Science.gov

Sample records for adsorbed metal ions

  1. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  2. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  3. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  4. Sunflower stalks as adsorbents for the removal of metal ions from wastewater

    SciTech Connect

    Sun, G.; Shi, W.

    1998-04-01

    Sunflower stalks as adsorbents for the removal of metal ions such as copper, cadmium, zinc, and chromium ions in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of four heavy metals are 29.3 mg/g (Cu{sup 2+}), 30.73 mg/g (Zn{sup 2+}), 42.18 mg/g (Cd{sup 2+}), and 25.07 mg/g (Cr{sup 3+}), respectively. Particle sizes of sunflower stalks affected the adsorption of metal ions; the finer size of particles showed better adsorption to the ions. Temperature also plays an interesting role in the adsorption of different metal ions. Copper, zinc, and cadmium exhibited lower adsorption on sunflower stalks at higher temperature, while chromium showed the opposite phenomenon. The adsorption rates of copper, cadmium, and chromium are quite rapid. Within 60 min of operation about 60--80% of these ions were removed from the solutions.

  5. Application of immobilized metal ion chelate complexes as pseudocation exchange adsorbents for protein separation.

    PubMed

    Zachariou, M; Hearn, M T

    1996-01-09

    The interactions of horse muscle myoglobin (MYO), tuna heart cytochrome c (CYT), and hen egg white lysozyme (LYS) with three different immobilized metal ion affinity (IMAC) adsorbents involving the chelated complexes of the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline Lewis metal ion Cu2+ have been investigated in the presence of low- and high-ionic strength buffers and at two different pH values. In contrast to the selectivity behavior noted with buffers of high ionic strength, with low-ionic strength buffers, these three proteins interact with the hard metal ion IMAC adsorbents in a manner more characteristic of cation exchange behavior, although in contrast to the cation exchange chromatography of these proteins, as the pH value of the elution buffer was increased, the retention also increased. The selectivity differences observed under these conditions appear to be due to the formation of hydrolytic complexes of these immobilized metal ion chelate systems involving a change in the coordination geometry of the im-M(n+)-chelate at higher pH values. The experimental observations have been evaluated in terms of the effective charge on the immobilized metal ion chelate complex and the charge characteristics of the specific proteins.

  6. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.

    PubMed

    Srivastava, Niharika; Thakur, Amit K; Shahi, Vinod K

    2016-01-20

    Phosphorylated cellulose triacetate (CTA)/silica composite adsorbent was prepared by acid catalyzed sol-gel method using an inorganic precursor (3-aminopropyl triethoxysilane (APTEOS)). Reported composite adsorbent showed comparatively high adsorption capacity for Ni(II) in compare with different heavy metal ions (Cu(2+), Ni(2+), Cd(2+) and Pb(2+)). For Ni(II) adsorption, effect of time, temperature, pH, adsorbent dose and adsorbate concentration were investigated; different kinetic models were also evaluated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also estimated and equilibrium adsorption obeyed Langmuir and Freundlich isotherms. Developed adsorbent exhibited about 78.8% Ni(II) adsorption at pH: 6 and a suitable candidate for the removal of Ni(II) ions from wastewater. Further, about 65.5% recovery of adsorbed Ni(II) using EDTA solution was demonstrated, which suggested effective recycling of the functionalized beads would enable it to be used in the treatment of contaminated water in industry.

  7. Sputtering and secondary ion emission properties of alkali metal films and adsorbed monolayers

    SciTech Connect

    Krauss, A R; Gruen, D M

    1980-01-01

    The secondary ion emission of alkali metal adsorbed monlayer and multilayer films has been studied. Profiling with sub-monolayer resolution has been performed by Auger, x-ray photoemission and secondary ion mass spectroscopy. Characteristic differences in the sputtering yields, and ion fraction have been observed which are associated with both the surface bonding properties and the mechanism leading to the formation of secondary ions. By sputtering with a negative bias applied to the sample, positive secondary ions are returned to the surface, resulting in a reduced sputter-induced erosion rate. Comparison with the results obtained with K and Li overlayers sputtered without sample bias provides an experimental value of both the total and secondary ion sputtering yields. The first and second monolayers can be readily identified and the first monolayer exhibits a lower sputtering yield and higher secondary ion fraction. This result is related to adsorption theory and measured values are compared with those obtained by thermal desorption measurements.

  8. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.

    PubMed

    Haryanto, Bode; Chang, Chien-Hsiang

    2015-01-01

    In this study, the interfacial properties of biosurfactant rhamnolipid were investigated and were applied to remove adsorbed heavy metal ions from sand surfaces with flushing operations. The surface tension-lowering activity, micelle charge characteristic, and foaming ability of rhamnolipid were identified first. For rhamnolipid in water, the negatively charged characteristic of micelles or aggregates was confirmed and the foaming ability at concentrations higher than 40 mg/L was evaluated. By using the rhamnolipid solutions in a batch washing approach, the potential of applying the interfacial properties of rhamnolipid to remove adsorbed copper ions from sand surfaces was then demonstrated. In rhamnolipid solution flushing operations for sand-packed medium, higher efficiency was found for the removal of adsorbed copper ions with residual type than with inner-sphere interaction type, implying the important role of interaction type between the copper ion and the sand surface in the removal efficiency. In addition, the channeling effect of rhamnolipid solution flow in the sand-packed medium was clearly observed in the solution flushing operations and was responsible for the low removal efficiency with low contact areas between solution and sand. By using rhamnolipid solution with foam to flush the sand-packed medium, one could find that the channeling effect of the solution flow was reduced and became less pronounced with the increase in the rhamnolipid concentration, or with the enhanced foaming ability. With the reduced channeling effect in the flushing operations, the removal efficiency for adsorbed copper ions was significantly improved. The results suggested that the foam-enhanced rhamnolipid solution flushing operation was efficient in terms of surfactant usage and operation time.

  9. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hien, Nguyen Quoc; Van Phu, Dang; Duy, Nguyen Ngoc; Huy, Ha Thuc

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants KL = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  10. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  11. Pseudo Order Kinetics Model to Predict the Adsorption Interaction of Corn-Stalk Adsorbent Surface with Metal Ion Adsorbate Cu (II) and Fe (II)

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Singh, W. B.; Barus, E. S.; Ridho, A.; Rawa, M. R.

    2017-01-01

    The adsorption process using cornstalk as adsorbent was used to remove the single metal ion such as copper ion and cadmium ion. The adsorption kinetics of each contaminant then used to predict the interaction type of metal ion on surface of corn stalk by calculating pseudo order 1st and 2nd. The identification type as chemically or physically interaction was predicted from the quality of r2 by plotting the adsorption capacity (q) and time (t). The r2 were 0.01 and 0.99 for pseudo order 1st and 2nd respectively for Fe (II). The r2 were 0.26 and 0.999 for pseudo order 1st and 2nd respectively for Cu (II). The result of adsorption interaction of metal ion and surface function of corn stalk is chemical type. SEM/EDX confirmed the Cu2+ presence on cornstalk surface.

  12. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent.

    PubMed

    Isobe, Noriyuki; Chen, Xiaoxia; Kim, Ung-Jin; Kimura, Satoshi; Wada, Masahisa; Saito, Tsuguyuki; Isogai, Akira

    2013-09-15

    Nitroxy radical catalyzed oxidation with hypochlorite/bromide (TEMPO-mediated oxidation) was performed on a cellulose hydrogel prepared using LiOH/urea solvent. TEMPO oxidation successfully introduced carboxyl groups onto the surface of the cellulose hydrogel with retention of the gel structure and its nanoporous property. The equilibrium measurement of Cu(2+) adsorption showed favorable interaction with Cu(2+) and high maximum adsorption capacity. In addition, over 98% of the adsorbed Cu(2+) was recovered using acid treatment, and the subsequent washing allowed the TEMPO-oxidized gels to be used repeatedly. Furthermore, the TEMPO-oxidized cellulose hydrogel showed high adsorption capacity for other toxic metal ions such as Zn(2+), Fe(3+), Cd(2+), and Cs(+).

  13. Ion-chromatographic behavior of alkali metal cations and ammonium ion on zirconium-adsorbing silica gel.

    PubMed

    Ohta, K; Morikawa, H; Tanaka, K; Uwamino, Y; Furukawa, M; Sando, M

    2000-07-07

    The preparation and evaluation of zirconium-adsorbing silica gel (Zr-Silica) as an ion-exchange stationary phase in ion chromatography for inorganic anions and cations was carried out. The Zr-Silica was prepared by the reaction of silanol groups on the surface of the silica gel with zirconium butoxide (Zr(OCH2CH2CH2CH3)4) in ethanol. The ion-exchange characteristics of the Zr-Silica were evaluated using 10 mM tartaric acid at pH 2.5 as eluent. The Zr-Silica was found to act as a cation-exchanger under the eluent conditions. The retention behavior of alkali and alkaline earth metal cations was then investigated. The Zr-Silica column was proved to be suitable for the simultaneous separation of alkali metal cations and ammonium ion. Excellent separation of the cations on a 15 cm Zr-Silica column was achieved in 25 min using 10 mM tartaric acid as eluent.

  14. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    PubMed Central

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  15. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-11-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation.

  16. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent.

    PubMed

    Xing, Shengtao; Zhao, Meiqing; Ma, Zichuan

    2011-01-01

    The adsorption behaviors of heavy metals onto novel low-cost adsorbent, red loess, were investigated. Red loess was characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectra. The results indicated that red loess mainly consisted of silicate, ferric and aluminum oxides. Solution pH, adsorbent dosage, initial metal concentration, contact time and temperature significantly influenced the efficiency of heavy metals removal. The adsorption reached equilibrium at 4 hr, and the experimental equilibrium data were fitted to Langmuir monolayer adsorption model. The adsorption of Cu(II) and Zn(II) onto red loess was endothermic, while the adsorption of Pb(II) was exothermic. The maximum adsorption capacities of red loess for Pb(II), Cu(II) and Zn(II) were estimated to be 113.6, 34.2 and 17.5 mg/g, respectively at 25 degrees C and pH 6. The maximum removal efficiencies were 100% for Pb(II) at pH 7, 100% for Cu(II) at pH 8, and 80% for Zn(II) at pH 8. The used adsorbents were readily regenerated using dilute HCl solution, indicating that red loess has a high reusability. All the above results demonstrated that red loess could be used as a possible alternative low-cost adsorbent for the removal of heavy metals from aqueous solution.

  17. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  18. Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology.

    PubMed

    Sousa, Francisco W; Oliveira, André G; Ribeiro, Jefferson P; Rosa, Morsyleide F; Keukeleire, Denis; Nascimento, Ronaldo F

    2010-08-01

    This study applies green coconut shells as adsorbent for the removal of toxic metal ions from aqueous effluents using column adsorption. The results show that a flow rate of 2 mL/min and a bed height of 10 cm are most feasible. Furthermore, larger amounts of effluent can be treated for removal of single ions. The breakthrough curves for multiple elements gave the order of adsorption capacity: Cu(+2) > Pb(+2) > Cd(+2) > Zn(+2) > Ni(+2). Real samples arising from the electroplating industry can be efficiently handled.

  19. Use of immobilized metal ions as a negative adsorbent for purification of enzymes: application to phosphoglycerate mutase from chicken muscle extract and horseradish peroxidase.

    PubMed

    Chaga, G; Andersson, L; Ersson, B; Berg, M

    1992-01-01

    Two enzymes, phosphoglycerate mutase and peroxidase, were purified by using an immobilized metal ion adsorbent for the removal of unwanted proteins. The mutase was obtained pure from a single column, whereas the purification of peroxidase required the use of a thiophilic adsorbent in a tandem. The capacity was 2.5 mg pure peroxidase per mL gel.

  20. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  1. Density functional analysis of gaseous molecules adsorbed on metal ion/defective nano-sheet graphene

    NASA Astrophysics Data System (ADS)

    Deng, Jin-Pei; Chuang, Wen-Hua; Tai, Chin-Kuen; Kao, Hsien-Chang; Pan, Jiunn-Hung; Wang, Bo-Cheng

    2016-11-01

    Density functional theory was applied to calculate the adsorption property of metal/hexa-vacancy defective graphene (denoted as HDG-M, M: Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) with O- and N-dopants. We investigate the adsorption properties of these complexes between gaseous molecules and HDG-M. Our results show that HDG-Cu has a high selectivity for O2, but HDG-Fe has a good ability to capture many gases such as CO, NO and O2. Our calculations could provide useful information for designing new graphene-based adsorbents to remove undesired gases, which may poison the metal catalysts in reaction processes.

  2. Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling.

    PubMed

    Melo, Diego de Quadros; Vidal, Carla Bastos; Medeiros, Thiago Coutinho; Raulino, Giselle Santiago Cabral; Dervanoski, Adriana; Pinheiro, Márcio do Carmo; Nascimento, Ronaldo Ferreira do

    2016-09-01

    Buriti fibers were subjected to an alkaline pre-treatment and tested as an adsorbent to investigate the adsorption of copper, cadmium, lead and nickel in mono- and multi-element aqueous solutions, the results showed an increase in the adsorption capacity compared to the unmodified Buriti fiber. The effects of pH, adsorbent mass, agitation rate and initial metal ions concentration on the efficiency of the adsorption process were studied using a fractional 2(4-1) factorial design, and the results showed that all four parameters influenced metal adsorption differently. Fourier transform infrared spectrometry and X-ray fluorescence analysis were used to identify the groups that participated in the adsorption process and suggest its mechanisms and they indicated the probable mechanisms involved in the adsorption process are mainly ion exchange. Kinetic and thermodynamic equilibrium parameters were determined. The adsorption kinetics were adjusted to the homogeneous diffusion model. The adsorption equilibrium was reached in 30 min for Cu(2+) and Pb(2+), 20 min for Ni(2+) and instantaneously for Cd(2+). The results showed a significant difference was found in the competitiveness for the adsorption sites. A mathematical model was used to simulate the breakthrough curves in multi-element column adsorption considering the influences of external mass transfer and intraparticle diffusion resistance.

  3. Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd.

    PubMed

    Liu, Changkun; Bai, Renbi

    2010-10-01

    In this paper, the adsorption selectivity and mechanism of diethylenetriamine (DETA)-functionalized PGMA adsorbent (denoted as P-DETA) toward a number of heavy metal ions, including Cu, Co, Ni, Zn, and Cd ions, were experimentally and analytically examined. Experimental results showed a selective adsorption sequence, based on the adsorption affinity, of Cu>Co>Ni>Zn>Cd ions on P-DETA. X-ray absorption fine structure (XAFS) analysis was used to reveal the adsorption coordination geometry, bond length, and coordination number of each type of metal ion with the DETA group. The analysis indicated that Cu, Ni, and Zn ions formed tetrahedral geometry (fourfold coordination) when adsorbed, while Co ion showed an octahedral geometry (sixfold coordination). However, the coordination geometry for Cd could not be obtained in the analysis due to the lack of reference information. The analysis from EXAFS further confirmed that the ratio of DETA ligand to the adsorbed metal ion was probably 1 for Cu, Ni, or Zn ions, while that ratio was 2 for Co ion. From the stability constant (in the log K form) for a metal ion-DETA ligand coordination (denoted as ML(n), where M indicates a heavy metal ion, and L(n) indicates n numbers of ligands involved), a relationship of log K (CuL)>log K (CoL(2))>log K (NiL)>log K (ZnL)>log K (CdL) is suggested. This sequence is in good correlation with the experimentally derived adsorption selective sequence of Cu>Co>Ni>Zn>Cd ions, indicating that the coordination geometry played an important role in the determination of the adsorption selectivity for heavy metal ions by the polyamine-functionalized adsorbent of P-DETA.

  4. Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions.

    PubMed

    Bai, Lan; Hu, Huiping; Fu, Weng; Wan, Jia; Cheng, Xiliang; Zhuge, Lei; Xiong, Lei; Chen, Qiyuan

    2011-11-15

    Silica-supported dithiocarbamate adsorbent (Si-DTC) was synthesized by anchoring the chelating agent of macromolecular dithiocarbamate (MDTC) to the chloro-functionalized silica matrix (SiCl), as a new adsorbent for adsorption of Pb(II), Cd(II), Cu(II) and Hg(II) from aqueous solution. The surface characterization was performed by FT-IR, XPS, SEM and elemental analysis indicating that the modification of the silica surface was successfully performed. The effects of media pH, adsorption time, initial metal ion concentration and adsorption temperature on adsorption capacity of the adsorbent had been investigated. Experimental data were exploited for kinetic and thermodynamic evaluations related to the adsorption processes. The characteristics of the adsorption process were evaluated by using the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption isotherms and adsorption capacities were found to be 0.34 mmol g(-1), 0.36 mmol g(-1), 0.32 mmol g(-1) and 0.40 mmol g(-1) for Pb(II), Cd(II), Cu(II) and Hg(II), respectively. The adsorption mechanism of Hg(II) onto Si-DTC is quite different from that of Pb(II), Cd(II) or Cu(II) onto Si-DTC, which is demonstrated by the XPS and FT-IR results.

  5. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.

    PubMed

    Luo, Xiaogang; Zeng, Jian; Liu, Shilin; Zhang, Lina

    2015-10-01

    Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel method. By embedding magnetic γ-Fe2O3 nanoparticles in chitosan/cellulose matrix drops in NaOH/urea aqueous solution, it combined renewability and biocompatibility of chitosan and cellulose as well as magnetic properties of γ-Fe2O3 to create a hybrid system in heavy metal ions removal.

  6. Simple preparation of aminothiourea-modified chitosan as corrosion inhibitor and heavy metal ion adsorbent.

    PubMed

    Li, Manlin; Xu, Juan; Li, Ronghua; Wang, Dongen; Li, Tianbao; Yuan, Maosen; Wang, Jinyi

    2014-03-01

    By a simple and convenient method of using formaldehyde as linkages, two new chitosan (CS) derivatives modified respectively with thiosemicarbazide (TSFCS) and thiocarbohydrazide (TCFCS) were synthesized. The new compounds were characterized and studied by Fourier transform infrared spectroscopy, elemental analysis, thermal gravity analysis and differential scanning calorimetry, and their surface morphologies were determined via scanning electron microscopy. These CS derivatives could form pH dependent gels. The behavior of 304 steel in 2% acetic acid containing different inhibitors or different concentrations of inhibitor had been studied by potentiodynamic polarization test. The preliminary results show that the new compound TCFCS can act as a mixed-type metal anticorrosion inhibitor in some extent; its inhibition efficiency is 92% when the concentration was 60 mg/L. The adsorption studies on a metal ion mixture aqueous solution show that two samples TSFCS and TCFCS can absorb As (V), Ni (II), Cu (II), Cd (II) and Pb (II) efficiently at pH 9 and 4.

  7. Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution.

    PubMed

    Rajeshwarisivaraj; Subburam, V

    2002-11-01

    Parthenium hysterophorous (L) is a perennial weed distributed all over the country. Carbonized parthenium activated with conc. H2SO4 and ammonium persulphate was effective in the removal of dyes, heavy metals and phenols. Variation in the percentage removal of adsorbates was observed with increase in the contact time. Among the adsorbates tested, the affinity of the activated parthenium carbon was highest for Hg2+, Methylene Blue and Malachite Green.

  8. Cleaning Water Contaminated with Heavy Metal Ions Using Pyrolyzed Biochar Adsorbents

    EPA Science Inventory

    The extraction of pollutants from water using activated biochar materials is a low cost, sustainable approach for providing safe water in developing countries. The adsorption of copper ions, Cu (II), onto banana peels that were dried, pyrolyzed and activated was studied and compa...

