, n = 67), followed by emmetropes (3.4 ± 0.3, n = 60) and then hyperopes (3.3 ± 0.2, n = 73) (all P < 0.0001). After age adjustment, myopes had a deeper ACD than the other 2 groups (all P < 0.0001). Conclusions. In children, a deeper ACD was associated with thinner RNFL thickness, older age, more myopic spherical equivalent, and longer AL. Myopes had a deeper ACD than emmetropes and hyperopes. PMID:25431789

  20. Changes in the adsorbate dipole layer with changing d-filling of the metal (II) (Co, Ni, Cu) phthalocyanines on Au(111).

    PubMed

    Xiao, Jie; Dowben, Peter A

    2009-02-01

    In combined photoemission and inverse photoemission spectroscopy studies, we observe changes in the metal phthalocyanine molecular orbital offsets with respect to the conducting gold substrate Fermi level, with the changing d-electron filling of the metal (II) (Co, Ni, Cu) phthalocyanines. The implication is that the interfacial dipole layer depends upon the choice of metal (Co, Ni, Cu) centers within the metal (II) phthalocyanines adsorbed on Au(111).

  1. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect.

    PubMed

    Jiang, Jin-Wu; Qi, Zenan; Park, Harold S; Rabczuk, Timon

    2013-11-01

    We derive, from an empirical interaction potential, an analytic formula for the elastic bending modulus of single-layer MoS2 (SLMoS2). By using this approach, we do not need to define or estimate a thickness value for SLMoS2, which is important due to the substantial controversy in defining this value for two-dimensional or ultrathin nanostructures such as graphene and nanotubes. The obtained elastic bending modulus of 9.61 eV in SLMoS2 is significantly higher than the bending modulus of 1.4 eV in graphene, and is found to be within the range of values that are obtained using thin shell theory with experimentally obtained values for the elastic constants of SLMoS2. This increase in bending modulus as compared to monolayer graphene is attributed, through our analytic expression, to the finite thickness of SLMoS2. Specifically, while each monolayer of S atoms contributes 1.75 eV to the bending modulus, which is similar to the 1.4 eV bending modulus of monolayer graphene, the additional pairwise and angular interactions between out of plane Mo and S atoms contribute 5.84 eV to the bending modulus of SLMoS2. PMID:24084656

  2. SURFACE TENSION OF SERUM : X. ON THE THICKNESS OF THE MONOMOLECULAR LAYER OF SERUM.

    PubMed

    du Noüy, P L

    1924-06-30

    An attempt was made to apply the assumption that a monolayer of serum exists at a certain dilution, in order to calculate the thickness of this layer or, that is to say, the mean value of one of the dimensions of the molecules of the serum proteins. The criterion taken for the existence of such a monolayer was the existence at a given concentration (1/11,000 for rabbit serum) of a maximum drop in the surface tension of serum solutions kept in watch-glasses. A series of preliminary experiments showed: 1. That the maximum drop in 2 hours took place, for the material used, at a concentration of 1/11,000, and that it always corresponded to an absolute minimum value of the surface tension of the solution, this minimum being quite sharp and well defined. 2. That adsorption took place on the glass as well as on the free surface of the liquid, and that apparently the same part of the molecule, in both cases, was drawn toward the water. 3. That the specific gravity of the anhydrous proteins of the rabbit serum studied was 1.275, whence it followed, on the basis of 6.51 per cent protein content, that the mean thickness of the protein molecules was 35.4 x 10(-8) cm. The same method applied to crystalline egg albumin, pH 6.8, in water, gave 52.8 x 10(-8) cm. for the probable molecular length. PMID:19868899

  3. Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite.

    PubMed

    Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu

    2016-11-01

    The UO2(2+) adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I=0.02M) and pH 6 (I=0.2M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8nm (sample PS2), to 5.1nm (sample PS3) and, to 7.4nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO2(2+) sorption on smectite. The amount of UO2(2+) adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8±0.3 and 382.2±0.3eV, assigned to hydrated UO2(2+) adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f7/2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3±0.3 and 381.8±0.3eV assigned to AlOUO2(+) and SiOUO2(+) surface species were observed at pH 6.

  4. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  5. Analytical Sensor Response Function of Viscosity Sensors Based on Layered Piezoelectric Thickness Shear Resonators

    NASA Astrophysics Data System (ADS)

    Benes, Ewald; Nowotny, Helmut; Braun, Stefan; Radel, Stefan; Gröschl, Martin

    Resonant piezoelectric sensors based on bulk acoustic wave (BAW) thickness shear resonators are promising for the inline measurement of fluid viscosity, e.g., in industrial processes. The sensor response function can be derived from the general rigorous transfer matrix description of one-dimensional layered structures consisting of piezoelectric and non-piezoelectric layers of arbitrary number. This model according to Nowotny et al. provides a complete analytical description of the electrical and mechanical behaviour of such structures with two electrodes and arbitrary acoustic termination impedances (Rig-1d-Model). We apply this model to derive the sensor response functions and the mechanical displacement curves of the following configurations appropriate for viscosity sensors: An AT cut quartz crystal plate in contact with vacuum at the backside plane and with the liquid under investigation at the front side plane (QL). An AT cut quartz crystal in contact with the liquid under investigation at both sides (LQL). It is shown that in the QL case the originally only heuristically introduced and well established sensor response function according to Kanasawa can be derived from the Rig-1d-Model by introducing minor approximations. Experimental results are presented for the LQL configuration using an N1000 viscosity reference oil as test fluid.

  6. Mapping Active-Layer Thickness in an Urbanized Environment: The Barrow Urban Heat Island Study

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Hinkel, K. M.; Nelson, F. E.; Shiklomanov, N. I.

    2003-12-01

    Local and global changes in the Arctic climate may have profound impacts on hydrology, soil stability, and infrastructure, such as roads, buildings, and water, gas, or oil pipelines. These changes will be manifested in large part through permafrost, which can influence virtually all physical, chemical, and biological processes occurring in the soil. The "Barrow Urban Heat Island Study" (BUHIS) is an ongoing project in northern Alaska that examines the effects of urbanization on air and soil temperatures in and around Barrow. At 4600 residents, Barrow is the largest native settlement in the circumarctic region and the northernmost urban area in the United States. Initiated in summer 2001, BUHIS is recording temperature and thaw depth at more than 60 locations throughout the village, the developing suburbs, and surrounding undisturbed tundra. This paper describes one part of study examining the active layer and anthropogenic influences on its thickness. Summer air and soil temperature data, together with digital vegetation and soil maps, are used as input to a modified Stefan solution to map depth of thaw over an area of 100 square kilometers that includes both the village of Barrow and the surrounding tundra. Maps representing end-of-summer conditions for 2001 provide the first spatial/temporal representation of active-layer variability within an urbanized area. Increasing urban development in Arctic regions is causing information about changes accompanying industrial development and urbanization to become more vital, particularly given the possibility of a warming climate.

  7. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-06-04

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides.

  8. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    PubMed Central

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  9. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei

    2014-01-01

    Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.

  10. Effect of Boundary Layer Thickness on Secondary Structures in a Short Inlet Curved Duct

    NASA Astrophysics Data System (ADS)

    Gartner, Jeremy; Amitay, Michael

    2013-11-01

    The flow pattern in short ducts with aggressive curvature can lead in some cases to an asymmetric flow field. In the current work, a two dimensional honeycomb mesh was added upstream of the curved duct to create a pressure drop across it, and therefore an increased velocity deficit in the boundary layer profile. This velocity deficit led to a stronger streamwise separation, overcoming the flow mechanisms that result in the asymmetric flowfield. Experiments were conducted at M = 0.2, 0.44 and 0.58 in an expanding aggressive duct with square cross section with an area ratio of 1.27. Pressure data, together with Particle Image Velocimetry (PIV), verify the symmetry of the incoming flow field. Steady pressure distributions along the lower surface of the curved duct were obtained, as well as steady and time dependent total pressure distributions at the aerodynamic interface plane, enabling the analysis of the flow characteristics throughout the duct length. The effect of inserting a honeycomb was tested by increasing its height from 0 to 2.2 times the baseline flow boundary layer thickness upstream of the curve. Crosstream flow symmetry was achieved for specific geometrical configurations with a negligible decrease in the pressure recovery.

  11. High thick layer-by-layer 3D multiscale fibrous scaffolds for enhanced cell infiltration and it's potential in tissue engineering.

    PubMed

    Shalumon, K T; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2013-12-01

    This work explains the fabrication and potential applicability of high thick three dimensional (3-D) electrospun multiscale fibrous scaffolds in tissue engineering by focusing on the possible fabrication techniques. Multiscale fibrous scaffold of poly(lactic acid) (PLA) was fabricated by combining nano and micro fibers in optimum concentrations. Finely chopped multiscale fibers were allowed to undergo compression, freeze-drying, resin embedding, cryo-grinding and layering techniques to make 3D scaffolds and the layer-by-layer method was found to be most suitable for 3-D scaffold fabrication. Cell studies in layered 3D scaffolds were performed using MG 63 cells and infiltration was observed using SEM and confocal microscope. Since the layered high thick 3D scaffold perfectly complies with the requirements, this could be proposed as one of the suitable methods for constructing 3D scaffolds for tissue engineering applications. PMID:24266265

  12. Macular Ganglion Cell -Inner Plexiform Layer Thickness Is Associated with Clinical Progression in Mild Cognitive Impairment and Alzheimers Disease

    PubMed Central

    Choi, Seong Hye; Park, Sang Jun

    2016-01-01

    Purpose We investigated the association of the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) thicknesses with disease progression in mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Methods We recruited 42 patients with AD, 26 with MCI, and 66 normal elderly controls. The thicknesses of the RNFL and GCIPL were measured via spectral-domain optic coherent tomography in all participants at baseline. The patients with MCI or AD underwent clinical and neuropsychological tests at baseline and once every year thereafter for 2 years. Results The Clinical Dementia Rating scale-Sum of Boxes (CDR-SB) score exhibited significant negative relationships with the average GCIPL thickness (β = -0.15, p < 0.05) and the GCIPL thickness in the superotemporal, superonasal, and inferonasal sectors. The composite memory score exhibited significant positive associations with the average GCIPL thickness and the GCIPL thickness in the superotemporal, inferonasal, and inferotemporal sectors. The temporal RNFL thickness, the average and minimum GCIPL thicknesses, and the GCIPL thickness in the inferonasal, inferior, and inferotemporal sectors at baseline were significantly reduced in MCI patients who were converted to AD compared to stable MCI patients. The change of CDR-SB from baseline to 2 years exhibited significant negative associations with the average (β = -0.150, p = 0.006) and minimum GCIPL thicknesses as well as GCIPL thickness in the superotemporal, superior, superonasal, and inferonasal sectors at baseline. Conclusions Our data suggest that macular GCIPL thickness represents a promising biomarker for monitoring the progression of MCI and AD. PMID:27598262

  13. Influence of layer thickness and composition of cross-linked multilayered oil-in-water emulsions on the release behavior of lutein.

    PubMed

    Beicht, Johanna; Zeeb, Benjamin; Gibis, Monika; Fischer, Lutz; Weiss, Jochen

    2013-10-01

    Multilayering and enzymatic cross-linking of emulsions may cause alterations in the release behavior of encapsulated core material due to changes in thickness, porosity and permeability of the membrane. An interfacial engineering technology based on the layer-by-layer electrostatic deposition of oppositively charged biopolymers onto the surfaces of emulsion droplets in combination with an enzymatic treatment was used to generate emulsions with different droplet interfaces to test this hypothesis. Release behavior of primary, secondary (coated) and laccase-treated secondary emulsions carrying lutein, an oxygenated carotenoid, was characterized and studied. Fish gelatin (FG), whey protein isolate (WPI) and dodecyltrimethylammonium bromide (DTAB) were used as primary emulsifiers under acidic conditions (pH 3.5) to facilitate the adsorption of a negatively charged biopolymer (sugar beet pectin). Laccase was added to promote cross-linking of adsorbed beet pectin. The release of lutein-loaded emulsions was investigated and quantified by UV-Vis spectrophotometry. Primary WPI-stabilized emulsions showed a five times higher release of lutein after 48 h than secondary emulsions (pH 3.5). Primary DTAB-stabilized emulsions released 7.2% of encapsulated lutein within the observation period, whereas beet pectin-DTAB-coated emulsions released only 0.13% of lutein. Cross-linking of adsorbed pectin did not significantly decrease release of lutein in comparison to non-cross-linked secondary emulsions. Additionally, release of lutein was also affected by changes in the pH of the surrounding medium. Results suggest that modulating the interfacial properties of oil-in-water emulsion by biopolymer deposition and/or cross-linking may be a useful approach to generate food-grade delivery systems that have specific release-over-time profiles of incorporated active ingredients.

  14. Influence of layer thickness and composition of cross-linked multilayered oil-in-water emulsions on the release behavior of lutein.

    PubMed

    Beicht, Johanna; Zeeb, Benjamin; Gibis, Monika; Fischer, Lutz; Weiss, Jochen

    2013-10-01

    Multilayering and enzymatic cross-linking of emulsions may cause alterations in the release behavior of encapsulated core material due to changes in thickness, porosity and permeability of the membrane. An interfacial engineering technology based on the layer-by-layer electrostatic deposition of oppositively charged biopolymers onto the surfaces of emulsion droplets in combination with an enzymatic treatment was used to generate emulsions with different droplet interfaces to test this hypothesis. Release behavior of primary, secondary (coated) and laccase-treated secondary emulsions carrying lutein, an oxygenated carotenoid, was characterized and studied. Fish gelatin (FG), whey protein isolate (WPI) and dodecyltrimethylammonium bromide (DTAB) were used as primary emulsifiers under acidic conditions (pH 3.5) to facilitate the adsorption of a negatively charged biopolymer (sugar beet pectin). Laccase was added to promote cross-linking of adsorbed beet pectin. The release of lutein-loaded emulsions was investigated and quantified by UV-Vis spectrophotometry. Primary WPI-stabilized emulsions showed a five times higher release of lutein after 48 h than secondary emulsions (pH 3.5). Primary DTAB-stabilized emulsions released 7.2% of encapsulated lutein within the observation period, whereas beet pectin-DTAB-coated emulsions released only 0.13% of lutein. Cross-linking of adsorbed pectin did not significantly decrease release of lutein in comparison to non-cross-linked secondary emulsions. Additionally, release of lutein was also affected by changes in the pH of the surrounding medium. Results suggest that modulating the interfacial properties of oil-in-water emulsion by biopolymer deposition and/or cross-linking may be a useful approach to generate food-grade delivery systems that have specific release-over-time profiles of incorporated active ingredients. PMID:23978837

  15. Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness

    NASA Astrophysics Data System (ADS)

    Azzawi, S.; Ganguly, A.; Tokaç, M.; Rowan-Robinson, R. M.; Sinha, J.; Hindmarch, A. T.; Barman, A.; Atkinson, D.

    2016-02-01

    The evolution of damping in Co/Pt, Co/Au, and Ni81Fe19 /Pt bilayers was studied with increasing nonmagnetic (NM) heavy-metal layer thicknesses in the range 0.2 nm ≤tNM≤10 nm , where tNM is the NM layer thickness. Magnetization precession was measured in the time domain using time-resolved magneto-optical Kerr effect magnetometry. Fitting of the data with a damped sinusoidal function was undertaken in order to extract the phenomenological Gilbert damping coefficient α . For Pt-capped Co and Ni81Fe19 layers a large and complex dependence of α on the Pt layer thickness was observed, while for Au capping no significant dependence was observed. It is suggested that this difference is related to the different localized spin-orbit interaction related to intermixing and to d -d hybridization of Pt and Au at the interface with Co or Ni81Fe19 . Also it was shown that damping is affected by the crystal structure differences in FM thin films and at the interface, which can modify the spin-diffusion length and the effective spin-mixing conductance. In addition to the intrinsic damping an extrinsic contribution plays an important role in the enhancement of damping when the Pt capping layer is discontinuous. The dependence of damping on the nonmagnetic layer thickness is complex but shows qualitative agreement with recent theoretical predictions.

  16. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  17. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer. PMID:26726688

  18. Analyses of layer-thickness effects in bilayered dental ceramics subjected to thermal stresses and ring-on-ring tests

    SciTech Connect

    Hsueh, Chun-Hway; Thompson, G. A.; Jadaan, Osama M.; Wereszczak, Andrew A; Becher, Paul F

    2008-01-01

    Objectives. The purpose of this study was to analyze the stress distribution through the thickness of bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests and to systematically examine how the individual layer thickness influences this stress distribution and the failure origin. Methods. Ring-on-ring tests were performed on In-Ceram Alumina/Vitadur Alpha porcelain bilayered disks with porcelain in the tensile side, and In-Ceram Alumina to porcelain layer thickness ratios of 1:2, 1:1, and 2:1 were used to characterize the failure origins as either surface or interface. Based on the thermomechanical properties and thickness of each layer, the cooling temperature from glass transition temperature, and the ring-on-ring loading configuration, the stress distribution through the thickness of the bilayer was calculated using closed-form solutions. Finite element analyses were also performed to verify the analytical results. Results. The calculated stress distributions showed that the location of maximum tension during testing shifted from the porcelain surface to the In-Ceram Alumina/porcelain interface when the relative layer thickness ratio changed from 1:2 to 1:1 and to 2:1. This trend is in agreement with the experimental observations of the failure origins. Significance. For bilayered dental ceramics subjected to ring-on-ring tests, the location of maximum tension can shift from the surface to the interface depending upon the layer thickness ratio. The closed-form solutions for bilayers subjected to both thermal stresses and ring-on-ring tests are explicitly formulated which allow the biaxial strength of the bilayer to be evaluated.

  19. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces.

    PubMed Central

    Lösche, M; Piepenstock, M; Diederich, A; Grünewald, T; Kjaer, K; Vaknin, D

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 FIGURE 11 FIGURE 12 FIGURE A1 PMID:8298041

  20. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater.

    PubMed

    Chen, Dan; Li, Yang; Zhang, Jia; Li, Wenhui; Zhou, Jizhi; Shao, Li; Qian, Guangren

    2012-12-01

    A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms. PMID:23122732

  1. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles

    PubMed Central

    2016-01-01

    A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g

  2. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  3. Evaluation of layer thickness in human teeth using higher-order-mode leaky Lamb wave interdigital transducers

    SciTech Connect

    Toda, Shinji; Fujita, Takeshi; Arakawa, Hirohisa; Toda, Kohji

    2005-03-01

    An ultrasonic nondestructive evaluation technique of the layer thickness in human teeth is proposed using a leaky Lamb wave device with two arch-shaped interdigital transducers, operating at a plate/water interface. The use of a higher-order-mode leaky Lamb wave with a phase velocity higher than the longitudinal wave velocity in the human tooth is essential to detect reflected ultrasound beams from the tooth section The layer thickness of dentin, estimated from the measured time interval between two reflected echoes, is in good agreement with the optically measured data.

  4. Note: Accurate determination of thickness of multiple layers of thin film deposited on a piezoelectric quartz crystal.

    PubMed

    Wajid, Abdul

    2013-10-01

    Modern day piezoelectric quartz crystal microbalances for thin film deposition control are based on Z-match equation, which is mathematically valid for deposition of a single material on a given quartz crystal. When multiple layers are deposited, thickness and deposition rate errors accumulate due to mismatch of acoustic impedance of different materials. Here we present a novel method, based on the acoustic transfer matrix formalism, for accurate determination of thickness of an arbitrary number of layers of dissimilar materials deposited on a quartz crystal. Laboratory data show excellent accuracy of the method compared to conventional Z-match equation. PMID:24182174

  5. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  6. Synthesis of Au-CeO 2/SiO 2 catalyst via adsorbed-layer reactor technique combined with alcohol-thermal treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Deng, Hui

    2011-10-01

    Au-CeO 2/SiO 2 was prepared via adsorbed-layer reactor technique combined with alcohol-thermal treatment. The catalytic performance in complete oxidation of benzene was investigated. TEM, Raman characterization showed that Au particles grew up obviously during alcohol-thermal process, while CeO 2 particles maintained 4 nm in diameter. The content of oxygen vacancies and adsorbed oxygen species on catalysts surface increased apparently. Alcohol-thermally treated Au-CeO 2/SiO 2 and CeO 2/SiO 2 showed similar change in catalytic performance, and were much superior to calcined CeO 2/SiO 2. Of alcohol-thermally treated and calcined CeO 2/SiO 2, initial temperatures of the reaction were 80 °C and 150 °C, respectively. The benzene conversions reached 85% and 40% at 300 °C.

  7. Sheet shape-controlling method for hundreds-of-nanometer-thick polymer film using soluble polymer layer

    NASA Astrophysics Data System (ADS)

    Shimbo, Sota; Fujie, Toshinori; Iwase, Eiji

    2016-06-01

    We proposed a sheet shape-controlling method for a hundreds-of-nanometers-thick polymeric ultrathin film (referred to as a “nanosheet”) for folding the film into a cylindrical shape and unfolding the film into a flat shape. To control the shape of the nanosheet, we used a triple-layered structure, which included a nanosheet and additional two layers of a water-soluble polymer. The additional two layers are thicker than the nanosheet, and one of the two layers was loaded to prestretch that layer. Therefore, the triple-layered structure was folded into a cylindrical shape owing to strain mismatch between the two layers and unfolded into a flat shape after the dissolution of the two layers. In this study, we could successfully estimate the radius of curvature of the triple-layered structure by considering the strain mismatch between the two layers. In addition, we confirmed that the triple-layered structure unfolded into a flat shape by the dissolution of the two layers.

  8. Retinal nerve fiber layer thickness profiles associated with ocular laterality and dominance.

    PubMed

    Choi, Jin A; Kim, Jung-Sub; Park, Hae-Young Lopilly; Park, Hana; Park, Chan Kee

    2014-01-13

    Although human anatomy is arranged symmetrically based on a central vertical axis, the majority of persons will use one side of their body more readily than the other. Interestingly, these lateral body dominances including ocular dominance are all rightward. The asymmetry in retinal nerve fiber layer (RNFL) thickness between the right and left eyes in healthy subjects has been reported in several studies, and the reason for this structural difference between right and left eyes is unclear. In the manuscript, we hypothesized that the characteristics of ocular dominance are reflected in the RNFL profile and may be related to inter-ocular structural differences between right and left eyes. In this study, ocular dominance occurred mostly in right eyes (right vs. left: 78.77% vs. 21.22%; P<0.001). According to ocular dominance and laterality, different relationships between the inferior and superior RNFLs were observed. The right eyes had a thicker RNFL, except in the superior quadrant, than the left eyes. Regardless of laterality, inferior RNFL was thicker than superior RNFL in the dominant eyes. To our knowledge, this paper is the first report demonstrating the RNFL characteristics associated with ocular dominance.

  9. A large-deformation thin plate theory with application to one-atom-thick layers

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Shodja, H. M.

    2016-02-01

    Nowadays, two-dimensional materials due to their vast engineering and biomedical applications have been the focus of many researches. The present paper proposes a large-deformation theory for thin plates with application to one-atom-thick layers (OATLs). The deformation is formulated exactly in the mathematical framework of Lagrangian description. In particular, an exact finite strain analysis is given - in addition to the usual strain tensor associated to the middle surface, the second and third fundamental forms of the middle surface of the deformed thin plate are also maintained in the analysis. Exact closed-form solutions for a uniaxially curved thin plate due to pure bending in one case and due to a combination of vertical and horizontal loading in another are obtained. As a special case of the latter problem, the exact solution for the plane-strain bulge test of thin plates is derived. Subsequently, the approximation of Vlassak and Nix [Vlassak, J.J., Nix, W.D., 1992. J. Mater. Res., 7(12), 3242-3249] for the load-deflection equation is recovered. The given numerical results are devoted to graphene as the most well-known OATL.

  10. Dust devil height and spacing with relation to the martian planetary boundary layer thickness

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Lorenz, Ralph

    2015-11-01

    In most remote and unmonitored places, little is known about the characteristics of daytime turbulent activity. Few processes render the optically transparent atmospheres of Earth and Mars visible; put more plainly, without clever instruments it is difficult to "see the unseen". To address this, we present a pilot study of images of martian dust devils (DDs) testing the hypothesis that DD height and spacing correlates with the thickness of the planetary boundary layer (PBL), h. The survey includes Context Camera (CTX) images from a 580 × 590 km2 area (196-208°E, 30-40°N) in northern Amazonis Planitia, spanning ∼3.6 Mars Years (MY) from Ls = 134.55°, MY 28 (13 November 2006) to Ls = 358.5°, MY 31 (28 July 2013). DD activity follows a repeatable seasonal pattern similar to that found in previous surveys, with a distinct "on" season during local summer, beginning shortly before the northern spring equinox (Ls = 0°) and lasting until just after the northern fall equinox (Ls = 180°). DD heights measured from shadow lengths varied considerably, with median values peaking at local midsummer. Modeled PBL heights, constrained by those measured from radio occultation data, follow a similar seasonal trend, and correlation of the two suggests that the martian PBL thickness is approximately 5 times the median DD height. These results compare favorably to the limited terrestrial data available. DD spacing was measured using nearest neighbor statistics, following the assumption that because convection cell widths have been measured to be ∼1.2 ± 0.2h (Willis, G.E., Deardorff, J.W. [1979]. J. Geophys. Res. 84(C1), 295-302), a preference for DD formation at vertices of convection cells intersections could be used to estimate the PBL height. During local spring and summer, the DD average nearest neighbor (ANN) ranged from ∼1 to 2h, indicating that DD spacing does indeed correlate with PBL height. However, this result is complicated by two factors: (1) convection cell

  11. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite.

    PubMed

    Łagocka, Ryta; Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution. PMID:27366742

  12. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite

    PubMed Central

    Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution. PMID:27366742

  13. Surface rheology of PEO-PPO-PEO triblock copolymers at the air-water interface: comparison of spread and adsorbed layers.

    PubMed

    Blomqvist, B Rippner; Wärnheim, T; Claesson, P M

    2005-07-01

    The dilatational rheological properties of monolayers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-type block copolymers at the air-water interface have been investigated by employing an oscillating ring trough method. The properties of adsorbed monolayers were compared to spread layers over a range of surface concentrations. The studied polymers were PEO26-PPO39-PEO26 (P85), PEO103-PPO40-PEO103 (F88), and PEO99-PPO65-PEO99 (F127). Thus, two of the polymers have similar PPO block size and two of them have similar PEO block size, which allows us to draw conclusions about the relationship between molecular structure and surface dilatational rheology. The dilatational properties of adsorbed monolayers were investigated as a function of time and bulk solution concentration. The time dependence was found to be rather complex, reflecting structural changes in the layer. When the dilatational modulus measured at different concentrations was replotted as a function of surface pressure, one unique master curve was obtained for each polymer. It was found that the dilatational behavior of spread (Langmuir) and adsorbed (Gibbs) monolayers of the same polymer is close to identical up to surface concentrations of approximately 0.7 mg/m2. At higher coverage, the properties are qualitatively alike with respect to dilatational modulus, although some differences are noticeable. Relaxation processes take place mainly within the interfacial layers by a redistribution of polymer segments. Several conformational transitions were shown to occur as the area per molecule decreased. PEO desorbs significantly from the interface at segmental areas below 20 A(2), while at higher surface coverage, we propose that segments of PPO are forced to leave the interface to form a mixed sublayer in the aqueous region. PMID:15982044

  14. Thickness and Lower Limit Seismogenic Layer within the Crust beneath Japanese Islands on the Japan Sea Side

    NASA Astrophysics Data System (ADS)

    Matsubara, M.; Sato, H.

    2015-12-01

    1. Introduction I investigate the depth of the seismogenic layer in order to estimate the lower limit of the seismogenic fault plane since this depth is related to the size of the earthquake caused by the active fault. I have indexes D10 and D90 as the upper and lower limits of the seismogenic layer defined as the depth above which 10 % and 90 % of the whole crustal earthquakes occurred from the surface, respectively. The difference between the D10 and D90 is the thickness of the seismogenic layer. 2. Data and method The NIED Hi-net has a catalog of hypocenters determined with one-dimensional velocity (1D) structure (Ukawa et al., 1984) and I estimated the D10 and D90 with this catalog at first. I construct the system to relocate the hypocenters from 2001 to 2013 with magnitude greater than 1.5 on the Japan Sea side shallower than 50 km depth with the three-dimensional velocity (3D) structure (Matsubara and Obara, 2011) obtained by seismic tomography. I estimate the D10 and D90 from the hypocenter catalog with 3D structure. 3. Result Many earthquakes shallower than 5 km with 1D structure are relocated to deeper with 3D structure and the earthquakes deeper than 15 km are relocated to about 5 km shallower. With 3D structure D10 deepens and D90 shallows from 1D structure. D90 beneath the northern Honshu is deeper than the other area and D90 beneath the Japan Sea is much deeper than the inland area. The thickness of the seismogenic layer beneath the Japan Sea is also thick from 8-16 km. D90 on the Japan Sea side of the southwestern Japan on the west side of the Itoigawa Shizuoka Tectonic Line is very shallow as 11-16 km and the thickness of the seismogenic layer is also thin as 2-7 km. 4. Discussion Omuralieva et al. (2012) relocated the JMA unified hypocenters with 3D structure and estimated shallower D90 than that from the JMA catalog. Very deep D90 beneath the northern Hokkaido and northern Honshu is consistent with our result. 5. Conclusion Using 3D velocity

  15. Effect of adhesive layer thickness and drug loading on estradiol crystallization in a transdermal drug delivery system.

    PubMed

    Imani, Mohammad; Lahooti-Fard, Farzad; Taghizadeh, Seyyed Mojtaba; Takrousta, Mitra

    2010-09-01

    The effects of adhesive layer thickness and drug loading on estradiol crystallization were studied in a drug-in-adhesive patch. Patches containing different estradiol loadings (1.1% and 1.6% w/w) in different thicknesses (45, 60, and 90 μm) were prepared by coating of a homogenous mixture of adhesive solution and the drug on a siliconized release liner by a film applicator. After drying, the film was laminated on a Poly(ethylene terephthalate) backing layer and cut into appropriate size. Release tests were performed using thermostated Chien-type diffusion cells. Cross-section of the patches was observed by optical microscopy. Scanning electron microscopy was done for surface analysis of the patches after drug release test. Crystal formation was not expected in the adhesive layer based on the linear free-energy relationship formalisms however; crystalline regions were observed in different locations through the thickness of the patches. These regions were significantly more discontinuous in 45 μm samples which elucidated the effective role of adhesive layer thickness in drug crystallization. Extensive crystallization observed for thicker patches was attributed to the strong crosslinking capability of estradiol hemihydrate. Drug release study confirmed some of the crystallization results. No significant increase was observed in the burst release with increasing in thickness from 45 to 60 μm which can be attributed to the severe increase in the crystallization extent. Also, formation of a crystalline layer near the releasing surface and more discontinuous pattern of the crystals in some samples was confirmed by investigation of the drug release curves.

  16. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    PubMed Central

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-01-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5–2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0–2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed. PMID:26527044

  17. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  18. Study of carrier recombination transient characteristics in MOCVD grown GaN dependent on layer thickness

    SciTech Connect

    Gaubas, E. Čeponis, T.; Jasiunas, A.; Jelmakas, E.; Juršėnas, S.; Kadys, A.; Malinauskas, T.; Tekorius, A.; Vitta, P.

    2013-11-15

    The MOCVD grown GaN epi-layers of different thickness have been examined in order to clarify a role of surface recombination, to separate an impact of radiative and non-radiative recombination and disorder factors. The microwave probed –photoconductivity (MW-PC) and spectrally resolved photo-luminescence (PL) transients were simultaneously recorded under ultraviolet (UV) light 354 nm pulsed 500 ps excitation. The MW-PC transients exhibited the carrier decay components associated with carrier decay within micro-crystals and the disordered structure on the periphery areas surrounding crystalline columns. Three PL bands were resolved within PL spectrum, namely, the exciton ascribed UV-PL band edge for hν>3.3 eV, blue B-PL band for 2.5 < hν < 3.0 eV and yellow Y-PL band with hν < 2.4 eV. It has been obtained that intensity of UV-PL band increases with excitation density, while intensity of B-PL band is nearly invariant. However, intensity of the Y-PL increases with reduction of the excitation density. The Y-PL can be associated with trapping centers. A reduction of UV excitation density leads to a decrease of the relative amplitude of the asymptotic component within the MW-PC transients and to an increase of the amplitude as well as duration of the yellow spectral band (Y-PL) asymptotic component. Fractional index α with values 0.5 < α < 0.8 was evaluated for the stretched-exponent component which fits the experimental transients determined by the disordered structure ascribed to the periphery areas surrounding the crystalline columns.

  19. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT

    PubMed Central

    dos Santos, Valentin Aranha; Schmetterer, Leopold; Triggs, Graham J.; Leitgeb, Rainer A.; Gröschl, Martin; Messner, Alina; Schmidl, Doreen; Garhofer, Gerhard; Aschinger, Gerold; Werkmeister, René M.

    2016-01-01

    In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 – 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume. PMID:27446696

  20. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  1. Impact of active layer thickness in thin-film transistors based on Zinc Oxide by ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Dominguez, Miguel A.; Flores, Francisco; Luna, Adan; Martinez, Javier; Luna-Lopez, Jose A.; Alcantara, Salvador; Rosales, Pedro; Reyes, Claudia; Orduña, Abdu

    2015-07-01

    In this work, the preparation of Zinc Oxide (ZnO) films by ultrasonic spray pyrolysis at low-temperature and its application in thin-film transistors (TFTs) are presented, as well, the impact of the active layer thickness and gate dielectric thickness in the electrical performance of the ZnO TFTs. A thinner active layer resulted in better transfer characteristics such as higher on/off-current ratio, while a thicker active layer resulted in better output characteristics. The ZnO films were deposited from 0.2 M precursor solution of Zinc acetate in methanol, using air as carrier gas on a hotplate at 200 °C. The ZnO films obtained at 200 °C were characterized by optical transmittance, Photoluminescence spectroscopy and X-ray diffraction.

  2. Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets.

    PubMed

    Backes, Claudia; Paton, Keith R; Hanlon, Damien; Yuan, Shengjun; Katsnelson, Mikhail I; Houston, James; Smith, Ronan J; McCloskey, David; Donegan, John F; Coleman, Jonathan N

    2016-02-21

    Liquid phase exfoliation is a powerful and scalable technique to produce defect-free mono- and few-layer graphene. However, samples are typically polydisperse and control over size and thickness is challenging. Notably, high throughput techniques to measure size and thickness are lacking. In this work, we have measured the extinction, absorption, scattering and Raman spectra for liquid phase exfoliated graphene nanosheets of various lateral sizes (90 ≤ 〈L〉 ≤ 810 nm) and thicknesses (2.7 ≤ 〈N〉 ≤ 10.4). We found all spectra to show well-defined dependences on nanosheet dimensions. Measurements of extinction and absorption spectra of nanosheet dispersions showed both peak position and spectral shape to vary with nanosheet thickness in a manner consistent with theoretical calculations. This allows the development of empirical metrics to extract the mean thickness of liquid dispersed nanosheets from an extinction (or absorption) spectrum. While the scattering spectra depended on nanosheet length, poor signal to noise ratios made the resultant length metric unreliable. By analyzing Raman spectra measured on graphene nanosheet networks, we found both the D/G intensity ratio and the width of the G-band to scale with mean nanosheet length allowing us to establish quantitative relationships. In addition, we elucidate the variation of 2D/G band intensities and 2D-band shape with the mean nanosheet thickness, allowing us to establish quantitative metrics for mean nanosheet thickness from Raman spectra.

  3. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    PubMed Central

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md.; Hardwiyono, Sentot; Mohd Nayan, Khairul Anuar

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard. PMID:25276854

  4. Measurements of the stiffness and thickness of the pavement asphalt layer using the enhanced resonance search method.

    PubMed

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md; Hardwiyono, Sentot; Nayan, Khairul Anuar Mohd; El-Shafie, Ahmed

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.

  5. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    NASA Astrophysics Data System (ADS)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  6. Layered protonated titanate nanosheets synthesized with a simple one-step, low-temperature, urea-modulated method as an effective pollutant adsorbent.

    PubMed

    Lin, Cheng-Hsien; Wong, David Shan-Hill; Lu, Shih-Yuan

    2014-10-01

    A simple one-step, low-temperature, urea-modulated method is developed for the synthesis of layered protonated titanate nanosheets (LPTNs). Urea serves as an indirect ammonium ion source, and the controlled supply of the ammonium ion slows the crystalline formation process and enables the production of the LPTNs from amorphous intermediate through aging-induced restructuring. The resulting LPTNs exhibit excellent adsorption capacities for methylene blue and Pb(2+) because of their high specific surface areas and excellent ion-exchange capability. Intercalation of Pb(2+) into the interlayer space of the LPTNs is evidenced by the relevant X-ray diffraction patterns on perturbation of the layered structure. The LPTNs prove to be a promising adsorbent in wastewater treatment for adsorption removal of metal ions or cationic organic dyes. PMID:25198517

  7. Strain distribution in Si capping layers on SiGe islands: influence of cap thickness and footprint in reciprocal space.

    PubMed

    Hrauda, N; Zhang, J J; Süess, M J; Wintersberger, E; Holý, V; Stangl, J; Deiter, C; Seeck, O H; Bauer, G

    2012-11-23

    We present investigations on the strain properties of silicon capping layers on top of regular SiGe island arrays, in dependence on the Si-layer thickness. Such island arrays are used as stressors for the active channel in field-effect transistors where the desired tensile strain in the Si channel is a crucial parameter for the performance of the device. The thickness of the Si cap was varied from 0 to 30 nm. The results of high resolution x-ray diffraction experiments served as input to perform detailed strain calculations via finite element method models. Thus, detailed information on the Ge distribution within the buried islands and the strain interaction between the SiGe island and Si cap was obtained. It was found that the tensile strain within the Si capping layer strongly depends on its thickness, even if the Ge concentration of the buried dot remains unchanged, with tensile strains degrading if thicker Si layers are used.

  8. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition.

    PubMed

    Wang, Zi-Yi; Zhang, Rong-Jun; Lu, Hong-Liang; Chen, Xin; Sun, Yan; Zhang, Yun; Wei, Yan-Feng; Xu, Ji-Ping; Wang, Song-You; Zheng, Yu-Xiang; Chen, Liang-Yao

    2015-01-01

    The aluminum oxide (Al2O3) thin films with various thicknesses under 50 nm were deposited by atomic layer deposition (ALD) on silicon substrate. The surface topography investigated by atomic force microscopy (AFM) revealed that the samples were smooth and crack-free. The ellipsometric spectra of Al2O3 thin films were measured and analyzed before and after annealing in nitrogen condition in the wavelength range from 250 to 1,000 nm, respectively. The refractive index of Al2O3 thin films was described by Cauchy model and the ellipsometric spectra data were fitted to a five-medium model consisting of Si substrate/SiO2 layer/Al2O3 layer/surface roughness/air ambient structure. It is found that the refractive index of Al2O3 thin films decrease with increasing film thickness and the changing trend revised after annealing. The phenomenon is believed to arise from the mechanical stress in ALD-Al2O3 thin films. A thickness transition is also found by transmission electron microscopy (TEM) and SE after 900°C annealing. PMID:25852343

  9. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography (FD-OCT)

    NASA Astrophysics Data System (ADS)

    Jonathan, Enock

    2008-06-01

    While human sweat secretion is accepted as a mechanism by which the body cools off, excessive sweating (hyperhidrosis) is now appreciated as a medical condition and the primary site for diagnosis is the palm of the hand. We propose sweat film layer thickness as a potential clinical diagnostic parameter when screening for excessive sweating. In this preliminary study we demonstrate the usefulness of Fourier-domain optical coherence tomography (FD-OCT) for measurement of sweat film thickness in vivo with micron-scale resolution on the hand of a human volunteer. FD-OCT has a superior image acquisition time and identification of active sweat glands, ducts and pores is also possible.

  10. Modeling the EUV spectra of optically thick boundary layers of dwarf novae in outburst

    NASA Astrophysics Data System (ADS)

    Suleimanov, V.; Hertfelder, M.; Werner, K.; Kley, W.

    2014-11-01

    Context. Disk accretion onto weakly magnetized white dwarfs (WDs) in cataclysmic variables (CVs) leads to the formation of a boundary layer (BL) between the accretion disk and the WD, where the accreted matter loses its excess kinetic energy and angular momentum. It is assumed that angular momentum is effectively transported in the BL, but the transport mechanism is still unknown. Aims: Here we compute detailed model spectra of recently published optically thick one-dimensional radial BL models and qualitatively compare them with observed soft X-ray/extreme ultraviolet (EUV) spectra of dwarf novae in outburst. Methods: Every considered BL model with given effective temperature and surface density radial distribution is divided into a number of rings, and for each ring, a structure model along the vertical direction is computed using the stellar-atmosphere method. The ring spectra are then combined into a BL spectrum taking Doppler broadening and limb darkening into account. Results: Two sets of model BL spectra are computed, the first of them consists of BL models with fixed WD mass (1 M⊙) and various relative WD angular velocities (0.2, 0.4, 0.6 and 0.8 break-up velocities), while the other deals with a fixed relative angular velocity (0.8 break-up velocity) and various WD masses (0.8, 1, and 1.2 M⊙). The model spectra show broad absorption features because of blending of numerous absorption lines, and emission-like features at spectral regions with only a few strong absorption lines. The model spectra are very similar to observed soft X-ray/EUV spectra of SS Cyg and U Gem in outburst. The observed SS Cyg spectrum could be fitted by BL model spectra with WD masses 0.8-1 M⊙ and relative angular velocities 0.6-0.8 break up velocities. These BL models also reproduce the observed ratio of BL luminosity and disk luminosity. The difference between the observed and the BL model spectra is similar to a hot optically thin plasma spectrum and could be associated with

  11. Large Frequency Change with Thickness in Interlayer Breathing Mode--Significant Interlayer Interactions in Few Layer Black Phosphorus.

    PubMed

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-10

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A(3)g shows a large redshift with increasing thickness; the experimental and theoretical results agree well. This thickness dependence is two times larger than that in the chalcogenide materials, such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that of graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  12. Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlayer Interactions in Few Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H.; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-01

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A3g shows a large redshift with increasing thickness; the experimental and theoretical results agreeing well. This thickness dependence is two times larger than that in the chalcogenide materials such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that in graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers, and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP, and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  13. Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched between Two Homogeneous Layers of Finite Thickness

    NASA Technical Reports Server (NTRS)

    Shbeeh, N. I.; Binienda, W. K.

    1999-01-01

    The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.

  14. Does Optic Nerve Head Size Variation Affect Circumpapillary Retinal Nerve Fiber Layer Thickness Measurement by Optical Coherence Tomography?

    PubMed Central

    Huang, David; Chopra, Vikas; Lu, Ake Tzu-Hui; Tan, Ou; Francis, Brian; Varma, Rohit

    2012-01-01

    Purpose. To determine the relationship between retinal nerve fiber layer (RNFL) thickness, optic disc size, and image magnification. Methods. The cohort consisted of 196 normal eyes of 101 participants in the Advanced Imaging for Glaucoma Study (AIGS), a multicenter, prospective, longitudinal study to develop advanced imaging technologies for glaucoma diagnosis. Scanning laser tomography was used to measure disc size. Optical coherence tomography (OCT) was used to perform circumpapillary RNFL thickness measurements using the standard fixed 3.46-mm nominal scan diameter. A theoretical model of magnification effects was developed to relate RNFL thickness (overall average) with axial length and magnification. Results. Multivariate regression showed no significant correlation between RNFL thickness and optic disc area (95% confidence interval [CI] = −0.9 to 4.1 μm/mm2, P = 0.21). Linear regression showed that RNFL thickness depended significantly on axial length (slope = −3.1 μm/mm, 95% CI = −4.9 to −1.3, P = 0.001) and age (slope = −0.3 μm/y, 95% CI = −0.5 to −0.2, P = 0.0002). The slope values agreed closely with the values predicted by the magnification model. Conclusions. There is no significant association between RNFL thickness and optic disc area. Previous publications that showed such an association may have been biased by the effect of axial length on fundus image magnification and, therefore, both measured RNFL thickness and apparent disc area. The true diameter of the circumpapillary OCT scan is larger for a longer eye (more myopic eye), leading to a thinner RNFL measurement. Adjustment of measured RNFL thickness by axial length, in addition to age, may lead to a tighter normative range and improve the detection of RNFL thinning due to glaucoma. PMID:22743319

  15. Characterization of retinal nerve fiber layer thickness changes associated with Leber's hereditary optic neuropathy by optical coherence tomography.

    PubMed

    Zhang, Yixin; Huang, Houbin; Wei, Shihui; Qiu, Huaiyu; Gong, Yan; Li, Hongyang; Dai, Yanli; Jiang, Zhaocai; Liu, Zihao

    2014-02-01

    In the present study, the changes in the retinal nerve fiber layer (RNFL) thickness associated with Leber's hereditary optic neuropathy (LHON) were examined by Cirrus high definition-optical coherence tomography (OCT), and the correlation between the RNFL thickness and the best corrected visual acuity (BCVA) was evaluated. A cross-sectional study was performed. Sixty-eight eyes from patients with LHON and 30 eyes from healthy individuals were scanned. Affected eyes were divided into 5 groups according to disease duration: Group 1, ≤3 months; group 2, 4-6 months; group 3, 7-9 months; group 4, 10-12 months; and group 5, >12 months. The RNFL thickness of the temporal, superior, nasal and inferior quadrants and the 360° average were compared between the LHON groups and the control group. The eyes in groups 1 and 2 were observed to have a thicker RNFL in the superior, nasal and inferior quadrants and a higher 360°-average RNFL thickness compared with those of the control group (P<0.05), the RNFL was observed to be thinner in the temporal quadrant in groups 1 and 2. The eyes in groups 3 and 4 showed a thinner RNFL in the temporal (P=0.001), superior and inferior (both P<0.05) quadrants, and a lower 360°-average RNFL thickness as compared with controls (P=0.001). No significant correlation was identified between BCVA and RNFL thickness. RNFL thickness was observed to undergo a unique process from thickening to thinning in the patients with LHON. Changes in different quadrants occurred at different time periods and the BCVA was not found to be correlated with RNFL thickness.

  16. Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Maassen, Jesse; Lundstrom, Mark; Shi, Li; Chen, Yong P.

    2016-10-01

    Over the past few years, there has been a growing interest in layered transition metal dichalcogenides such as molybdenum disulfide (MoS2). Most studies so far have focused on the electronic and optoelectronic properties of single-layer MoS2, whose band structure features a direct bandgap, in sharp contrast to the indirect bandgap of thicker MoS2. In this paper, we present a systematic study of the thickness-dependent electrical and thermoelectric properties of few-layer MoS2. We observe that the electrical conductivity ( σ) increases as we reduce the thickness of MoS2 and peaks at about two layers, with six-times larger conductivity than our thickest sample (23-layer MoS2). Using a back-gate voltage, we modulate the Fermi energy ( E F ) of the sample where an increase in the Seebeck coefficient ( S ) is observed with decreasing gate voltage ( E F ) towards the subthreshold (OFF state) of the device, reaching as large as 500 μ V / K in a four-layer MoS2. While previous reports have focused on a single-layer MoS2 and measured Seebeck coefficient in the OFF state, which has vanishing electrical conductivity and thermoelectric power factor ( P F = S 2 σ ), we show that MoS2-based devices in their ON state can have P F as large as > 50 /μ W cm K 2 in the two-layer sample. The P F increases with decreasing thickness and then drops abruptly from double-layer to single-layer MoS2, a feature we suggest as due to a change in the energy dependence of the electron mean-free-path according to our theoretical calculation. Moreover, we show that care must be taken in thermoelectric measurements in the OFF state to avoid obtaining erroneously large Seebeck coefficients when the channel resistance is very high. Our study paves the way towards a more comprehensive examination of the thermoelectric performance of two-dimensional (2D) semiconductors.

  17. Thickness Gauging of Single-Layer Conductive Materials with Two-Point Non Linear Calibration Algorithm

    NASA Technical Reports Server (NTRS)

    Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)

    1998-01-01

    A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.

  18. Static Buckling Model Tests and Elasto-plastic Finite Element Analysis of a Pile in Layers with Various Thicknesses

    NASA Astrophysics Data System (ADS)

    Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki

    Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.

  19. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    PubMed Central

    Jilili, J.; Cossu, F.; Schwingenschlögl, U.

    2015-01-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states. PMID:26323361

  20. The influence of nickel layer thickness on microhardness and hydrogen sorption rate of commercially pure titanium alloy

    NASA Astrophysics Data System (ADS)

    Kudiiarov, V. N.; Kashkarov, E. B.; Syrtanov, M. S.; Yugova, I. S.

    2016-02-01

    The influence of nickel coating thickness on microhardness and hydrogen sorption rate by commercially pure titanium alloy was established in this work. Coating deposition was carried out by magnetron sputtering method with prior ion cleaning of surface. It was shown that increase of sputtering time from 10 to 50 minutes leads to increase coating thickness from 56 to 3.78 μm. It was established that increase of nickel coating thickness leads to increase of microhardness at loads less than 0.5 kg. Microhardness values for all samples are not significantly different at loads 1 kg. Hydrogen content in titanium alloy with nickel layer deposited at 10 and 20 minutes exceeds concentration in initial samples on one order of magnitude. Further increasing of deposition time of nickel coating leads to decreasing of hydrogen concentration in samples due to coating delamination in process of hydrogenation.

  1. Detection of Early Glaucomatous Damage in Pseudo Exfoliation Syndrome by Assessment of Retinal Nerve Fiber Layer Thickness

    PubMed Central

    Mohamed, Maha M.

    2009-01-01

    Purpose: To detect early glaucomatous changes in pseudo exfoliative patients with normal intraocular pressure (IOP), visual field and optic nerve head appearance; by measuring retinal nerve fiber layer (RNFL) thickness using optical coherence tomography (OCT). Design: A prospective observational case-control study. Participants: Twenty non-glaucomatous (normal IOP, fundus and visual field) pseudo exfoliative patients and 20 age matched healthy control subjects. Materials and Methods: The RNFL thickness (global and four quadrants) was assessed using combined imaging system OTI (OCT/SLO) and compared with age matched normal control subjects. Results: The RNFL in patients with pseudo exfoliation syndrome (PXS) was significantly thinner in all quadrants except the nasal quadrant compared to the control group (p less than 0.05). Conclusion: Measurement of RNFL thickness by OCT is useful in detecting early RNFL damage which in turn provides clinically relevant information in detecting early glaucomatous changes in pseudo exfoliative patients. PMID:20142981

  2. Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses

    NASA Astrophysics Data System (ADS)

    Zheng, Hanbin; Shah, Said Karim; Abbas, Mamatimin; Ly, Isabelle; Rivera, Thomas; Almeida, Rui M.; Hirsch, Lionel; Toupance, Thierry; Ravaine, Serge

    2016-09-01

    The photoconversion efficiency of dye sensitized solar cells can be enhanced by the incorporation of light management nanostructures such as photonic crystals. Here, we present a facile route to incorporate titania inverse opals into solid state dye sensitized solar cells and report photoconversion efficiency enhancements of up to 56% compared with a model system without the inverse opal. Our approach is based on the precise design of titania inverse opals with a predetermined thickness that can be controlled at the individual layer level. By choosing an inverse opal exhibiting a photonic bandgap which overlaps the absorption bands of the dye, our results show that there is an optimal thickness of the inverse opal structure for maximum efficiency enhancement of the cell. This is the first experimental proof that the thickness of a titania inverse opal plays a pivotal role in cell efficiency enhancement in solid state dye sensitized solar cells.

  3. Rapid, automated measurement of layer thicknesses on steel coin blanks using laser-induced-breakdown spectroscopy depth profiling

    SciTech Connect

    Asimellis, George; Giannoudakos, Aggelos; Kompitsas, Michael

    2007-02-20

    We report application of a near-real-time method to determine layer thickness on electroplated coin blanks. The method was developed on a simple laser-induced-breakdown spectroscopy (LIBS) arrangement by monitoring relative emission-line intensities from key probe elements via successive laser ablation shots. This is a unique LIBS application where no other current spectroscopic method (inductively coupled plasma or x-ray fluorescence) can be applied effectively. Method development is discussed, and results with precalibrated coins are presented.