  9. Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions.

    PubMed

    Zhao, Jing; Zhu, Ying-Jie; Wu, Jin; Zheng, Jian-Qiang; Zhao, Xin-Yu; Lu, Bing-Qiang; Chen, Feng

    2014-03-15

    Chitosan-coated calcium silicate hydrate (CSH/chitosan) mesoporous microspheres formed by self-assembly of nanosheets have been synthesized in aqueous solution under ambient conditions without using any toxic surfactant or organic solvent. The method reported herein has advantages of simplicity, low cost and being environmentally friendly. The BET specific surface area of CSH/chitosan mesoporous microspheres is measured to be as high as ~356 m(2) g(-1), which is considerably high among calcium silicate materials. The as-prepared CSH/chitosan mesoporous microspheres are promising adsorbent and exhibit a quick and highly efficient adsorption behavior toward heavy metal ions of Ni(2+), Zn(2+), Cr(3+), Pb(2+) Cu(2+) and Cd(2+) in aqueous solution. The adsorption kinetics can be well fitted by the pseudo second-order model. The maximum adsorption amounts of Ni(2+), Zn(2+), Pb(2+), Cu(2+) and Cd(2+) on CSH/chitosan mesoporous microspheres are extremely high, which are 406.6, 400, 796, 425 and 578 mg/g, respectively. The CSH/chitosan adsorbent exhibits the highest affinity for Pb(2+) ions among five heavy metal ions. The adsorption capacities of the CSH/chitosan adsorbent toward heavy metal ions are relatively high compared with those reported in the literature.

  10. Ultrathin calcium silicate hydrate nanosheets with large specific surface areas: synthesis, crystallization, layered self-assembly and applications as excellent adsorbents for drug, protein, and metal ions.

    PubMed

    Wu, Jin; Zhu, Ying-Jie; Chen, Feng

    2013-09-09

    A simple and low-cost solution synthesis is reported for low-crystalline 1.4 nm tobermorite-like calcium silicate hydrate (CSH) ultrathin nanosheets with a thickness of ~2.8 nm and with a large specific surface area (SSA), via a reaction-rate-controlled precipitation process. The BET SSA of the CSH ultrathin nanosheets can reach as high as 505 m(2) g(-1) . The CSH ultrathin nanosheets have little cytotoxicity and can be converted to anhydrous calcium silicate (ACS) ultrathin nanosheets with a well preserved morphology via a heat treatment process. The crystallinity of CSH ultrathin nanosheets can be improved by solvothermal treatment in water/ethanol binary solvents or a single solvent of water, producing well-crystalline 1.1 nm tobermorite-like CSH nanobelts or nanosheets. CSH ultrathin nanosheets acting as building blocks can self-assemble into layered nanostructures via three different routes. The CSH ultrathin nanosheets are investigated as promising adsorbents for protein (hemoglobin, Hb), drug (ibuprofen, IBU), and metal ions (Cr(3+) , Ni(2+) , Cu(2+) , Zn(2+) , Cd(2+) , Pb(2+) ). The highest adsorbed percentages of Hb and IBU are found to be 83% and 94%, respectively. The highest adsorption capacities of Hb and IBU are found to be as high as 878 milligram Hb per gram CSH and 2.2 gram IBU per gram CSH, respectively. The ppm level metal ions can be totally adsorbed from aqueous solution in just a few minutes. Thus, the CSH ultrathin nanosheets are a promising candidate as excellent adsorbents in the biomedical field and for waste water treatment. Several empirical laws are summarized based on the adsorption profiles of Hb and IBU using CSH ultrathin nanosheets as the adsorbent. Furthermore, the ACS ultrathin nanosheets as adsorbents for Hb protein and IBU drug are investigated.

  11. Removal of toxic heavy metal ions from waste water by functionalized magnetic core-zeolitic shell nanocomposites as adsorbents.

    PubMed

    Padervand, Mohsen; Gholami, Mohammad Reza

    2013-06-01

    Functionalized magnetic core-zeolitic shell nanocomposites were prepared via hydrothermal and precipitation methods. The products were characterized by vibrating sample magnetometer, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption isotherms, and transmission electron microscopy analysis. The growth of mordenite nanocrystals on the outer surface of silica-coated magnetic nanoparticles at the presence of organic templates was well approved. The removal performance and the selectivity of mixed metal ions (Pb(2+) and Cd(2+)) in aqueous solution were investigated via the sorption process. The batch method was employed to study the sorption kinetic, sorption isotherms, and pH effect. The removal mechanism of metal ions was done by chem-phys sorption and ion exchange processes through the zeolitic channels and pores. The experimental data were well fitted by the appropriate kinetic models. The sorption rate and sorption capacity of metal ions could be significantly improved by optimizing the parameter values.

  12. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe

  13. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  14. Cube sugar-like sponge/polymer brush composites for portable and user-friendly heavy metal ion adsorbents.

    PubMed

    Bae, Ji Young; Lee, Ha-Jin; Choi, Won San

    2016-12-15

    Portable, non-toxic, and user-friendly sponge composites decorated with polyelectrolyte (PE) brushes were developed for the fast and efficient removal of heavy metal ions from waste water or drinking water. The polyacrylamide (PAM) and polyacrylic acid (PAA) brushes were grafted onto the sponge via "grafting-from" polymerization. For the polyethyleneimine (PEI) brush, "grafting-to" polymerization was used. A polydopamine (Pdop) layer was first coated on the sponge. Then, PEI was grafted onto the Pdop-coated sponge via a Michael addition reaction. The PEI-grafted sponge exhibited the best adsorption capacity and the fastest reaction rate of all the brushes due to the numerous adsorption sites of the PEI. The adsorption performance of two different PEI-grafted sponges depended on the molecular weight (MW) of the PEI. Simply by being dipped into a glass of water, non-toxic PEI-grafted sponge instantly removed the low concentration heavy metal ions, demonstrating a practical application for individual users.

  15. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex.

  16. General facile approach to transition-metal oxides with highly uniform mesoporosity and their application as adsorbents for heavy-metal-ion sequestration.

    PubMed

    Seisenbaeva, Gulaim A; Daniel, Geoffrey; Kessler, Vadim G; Nedelec, Jean-Marie

    2014-08-18

    Mesoporous powders of transition-metal oxides, TiO2, ZrO2, HfO2, Nb2O5, and Ta2O5, pure from organic impurities were produced by a rapid single-step thermohydrolytic approach. The obtained materials display an impressively large active surface area and sharp pore-size distribution, being composed of partially coalesced uniform nanoparticles with crystalline cores and amorphous shells. They reveal extremely high adsorption capacity in removal of Cr(VI) anions from solutions (25.8 for TiO2, 73.0 for ZrO2, and 74.7 mg g(-1) for Nb2O5 in relation to the Cr2O7(2-) anion), making them very attractive as adsorbents in water remediation applications. The difference in adsorption capacities for the studied oxides may be explained by variation in surface hydration and surface-charge distribution.

  17. Chitin Adsorbents for Toxic Metals: A Review

    PubMed Central

    Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N.; Kyzas, George Z.

    2017-01-01

    Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth. PMID:28067848

  18. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  19. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water.

    PubMed

    Chen, Li-Feng; Liang, Hai-Wei; Lu, Yang; Cui, Chun-Hua; Yu, Shu-Hong

    2011-07-19

    A new kind of attapulgite clay@carbon (ATP@C) nanocomposite adsorbent has been synthesized by a one-pot hydrothermal carbonization process under mild conditions using two cheap, ecofriendly materials (i.e., attapulgite clay (ATP), which is a magnesium aluminum silicate that is abundant in nature, and glucose, which is a green chemical obtained from biomass). Compared to carbon-based materials, this new ATP@C nanocomposite exhibits a high adsorption ability for Cr(VI) and Pb(II) ions with maximum adsorption capacities of 177.74 and 263.83 mg·g(-1), respectively. The results demonstrate that this nanocomposite is an exceptionally promising candidate as a low-cost, sustainable, and effective adsorbent for the removal of toxic ions from water.

  20. Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent.

    PubMed

    Sitko, Rafal; Janik, Paulina; Zawisza, Beata; Talik, Ewa; Margui, Eva; Queralt, Ignasi

    2015-03-17

    A new method based on dispersive microsolid phase extraction (DMSPE) and total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for multielemental ultratrace determination of heavy metal ions and arsenic species. In the developed methodology, the crucial issue is a novel adsorbent synthesized by grafting 3-mercaptopropyl trimethoxysilane on a graphene oxide (GO) surface. Mercapto-modified graphene oxide (GO-SH) can be applied in quantitative adsorption of cobalt, nickel, copper, cadmium, and lead ions. Moreover, GO-SH demonstrates selectivity toward arsenite in the presence of arsenate. Due to such features of GO-SH nanosheets as wrinkled structure and excellent dispersibility in water, GO-SH seems to be ideal for fast and simple preconcentration and determination of heavy metal ions using methodology based on DMSPE and TXRF measurement. The suspension of GO-SH was injected into an analyzed water sample; after filtration, the GO-SH nanosheets with adsorbed metal ions were redispersed in a small volume of internal standard solution and deposited onto a quartz reflector. The high enrichment factor of 150 allows obtaining detection limits of 0.11, 0.078, 0.079, 0.064, 0.054, and 0.083 ng mL(-1) for Co(II), Ni(II), Cu(II), As(III), Cd(II), and Pb(II), respectively. Such low detection limits can be obtained using a benchtop TXRF system without cooling media and gas consumption. The method is suitable for the analysis of water, including high salinity samples difficult to analyze using other spectroscopy techniques. Moreover, GO-SH can be applied to the arsenic speciation due to its selectivity toward arsenite.

  1. Controlling the magnetism of adsorbed metal-organic molecules

    NASA Astrophysics Data System (ADS)

    Kuch, Wolfgang; Bernien, Matthias

    2017-01-01

    Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule’s magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.

  2. Controlling the magnetism of adsorbed metal-organic molecules.

    PubMed

    Kuch, Wolfgang; Bernien, Matthias

    2017-01-18

    Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule's magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.

  3. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample.

  4. Low-cost metal adsorbents from lignite

    SciTech Connect

    Knudson, C.L.; Lafferty, C.J.; Deibel, C.C.

    1996-12-31

    Current technologies to remove heavy metals from acidic waters tend to use lime and/or caustic soda to create a highly basic solution which causes the metals to precipitate as a metal hydroxide rich sludge which must then be disposed of as a waste. The proposed process would treat streams containing low levels of metal contaminants in a simple lignite bed to remove cationic heavy metal ions. For more acidic streams, the acidity of the water could first be moderately reduced with landfill sludge (Ca-sludge) followed by lignite treatment to remove and immobilize metals. This type of processing would need a conventional mixing settling tank configuration. Tests have been performed which indicate minus 14 mesh lignite has the highest capacity to remove metal ions from solution. One wt% of lignite reduced the zinc content of a lab solution from 95 ppm to 7 ppm (5 wt% reduced it to 0.5 ppm). The combination of 1 wt% lignite and 0.1 wt% Ca-sludge reduced the zinc content of a mine water sample from 36 to 10 ppm (0.5 wt% of Ca-sludge gave 2 ppm of Zinc) while increasing the solution pH from 3.84 to 7.20. These results indicate that optimum treatment rates would be between 1--2 wt% of lignite and 0.1 to 0.5 wt% of Ca-sludge. A lignite to Ca-sludge ratio of about 10 to 1 should be a sulfur emission compliant combustion fuel.

  5. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    PubMed

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  6. Metal adsorbent for alkaline etching aqua solutions of Si wafer

    NASA Astrophysics Data System (ADS)

    Tamada, Masao; Ueki, Yuji; Seko, Noriaki; Takeda, Toshihide; Kawano, Shin-ichi

    2012-08-01

    High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h-1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing.

  7. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    systematically studied adsorption and diffusion of atomic and diatomic species (H, C, N, O, CO, and NO) on nanometer-sized Pt and Cu nanoparticles with...species and two diatomic molecules (H, C, N, O, CO, and NO) as adsorbates and study the adsorption and diffusion of these adsorbates across the edges

  8. Aptamer selection for fishing of palladium ion using graphene oxide-adsorbed nanoparticles.

    PubMed

    Cho, Yea Seul; Lee, Eun Jeong; Lee, Gwan-Ho; Hah, Sang Soo

    2015-12-01

    A new aptamer selection method using graphene oxide (GO)-adsorbed nanoparticles (GO-adsorbed NPs) was employed for specific fishing of palladium ion. High affinity ssDNA aptamers were isolated through 13 rounds of selection and the capacity of the selected DNA aptamers for palladium ion uptake was measured, clarifying that DNA01 exhibits the highest affinity to palladium ion with a dissociation constant (Kd) of 4.60±1.17 μM. In addition, binding ability of DNA01 to palladium ion was verified against other metal ions, such as Li(+), Cs(+), Mg(2+), and Pt(2+). Results of the present study suggest that future modification of DNA01 may improve palladium ion-binding ability, leading to economic recovery of palladium from water solution.

  9. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals.

    PubMed

    Wang, Chunfeng; Li, Jiansheng; Sun, Xia; Wang, Lianjun; Sun, Xiuyun

    2009-01-01

    The pure-form zeolites (A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial Cu and Zn gel. The difference of adsorption capacity of both synthesized zeolites was assessed using Cu and Zn as target heavy metal ions. It was found that adsorption capacity of zeolite A showed much higher value than that of zeolite X. Thus, attention was focused on investigating the removal performance of heavy metal ions in aqueous solution on zeolite A, comparing with zeolite HS (hydroxyl-solidate) prepared from the residual fly ash (after synthesis of pure-form zeolite A from fly ash) and a commercial grade zeolite A. Batch method was used to study the influential parameters of the adsorption process. The equilibrium data were well fitted by the Langmuir model. The removal mechanism of metal ions followed adsorption and ion exchange processes. Attempts were also made to recover heavy metal ions and regenerate adsorbents.

  10. Negatively charged ions on Mg(0001) surfaces: appearance and origin of attractive adsorbate-adsorbate interactions.

    PubMed

    Cheng, Su-Ting; Todorova, Mira; Freysoldt, Christoph; Neugebauer, Jörg

    2014-09-26

    Adsorption of electronegative elements on a metal surface usually leads to an increase in the work function and decrease in the binding energy as the adsorbate coverage rises. Using density-functional theory calculations, we show that Cl adsorbed on a Mg(0001) surface complies with these expectations, but adsorption of {N,O,F} causes a decrease in the work function and an increase in the binding energy. Analyzing the electronic structure, we show that the presence of a highly polarizable electron spill-out in front of Mg(0001) causes this unusual adsorption behavior and is responsible for the appearance of a hitherto unknown net-attractive lateral electrostatic interaction between same charged adsorbates.

  11. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  12. Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents.

    PubMed

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo

    2015-01-01

    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II)>Cu(II)>Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO>MWCNT>PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  13. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    PubMed Central

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo

    2015-01-01

    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation. PMID:25861683

  14. ESR spectra of VO2+ ions adsorbed on calcium phosphates.

    PubMed

    Oniki, T; Doi, Y

    1983-07-01

    The ESR spectra of oxovanadium(IV) ions, (VO2+), adsorbed on hydroxyapatite(OHAp), fluorhydroxyapatite(FHAp), Mg-containing tricalcium phosphate(Mg-TCP), .octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), and amorphous calcium phosphate(ACP) were measured at room temperature. The ESR parameters of VO2+ adsorbed on these compounds were slightly different from one another and accordingly, the ESR technique by use of VO2+ was useful for an analysis of the calcium phosphates precipitated from supersaturated solutions. The ESR parameters of VO2+ adsorbed on ACP and Mg-TCP were found to be very similar to each other, suggesting that ACP and TCP resemble each other in the structure of their crystal surfaces.

  15. Metal ion removal from aqueous solution using physic seed hull.

    PubMed

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.

  16. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.

  17. Comparison of natural adsorbents for metal removal from acidic effluent.

    PubMed

    Blais, J F; Shen, S; Meunier, N; Tyagi, R D

    2003-02-01

    Adsorption tests were carried out in acidic synthetic solutions (pH 2.0) using 20 g l(-1) of various natural adsorbents and 0.25 mM of 11 different metals. In decreasing order, the most efficient adsorbents tested were: oyster shells, cedar bark, vermiculite, cocoa shells and peanut shells. In contrast, weak metal adsorption was demonstrated by: red cedar wood, peat moss, pine wood, corn cobs and perlite. Metal adsorption capacities in acidic synthetic solution followed the order: Pb2+> Cr3+> Cu2+> Fe2+> Al3+> Ni2+> Cd2+ > Mn2+ > Zn2+ > Ca2+, Mg2+. Alkaline treatment (0.75 M NaOH) increased the effectiveness of metal removal for the majority of adsorbents. In contrast, acid treatment (0.75 M H2SO4) either reduced or did not affect the adsorption capacity of the materials tested. Finally, oyster shells, red cedar wood, vermiculite, cocoa shells and peanut shells, were effective natural adsorbents for the selective recovery of lead and trivalent chromium from acidic effluent.

  18. Heavy metal-binding proteins from metal-stimulated bacteria as a novel adsorbent for metal removal technology.

    PubMed

    Sano, D; Myojo, K; Omura, T

    2006-01-01

    Water pollution with toxic heavy metals is of growing concern because heavy metals could bring about serious problems for not only ecosystems in the water environment but also human health. Some metal removal technologies have been in practical use, but much energy and troublesome treatments for chemical wastes are required to operate these conventional technologies. In this study, heavy metal-binding proteins (HMBPs) were obtained from metal-stimulated activated sludge culture with affinity chromatography using copper ion as a ligand. Two-dimensional electrophoresis revealed that a number of proteins in activated sludge culture were recovered as HMBPs for copper ion. N-termini of five HMBPs were determined, and two of them were found to be newly discovered proteins for which no amino acid sequences in protein databases were retrieved at more than 80% identities. Metal-coordinating amino acids occupied 38% of residues in one of the N-terminal sequences of the newly discovered HMBPs. Since these HMBPs were expected to be stable under conditions of water and wastewater treatments, it would be possible to utilize HMBPs as novel adsorbents for heavy metal removal if mass volume of HMBPs can be obtained with protein cloning techniques.

  19. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  20. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.

    PubMed

    Ahmaruzzaman, M

    2011-08-10

    Industrial wastes, such as, fly ash, blast furnace slag and sludge, black liquor lignin, red mud, and waste slurry, etc. are currently being investigated as potential adsorbents for the removal of the heavy metals from wastewater. It was found that modified industrial wastes showed higher adsorption capacity. The application of low-cost adsorbents obtained from the industrial wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. The adsorption mechanism, influencing factors, favorable conditions, and competitive ions etc. on the adsorption of heavy metals have also been discussed in this article. From the review, it is evident that certain industrial waste materials have demonstrated high removal capacities for the heavy metals laden with wastewater. However, it is to be mentioned that adsorption capacities of the adsorbents vary depending on the characteristics of the adsorbents, the extent of chemical modification and the concentration of adsorbates. There are also few issues and drawbacks on the utilization of industrial wastes as low-cost adsorbents that have been addressed. In order to find out the practical utilization of industrial waste as low-cost adsorbents on the commercial scale, more research should be conducted in this direction.

  1. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.

  2. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-11-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water.

  3. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals

    PubMed Central

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-01-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water. PMID:26602613

  4. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents.