  4. Relationship among Photopic Negative Response, Retinal Nerve Fiber Layer Thickness, and Visual Field between Normal and POAG Eyes

    PubMed Central

    Shen, Xiaoli; Huang, Lina; Fan, Ning; He, Jing

    2013-01-01

    Purpose. To determine the relationship among photopic negative response (PhNR) of the electroretinogram (ERG), retinal nerve fiber layer (RNFL) thickness, and the visual field in normal and glaucomatous patients. Methods. Thirty-eight normal volunteers and one hundred twenty-four patients with Primary open-angle glaucoma (POAG) were enrolled in the study. The PhNRs were elicited by white stimuli on a white background and red stimuli on a blue background. The visual field parameters were measured using the standard automated perimetry (SAP). The spectral domain optical coherence tomography (SD-OCT) was used to measure the retinal nerve fiber layer (RNFL) thickness around the optic disc. Results. The PhNR amplitude (W/W, B/R), MD, and mean RNFL thickness in POAG eyes were significantly lower than normal eyes (P = 0.001). The R value in Normal + Glaucomatous group was higher than that of the only glaucomatous group. The R values of PhNR amplitude (B/R) with MD and RNFL were higher than those of PhNR amplitude (W/W). Significant linear association was found in the relationship between RNFL thickness and PhNR amplitude (B/R) (R2 = 0.5, P = 0.001). However, significant curve associations were found in the relationship between MD and PhNR amplitude (B/R) and RNFL thickness (R2 = 0.525, 0.442, P = 0.001). Conclusions. The ganglion cell activity can be more efficiently evaluated with the PhNR elicited with a red than with a broadband stimulus. The linear relationship between the PhNR amplitude and RNFL thickness indicates that inner retinal function declines proportionately with neural loss in glaucomatous eyes. The PhNR and RNFLT are more objective tools to detect glaucomatous damage than visual field. PMID:24558598

  5. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    NASA Astrophysics Data System (ADS)

    Ayryan, E. A.; Dashitsyrenov, G. D.; Lovetskiy, K. P.; Sevastianov, A. L.

    2016-02-01

    A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z) with the distribution of the effective refractive index of the waveguide β (y, z) is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r) and in the form of a cubic spline for Δβ (r).

  6. Thickness and nanomechanical properties of protective layer formed by TiF4 varnish on enamel after erosion.

    PubMed

    Medeiros, Maria Isabel Dantas de; Carlo, Hugo Lemes; Lacerda-Santos, Rogério; Lima, Bruno Alessandro Guedes de; Souza, Frederico Barbosa de; Rodrigues, Jonas Almeida; Carvalho, Fabiola Galbiatti de

    2016-05-31

    The layer formed by fluoride compounds on tooth surface is important to protect the underlying enamel from erosion. However, there is no investigation into the properties of protective layer formed by NaF and TiF4 varnishes on eroded enamel. This study aimed to evaluate the thickness, topography, nanohardness, and elastic modulus of the protective layer formed by NaF and TiF4 varnishes on enamel after erosion using nanoindentation and atomic force microscopy (AFM). Human enamel specimens were sorted into control, NaF, and TiF4 varnish groups (n = 10). The initial nanohardness and elastic modulus values were obtained and varnishes were applied to the enamel and submitted to erosive challenge (10 cycles: 5 s cola drink/5 s artificial saliva). Thereafter, nanohardness and elastic modulus were measured. Both topography and thickness were evaluated by AFM. The data were subjected to ANOVA, Tukey's test and Student's t test (α = 0.05). After erosion, TiF4 showed a thicker protective layer compared to the NaF group and nanohardness and elastic modulus values were significantly lower than those of the control group. It was not possible to measure nanohardness and elastic modulus in the NaF group due to the thin protective layer formed. AFM showed globular deposits, which completely covered the eroded surface in the TiF4 group. After erosive challenge, the protective layer formed by TiF4 varnish showed significant properties and it was thicker than the layer formed by NaF varnish. PMID:27253145

  7. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra

    NASA Astrophysics Data System (ADS)

    Sung, Kung-Bin; Shih, Kuang-Wei; Hsu, Fang-Wei; Hsieh, Hong-Po; Chuang, Min-Jie; Hsiao, Yi-Hsien; Su, Yu-Hui; Tien, Gen-Hao

    2014-07-01

    We are reporting on an experimental investigation of a movable diffuse reflectance spectroscopy system to extract diagnostically relevant optical properties of two-layered tissue phantoms simulating mucosae that are covered with stratified squamous epithelium. The reflectance spectra were measured at multiple source-detector separations using two imaging fiber bundles in contact with the phantoms, one with its optical axis perpendicular to the sample surface (perpendicular probe) and the other with its distal end beveled and optical axis tilted at 45 deg (oblique probe). Polystyrene microspheres and purified human hemoglobin were used to make tissue phantoms whose scattering and absorption properties could be well controlled and theoretically predicted. Monte Carlo simulations were used to predict the reflectance spectra for system calibration and an iterative curve fitting that simultaneously extracted the top layer reduced scattering coefficient, thickness, bottom layer reduced scattering coefficient, and hemoglobin concentration of the phantoms. The errors of the recovered parameters ranged from 7% to 20%. The oblique probe showed higher accuracy in the extracted top layer reduced scattering coefficient and thickness than the perpendicular probe. The developed system and data analysis methods provide a feasible tool to quantify the optical properties in vivo.

  8. Correlation between peripapillary retinal nerve fiber layer thickness and fundus autofluorescence in primary open-angle glaucoma

    PubMed Central

    Reznicek, Lukas; Seidensticker, Florian; Mann, Thomas; Hübert, Irene; Buerger, Alexandra; Haritoglou, Christos; Neubauer, Aljoscha S; Kampik, Anselm; Hirneiss, Christoph; Kernt, Marcus

    2013-01-01

    Purpose To investigate the relationship between retinal nerve fiber layer (RNFL) thickness and retinal pigment epithelium alterations in patients with advanced glaucomatous visual field defects. Methods A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma and advanced glaucomatous visual field defects were included in this study. All study participants underwent a full ophthalmic examination followed by visual field testing with standard automated perimetry as well as spectral-domain optical coherence tomography (SD-OCT) for peripapillary RNFL thickness and Optos wide-field fundus autofluorescence (FAF) images. A pattern grid with corresponding locations between functional visual field sectors and structural peripapillary RNFL thickness was aligned to the FAF images at corresponding location. Mean FAF intensity (range: 0 = black and 255 = white) of each evaluated sector (superotemporal, temporal, inferotemporal, inferonasal, nasal, superonasal) was correlated with the corresponding peripapillary RNFL thickness obtained with SD-OCT. Results Correlation analyses between sectoral RNFL thickness and standardized FAF intensity in the corresponding topographic retina segments revealed partly significant correlations with correlation coefficients ranging between 0.004 and 0.376 and were statistically significant in the temporal inferior central field (r = 0.324, P = 0.036) and the nasal field (r = 0.376, P = 0.014). Conclusion Retinal pigment epithelium abnormalities correlate with corresponding peripapillary RNFL damage, especially in the temporal inferior sector of patients with advanced glaucomatous visual field defects. A further evaluation of FAF as a potential predictive parameter for glaucomatous damage is necessary. PMID:24092967

  9. The correlation between cognitive performance and retinal nerve fibre layer thickness is largely explained by genetic factors

    PubMed Central

    Jones-Odeh, Eneh; Yonova-Doing, Ekaterina; Bloch, Edward; Williams, Katie M.; Steves, Claire J.; Hammond, Christopher J.

    2016-01-01

    Retinal nerve fibre layer (RNFL) thickness has been associated with cognitive function but it is unclear whether RNFL thinning is secondary to cortical loss, or if the same disease process affects both. We explored whether there is phenotypic sharing between RNFL thickness and cognitive traits, and whether such sharing is due to genetic factors. Detailed eye and cognitive examination were performed on 1602 twins (mean age: 56.4 years; range: 18–89) from the TwinsUK cohort. Associations between RNFL thickness and ophthalmic, cognitive and other predictors were assessed using linear regression or analysis of variance models. Heritability analyses were performed using uni- and bivariate Cholesky decomposition models. RNFL was thinner with increase in myopia and with decrease in disc area (p < 0.001). A thicker RNFL was associated with better performance on mini mental state examination (MMSE, F(5,883) = 5.8, p < 0.001), and with faster reaction time (RT, β = −0.01; p = 0.01); independent of the effects of age, refractive error and disc area (p < 0.05). RNFL thickness was highly heritable (82%) but there was low phenotypic sharing between RNFL thickness and MMSE (5%, 95% CI: 0–10%) or RT (7%, 95% CI: 1–12%). This sharing, however, was mostly due to additive genetic effects (67% and 92% of the shared variance respectively). PMID:27677702

  10. Tuning the thickness of electrochemically grafted layers in large area molecular junctions

    SciTech Connect

    Fluteau, T.; Bessis, C.; Barraud, C. Della Rocca, M. L.; Lafarge, P.; Martin, P.; Lacroix, J.-C.

    2014-09-21

    We have investigated the thickness, the surface roughness, and the transport properties of oligo(1-(2-bisthienyl)benzene) (BTB) thin films grafted on evaporated Au electrodes, thanks to a diazonium-based electro-reduction process. The thickness of the organic film is tuned by varying the number of electrochemical cycles during the growth process. Atomic force microscopy measurements reveal the evolution of the thickness in the range of 2–27 nm. Its variation displays a linear dependence with the number of cycles followed by a saturation attributed to the insulating behavior of the organic films. Both ultrathin (2 nm) and thin (12 and 27 nm) large area BTB-based junctions have then been fabricated using standard CMOS processes and finally electrically characterized. The electronic responses are fully consistent with a tunneling barrier in case of ultrathin BTB film whereas a pronounced rectifying behavior is reported for thicker molecular films.

  11. Thermoelastic characteristics of thermal barrier coatings with layer thickness and edge conditions through mathematical analysis.

    PubMed

    Go, Jaegwi; Myoung, Sang-Won; Lee, Je-Hyun; Jung, Yeon-Gil; Kim, Seokchan; Paik, Ungyu

    2014-10-01

    The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBCs) are seriously influenced by top coat thickness and edge conditions, which were investigated based on the thermal and mechanical properties of plasma-sprayed TBCs. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations are too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic characteristics of TBCs with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the top coat thickness and the edge condition in theoretical analysis are crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.

  12. Impacts of temperature increase and acidification on thickness of the surface mucopolysaccharide layer of the Caribbean coral Diploria spp.

    NASA Astrophysics Data System (ADS)

    Pratte, Zoe A.; Richardson, Laurie L.

    2014-06-01

    Coral mechanisms of resilience and resistance to stressors such as increasing sea surface temperature and ocean acidification must first be understood in order to facilitate the survival of coral reefs as we know them. One such mechanism is production of the protective surface mucopolysaccharide layer (SML). In this study, we investigated changes in the thickness of the SML in response to increasing temperature and acidification for the three Caribbean scleractinian coral species of the genus Diploria, which have been shown to exhibit differential resilience to disease and bleaching. Among the three species, Diploria strigosa is known to have a higher susceptibility to disease, Diploria labyrinthiformis is known to bleach more quickly, and Diploria clivosa is relatively unstudied. When temperature was increased from 25 to 31 °C over a 1- or 6-week period, the overall thickness of the SML decreased from 33 to 55 % for all three species. Average SML thickness at 25 °C for all three species ranged from 106 to 156 μm, while average thickness at 31 °C ranged from 64 to 86 μm. SML thickness was significantly different among species at 25 °C, but not at 31 °C. D. labyrinthiformis demonstrated lower fragment mortality due to thermal stress when compared to the other Diploria species. Acidification from pH 8.2 to 7.7 over 5 weeks had no effect on SML thickness for any species. The observed decrease in SML thickness in response to increased temperature might be attributed to a decrease in the production of mucus or an increase in the viscosity of the SML. These findings may help to explain the increased prevalence of coral disease during the warmer months, since increased temperature compromises an important aspect of coral innate immunity, as well as differences in disease and bleaching susceptibilities between Diploria species.

  13. Tuning the Thickness of Ba-Containing "Functional" Layer toward High-Performance Ceria-Based Solid Oxide Fuel Cells.

    PubMed

    Gong, Zheng; Sun, Wenping; Shan, Duo; Wu, Yusen; Liu, Wei

    2016-05-01

    Developing highly efficient ceria-based solid oxide fuel cells with high power density is still a big concern for commercial applications. In this work, a novel structured Ce0.8Sm0.2O2-δ (SDC)-based fuel cell with a bilayered anode consisting of Ni-SDC and Ni-BaZr0.1Ce0.7Y0.2O3-δ (Ni-BZCY) was designed. In addition to the catalysis function, the Ni-BZCY anode "functional" layer also provides Ba source for generating an electron-blocking layer in situ at the anode/electrolyte interface during sintering. The Ni-BZCY thickness significantly influences the quality of the electron-blocking layer and electrochemical performances of the cell. The cell with a 50 μm thick Ni-BZCY layer exhibits the best performance in terms of open circuit voltage (OCV) and peak power density (1068 mW cm(-2) at 650 °C). The results demonstrate that this cell with an optimal structure has a distinct advantage of delivering high power performance with a high efficiency at reduced temperatures.

  14. Tuning the Thickness of Ba-Containing "Functional" Layer toward High-Performance Ceria-Based Solid Oxide Fuel Cells.

    PubMed

    Gong, Zheng; Sun, Wenping; Shan, Duo; Wu, Yusen; Liu, Wei

    2016-05-01

    Developing highly efficient ceria-based solid oxide fuel cells with high power density is still a big concern for commercial applications. In this work, a novel structured Ce0.8Sm0.2O2-δ (SDC)-based fuel cell with a bilayered anode consisting of Ni-SDC and Ni-BaZr0.1Ce0.7Y0.2O3-δ (Ni-BZCY) was designed. In addition to the catalysis function, the Ni-BZCY anode "functional" layer also provides Ba source for generating an electron-blocking layer in situ at the anode/electrolyte interface during sintering. The Ni-BZCY thickness significantly influences the quality of the electron-blocking layer and electrochemical performances of the cell. The cell with a 50 μm thick Ni-BZCY layer exhibits the best performance in terms of open circuit voltage (OCV) and peak power density (1068 mW cm(-2) at 650 °C). The results demonstrate that this cell with an optimal structure has a distinct advantage of delivering high power performance with a high efficiency at reduced temperatures. PMID:27078722

  15. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  16. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial

    2016-09-23

    The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. PMID:27578405

  17. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Schaefer, Kevin; Zhang, Tingjun; Wahr, John

    2012-01-01

    The measurement of temporal changes in active layer thickness (ALT) is crucial to monitoring permafrost degradation in the Arctic. We develop a retrieval algorithm to estimate long-term average ALT using thaw-season surface subsidence derived from spaceborne interferometric synthetic aperture radar (InSAR) measurements. Our algorithm uses a model of vertical distribution of water content within the active layer accounting for soil texture, organic matter, and moisture. We determine the 1992-2000 average ALT for an 80 × 100 km study area of continuous permafrost on the North Slope of Alaska near Prudhoe Bay. We obtain an ALT of 30-50 cm over moist tundra areas, and a larger ALT of 50-80 cm over wet tundra areas. Our estimated ALT values match in situ measurements at Circumpolar Active Layer Monitoring (CALM) sites within uncertainties. Our results demonstrate that InSAR can provide ALT estimates over large areas at high spatial resolution.

  18. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  19. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  20. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  1. Wall energy and wall thickness of exchange-coupled rare-earth transition-metal triple layer stacks

    SciTech Connect

    Raasch, D.; Mathieu, C.

    1997-08-01

    The room-temperature wall energy {sigma}{sub w}=4.0{times}10{sup {minus}3}J/m{sup 2} of an exchange-coupled Tb{sub 19.6}Fe{sub 74.7}Co{sub 5.7}/Dy{sub 28.5}Fe{sub 43.2}Co{sub 28.3} double layer stack can be reduced by introducing a soft magnetic intermediate layer in between both layers exhibiting a significantly smaller anisotropy compared to Tb{endash}FeCo and Dy{endash}FeCo. {sigma}{sub w} will decrease linearly with increasing intermediate layer thickness, d{sub IL}, until the wall is completely located within the intermediate layer for d{sub IL}{ge}d{sub w}, where d{sub w} denotes the wall thickness. Thus, d{sub w} can be obtained from the plot {sigma}{sub w} versus d{sub IL}. We determined {sigma}{sub w} and d{sub w} on Gd{endash}FeCo intermediate layers with different anisotropy behavior (perpendicular and in-plane easy axis) and compared the results with data obtained from Brillouin light-scattering measurements, where exchange stiffness, A, and uniaxial anisotropy, K{sub u}, could be determined. With the knowledge of A and K{sub u}, wall energy and thickness were calculated and showed an excellent agreement with the magnetic measurements. A ten times smaller perpendicular anisotropy of Gd{sub 28.1}Fe{sub 71.9} in comparison to Tb{endash}FeCo and Dy{endash}FeCo resulted in a much smaller {sigma}{sub w}=1.1{times}10{sup {minus}3}J/m{sup 2} and d{sub w}=24nm at 300 K. A Gd{sub 34.1}Fe{sub 61.4}Co{sub 4.5} with in-plane anisotropy at room temperature showed a further reduced {sigma}{sub w}=0.3{times}10{sup {minus}3}J/m{sup 2} and d{sub w}=17nm. The smaller wall energy was a result of a different wall structure compared to perpendicular layers. {copyright} {ital 1997 American Institute of Physics.}

  2. Conformational properties of an adsorbed charged polymer.

    PubMed

    Cheng, Chi-Ho; Lai, Pik-Yin

    2005-06-01

    The behavior of a strongly charged polymer adsorbed on an oppositely charged surface of a low-dielectric constant is formulated by the functional integral method. By separating the translational, conformational, and fluctuational degrees of freedom, the scaling behaviors for both the height of the polymer and the thickness of the diffusion layer are determined. Unlike the results predicted by scaling theory, we identified the continuous crossover from the weak compression to the compression regime. All the analytical results are found to be consistent with Monte Carlo simulations. Finally, an alternative (operational) definition of a charged polymer adsorption is proposed. PMID:16089715

  3. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm–2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  4. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  5. Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants

    NASA Astrophysics Data System (ADS)

    Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F.; Franz, Axel R.

    2014-01-01

    Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs‧) measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs‧ at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs‧. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.

  6. Precise Measurement of the Thickness of a Dielectric Layer on a Metal Surface by Use of a Modified Otto Optical Configuration

    NASA Astrophysics Data System (ADS)

    Kaneoka, Yoshiki; Nishigaki, Kentaro; Mizutani, Yasuhiro; Iwata, Tetsuo

    2015-01-01

    We propose a modified method for thickness measurement of a dielectric coating layer on metal based on Otto optical configuration (O-configuration). This method enables us to estimate the coating thickness that typically ranges from several tens of nanometers to more than one micrometer with precision less than a few nanometers. The common method to measure the thickness of dielectric coating layer is to utilize the frustrated total-internal reflection. In order to measure the thickness of several tens of nanometers, one can apply the surface-plasmon-resonance (SPR) phenomenon generated by the p-polarized light. For thickness larger than one hundred nanometers, a metal-clad leaky-waveguide (MCLW) mode generated by the p- or the s-polarized light can be employed without significant changes to the optical setup. The numerical and experimental verifications of the modified O-configuration reveals its effectiveness for precise measurement of moderately-thick dielectric coating layer on the metal.

  7. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    PubMed

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts. PMID:27488185

  8. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.

    PubMed

    Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

    2014-04-01

    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns. PMID:24637651

  9. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    PubMed

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

  10. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  11. Forward Versus Back Thrusts in Accretionary Wedges: Effects of Rheology and Thickness of the Décollement Layer

    NASA Astrophysics Data System (ADS)

    Ito, Garrett; Olive, Jean-Arthur; Moore, Gregory; Gutscher, Marc-Andre; Weiss, Jonathan

    2016-04-01

    The mechanical processes that control whether major thrusts in accretionary wedges verge forward toward the foreland, versus backward toward the hinterland has long been a topic of debate. Whereas forethrusts are the most common major thrusts, the importance of the globally rare back thrusts has recently been highlighted given their prominence along the Cascadia margin off of the NW coast of North America as well as along the Andaman-Sumatra subduction zone, in the rupture area of the great 2004 earthquake. We address this problem using 2-D numerical models that use a finite-difference, particle-in-cell method with a viscoelastic-plastic rheology for simulating thrusting in accretionary wedges. Simulations of a weak frictional décollement confirm prior numerical and analogue modeling studies in that they predict lower wedge tapers and repeated sequences of doubly verging conjugate thrusts. A forward dipping backstop was shown in prior laboratory experiments to promote backthrusting, and our results confirm that backthrusting occurs near the backstop but as the wedge widens away from the backstop forethrusts become dominant. Other laboratory experimental studies have found that a non-brittle, viscously deforming décollement can promote backthrusting. Our numerical models show that if the viscosity of the décollement layer η is too high, such that the stress scale, ηU/H (where U is the convergence rate and H is the décollement layer thickness), is comparable to the frictional strength at the base, then forethrusts dominate. For ηU/H less than the basal frictional strength, doubly verging faults are prominent over a wide range of décollement layer thicknesses. Only for cases with relatively low ηU/H and décollement layer thicknesses H that are 25-33% of the thickness of the whole, incoming sediment layer do backthrusts dominate. Thus backthrusting appears to require unusual rheological properties of the deepest sediments, which is consistent with the rarity

  12. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    PubMed

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2014-03-01

    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells.

  13. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    PubMed

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2014-03-01

    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells. PMID:24452695

  14. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    NASA Astrophysics Data System (ADS)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-11-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  15. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    NASA Astrophysics Data System (ADS)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-09-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  16. Collision dynamics of high-speed droplets upon layers of variable thickness

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Long; Cheng, Kai-Ren; Chou, Ping-Chung; Wang, Ching-Hua

    2008-09-01

    The collision dynamics between a droplet and a film has been studied with high-impact energy that can be grouped in a dimensionless Weber number, We, as normalized by surface energy. To accomplish this, we have developed a technique based on cutting of a high-speed jet, which can generate a single droplet with speed up to 23 m/s and We on the order of thousands. It was found that the boundaries indicating the occurrence of a central jet and that of a secondary droplet disintegrated from the jet decreased monotonically with increased dimensionless film thickness, H, and remained constant when the film thickness was larger than the crater depth. However, the transition designating multiple droplets that are originated from a central jet shows a non-monotonic trend with the variation of H, with a minimum We being at H ≈ 3, which is about the maximum crater depth, owing to a tuning behavior. The critical We for splashing that occurs at an early phase immediately after the impact is relatively sensitive to the film thickness only when H is between 1 and 2, which increases with reduced H. At large We (≳2,570 for high H), the ejected crown is closed to form a bubble and the transition boundary reveals a similar dependence on H as that for creation of a central jet.

  17. Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition

    SciTech Connect

    Nie, Xianglong; Ma, Fei; Ma, Dayan; Xu, Kewei

    2015-01-15

    Atomic layer deposition is adopted to prepare HfO{sub 2} and Al{sub 2}O{sub 3} high-k thin films. The HfO{sub 2} thin films are amorphous at the initial growth stage, but become crystallized when the film thickness (h) exceeds a critical value (h{sub critical}{sup *}). This phase transition from amorphous to crystalline is enhanced at higher temperatures and is discussed, taking into account the effect of kinetic energy. At lower temperatures, the amorphous state can be maintained even when h>h{sub critical}{sup *} owing to the small number of activated atoms. However, the number of activated atoms increases with the temperature, allowing crystallization to occur even in films with smaller thickness. The Al{sub 2}O{sub 3} thin films, on the other hand, maintain their amorphous state independent of the film thickness and temperature owing to the limited number of activated atoms. A thermodynamic model is proposed to describe the thickness-dependent phase transition.

  18. Transient Increase of Retinal Nerve Fiber Layer Thickness after Vitrectomy with ILM Peeling for Idiopathic Macular Hole

    PubMed Central

    Sato, Atsuko; Senda, Nami; Fukui, Emi

    2016-01-01

    Purpose. The purpose of this study was to determine the long-term changes in the circumpapillary retinal nerve fiber layer (RNFL) thickness following macular hole surgery with internal limiting membrane (ILM) peeling combined with phacoemulsification. Methods. Thirty-eight eyes of 37 patients who had pars plana vitrectomy (n = 36) between 2010 and 2014 were studied. The average thicknesses of the global and the six sectors of the RNFL were determined before and at 1, 3, 6, 12, and 24 (n = 22) months (M) after the surgery by spectral-domain optical coherent tomography. The postoperative mean RNFL thickness at each time was compared to that before the surgery by paired t-tests. Results. The RNFL of the operated eyes was significantly thicker at 1 month (1 M) and 3 M in all but the inferior-nasal sectors. The significant increase remained until 12 M in the superior-temporal and superior-nasal sectors. In addition, the RNFL was also significantly thicker in the temporal-inferior sector at 12 M based on the findings in 38 eyes. Conclusions. The postoperative RNFL was thicker in all but the nasal-inferior sector for at least 12 M after surgery. This prolonged increase of the RNFL thickness may indicate damage and mild edema of the RNFL. PMID:27803812

  19. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness.

    PubMed

    Keh, Huan J; Hsieh, Tzu H

    2008-01-15

    The electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity with an arbitrary thickness of the electric double layers adjacent to the particle and cavity surfaces is analyzed at the quasisteady state when the zeta potentials associated with the solid surfaces are arbitrarily nonuniform. Through the use of the multipole expansions of the zeta potentials and the linearized Poisson-Boltzmann equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately solved. The modified Stokes equations governing the fluid velocity field are dealt with using a generalized reciprocal theorem, and explicit formulas for the electrophoretic and angular velocities of the particle valid for all values of the particle-to-cavity size ratio are obtained. To apply these formulas, one only has to calculate the monopole, dipole, and quadrupole moments of the zeta potential distributions at the particle and cavity surfaces. In some limiting cases, our result reduces to the analytical solutions available in the literature. In general, the boundary effect on the electrophoretic motion of the particle is a qualitatively and quantitatively sensible function of the thickness of the electric double layers relative to the radius of the cavity. PMID:18085803

  20. Determination of the critical product layer thickness in the reaction of CaO with CO{sub 2}

    SciTech Connect

    Alvarez, D.; Abanades, J.C.

    2005-07-20

    Calcium oxide can be an effective CO{sub 2} sorbent at high temperatures. When coupled with a calcination step to produce pure CO{sub 2}, the carbonation reaction is the basis for several high-temperature separation systems of CO{sub 2}. The formation of a product layer of CaCO{sub 3} is known to mark a sudden change in the reaction regime, from a very fast CO{sub 2} uptake to very slow carbonation rates. The critical thickness of this product layer of CaCO{sub 3} has been measured in this work on real sorbent materials, using different limestone precursors and submitting them to many repeated carbonation calcination cycles (up to 100). Mercury porosimetry curves of the calcines and their carbonated counterparts have been obtained and their differences interpreted with a simple pore model, from which the thickness of the product layer is derived. An average value of 49 nm (19% standard deviation) has been obtained, which is quite insensitive to the type of limestone and to the texture of the calcine as long as the model is fulfilled. The implications of this value on our understanding of the sorbent performance in these CO{sub 2}-capture systems are discussed.

  1. Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified layer-removal method

    NASA Astrophysics Data System (ADS)

    Greving, D. J.; Rybicki, E. F.; Shadley, J. R.

    1994-12-01

    Residual stresses are inherent in thermal spray coatings because the application process involves large temperature gradients in materials with different mechanical properties. In many cases, failure analysis of thermal spray coatings has indicated that residual stresses contribute to reduced service life. An estab-lished method for experimentally evaluating residual stresses involves monitoring deformations in a part as layers of material are removed. Although the method offers several advantages, applications are lim-ited to a single isotropic material and do not include coated materials. This paper describes a modified layer-removal method for evaluating through-thickness residual stress distributions in coated materials. The modification is validated by comparisons with three-dimensional finite-element analysis results. The modified layer-removal method was applied to determine through-thickness residual stress distributions for six industrial thermal spray coatings: stainless steel, aluminum, Ni-5A1, two tungsten carbides, and a ceramic thermal barrier coating. The modified method requires only ordinary resistance strain-gage measuring equipment and can be relatively insensitive to uncertainties in the mechanical properties of the coating material.

  2. Computational optimization and solution-processing of thick and efficient luminescent down-shifting layers for photovoltaics

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Kick, Christopher; Osvet, Andres; Egelhaaf, Hans-Joachim; Stern, Edda; Batentschuk, Miroslaw; Forberich, Karen; Brabec, Christoph J.

    2016-03-01

    Luminescent down-shifting (LDS) is a simple, powerful tool for increasing the range of solar irradiance that can be efficiently utilized by photovoltaic devices. We developed an optical model to simulate the ideal optical properties (absorbance, transmittance, luminescence quantum yield, etc.) of LDS layers for solar cells. We evaluated which quantum efficiencies and which optical densities are necessary to achieve an improvement in solar cell performance. In particular we considered copper indium gallium diselenide (CIGS) devices. Our model relies on experimentally measured data for the transmission and emission spectra as well as for the external quantum efficiency (EQE) of the solar cell. By combining experimental work with this optical model, we aim to propose an environmentally friendly technology for coating thick (300-500 μm), efficient luminescent down-shifting layers. These layers consist of polyvinyl butyral (PVB) and organic UV-converting fluorescent dyes. The absorption coefficients and luminescence quantum yields of the dyes were determined both in a solution of the solvent benzyl alcohol and in the solid polymer layers. This data shows that the dyes retain luminescence quantum yields of approximately 90% after solution-processing. The produced layers were then applied to CIGS solar cells, thereby improving the EQE of the devices in the UV region. At a wavelength of 390 nm, for instance, the EQE increased from 18% to 53%. These values closely agree with the theoretically calculated ones. The proposed technology, thus, provides a pathway toward efficient, fully solutionprocessable encapsulated photovoltaic modules.

  3. On the thickness of the oxidized layer of the Martian regolith.

    PubMed

    Zent, A P

    1998-12-25

    A revised model of the diffusion of H2O2 through the Martian regolith is presented, which argues that oxidant diffusion may be more efficient than previously thought. Recent models of the adsorption of H2O at Mars-like conditions indicate that it adsorbs more poorly than previously believed. H2O adsorption is a necessary proxy for peroxide adsorption; hence the adsorptive slowing of peroxide diffusion is modeled as less efficient. Because the peroxide has a finite lifetime, it has a finite extinction depth as well. The effects of regolith gardening by impacts are quantitatively estimated and combined with the effects of oxidation by atmospheric gases to produce estimates of the degree of oxidation of the Martian surface with depth. We explore the effects of different crater production populations along with variations in H2O2 extinction depths, and hydrothermal oxidation of ejecta. In very select circumstances involving very early onset of oxidizing conditions during heavy bombardment, 150-200 m of regolith could be fully oxidized. More likely scenarios for the crater production population, onset of oxidizing conditions, and oxidant extinction depth yield estimates of no more than a few meters to putative reducing material. In addition, uncertainties remain regarding the degree to which hydrothermal or other high-temperature chemistry might oxidize materials in ejecta blankets. The trade-off between accessing unlithified sediments or rock interiors must be considered.

  4. In vitro corrosion of pure magnesium and AZ91 alloy—the influence of thin electrolyte layer thickness

    PubMed Central

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-01-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys. PMID:26816655

  5. Epitaxial growth and characterization of thick multi-layer 4H-SiC for very high-voltage insulated gate bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tetsuya; Nakayama, Koji; Tanaka, Atsushi; Asano, Katsunori; Ji, Shi-yang; Kojima, Kazutoshi; Ishida, Yuuki; Tsuchida, Hidekazu

    2015-08-01

    Techniques to fabricate thick multi-layer 4H-SiC epitaxial wafers were studied for very high-voltage p- and n-channel insulated gate bipolar transistors (IGBTs). Multi-layer epitaxial growth, including a thick p- drift layer (˜180 μm), was performed on a 4H-SiC n+ substrate to form a p-IGBT structure. For an n-IGBT structure, an inverted growth process was employed, in which a thick n- drift layer (˜180 μm) and a thick p++ injector layer (>55 μm) were epitaxially grown. The epitaxial growth conditions were modified to attain a low defect density, a low doping concentration, and a long carrier lifetime in the drift layers. Reduction of the forward voltage drop was attempted by using carrier lifetime enhancement processes, specifically, carbon ion implantation/annealing and thermal oxidation/annealing or hydrogen annealing. Simple PiN diodes were fabricated to demonstrate the effective conductivity modulation in the thick drift layers. The forward voltage drops of the PiN diodes with the p- and n-IGBT structures promise to obtain the extremely low-loss and very high-voltage IGBTs. The change in wafer shape during the processing of the very thick multi-layer 4H-SiC is also discussed.

  6. Extending microcontact printing for patterning of thick polymer layers: semi-drying of inks and contact mechanisms

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Miyashita, Kaori; Ushijima, Hirobumi

    2014-12-01

    We investigate the applicability of the microcontact printing technique for the patterning of polymeric etch-resistant layers with thicknesses in the order of micrometers. In contrast to small molecular materials such as thiols and silane coupling agents typically used in microcontact printing, the patterning of thick layers requires tuning of the rheological properties of an ink film to prevent pattern deformation and attain high-quality transfer. By evaluating the swelling rate of a microcontact stamp material (i.e. poly(dimethylsiloxane) (PDMS)) and the evaporation rate of solvents, we find an optimal ink formulation to attain the desired semi-dried state for the printing of polymer layers. In polymer films with solid content below the optimal limit, split- or wrinkle-type deformations were found depending on the adhesion force and deformability of ink films, while overly-dried polymer films failed to be transferred. These phenomena are in qualitative agreement with deformation curves obtained from colloidal probe microscopy measurements that successfully revealed the deformability and adhesion of semi-dried polymer films. Further investigation of the effects of stamp stiffness on pattern formation reveals that a pattern region in which the thickness profile has a small curvature radius failed to be transferred when a stiffer PDMS stamp was used. This type of defect is thought to be caused by incomplete contact between the film and substrate due to a semi-circular cap structure of the polymer film and insufficient deformation of the stamp. Herein, a detailed contacting mechanism for high-quality patterning is discussed on the basis of the Hertz contact model. Using the developed etch-resistant ink and optimized printing process conditions, a finely defined etched structure for a silicon substrate is obtained.

  7. Surface stress, thickness, and mass of the first few layers of polyelectrolyte.

    PubMed

    Toda, Masaya; Itakura, Akiko N; Igarashi, Shinichi; Büscher, Karsten; Gutmann, Jochen S; Graf, Karlheinz; Berger, Rüdiger

    2008-04-01

    The effects of surface stress and mass loading upon the adsorption of polyelectrolytes onto flexible silicon micromechanical cantilever sensors (MCSs) were studied in situ. A self-assembled monolayer of 2-mercaptoethylamine chloride (2-MEA) on gold was used to achieve single-side adsorption on the MCS. Such a preparation gave a positive surface potential, whereas a bare SiOx surface gave a negative surface potential. Wide scan X-ray photoelectron spectroscopy confirmed that the adsorption of polystyrenesulfonate (PSS) and polyallylamine hydrochloride (PAH) followed the general rule expected from the electrostatic interaction between the substrate and the polyelectrolyte, whereas the adsorption polyethyleneimine (PEI) did not. The adsorption of PAH on SiO(x) from a 3 mM water solution containing 1 M NaCl was associated with a deflection of the MCS toward the polyelectrolyte monolayer (tensile surface stress) owing to the hydrogen bonding between neighboring amino groups. Here, a surface stress change of 1.4 +/- 0.1 N/m was estimated. The adsorption of PSS from a 3 mM water solution containing 1 M NaCl on a 2-MEA surface induced a deflection of the MCS away from the polyelectrolyte layer (compressive stress), toward the SiO(x) side. Here, a surface stress change of 3.1 +/- 0.3 N/m was determined. The formation of a PAH layer on top of the PSS layer resulted in a deflection of the MCS toward the PAH layer. This indicated that the adjacent PSS layer was deswelling, corresponding to a surface stress change of 0.5 +/- 0.1 N/m.

  8. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  9. Characterization of Failed Surface of Ti and Imidex (PI) Film for Different Inter-layer Thicknesses of Ti Film

    NASA Astrophysics Data System (ADS)

    Lubna, Nusrat; Chaudhury, Zariff; Newaz, Golam

    2012-09-01

    For miniaturized biomedical devices, laser joining of dissimilar materials offers excellent potential to make precise joints. An important system for consideration is titanium (Ti) coated glass joined with biocompatible imidex polyimide (PI). Metallic Ti with various thicknesses was deposited on top of pyrex 7740 borosilicate glass by using DC-magnetron sputtering deposition method. Effect of bond strength between Ti coated glass and imidex polyimide (PI), due to thickness variation of sputtered Ti coating was studied. Three different Ti inter-layer thicknesses were considered, 50, 200, and 400 nm. Tests results indicated that the thinner film produced lower shear strength and higher thickness produced higher shear strength. It has been observed that thicker film (200 and 400 nm) enhanced considerably the bond strength with enhancing the film roughness as well. Higher roughness resulted in more contact area at the interface, results higher number of chemical bonds and increased mechanical interlocking; which in turn increase the laser joint strength. For stronger bond with higher thickness, mixed mode failure was observed which included cohesive failure of polymer, interface failure of Ti/glass and failure on the glass itself. On the other hand, for weak bond with thinner film, mostly interface failure was observed for this system of Ti coated glass/imidex. For thicker film, chemical bond of Ti-C and Ti-O were observed. The role of both surface characteristics and chemical bonding for laser joints were investigated by using advanced techniques such as X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy.

  10. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  11. Mapping bound plasmon propagation on a nanoscale stripe waveguide using quantum dots: influence of spacer layer thickness

    PubMed Central

    Perera, Chamanei S; Funston, Alison M; Cheng, Han-Hao

    2015-01-01

    Summary In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides. PMID:26665075

  12. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  13. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  14. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.

    PubMed

    Lee, Sangjun; Mason, Daniel R; In, Sungjun; Park, Namkyoo

    2014-06-30

    We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

  15. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  16. Mapping bound plasmon propagation on a nanoscale stripe waveguide using quantum dots: influence of spacer layer thickness.

    PubMed

    Perera, Chamanei S; Funston, Alison M; Cheng, Han-Hao; Vernon, Kristy C

    2015-01-01

    In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides. PMID:26665075

  17. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  18. Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent.

    PubMed

    Bedair, Tarek M; Yu, Seung Jung; Im, Sung Gap; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2015-12-15

    Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs. PMID:26319336

  19. Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent.

    PubMed

    Bedair, Tarek M; Yu, Seung Jung; Im, Sung Gap; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2015-12-15

    Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs.

  20. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    PubMed

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-01

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  1. Magnetic properties and microstructure of Sm-Co/α-Fe nanocomposite thick film-magnets composed of multi-layers over 700 layers

    SciTech Connect

    Tou, A. Morimura, T.; Nakano, M.; Yamai, T.; Fukunaga, H.

    2014-05-07

    We synthesized Sm-Co/α-Fe nanocomposite film-magnets, approximately 10 μm in thickness, composed of 780 layers by the pulse laser deposition method. Transmission electron microscopic observations revealed that the synthesized film is composed of Sm-Co and α-Fe layers with the well-controlled α-Fe thickness of approximately 10–20 nm, which is suitable one predicted by the micromagnetic simulation. In spite of the enhanced interlayer diffusion of Fe and Co by annealing for crystallization, the (BH){sub max} value of 100 kJ/m{sup 3} was obtained at the averaged compositions of Sm/(Sm + Co) = 0.16 and Fe/(Sm + Co + Fe) = 0.47. The α-Fe fraction for obtaining the highest (BH){sub max} value was smaller than that expected from the micromagnetic simulation. Although the annealing for crystallization lay the easy direction of magnetization in the plane, the film is not expected to have strong crystallographic texture.

  2. Conditions of hydrodynamic instability appearance in fluid thin layers with changes in time thickness and density gradient

    NASA Astrophysics Data System (ADS)

    Grzegorczyn, Sławomir; Ślęzak, Andrzej; Michalska-Małecka, Katarzyna; Ślęzak-Prochazka, Izabella

    2012-03-01

    The transport of NaCl and ethanol through the microbial cellulose membrane was used as a generator of layers with density gradients, parallel to gravity vector. Changes in NaCl concentrations connected with density gradients in these layers were monitored by means of Ag|AgCl electrodes dipped directly into aqueous NaCl solutions with or without ethanol. The parameters used in this article and characterizing diffusive or diffusive-convective processes in layers are the ratio of NaCl concentrations at electrode surfaces () calculated for voltage which was measured 6 h after rebuilding of layers with density gradients, and time of appearance of hydrodynamic instabilities in the membrane system. The is the nonlinear function of initial ratio of NaCl on the membrane (), with maximum concentration at initial moment dependent on ethanol and configuration of the membrane system. The time of appearance of hydrodynamic instabilities in layers with density gradients parallel and directed opposite to the gravity vector depends on , ethanol concentration, and configuration of the membrane system. Besides, for aqueous NaCl solutions, critical values of density gradients and thicknesses of layers needed for the appearance of hydrodynamic instabilities were calculated and presented as functions of .

  3. Thick amorphous silicon layers suitable for the realization of radiation detectors

    SciTech Connect

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyong-Koo; Perez-Mendez, V.; Petrova-Koch, V.

    1995-04-01

    Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH{sub 4} at a substrate temperature {approximately} 150{degree}C and subsequent annealing at 160{degree}C for about 100 hours. The stress in the films obtained this way decreased to {approximately} 100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 {times} 10{sup 15} cm{sup {minus}3} to 7 {times} 10{sup 14} cm{sup {minus}3} without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material.

  4. Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology.

    PubMed

    Spirk, Stefan; Findenig, Gerald; Doliska, Ales; Reichel, Victoria E; Swanson, Nicole L; Kargl, Rupert; Ribitsch, Volker; Stana-Kleinschek, Karin

    2013-03-01

    The preparation of thin films of chitosan-silane hybrid materials by combining sol-gel processing and spin coating is reported. A variety of silanes can be used as starting materials for the preparation of such thin films, namely tetraethoxysilane, tri-tert-butoxysilanol, trimethylethoxysilane, p-trifluoromethyltetra-fluorophenyltriethoxysilane, trivinylmethoxysilane, (methoxymethyl)trimethyl-silane, and hexamethoxydisilane. These silanes are subjected to a sol-gel process before they are added to acidic chitosan solutions. The chitosan:silane ratio is kept constant at 6:1 (w/w) and dilutions with ethanol are prepared and spin coated. Depending on the degree of dilution, film thickness can be controlled in a range between 5 and 70 nm. For the determination of additional surface properties, static water contact angle measurements and atomic force microscopy have been employed.

  5. Laser spectroscopy of sub-micrometre- and micrometre-thick caesium-vapour layers

    SciTech Connect

    Cartaleva, S; Krasteva, A; Slavov, D; Todorov, P; Vaseva, K; Moi, L; Sargsyan, A; Sarkisyan, D

    2013-09-30

    We present high resolution laser spectroscopy of Cs vapours confined in a unique optical cell of sub-micrometric and micrometric thickness, where a strong spatial anisotropy is present for the time of interaction between the atoms and laser radiation. Similarly to the spectra of selective specular reflection, the Doppler-free spectra of absorption and fluorescence are observed, not revealing cross-over resonances that will be useful for frequency stabilisation, provided the cell is cheap and compact. A new resonance in the fluorescence of closed transition is studied, demonstrating its high sensitivity to elastic atom – atom and atom – dielectric surface collisions. The theoretical modelling performed is in agreement with the experimental observations. (laser spectroscopy)

  6. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  7. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. PMID:26798795

  8. Influence of the absorber layer thickness and rod length on the performance of three-dimensional nanorods thin film hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ho, Chung-I.; Liang, Wei-Chieh; Yeh, Dan-Ju; Su, Vin-Cent; Yang, Po-Chuan; Chen, Shih-Yen; Yang, Tsai-Ting; Lee, Jeng-Han; Kuan, Chieh-Hsiung; Cheng, I.-Chun; Lee, Si-Chen

    2013-04-01

    Performance of substrate-configured hydrogenated amorphous silicon solar cells based on ZnO nanorod arrays prepared by hydrothermal method has been investigated. The light harvest ability of three-dimensional nanorods solar cells is a compromise between the absorber layer thickness and the nanorods geometry. By optimizing the intrinsic a-Si:H absorber layer thickness from 75 to 250 nm and varying the length of the nanorods from 600 to 1800 nm, the highest energy conversion efficiency of 6.07% is obtained for the nanorods solar cell having thin absorber layer thickness of 200 nm with the rod length of 600 nm. This represents up to 28% enhanced efficiency compared to the conventional flat reference cell with similar absorber layer thickness.

  9. Evolution of the electronic structure of SrTiO3/GdTiO3 heterostructures with layer thickness

    NASA Astrophysics Data System (ADS)

    Bjaalie, Lars; Janotti, Anderson; van de Walle, Chris G.

    2014-03-01

    A two-dimensional electron gas (2DEG), with density of 3e14cm-2 (0.5 electrons per interface unit cell), has been observed at the SrTiO3/GdTiO3 interface, with potential applications in electronic devices [P. Moetakef, T.A. Cain, D.G. Ouellette, J.Y. Zhang, D.O. Klenov, A. Janotti, C.G. Van de Walle, S. Rajan, S.J. Allen, and S. Stemmer, Appl. Phys. Lett. 99, 232116 (2011)]. Yet, basic properties of the 2DEG is still poorly understood, in particular the variation of the electrical conductivity with the SrTiO3 layer thickness. We performed density functional calculations with a hybrid functional to study the electronic structure of SrTiO3/GdTiO3 superlattices. We address the insulator to metal transition as a function of layer thickness, analyzing the effects of quantum confinement, charge ordering, and lattice distortions. Work supported by NSF and ARO.

  10. Performance Dependences of Multiplication Layer Thickness for InP/InGaAs Avalanche Photodiodes Based on Time Domain Modeling

    NASA Technical Reports Server (NTRS)

    Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul

    2005-01-01

    InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

  11. Study of Retinal Nerve Fibre Layer Thickness in Patients with Diabetes Mellitus Using Fourier Domain Optical Coherence Tomography

    PubMed Central

    Sah, Sonal; Gupta, Neeti

    2016-01-01

    Introduction Diabetic retina undergoes degenerative changes in retinal nerve fiber layer (RNFL) in addition to vascular changes. Loss of RNFL with changes in inner retina and their association with metabolic control have been studied with varied results in diabetic patients. Aim To compare the RNFL thickness between diabetic patients and age matched healthy controls and to correlate the thickness to metabolic control. Materials and Methods One hundred and sixty five patients were enrolled in the study out of which 50 served as controls, 58 patients were diabetic without retinopathy and 57 patients had diabetic retinopathy. Both eyes of all patients underwent optical coherence tomography scans for RNFL and ganglion cell complex. Foveal and parafoveal thickness were also measured. All the parameters were compared to patient’s metabolic control. Results RNFL thinning was observed in superotemporal (p-value = 0.001) and upper nasal sectors (p-value = 0.031) around the optic disc in eyes with diabetic retinopathy. Ganglion cell complex also showed statistically significant thinning in diabetic patients. Creatinine levels showed a weak negative correlation to the RNFL. Conclusion This study positively concluded that neurodegeneration in an early component of diabetic retinopathy. PMID:27630874

  12. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect

    Lstiburek, Joseph; Baker, Peter

    2015-04-01

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  13. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect

    Lstiburek, Joseph; Baker, Peter

    2015-04-09

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  14. Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses

    PubMed Central

    Wang, Diane L.; Raza, Ali S.; de Moraes, Carlos Gustavo; Chen, Monica; Alhadeff, Paula; Jarukatsetphorn, Ravivarn; Ritch, Robert; Hood, Donald C.

    2015-01-01

    Purpose To assess the extent to which glaucomatous damage of the macula can be detected using the summary statistics of a commercial report based upon the circumpapillary retinal nerve fiber layer (cpRNFL) thickness obtained with frequency domain optical coherence tomography (fdOCT). Methods One hundred forty-three eyes of 143 open-angle glaucoma patients and suspects (56.4 ± 13.8 years) had 10-2 visual fields (VFs) and fdOCT macular and disc cube scans. RNFL and retinal ganglion cell plus inner plexiform layer thickness and probability maps were generated and combined with 10-2 VF information in a single-page, custom report previously described. Three graders evaluated these reports and classified each eye as “abnormal macula” or “normal macula.” Commercially available fdOCT reports for cpRNFL thickness were generated using the automatic segmentation algorithm and norms from the machine. The ability of the reports to detect macular damage was analyzed in three ways: temporal quadrant (TQ) < 5%; TQ < 5% or clock hour 7 < 1% (TQ + CH7); and clock hours 7 through 10 with two sectors < 5% or one sector < 1% (CH7−10). Results Sixty-one (43%) eyes were classified “abnormal macula” and 41 (29%) as “normal macula”; the 10-2 VFs and OCT probability maps did not agree in the remaining eyes. Of the 61 abnormal eyes, the TQ criterion missed 47 (77%); TQ + CH7 missed 24 (39%); and CH7−10 missed 22 (36%). Conclusions Conventional cpRNFL analyses on commercial OCT reports can miss macular (central field) damage. Translational Relevance To detect glaucomatous damage of the macula, additional tests, such as macular cube scans and/or 10-2 VFs, should be performed. PMID:26644964

  15. Value of corneal epithelial and Bowman’s layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis

    PubMed Central

    Xu, Zhe; Jiang, Jun; Yang, Chun; Huang, Shenghai; Peng, Mei; Li, Weibo; Cui, Lele; Wang, Jianhua; Lu, Fan; Shen, Meixiao

    2016-01-01

    Ultra-high resolution optical coherence tomography (UHR-OCT) can image the corneal epithelium and Bowman’s layer and measurement the thicknesses. The purpose of this study was to validate the diagnostic power of vertical thickness profiles of the corneal epithelium and Bowman’s layer imaged by UHR-OCT in the diagnosis of sub-clinical keratoconus (KC). Each eye of 37 KC patients, asymptomatic fellow eyes of 32 KC patients, and each eye of 81 normal subjects were enrolled. Vertical thickness profiles of the corneal epithelium and Bowman’s layer were measured by UHR-OCT. Diagnostic indices were calculated from vertical thickness profiles of each layer and output values of discriminant functions based on individual indices. Receiver operating characteristic curves were determined, and the accuracy of the diagnostic indices were assessed as the area under the curves (AUC). Among all of the individual indices, the maximum ectasia index for epithelium had the highest ability to discriminate sub-clinical KC from normal corneas (AUC = 0.939). The discriminant function containing maximum ectasia indices of epithelium and Bowman’s layer further increased the AUC value (AUC = 0.970) for sub-clinical KC diagnosis. UHR-OCT-derived thickness indices from the entire vertical thickness profiles of the corneal epithelium and Bowman’s layer can provide valuable diagnostic references to detect sub-clinical KC. PMID:27511620

  16. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms.

    PubMed

    Phenrat, Tanapon; Liu, Yueqiang; Tilton, Robert D; Lowry, Gregory V

    2009-03-01

    The surfaces of reactive nanoscale zerovalent iron (NZVI) particles used for in situ groundwater remediation are modified with polymers or polyelectrolytes to enhance colloidal stability and mobility in the subsurface. However, surface modification decreases NZVI reactivity. Here, the TCE dechlorination rate and reaction products are measured as a function of adsorbed polyelectrolyte mass for three commercially available polyelectrolytes used for NZVI surface modification including poly(styrene sulfonate) (PSS), carboxymethyl cellulose (CMC), and polyaspartate (PAP). The adsorbed mass, extended layer thickness, and TCE-polyelectrolyte partition coefficient are measured and used to explain the effect of adsorbed polyelectrolyte on NZVI reactivity. For all modifiers, the dechlorination rate constant decreased nonlinearly with increasing surface excess, with a maximum of a 24-fold decrease in reactivity. The TCE dechlorination pathways were not affected. Consistent with Scheutjens-Fleer theory for homopolymer adsorption, the nonlinear relationship between the dechlorination rate and the surface excess of adsorbed polyelectrolyte suggests that adsorbed polyelectrolyte decreases reactivity primarily by blocking reactive surface sites at low surface excess where they adsorb relatively flat onto the NZVI surface, and by a combination of site blocking and decreasing the aqueous TCE concentration at the NZVI surface due to partitioning of TCE to adsorbed polyelectrolytes. This explanation is also consistent with the effect of adsorbed polyelectrolyte on acetylene formation. This conceptual model should apply to other medium and high molecular weight polymeric surface modifiers on nanoparticles, and potentially to adsorbed natural organic matter.

  17. Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thick a-plane AlN films grown on r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Tamaki, Shinya; Yamashita, Yasuhiro; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-08-01

    10-µm-thick a-plane AlN(11\\bar{2}0) films containing a low-temperature AlN (LT-AlN) buffer layer and a high-temperature AlN (HT-AlN) film were prepared on r-plane sapphire (1\\bar{1}02) substrates. The crystallinity of all the samples with different LT-AlN buffer layer thicknesses was improved after thermal annealing and HT-AlN growth, mainly owing to the elimination of domain boundaries and the concurrent suppression of facet formation. The optimum crystallinity of HT-AlN films was obtained with full widths at half maximum of the X-ray rocking curves of 660 arcsec for AlN(11\\bar{2}0)\\parallel [1\\bar{1}00]AlN and 840 arcsec for (0002) using a 200-nm-thick LT-AlN buffer layer.

  18. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus.