    PubMed

    Chen, Kai; He, Junyong; Li, Yulian; Cai, Xingguo; Zhang, Kaisheng; Liu, Tao; Hu, Yi; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-05-15

    A new adsorbent, Fe3O4 sulfonated magnetic nanoparticle (Fe3O4-SO3H MNP), was developed for heavy metal ions removal from water, which could be effectively separated from the solution owing to the superparamagnetic property. The nanoparticles can be used to remove heavy metal ions due to the additional active site, "sulfo-group", introduced by the AMPS branches grafted onto the iron oxide. The as-synthesized materials were characterized by SEM, TEM, FT-IR and BET. The FTIR, XPS and Zeta potential were used to describe the adsorption mechanism. The Fe3O4-SO3H MNPs showed rapid removal for Pb(2+) and Cd(2+) with maximum of adsorption capacity of 108. 93 and 80.9mg/g at 25°C, respectively. The adsorption isotherms for Pb(2+) and Cd(2+) fitted better with Langmuir than Freundlich models, indicated that the processes of the removal of Pb(2+) and Cd(2+) could follow a kind of similar adsorption manner. The adsorption kinetic was consistent with pseudo-second-order model. Furthermore, the reuse experiments results showed the adsorbent might have potential in treating heavy metal ions pollution in water.

  5. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    PubMed

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place.

  6. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  7. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  8. Metal carbon bond energies for adsorbed hydrocarbons from calorimetric data

    NASA Astrophysics Data System (ADS)

    Gross, Heike; Campbell, Charles T.; King, David A.

    2004-11-01

    Single crystal adsorption calorimetry (SCAC) is a powerful new method for measuring adsorption and reaction energies. Particularly for hydrocarbons, where little or no information is available from either experiment or theory on well-defined surfaces, this method can provide crucially needed information. Assignment of the measured calorimetric heats to the appropriate surface reaction yields directly reaction heats and heats of formation of surface species. An important extension using these results is to derive values for metal-carbon bond energies in adsorbed hydrocarbon species. In this paper we review the definition of the bond dissociation energy for a surface species and discuss methodologies and limitations for calculating accurate values of this quantity from measured calorimetric data. As a step in establishing benchmark data for adsorbed hydrocarbons, we calculate a Pt-C σ bond strength, < D(Pt-C)>, of about 245 kJ/mol from data for ethylidyne on Pt{1 1 1}. Two independent methods, the quasiempirical valence bond (QVB) method and an average bond energy (ABE) method, were used to obtain this value, and the two values derived from these two approaches agree quite well. We also discuss the implications and applicability of this value of D(Pt-C) for other adsorbed hydrocarbons and on other Pt surfaces, and estimates of how this bond energy should differ when the C atom's ligands are different.

  9. The National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention

    DTIC Science & Technology

    1997-12-01

    Heavy Metal Adsorbents for Storm Water Pollution Prevention U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER in...National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED. FINAL REPORT HEAVY METAL ADSORBENTS

  10. Nano porous alkaline earth metal silicates as free fatty acid adsorbents from Crude Palm Oil (CPO)

    NASA Astrophysics Data System (ADS)

    Masmur, Indra; Sembiring, Seri Bima; Bangun, Nimpan; Kaban, Jamaran; Putri, Nabila Karina

    2017-01-01

    Free fatty acids(FFA) from Crude Palm Oil (CPO) have been adsorbed by alkaline earth metal silicate (M-silicate : M = Mg, Ca, Sr and Ba) adsorbents in ethanol using batch method. The adsorbents were prepared from the chloride salts of alkaline metals and Na2SiO3. The resulting white solid of the alkaline earth metal silicates were then heated at 800°C for 3 hours to enlarge their porosities. All adsorbents were characterized by SEM-EDX, XRD and BET. The EDX spectrum of SEM-EDX showed the appearance of all elements in the adsorbents, and the XRD spectrum of all adsorbents showed that they have crystobalite structure. The porosity of the adsorbents calculated by BET method showed that the porosities of the adsorbents range from 2.0884 - 2.0969 nm. All the adsorbents were used to adsorb the FFA from CPO containing 4.79%, 7.3%, 10.37% and 13.34% of FFA. The ratio of adsorbent to CPO to be used in adsorption of FFA from CPO were made 1:1, 1:2 and 1:3, with adsorption time of 1 hour. We found that the maximum adsorption of FFA from CPO was given by Ca-Silicate adsorbent which was between 69.86 - 94.78%, while the lowest adsorption was shown by Mg-silicate adsorbent which was 49.32 -74.53%.

  11. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2016-04-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  12. Use of dried aquatic plant roots to adsorb heavy metals

    SciTech Connect

    Robichaud, K.D.

    1996-12-31

    The removal of heavy metal ions by dried aquatic macrophytes was investigated. The ability of the biomass, Eichhornia crassipes (water hyacinth), Typha latifolia (cattail), Sparganium minimum (burr reed) and Menyanthes trifoliata to abstract lead and mercury ions is presented here, along with a conceptual filter design. This paper examines an alternative to both the traditional and recent systems designed for metal removal. It involves the use of dried aquatic macrophytes. There are numerous advantages for the use of dried macrophytes in the treatment of industrial wastewater. First, it is cost-effective. There are also funding opportunities through a variety of Environmental Protection Agency`s (EPA) programs. It is more environmentally conscious because a wetland, the harvesting pond, has been created. And, it creates public goodwill by providing a more appealing, less hardware-intensive, natural system.

  13. Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes

    NASA Astrophysics Data System (ADS)

    Hastuti, B.; Masykur, A.; Hadi, S.

    2016-02-01

    Study on chitosan modification by swelling and crosslinking and its application as a selective adsorbent for heavy metals Cr (VI) in batik industry wastes was done. Swelling is intended to improve chitosan porosity, whereas crosslinking is to increase the resistance of chitosan against acid. Natural samples are generally acidic, thus limiting chitosan application as an adsorbent. Modification of chitosan by combining swelling and crosslinking is expected to increase its adsorption capacity in binding heavy metal ions in water. The modified chitosan was later contacted with Cr (VI) to test its adsorption capacity with a variation of pH and contact time. Finally, application of modified chitosan was done in batik industry waste containing Cr (IV). Based on the results, chitosan-ECH 25% (v/v) was the optimum concentration of crosslinker to adsorb Cr (VI) ions. Modified chitosan has a solubility resistance to acids, even though a strong acid. Modification of chitosan also improved its adsorption capacity to Cr (VI) from 74% (pure chitosan) to 89% with contact time 30 min at pH 3. On the application to the batik wastes, the modified chitosan were able to adsorb Cr (IV) up to the level of 5 ppm. Thus, the modified chitosan has a potential to be applied to as an adsorbent of Cr (VI) in batik industry wastes.

  14. Mineral Adsorbents for Removal of Metals in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Bjorklund, Karin; Li, Loretta

    2014-05-01

    The aim of this research was to determine the capacity of four different soil minerals to adsorb metals frequently detected in urban runoff. These are low-cost, natural and commercially available soil minerals. Contaminated surface runoff from urban areas is a major cause of concern for water quality and aquatic ecosystems worldwide. Pollution in urban areas is generated by a wide array of non-point sources, including vehicular transportation and building materials. Some of the most frequently detected pollutants in urban runoff are metals. Exhaust gases, tire wear and brake linings are major sources of such metals as Pb, Zn and Cu, while impregnated wood, plastics and galvanized surfaces may release As, Cd, Cr and Zn. Many metals have toxic effects on aquatic plants and animals, depending on metal speciation and bioavailability. The removal efficiency of pollutants in stormwater depends on treatment practices and on the properties the pollutant. The distribution of metals in urban runoff has shown, for example, that Pb is predominantly particle-associated, whereas Zn and Cd are present mainly in dissolved form. Many metals are also attached to colloids, which may act as carriers for contaminants, thereby facilitating their transport through conventional water treatment processes. Filtration of stormwater is one of the most promising techniques for removal of particulates, colloidal and truly dissolved pollutants, provided that effective filtration and adsorption media are used. Filtration and infiltration are used in a wide array of stormwater treatment methods e.g. porous paving, infiltration drains and rain gardens. Several soil minerals were investigated for their potential as stormwater filter materials. Laboratory batch tests were conducted to determine the adsorption capacity of these minerals. A synthetic stormwater was tested, with spiked concentrations corresponding to levels reported in urban runoff, ranging from 50-1,500 µg/L for Zn; 5-250 µg/L for Cu

  15. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  16. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    PubMed

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  17. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  18. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  19. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

    PubMed

    Dods, Stewart R; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G

    2015-01-09

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5

  20. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  1. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    PubMed

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds.

  2. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  3. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    PubMed Central

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-01-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices. PMID:27554975

  4. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    DOE PAGES

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE ismore » observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less

  5. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    SciTech Connect

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  6. Removal of copper ions from aqueous solution by adlai shell (Coix lacryma-jobi L.) adsorbents.

    PubMed

    de Luna, Mark Daniel G; Flores, Edgar D; Cenia, Marie Chela B; Lu, Ming-Chun

    2015-09-01

    Adlai shell (Coix lacryma-jobi L.) adsorbents (ASA) were used to remove copper ions from aqueous solutions under batch conditions. The effect of physical and chemical modification of ASA on Cu(II) removal was evaluated. Results showed that the high coefficients of determination for the pseudo-second order (R(2) > 0.9999) and for the intraparticle diffusion (R(2) > 0.9843) equations indicate that the rate-determining step is a combination of pore diffusion and chemisorption at low Cu(II) concentration and boundary layer, pore diffusion and chemisorption at high Cu(II) concentration. At 298K and 100 mg L(-1) Cu(II), the computed qe and k2 values were 17.2 mg g(-1) and 0.012 g mg(-1) min(-1), respectively. The Freundlich model (R(2) > 0.9636) adequately describes the experimental data indicating heterogeneous adsorption. Overall, the results of the study demonstrate the potential of adlai shell adsorbents for the removal of heavy metals from aqueous solutions.

  7. Effects due to adsorbed atoms upon angular and energy distributions of surface produced negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Wada, M.; Bacal, M.; Kasuya, T.; Kato, S.; Kenmotsu, T.; Sasao, M.

    2013-02-01

    Exposure to Cs added hydrogen discharge makes surface of plasma grid of a negative hydrogen ion source covered with Cs and hydrogen. A Monte-Carlo particle simulation code ACAT was run to evaluate the effects due to adsorbed Cs and H atoms upon the angular and energy distributions of H atoms leaving the surface. Accumulation of H atoms on the surface reduces particle reflection coefficients and the mean energy of backscattered H atoms. Angular distributions of H atoms reflected from the hydrogen covered surface tend to be under-cosine at lower energies. Desorption of adsorbed H atoms is more efficient for hydrogen positive ions than for Cs positive ions at lower incident energy. At higher energy more than 100 eV, Cs ions desorb adsorbed H atoms more efficiently than hydrogen ions.

  8. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    PubMed

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil

  9. On the HSAB based estimate of charge transfer between adsorbates and metal surfaces

    NASA Astrophysics Data System (ADS)

    Kokalj, Anton

    2012-01-01

    The applicability of the HSAB based electron charge transfer parameter, Δ N, is analyzed for molecular and atomic adsorbates on metal surfaces by means of explicit DFT calculations. For molecular adsorbates Δ N gives reasonable trends of charge transfer if work function is used for electronegativity of metal surface. For this reason, calculated work functions of low Miller index surfaces for 11 different metals are reported. As for reactive atomic adsorbates, e.g., N, O, and Cl, the charge transfer is proportional to the adatom valence times the electronegativity difference between the metal surface and the adatom, where the electronegativity of metal is represented by a linear combination of atomic Mulliken electronegativity and the work function of metal surface. It is further shown that the adatom-metal bond strength is linearly proportional to the metal-to-adatom charge transfer thus making the Δ N parameter a useful indicator to anticipate the corresponding adsorption energy trends.

  10. Electronic structure and binding geometry of tetraphenylporphyrin-derived molecules adsorbed on metal and metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Coh, Senia

    Tetraphenylporphyrin (TPP)-derived molecules have been studied extensively as efficient photosensitizers when chemisorbed on the metal oxide substrates in dye-sensitized solar cells. Still, many fundamental electronic properties of the dye/oxide interface are not understood and need careful consideration. In this thesis we present a comprehensive study of the electronic structure, energy level alignment and the adsorption geometry of the TPP-derived dye molecules adsorbed on TiO2(110), ZnO(1120) and Ag(100) single crystal surfaces using ultra-high vacuum (UHV) based surface sensitive techniques. The alignment of the molecular energy levels with respect to the TiO 2 and ZnO band edges for all TPP-derived molecules we studied was found to be insensitive to either the nature of the functional groups located on the phenyl rings, presence of zinc as a central metal ion and different binding geometry of the molecules. Binding geometry, molecule-molecule interaction and the aggregation effects in the adsorbed layer, that were observed in the UV-visible spectra of the molecules adsorbed on ZnO substrate were not observed in the ultraviolet photoemission (UPS) and inverse photoemission (IPS) spectra of the occupied and unoccupied molecular states. Using near edge X-ray absorption fine structure (NEXAFS) and scanning tunneling microscopy (STM), binding geometry of the two representative TPP-derivatives was directly determined to be upright, with the porphyrin ring under large angle with respect to the surface for the p-ZnTCPP molecules and with the porphyrin ring parallel to the surface for the m-ZnTCPP molecules. We observe that the energies and the energy level alignment of the ZnTPP molecular levels measured in UPS and IPS depend on the substrate on which the molecules are adsorbed (Ag(100) or TiO2(110) single crystal surfaces). The differences are attributed to different charge screening properties of these two materials. Image charges created in the substrates during

  11. Magnetic-epichlorohydrin crosslinked chitosan schiff's base (m-ECCSB) as a novel adsorbent for the removal of Cu(II) ions from aqueous environment.

    PubMed

    Gutha, Yuvaraja; Zhang, Yaping; Zhang, Weijiang; Jiao, Xu

    2017-04-01

    Metal ions cause a serious public health problem. It is a great challenge to find an effective and efficient adsorbent to remove heavy metals from wastewater. Chitosan-based adsorbents are potential and effective for heavy metal ion removal. Hence a novel m-ECCSB was synthesized, characterized and utilized as an adsorbent for the removal of Cu(II) ions from aqueous solution. Various factors affecting the uptake behavior such as pH, adsorbent dosage, contact time, initial concentration of Cu(II) and temperature effect were investigated. Maximum adsorption capability (123.10mg/g) was obtained at pH=6, adsorbent dose of=250mg, rotational speed=200rpm, contact time=60min, and temperature of 323K. The result of the kinetic study shows that the adsorption of Cu(II) could be described by the pseudo-second-order equation. Equilibrium data were analysed with the Langmuir, Freundlich and Dubinin-Radushkevich isotherms and Langmuir model was found to provide the best fit of the experimental data. The thermodynamic parameters showed that the adsorption of Cu(II) onto m-ECCSB was spontaneous (ΔG°=-8.990, -10.00 and -10.593kJ/mol), endothermic (ΔH°=15.674, 15.478 and 15.699kJ/mol) and ΔS° (0.0814J/molK) suggests an increased randomness at the solid/solution interface under the studied conditions.

  12. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    PubMed

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.

  13. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  14. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  15. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  16. Chemical speciation of adsorbed glycine on metal surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jeong Woo; James, Joanna N.; Sholl, David S.

    2011-07-01

    Experimental studies have reported that glycine is adsorbed on the Cu(110) and Cu(100) surfaces in its deprotonated form at room temperature, but in its zwitterionic form on Pd(111) and Pt(111). In contrast, recent density functional theory (DFT) calculations indicated that the deprotonated molecules are thermodynamically favored on Cu(110), Cu(100), and Pd(111). To explore the source of this disagreement, we have tested three possible hypotheses. Using DFT calculations, we first show that the kinetic barrier for the deprotonation reaction of glycine on Pd(111) is larger than on Cu(110) or Cu(100). We then report that the presence of excess hydrogen would have little influence on the experimentally observed results, especially for Pd(111). Lastly, we perform Monte Carlo simulations to demonstrate that the aggregates of zwitterionic species on Pt(111) are energetically preferred to those of neutral species. Our results strongly suggest that the formation of aggregates with relatively large numbers of adsorbed molecules is favored under experimentally relevant conditions and that the adsorbate-adsorbate interactions in these aggregates stabilize the zwitterionic species.

  17. Isocyanide ligands adsorbed on metal surfaces: applications in catalysis, nanochemistry, and molecular electronics.

    PubMed

    Angelici, Robert J; Lazar, Mihaela

    2008-10-20

    Knowledge of the coordination chemistry and reactivity of isocyanide ligands in transition-metal complexes forms the basis for understanding the adsorption and reactions of isocyanides on metal surfaces. In this overview, we explore reactions (often catalytic) of isocyanides adsorbed on metal surfaces that reflect their patterns of reactivity in metal complexes. We also examine applications of isocyanide adsorption to the stabilization of metal nanoparticles, the functionalization of metal electrodes, and the creation of conducting organic-metal junctions in molecule-scale electronic devices.

  18. Mechanistic Enzyme Models: Pyridoxal and Metal Ions.

    ERIC Educational Resources Information Center

    Hamilton, S. E.; And Others

    1984-01-01

    Background information, procedures, and results are presented for experiments on the pyridoxal/metal ion model system. These experiments illustrate catalysis through Schiff's base formation between aldehydes/ketones and primary amines, catalysis by metal ions, and the predictable manner in which metal ions inhibit or catalyze reactions. (JN)

  19. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  20. Modified agricultural waste biomass with enhanced responsive properties for metal-ion remediation: a green approach

    NASA Astrophysics Data System (ADS)

    Mahajan, Garima; Sud, Dhiraj

    2012-12-01

    Dalbergia sissoo pods, a lignocellulosic nitrogenous waste biomass, was evaluated for sequestering of Cr(VI) from synthetic wastewater. Dalbergia sissoo pods (DSP) were used in three different forms, viz. natural (DSPN), impregnated in the form of hydrated beads (DSPB), and in carbonized form (DSPC) for comparative studies. Batch experiments were performed for the removal of hexavalent chromium. Effects of pH adsorbent dose, initial metal-ion concentration, stirring speed, and contact time were investigated. The removal of metal ions was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration, and other studied process parameters. Maximum metal removal for Cr(VI) was observed at pH 2.0. The experimental data were analyzed based on Freundlich and Langmuir adsorption isotherms. Kinetic studies indicated that the adsorption of metal ions followed a pseudo-second-order equation.

  1. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    SciTech Connect

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  2. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms

    NASA Astrophysics Data System (ADS)

    Bao, Shuangyou; Li, Kai; Ning, Ping; Peng, Jinhui; Jin, Xu; Tang, Lihong

    2017-01-01

    A novel hybrid material was fabricated using mercaptoamine-functionalised silica-coated magnetic nanoparticles (MAF-SCMNPs) and was effective in the extraction and recovery of mercury and lead ions from wastewater. The properties of this new magnetic material were explored using various characterisation and analysis methods. Adsorbent amounts, pH levels and initial concentrations were optimised to improve removal efficiency. Additionally, kinetics, thermodynamics and adsorption isotherms were investigated to determine the mechanism by which the fabricated MAF-SCMNPs adsorb heavy metal ions. The results revealed that MAF-SCMNPs were acid-resistant. Sorption likely occurred by chelation through the amine group and ion exchange between heavy metal ions and thiol functional groups on the nanoadsorbent surface. The equilibrium was attained within 120 min, and the adsorption kinetics showed pseudo-second-order (R2 > 0.99). The mercury and lead adsorption isotherms were in agreement with the Freundlich model, displaying maximum adsorption capacities of 355 and 292 mg/g, respectively. The maximum adsorptions took place at pH 5-6 and 6-7 for Hg(II) and Pb(II), respectively. The maximum adsorptions were observed at 10 mg and 12 mg adsorbent quantities for Hg(II) and Pb(II), respectively. The adsorption process was endothermic and spontaneous within the temperature range of 298-318 K. This work demonstrates a unique magnetic nano-adsorbent for the removal of Hg(II) and Pb(II) from wastewater.

  3. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks.

    PubMed

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V; Ku Kang, Jeung; Yaghi, Omar M; Terasaki, Osamu

    2015-11-26

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of 'extra adsorption domains'-that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  4. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu

    2015-11-01

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  5. Photoexcitation of adsorbates on metal surfaces: One-step or three-step

    SciTech Connect

    Petek, Hrvoje

    2012-09-07

    In this essay we discuss the light-matter interactions at molecule-covered metal surfaces that initiate surface photochemistry. The hot-electron mechanism for surface photochemistry, whereby the absorption of light by a metal surface creates an electron-hole pair, and the hot electron scatters through an unoccupied resonance of adsorbate to initiate nuclear dynamics leading to photochemistry, has become widely accepted. Yet, ultrafast spectroscopic measurements of molecule-surface electronic structure and photoexcitation dynamics provide scant support for the hot electron mechanism. Instead, in most cases the adsorbate resonances are excited through photoinduced substrate-to-adsorbate charge transfer. Based on recent studies of the role of coherence in adsorbate photoexcitation, as measured by the optical phase and momentum resolved two-photon photoemission measurements, we examine critically the hot electron mechanism, and propose an alternative description based on direct charge transfer of electrons from the substrate to adsorbate. The advantage of this more quantum mechanically rigorous description is that it informs how material properties of the substrate and adsorbate, as well as their interaction, influence the frequency dependent probability of photoexcitation and ultimately how light can be used to probe and control surface femtochemistry.

  6. Molecular separations with breathing metal-organic frameworks: modelling packed bed adsorbers.

    PubMed

    Van Assche, Tom R C; Baron, Gino V; Denayer, Joeri F M

    2016-03-14

    Various metal-organic framework (MOFs) adsorbents show peculiar adsorption behaviour as they can adopt different crystal phases, each phase with its own adsorption characteristics. Besides external stimuli such as temperature or light, different species of guest adsorbate can trigger a transition (breathing) of the host structure at a different pressure. Such phase transitions also occur during dynamic separations on a packed bed of adsorbent, where the concentrations of the adsorbates vary throughout axial column distance and time. This work presents a general strategy to model the adsorption behavior of such phase changing adsorbents during column separations and focuses on remarkable model predictions for pure components and binary mixtures in diluted and non-diluted conditions. During binary breakthrough experiments, the behaviour of flexible adsorbents is quite complex. A succession of complete or even partial phase transformations (resulting in phase coexistence) can occur during the adsorption process. A variety of unusual breakthrough profiles is observed for diluted binary mixtures. Simulations reveal at least five types of breakthrough profiles to emerge. The occurrence of these cases can be rationalized by the hodograph technique, combined with the phase diagram of the adsorbent. The remarkable experimental breakthrough profiles observed for ortho-xylene/ethylbenzene (diluted) and CO2/CH4 (non-diluted) separation on the flexible MIL-53 framework can be rationalized by application of the proposed model strategy.

  7. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    PubMed

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants.

  8. Structural Studies of Clean and Adsorbate-Covered Fcc Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Statiris, Panayiotis Athanasiou

    We have used medium energy ion scattering (MEIS) to study the structural and vibrational properties of the clean metal surfaces of Ni(110) and Ag(111), the structural changes induced by the presence of small amounts ( {~}1 atomic layer) of heteroatoms on the Ni(001) and Ni(110) surfaces (Cs, K, K and CO on Ni(110) and Au on Ni(001)) as well as the arrangement of the heteroatoms on the surface. The thesis consists of five chapters two of which serve as an introduction and provide general information about metal surfaces and medium energy ion scattering (chapters 1 and 2) and three chapters (3, 4, 5) in which the experimental results are being presented, and structural models are proposed for the surfaces studied. The purpose of the material contained in chapter one is to familiarize the reader with the general concepts, and provide an overview of the progress (experimental and theoretical) in the field of clean and adsorbate covered metal surfaces. The second chapter contains an extensive discussion about the principles and applications of medium energy ion scattering. A study of the structure of the clean Ni(001) surface and the K/Ni(110) and K/CO/Ni(110) surfaces is presented in chapter 3. Both the K/Ni(110) and K/CO/Ni(110) exhibit the missing row reconstruction. The change in the surface unit cell observed upon adsorption of CO atoms on the K/Ni(110) surface observed with low energy electron diffraction is due to the ordering of the CO molecules. The growth and structure of thin Au films (0.35 -3 layers) deposited on the Ni(001) surface is the subject of chapter 4. Au forms an almost incommensurate overlayer with a c(2 times 8) unit cell whose structure resembles that of fcc Au(111). The Au atoms exhibit unusually high vibrational amplitudes, indicating the presence of a soft phonon mode as predicted by theoretical work. The growth mode resembles the Stranski-Krastanov mode without exactly following it. The temperature dependence of the vibrational amplitudes

  9. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  10. [Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge].

    PubMed

    Liu, Jing-Yong; Sun, Shui-Yu; Chen, Tao

    2013-03-01

    Experiments were carried out on laboratory-scale electrically heated tube furnace sewage sludge combustion with different adsorbents. Four solid adsorbents (calcium oxide, Alumina, fly ash and kaolin) were used to control the emission of heavy metals (Pb, Cd, Cu, Cr, Ni, Zn) during the sewage sludge incineration. The results showed that the heavy metals tended to be fixed and left over in the incineration bottom ash with the addition of calcium oxide, Alumina, fly ash and kaolin. With the increase of the solid adsorbent ratio, the residual rate of heavy metals in the bottom ash also increased. Incineration temperature had a great influence on the heavy metal adsorption effect of the solid adsorbent. The forms, melting point and boiling point of the heavy metals were found to be important factors that determined its volatility. There was huge difference in the inhibitory effect of different adsorbents on heavy metals migration. From the view of controlling heavy metal evaporation, the adsorbents kaolin and CaO were superior to the other adsorbents. The interaction between the active center of the solid adsorbent and the molecules of the heavy metal compounds depended on the distribution of these active sites and the chemical properties of the heavy metals.

  11. Selective adsorption of Cr(VI) ions from aqueous solutions using Cr(6+)-imprinted Pebax/chitosan/GO/APTES nanofibrous adsorbent.

    PubMed

    Etemadi, Mohammadmahdi; Samadi, Saman; Yazd, Shabnam Sharif; Jafari, Pooya; Yousefi, Negin; Aliabadi, Majid

    2017-02-01

    In the present study, a novel Cr(6+)-imprinted Pebax/chitosan/GO/APTES nanofibrous adsorbent (Cr(6+)-PCGA) was prepared and its performance was compared with PCGA nanofibers for selective sorption of Cr(VI) ions from aqueous solutions. The prepared nanofibers were characterized using FTIR, SEM and EDAX analysis. The influence of batch sorption experiments including GO/APTES content, pH, contact time, Cr(VI) initial concentration and temperature on the Cr(VI) sorption efficiency using synthesized nanofibers was investigated. The Cr(VI) sorption data were well described using pseudo-second-order kinetic and Redlich-Peterson isotherm models. The maximum sorption capacities of Cr(6+)-PCGA and PCGA nanofibers for Cr(VI) ions sorption were found to be 204.5 and 550.5mgg(-1), respectively. Thermodynamic studies indicated an endothermic and spontaneous nature of Cr(VI) ions sorption using both Cr(6+)-PCGA and PCGA nanofibers. The selectivity coefficient values of Cr(VI)/Pb(II), Cr(VI)/Cu(II) and Cr(VI)/Ni(II) indicated the higher selectivity of Cr(6+)-PCGA nanofibrous adsorbent for Cr(VI) ions separation compared to PCGA nanofibers. The good stability and reusability of Cr(6+)-PCGA nanofibrous adsorbent for five sorption/desorption cycles promised a higher potential of ion-imprinted nanofibers for separation of metal ions from aqueous systems in a large scale.

  12. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  13. Single and binary adsorption of proteins on ion-exchange adsorbent: The effectiveness of isothermal models.

    PubMed

    Liang, Juan; Fieg, Georg; Shi, Qing-Hong; Sun, Yan

    2012-09-01

    Simultaneous and sequential adsorption equilibria of single and binary adsorption of bovine serum albumin and bovine hemoglobin on Q Sepharose FF were investigated in different buffer constituents and initial conditions. The results in simultaneous adsorption showed that both proteins underwent competitive adsorption onto the adsorbent following greatly by protein-surface interaction. Preferentially adsorbed albumin complied with the universal rule of ion-exchange adsorption whereas buffer had no marked influence on hemoglobin adsorption. Moreover, an increase in initial ratios of proteins was benefit to a growth of adsorption density. In sequential adsorption, hemoglobin had the same adsorption densities as single-component adsorption. It was attributed to the displacement of preadsorbed albumin and multiple layer adsorption of hemoglobin. Three isothermal models (i.e. extended Langmuir, steric mass-action, and statistical thermodynamic (ST) models) were introduced to describe the ion-exchange adsorption of albumin and hemoglobin mixtures. The results suggested that extended Langmuir model gave the lowest deviation in describing preferential adsorption of albumin at a given salt concentration while steric mass-action model could very well describe the salt effect in albumin adsorption. For weaker adsorbed hemoglobin, ST model was the preferred choice. In concert with breakthrough data, the research further revealed the complexity in ion-exchange adsorption of proteins.

  14. Hydrated metal ions in the gas phase.

    PubMed

    Beyer, Martin K

    2007-01-01

    Studying metal ion solvation, especially hydration, in the gas phase has developed into a field that is dominated by a tight interaction between experiment and theory. Since the studied species carry charge, mass spectrometry is an indispensable tool in all experiments. Whereas gas-phase coordination chemistry and reactions of bare metal ions are reasonably well understood, systems containing a larger number of solvent molecules are still difficult to understand. This review focuses on the rich chemistry of hydrated metal ions in the gas phase, covering coordination chemistry, charge separation in multiply charged systems, as well as intracluster and ion-molecule reactions. Key ideas of metal ion solvation in the gas phase are illustrated with rare-gas solvated metal ions.

  15. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    SciTech Connect

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  16. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review.

    PubMed

    Muya, Francis Ntumba; Sunday, Christopher Edoze; Baker, Priscilla; Iwuoha, Emmanuel

    2016-01-01

    Heavy metal ions such as Cd(2+), Pb(2+), Cu(2+), Mg(2+), and Hg(2+) from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1-100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.

  17. [Metal ions restrain the elimination of 4-tert-octylphenol by delta-MnO2].

    PubMed

    Li, Fei-Li; Mou, Hua-Qian

    2013-06-01

    The effect of metal ions on elimination of 4-t-OP by synthetic delta-MnO2 suspension at pH 4.0 was studied. Experiments indicated that the removal of 4-t-OP by delta-MnO2 achieved 100% at reaction time of 150 min. However, the removal of 4-t-OP by delta-MnO2 was restrained when metal ions were added, and the higher concentration of metal ion was, the stronger the inhibition produced. Additionally, there were apparent differences among the inhibitory effect of the tested metal ions. Firstly, Pb2+ and Mn2+ had the strongest effect at pH 4.0, followed by the transition metal ions, then the alkaline earth ions, while the alkali metal ions had little influence on the removal of 4-t-OP by delta-MnO2. Also comparing the adsorption results of metal ions by delta-MnO2, Pb2+ showed the greatest attraction with delta-MnO2, and among the other metal ions, transition metal ions were adsorbed a little more strongly on delta-MnO2 than alkaline earth metal ions. Consequences showed that the inhibitory effects of metal ions were due to their occupying reactive sites on delta-MnO2 surface, which competed with 4-t-OP. Moreover, the dissimilar suppressions were contributed by the different adsorption capacities, surface structure change of MnO2 and the difference of free metal ion percentage in solution as well as metal ions radii.

  18. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    PubMed

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time.

  19. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    NASA Astrophysics Data System (ADS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  20. Phenolic resin-derived activated carbon-supported divalent metal as efficient adsorbents (M-C, M=Zn, Ni, or Cu) for dibenzothiophene removal.

    PubMed

    He, Chi; Men, Gaoshan; Xu, Bitao; Cui, Jin; Zhao, Jinglian

    2017-01-01

    The adsorption process and mechanism of dibenzothiophene (DBT) over metal-loaded phenolic resin-derived activated carbon (PR-AC) were firstly reported in this work. The metal component (Zn, Ni, or Cu) was respectively introduced to PR-AC support via an impregnation method. The effects of adsorbent component, initial DBT concentration, liquid hourly space velocity (LHSV), adsorption time, and adsorption temperature on the adsorption capacity of the adsorbents were systematically investigated. Furthermore, the adsorption mechanism was discussed by analyzing the properties of adsorption product and saturated adsorbent as well as adsorption kinetics. Experimental results indicate that the PR-AC-loaded metal adsorbents, especially with Zn, present much higher DBT adsorption capability than that of pure PR-AC support. The DBT removal rate over PR-AC-loaded Zn (Zn(2+) = 0.2 mol L(-1)) reaches 89.14 %, which is almost twice higher than that of pure PR-AC (45.6 %). This is due to the π-complexation between DBT and metal ions (dominating factor) and the weakening of the local hard acid sites over PR-AC. The multi-factor orthogonal experiment shows that the DBT removal rate over PR-AC-loaded Zn sample achieved 92.36 % in optimum conditions.

  1. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  2. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  3. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  4. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  5. Direct measurement of adsorbed gas redistribution in metal-organic frameworks.

    PubMed

    Chen, Ying-Pin; Liu, Yangyang; Liu, Dahuan; Bosch, Mathieu; Zhou, Hong-Cai

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas-gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  6. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  7. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    NASA Astrophysics Data System (ADS)

    Chenette, Heather C. S.

    membrane adsorbers were found to have a static binding capacity for con A (6.0 mg/mL) that is nearly the same as the typical dextran-based separation media used in practice. Binding under dynamic conditions was tested using flow rates of 0.1-1.0 mL/min. No bound lectin was observed for the higher flow rate. The first Damkohler number was used to assess whether adsorption kinetics or mass transport contributed the limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherently low rate of adsorption of conA onto the glycopolymer. The research described in Chapter 4 focuses on reaction chemistry experiments to incorporate a phosphonate-based polymer in the membrane platform to develop a new class of affinity adsorbers that function based on their affinity for Arginine (Arg) amino acid residues. The hypothesis was that benzyl phosphonate-containing functional polymers would form strong complexes with Arg-rich proteins as a result of multivalent binding. Introducing a new class of affinity membranes for purification of Arg-rich and Arg-tagged proteins may have an impact similar to the introduction of immobilized metal ion affinity chromatography (IMAC), which would be a significant achievement. Using Arg-tags would overcome some of the associated drawbacks of using metal ions in IMAC. Additionally, some cell penetrating peptides are said to be Arg-rich, and this would be a convenient feature to exploit for their isolation and purification. Lysozyme was used as a model Arg-rich protein. The affinity membranes show a static binding capacity of 3 mg/mL. (Abstract shortened by UMI.)

  8. General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Menning, Carl A.; Chen, Jingguang G.

    2009-05-01

    It is well known that the unique chemical properties of transition metal alloys depend on the configuration of metal atoms of the bimetallic surfaces. Using density functional theory calculations, the thermodynamic potential for segregation of an admetal from the subsurface to surface configuration is shown to correlate linearly with the difference in occupied d-band center, Δɛd, between these two configurations for a wide range of bimetallic systems. The thermodynamic potential for segregation is also shown to increase with the Pauling electronegativity for several adsorbates, including atomic H, O, C, N, S, and Se. A generalized equation is provided to predict the stable surface configuration for the bimetallic systems with different adsorbates.

  9. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.

    PubMed

    Matsubu, John C; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S; Chen, Jingguang G; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-02-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

  10. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H{sub 2} multilayers

    SciTech Connect

    Phelps, R.B.

    1991-11-01

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx_lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx_lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  11. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H sub 2 multilayers

    SciTech Connect

    Phelps, R.B.

    1991-11-01

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  12. New cellulose-lysine Schiff-base-based sensor-adsorbent for mercury ions.

    PubMed

    Kumari, Sapana; Chauhan, Ghanshyam S

    2014-04-23

    Mercury is a highly toxic environmental pollutant; thus, there is an urgent need to develop new materials for its simultaneous detection and removal from water. In the present study, new oxidized cellulose-based materials, including their Schiff bases, were synthesized and investigated as a sensor-adsorbent for simple, rapid, highly selective, and simultaneous detection and removal of mercury [Hg(II)] ions. Cellulose was extracted from the pine needles, etherified, oxidized, and modified to Schiff base by reaction with l-lysine. The well-characterized cellulose Schiff base materials were used as a sensor-adsorbent for Hg(II) from aqueous solution. Hg(II) sensing was analysed with naked-eye detection and fluorescence spectroscopy. Schiff base having a decyl chain, C10-O-cell-HC═N-Lys, was observed to be an efficient adsorbent with a very high maximum adsorption capacity of 258.75 mg g(-1). The data were analyzed on the basis of various kinetic and isotherm models, and pseudo-second-order kinetics and Langmuir isotherm were followed for Hg(II) adsorption.

  13. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  14. Metal ion substrate inhibition of ferrochelatase.

    PubMed

    Hunter, Gregory A; Sampson, Matthew P; Ferreira, Gloria C

    2008-08-29

    Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. Robust kinetic analyses of the reaction mechanism are complicated by the instability of ferrous iron in aqueous solution, particularly at alkaline pH values. At pH 7.00 the half-life for spontaneous oxidation of ferrous ion is approximately 2 min in the absence of metal complexing additives, which is sufficient for direct comparisons of alternative metal ion substrates with iron. These analyses reveal that purified recombinant ferrochelatase from both murine and yeast sources inserts not only ferrous iron but also divalent cobalt, zinc, nickel, and copper into protoporphyrin IX to form the corresponding metalloporphyrins but with considerable mechanistic variability. Ferrous iron is the preferred metal ion substrate in terms of apparent k(cat) and is also the only metal ion substrate not subject to severe substrate inhibition. Substrate inhibition occurs in the order Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) and can be alleviated by the addition of metal complexing agents such as beta-mercaptoethanol or imidazole to the reaction buffer. These data indicate the presence of two catalytically significant metal ion binding sites that may coordinately regulate a selective processivity for the various potential metal ion substrates.

  15. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    SciTech Connect

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  16. Free energy of electrical double layers: Entropy of adsorbed ions and the binding polynomial

    SciTech Connect

    Stigter, D.; Dill, K.A. )

    1989-09-07

    The authors adapt the method of binding polynomials to general problems of binding equilibria of ions to polybases, polyacids, and mixed polyelectrolytes, such as proteins and other colloids. For spherical particles with a smeared charge the interaction effects are taken into account using the Poisson-Boltzmann equation, which is shown to differ little from the Debye-Hueckel approximation under conditions met in most protein solutions. Examples are given of the salt dependence of pH titration equilibria. Binding polynomials produce an extra term in the free energy of the electrical double layer, which arises from the entropy of the adsorbed ions. The maximum term method applied to the binding polynominal yields an expression which is similar to that derived by the charging process of Chan and Mitchell. Applications to monolayers and to polyelectrolyte gels are also discussed.