    PubMed

    Hu, Zhi-Xin; Kong, Xianghua; Qiao, Jingsi; Normand, Bruce; Ji, Wei

    2016-02-01

    Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D systems. Indeed, these couplings call into question whether the stacking of FLBP can be governed only by vdW interactions, which is of crucial importance for epitaxy and property refinement. Here, we perform a theoretical investigation of the vibrational properties of FLBP, which reflect directly its interlayer coupling, by discussing six Raman-observable phonons, including three optical, one breathing and two shear modes. With increasing sample thickness, we find anomalous redshifts of the frequencies for each optical mode but a blueshift for the armchair shear mode. Our calculations also show splitting of the phonon branches, due to anomalous surface phenomena, and strong phonon-phonon coupling. By computing uniaxial stress effects, inter-atomic force constants and electron densities, we provide a compelling demonstration that these properties are the consequence of strong and highly directional interlayer interactions arising from the electronic hybridization of the lone electron-pairs of FLBP, rather than from vdW interactions. This exceptional interlayer coupling mechanism controls the stacking stability of BP layers and thus opens a new avenue beyond vdW epitaxy for understanding the design of 2D heterostructures.

  19. Permafrost distribution and active layer thickness in the Aksu catchment, Central Tian Shan (P.R. China)

    NASA Astrophysics Data System (ADS)

    Imbery, S.; Gao, Q.; Sun, Z.; Duishonakunov, M.; King, L.

    2012-04-01

    Climate change actually leads to an accelerated ablation and retreat of high mountain glaciers in most parts of the world, and to a runoff increase of the related rivers in the short to middle term. Whereas this is a well-known fact, the additional runoff supplied by slowly melting ground-ice and perennial snow fields is almost unknown. However, this periglacial contribution is significant in extremely arid mountain areas as e.g. the Central Tian Shan. Here, the rivers form the vital source for the development of the Taklamakan basin, rich in natural resources, and strongly suffering from water shortage. Main scientific tasks in our subproject hence include an improvement of knowledge on permafrost distribution and active layer thickness, and their role for water discharge in the Aksu catchment. A dense network of 46 high resolution thermistor strings and mini data loggers were installed in the Gukur catchment (130 km2), a tributary of the Aksu river. Hourly temperatures are recorded at the ground surface and at various depths of up to 150 cm. First results indicate that the depth of the active layer and the propagation of the diurnal temperature signal depend - besides altitude, slope and aspect - largely on snow thickness/-distribution and substratum. The detailed identification of parameters determining the active layer thickness and thaw dynamics is fundamental for the large scale modelling of the state of the permafrost in the Central Tian Shan. The field studies will contribute to a better understanding of the thermal effects of substantial debris cover of subsurface ice-rich material or ground-ice, and of the temperature regime of rock glaciers and ice-cored moraines. These features store large amounts of ice in a permafrost environment over long time periods. In addition to the generally ice-rich top of the permafrost in the fine grained silty sediments in valleys and lee positions, they might have considerable influence on the amount and annual

  20. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    SciTech Connect

    Banerjee, W.; Maikap, S.; Tien, T.-C.; Li, W.-C.; Yang, J.-R.

    2011-10-01

    The impact of iridium-oxide (IrO{sub x}) nano layer thickness on the tunneling oxide and memory performance of IrO{sub x} metal nanocrystals in an n-Si/SiO{sub 2}/Al{sub 2}O{sub 3}/IrO{sub x}/Al{sub 2}O{sub 3}/IrO{sub x} structure has been investigated. A thinner (1.5 nm) IrO{sub x} nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO{sub x} nanocrystals with a small average diameter of 2.4 nm and a high density of {approx}2 x 10{sup 12}/cm{sup 2} have been observed by scanning transmission electron microscopy. The IrO{sub x} nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of {+-}5 V and 7.2 V at a sweeping gate voltage of {+-} 8 V has been observed for the 1.5 nm-thick IrO{sub x} nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO{sub x} nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10{sup 13}/cm{sup 2} and 2 x 10{sup 13}/cm{sup 2}, respectively, due to the small size and high-density of IrO{sub x} nanocrystals. Excellent program/erase endurance of >10{sup 6} cycles and good retention of 10{sup 4} s with a good memory window of >1.2 V under a small operation voltage of {+-} 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO{sub x} nanocrystals. This study is not only important for the IrO{sub x} nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  1. Ultrahigh thermoelectricity of atomically thick Bi2Se3 single layers: A computational study

    NASA Astrophysics Data System (ADS)

    Guo, Donglin; Hu, Chenguo

    2014-12-01

    We report an investigation of the temperature and carrier concentration dependent thermoelectric behavior of Bi2Se3 single layers based on a combination of experimental data, calculated transport function and electronic structure in light of Boltzmann transport theory and the first-principle. When the carrier concentration is fixed at 3.24 × 1018 cm-3, the maximal value of the thermoelectric figure of merit (ZT) is 19 at 900 K, while considering the anisotropy, the higher ZT = 25 can be achieved along xx direction. When the carrier concentration increases to 4 × 1019 cm-3, the maximal value of ZT is 38 at 900 K, while considering the anisotropy, the higher ZT = 72 can be achieved along yy direction at carrier concentration of 5.2 × 1019 cm-3. Compared with the experimental data, we find that our calculated results agree with experimental data, indicating that our calculations are reliable and reasonable. As more 2D materials have been fabricated besides graphene, our investigation would be important to provide a new strategy to explore high efficiency thermoelectric materials.

  2. Electrical response in atomic layer deposited Al:ZnO with varying stack thickness

    SciTech Connect

    Mundle, R.; Pradhan, A. K.

    2014-05-14

    We report on the effects of stacking of the macrocycles in atomic layer deposited (ALD) Al:ZnO thin films on the structural and electrical properties. There is a large change in the resistivity ranging from as high as 1.19 × 10{sup −3} Ω cm for 760 growth cycles film down to as low as 7.9 × 10{sup −4} Ω cm for the 4000 cycles. The electrical transport demonstrates a transition from a semiconductor behavior at 760 cycles to a metallic behavior in the 4000 cycle, due to an increase in electron scattering as well as increase in the carrier concentration. However, interestingly the carrier concentration sharply increases with increasing macrocycles containing Al and Zn, exhibiting a nearly metal-like behavior in thicker films. We anticipate that the change in Zn-vacancy, V{sub zn}, formation energy is related to the increase in surface area of the ALD precursor deposition plane. The increase in V{sub zn} density allows for more adsorption of Al-precursor into the doped monolayer, showing interesting electrical properties.

  3. Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

    NASA Astrophysics Data System (ADS)

    Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-08-01

    Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar ‘d’ spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets.

  4. Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

    PubMed Central

    Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar ‘d’ spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets. PMID:27492139

  5. Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin.

    PubMed

    Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-08-05

    Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar 'd' spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets.

  6. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    PubMed Central

    Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879

  7. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    PubMed

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  8. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    PubMed

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879

  9. Association of Common SIX6 Polymorphisms With Peripapillary Retinal Nerve Fiber Layer Thickness: The Singapore Chinese Eye Study

    PubMed Central

    Cheng, Ching-Yu; Allingham, R. Rand; Aung, Tin; Tham, Yih-Chung; Hauser, Michael A.; Vithana, Eranga N.; Khor, Chiea Chuen; Wong, Tien Yin

    2015-01-01

    Purpose. Recently the common SIX6 missense variant rs33912345 was found to be highly associated with glaucoma. The aim of this study was to investigate the association between this SIX6 variant and peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain optical coherence tomography (SD-OCT) in a population setting. Methods. Study subjects were enrolled from the Singapore Chinese Eye Study (SCES), a population-based survey of Singaporean Chinese aged 40 years or older. Subjects underwent a comprehensive ocular examination. Spectral-domain OCT was used to measure RNFL thicknesses. Genotyping of SIX6 rs33912345 (Asn141His) was performed using HumanExome BeadChip. Results. A total of 2129 eyes from 1243 SCES subjects (mean age: 55.0 ± 7.4 years) with rs33912345 genotype data and SD-OCT images were included for the analysis. Of these, 26 eyes of 21 subjects had glaucoma. The frequency of rs33912345 risk variant C (His141) was 80% in the study subjects. Each rs33912345 C allele was associated with a decrease of 1.44 μm in RNFL thickness after adjusting for age, sex, genetic principal components, and axial length (P = 0.001). These associations remained similar in 2096 nonglaucoma eyes in which each C allele was associated with a decrease of 1.39 μm in RNFL thickness (P = 0.001). The strongest association was observed in the superior RNFL sector (a decrease of 2.83 μm per risk allele, P < 0.001) followed by the inferior RNFL sector (a decrease of 2.24 μm per risk allele, P = 0.003), while the association did not reach significance in the nasal and temporal sectors. Conclusions. Nonglaucomatous individuals with the SIX6 missense variant have reduced RNFL thickness in regions known to be particularly affected in those with glaucoma. This may be the primary mechanism for increased risk of POAG in individuals who carry the SIX6 His141 risk variant. PMID:25537207

  10. Neutron Reflection Study of Bovine β-Casein Adsorbed on OTS Self- Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Fragneto, Giovanna; Thomas, Robert K.; Rennie, Adrian R.; Penfold, Jeffrey

    1995-02-01

    Specular neutron reflection has been used to determine the structure and composition of bovine β-casein adsorbed on a solid surface from an aqueous phosphate-buffered solution at pH 7. The protein was adsorbed on a hydrophobic monolayer self-assembled from deuterated octadecyltrichlorosilane solution on a silicon (111) surface. A two-layer structure formed consisting of one dense layer of thickness 23 ± 1 angstroms and a surface coverage of 1.9 milligrams per square meter adjacent to the surface and an external layer protruding into the solution of thickness 35 ± 1 angstroms and 12 percent protein volume fraction. The structure of the (β-casein) layer is explained in terms of the charge distribution in the protein.

  11. Forecast of Permafrost Distribution, Temperature and Active Layer Thickness for Arctic National Parks of Alaska through 2100

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Romanovsky, V. E.; Marchenko, S. S.; Swanson, D. K.

    2015-12-01

    Though permafrost distribution, temperature and active layer thickness at high spatial resolution are needed to better model the ecosystem dynamics and biogeochemical processes including emission of greenhouse gases at regional and local scale, no such high-resolution permafrost map products existed for Arctic national parks of Alaska until recently. This was due to the lack of information about ecosystem properties such as soil and vegetation characteristics at high spatial resolution. In recent years, the National Park Service (NPS) has carried out several projects mapping ecotype and soil in the Arctic parks from Landsat satellite data at 28.5 m spatial resolution. We used these detailed ecotype and soil maps along with downscaled climate forcing from the IPCC and Climatic Research Unit, University of East Anglia (UK) to model near-surface permafrost distribution, temperature and active layer thickness at decadal time scale from the present through 2100 at 28.5 m resolution for the five Arctic national parks in Alaska: Gates of the Arctic National Park and Preserve, Noatak National Preserve, Kobuk Valley National Park, Cape Krusenstern National Monument, and Bering Land Bridge National Preserve. Our results suggest the near-surface permafrost distribution, i.e. permafrost immediately below the active layer, will likely decrease from the current 99% of the total park area (five parks combined) to 89% by 2050 and 36% by 2100. The near-surface permafrost will likely continue to exist in the northern half of the Gates of the Arctic and Kobuk Valley parks, and in majority of the Noatak preserves by 2100, though its temperature will be up to 5 °C warmer than the present at certain places. Taliks will likely occupy the ground below the active layer in rest of the park areas. These products fill an essential knowledge and data gap and complement research of other Arctic disciplines such as ecosystem modeling, hydrology and soil biogeochemistry. Also, these products

  12. Thermal elasto/visco-plastic analysis of multi-layered moderately thick shells of revolution under thermal loading due to fluid

    SciTech Connect

    Inamura, E.; Takezono, S.; Tao, K.

    1996-12-01

    An analytical formulation and a numerical solution of the thermal elasto/visco-plastic deformation of multi-layered moderately thick shells of revolution subjected to thermal loads due to fluid are developed. The temperature distribution through each layer thickness is assumed to be a quadratic curve and is determined using the equations of heat conduction and heat transfer. The equations of equilibrium and the relations between the strains and displacements are derived from the Reissner-Naghdi theory. For the constitutive relations, the Perzyna equations are employed. As numerical examples, two-layered cylindrical shells composed of mild steel and titanium subjected to thermal loads due to fluid are analyzed.

  13. Effects of thickness layer on the photoluminescence properties of InAlAs/GaAlAs quantum dots

    NASA Astrophysics Data System (ADS)

    Daly, A. Ben; Bernardot, F.; Barisien, T.; Galopin, E.; Lemaître, A.; Maaref, M. A.; Testelin, C.

    2016-09-01

    We investigated the effect of InAlAs layer thickness on exciton-spin relaxation and optical properties of In0.62Al0.38As/Al0.67Ga0.33As QDs. The luminescence properties and carrier dynamics of QDs were studied by the temperature-dependent photoluminescence (PL) and pump-probe measurements. As the total amount of deposited In0.62Al0.38As alloy increased, the central position of the low-energy PL signal decreases, while its full width at half maximum (FWHM) increases. A monotonous redshift of the PL peak was observed with increasing temperature due to the electron-phonon scattering. From the pump-probe measurement, the spin relaxation time decreases with the monolayers at higher temperatures, in agreement with the phonon energy determinate by PL measurements.

  14. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  15. Adhesive wafer bonding using a molded thick benzocyclobutene layer for wafer-level integration of MEMS and LSI

    NASA Astrophysics Data System (ADS)

    Makihata, M.; Tanaka, S.; Muroyama, M.; Matsuzaki, S.; Yamada, H.; Nakayama, T.; Yamaguchi, U.; Mima, K.; Nonomura, Y.; Fujiyoshi, M.; Esashi, M.

    2011-08-01

    This paper describes a wafer bonding process using a 50 µm thick benzocyclobutene (BCB) layer which has vias and metal electrodes. The vias were fabricated by molding BCB using a glass mold. During the molding, worm-like voids grew between BCB and the mold due to the shrinkage of polymerizing BCB. They were completely removed by subsequent reflowing in N2. After patterning Al on the reflowed BCB for the electrodes and via connections, bonding with a glass substrate was performed. Voidless bonding without damage in the vias and electrodes was achieved. Through the process, the control of the polymerization degree of BCB is important, and thus the polymerization degree was evaluated by Fourier transform infrared spectroscopy. The developed process is useful for the wafer-bonding-based integration of different devices, e.g. micro electro mechanical systems and large-scale integrated circuits.

  16. Surface charging of thick porous water ice layers in ion sputtering experiments: implications for the surfaces of icy moons

    NASA Astrophysics Data System (ADS)

    Galli, André; Vorburger, Audrey; Pommerol, Antoine; Wurz, Peter; Jost, Bernhard; Poch, Olivier; Brouet, Yann; Tulej, Marek; Thomas, Nicolas

    2016-04-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better constrain exosphere models of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected surface properties of Europa. Surface charging of these samples may distort any experimental results for ion sputtering. In this preparatory study we therefore focus on the electric properties of ice at different temperatures, in particular the time scales for charging and discharging when subjected to a beam of ions. Regarding the ion sputtering yield, our experiments yield similar results as previous experiments where thin dense ice layers were sputtered off a micro-balance. However, our experiments also allow us to derive an electric conductivity of porous ice. The results imply that electron precipitation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter.

  17. Polarized bidirectional reflectance of optically thick sparse particulate layers: An efficient numerically exact radiative-transfer solution

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Chowdhary, Jacek; Zakharova, Nadezhda T.

    2015-05-01

    We describe a simple yet efficient numerical algorithm for computing polarized bidirectional reflectance of an optically thick (semi-infinite), macroscopically flat layer composed of statistically isotropic and mirror symmetric random particles. The spatial distribution of the particles is assumed to be sparse, random, and statistically uniform. The 4×4 Stokes reflection matrix is calculated by iterating the Ambartsumian's vector nonlinear integral equation. The result is a numerically exact solution of the vector radiative transfer equation and as such fully satisfies the energy conservation law and the fundamental reciprocity relation. Since this technique bypasses the computation of the internal radiation field, it is very fast and highly accurate. The FORTRAN implementation of the technique is publicly available on the World Wide Web at

  18. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression

    PubMed Central

    Cennamo, G; Auriemma, R S; Cardone, D; Grasso, L F S; Velotti, N; Simeoli, C; Di Somma, C; Pivonello, R; Colao, A; de Crecchio, G

    2015-01-01

    Purpose The aim of this prospective study was to measure the thickness of the circumpapillary retinal nerve fibre layer (cpRNFL) and the ganglion cell complex (GCC) using spectral domain optical coherence tomography (SD-OCT) in a cohort of consecutive de novo patients with pituitary macroadenomas without chiasmal compression. Patients and methods Twenty-two consecutive patients with pituitary macroadenoma without chiasmal compression (16 men, 6 women, aged 45.2±14.6 years, 43 eyes) entered the study between September 2011 and June 2013. Among them, 31.8% harboured a growth hormone-secreting pituitary adenoma, 27.3% a prolactin-secreting pituitary adenoma, 27.3% a corticotrophin-secreting pituitary adenoma, and 13.6% a non-secreting pituitary tumour. Eighteen subjects (nine females, nine males, mean age 36.47±6.37 years; 33 eyes) without pituitary adenoma, with normal ophthalmic examination, served as controls. In both patients and controls, cpRNFL and GCC thicknesses were measured by SD-OCT. Results Patients were significantly older (P=0.02) than controls. Best corrected visual acuity, intraocular pressure, colour fundus photography, and automatic perimetry test were within the normal range in patients and controls. Conversely, cpRNFL (P=0.009) and GCC (P<0.0001) were significantly thinner in patients than in controls. The average GCC (r=0.306, P=0.046) significantly correlated with the presence of arterial hypertension. OCT parameters did not differ significantly between patients with a tumour volume above the median and those with a tumour volume below the median. Conclusion Pituitary macroadenomas, even in the absence of chiasmal compression, may induce GCC and retinal nerve fibre layer thinning. SD-OCT may have a role in the early diagnosis and management of patients with pituitary tumours. PMID:25853400

  19. Structural Measurements for Monitoring Change in Glaucoma: Comparing Retinal Nerve Fiber Layer Thickness With Minimum Rim Width and Area

    PubMed Central

    Gardiner, Stuart K.; Boey, Pui Yi; Yang, Hongli; Fortune, Brad; Burgoyne, Claude F.; Demirel, Shaban

    2015-01-01

    Purpose Minimum rim width (MRW) and area (MRA) have been introduced as anatomically defensible measures of neuroretinal rim tissue observable using spectral-domain optical coherence tomography (SDOCT). They have been reported to change earlier than retinal nerve fiber layer thickness (RNFLT) in glaucoma. This study sought to determine which is better to distinguish subsequent change from variability, using the previously described longitudinal signal-to-noise ratio (LSNR). Methods Data from 157 eyes of 157 participants with high-risk ocular hypertension or non–end-stage glaucoma (mean deviation [MD] from −22 to +3 dB) were used. Participants were tested approximately every 6 months for at least six visits. For each eye, MRW, MRA, and RNFLT were regressed linearly against time. Longitudinal signal-to-noise ratio for each eye was defined as the rate of change over time (signal) divided by the standard deviation of residuals from this trend (noise). These were compared between parameters using a Wilcoxon signed rank test. Results The median LSNRs were −0.58y−1 for RNFLT (bootstrapped 95% confidence interval −0.69 to −0.48y−1); −0.44y−1 (−0.59 to −0.32y−1) for MRW; and −0.23y−1 (−0.32 to −0.08y−1) for MRA. Longitudinal signal-to-noise ratios were significantly more negative for RNFLT than for MRW (P = 0.025) or for MRA (P < 0.001). Conclusions Retinal nerve fiber layer thickness measured by SDOCT had a better LSNR than MRW or MRA. Although MRW and MRA may be more sensitive for early detection of glaucomatous damage, these data suggest that RNFLT may be preferable for monitoring change. PMID:26501416

  20. Dependence of ohmic contact properties on AlGaN layer thickness for AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Takei, Yusuke; Tsutsui, Kazuo; Saito, Wataru; Kakushima, Kuniyuki; Wakabayashi, Hitoshi; Iwai, Hiroshi

    2016-04-01

    The dependence of ohmic contact resistance on the AlGaN layer thickness was evaluated for AlGaN/GaN high-electron-mobility transistor (HEMT) structures. Mo/Al/Ti contacts were formed on AlGaN layers with various thicknesses. The observed resistance characteristics are discussed on the basis of a model in which the overall contact resistance is composed of a series of three resistance components. Different dependences on the AlGaN layer thickness was observed after annealing at low temperatures (800-850 °C) and at high temperatures (900-950 °C). It was determined that lowering the resistance at the metal/AlGaN interface and that of the AlGaN layer is important for obtaining low-resistance ohmic contacts.

  1. Simultaneous estimation of thickness and refractive index of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography system.

    PubMed

    Yao, Jianing; Huang, Jinxin; Meemon, Panomsak; Ponting, Michael; Rolland, Jannick P

    2015-11-16

    A hybrid confocal-scan swept-source optical coherence tomography metrology system was conceived for simultaneous measurements of the refractive index and thickness profiles of polymeric layered gradient refractive index (GRIN) optics. An uncertainty analysis predicts the metrology capability of the system and guides the selection of an optimum working numerical aperture. Experimental results on both a monolithic and a GRIN layered sheet are demonstrated to be in close agreement with theoretical predictions. Index measurement precision reached 0.0001 and 0.0008 for measuring 2.8 mm and ~300 µm thick layers, respectively. The thicknesses of these layers were simultaneously measured with a precision of 0.28 and 0.17 µm, respectively.

  2. Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

    PubMed Central

    Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.

    2014-01-01

    Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773

  3. Nanorheology of adsorbed polymer chains immersed in pure solvent.

    PubMed

    Lapique, Fabrice; Montfort, Jean Pierre; Derail, Christophe

    2015-06-01

    Long linear chains of polybutadiene are adsorbed on the two surfaces of a surface force apparatus and immersed in pure tetradecane. The hydrodynamic force was measured by drainage experiments and by frequency sweeps at constant distances. We related the hydrodynamic thickness to the chain dimension. The complex modulus encompasses the shear modulus and, at distances lower than the hydrodynamic thickness, a compression modulus. The compression term was related to the static force which appears when the two adsorbed layers are overlapped. The complex shear modulus was interpreted by a two-components hydrodynamic model proposed by P. Sens et al. We first complemented the theoretical model. Then, our experimental data fit the proposed viscoelastic expressions in the entire range of distances. The storage modulus is supposed to be affected by a residue of free chains and by the dispersion of the loop lengths. PMID:26087919

  4. Non-cellulosic polysaccharides help to reveal the history of thick organic surface layers on calcareous Alpine soils

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Spielvogel, Sandra

    2015-04-01

    We investigated the potential of non-cellulosic polysaccharides (NCP) as biomarkers to identify the plant types that dominate present and past litter input into organic surface covers on calcareous Alpine soils and to reveal historic vegetation changes. At two sites in the Alps, NCP monomers were quantified in different organs of site-dominating plants, the Oa horizon of four Folic Leptosols, and different sections of thick organic surface layers of four Folic Histosols on calcareous bedrock. The dominating plant types at our study sites differ markedly in their NCP composition and (galactose + mannose)/(arabinose + xylose) [GM/AX] ratio (grasses and sedges: 0.2; dicots Fagus and Vaccinium: 0.2-0.6; conifers Abies, Picea, Pinus: 0.7-2.4; mosses: 5). For all except one soil, the NCP signature of the uppermost Oa horizon reflects the present vegetation. For all Histosol O horizons, NCP signatures indicate a dominance of conifer litter throughout their development (up to 1,500 years). Different NCP and GM/AX depth profiles reflect specific patterns of O layer genesis. From those results we conclude that NCP and GM/AX depth profiles in organic surface covers of soils provide important information about dominating litter sources in the past and can be valuable tools to reveal historic vegetation and/ or land use changes.

  5. THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL

    SciTech Connect

    Brinkman, K

    2009-01-08

    Mixed conductive oxides are a topic of interest for applications in oxygen separation membranes as well as use in producing hydrogen fuel through the partial oxidation of methane. The oxygen flux through the membrane is governed both by the oxygen ionic conductivity as well as the material's electronic conductivity; composite membranes like Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO)-CoFe{sub 2}O{sub 4} (CFO) use gadolinium doped ceria oxides as the ionic conducting material combined with cobalt iron spinel which serves as the electronic conductor. In this study we employ {approx} 50 nm sputtered CeO{sub 2} layers on the surface of porous CGO ceramic substrates which serve as solution 'blocking' layers during the thin film fabrication process facilitating the control of film thickness. Films with thickness of {approx} 2 and 4 microns were prepared by depositing 40 and 95 separate sol-gel layers respectively. Oxygen flux measurements indicated that the permeation increased with decreasing membrane thickness; thin film membrane with thickness on the micron level showed flux values an order of magnitude greater (0.03 {micro}mol/cm{sup 2} s) at 800 C as compared to 1mm thick bulk ceramic membranes (0.003 {micro}mol/cm{sup 2}).

  6. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-Xin; Kong, Xianghua; Qiao, Jingsi; Normand, Bruce; Ji, Wei

    2016-01-01

    Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D systems. Indeed, these couplings call into question whether the stacking of FLBP can be governed only by vdW interactions, which is of crucial importance for epitaxy and property refinement. Here, we perform a theoretical investigation of the vibrational properties of FLBP, which reflect directly its interlayer coupling, by discussing six Raman-observable phonons, including three optical, one breathing and two shear modes. With increasing sample thickness, we find anomalous redshifts of the frequencies for each optical mode but a blueshift for the armchair shear mode. Our calculations also show splitting of the phonon branches, due to anomalous surface phenomena, and strong phonon-phonon coupling. By computing uniaxial stress effects, inter-atomic force constants and electron densities, we provide a compelling demonstration that these properties are the consequence of strong and highly directional interlayer interactions arising from the electronic hybridization of the lone electron-pairs of FLBP, rather than from vdW interactions. This exceptional interlayer coupling mechanism controls the stacking stability of BP layers and thus opens a new avenue beyond vdW epitaxy for understanding the design of 2D heterostructures.Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D

  7. Remotely Sensed Active Layer Thickness (ReSALT) from InSAR data near Toolik Lake in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Liu, L.; Schaefer, K. M.; Parsekian, A.; Jafarov, E. E.; Zebker, H. A.; Zhang, T.