  17. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhao, Liang; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-01

    To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  18. Comparing Ion Exchange Adsorbents for Nitrogen Recovery from Source-Separated Urine.

    PubMed

    Tarpeh, William A; Udert, Kai M; Nelson, Kara L

    2017-02-21

    Separate collection of urine, which is only 1% of wastewater volume but contains the majority of nitrogen humans excrete, can potentially reduce the costs and energy input of wastewater treatment and facilitate recovery of nitrogen for beneficial use. Ion exchange was investigated for recovery of nitrogen as ammonium from urine for use as a fertilizer or disinfectant. Cation adsorption curves for four adsorbents (clinoptilolite, biochar, Dowex 50, and Dowex Mac 3) were compared in pure salt solutions, synthetic urine, and real stored urine. Competition from sodium and potassium present in synthetic and real urine did not significantly decrease ammonium adsorption for any of the adsorbents. Dowex 50 and Dowex Mac 3 showed nearly 100% regeneration efficiencies. Estimated ion exchange reactor volumes to capture the nitrogen for 1 week from a four-person household were lowest for Dowex Mac 3 (5 L) and highest for biochar (19 L). Although Dowex Mac 3 had the highest adsorption capacity, material costs ($/g N removed) were lower for clinoptilolite and biochar because of their substantially lower unit cost.

  19. Metal Ion Modeling Using Classical Mechanics.

    PubMed

    Li, Pengfei; Merz, Kenneth M

    2017-02-08

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

  20. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  1. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  2. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates.

    PubMed

    Goldsmith, Michael-Rock; George, Christopher B; Zuber, Gérard; Naaman, Ron; Waldeck, David H; Wipf, Peter; Beratan, David N

    2006-01-07

    Using a dissymmetrically-perturbed particle-in-a-box model, we demonstrate that the induced optical activity of chiral monolayer protected clusters, such as Whetten's Au28(SG)16 glutathione-passivated gold nanoclusters (J. Phys. Chem. B, 2000, 104, 2630-2641), could arise from symmetric metal cores perturbed by a dissymmetric or chiral field originating from the adsorbates. This finding implies that the electronic states of the nanocluster core are chiral, yet the lattice geometries of these cores need not be geometrically distorted by the chiral adsorbates. Based on simple chiral monolayer protected cluster models, we rationalize how the adsorption pattern of the tethering sulfur atoms has a substantial effect on the induced CD in the NIR spectral region, and we show how the chiral image charge produced in the core provides a convenient means of visualizing dissymmetric perturbations to the achiral gold nanocluster core.

  3. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  4. Investigation of Mesoporous Graphitic Carbon Nitride as the Adsorbent to Remove Ni (II) Ions.

    PubMed

    Xin, Gang; Xia, Yuanjiao; Lv, Yuhua; Liu, Luman; Yu, Bei

    2016-04-01

    The mesoporous graphitic carbon nitride (mpg-C3N4/r, r was defined as the initial silica/dicyandiamide mass ratio) was successfully synthesized by heating the mixture of silica and dicyandiamide in a nitrogen atmosphere. The morphology and structure of mpg-C3N4/r were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller surface area measurement (BET), X-ray powder diffraction (XRD), and Fourier Transform Infrared spectroscopy (FT-IR). The adsorption performances of Ni (II) ions by mpg-C3N4/r were investigated. With increasing of r value, the BET specific surface area of the synthesized mpg-C3N4/r increased; the highest specific surface area of mpg-C3N4/1.5 increased up to 169.3 m2/g. This work shows that mpg-C3N4/1.5 is a promising, high-efficiency adsorbent that can be used to purify the water of a low Ni (II) ions concentration. The maximum adsorption capacity of Ni(II) ions by mpg-C3N4/1.5 was 15.26 mg/g. The adsorption properties of Ni (II) ions by mpg-C3N4/r complied well with pseudo-second-order kinetics and Langmuir isotherm model.

  5. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  6. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  7. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2006-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  8. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  9. Determinants of Protein Elution Rates from Preparative Ion-Exchange Adsorbents

    PubMed Central

    Angelo, James M.; Lenhoff, Abraham M.

    2016-01-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their uptake and elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and L-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents. PMID:26948763

  10. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    PubMed

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents.

  11. Modeling the construction of polymeric adsorbent media: effects of counter-ions on ligand immobilization and pore structure.

    PubMed

    Riccardi, Enrico; Wang, Jee-Ching; Liapis, Athanasios I

    2014-02-28

    Molecular dynamics modeling and simulations are employed to study the effects of counter-ions on the dynamic spatial density distribution and total loading of immobilized ligands as well as on the pore structure of the resultant ion exchange chromatography adsorbent media. The results show that the porous adsorbent media formed by polymeric chain molecules involve transport mechanisms and steric resistances which cause the charged ligands and counter-ions not to follow stoichiometric distributions so that (i) a gradient in the local nonelectroneutrality occurs, (ii) non-uniform spatial density distributions of immobilized ligands and counter-ions are formed, and (iii) clouds of counter-ions outside the porous structure could be formed. The magnitude of these counter-ion effects depends on several characteristics associated with the size, structure, and valence of the counter-ions. Small spherical counter-ions with large valence encounter the least resistance to enter a porous structure and their effects result in the formation of small gradients in the local nonelectroneutrality, higher ligand loadings, and more uniform spatial density distributions of immobilized ligands, while the formation of exterior counter-ion clouds by these types of counter-ions is minimized. Counter-ions with lower valence charges, significantly larger sizes, and elongated shapes, encounter substantially greater steric resistances in entering a porous structure and lead to the formation of larger gradients in the local nonelectroneutrality, lower ligand loadings, and less uniform spatial density distributions of immobilized ligands, as well as substantial in size exterior counter-ion clouds. The effects of lower counter-ion valence on pore structure, local nonelectroneutrality, spatial ligand density distribution, and exterior counter-ion cloud formation are further enhanced by the increased size and structure of the counter-ion. Thus, the design, construction, and functionality of

  12. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  13. Separation of metal ions in nitrate solution by ultrasonic atomization.

    PubMed

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-15

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  14. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    PubMed

    Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers.

  15. Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent.

    PubMed

    Ren, Yueming; Wei, Xizhu; Zhang, Milin

    2008-10-01

    A novel magnetic Cu(II) ion imprinted composite adsorbent (Cu(II)-MICA) was synthesized, characterized and applied for the selective removal Cu(II) from aqueous solution in the batch system. The adsorption-desorption and selectivity characteristics were investigated. The maximum adsorption occurred at pH 5-6. The equilibrium time was 6.0h, and a pseudo-second-order model could best describe adsorption kinetics. The adsorption equilibrium data fit Langmuir isotherm equation well with a maximum adsorption capacity of 46.25mg/g and Langmuir adsorption equilibrium constant of 0.0956L/mg at 298K. Thermodynamic parameters analysis predicted an exothermic nature of adsorption and a spontaneous and favourable process that could be mainly governed by physisorption mechanism. The relative selectivity coefficients of Cu(II)-MICA for Cu(II)/Zn(II) and Cu(II)/Ni(II) were 2.31, 2.66 times greater than the magnetic non-imprinted composite adsorbent (MNICA). Results suggested that Cu(II)-MICA was a material of efficient, low-cost, convenient separation under magnetic field and could be reused five times with about 14% regeneration loss.

  16. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.

  17. Chemical effects on vibrational properties of adsorbed molecules on metal surfaces: Coverage dependence

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1987-10-01

    Vibrational properties of chemisorbed molecules on metal surfaces are studied with a focus on the coverage dependent chemical shift of the frequencies. Available experimental data of a CO adsorption on transition metal and noble metal surfaces are analyzed in the light of the coverage dependent back-donation into the 2 π* orbitals of chemisorbed CO molecules. The vibrational frequency ωCO of the intramolecular stretching mode exhibits a downward shift of varying magnitude, depending on the amount of back-donation into the 2 π* orbitals of the chemisorbed CO. On increasing the coverage θ, ωCO usually increases due to the dipole-dipole interaction. On Cu surfaces, however, the shifts are relatively small, or in some cases, negative. So far, this anomalous frequency shift with θ is understood as a result of competitive effect between the upward dipole Ωdip and the downward chemical shift Ωchem associated with back-donation. The purpose of this paper is to establish the possible origin of the downward frequency shift through the electronic properties of an incomplete monolayer of adsorbates. The adsorbate density of states ρa is calculated by means of the coherent potential approximation, in which the electron hopping between the adsorbates (band formation effect) and the depolarization effect due to the proximity of ionized adsorbed molecules are taken into account. The change of the occupied portion of ρa and ρa ( ɛF) at the Fermi level ɛF with increasing θ then manifests itself in the coverage dependent Ωchem not only due to the static back-donation, but also due to the dynamical charge fluctuation during vibrational excitation. It is found that in a weakly chemisorbed system, such as CO/Cu, the negative Ωchem amounts to Ωdip at low θ. Consequently the apparent total frequency shift remains almost constant. As the coverage increases, Ωchem becomes larger than Ωdip due to the band effect. It is also shown that the variation of the back

  18. Effect of adsorbed films on friction of Al2O3-metal systems

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  19. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2004-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework; further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability; use molecule structure building software to generate large

  20. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Dixon, David A.; Rapko, Brian M.

    2003-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM3) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: (1) further understand the structural and energetic aspects of individual donor group-metal ion interactions and incorporate this information within the MM3 framework; (2) further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability; (3) use molecule structure building software to

  1. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Dixon, David A.; Rapko, Brian M.

    2002-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to the U.S. Department of Energy (DOE). Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM3) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific objectives of this project are as follows: (1) Further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the framework of MM3. (2) Further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability. (3

  2. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate

  3. Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Pochard, Isabelle; Frykstrand, Sara; Ahlström, Olle; Forsgren, Johan; Strømme, Maria

    2014-01-01

    Porous materials are used in application areas ranging from drug and vaccine delivery, medical implants, molecular sieves and cosmetics to catalysis and humidity control. In the present work, we employed an alternative approach to gain in-depth understanding about water interaction properties in such materials by the use of dielectric spectroscopy and thereby show that it is possible to obtain information that is not accessible from the more commonly employed water interaction analysis techniques. Specifically, the complex dielectric response of Upsalite, a novel, super-hydroscopic, high-surface area, porous magnesium carbonate material was measured in isothermal frequency scans between 10-3 and 106 Hz at controlled relative humidity (RH). We found the dielectric constant of the dry material to be 1.82. The ratio of bound to free water present in Upsalite after adsorption at room temperature was found to be high irrespective of the surrounding humidity with values ranging from ˜67% to ˜90%. We further found that OH- ions are the charge carriers responsible for the electrode polarization observed in the dielectric response and that the amount of these ions that are free to move in the material corresponds to a concentration of the order of 1-10 μmol l-1 independent of RH. Finally, the OH- diffusion coefficient displayed a drastic decrease with decreasing RH, typical of transport in unsaturated conditions. The presented results provide detailed insight about water interactions in the novel water adsorbing material under study and it is foreseen that the employed analysis methods can be used to evaluate other types of moisture adsorbing materials as well as the movement of functional species in the pores of inorganic drug delivery materials and materials tailored for adsorption of harmful charged species.

  4. Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption.

    PubMed

    Zhang, Yongli; Liu, Yue; Wang, Xinrui; Sun, Zhiming; Ma, Junkui; Wu, Tao; Xing, Fubao; Gao, Jianping

    2014-01-30

    Orderly porous graphene oxide/carboxymethyl cellulose (GO/CMC) monoliths were prepared by a unidirectional freeze-drying method. The porous monoliths were characterized by Fourier transform infrared spectra, X-ray diffraction and scanning electron microscopy. Their properties including compressive strength and moisture adsorption were measured. The incorporation of GO changed the porous structure of the GO/CMC monoliths and significantly increased their compressive strength. The porous GO/CMC monoliths exhibited a strong ability to adsorb metal ions, and the Ni(2+) ions adsorbed on GO/CMC monolith were reduced by NaBH4 to obtain Ni GO/CMC monolith which could be used as catalyst in the reduction of 4-nitrophenol to 4-aminophenol. Since CMC is biodegradable and non-toxic, the porous GO/CMC monoliths are potential environmental adsorbents.

  5. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    NASA Astrophysics Data System (ADS)

    Dadfarnia, S.; Haji Shabani, A. M.; Moradi, S. E.; Emami, S.

    2015-03-01

    The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe3O4@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe3O4@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity.

  6. ``QM/Me'' - a novel embedding approach for adsorbate dynamics on metal surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, Jörg; Reuter, Karsten

    2010-03-01

    The dissociative adsorption of oxygen molecules on metal surfaces is a commonly known, highly exothermic reaction and in its slow or fast form of great importance for corrosion or oxidation catalysis, respectively. However, knowledge about atomistic details of the heat dissipation, a central conceptual concern, is very limited at best. Even on the level of Born-Oppenheimer potential energy surfaces, accurate dynamical ab-initio descriptions of such reactions are quite challenging from a computational point of view: Modeling the excitations of substrate phonons within periodic boundary conditions requires huge supercells, whereas traditional ``QM/MM'' embedding schemes would need unfeasibly large metal clusters. In the novel ``QM/Me'' approach presented here, the adsorbate- interaction is obtained from periodic first-principles calculations in convenient supercells and combined with the description of a 'bath-like' substrate based on classical potentials, which are parametrized to seamlessly fit the first-principles data. We apply our approach to the dissociative adsorption of O2 and H2 on Pd(100) using density-functional theory and a modified embedded atom potential. In both cases, a dominant fraction of the released chemisorption energy is dissipated into the bulk already on a femtosecond time scale. Implications for the adsorbate dynamics will be discussed.

  7. Metal ion separations by supported liquid membranes

    SciTech Connect

    Gyves, J. de; San Miguel, E.R. de

    1999-06-01

    Carrier-mediated transport through supported liquid membranes is currently recognized as a potentially valuable technology for selective separation and concentration of toxic and valuable metal ions. In this paper, a review of the fundamental aspects concerning metal ion transport and the influencing factors are surveyed in terms of data modeling, membrane efficiency (permeability, selectivity, stability), and data acquisition and evaluation. An account of the information reviewed demonstrates the need for critical reflection on system performances in order to accomplish scaling up operations. On the same basis, an attempt to outline some future trends in the field is presented.

  8. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  9. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA.

    PubMed

    Feng, Guodong; Jiang, Luan; Wen, Puhong; Cui, Yali; Li, Hong; Hu, Daodao

    2011-11-21

    A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity.

  10. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins.

  11. Effect of metal ions on positron annihilation characteristics in metal ion containing epoxies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St. Clair, A. K.; Stoakley, D. M.; Holt, W. H.; Mock, W., Jr.

    1984-01-01

    In the course of developing improved moisture-resistant epoxy resins, two different types of epoxy resins containing variable mole ratios of chromium ions per polymer repeat unit were developed. Positron annihilation characteristics have been investigated in these resins as a function of their metal ion content. In both cases, the presence of metal ions reduces the lifetime as well as the intensity of the long life component. The long life component intensity reduction is considerably more pronounced than the lifetime reduction. These results have been discussed in terms of increased unpaired electron density at Ps formation sites due to the presence of chromium ions in the matrix.

  12. Metal Ions Removal Using Nano Oxide Pyrolox™ Material

    NASA Astrophysics Data System (ADS)

    Gładysz-Płaska, A.; Skwarek, E.; Budnyak, T. M.; Kołodyńska, D.

    2017-02-01

    The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm3 NaCl solution are pHPZC = 4 and pHIEP < 2.

  13. Metal Ions Removal Using Nano Oxide Pyrolox™ Material.

    PubMed

    Gładysz-Płaska, A; Skwarek, E; Budnyak, T M; Kołodyńska, D

    2017-12-01

    The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm(3) NaCl solution are pHPZC = 4 and pHIEP < 2.

  14. Chitosan Hydrogel Structure Modulated by Metal Ions

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources. PMID:27777398

  15. Chitosan Hydrogel Structure Modulated by Metal Ions

    NASA Astrophysics Data System (ADS)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources.

  16. IMMUNOASSAYS FOR METAL IONS. (R824029)

    EPA Science Inventory

    Abstract

    Antibodies that recognize chelated forms of metal ions have been used to construct immunoassays for Cd(II), Hg(II), Pb(II), and Ni(II). In this paper, the format of these immunoassays is described and the binding properties of three monoclonal antibodies direc...

  17. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.

    PubMed

    Yang, Zhilin; Chen, Shu; Fang, Pingping; Ren, Bin; Girault, Hubert H; Tian, Zhongqun

    2013-04-21

    Unlike the solid-air and solid-liquid interfaces, the optical properties of metal nanoparticles adsorbed at the liquid-liquid interface have not been theoretically exploited to date. In this work, the three dimensional finite difference time domain (3D-FDTD) method is employed to clarify the localized surface plasmon resonance (LSPR) based optical properties of gold nanoparticles (NPs) adsorbed at the water-oil interface, including near field distribution, far field absorption and their relevance. The LSPR spectra of NPs located at a liquid-liquid interface are shown to differ significantly from those in a uniform liquid environment or at the other interfaces. The absorption spectra exhibit two distinct LSPR peaks, the positions and relative strengths of which are sensitive to the dielectric properties of each liquid and the exact positions of the NPs with respect to the interface. Precise control of the particles' position and selection of the appropriate wavelength of the excitation laser facilitates the rational design and selective excitation of localized plasmon modes for interfacial NPs, a necessary advance for the exploration of liquid-liquid interfaces via surface enhanced Raman spectroscopy (SERS). According to our calculations, the SERS enhancement factor for Au nanosphere dimers at the water-oil interface can be as high as 10(7)-10(9), implying significant promise for future investigations of interfacial structure and applications of liquid-liquid interfaces towards chemical analysis.

  18. Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons.

    PubMed

    Xiao, B; Thomas, K M

    2005-04-26

    In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

  19. Quantitative time-of-flight secondary ion mass spectrometry for the characterization of multicomponent adsorbed protein films

    NASA Astrophysics Data System (ADS)

    Wagner, M. S.; Shen, M.; Horbett, T. A.; Castner, David G.

    2003-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is ideal for the characterization of adsorbed proteins due to its chemical specificity and surface sensitivity. We have employed ToF-SIMS and multivariate analysis to determine the surface composition of adsorbed protein films from binary mixtures, blood serum, and blood plasma. Good correlation between ToF-SIMS data and independent radiolabeling studies was achieved for binary mixtures, though these results depended on the substrate. Qualitative insight into the composition of the serum and plasma protein films was obtained via comparison to standard single protein film spectra. ToF-SIMS and multivariate analysis were able to measure the surface composition of multicomponent adsorbed protein films.

  20. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    PubMed

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid.

  1. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  2. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  3. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash.