    2014-12-01

    Toolik Field Station is built on spatially continuous permafrost on the north slope of Alaska. Seasonal surface subsidence and uplift occurs in permafrost regions due to thaw settlement and frost heave as the active layer thaws and refreezes. Using L-band (23.6 cm wavelength) InSAR data from ALOS-PALSAR acquired between 2006 and 2010, we use a small-baseline subset (SBAS) method to estimate seasonal surface subsidence and retrieve fine-resolution maps of active layer thickness (ALT) for a ~25x25 km area surrounding Toolik Field Station (located at 68.63°N, -149.60°E). We compare these remotely sensed ALT (ReSALT) results with in situ data from: 1) the Circumpolar Active Layer Monitoring (CALM) network showing mean ALT of ~40-50 cm in the region surrounding Toolik Field Station, corresponding to seasonal subsidence of 1 to 2 cm, and 2) mechanical probing measurements of ALT, obtained during field work in the study area in August 2014. We also solve for secular subsidence trends from the InSAR data. The trends are close to zero in most places, but larger subsidence trends in some isolated areas could be due to thermokarst processes (long-term thawing of ice-rich permafrost). We note, however, that downslope motion due to gelifluction cannot be separated from vertical thermokarst-related deformation without incorporating InSAR measurements from multiple look angles. Two key limitations to our method are the spatial variability of volumetric soil moisture content and the accuracy of the DEM needed to correct for topographic effects. We investigate the use of bulk volumetric water content inferred from ground-penetrating radar (GPR) data to improve the ReSALT retrieval algorithm. We also quantify the effect of DEM accuracy on ReSALT uncertainties, leads to requirements for DEM accuracy in InSAR-based ALT retrieval.

  8. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    SciTech Connect

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.; Mohapatra, Y. N.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.

  9. Reflectivity studies on adsorbed block copolymers under shear

    SciTech Connect

    Smith, G.S.; Wages, S.; Baker, S.M.; Toprakcioglu, C.; Hadziioannou, G.

    1994-12-01

    The authors report neutron reflectivity data on (poly)styrene-(poly)ethylene oxide (PS-PEO) diblock copolymers adsorbed onto quartz from the selective solvent cyclohexane (a non-solvent for PEO and a poor solvent for PS). The PEO ``anchor block`` adsorbs strongly to form a thin layer on the quartz substrate, while the deuterated PS chains dangle into the solvent. They find that under static conditions the density profile of the PS block in a poor solvent can be well described by a Schultz function which is indicative of a polymer ``mushroom.`` Furthermore, they have studied the same system under shear at shear rates from 0--400s{sup {minus}1}. They find that there is a dramatic increase in the thickness of the PS layer under shear in cyclohexane and that the relaxation time from the shear-on profile back to the static profile is on the order of several days.

  10. Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jincheng; Shi, Chengwu; Chen, Junjun; Wang, Yanqing; Li, Mingqian

    2016-06-01

    In this paper, the ultra-thin and high-quality WO3 compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO3 and TiO2 compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO2 compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO3 and TiO2 compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO3 compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO2 compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency.

  11. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  12. Effect of boundary layer thickness before the flow separation on aerodynamic characteristics and heat transfer behind an abrupt expansion in a round tube

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Bogatko, T. V.

    2008-03-01

    Results of numerical investigation of the boundary layer thickness on turbulent separation and heat transfer in a tube with an abrupt expansion are shown. The Menter turbulence model of shear stress transfer implemented in Fluent package was used for calculations. The range of Reynolds numbers was from 5·103 to 105. The air was used as the working fluid. A degree of tube expansion was ( D 2/ D 1)2 = 1.78. A significant effect of thickness of the separated boundary layer both on dynamic and thermal characteristics of the flow is shown. In particular, it was found that with an increase in the boundary layer thickness the recirculation zone increases, and the maximum heat transfer coefficient decreases.

  13. Last Decade of Changes in Ground Temperature and Active Layer Thickness in the High Canadian Arctic and in Barrow

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Walker, D. A.; Yoshikawa, K.; Marchenko, S. S.

    2013-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Most of the permafrost observatories in the Northern Hemisphere show substantial warming of permafrost since circa 1980-1990. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C. Permafrost is already thawing within the southern part of the permafrost domain. However, recent observations documented propagation of this process northward into the continuous permafrost zone. The close proximity of the exceptionally icy soil horizons to the ground surface, which is typical for the arctic tundra biome, makes tundra surfaces extremely sensitive to the natural and human-made changes that may resulted in development of processes such as thermokarst, thermal erosion, and retrogressive thaw slumps that strongly affect the stability of ecosystems and infrastructure. In 2003-2005, three Ecological Permafrost Observatories where established in the High Canadian Arctic (Green Cabin on the Banks Island, Mould Bay on the Prince Patrick Island, and Isachsen on the Ellef Ringnes Island) as a part of the University of Alaska Fairbanks NSF funded Biocomplexity Project. These observatories represent the northern part of the North American Arctic Transect (NAAT) established as a result of this project. The climatic and ground temperature data collected at these observatories show a general warming trend similar to what has been observed at the other locations in the North American Arctic. An important result of this resent warming is a significant increase in the active layer thickness (ALT) during the last decade. For example, ALT at the Isachsen observatory increased from 0.4-0.42 m in 2005 to 0.54 m in 2012. The maximum ALT of 0.58 m was recorded in 2008. In a shallow excavation across an ice wedge at the Isachsen site, we estimated that the top of the ice wedge ice was located at 42

  14. Medium energy ion scattering for the high depth resolution characterisation of high-k dielectric layers of nanometer thickness

    NASA Astrophysics Data System (ADS)

    van den Berg, J. A.; Reading, M. A.; Bailey, P.; Noakes, T. Q. C.; Adelmann, C.; Popovici, M.; Tielens, H.; Conard, T.; de Gendt, S.; van Elshocht, S.

    2013-09-01

    Medium energy ion scattering (MEIS) using, typically, 100-200 keV H+ or He+ ions derives it ability to characterise nanolayers from the fact that the energy after backscattering depends (i) on the elastic energy loss suffered in a single collision with a target atom and (ii) on the inelastic energy losses on its incoming and outgoing trajectories. From the former the mass of the atom can be determined and from the latter its depth. Thus MEIS yields depth dependent compositional and structural information, with high depth resolution (sub-nm near the surface) and good sensitivity for all but the lighter masses. It is particularly well suited for the depth analysis of high-k multilayers of nanometer thickness. Accurate quantification of the depth distributions of atomic species can be obtained using suitable spectrum simulation. In the present paper, important aspects of MEIS including quantification, depth resolution and spectrum simulation are briefly discussed. The capabilities of the technique in terms of the high depth resolution layer compositional and structural information it yields, is illustrated with reference to the detailed characterisation of a range of high-k nanolayer and multilayer structures for current microelectronic devices or those still under development: (i) HfO2 and HfSiOx for gate dielectric applications, including a TiN/Al2O3/HfO2/SiO2/Si structure, (ii) TiN/SrTiO3/TiN and (iii) TiO2/Ru/TiN multilayer structures for metal-insulator-metal capacitors (MIMcaps) in DRAM applications. The unique information provided by the technique is highlighted by its clear capability to accurately quantify the composition profiles and thickness of nanolayers and complex multilayers as grown, and to identify the nature and extent of atom redistribution (e.g. intermixing, segregation) during layer deposition, annealing and plasma processing. The ability makes it a valuable tool in the development of the nanostructures that will become increasingly important as

  15. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    SciTech Connect

    Singh, M. J.; Hemsworth, R.; Boilson, D.; De Esch, H. P. L.

    2015-04-08

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D{sup +}, D{sub 2}{sup +}, D{sub 3}{sup +} or H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D{sub 2}{sup +}, H{sub 2}{sup +} and D{sup +}, H{sup +} ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 10{sup 7} s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 10{sup 6} s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  16. The Effect of the Inlet Mach Number and Inlet-boundary-layer Thickness on the Performance of a 23 Degree Conical-diffuser-tail-pipe Combination

    NASA Technical Reports Server (NTRS)

    Persh, Jerome

    1950-01-01

    An investigation was conducted to determine the effect of the inlet Mach number and entrance-boundary-layer thickness on the performance of a 23 degree 21-inch conical-diffuser - tail-pipe combination with a 2:1 area ratio. The air flows used in this investigation covered an inlet Mach number range from 0.17 to 0.89 and corresponding Reynolds numbers of 1,700,000 to 7,070,000. Results are reported for two inlet-boundary-layer thicknesses. Over the entire range of flows, the mean value of the inlet displacement thickness is about 0.034 inch for the thinner inlet boundary layer and about 0.170 inch for the case of the thicker inlet boundary layer. The performance of the diffuser - tail-pipe combination is presented together with examples of longitudinal static-pressure distribution and the results of boundary-layer pressure surveys made at six points along the diffuser wall. The results indicated a progressive diminution of the static-pressure recovery and a steady increase in the total-pressure losses as the inlet Mach number was increased for both inlet-boundary-layer thicknesses. The ratio of actual static-pressure rise to that theoretically possible was much less and the total-pressure losses were greater for the case of the thicker inlet boundary layer throughout the speed range investigated. With the thinner inlet boundary layer, flow separation occurred at the diffuser exit at all inlet Mach numbers.Unseparated flow alternating with separated flow was observed near the inlet at the higher velocities. For the case of the thicker inlet boundary layer, the origin of the separated region occurred in the vicinity of the inlet-duct-diffuser junction section at all Mach numbers.

  17. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method.

    PubMed

    Pan, Huang-Wei; Wang, Shun-Jin; Kuo, Ling-Chi; Chao, Shiuh; Principe, Maria; Pinto, Innocenzo M; DeSalvo, Riccardo

    2014-12-01

    Crystallization following thermal annealing of thin film stacks consisting of alternating nm-thick titania/silica layers was investigated. Several prototypes were designed, featuring a different number of titania/silica layer pairs, and different thicknesses (in the range from 4 to 40 nm, for the titania layers), but the same nominal refractive index (2.09) and optical thickness (a quarter of wavelength at 1064 nm). The prototypes were deposited by ion beam sputtering on silicon substrates. All prototypes were found to be amorphous as-deposited. Thermal annealing in air at progressive temperatures was subsequently performed. It was found that the titania layers eventually crystallized forming the anatase phase, while the silica layers remained always amorphous. However, progressively thinner layers exhibited progressively higher threshold temperatures for crystallization onset. Accordingly it can be expected that composites with thinner layers will be able to sustain higher annealing temperatures without crystallizing, and likely yielding better optical and mechanical properties for advanced coatings application. These results open the way to the use of materials like titania and hafnia, that crystallize easily under thermal anneal, but ARE otherwise promising candidate materials for HR coatings necessary for cryogenic 3rd generation laser interferometric gravitational wave detectors. PMID:25606914

  18. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    NASA Astrophysics Data System (ADS)

    Kozioł-Rachwał, Anna; Nozaki, Takayuki; Zayets, Vadym; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Suzuki, Yoshishige

    2016-08-01

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes in the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.

  19. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  20. Geophysical Investigations on Malta (Central Mediterranean) using Ambient Noise: Assessing Array Performance and Influence of a Thick Low Velocity Layer.

    NASA Astrophysics Data System (ADS)

    Farrugia, D.; Paolucci, E.; D'Amico, S.; Galea, P. M.

    2014-12-01

    The use of microtremors to obtain shear wave velocity (Vs) profiles of the subsurface is becoming a widespread approach due to its various advantages. Noise measurements were carried out at four sites on Malta (Central Mediterranean). Array techniques were first tested in an area where a ≈45 m layer of soft Blue Clay (BC) overlies the harder limestone. Three array configurations (two arrays of 17 geophones in an L-shape and circle respectively and one 42 geophone array in an L-shape) were tested and processed using the f-k and two SPAC techniques: Modified and Extended SPAC. No significant difference was observed in the dispersion curve from the two short arrays despite having different shapes. However, a significant variation was observed between the dispersion curve from the long and short arrays in the low frequency part. A joint inversion, using two direct search methods, of the dispersion and the H/V curve was then used to obtain the Vs profile for the site, with most of the profiles being in agreement both in terms of velocity and depth. A study was also conducted at three other sites on Malta where hard Upper Coralline Limestone (UCL) overlies the soft BC creating a velocity inversion in the soil profile. The shape of the effective dispersion curves obtained using ESAC show both an inverse dispersive trend and normal dispersion. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves. A Genetic Algorithm approach was then used to jointly invert the H/V and Rayleigh wave dispersion curve. It was observed that the BC velocity was higher when overlain by a large thickness of UCL. This could be linked to the effective pressure caused by the hard UCL, making the BC more compact, and having a higher velocity. The theoretical implications of a prominent low-velocity layer on site amplification and the interpretation of ambient noise data are investigated and discussed.

  1. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.

    PubMed

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2015-02-01

    To meet the need of efficient, comprehensive and automatic characterization of the properties of thin layers, a nondestructive method using ultrasonic testing to simultaneously measure thickness, density, sound velocity and attenuation through V(z,t) data, recorded by time-resolved acoustic microscopy is proposed. The theoretical reflection spectrum of the thin layer at normal incidence is established as a function of three dimensionless parameters. The measured reflection spectrum R(θ,ω) is obtained from V(z,t) data and the measured thickness is derived from the signals when the lens is focused on the front and back surface of the thin layer, which are picked up from the V(z,t) data. The density, sound velocity and attenuation are then determined by the measured thickness and inverse algorithm utilizing least squares method to fit the theoretical and measured reflection spectrum at normal incidence. It has the capability of simultaneously measuring thickness, density, sound velocity and attenuation of thin layer in a single V(z,t) acquisition. An example is given for a thin plate immersed in water and the results are satisfactory. The method greatly simplifies the measurement apparatus and procedures, which improves the efficiency and automation for simultaneous measurement of basic mechanical and geometrical properties of thin layers.

  2. Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering

    PubMed Central

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468

  3. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    PubMed

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  4. Chitosan membrane adsorber for low concentration copper ion removal.

    PubMed

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  5. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    SciTech Connect

    Yang, J.; Zhao, D. G. Jiang, D. S.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Le, L. C.; Li, X. J.; He, X. G.; Liu, J. P.; Yang, H.; Zhang, Y. T.; Du, G. T.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, and therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.

  6. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    SciTech Connect

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  7. Perimetry, Retinal Nerve Fiber Layer Thickness and Papilledema Grade after Cerebrospinal Fluid Shunting in Patients with Idiopathic Intracranial Hypertension

    PubMed Central

    Rizzo, Jennifer L.; Lam, Khoa V.; Wall, Michael; Wilson, Machelle D.; Keltner, John L.

    2016-01-01

    Objective To investigate the effect of cerebrospinal fluid (CSF) shunting on quantitative perimetry and papilledema in patients with uncontrolled idiopathic intracranial hypertension (IIH). Methods We retrospectively reviewed all cases of IIH with CSF shunting at our institution between 2004 and 2011. Perimetry was performed before and after surgery in 15 patients, and the mean deviation (MD) was compared before and after surgery to assess for the effect of the intervention. Results Fourteen of the IIH patients were female and one was male. The average age was 34 years. CSF shunting resulted in significant improvement in the perimetry results with an increase in the MD of 5.63 ± 1.19 dB (p<0.0001). Additionally, average retinal nerve fiber layer (RNFL) thickness measurement by optical coherence tomography (OCT) decreased by 87.27 ± 16.65 μm (p<0.0001), and Frisen papilledema grade decreased by 2.19 ± 0.71 (p<0.0001). Conclusion Our results suggest that CSF shunting results in improvement in perimetry, RNFL swelling, and papilledema grade in patients with IIH. PMID:25295682

  8. Thermoelectric properties of FeAs based superconductors, with thick perovskite- and Sm-O fluorite-type blocking layers

    NASA Astrophysics Data System (ADS)

    Singh, S. J.; Shimoyama, J.; Ogino, H.; Kishio, K.

    2015-11-01

    The transport properties (electrical resistivity, Hall and Seebeck coefficient, and thermal conductivity) of iron based superconductors with thick perovskite-type oxide blocking layers and fluorine-doped SmFeAsO were studied to explore their possible potential for thermoelectric applications. The thermal conductivity of former compounds depicts the dominated role of phonon and its value decreases rapidly below the Tc, suggesting the addition of scattering of phonons. Both the Seebeck coefficient (S) and Hall coefficient (RH) of all samples were negative in the whole temperature region below 300 K, indicating that the major contribution to the normal state conductivity is by electrons. In addition, the profile of S(T) and RH(T) of all samples have similar behaviours as would be expected for a multi-band superconductors. Although the estimated thermoelectric figure of merit (ZT) of these compounds was much lower than that of practically applicable thermoelectric materials, however its improvement can be expected by optimizing microstructure of the polycrystalline materials, such as densification and grain orientation.

  9. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    NASA Astrophysics Data System (ADS)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A “Y” shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  10. Surface photovoltage and photoluminescence study of thick Ga(In)AsN layers grown by liquid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Donchev, V.; Milanova, M.; Lemieux, J.; Shtinkov, N.; Ivanov, I. G.

    2016-03-01

    We present an experimental and theoretical study of Ga(In)AsN layers with a thickness of around 1 μm grown by liquid-phase epitaxy (LPE) on n-type GaAs substrates. The samples are studied by surface photovoltage (SPV) spectroscopy and by photoluminescence spectroscopy. Theoretical calculations of the electronic structure and the spectral dependence of the dielectric function are carried out for different nitrogen concentrations using a full-band tight-binding approach in the sp3d5s*sN parameterisation. The SPV spectra measured at room temperature clearly show a red shift of the absorption edge with respect to the absorption of the GaAs substrate. This shift, combined with the results of the theoretical calculations, allows assessing the nitrogen concentration in different samples. The latter increases with increasing the In content. The analysis of the SPV phase spectra provides information about the alignment of the energy bands across the structures. The photoluminescence measurements performed at 2 K show a red shift of the emission energy with respect to GaAs, in agreement with the SPV results.

  11. Effects of Misalignments in the Retinal Nerve Fiber Layer Thickness Measurements with Spectral Domain Optical Coherence Tomography

    PubMed Central

    Barella, Kleyton A.; Cremasco, Fernanda; Costa, Vital P.

    2014-01-01

    Purpose. To investigate misalignments (MAs) on retinal nerve fiber layer thickness (RNFLT) measurements obtained with Cirrus© SD-OCT. Methods. This was a retrospective, observational, cross-sectional study. Twenty-seven healthy and 29 glaucomatous eyes of 56 individuals with one normal exam and another showing MA were included. MAs were defined as an improper alignment of vertical vessels in the en face image. MAs were classified in complete MA (CMA) and partial MA (PMA), according to their site: 1 (superior, outside the measurement ring (MR)), 2 (superior, within MR), 3 (inferior, within MR), and 4 (inferior, outside MR). We compared RNFLT measurements of aligned versus misaligned exams in all 4 sectors, in the superior area (sectors 1 + 2), inferior area (sectors 3 + 4), and within the measurement ring (sectors 2 + 3). Results. RNFLT measurements at 12 clock-hour of eyes with MAs in the superior area (sectors 1 + 2) were significantly lower than those obtained in the same eyes without MAs (P = 0.043). No significant difference was found in other areas (sectors 1 + 2 + 3 + 4, sectors 3 + 4, and sectors 2 + 3). Conclusion. SD-OCT scans with superior MAs may present lower superior RNFLT measurements compared to aligned exams. PMID:25574381

  12. Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release.

    PubMed

    Callen, B W; Lowenberg, B F; Lugowski, S; Sodhi, R N; Davies, J E

    1995-03-01

    Passivation of Ti6Al4V and cpTi implants using methods based on the ASTM-F86 nitric acid protocol are used with the intention of reducing their surface reactivity, and consequently the corrosion potential, in the highly corrosive biologic milieu. The ASTM-F86 passivation protocol was originally developed for surgical implants made of stainless steel and chrome cobalt alloy. Using X-ray photoelectron spectroscopy (XPS) to examine the effect of nitric acid passivation on the surface oxide layer of mill-annealed Ti6Al4V and cpTi, we have found that such treatment actually reduced the oxide thickness on the alloy while having no significant effect on the pure metal. These results correlated with observations obtained using graphite furnace atomic absorption spectrophotometry (GFAAS) to detect trace element release from solid, mill-annealed, Ti6Al4V and cpTi into serum-containing culture medium. We detected significantly greater levels of Ti, Al, and V in the presence of passivated compared to nonpassivated Ti6Al4V. In contrast, nitric acid passivation did not influence Ti release from mill-annealed cpTi. These results, derived from two mill-annealed Ti-based metals, would indicate that re-examination of ASTM-F86-based passivation protocols with respect to Ti6Al4V should be considered in view of the widespread use of this alloy for biomedical devices. PMID:7615579

  13. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1). PMID:25783194

  14. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1).

  15. Early hardness and shear bond strength of dual-cure resin cement light cured through resin overlays with different dentin-layer thicknesses.

    PubMed

    Chang, H-S; Kim, J-W

    2014-01-01

    The purpose of this study was to investigate whether dentin-layer thickness of resin overlays could affect the early hardness and shear bond strength of dual-cure resin cement (DCRC, RelyX ARC) after light curing with light curing units (LCUs) of various power densities: Optilux 360 (360), Elipar Freelight 2 (FL2), and Elipar S10 (S10). Resin overlays were fabricated using an indirect composite resin (Sinfony) with a dentin layer, an enamel layer, and a translucent layer of 0.5 mm thickness each (0.5-0.5-0.5) or of 0.2 mm, 0.5 mm, and 0.8 mm thickness (0.2-0.5-0.8), respectively. The DCRC was light cured for 40 seconds through the overlays, and surface hardness and shear bond strength to bovine dentin were tested 10 minutes after the start of light curing. Surface hardness was higher when the DCRC was light cured through the 0.2-0.5-0.8 combination than when the DCRC was light cured through the 0.5-0.5-0.5 combination with all LCUs. The ratio of upper surface hardness of DCRC light cured through resin overlays relative to the upper surface hardness of DCRC light cured directly was more than 90% only when the DCRC was light cured with S10 through the 0.2-0.5-0.8 combination. The shear bond strength value was higher when the DCRC was light cured with S10 through the 0.2-0.5-0.8 combination than when light cured with S10 through the 0.5-0.5-0.5 combination. This study indicates that reducing the dentin-layer thickness while increasing the translucent-layer thickness of resin inlays can increase the photopolymerization of DCRC, thereby increasing the early bond strength of resin inlays to dentin.

  16. Effects of hemodialysis on macular and retinal nerve fiber layer thicknesses in non-diabetic patients with end stage renal failure

    PubMed Central

    Atilgan, Cemile U.; Guven, Dilek; Akarsu, Ozge P.; Sakaci, Tamer; Sendul, Selam Y.; Baydar, Yasemin; Atilgan, Kadir G.; Turker, Ibrahim C.

    2016-01-01

    Objectives: To evaluate the thicknesses of retinal nerve fiber layer (RNFL) and macula by fourier-domain (FD) optical coherence tomography (OCT) in non-diabetic patients with end-stage-renal-failure (ESRF) undergoing hemodialysis (HD). Methods: This is a prospective and observational study. Both eyes of 20 patients receiving HD (group 1) and 34 control patients (group 2) were evaluated by FD-OCT. Macular and RNFL thicknesses were compared between groups and their correlation with age, duration of HD, and gender were examined. In group 1, macular and RNFL thicknesses were evaluated before and shortly after HD in the first day, first and sixth months. Results: In group 1, pre-HD temporal, inferior, average RNFL thicknesses were thinner than group 2. This thinning did not correlate with duration of HD, age and gender. Pre-HD macular thicknesses were thinner than group 2. These thinnings did not correlate with age, but the thinnings at superior, nasal and average thickness correlated negatively with duration of HD. Nasal, temporal, and average macular thicknesses were thinner in female patients. The thickenings of RNFL and macula that were observed in the after HD first day and first month did not showed consistency in the sixth month except superior quadrant RNFL. Conclusion: Macular and RNFL thicknesses of patients receiving HD were less than the normal population. Age has no effect on these thinnings. The duration of HD affects more than gender. Hemodialysis session causes a consistent increase in superior quadrant RNFL. PMID:27279510

  17. Surface barrier height for different Al compositions and barrier layer thicknesses in AlGaN/GaN heterostructure field effect transistors

    SciTech Connect

    Goyal, Nitin Fjeldly, Tor A.; Iniguez, Benjamin

    2013-12-04

    In this paper, we present a physics based analytical model for the calculation of surface barrier height for given values of barrier layer thicknesses and Al mole fractions. An explicit expression for the two dimensional electron gas density is also developed incorporating the change in polarization charges for different Al mole fractions.

  18. Influence of water-layer thickness on Er:YAG laser ablation of enamel of bovine anterior teeth.

    PubMed

    Mir, Maziar; Meister, Joerg; Franzen, Rene; Sabounchi, Shabnam S; Lampert, Friedrich; Gutknecht, Norbert

    2008-10-01

    Different ideas have been presented to describe the mechanism of augmented laser ablation of dental enamel with different shapes by adding water to the working environment. In this study, the influence of water-laser interaction on the surface of enamel during ablation was investigated at a wavelength of 2.94 microm with different distances between the laser tip and the enamel surface. A motion-control system was used to produce linear incisions uniformly on flat enamel surfaces of bovine anterior teeth, with free-running Er:YAG laser very short pulses (pulse length = 90-120 micros, repetition rate = 10 pulses per second). Four different output energies (100, 200, 300 and 400 mJ) were radiated on samples under distilled water from different distances (0.5, 0.75, 1, 1.25, 1.75 and 2.00 mm). The tooth slices were prepared with a cutting machine, and the surfaces of the ablated areas were measured with software under a light microscope. The average and standard deviation of all cut areas in different groups were reported. There was no significant difference when using a different pulse ablation speed (cm(3)/J) and a water-layer thickness between the tip and enamel surface of 0.5-1.25 mm with energy densities of 30-60 J/cm(2) (200-400 mJ). However, using an output energy of 15 J/cm(2) (100 mJ) and a thicker water layer than 1 mm, a linear ablation did not take place. This information led to a clearer view of the efficiency of Er:YAG laser in the conditions of this study. There are several hypotheses which describe a hydrokinetic effect of Er,Cr:YSGG. These basic studies could guide us to have a correct attitude regarding hydro-mechanical effects of water, although the wavelength of 2.78 microm has a better absorption in hydroxyl branch of water molecules. Therefore, our results do not directly interrupt with the series of investigations done with Er,Cr:YSGG. Water propagation and channel formation under water are investigated during the ablation of tooth enamel with

  19. Influence of water-layer thickness on Er:YAG laser ablation of enamel of bovine anterior teeth.

    PubMed

    Mir, Maziar; Meister, Joerg; Franzen, Rene; Sabounchi, Shabnam S; Lampert, Friedrich; Gutknecht, Norbert

    2008-10-01

    Different ideas have been presented to describe the mechanism of augmented laser ablation of dental enamel with different shapes by adding water to the working environment. In this study, the influence of water-laser interaction on the surface of enamel during ablation was investigated at a wavelength of 2.94 microm with different distances between the laser tip and the enamel surface. A motion-control system was used to produce linear incisions uniformly on flat enamel surfaces of bovine anterior teeth, with free-running Er:YAG laser very short pulses (pulse length = 90-120 micros, repetition rate = 10 pulses per second). Four different output energies (100, 200, 300 and 400 mJ) were radiated on samples under distilled water from different distances (0.5, 0.75, 1, 1.25, 1.75 and 2.00 mm). The tooth slices were prepared with a cutting machine, and the surfaces of the ablated areas were measured with software under a light microscope. The average and standard deviation of all cut areas in different groups were reported. There was no significant difference when using a different pulse ablation speed (cm(3)/J) and a water-layer thickness between the tip and enamel surface of 0.5-1.25 mm with energy densities of 30-60 J/cm(2) (200-400 mJ). However, using an output energy of 15 J/cm(2) (100 mJ) and a thicker water layer than 1 mm, a linear ablation did not take place. This information led to a clearer view of the efficiency of Er:YAG laser in the conditions of this study. There are several hypotheses which describe a hydrokinetic effect of Er,Cr:YSGG. These basic studies could guide us to have a correct attitude regarding hydro-mechanical effects of water, although the wavelength of 2.78 microm has a better absorption in hydroxyl branch of water molecules. Therefore, our results do not directly interrupt with the series of investigations done with Er,Cr:YSGG. Water propagation and channel formation under water are investigated during the ablation of tooth enamel with

  20. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  1. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  2. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets

    PubMed Central

    Gangodagamage, Chandana; Rowland, Joel C; Hubbard, Susan S; Brumby, Steven P; Liljedahl, Anna K; Wainwright, Haruko; Wilson, Cathy J; Altmann, Garrett L; Dafflon, Baptiste; Peterson, John; Ulrich, Craig; Tweedie, Craig E; Wullschleger, Stan D

    2014-01-01

    Landscape attributes that vary with microtopography, such as active layer thickness (ALT), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r2 = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT, consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data. PMID:25558114

  3. Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study

    SciTech Connect

    Mescher, Jan Mertens, Adrian; Egel, Amos; Kettlitz, Siegfried W.; Colsmann, Alexander; Lemmer, Uli

    2015-07-15

    In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effects mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.

  4. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  5. Experimental investigation on the influence of boundary layer thickness on the base pressure and near-wake flow features of an axisymmetric blunt-based body

    NASA Astrophysics Data System (ADS)

    Mariotti, Alessandro; Buresti, Guido

    2013-11-01

    The influence of the thickness of the boundary layer developing over the surface of an axisymmetric bluff body upon its base pressure and near-wake flow is analyzed experimentally. The model, whose diameter-to-length ratio is d/ l = 0.175, has a forebody with an elliptical contour and a sharp-edged flat base; it is supported above a plate by means of a faired strut. The pressure distributions over the body lateral and base surfaces were obtained using numerous pressure taps, while the boundary layer profiles and the wake velocity field were measured through hot-wire anemometry. The tests were carried out at , at which the boundary layer over the lateral surface of the body becomes turbulent before reaching the base contour. Strips of emery cloth were wrapped in various positions around the body circumference in order to modify the thickness and the characteristics of the boundary layer. The results show that increasing the boundary layer thickness causes a decrease in the base suctions and a corresponding increase in the length of the mean recirculation region present behind the body. In the spectra of the velocity fluctuations measured within and aside the wake, a dominating peak becomes evident in the region downstream of the final part of the recirculation region. The relevant non-dimensional frequency decreases with increasing boundary layer thickness; however, a Strouhal number based on the wake width and the velocity defect at a suitable reference cross section downstream of the recirculation region is found to remain almost constant for the different cases.

  6. Possible Future Changes in Permafrost and Active Layer Thickness in Northern Eurasia and their Relation to Permafrost Carbon Pool

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Romanovsky, V. E.; Chapman, W. L.; Walsh, J. E.

    2012-12-01

    Recent observations indicate a warming of permafrost in many northern regions with the resulting degradation of ice-rich and carbon-rich permafrost. Permafrost temperature has increased by 1 to 3 deg C in northern Eurasia during the last 30 years. To assess possible changes in the permafrost thermal state and the active layer thickness we implemented the GIPL2 (Geophysical Institute Permafrost Lab) transient model for the entire Northern Eurasia for the 1981-2100 time period. Input parameters to the model are spatial datasets of mean monthly air temperature, snow properties or SWE, prescribed vegetation and thermal properties of the multilayered soil column, and water content. The climate scenario was derived from an ensemble of five IPCC Global Circulation Models (GCM) ECHAM5, GFDL21, CCSM, HADcm and CCCMA. The outputs from these five models have been scaled down to 25 km spatial resolution with monthly temporal resolution, based on the composite (mean) output of the five models, using the IPCC SRES A1B CO2 emission scenario through the end of current century. Historic ground temperature measurements in shallow boreholes (3.2 m in depth) from more than 120 weather stations located within the continuous, discontinuous, and sporadic permafrost zones were available for the initial model validation and calibration. To prescribe the thermal properties we used the map of soil characteristics for whole of Russia (Stolbovoi & Savin, 2002) and the map of Soil Carbon Pools, CO2 and CH4 emissions (Tarnocai et al., 2009) and also the soil structure descriptions available for some locations. We estimated dynamics of the seasonally thawed volume of soils within the two upper meters for the entire North Eurasia. The model results indicate 1,200 km3 of seasonally unfrozen soils within the two upper meters within 10,800,000 km2 of northern Eurasian permafrost domain during the last two decades of the 20th century. Our projections have shown that unfrozen volume of soil within two

  7. Monte Carlo analysis of the influence of germanium dead layer thickness on the HPGe gamma detector experimental efficiency measured by use of extended sources.

    PubMed

    Chham, E; García, F Piñero; El Bardouni, T; Ferro-García, M Angeles; Azahra, M; Benaalilou, K; Krikiz, M; Elyaakoubi, H; El Bakkali, J; Kaddour, M

    2014-09-22

    We have carried out a study to figure out the influence of crystal inactive-layer thickness on gamma spectra measured by an HPGe detector. The thickness of this dead layer (DL) is not known (no information about it was delivered by the manufacturer) due to the existence of a transition zone where photons are increasingly absorbed. To perform this analyses a virtual model of a Canberra HPGe detector was produced with the aid of MCNPX 2.7 code. The main objective of this work is to produce an optimal modeling for our GPGe detector. To this end, the study included the analysis of the total inactive germanium layer thickness and the active volume that are needed in order to obtain the smallest discrepancy between calculated and experimental efficiencies. Calculations and measurements were performed for all of the radionuclides included in a standard calibration gamma cocktail solution. Different geometry sources were used: a Marinelli and two other new sources represented as S(1) and S(2). The former was used for the determination of the active volume, whereas the two latter were used for the determination of the face and lateral DL, respectively. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 50-1900keV energy range. the results show that the insertion of the DL parameter in the modeling is absolutely essential to reproduce the experimental results, and that the thickness of this DL varies from one position to the other on the detector surface.

  8. Effect of heavy metal layer thickness on spin-orbit torque and current-induced switching in Hf|CoFeB|MgO structures

    NASA Astrophysics Data System (ADS)

    Akyol, Mustafa; Jiang, Wanjun; Yu, Guoqiang; Fan, Yabin; Gunes, Mustafa; Ekicibil, Ahmet; Khalili Amiri, Pedram; Wang, Kang L.

    2016-07-01

    We study the heavy metal layer thickness dependence of the current-induced spin-orbit torque (SOT) in perpendicularly magnetized Hf|CoFeB|MgO multilayer structures. The damping-like (DL) current-induced SOT is determined by vector anomalous Hall effect measurements. A non-monotonic behavior in the DL-SOT is found as a function of the thickness of the heavy-metal layer. The sign of the DL-SOT changes with increasing the thickness of the Hf layer in the trilayer structure. As a result, in the current-driven magnetization switching, the preferred direction of switching for a given current direction changes when the Hf thickness is increased above ˜7 nm. Although there might be a couple of reasons for this unexpected behavior in DL-SOT, such as the roughness in the interfaces and/or impurity based electric potential in the heavy metal, one can deduce a roughness dependence sign reversal in DL-SOT in our trilayer structure.

  9. Photoacoustic spectra of malachite green adsorbed on silica gel surface

    NASA Astrophysics Data System (ADS)

    Sikorska, Anna; Zachara, Stanislaw

    1992-11-01

    Photoacoustic spectra of malachite green adsorbed on silica gel were investigated at high dye concentrations. The measurements were carried out for two markedly differing layer thicknesses of dyed silica. The ratio of maxima of two characteristic dye bands at (lambda) equals 620 nm and (lambda) equals 425 nm was chosen as an indicator of concentration dependent changes in the shapes of the photoacoustic spectra investigated. The comparison of experimental data with the theoretical model implies that the changes observed in the shape of the spectrum result first of all from the mechanism of the signal generation in inhomogeneous medium.

  10. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  11. Relation of optic disc topography and age to thickness of retinal nerve fibre layer as measured using scanning laser polarimetry, in normal subjects

    PubMed Central

    Toprak, A. B.; Yilmaz, O. F.

    2000-01-01

    AIMS—To evaluate the relation of the optic nerve head topographic measurements and age with the thickness of the retinal nerve fibre layer (RNFL) in normal Caucasoid subjects by means of scanning laser polarimetry and tomography.
METHODS—Topographic optic disc measurements and RNFL thickness values of 38 normal Caucasoid subjects of both sexes aged 20 to 78 were measured using a confocal scanning laser ophthalmoscope and a confocal scanning laser polarimeter. One eye was randomly selected for statistical analysis. The effects of optic disc size, age, and optic disc head topographic measurements of total and regional RNFL thickness were evaluated.
RESULTS—Age showed a significant correlation with the integral of the total RNFL thickness (R=−0.341, p<0.05). The optic disc size showed a significant correlation with the integral of the total, superior, and inferior quadrant RNFL thickness (R=0.425, p<0.01), (R=0.361, p<0.05), (R=0.468, p<0.05). Neuroretinal rim area (NRA) had a correlation with the superior and inferior quadrant RNFL thickness values (R=0.339, p<0.05) (R=0.393, p<0.05). There was no significant correlation between the other optic disc topographic measurements and RNFL thickness values (p>0.05).
CONCLUSION—The thickness of total as well as superior and inferior quadrant peripapillary RNFL as measured by scanning laser polarimetry increased significantly with an increase in optic disc size. The cross sectional area occupied by superior and inferior polar RNFL increased significantly with an increase in NRA. The total cross sectional area occupied by RNFL decreased significantly with an increase in age. The effects of optic disc size, age, and NRA should be considered when the peripapillary RNFL thickness is evaluated.

 PMID:10781510

  12. Investigation of High-Subsonic Performance Characteristics of a 12 Degree 21-Inch Conical Diffuser, Including the Effects of Change in Inlet-Boundary-Layer Thickness

    NASA Technical Reports Server (NTRS)

    Copp, Martin R.; Klevatt, Paul L.

    1950-01-01

    Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.

  13. Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets

    NASA Astrophysics Data System (ADS)

    Bogey, Christophe; Marsden, Olivier

    2013-05-01

    The influence of the nozzle-exit boundary-layer thickness in isothermal round jets at a Mach number of 0.9 and at diameter Reynolds numbers ReD ≃ 5 × 104 is investigated using large-eddy simulations. The originality of this work is that, contrary to previous studies on the topic, the jets are initially highly disturbed, and that the effects of the boundary-layer thickness are explored jointly on the exit turbulence, the shear-layer and jet flow characteristics, and the acoustic field. The jets originate from a pipe of radius r0, and exhibit, at the exit, peak disturbance levels of 9% of the jet velocity, and mean velocity profiles similar to laminar boundary-layer profiles of thickness δ0 = 0.09r0, 0.15r0, 0.25r0, or 0.42r0, yielding 99% velocity thicknesses between 0.07r0 and 0.34r0 and momentum thicknesses δθ(0) between 0.012r0 and 0.05r0. Two sets of computations are reported to distinguish, for the first time to the best of our knowledge, between the effects of the ratio δ0/r0 and of the Reynolds number Reθ based on δθ(0). First, four jets with a fixed diameter, hence at a constant Reynolds number ReD = 5 × 104 giving Reθ = 304, 486, 782, and 1288 depending on δ0, are considered. In this case, due to the increase in Reθ, thickening the initial shear layers mainly results in a weaker mixing-layer development with lower spreading rates and turbulence intensities, and reduced sound levels at all emission angles. Second, four jets at Reynolds numbers ReD between 1.8 × 104 and 8.3 × 104, varying so as to obtain Reθ ≃ 480 in all simulations, are examined. Here, increasing δ0/r0 has a limited impact on the mixing-layer key features, but clearly leads to a shorter potential core, a more rapid velocity decay, and higher fluctuations on the jet axis, and stronger noise in the downstream direction. Similar trends can be expected for high-Reynolds-number jets in which viscosity plays a negligible role.

  14. Sensitivity of dual-wall structures under hypervelocity impact to multi-layer thermal insulation thickness and placement

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.

  15. Effectiveness of the statistical potential in the description of fermions in a worm-algorithm path-integral Monte Carlo simulation of 3He atoms placed on a 4He layer adsorbed on graphite.

    PubMed

    Ghassib, Humam B; Sakhel, Asaad R; Obeidat, Omar; Al-Oqali, Amer; Sakhel, Roger R

    2012-01-01

    We demonstrate the effectiveness of a statistical potential (SP) in the description of fermions in a worm-algorithm path-integral Monte Carlo simulation of a few 3He atoms floating on a 4He layer adsorbed on graphite. The SP in this work yields successful results, as manifested by the clusterization of 3He, and by the observation that the 3He atoms float on the surface of 4He. We display the positions of the particles in 3D coordinate space, which reveal clusterization of the 3He component. The correlation functions are also presented, which give further evidence for the clusterization.

  16. Control of stress and threading dislocation density in the thick GaN/AlN buffer layers grown on Si (111) substrates by low- temperature MBE

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Nechaev, D.; Kuznetsova, N.; Ratnikov, V.; Rouvimov, S.; Jmerik, V.; Ivanov, S.

    2016-08-01

    We report on successful growth by plasma-assisted molecular beam epitaxy on a Si(111) substrate crack-free GaN/AlN buffer layers with a thickness more than 1 μm. The layers fabricated at relatively low growth temperature of 780°C have at room temperature the residual compressive stress of -97 MPa. Intrinsic stress evolution during the GaN growth was monitored in situ with a multi-beam optical system. Strong dependence of a stress relaxation ratio in the growing layer vs growth temperature was observed. The best-quality crack-free layers with TDs density of ∼⃒109 cm-2 and roughly zero bowing were obtained in the sample with sharp 2D-GaN/2D-AlN interface.

  17. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  18. Using Zn/Al layered double hydroxide as a novel solid-phase extraction adsorbent to extract polycyclic aromatic hydrocarbons at trace levels in water samples prior to the determination of gas chromatography-mass spectrometry.

    PubMed

    Liu, Yan-Long; Zhou, Jia-Bin; Zhao, Ru-Song; Chen, Xiang-Feng

    2012-09-01

    This paper demonstrates, for the first time, the great potential of using Zn/Al layered double hydroxide intercalated sodium dodecyl benzene sulfonate (Zn/Al-SDBS-LDH) as a solid-phase extraction (SPE) material in the extraction of persistent organic pollutants prior to the determination of gas chromatography-mass spectrometry in environmental water samples. Zn/Al-SDBS-LDH, a relatively inexpensive and simply prepared material, was synthesized and used as a SPE adsorbent to quantitatively determine the concentration of five polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Factors affecting extraction efficiency, such as, eluent type, eluent volume, flow rate of sample, sample volume, and amount of adsorbent, were investigated and optimized in detail. Experimental results indicate that there is an excellent linear relationship between peak area and the concentration of PAHs over the range of 5-500 ng L(-1), and the precisions (relative standard deviation (RSD)) were 2.5-6.3% under the optimum conditions. Based on the ratio of chromatographic signal-to-base line noise (S/N = 3), the limits of detection could reach 1.2-3.2 ng L(-1). This novel method was successfully applied to the analysis of PAHs in environmental water samples. As such, we show here that the use of Zn/Al-SDBS-LDH as SPE adsorbent materials, coupled with gas chromatography-mass spectrometry, is an excellent improvement in the routine analysis of PAHs at trace levels in the environment.

  19. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors

    PubMed Central

    Jeong, Seong-Jun; Gu, Yeahyun; Heo, Jinseong; Yang, Jaehyun; Lee, Chang-Seok; Lee, Min-Hyun; Lee, Yunseong; Kim, Hyoungsub; Park, Seongjun; Hwang, Sungwoo

    2016-01-01

    The downscaling of the capacitance equivalent oxide thickness (CET) of a gate dielectric film with a high dielectric constant, such as atomic layer deposited (ALD) HfO2, is a fundamental challenge in achieving high-performance graphene-based transistors with a low gate leakage current. Here, we assess the application of various surface modification methods on monolayer graphene sheets grown by chemical vapour deposition to obtain a uniform and pinhole-free ALD HfO2 film with a substantially small CET at a wafer scale. The effects of various surface modifications, such as N-methyl-2-pyrrolidone treatment and introduction of sputtered ZnO and e-beam-evaporated Hf seed layers on monolayer graphene, and the subsequent HfO2 film formation under identical ALD process parameters were systematically evaluated. The nucleation layer provided by the Hf seed layer (which transforms to the HfO2 layer during ALD) resulted in the uniform and conformal deposition of the HfO2 film without damaging the graphene, which is suitable for downscaling the CET. After verifying the feasibility of scaling down the HfO2 thickness to achieve a CET of ~1.5 nm from an array of top-gated metal-oxide-graphene field-effect transistors, we fabricated graphene heterojunction tunnelling transistors with a record-low subthreshold swing value of <60 mV/dec on an 8″ glass wafer. PMID:26861833

  20. Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands--implications and suggestions for sampling designs.

    PubMed

    Kristensen, Terje; Ohlson, Mikael; Bolstad, Paul; Nagy, Zoltan

    2015-08-01

    Accurate field measurements from inventories across fine spatial scales are critical to improve sampling designs and to increase the precision of forest C cycling modeling. By studying soils undisturbed from active forest management, this paper gives a unique insight in the naturally occurring variability of organic layer C and provides valuable references against which subsequent and future sampling schemes can be evaluated. We found that the organic layer C stocks displayed great short-range variability with spatial autocorrelation distances ranging from 0.86 up to 2.85 m. When spatial autocorrelations are known, we show that a minimum of 20 inventory samples separated by ∼5 m is needed to determine the organic layer C stock with a precision of ±0.5 kg C m(-2). Our data also demonstrates a strong relationship between the organic layer C stock and horizon thickness (R (2) ranging from 0.58 to 0.82). This relationship suggests that relatively inexpensive measurements of horizon thickness can supplement soil C sampling, by reducing the number of soil samples collected, or to enhance the spatial resolution of organic layer C mapping.

  1. Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands--implications and suggestions for sampling designs.

    PubMed

    Kristensen, Terje; Ohlson, Mikael; Bolstad, Paul; Nagy, Zoltan

    2015-08-01

    Accurate field measurements from inventories across fine spatial scales are critical to improve sampling designs and to increase the precision of forest C cycling modeling. By studying soils undisturbed from active forest management, this paper gives a unique insight in the naturally occurring variability of organic layer C and provides valuable references against which subsequent and future sampling schemes can be evaluated. We found that the organic layer C stocks displayed great short-range variability with spatial autocorrelation distances ranging from 0.86 up to 2.85 m. When spatial autocorrelations are known, we show that a minimum of 20 inventory samples separated by ∼5 m is needed to determine the organic layer C stock with a precision of ±0.5 kg C m(-2). Our data also demonstrates a strong relationship between the organic layer C stock and horizon thickness (R (2) ranging from 0.58 to 0.82). This relationship suggests that relatively inexpensive measurements of horizon thickness can supplement soil C sampling, by reducing the number of soil samples collected, or to enhance the spatial resolution of organic layer C mapping. PMID:26205281

  2. Study on the influence of the B4C layer thickness on the neutron flux and energy distribution shape in multi-electrode ionisation chamber.

    PubMed

    Tymińska, K; Maciak, M; Ośko, J; Tulik, P; Zielczyński, M; Gryziński, M A

    2014-10-01

    A model of a multi-electrode ionisation chamber, with polypropylene electrodes coated with a thin layer of B4C was created within Monte Carlo N-Particle Transport Code (MCNPX) and Fluktuierende Kaskade (FLUKA) codes. The influence of the layer thickness on neutron absorption in B4C and on the neutron spectra in the consecutive intra-electrode gas volumes has been studied using the MCNPX and FLUKA codes. The results will be used for designing the new type of the ionisation chamber.

  3. Study on the influence of the B4C layer thickness on the neutron flux and energy distribution shape in multi-electrode ionisation chamber.

    PubMed

    Tymińska, K; Maciak, M; Ośko, J; Tulik, P; Zielczyński, M; Gryziński, M A

    2014-10-01

    A model of a multi-electrode ionisation chamber, with polypropylene electrodes coated with a thin layer of B4C was created within Monte Carlo N-Particle Transport Code (MCNPX) and Fluktuierende Kaskade (FLUKA) codes. The influence of the layer thickness on neutron absorption in B4C and on the neutron spectra in the consecutive intra-electrode gas volumes has been studied using the MCNPX and FLUKA codes. The results will be used for designing the new type of the ionisation chamber. PMID:24729596

  4. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    PubMed

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer.

  5. Intramolecular vibrational energy redistribution from a high frequency mode in the presence of an internal rotor: Classical thick-layer diffusion and quantum localization

    NASA Astrophysics Data System (ADS)

    Manikandan, Paranjothy; Keshavamurthy, Srihari

    2007-08-01

    We study the effect of an internal rotor on the classical and quantum intramolecular vibrational energy redistribution (IVR) dynamics of a model system with three degrees of freedom. The system is based on a Hamiltonian proposed by Martens and Reinhardt [J. Chem. Phys. 93, 5621 (1990)] to study IVR in the excited electronic state of para-fluorotoluene. We explicitly construct the state space and show, confirming the mechanism proposed by Martens and Reinhardt, that an excited high frequency mode relaxes via diffusion along a thick layer of chaos created by the low frequency-rotor interactions. However, the corresponding quantum dynamics exhibits no appreciable relaxation of the high frequency mode. We attribute the quantum suppression of the classical thick-layer diffusion to the rotor selection rules and, possibly, dynamical localization effects.

  6. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    NASA Astrophysics Data System (ADS)

    Alsultany, Forat H.; Hassan, Z.; Ahmed, Naser M.

    2016-07-01

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  7. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    PubMed

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-01

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  8. Finite-layer thickness stabilizes the Pfaffian state for the 5/2 fractional quantum Hall effect: wave function overlap and topological degeneracy.

    PubMed

    Peterson, Michael R; Jolicoeur, Th; Das Sarma, S

    2008-07-01

    We find the finite width, i.e., the layer thickness, of experimental quasi-two-dimensional systems produces a physical environment sufficient to stabilize the Moore-Read Pfaffian state thought to describe the fractional quantum Hall effect at filling factor nu=5/2. This conclusion is based on exact calculations performed in the spherical and torus geometries, studying wave function overlap and ground state degeneracy.

  9. Quantitative evaluation of thin-layer thickness and CO2 mass utilizing seismic complex decomposition at the Ketzin CO2 storage site, Germany

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Juhlin, Christopher; Han, Li; Kempka, Thomas; Lüth, Stefan; Zhang, Fengjiao

    2016-10-01

    Determining thin layer thickness is very important for reservoir characterization and CO2 quantification. Given its high time-frequency resolution and robustness, the complex spectral decomposition method was applied on time-lapse 3-D seismic data from the Ketzin pilot site for CO2 storage to evaluate the frequency-dependent characteristics of thin layers at the injection level. Higher temporal resolution and more stratigraphic details are seen in the all-frequency and monochromatic reflectivity amplitude sections obtained by complex spectral decomposition compared to the stacked sections. The mapped geologic discontinuities within the reservoir are consistent with the preferred orientation of CO2 propagation. Tuning frequency mapping shows the thicknesses of the reservoir sandstone and gaseous CO2 is consistent with the measured thickness of the sandstone unit from well logging. An attempt to discriminate between pressure effects and CO2 saturation using the extracted tuning frequency indicates that CO2 saturation is the main contributor to the amplitude anomaly at the Ketzin site. On the basis of determined thickness of gaseous CO2 in the reservoir, quantitative analysis of the amount of CO2 was performed and shows a discrepancy between the injected and calculated CO2 mass. This may be explained by several uncertainties, like structural reservoir heterogeneity, a limited understanding of the complex subsurface conditions, error of determined tuning frequency, the presence of ambient noise and ongoing CO2 dissolution.

  10. Quantitative evaluation of thin-layer thickness and CO2 mass utilizing seismic complex decomposition at the Ketzin CO2 storage site, Germany

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Juhlin, Christopher; Han, Li; Kempka, Thomas; Lüth, Stefan; Zhang, Fengjiao

    2016-07-01

    Determining thin layer thickness is very important for reservoir characterization and CO2 quantification. Given its high time-frequency resolution and robustness, the complex spectral decomposition method was applied on time-lapse 3D seismic data from the Ketzin pilot site for CO2 storage to evaluate the frequency-dependent characteristics of thin layers at the injection level. Higher temporal resolution and more stratigraphic details are seen in the all-frequency and monochromatic reflectivity amplitude sections obtained by complex spectral decomposition compared to the stacked sections. The mapped geologic discontinuities within the reservoir are consistent with the preferred orientation of CO2 propagation. Tuning frequency mapping shows the thicknesses of the reservoir sandstone and gaseous CO2 is consistent with the measured thickness of the sandstone unit from well logging. An attempt to discriminate between pressure effects and CO2 saturation using the extracted tuning frequency indicates that CO2 saturation is the main contributor to the amplitude anomaly at the Ketzin site. On the basis of determined thickness of gaseous CO2 in the reservoir, quantitative analysis of the amount of CO2 was performed and shows a discrepancy between the injected and calculated CO2 mass. This may be explained by several uncertainties, like structural reservoir heterogeneity, a limited understanding of the complex subsurface conditions, error of determined tuning frequency, the presence of ambient noise and ongoing CO2 dissolution.

  11. Effect of channel layer thickness on the performance of indium-zinc-tin oxide thin film transistors manufactured by inkjet printing.