    PubMed

    He, Kuang; Chen, Yuancai; Tang, Zhenghua; Hu, Yongyou

    2016-02-01

    Zeolite was synthesized from coal fly ash by a fusion method and was used for the removal of heavy metal ions (Pb(2+), Cd(2+), Cu(2+), Ni(2+), and Mn(2+)) in aqueous solutions. Batch method was employed to study the influential parameters such as adsorbent dosage, pH, and coexisting cations. Adsorption isotherms and kinetics studies were carried out in single-heavy and multiheavy metal systems, respectively. The Langmuir isotherm model fitted to the equilibrium data better than the Freundlich model did, and the kinetics of the adsorption were well described by the pseudo-second-order model, except for Cd(2+) and Ni(2+) ions which were fitted for the pseudo-first-order model in the multiheavy metal system. The maximum adsorption capacity and the distribution coefficients exhibited the same sequence for Pb(2+) > Cu(2+) > Cd(2+) > Ni(2+) > Mn(2+) in both single- and multiheavy metal systems. In the end, the adsorption capacity of zeolite was tested using industrial wastewaters and the results demonstrated that zeolite could be used as an alternative adsorbent for the removal of heavy metal ions from industrial wastewater.

  4. Efficiency of a zeolitized pumice waste as a low-cost heavy metals adsorbent.

    PubMed

    Catalfamo, Paola; Arrigo, Ileana; Primerano, Patrizia; Corigliano, Francesco

    2006-06-30

    The unextracted residue obtained after a countercurrent two-step extractive process of silica from pumice lapillus, at 100 degrees C and room pressure, has been found mainly crystallized to the pseudo-cubic form typical of zeolite P. This residue could be active as a low-cost agent for the removal of heavy metals from wastewater. In this paper the removal capacity of six metallic cations (i.e. Cu(2+), Ni(2+), Zn(2+), Cd(2+), Pb(2+) and Cr(3+)) was studied in a stirred batch reactor. Results obtained showed that the removal of metal ions (100-500mgg(-1)) from wastewater is achieved in a short time and the concentration lowered under the legal limits. The adsorption mechanism mainly involves an ionic exchange between sodium ions from the solid phase and heavy metals in solution. However, if wastewater was accompanied by free acidity, it first should be neutralized to pH 4-5 to prevent zeolite destruction.

  5. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.

    PubMed

    Baker, Hutaf M; Massadeh, Adnan M; Younes, Hammad A

    2009-10-01

    The adsorption behavior of natural Jordanian zeolites with respect to Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) was studied in order to consider its application to purity metal finishing drinking and waste water samples under different conditions such as zeolite particle size, ionic strength and initial metal ion concentration. In the present work, a new method was developed to remove the heavy metal by using a glass column as the one that used in column chromatography and to make a comparative between the batch experiment and column experiment by using natural Jordanian zeolite as adsorbent and some heavy metals as adsorbate. The column method was used using different metal ions concentrations ranged from 5 to 20 mg/L with average particle size of zeolite ranged between 90 and 350 mum, and ionic strength ranged from 0.01 to 0.05. Atomic absorption spectrometry was used for analysis of these heavy metal ions, the results obtained in this study indicated that zeolitic tuff is an efficient ion exchanger for removing heavy metals, in particular the fine particle sizes of zeolite at pH 6, whereas, no clear effect of low ionic strength values is noticed on the removal process. Equilibrium modeling of the removal showed that the adsorption of Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR). The sorption energy E determined in the DKR equation (9.129, 10.000, 10.541, and 11.180 kJ/mol for Zn(2 + ), Cu(2 + ), Cd(2 + ) and Pb(2 + ) respectively) which revealed the nature of the ion-exchange mechanism.

  6. Interplay of metal ions and urease

    PubMed Central

    Carter, Eric L.; Flugga, Nicholas; Boer, Jodi L.; Mulrooney, Scott B.; Hausinger, Robert P.

    2009-01-01

    Summary Urease, the first enzyme to be crystallized, contains a dinuclear nickel metallocenter that catalyzes the decomposition of urea to produce ammonia, a reaction of great agricultural and medical importance. Several mechanisms of urease catalysis have been proposed on the basis of enzyme crystal structures, model complexes, and computational efforts, but the precise steps in catalysis and the requirement of nickel versus other metals remain unclear. Purified bacterial urease is partially activated via incubation with carbon dioxide plus nickel ions; however, in vitro activation also has been achieved with manganese and cobalt. In vivo activation of most ureases requires accessory proteins that function as nickel metallochaperones and GTP-dependent molecular chaperones or play other roles in the maturation process. In addition, some microorganisms control their levels of urease by metal ion-dependent regulatory mechanisms. PMID:20046957

  7. Fluorescence enhancement of photoswitchable metal ion sensors

    NASA Astrophysics Data System (ADS)

    Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.

    2016-12-01

    Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.

  8. Infrared-Laser Excitation of the Internal Vibrational Mode of a Diatomic Molecule Adsorbed on a Metal Surface.

    DTIC Science & Technology

    1986-11-01

    Excitation of the Internal Vibrational Mode of a Diatomic Molecule Adsorbed on a Metal Surface m by ’ Andre Peremans, Jacques Darville , Jean-Marie...Andre Peremans, Jacques Darville , Jean-Marie Gilles and Thomas F. George 13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Dayl As...ON A METAL SURFACE h Andr& Peremans , Jacques Darville and Jean-Marie Gilles _ _ _ _ Laboratoire de Spectroscopie Mol6culaire de Surface Accesnion

  9. Comparison between the electrocatalytic properties of different metal ion phthalocyanines and porphyrins towards the oxidation of hydroxide.

    PubMed

    De Wael, Karolien; Adriaens, Annemie

    2008-02-15

    This work reports on the electrocatalytic oxidation of hydroxide using different central metal ion phthalocyanines and porphyrins immobilized on gold electrodes. The apparent electrocatalytic activity of cobalt phthalocyanine or porphyrin modified electrodes was found to be the greatest among the present series of metal ion macrocycles investigated. Copper and unmetallated phthalocyanine or porphyrin modified electrodes show no electrocatalytic behaviour towards hydroxide, such as bare gold. A possible mechanism for the enhanced reactivity of cobalt ion macrocycles towards the oxygen evolution is given. It is also stated that the electrocatalytic activity towards an adsorbate involves several aspects, such as the coordination state of the central metal ion, the nature of the ligand, the stability of the complexes, the number of d electrons, the energy of orbitals and the strength of the bonding between the central metal ion and the axial ligand.

  10. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    PubMed

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  11. Regulation of protein multipoint adsorption on ion-exchange adsorbent and its application to the purification of macromolecules.

    PubMed

    Huang, Yongdong; Bi, Jingxiu; Zhao, Lan; Ma, Guanghui; Su, Zhiguo

    2010-12-01

    Ion-exchange chromatography (IEC) using commercial ionic absorbents is a widely used technique for protein purification. Protein adsorption onto ion-exchange adsorbents often involves a multipoint adsorption. In IEC of multimeric proteins or "soft" proteins, the intense multipoint binding would make the further desorption difficult, even lead to the destruction of protein structure and the loss of its biological activity. In this paper, DEAE Sepharose FF adsorbents with controllable ligand densities from 0.020 to 0.183 mmol/ml were synthesized, and then the effect of ligand density on the static ion-exchange adsorption of bovine serum albumin (BSA) onto DEAE Sepharose FF was studied by batch adsorption technique. Steric mass-action (SMA) model was employed to analyze the static adsorption behavior. The results showed that the SMA model parameters, equilibrium constant (K(a)), characteristic number of binding sites (υ) and steric factor (σ), increased gradually with ligand density. Thus, it was feasible to regulate BSA multipoint adsorption by modulating the ligand density of ion-exchange adsorbent. Furthermore, IEC of hepatitis B surface antigen (HBsAg) using DEAE Sepharose FF adsorbents with different ligand densities was carried out, and the activity recovery of HBsAg was improved from 42% to 67% when the ligand density was decreased from 0.183 to 0.020 mmol/ml. Taking the activity recovery of HBsAg, the purification factor and the binding capacity into account, DEAE Sepharose FF with a ligand density of 0.041 mmol/ml was most effective for the purification of HBsAg. Such a strategy may also be beneficial for the purification of macromolecules and multimeric proteins.

  12. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  13. Theoretical Study on Surface-Enhanced Raman Spectra of Water Adsorbed on Noble Metal Cathodes of Nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Pang, Ran; Tian, Zhong-Qun

    2016-06-01

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures. The basis is the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. How it is not completely understood the reason why the relative Raman intensity ratio of the bending and stretching vibrations of interfacial water increases at the very negative potential region. Density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present theoretical results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, the HO-H…Ag(Au) for silver and gold. In acidic solution, a surface electron-hydronium ion-pair was proposed as an adsorption configuration of interfacial water structures on silver and gold cathodes based on density functional theory (DFT) calculations. The EHIP is in the configuration of H3O+(H2O)ne-, where the hydronium H3O+ and the surface electron is separated by water layers. The electron bound in the EHIP can first be excited under light irradiation, subsequently inducing a structural relaxation into a hydrated hydrogen atom. Thus, Raman intensities of the interfacial water in the EHIP species are signifcantly enhanced due to the cathodic polarization on silver and gold electrodes.

  14. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  15. On the Metal Ion Selectivity of Oxoacid Extractants

    SciTech Connect

    Hay, Benjamin; Chagnes, Alexandre; Cote, Gerard

    2013-01-01

    Relationships between metal chelate stability, ligand basicity, and metal ion acidity are reviewed and the general applicability is illustrated by linear correlations between aqueous stability constants and ligand pKa values for 35 metals with 26 ligands. The results confirm that most individual ligands of this type exhibit a stability ordering that correlates with the Lewis acidity of the metal ion. It is concluded that the general metal ion selectivity exhibited by liquid-liquid oxoacid extractants such as carboxylic acids, -diketones, and alkylphosphoric acids reflects the intrinsic affinity of the metal ion for the negative oxygen donor ligand.

  16. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    NASA Astrophysics Data System (ADS)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  17. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    SciTech Connect

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  18. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  19. Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization

    SciTech Connect

    Li Xingui . E-mail: lixingui@tongji.edu.cn; Huang Meirong . E-mail: huangmeirong@tongji.edu.cn; Li Shengxian

    2004-10-18

    Poly(1,8-diaminonaphthalene) (PDAN) was traditionally synthesized by an electrochemical polymerization that has some limitations such as low productivity and single form of a film. Here we report a relatively large mass synthesis of PDAN micrometer particles by a chemical oxidation of 1,8-diaminonaphthalene by (NH{sub 4}){sub 2}S{sub 2}O{sub 8} or FeCl{sub 3} with high yield. Elemental analysis, IR, and solid-state high-resolution {sup 13}C NMR spectroscopies indicate that the PDAN chain contains imine (-N=C), amine (-NH-C), and free amine (-NH{sub 2}) units as linkages between naphthalene rings. A double-stranded ladder or single-stranded structure via the linkages is deduced. The structure and Ag{sup +} absorbability of PDAN particles were characterized by laser particle-size analyzer, wide-angle X-ray diffractometer, IR, and inductively coupled plasma techniques. The Ag{sup +} adsorbability of the particles was examined and optimized systematically by varying the adsorption time, the dose and size of the particles, the temperature, pH, and concentration of Ag{sup +} solution. The fine particles obtained using (NH{sub 4}){sub 2}S{sub 2}O{sub 8} exhibit high adsorbability by complexation between Ag{sup +} and amine/imine groups as well as the redox between Ag{sup +} and free -NH{sub 2} group. The Ag{sup +} adsorbance reaches 1.92 g/g (PDAN) with exposure to a solution containing 82 mM Ag{sup +} ion for 24 h at an initial Ag{sup +}/PDAN ratio of 103 mmol/g. Total Ag{sup +} adsorbance was 1.92 times the PDAN weight, remarkably surpassing the largest Ag{sup +} adsorbance of 1.36 g/g (the best activated carbon fiber) for 30 days. The PDAN particles could be very useful in collection and removal of heavy metallic ions from water effluents.

  20. Eggshell: A green adsorbent for heavy metal removal in an MBR system.

    PubMed

    Pettinato, M; Chakraborty, S; Arafat, Hassan A; Calabro', V

    2015-11-01

    Presence of heavy metals as well as different metal ions in treated wastewater is a problem for the environment as well as human health. This paper aims to investigate the possibility to combine an MBR (membrane biological reactor) with an adsorption process onto powdered eggshell and eggshell membrane in order to improve metal removal from wastewater. The first step of the experimental analysis consists of the evaluation of the compatibility between the two processes. Then, a study about sorbent concentration and size effect on fouling was conducted, because the use of this kind of sorbent could affect membrane performance. The second step of the work concerns the check up of eggshell removal capacity as a function of sorbent size, achieved treating an aqueous solution containing Al(3+), Fe(2+) and Zn(2+) as water pollutants. Finally, synthetic wastewater, containing the metal species, was treated by two alternative process schemes: one of them performs the metal uptake in a dedicated adsorption unit, before the MBR. In the second, the two processes take place in the same unit. Results demonstrate that the optimization of the first option could be a solution to MBR upgrading.

  1. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    PubMed Central

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5–5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency. PMID:24578651

  2. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  3. Metal DiCarbides as Intermediate Species in thermal Ion Formation Mechanisms

    SciTech Connect

    Matthew G. Watrous; James E. Delmore

    2009-09-01

    The lanthanide elements (lanthanum to lutetium) adsorbed onto resin beads have been studied as thermal ionization sources. Temperatures at which these ion sources gave maximum intensities were measured for each of these elements. The temperature trends track the trends in the dissociation energies of the corresponding metal dicarbide compounds. The metal dicarbide functions as a carrier to take the lanthanide element to higher temperatures than otherwise attainable. This results in the release of the atomic species at a higher temperature where the ionization probability is significantly increased. This breaking of molecular bonds releasing the atoms at these elevated temperatures is hypothesized as the reason for high ionization efficiencies.

  4. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    NASA Astrophysics Data System (ADS)

    Jia, Yunjie; Zhang, Yuejuan; Wang, Runwei; Fan, Faying; Xu, Qinghong

    2012-01-01

    A new adsorbent named zirconium glyphosate [Zr(O3PCH2NHCH2COOH)2·0.5H2O, denoted as ZrGP] and its selective adsorptions to Pb2+, Cd2+, Mg2+ and Ca2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO4)2], ZrGP exhibited highly selective adsorption to Pb2+ in solution which contained Pb2+, Cd2+, Mg2+ and Ca2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg2+ and Ca2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  5. Adsorption of metals from aqueous solutions using a magnetic adsorbent in the presence of a magnetic field

    SciTech Connect

    Ritter, J.A.; Navratil, J.D.

    1996-10-01

    We are studying the effects of an applied magnetic field on the adsorption of metals from aqueous solutions using magnetic adsorbent materials. Certain magnetic adsorbent materials are well known for their metal adsorption properties, e.g., magnetite readily removes metals from aqueous solutions in the absence of a magnetic field. However, recent results from our work suggest that a synergistic effect between a magnetic adsorbent material and an external magnetic field may be responsible for the enhanced removal of metals from waste water. Epichlorohydrin resin beads coated with magnetite, when placed in a fixed-bed surrounded by a magnetic field, exhibited a significant increase in the magnetite capacity for plutonium and americium compared to numerous batch studies done with various forms of magnetite in the absence of a magnetic field. The removal of various metals from aqueous solutions at different pHs, concentrations, and magnetic field strengths is currently being investigated using the non-porous, magnetite-coated epichlorohydrin resin. The objective of this presentation is to give an overview of our most recent experimental findings.

  6. Removal of selected metal ions from aqueous solution using modified corncobs.

    PubMed

    Vaughan, T; Seo, C W; Marshall, W E

    2001-06-01

    The objective of this study was to convert corncobs to metal ion adsorbents for wastewater treatment. Ground corncobs were modified with either 0.6 M citric acid (CA) or 1.0 M phosphoric acid (PA) to help improve their natural adsorption capacity. The effect of a combination of wash and modification treatment was tested for corncob adsorption efficiency with five different metal ions (cadmium, copper, lead, nickel, zinc) individually or in a mixed solution containing each metal at a 20 mM concentration. Results were compared to those of commercial resins Amberlite IRC-718, Amberlite 200, Duolite GT-73 and carboxymethylcellulose (CMC). Modified corncobs showed the same adsorption efficiency as Duolite GT-73 for cadmium, copper, nickel and zinc ions and had greater adsorption than CMC for nickel and zinc ions. For mixed metals, the modified corncobs exhibited the same adsorption efficiency as Duolite GT-73 for cadmium and copper ions and the same or higher adsorption than Amberlite IRC-718 for lead ions. Adsorption capacities of modified samples were compared to those of Amberlite IRC-718, Amberlite 200 and Duolite GT-73. Commercial resins generally had higher adsorption capacities than modified corncobs. However, the adsorption capacity of modified corncobs for copper and lead ions was equivalent to Duolite GT-73, but was lower than for Amberlite IRC-718 or Amberlite 200. Depending on the specific metal ion and the presence or absence of other metal ions, chemically modified corncobs were at least equivalent in adsorption properties to all of the commercial cation exchange resins examined in this study.

  7. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  8. Rational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal

  9. Laser materials based on transition metal ions

    NASA Astrophysics Data System (ADS)

    Moncorgé, Richard

    2017-01-01

    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  10. How do metal ions direct ribozyme folding?

    NASA Astrophysics Data System (ADS)

    Denesyuk, Natalia A.; Thirumalai, D.

    2015-10-01

    Ribozymes, which carry out phosphoryl-transfer reactions, often require Mg2+ ions for catalytic activity. The correct folding of the active site and ribozyme tertiary structure is also regulated by metal ions in a manner that is not fully understood. Here we employ coarse-grained molecular simulations to show that individual structural elements of the group I ribozyme from the bacterium Azoarcus form spontaneously in the unfolded ribozyme even at very low Mg2+ concentrations, and are transiently stabilized by the coordination of Mg2+ ions to specific nucleotides. However, competition for scarce Mg2+ and topological constraints that arise from chain connectivity prevent the complete folding of the ribozyme. A much higher Mg2+ concentration is required for complete folding of the ribozyme and stabilization of the active site. When Mg2+ is replaced by Ca2+ the ribozyme folds, but the active site remains unstable. Our results suggest that group I ribozymes utilize the same interactions with specific metal ligands for both structural stability and chemical activity.

  11. Accumulation of metal ions by pectinates

    NASA Astrophysics Data System (ADS)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  12. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  13. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution.

  14. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. Themore » Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  15. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    SciTech Connect

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary; Janke, Christopher James; Wai, Chien

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.

  16. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash.

    PubMed

    Hui, K S; Chao, C Y H; Kot, S C

    2005-12-09

    The removal performance and the selectivity sequence of mixed metal ions (Co(2+), Cr(3+), Cu(2+), Zn(2+) and Ni(2+)) in aqueous solution were investigated by adsorption process on pure and chamfered-edge zeolite 4A prepared from coal fly ash (CFA), commercial grade zeolite 4A and the residual products recycled from CFA. The pure zeolite 4A (prepared from CFA) was synthesized under a novel temperature step-change method with reduced synthesis time. Batch method was employed to study the influential parameters such as initial metal ions concentration, adsorbent dose, contact time and initial pH of the solution on the adsorption process. The experimental data were well fitted by the pseudo-second-order kinetics model (for Co(2+), Cr(3+), Cu(2+) and Zn(2+) ions) and the pseudo-first-order kinetics model (for Ni(2+) ions). The equilibrium data were well fitted by the Langmuir model and showed the affinity order: Cu(2+) > Cr(3+) > Zn(2+) > Co(2+) > Ni(2+) (CFA prepared and commercial grade zeolite 4A). The adsorption process was found to be pH and concentration dependent. The sorption rate and sorption capacity of metal ions could be significantly improved by increasing pH value. The removal mechanism of metal ions was by adsorption and ion exchange processes. Compared to commercial grade zeolite 4A, the CFA prepared adsorbents could be alternative materials for the treatment of wastewater.

  17. Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption.

    PubMed

    Zhang, Yongli; Yan, Weiwei; Sun, Zhiming; Pan, Cheng; Mi, Xue; Zhao, Gang; Gao, Jianping

    2015-03-06

    Ordered porous zeolite/chitosan (Zel/Chi) monoliths were prepared by a unidirectional freeze-drying method, and their properties and structures were characterized by various instrumental methods. The metal ion adsorption and the drug release performance of the porous Zel/Chi monoliths were also studied. The release rate of cefalexin from drug-loaded Zel/Chi monoliths depended on the composition and porous structure of the monoliths. The metal ion adsorption capacity of the Zel/Chi monoliths was related to the concentration of the metal ions, the adsorption time and the Zel/Chi ratio. An experimentally maximum adsorption of 89 mg/g was achieved for Cu(2+) ions. The Zel/Chi monoliths with adsorbed Cu(2+) ions effectively catalyzed the reduction of 4-nitrophenol to 4-aminophenol and had good recyclability. They were easily recovered by simply removing them from the reaction system and rinsing them with water.

  18. Antifungal Properties of Electrically Generated Metallic Ions

    PubMed Central

    Berger, T. J.; Spadaro, J. A.; Bierman, Richard; Chapin, S. E.; Becker, R. O.

    1976-01-01

    A qualitative and quantitative investigation was undertaken to study the susceptibility of unicellular eucaryotic organisms (yeasts) to metallic cations generated by low levels of direct current. Results were characteristic of effects obtained previously using clinical and standard bacteria test organisms. The present study demonstrated that anodic silver (Ag+) at low direct currents had inhibitory and fungicidal properties. Broth dilution susceptibility tests were made on several species of Candida and one species of Torulopsis. Growth in all isolates was inhibited by concentrations of electrically generated silver ions between 0.5 and 4.7 μg/ml, and silver exhibited fungicidal properties at concentrations as low as 1.9 μg/ml. The inhibitory and fungicidal concentrations of electrically generated silver ions are lower than those reported for other silver compounds. Images PMID:1034467

  19. A simplified density functional theory method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate.

    PubMed

    Scivetti, Ivan; Persson, Mats

    2014-04-02

    A simplified density functional theory (DFT) method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate is developed and presented. This new method is based on a previous DFT development that uses a perfect conductor (PC) model to approximate the electrostatic response of the metal substrate, while the film and the adsorbate are both treated fully within DFT (Scivetti and Persson 2013 J. Phys.: Condens. Matter 25 355006). The missing interactions between the metal substrate and the insulating film in the PC approximation are modelled by a simple force field (FF). The parameters of the PC model and the force field are obtained from DFT calculations of the film and the substrate, here shown explicitly for a NaCl bilayer supported by a Cu(100) surface. In order to obtain some of these parameters and the polarizability of the force field, we have to include an external, uniformly charged plane in the DFT calculations, which has required the development of a periodic DFT formalism to include such a charged plane in the presence of a metal substrate. This extension and implementation should be of more general interest and applicable to other challenging problems, for instance, in electrochemistry. As illustrated for the gold atom on the NaCl bilayer supported by a Cu(100) surface, our new DFT-PC-FF method allows us to handle different charge states of adsorbates in a controlled and accurate manner with a considerable reduction of the computational time. In addition, it is now possible to calculate vertical transition and reorganization energies for the charging and discharging of adsorbates that cannot be obtained by current DFT methodologies that include the metal substrate. We find that the computed vertical transition energy for charging of the gold adatom is in good agreement with experiments.

  20. Graphene oxides prepared by Hummers', Hofmann's, and Staudenmaier's methods: dramatic influences on heavy-metal-ion adsorption.

    PubMed

    Moo, James Guo Sheng; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2014-10-06

    Graphene oxide (GO), an up-and-coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy-metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers' (HU), Hofmann's (HO) and Staudenmaier's (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure-function relationship by using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy-metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy-metal-ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both Pb(II) and Cd(II) is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy-metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy-metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy-metal-ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy-metal-ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean-up.

  1. The Characteristic and Activation of Mixed Andisol Soil/Bayat Clays/Rice Husk Ash as Adsorbent of Heavy Metal Chromium (Cr)

    NASA Astrophysics Data System (ADS)

    Pranoto; Sajidan; Suprapto, A.

    2017-02-01

    Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.

  2. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment.

    PubMed

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  3. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment

    SciTech Connect

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  4. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  5. Modified Mesoporous Silica (SBA–15) with Trithiane as a new effective adsorbent for mercury ions removal from aqueous environment

    PubMed Central

    2014-01-01

    Background Removal of mercury from aqueous environment has been highly regarded in recent years and different methods have been tested for this purpose. One of the most effective ways for mercury ions (Hg+2) removal is the use of modified nano porous compounds. Hence, in this work a new physical modification of mesoporous silica (SBA-15) with 1, 3, 5 (Trithiane) as modifier ligand and its application for the removal of Hg+2 from aqueous environment has been investigated. SBA-15 and Trithiane were synthesized and the presence of ligand in the silica framework was demonstrated by FTIR spectrum. The amounts of Hg+2 in the samples were determined by cold vapor generation high resolution continuum source atomic absorption spectroscopy. Also, the effects of pH, stirring time and weight of modified SBA-15 as three major parameters for effective adsorption of Hg+2 were studied. Results The important parameter for the modification of the adsorbent was Modification ratio between ligand and adsorbent in solution which was 1.5. The results showed that the best Hg+2 removal condition was achieved at pH = 5.0, stirring time 15 min and 15.0 mg of modified adsorbent. Moreover, the maximum percentage removal of Hg+2 and the capacity of adsorbent were 85% and 10.6 mg of Hg+2/g modified SBA-15, respectively. Conclusions To sum up, the present investigation introduced a new modified nano porous compound as an efficient adsorbent for removal of Hg+2 from aqueous environment. PMID:25097760

  6. Yeast metallothionein function in metal ion detoxification.

    PubMed

    Ecker, D J; Butt, T R; Sternberg, E J; Neeper, M P; Debouck, C; Gorman, J A; Crooke, S T

    1986-12-25

    A genetic approach was taken to test the function of yeast metallothionein in metal ion detoxification. A yeast strain was constructed in which the metallothionein locus was deleted (cup1 delta). The cup1 delta strain was complemented with normal or mutant metallothionein genes under normal or constitutive regulatory control on high copy episomal plasmids. Metal resistance of the cup1 delta strain with and without the metallothionein-expressing vectors was analyzed. The normally regulated metallothionein gene conferred resistance only to copper (1000-fold); constitutively expressed metallothionein conferred resistance to both copper (500-fold) and cadmium (1000-fold), but not to mercury, zinc, silver, cobalt, nickel, gold, platinum, lanthanum, uranium, or tin. Two mutant versions of the metallothionein gene were constructed and tested for their ability to confer metal resistance in the cup1 delta background. The first had a deletion of a highly conserved amino acid sequence (Lys-Lys-Ser-Cys-Cys-Ser). The second was a hybrid gene consisting of the sequences coding for the first 20 amino acids of the yeast protein fused to the monkey metallothionein gene. Expression of these genes under the CUP1 promoter provided significant protection from copper, but none of the other metals tested. These results demonstrate that there is significant flexibility in the structural requirements for metallothionein to function in copper detoxification and that yeast metallothionein is also capable of detoxifying cadmium under conditions of constitutive expression.

  7. Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces

    PubMed Central

    Kraack, Jan Philip; Kaech, Andres; Hamm, Peter

    2017-01-01

    Ultrafast vibrational dynamics of small molecules on platinum (Pt) layers in water are investigated using 2D attenuated total reflectance IR spectroscopy. Isotope combinations of carbon monoxide and cyanide are used to elucidate inter-adsorbate and substrate-adsorbate interactions. Despite observed cross-peaks in the CO spectra, we conclude that the molecules are not vibrationally coupled. Rather, strong substrate-adsorbate interactions evoke rapid (∼2 ps) vibrational relaxation from the adsorbate into the Pt layer, leading to thermal cross-peaks. In the case of CN, vibrational relaxation is significantly slower (∼10 ps) and dominated by adsorbate-solvent interactions, while the coupling to the substrate is negligible.

  8. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding.

    PubMed

    Frederiksen, John K; Li, Nan-Sheng; Das, Rhiju; Herschlag, Daniel; Piccirilli, Joseph A

    2012-06-01

    Within the three-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules to form chelates. These interactions help the RNA adopt and maintain specific conformations and frequently make essential contributions to function. Defining the locations of these site-bound metal ions remains challenging despite the growing database of RNA structures. Metal-ion rescue experiments have provided a powerful approach to identify and distinguish catalytic metal ions within RNA active sites, but the ability of such experiments to identify metal ions that contribute to tertiary structure acquisition and structural stability is less developed and has been challenged. Herein, we use the well-defined P4-P6 RNA domain of the Tetrahymena group I intron to reevaluate prior evidence against the discriminatory power of metal-ion rescue experiments and to advance thermodynamic descriptions necessary for interpreting these experiments. The approach successfully identifies ligands within the RNA that occupy the inner coordination sphere of divalent metal ions and distinguishes them from ligands that occupy the outer coordination sphere. Our results underscore the importance of obtaining complete folding isotherms and establishing and evaluating thermodynamic models in order to draw conclusions from metal-ion rescue experiments. These results establish metal-ion rescue as a rigorous tool for identifying and dissecting energetically important metal-ion interactions in RNAs that are noncatalytic but critical for RNA tertiary structure.

  9. Predicting relative toxicity of metal ions to bacteria (Microtox{reg_sign}) using ion characteristics

    SciTech Connect

    McCloskey, J.T.; Newman, M.C.; Clark, S.B.

    1995-12-31

    The use of predictive effects models with metals has received little attention in toxicology. The purpose of this study was to predict the relative toxicity of individual metal ions and metal mixtures using ion characteristics. The concentration of metal resulting in a 50% reduction in light output (EC50) in marine bacteria (Vibrio fischeri) was determined for several metals using the Microtox{reg_sign} Toxicity Analyzer. Trends in metal toxicity were predicted by combining metal speciation calculations with empirical models based on metal ion characteristics. These trends were consistent for nine divalent metals (Ca{prime} Cd, Cu, Hg, Mg, Mn, Ni, Pb and Zn) whether the media mimicked salt water (NaC, medium) or freshwater (NaNO{sub 3} medium). When expanding the study to include an additional 14 mono-, di-, and trivalent metal ions, ion characteristics were still useful for predicting the relative toxicity of metal ions to bacteria. The prediction of nonadditive toxic effects using metal mixtures was also possible based on ion characteristics. Overall, models based on ion characteristics show much promise for predicting the relative toxicity of metal ions using the Microtox{reg_sign} assay.

  10. Behavior of metal ions in bioelectrochemical systems: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zhihao; Chang, Dingming; Ma, Jingxing; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-02-01

    Bioelectrochemical systems (BESs) have been focused on by many researchers to treat wastewater and recover energy or valuable chemicals from wastes. In BESs, metal ions play an important role in the conductivity of solution, reactors' internal resistance, power generation, chemical production and activity of microorganisms. Additionally, the metal ions are also involved in anodic or cathodic reaction processes directly or indirectly in BESs. This paper reviews the behavior of metal ions in BESs, including (1) increase of the conductivity of electrolyte and decrease of internal resistance, (2) transfer for desalination, (3) enhancement or inhibition of the biocatalysis in anode, (4) improvement of cathodic performance by metal ions through electron acceptance or catalysis in cathodic process and (5) behavior of metal ions on membranes. Moreover, the perspectives of BESs removing heavy metal ions in wastewater or solid waste are discussed to realize recovery, reduction and detoxification simultaneously.

  11. Evaluation of various chitin-glucan derivatives from Aspergillus niger as transition metal adsorbents.

    PubMed

    Skorik, Yury A; Pestov, Alexander V; Yatluk, Yury G

    2010-03-01

    A number of chelating resins were prepared by chemical derivatization of the chitin-glucan (CG) complex isolated from Aspergillus niger biomass, namely chitosan-glucan (CsG), O-carboxymethyl-chitin-glucan (CM-CG), O-(2-sulfoethyl)chitin-glucan (SE-CG), and N-(2-carboxyethyl)chitosan-glucan (CE-CsG). The chemical modification was confirmed by FT-IR and elemental analysis. Nanosecond electron beam irradiation was used to produce insoluble resins and to preserve the reactive functional groups. Batch experiments were carried out to evaluate the adsorption selectivity and capacity of the resins toward transition metal ions (Cu(2+), Ni(2+), Co(2+), Zn(2+)). The resins showed good adsorption capability with the following selectivity series: Co(2+)Zn(2+). The total metal adsorption capacities of CG, CsG, CM-CG, SE-CG, and CE-CsG resins at pH 6.5 (ammonium acetate buffer) were found to be 0.205, 0.382, 1.752, 0.319, and 0.350 mmol g(-1), respectively. Our results suggest that, depending on the type of chemical modification, the chitin-glucan complexes can be used either for selective Cu(2+) removal (CsG) or for total transition metal adsorption (CM-CG) from aqueous effluents.

  12. The spliceosome and its metal ions.

    PubMed

    Butcher, Samuel E

    2011-01-01

    The spliceosome is a massive complex of 5 RNAs and many proteins that associate to catalyze precursor messenger RNA splicing. The process of splicing involves two phosphoryl transfer reactions that result in intron excision and ligation of the flanking exons. Since it is required for normal protein production in eukaryotic cells, pre-mRNA splicing is an essential step in gene expression. Although high resolution structural views of the spliceosome do not yet exist, a growing body of evidence indicates that the spliceosome is a magnesium-dependent enzyme that utilizes catalytic metal ions to stabilize both transition states during the two phosphoryl transfer steps of splicing. A wealth of data also indicate that the core of the spliceosome is comprised of RNA, and suggest that the spliceosome may be a ribozyme. This chapter presents the evidence for metal ion catalysis by the spliceosome, draws comparisons to similar RNA enzymes, and discusses the future directions for research into the mechanism of pre-mRNA splicing.

  13. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  14. Optical methods for the detection of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Uglov, A. N.; Bessmertnykh-Lemeune, A.; Guilard, R.; Averin, A. D.; Beletskaya, I. P.

    2014-03-01

    The review covers an important area of the modern chemistry, namely, the detection of heavy metal ions using optical molecular detectors. The role of this method in metal ion detection and the physicochemical grounds of operation of chemosensors are discussed, and examples of detection of most abundant heavy metal ions and synthetic approaches to molecular detectors are presented. The immobilization of molecular detectors on solid substrates for the design of analytical sensor devices is described. The bibliography includes 178 references.

  15. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples.

  16. Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion

    NASA Astrophysics Data System (ADS)

    Masykur, Abu; Juari Santosa, Sri; Jumina, Dwi Siswanta dan

    2016-02-01

    The aim of this research was to improve the adsorption capacity of chitosan by modification of the chitosan using various cross-linking agents and followed by grafting using succinate anhydride. Succinate anhydride was grafted into chitosan that had been cross-linked using ethylene glycol di-glycidyl ether (EGDE), diethylene glycol diglycidyl ether (DEGDE) andbisphenolAdiglycidyl ether (BADGE) on the hydroxyl group of chitosan to yield Chit- EGDE-Suc, Chit-DEGDE-Suc, and Chit-BADGE-Suc, respectively. Modified chitosans were analyzed using FTIR and TG-DTA and then applied as adsorbents for Pb(II) ion. Adsorption was carried out in batch condition with a variation of solution pH, contact time, and concentration of Pb(II) in the solution. Adsorption ofPb(II) ion reached optimum condition at pH 5 and contact time of 120 minutes. Adsorption of Pb(II) ion on all of the adsorbents fit well the pseudo-second order kinetic equation. Adsorption capacities of Pb(II) on Chit-EGDE-Suc, Chit-DEGDE-SucdanChit-BADGE-Suc were 0.333, 0.388 and 0.898 mmolg-1, respectively, which mean that the adsorption of Chit-BADGE-Suc was the highest and followed by Chit- DEGDE-Suc and Chit-EGDE-Suc.

  17. Enhanced End-Contacts by Helium Ion Bombardment to Improve Graphene-Metal Contacts

    PubMed Central

    Jia, Kunpeng; Su, Yajuan; Zhan, Jun; Shahzad, Kashif; Zhu, Huilong; Zhao, Chao; Luo, Jun

    2016-01-01

    Low contact resistance between graphene and metals is of paramount importance to fabricate high performance graphene-based devices. In this paper, the impact of both defects induced by helium ion (He+) bombardment and annealing on the contact resistance between graphene and various metals (Ag, Pd, and Pt) were systematically explored. It is found that the contact resistances between all metals and graphene are remarkably reduced after annealing, indicating that not only chemically adsorbed metal (Pd) but also physically adsorbed metals (Ag and Pt) readily form end-contacts at intrinsic defect locations in graphene. In order to further improve the contact properties between Ag, Pd, and Pt metals and graphene, a novel method in which self-aligned He+ bombardment to induce exotic defects in graphene and subsequent thermal annealing to form end-contacts was proposed. By using this method, the contact resistance is reduced significantly by 15.1% and 40.1% for Ag/graphene and Pd/graphene contacts with He+ bombardment compared to their counterparts without He+ bombardment. For the Pt/graphene contact, the contact resistance is, however, not reduced as anticipated with He+ bombardment and this might be ascribed to either inappropriate He+ bombardment dose, or inapplicable method of He+ bombardment in reducing contact resistance for Pt/graphene contact. The joint efforts of as-formed end-contacts and excess created defects in graphene are discussed as the cause responsible for the reduction of contact resistance.

  18. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  19. Plasma immersion ion implantation for reducing metal ion release

    NASA Astrophysics Data System (ADS)

    Díaz, C.; García, J. A.; Mändl, S.; Pereiro, R.; Fernández, B.; Rodríguez, R. J.

    2012-11-01

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  20. Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study

    PubMed Central

    Li, Xiong; Li, Hang; Yang, Gang

    2015-01-01

    Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873

  1. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  2. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    SciTech Connect

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.; Miyamoto, Naomi; Joshi, Ruma; Wood, Jordana R.; Strivens, Jonathan E.; Janke, Christopher J.; Oyola, Yatsandra; Das, Sadananda; Mayes, Richard T.; Gill, Gary A.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3-H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3-H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.

  3. A biosystem for removal of metal ions from water

    SciTech Connect

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  4. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    PubMed

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated.

  5. Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa.