    PubMed

    Avis, Christophe; Hwang, Hye Rim; Jang, Jin

    2014-07-23

    We report the fabrication of high field-effect mobility of ∼110 cm(2)/(V s) for inkjet printed indium-zinc-tin oxide (IZTO) thin film transistors (TFTs). It is found that the morphology of IZTO material deposited by inkjet printing depends strongly on its thickness. When the thickness is 35 nm, IZTO is an homogeneous amorphous material and the TFT exhibits mobility over 100 cm(2)/(V s) and on/off current ratio of >10(6). However, when the thickness is 85 nm, IZTO has a two layer structure of homogeneous and heterogeneous materials and thus the TFT exhibited a mobility of ∼20 cm(2)/(V s). When the thickness is 800 nm, the morphology is porous and heterogeneous and thus the on/off current ratio is less than 1 × 10(3) and its mobility is ∼14 cm(2)/(V s). It is concluded therefore that homogeneous amorphous IZTO TFT on Al2O3 gate insulator can show high mobility, which can be achieved by thin layer formation by inkjet printing.

  12. Trap states in enhancement-mode double heterostructures AlGaN/GaN high electron mobility transistors with different GaN channel layer thicknesses

    NASA Astrophysics Data System (ADS)

    He, Yunlong; Li, Peixian; Wang, Chong; Li, Xiangdong; Zhao, Shenglei; Mi, Minhan; Pei, Jiuqing; Zhang, Jincheng; Ma, Xiaohua; Hao, Yue

    2015-08-01

    This is the report on trap states in enhancement-mode AlGaN/GaN/AlGaN double heterostructures high electron mobility transistors by fluorine plasma treatment with different GaN channel layer thicknesses. Compared with the thick GaN channel layer sample, the thin one has smaller 2DEG concentration, lower electron mobility, lower saturation current, and lower peak transconductance, but it has a higher threshold voltage of 1.2 V. Deep level transient spectroscopy measurements are used to obtain the accurate capture cross section of trap states. By frequency dependent capacitance and conductance measurements, the trap state density of (1.98-2.56) × 1012 cm-2 eV-1 is located at ET in a range of (0.37-0.44) eV in the thin sample, while the trap state density of (2.3-2.92) × 1012 cm-2 eV-1 is located at ET in a range of (0.33-0.38) eV in the thick one. It indicates that the trap states in the thin sample are deeper than those in the thick one.

  13. Downscaling the Sample Thickness to Sub-Micrometers by Employing Organic Photovoltaic Materials as a Charge-Generation Layer in the Time-of-Flight Measurement

    PubMed Central

    Liu, Shun-Wei; Lee, Chih-Chien; Su, Wei-Cheng; Yuan, Chih-Hsien; Lin, Chun-Feng; Chen, Kuan-Ting; Shu, Yi-Sheng; Li, Ya-Ze; Su, Tsung-Hao; Huang, Bo-Yao; Chang, Wen-Chang; Liu, Yu-Hsuan

    2015-01-01

    Time-of-flight (TOF) measurements typically require a sample thickness of several micrometers for determining the carrier mobility, thus rendering the applicability inefficient and unreliable because the sample thicknesses are orders of magnitude higher than those in real optoelectronic devices. Here, we use subphthalocyanine (SubPc):C70 as a charge-generation layer (CGL) in the TOF measurement and a commonly hole-transporting layer, N,N’-diphenyl-N,N’-bis(1,1’-biphenyl)-4,4’-diamine (NPB), as a standard material under test. When the NPB thickness is reduced from 2 to 0.3 μm and with a thin 10-nm CGL, the hole transient signal still shows non-dispersive properties under various applied fields, and thus the hole mobility is determined accordingly. Only 1-μm NPB is required for determining the electron mobility by using the proposed CGL. Both the thicknesses are the thinnest value reported to data. In addition, the flexibility of fabrication process of small molecules can deposit the proposed CGL underneath and atop the material under test. Therefore, this technique is applicable to small-molecule and polymeric materials. We also propose a new approach to design the TOF sample using an optical simulation. These results strongly demonstrate that the proposed technique is valuable tool in determining the carrier mobility and may spur additional research in this field. PMID:25999238

  14. Trap states in enhancement-mode double heterostructures AlGaN/GaN high electron mobility transistors with different GaN channel layer thicknesses

    SciTech Connect

    He, Yunlong; Wang, Chong Li, Xiangdong; Zhao, Shenglei; Mi, Minhan; Pei, Jiuqing; Zhang, Jincheng; Hao, Yue; Li, Peixian; Ma, Xiaohua

    2015-08-10

    This is the report on trap states in enhancement-mode AlGaN/GaN/AlGaN double heterostructures high electron mobility transistors by fluorine plasma treatment with different GaN channel layer thicknesses. Compared with the thick GaN channel layer sample, the thin one has smaller 2DEG concentration, lower electron mobility, lower saturation current, and lower peak transconductance, but it has a higher threshold voltage of 1.2 V. Deep level transient spectroscopy measurements are used to obtain the accurate capture cross section of trap states. By frequency dependent capacitance and conductance measurements, the trap state density of (1.98–2.56) × 10{sup 12 }cm{sup −2} eV{sup −1} is located at E{sub T} in a range of (0.37–0.44) eV in the thin sample, while the trap state density of (2.3–2.92) × 10{sup 12 }cm{sup −2} eV{sup −1} is located at E{sub T} in a range of (0.33–0.38) eV in the thick one. It indicates that the trap states in the thin sample are deeper than those in the thick one.

  15. Ice thickness, internal layers, and surface and subglacial topography in the vicinity of Chinese Antarctic Taishan station in Princess Elizabeth Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Tang, Xue-Yuan; Guo, Jing-Xue; Sun, Bo; Wang, Tian-Tian; Cui, Xiang-Bin

    2016-03-01

    We present the results of two ground-based radio-echo-sounding (RES) and GPS surveys performed in the vicinity of new Chinese Taishan station, Princess Elizabeth Land, East Antarctica, obtained in two austral summers during CHINARE 21 (2004/2005) and CHINARE 29 (2012/2013). The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems, and GPS measurements showed smooth surface slopes around the station with altitudes of 2607-2636 m above sea level (a.s.l.). Radar profiles indicate an average ice thickness of 1900 m, with a maximum of 1949 m and a minimum of 1856 m, within a square area measuring approximately 2 km × 2 km in the vicinity of the station. The ice thickness beneath the station site is 1870 m. The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l., revealing part of a mountainous topography. The ice volume in the grid is estimated to be 7.6 km3. Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site, some disturbed internal layers are identified and traced; the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.

  16. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process

    PubMed Central

    Yanagi, Itaru; Ishida, Takeshi; Fujisaki, Koji; Takeda, Ken-ichi

    2015-01-01

    To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed. PMID:26424588

  17. Retinal Nerve Fiber Layer Thicknesses in Three Different Optic Nerve Head Size Groups Measured by Cirrus Spectral Domain Optical Coherence Tomography

    PubMed Central

    Gür Güngör, Sirel; Akman, Ahmet; Küçüködük, Ali; Çolak, Meriç

    2016-01-01

    Objectives: To compare the retinal nerve fiber layer (RNFL) thicknesses in three different optic nerve head (ONH) size groups measured by Cirrus spectral domain optical coherence tomography (OCT). Materials and Methods: Between January and March 2013, 253 eyes of 253 healthy subjects were enrolled in this study (mean age: 42.7±7.4 years [28-62 years]; 121 men and 132 women). The patients were divided into 3 groups according to ONH size: 77 patients in the “small ONH” group (ONH area <1.63 mm2), 90 patients in the “medium ONH” group (ONH area 1.63-1.97 mm2), and 86 patients in the “large ONH” group (ONH area >1.97 mm2). Results: There were significant differences in superior (p=0.008), inferior (p=0.004) and average RNFL thickness (p=0.001) between the small, medium and large ONH groups. Positive correlations between ONH size and inferior/average RNFL thicknesses were significant but very weak (r=0.150, p=0.017 and r=0.157, p=0.013 respectively). Conclusion: RNFL thickness as measured by Cirrus OCT is positively correlated with ONH size and the differences in RNFL thickness were statistically significant between groups. This correlation and difference may be the result of a varying distance between the circular scan and the ONH margin. PMID:27800261

  18. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  19. Determination of layer thickness and optical constants of thin films by using a modified pattern search method.

    PubMed

    Miloua, R; Kebbab, Z; Chiker, F; Sahraoui, K; Khadraoui, M; Benramdane, N

    2012-02-15

    We propose the use of a pattern search optimization technique in combination with a seed preprocessing procedure to determine the optical constants and thickness of thin films using only the transmittance spectra. The approach is quite flexible, straightforward to implement, and efficient in reaching the best fitting. We demonstrate the effectiveness of the method in extracting optical constants, even when the films are not displaying interference fringes. Comparison to a real-coded genetic algorithm shows that the modified pattern search is fast, almost accurate, and does not need any parameter adjustments. The approach is successfully applied to extract the thickness and optical constants of spray pyrolyzed nanocrystalline CdO thin films.

  20. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  1. Numerical Analysis of In2S3 Layer Thickness, Band Gap and Doping Density for Effective Performance of a CIGS Solar Cell Using SCAPS

    NASA Astrophysics Data System (ADS)

    Khoshsirat, Nima; Md Yunus, Nurul Amziah

    2016-11-01

    The effect of indium sulfide buffer layer's geometrical and electro-optical properties on the Copper-Indium-Gallium-diSelenide solar cell performance using numerical simulation is investigated. The numerical simulation software used is a solar cell capacitance simulator in (SCAPS). The innermost impacts of buffer layer thickness, band gap, and doping density on the cells output parameters such as open circuit voltage, short circuit current density, fill factor, and the efficiency were extensively simulated. The results show that the cell efficiency, which was innovatively illustrated as a two-dimensional contour plot function, depends on the buffer layer electron affinity and doping density by keeping all the other parameters at a steady state. The analysis, which was made from this numerical simulation, has revealed that the optimum electron affinity is to be 4.25 ± 0.2 eV and donor density of the buffer layer is over 1× 10 ^{17} cm^{-3}. It is also shown that the cell with an optimum thin buffer layer has higher performance and efficiency due to the lower optical absorption of the buffer layer.

  2. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multi-frequency EM

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.

    2015-12-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.

  3. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode

    NASA Astrophysics Data System (ADS)

    Yi, Pang; Xiang, Li; Baiqin, Zhao

    2016-08-01

    The paper mainly deals with theoretical investigations of the effect of the thickness change of the waveguide layers on the threshold current. It is analyzed according to the result of a numerical simulation that asks how does the shift of the active region position affect the threshold current for a single quantum well (SQW) and double quantum well (DQW) laser diode (LD) with a relatively narrow waveguide. It is found that the variation trend of threshold current and optimum position of QW are different in SQW and DQW LD with 0.2 μm-thick waveguide, which may be due to the higher variation rate of optical loss in DQW LD with the shift of the active region. It is also found that in terms of either SQW or DQW LD, the variation tendency of the threshold current with a different loss coefficient of the p-cladding layer makes little difference for the relatively narrow waveguide LD. Moreover, the variation trend of the threshold current and the optimum position of QW is almost the same in SQW and DQW LD with 0.8 μm-thick waveguide, because the optical loss is small enough and the threshold current is dominated by the optical confinement factor (OCF) in QW.

  4. Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-07-01

    We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 μm to a modest 0.50 μm over an underlying 0.10-μm intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 μm/3 μm) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  5. An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness

    NASA Astrophysics Data System (ADS)

    Xueli, Ma; Hong, Yang; Wenwu, Wang; Huaxiang, Yin; Huilong, Zhu; Chao, Zhao; Dapeng, Chen; Tianchun, Ye

    2014-09-01

    We evaluated the TiN/TaN/TiAl triple-layer to modulate the effective work function (EWF) of a metal gate stack for the n-type metal-oxide-semiconductor (NMOS) devices application by varying the TiN/TaN thickness. In this paper, the effective work function of EWF ranges from 4.22 to 4.56 eV with different thicknesses of TiN and TaN. The thinner TiN and/or thinner in situ TaN capping, the closer to conduction band of silicon the EWF is, which is appropriate for 2-D planar NMOS. Mid-gap work function behavior is observed with thicker TiN, thicker in situ TaN capping, indicating a strong potential candidate of metal gate material for replacement gate processed three-dimensional devices such as FIN shaped field effect transistors. The physical understandings of the sensitivity of EWF to TiN and TaN thickness are proposed. The thicker TiN prevents the Al diffusion then induces the EWF to shift to mid-gap. However, the TaN plays a different role in effective work function tuning from TiN, due to the Ta—O dipoles formed at the interface between the metal gate and the high-k layer.

  6. Inversion of surface-wave data for subsurface shear-wave velocity profiles characterised by a thick buried low-velocity layer

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-05-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterised by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (travel-time average shear-wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterised by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation (ESAC) technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  7. Physical limitations of the electroluminescence mechanism in terbium-based light emitters: matrix and layer thickness dependence

    NASA Astrophysics Data System (ADS)

    Rebohle, L.; Lehmann, J.; Prucnal, S.; Sun, J. M.; Helm, M.; Skorupa, W.

    2010-02-01

    The physical limits of downscaling the SiO2 thickness of rare earth implanted metal-oxynitride-oxide-semiconductor-based light emitters are explored by investigating the drop down of the electroluminescence power efficiency with decreasing SiO2 thickness of Tb-implanted devices. It will be experimentally shown that there is a dark zone with an extension of about 20 nm behind the injecting interface in which the hot electrons have not yet gained enough kinetic energy in order to excite the Tb3+ luminescence centers. In addition, replacing the host matrix SiO2 by SiON results in a decrease of power efficiency by two orders of magnitude what is consistent with the experimental data about the hot energy distribution in these media.

  8. Comparison of thickness, grade, and depth of radioactive layers as determined by gamma-ray logging and by core sampling

    USGS Publications Warehouse

    Bunker, Carl M.

    1959-01-01

    Thickness, grade, and depth data were obtained by analyzing gamma-ray logs and core samples from 56 diamond drill holes penetrating uranium deposits in the Colorado Plateau. The data from the two methods were compared to determine variations found in gamma-ray log interpretation and chemical and radiometric analyses of the drill core. Correlations within each parameter varied among the drilling areas analyzed. Gamma-ray interpretations of grade compared to chemical analyses were within the range of -10 to +25 percent. Most depth measurements determined by gamma-ray log interpretation compared to drill core measurement were within 0.5 percent. Results of the study indicate a need for better thickness definition in both gamma-ray logging and core scanning equipment.

  9. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    NASA Astrophysics Data System (ADS)

    Herz, A.; Franz, A.; Theska, F.; Hentschel, M.; Kups, Th.; Wang, D.; Schaaf, P.

    2016-03-01

    Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO2 evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO3) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO3 is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO3 nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  10. Influence of the oxide thickness of a SiO2/Si(001) substrate on the optical second harmonic intensity of few-layer MoSe2

    NASA Astrophysics Data System (ADS)

    Miyauchi, Yoshihiro; Morishita, Ryo; Tanaka, Masatoshi; Ohno, Sinya; Mizutani, Goro; Suzuki, Takanori

    2016-08-01

    The nonlinear optical properties of few-layer MoSe2 on a SiO2/Si substrate were investigated with our optical second harmonic generation (SHG) microscope. Few-layer flakes were mechanically exfoliated from a single crystal onto a 90- or 270-nm-thick SiO2-coated Si(001) substrate. The polar plot of the second-harmonic (SH) intensity from a mono- or trilayer MoSe2 flake as a function of the rotation angle of incident polarization shows a threefold symmetry, indicating that the isolated few-layer flakes retain their single crystallographic orientation. SHG spectra were found to depend strongly on the oxide thickness of the substrate (90 or 270 nm), which was interpreted using the interference among the multiply reflected SH light beams in the system. By taking this interference into account, a resonant peak may be identified at a two-photon energy of equal to or less than 2.9 eV in an SHG spectrum. The spatial resolution of the SHG microscope was estimated as 0.53 µm.

  11. Inheritance of the number and thickness of cell layers in barley aleurone tissue (Hordeum vulgare L.): an approach using F2-F3 progeny.

    PubMed

    Jestin, Louis; Ravel, Catherine; Auroy, Sylvie; Laubin, Bastien; Perretant, Marie-Reine; Pont, Caroline; Charmet, Gilles

    2008-05-01

    The aleurone tissue of cereal grains, nutritionally rich in minerals and vitamins, is an important target for the improvement of cereals. Inheritance of the thickness and the number of cell layers in barley aleurone was studied on the F2-F3 progeny of an Erhard Frederichen x Criolla Negra cross in which the parental lines have three or two aleurone layers, respectively. F3 grain was sampled from each F2 plant and 96.8% of the entire F3 grain population was classified as being either the 2- or 3-layer type. Using microsatellite, single nucleotide polymorphism (SNP) and morphological markers on 190 F2 plants, a linkage map was built. Three quantitative trait loci (QTLs) affecting aleurone traits were revealed on chromosome 5H (max. LOD = 5.83) and chromosome 7H (max. LOD = 4.45) by interval mapping, and on chromosome 2H by marker analysis with an unmapped marker. These QTLs were consistent with genetic sub-models involving either 2-cell type dominance for 7H and 2H, or putative partial dominance for 5H where 2-cell-layer dominance and additivity gave similar LODs. The number of aleurone cell layers and aleurone thickness were strongly correlated and QTL results for these traits were alike. An SNP marker of sal1, an orthologue of the maize multilayer aleurone gene was mapped to the 7HL chromosome arm. However, the 7H QTL did not co-locate with the barley sal1 SNP, suggesting that an additional gene is involved in determining aleurone traits. These new mapping data allow comparisons to be made with related studies.

  12. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography.

    PubMed

    Cense, Barry; Chen, Teresa C; Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-01-01

    Glaucoma causes damage of the nerve fiber layer, which may cause loss of retinal birefringence. Therefore, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces real-time images of the human retina in vivo, coregistered with retinal video images of the location of PS-OCT scans. Preliminary measurements of a healthy volunteer show that the double-pass phase retardation per unit of depth of the RNFL is not constant and varies with location, with values between 0.18 and 0.37 deg/microm. A trend in the preliminary measurements shows that the nerve fiber layer located inferior and superior to the optic nerve head is more birefringent than the thinner layer of nerve fiber tissue in the temporal and nasal regions. PMID:14715063

  13. Laser-tissue interaction of a continuous-wave 2-μm, 3-μm cascade oscillation fiber laser: sharp incision with controlled coagulation layer thickness

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Sumiyoshi, Tetsumi; Naruse, Kyota; Ishihara, Miya; Sato, Shunichi; Kikuchi, Makoto; Kasamatsu, Tadashi; Sekita, Hitoshi; Obara, Minoru

    2000-06-01

    We studied coagulation layer controlled incision with newly developed continuous wave 2 micrometer, 3 micrometer cascade oscillation fiber laser in vitro. Since this laser device simultaneously oscillates 2 micrometer and 3 micrometer radiation, we could change tissue interaction by arranging power ratio of 2 micrometer to 3 micrometer radiation. About one watt of total irradiation power with various power ratios was focused to extracted fresh porcine myocardium or anesthetized rabbit on an automatic moving stage to obtain line incision. Macro photograph and microscopic histology were used to observe tissue interaction phenomenon. The incised specimen showed that precise cutting groove with thin coagulation layer was attained by a 3 micrometer based radiation, meanwhile addition of 2 micrometer radiation to 3 micrometer radiation made coagulation layer thicker. A heat conduction simulator using finite-element method was used to qualitatively explain obtained coagulation layer thickness. This precise incision with controllable side coagulation layer may effective to control bleeding during incision, for instance, for skin, liver, and kidney incisions. Pure continuous wave radiation of 2 micrometer and 3 micrometer may eliminate stress wave induced tissue damage which is frequently found in Ho:YAG and/or Er:YAG tissue interactions. Moreover, sapphire fiber might offer flexible power delivery to this new laser to establish endoscopic application and/or to improved beam handling.

  14. Inversion of surface wave data for shear wave velocity profiles: Case studies of thick buried low-velocity layers in Malta

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2015-04-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterised by a four layer sequence of limestones and clays, with the Lower Coralline Limestone being the oldest exposed layer. The hard Globigerina Limestone (GL) overlies this layer and is found outcropping in the eastern part of Malta and western part of Gozo. The rest of the islands are characterised by Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. Thus the BC layer introduces a velocity inversion in the stratigraphy, and makes the Vs30 parameter not always suitable for seismic microzonation purposes. Such a layer may still produce amplification effects, however would not contribute to the numerical mean of Vs in the upper 30m. Moreover, buildings are being increasingly constructed on this type of geological foundation. Obtaining the shear wave (Vs) profiles of the different layers around the islands is the first step needed for a detailed study of local seismic site response. A survey of Vs in each type of lithology and around the islands has never been undertaken. Array measurements of ambient noise using vertical geophones were carried out at six sites in Malta and one in Gozo, characterised by the buried low-velocity layer. The array was set up in an L-shaped configuration and the Extended Spatial Autocorrelation (ESAC) technique was used to extract Rayleigh wave dispersion curves. The effective dispersion curve obtained at all the sites exhibited a 'normal' dispersive trend (i.e. velocity decreases with increasing frequency) at low frequencies, followed by an inverse dispersive trend at high frequencies. Such a shape can be tentatively explained in terms of the presence of higher mode Rayleigh waves, which are generally present when a stiff layer overlies a softer layer. Additionally a series of three-component ambient noise measurements were taken at each of the sites and H/V curves obtained. The

  15. Evaluation of data storage layer thickness best fitted for digital data read-out procedure from hard x-ray optical memory

    NASA Astrophysics Data System (ADS)

    Bezirganyan, Hakob P.; Bezirganyan, Siranush E.; Bezirganyan, Petros H., Jr.; Bezirganyan, Hayk H., Jr.

    2009-08-01

    Paper is devoted to further evolution of the concept of ultra-high density hard x-ray storage media - a radically new x-ray- based optical data storage nanotechnology with terabit-scale digital data density per square centimeter of each storage layer of the memory disk. Forthcoming hard x-ray optical data read-out devices will use an ultra-high density information carrier named x-ray optical memory (X-ROM), which consists of crystalline wafer with the generated sub-surface amorphous nanometer-size reflecting speckles of x-ray high-reflectivity material. X-ROM is designed for long-term archiving of the large volumes of information and digital data handling via read-out systems operating on x-ray wavelength optics. Digital data read-out procedure from X-ROM is performed via grazing-angle incident x-ray micro beam. X-ray-based optical data storage system detects data by measuring changes in x-ray micro beam intensity reflected from the various surface points of data storage media. Grazing-angle incident x-ray configuration allows the handling of data from very large surface area of X-ROM disk and, consequently, the data read-out speed is much faster than in optical data read-out systems. Aim of paper is detailed evaluation of storage data-layer's effective thickness best fitted for a digital data read-out procedure. Penetration depths of non-homogeneous x-ray wave fields inside crystalline substrate and amorphous speckles of X-ROM are investigated theoretically in case of grazing-angle incidence x-ray backscattering diffraction (GIXB) applied in specular beam suppression mode. It is possible to reduce the effective thickness of data storage layer to a value of less than a single-bit linear size i.e. to reduce effective thickness up to 10 nm, according to performed evaluations.

  16. Thickness Reconstruction of Layers by 3D Geometrical Model to Characterize Caledonian Tectonic Complex and Data in Latvia

    NASA Astrophysics Data System (ADS)

    Ukass, J.; Saks, T.; Popovs, K.

    2012-04-01

    In present study we attempt to verify the 3D geological model, which has been built on a variety of heterogeneous data sources for the Baltic Basin (BB). Data describing the displacement along the faults and associated thickness changes of the syntectonic strata is sparse and reflects only regional relevance (Brangulis & Konsins 2002). Borehole logs provide most reliable and comprehensive data source for reconstructing the structural geology of the Latvia sedimentary cover as sufficient quality seismic data is available only for the local scale structures. Based on the thickness analysis of the boreholes rough resolution 3D geological tectonic block model was developed to deconstruct the geological structure of the Latvia Caledonian sedimentary sequence. MOSYS modeling system was used for the geological structure modeling, developed within the PUMA project (Sennikovs et al, 2011). Algorithmic genetic approach was applied to interpolate data of well logs as strata volume and sequentially to reconstruct the post-deformation situation. This approach allows modifying model construction in any step and all processes are fully documented and are repeatable. Geometrical model consists of 33 tectonic blocks bordered by the faults which were distributed by interpreting displacement amount of the blocks along the faults providing an opportunity to characterize common tectonic evolution. The study results indicate insignificant thickness change of the Ordovician and Silurian strata along the faults suggesting that major slip event along the faults occurred during the late Silurian and early Devonian, and some secondary fault reactivation during the middle Devonian Narva time. Uplift of the territory during this time is confirmed by the presence of the regional unconformity. Constructed rough resolution 3D geometrical model suggests shortening along the horizontal axis approximately 10 - 20% but most of the shortening has occurred in the central-west part of Latvia where it

  17. Influence of Myopia on Size of Optic Nerve Head and Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography

    PubMed Central

    Bae, Seok Hyun; Kang, Shin Hee; Feng, Chi Shian; Park, Joohyun; Jeong, Jae Hoon

    2016-01-01

    Purpose To investigate optic nerve head size and retinal nerve fiber layer (RNFL) thickness according to refractive status and axial length. Methods In a cross-sectional study, 252 eyes of 252 healthy volunteers underwent ocular biometry measurement as well as optic nerve head and RNFL imaging by spectral-domain optical coherence tomography. Correlation and linear regression analyses were performed for all subjects. The magnification effect was adjusted by the modified axial length method. Results Disc area and spherical equivalent were positively correlated (r = 0.225, r2 = 0.051, p = 0.000). RNFL thickness showed significant correlations with spherical equivalent (r = 0.359, r2 = 0.129, p = 0.000), axial length (r = -0.262, r2 = 0.069, p = 0.000), disc radius (r = 0.359, r2 = 0.129, p = 0.000), and radius of the scan circle (r = -0.262, r2 = 0.069, p = 0.000). After adjustment for the magnification effect, those relationships were reversed; RNFL thickness showed negative correlation with spherical equivalent and disc radius, and positive correlation with axial length and radius of the scan circle. The distance between the disc margin and the scan circle was closely correlated with RNFL thickness (r = -0.359, r2 = 0.129, p = 0.000), which showed a negative correlation with axial length (r = -0.262, r2 = 0.069, p = 0.000). Conclusions Optic disc radius and RNFL thickness decreased in more severely myopic eyes, but they increased after adjustment for magnification effect. The error due to the magnification effect and optic nerve head size difference might be factors that should be considered when interpreting optical coherence tomography results. PMID:27729753