    PubMed

    Le, T T Yen; Wang, Peng; Vijver, Martina G; Kinraide, Thomas B; Hendriks, A Jan; Peijnenburg, Willie J G M

    2014-09-01

    Effects of ion-ion interactions on metal toxicity to lettuce Lactuca sativa were studied based on the electrical potential at the plasma membrane surface (ψ0 ). Surface interactions at the proximate outside of the membrane influenced ion activities at the plasma membrane surface ({M(n+)}0). At a given free Cu(2+) activity in the bulk medium ({Cu(2+)}b), additions of Na(+), K(+), Ca(2+), and Mg(2+) resulted in substantial decreases in {Cu(2+)}0. Additions of Zn(2+) led to declines in {Cu(2+)}0, but Cu(2+) and Ag(+) at the exposure levels tested had negligible effects on the plasma membrane surface activity of each other. Metal toxicity was expressed by the {M(n+)}0 -based strength coefficient, indicating a decrease of toxicity in the order: Ag(+)  > Cu(2+)  > Zn(2+). Adsorbed Na(+), K(+), Ca(2+), and Mg(2+) had significant and dose-dependent effects on Cu(2+) toxicity in terms of osmolarity. Internal interactions between Cu(2+) and Zn(2+) and between Cu(2+) and Ag(+) were modeled by expanding the strength coefficients in concentration addition and response multiplication models. These extended models consistently indicated that Zn(2+) significantly alleviated Cu(2+) toxicity. According to the extended concentration addition model, Ag(+) significantly enhanced Cu(2+) toxicity whereas Cu(2+) reduced Ag(+) toxicity. By contrast, the response multiplication model predicted insignificant effects of adsorbed Cu(2+) and Ag(+) on the toxicity of each other. These interactions were interpreted using ψ0, demonstrating its influence on metal toxicity.

  6. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.

    PubMed

    Ji, Min-Kyu; Park, Won-Bae; Khan, Moonis Ali; Abou-Shanab, Reda A I; Kim, Yongje; Cho, Yunchul; Choi, Jaeyoung; Song, Hocheol; Jeon, Byong-Hun

    2012-04-01

    Nitrate (NO(3)(-)) is a commonly found contaminant in groundwater and surface water. It has created a major water quality problem worldwide. The laboratory batch experiments were conducted to investigate the feasibility of HCl-treated zero-valent iron (Fe(0)) combined with different adsorbents as hybrid systems for simultaneous removal of nitrate (NO(3)(-)) and ammonium (NH(4)(+)) ions from aqueous solution. The maximum NO(3)(-) removal in combined Fe(0)-granular activated carbon (GAC), Fe(0)-filtralite and Fe(0)-sepiolite systems was 86, 96 and 99%, respectively, at 45 °C for 24 h reaction time. The NO(3)(-) removal rate increased with the increase in initial NO(3)(-) concentration. The NO(3)(-) removal efficiency by hybrid systems was in the order of sepiolite > filtralite > GAC. The NH(4)(+) produced during the denitrification process by Fe(0) was successfully removed by the adsorbents, with the removal efficiency in the order of GAC > sepiolite > filtralite. Results of the present study suggest that the use of a hybrid system could be a promising technology for achieving simultaneous removal of NO(3)(-) and NH(4)(+) ions from aqueous solution.

  7. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores.

    PubMed

    El-Safty, Sherif A; Shenashen, Mohamed A; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-12-06

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobalt metals.

  8. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents.

  9. Spectroscopic detection of metals ions using a novel selective sensor

    NASA Astrophysics Data System (ADS)

    Peralta-Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfan, N.

    2011-09-01

    Colorimetric chemosensors are simple, economical and practical optical approach for detecting toxic metal ions (Hg2+, Pb2+, Ni2+, etc.) in the environment. In this work, we present a simple but highly specific organic compound 4-chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for divalent metal ions in H2O. The mechanism of the interaction between L1 and various metal-ions has been established by UV-vis absorption and emission spectroscopic experiments that indicate favorable coordination of metal ions with L1 in different solvents. Experimental results indicate that the shape of the electronic transition band of L1 (receptor compound) changed after the interaction with divalent metal-ions, such as Hg2+, Pb2+, Mn2+, Co2+, Cu2+, and Ni2+ in aqueous solution. We found that L1 have a considerable selectivity for Ni2+ ions, even in presence of other metals ions when mixtures of DMSO/H2O as are used as solvents. L1, which has been targeted for sensing transition metal ions, exhibits binding-induced color changes from yellow to pink observed even by the naked eye in presence of Ni2+ ions.

  10. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review.

    PubMed

    Vunain, E; Mishra, A K; Mamba, B B

    2016-05-01

    The application of nanomaterials as nanosorbents in solving environmental problems such as the removal of heavy metals from wastewater has received a lot of attention due to their unique physical and chemical properties. These properties make them more superior and useful in various fields than traditional adsorbents. The present mini-review focuses on the use of nanomaterials such as dendrimers, mesoporous silicas and chitosan nanosorbents in the treatment of wastewater contaminated with toxic heavy-metal ions. Recent advances in the fabrication of these nanoscale materials and processes for the removal of heavy-metal ions from drinking water and wastewater are highlighted, and in some cases their advantages and limitations are given. These next-generation adsorbents have been found to perform very well in environmental remediation and control of heavy-metal ions in wastewater. The main objective of this review is to provide up-to-date information on the research and development in this particular field and to give an account of the applications, advantages and limitations of these particular nanosorbents in the treatment of aqueous solutions contaminated with heavy-metal ions.

  11. Kinetic study on removal of heavy metal ions from aqueous solution by using soil.

    PubMed

    Lim, Soh-Fong; Lee, Agnes Yung Weng

    2015-07-01

    In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.

  12. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  13. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  14. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions.

    PubMed

    Guo, Yongming; Zhang, Lianfeng; Zhang, Shushen; Yang, Yan; Chen, Xihan; Zhang, Mingchao

    2015-01-15

    Fluorescent carbon nanoparticles (F-CNPs) as a new kind of fluorescent nanoparticles, have recently attracted considerable research interest in a wide range of applications due to their low-cost and good biocompatibility. The fluorescent detection of metal ions is one of the most important applications. In this review, we first present the general detection mechanism of F-CNPs for the fluorescent detection of metal ions, including fluorescence turn-off, fluorescence turn-on, fluorescence resonance energy transfer (FRET) and ratiometric response. We then focus on the recent advances of F-CNPs in the fluorescent detection of metal ions, including Hg(2+), Cu(2+), Fe(3+), and other metal ions. Further, we discuss the research trends and future prospects of F-CNPs. We envision that more novel F-CNPs-based nanosensors with more accuracy and robustness will be widely used to assay and remove various metal ions, and there will be more practical applications in coming years.

  15. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  16. DNA as sensors and imaging agents for metal ions.

    PubMed

    Xiang, Yu; Lu, Yi

    2014-02-17

    Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.

  17. "False" cytotoxicity of ions-adsorbing hydroxyapatite - Corrected method of cytotoxicity evaluation for ceramics of high specific surface area.

    PubMed

    Klimek, Katarzyna; Belcarz, Anna; Pazik, Robert; Sobierajska, Paulina; Han, Tomasz; Wiglusz, Rafal J; Ginalska, Grazyna

    2016-08-01

    An assessment of biomaterial cytotoxicity is a prerequisite for evaluation of its clinical potential. A material is considered toxic while the cell viability decreases under 70% of the control. However, extracts of certain materials are likely to reduce the cell viability due to the intense ions adsorption from culture medium (e.g. highly bioactive ceramics of high surface area). Thus, the standard ISO 10993-5 procedure is inappropriate for cytotoxicity evaluation of ceramics of high specific surface area because biomaterial extract obtained in this method (ions-depleted medium) is not optimal for cell cultures per se. Therefore, a simple test was designed as an alternative to ISO 10993-5 standard for cytotoxicity evaluation of the biomaterials of high surface area and high ions absorption capacity. The method, presented in this paper, included the evaluation of ceramics extract prepared according to corrected procedure. The corrected extract was found not cytotoxic (cell viability above 70%), suggesting that modified method for cytotoxicity evaluation of ions-adsorbing ceramics is more appropriate than ISO 10993-5 standard. For such biomaterials, the term "false" cytotoxicity is more suitable. Moreover, it was noted that NRU assay and microscopic observations should be recommended for cytotoxicity evaluation of ceramics of high surface area.

  18. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  19. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel.

    PubMed

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2013-09-15

    Liquid phase adsorption of benzothiophene (BT) has been studied over CuCl₂-loaded analogous metal-organic frameworks (MOFs), metal-benzenedicarboxylates (Me-BDCs, Me: Al, Cr and V), to understand the effect of central metal ions on the adsorptive removal of BT from a model fuel. Among the central metal ions (Al(3+), Cr(3+) and V(3+)) of the Me-BDCs only V(3+) was oxidized by the loaded CuCl₂ (or Cu(2+)) at ambient condition resulting in V(4+) and Cu(+) species. Different from the CuCl₂-loaded Al- and Cr-BDCs, the CuCl₂/V-BDC adsorbed BT remarkably well compared to the virgin V-BDCs which suggests a specific favorable interaction (π-complexation) between the obtained Cu(+) in the CuCl₂/V-BDC and BT.

  20. In situ ion gun cleaning of surface adsorbates and its effect on electrostatic forces

    NASA Astrophysics Data System (ADS)

    Schafer, Robert; Xu, Jun; Mohideen, Umar

    2016-01-01

    To obtain precise measurements of the Casimir force, it is crucial to take into account the electrostatic interactions that exist between the two boundaries. Two otherwise grounded conductors will continue to have residual electrostatic effects from patch potentials existing on the surfaces. In this paper, we look at the effect of in situ cleaning of adsorbate patches, and the resultant effect on the net electrostatic potential difference between two surfaces. We find a significant reduction in the residual potential due to in situ Ar+ cleaning for the samples used.

  1. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  2. Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer.

    PubMed

    Shankar, P; Gomathi, Thandapani; Vijayalakshmi, K; Sudha, P N

    2014-06-01

    The graft copolymerization of acrylonitrile onto cross linked chitosan was carried out using ceric ammonium nitrate as an initiator. The prepared cross linked chitosan-g-acrylonitrile copolymer was characterized using FT-IR and XRD studies. The adsorption behavior of chromium(VI), copper(II) and nickel(II) ions from aqueous solution onto cross linked chitosan graft acrylonitrile copolymer was investigated through batch method. The efficiency of the adsorbent was identified from the varying the contact time, adsorbent dose and pH. The results evident that the adsorption of metal ions increases with the increase of shaking time and metal ion concentration. An optimum pH was found to be 5.0 for both Cr(VI) and Cu(II), whereas the optimum pH is 5.5 for the adsorption of Ni(II) onto cross linked chitosan-g-acrylonitrile copolymer. The Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Freundlich model. The kinetic experimental data properly correlated with the second-order kinetic model. From the above results it was concluded that the cross linked chitosan graft acrylonitrile copolymer was found to be the efficient adsorbent for removing the heavy metals under optimum conditions.

  3. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    NASA Astrophysics Data System (ADS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-10-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  4. Impregnated-electrode-type liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  5. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  6. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Yin, Dulin; Meng, Yong; Jafari, Shila; Sillanpää, Mika

    2015-09-01

    The discharge of metals and dyes poses a serious threat to public health and the environment. What is worse, these two hazardous pollutants are often found to coexist in industrial wastewaters, making the treatment more challenging. Herein, we report an EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) bifunctional adsorbent, which was fabricated by an easy and green approach through the polycondensation reaction of β-cyclodextrin with EDTA as a cross-linker, for simultaneous adsorption of metals and dyes. In this setting, cyclodextrin cavities are expected to capture dye molecules through the formation of inclusion complexes and EDTA units as the adsorption sites for metals. The adsorbent was characterized by FT-IR, elemental analysis, SEM, EDX, ζ-potential, and TGA. In a monocomponent system, the adsorption behaviors showed a monolayer adsorption capacity of 1.241 and 1.106 mmol g(-1) for Cu(II) and Cd(II), respectively, and a heterogeneous adsorption capacity of 0.262, 0.169, and 0.280 mmol g(-1) for Methylene Blue, Safranin O, and Crystal Violet, respectively. Interestingly, the Cu(II)-dye binary experiments showed adsorption enhancement of Cu(II), but no significant effect on dyes. The simultaneous adsorption mechanism was further confirmed by FT-IR, thermodynamic study, and elemental mapping. Overall, its facile and green fabrication, efficient sorption performance, and excellent reusability indicate that EDTA-β-CD has potential for practical applications in integrative and efficient treatment of coexistenting toxic pollutants.

  7. Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces

    PubMed Central

    Bondarenko, L. V.; Gruznev, D. V.; Yakovlev, A. A.; Tupchaya, A. Y.; Usachov, D.; Vilkov, O.; Fedorov, A.; Vyalikh, D. V.; Eremeev, S. V.; Chulkov, E. V.; Zotov, A. V.; Saranin, A. A.

    2013-01-01

    Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with silicon technology. We have found that originally poor structural and electronic properties of the surface can be substantially improved by adsorbing small amounts of suitable species (e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic surface-state band with a momentum splitting of up to 0.052 Å−1 and an energy splitting of up to 190 meV at the Fermi level. The family of adsorbate-modified surfaces, on the one hand, is thought to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a semiconductor and, on the other hand, expands greatly the list of material systems prospective for spintronics applications. PMID:23661151

  8. Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces.

    PubMed

    Bondarenko, L V; Gruznev, D V; Yakovlev, A A; Tupchaya, A Y; Usachov, D; Vilkov, O; Fedorov, A; Vyalikh, D V; Eremeev, S V; Chulkov, E V; Zotov, A V; Saranin, A A

    2013-01-01

    Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with silicon technology. We have found that originally poor structural and electronic properties of the Au/Si(111) √3 x √3 surface can be substantially improved by adsorbing small amounts of suitable species (e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic surface-state band with a momentum splitting of up to 0.052 Å(-1) and an energy splitting of up to 190 meV at the Fermi level. The family of adsorbate-modified Au/Si(111) √3 x √3 surfaces, on the one hand, is thought to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a semiconductor and, on the other hand, expands greatly the list of material systems prospective for spintronics applications.

  9. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    PubMed

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine.

  10. Chromatographic separation of platinum group metals from simulated high level liquid waste using macroporous silica-based adsorbents.

    PubMed

    Xu, Yuanlai; Kim, Seong-Yun; Ito, Tatsuya; Tokuda, Haruki; Hitomi, Keitaro; Ishii, Keizo

    2013-10-18

    To separate platinum group metals (PGMs) from high level liquid waste, three novel macroporous silica-based adsorbents, namely, (Crea+Dodec)/SiO2-P, (Crea+TOA)/SiO2-P and (MOTDGA+TOA)/SiO2-P, were synthesized by introducing extractants Crea (N',N'-di-n-hexyl-thiodiglycolamide), TOA (Tri-n-octylamine), MOTDGA (N,N'-dimethyl-N,N'-di-n-octyl-thiodiglycolamide) along with theirs modifier, Dodec (n-dodecyl alcohol), into 50μm diameter SiO2-P particles by impregnation. Chromatographic separation of PGMs from simulated high level liquid waste was investigated by column method. It was found that 100% of Pd(II) and Re(VII) could be eluted out from simulate HLLW in 3.0M HNO3 solution using three adsorbents. For Ru(III) and Rh(III), high temperature has distinct effect on the adsorption rate and a further study for Ru(III) and Rh(III) is necessary to separate them from HLLW completely. In all six column experiments, a relatively satisfactory chromatographic separation operating for PGMs from simulated HLLW was obtained using (Crea+TOA)/SiO2-P adsorbent packed column at 323K.

  11. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  12. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  13. Changes in the adsorbate dipole layer with changing d-filling of the metal (II) (Co, Ni, Cu) phthalocyanines on Au(111).

    PubMed

    Xiao, Jie; Dowben, Peter A

    2009-02-04

    In combined photoemission and inverse photoemission spectroscopy studies, we observe changes in the metal phthalocyanine molecular orbital offsets with respect to the conducting gold substrate Fermi level, with the changing d-electron filling of the metal (II) (Co, Ni, Cu) phthalocyanines. The implication is that the interfacial dipole layer depends upon the choice of metal (Co, Ni, Cu) centers within the metal (II) phthalocyanines adsorbed on Au(111).

  14. Ion Beam Synthesis Of Metal - Silicon Carbide - Si Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Lindner, J. K. N.; Tsang, W. M.; Stritzker, B.; Wong, S. P.

    2003-08-01

    High doses of Ti, Ni, Mo, or W ions were implanted at elevated temperatures either conventionally or using a MEVVA ion source into ion beam synthesized Si/SiC/Si or SiC/Si layer structures in order to create metallic layers contacting the SiC. The depth distribution of metal atoms and the formation of silicide and carbide phases as well as the formation of cavities at the lower SiC/Si interface are studied by Rutherford backscattering spectroscopy (RBS) and cross-sectional transmission electron microscopy (XTEM). A brief survey of the effects ocurring in the ion beam metallization of SiC films is given and the benefit of using ion beams for metallization of thin films is elucidated.

  15. Metal ion sensing solution containing double crossover DNA

    NASA Astrophysics Data System (ADS)

    Park, Byeongho; Dugasani, Sreekantha R.; Cho, Youngho; Oh, Juyeong; Kim, Chulki; Seo, Min Ah; Lee, Taikjin; Jhon, Young Miin; Woo, Deok Ha; Lee, Seok; Jun, Seong Chan; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    The current study describes metal ion sensing with double crossover DNAs (DX1 and DX2), artificially designed as a platform of doping. The sample for sensing is prepared by a facile annealing method to grow the DXs lattice on a silicon/silicon oxide. Adding and incubating metal ion solution with the sensor substrate into the micro-tube lead the optical property change. Photoluminescence (PL) is employed for detecting the concentration of metal ion in the specimen. We investigated PL emission for sensor application with the divalent copper. In the range from 400 to 650 nm, the PL features of samples provide significantly different peak positions with excitation and emission detection. Metal ions contribute to modify the optical characteristics of DX with structural and functional change, which results from the intercalation of them into hydrogen bonding positioned at the center of double helix. The PL intensity is decreased gradually after doping copper ion in the DX tile on the substrate.

  16. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  17. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  18. Molecular orientation of molybdate ions adsorbed on goethite nanoparticles revealed by polarized in situ ATR-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Davantès, Athénaïs; Lefèvre, Grégory

    2016-11-01

    The speciation of species adsorbed on nanoparticles is a major concern for several fields, as environmental pollution and remediation, surface functionalization, or catalysis. Attenuated total reflectance infrared spectroscopy (ATR-IR) was amongst the rare methods able to give in situ information about the geometry of surface complexes on nanoparticles. A new possibility using this technique is illustrated here with the MoO42 -/goethite system. Using deuterated goethite to avoid spectral interferences, adsorption of molybdate ions on a spontaneous oriented film of nanoparticles has been followed using a polarized infrared beam. From the decomposition of spectra in the x, y and z directions, a monodentate surface complex on the {101} faces has been found as the most probable geometry. This result demonstrates that polarized ATR-IR allows to characterize in more details adsorption mode at the atomic scale, in comparison with usual ATR-IR spectroscopy.

  19. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    SciTech Connect

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-04-15

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.

  20. Progress in metal ion separation and preconcentration : an overview.

    SciTech Connect

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  1. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis.

    PubMed

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José; Herrera-Esparza, Rafael

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis.

  2. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  3. Application of radiation-graft material for metal adsorbent and crosslinked natural polymer for healthcare product

    NASA Astrophysics Data System (ADS)

    Tamada, Masao; Seko, Noriaki; Yoshii, Fumio

    2004-09-01

    Graft polymerization and crosslinking in radiation processing are attractive techniques for modification of the chemical and physical properties of conventional polymers. The graft polymerization and subsequent chemical treatment can introduce a chelate agent function into a conventional polymer such as polyethylene. The obtained amidoxime fibrous adsorbent was applied to the recovery of uranium from seawater. Soaking of 350 kg adsorbent 12 times in seawater led to the collection of 1 kg of uranium. Natural polymers such as derivatives of starch and cellulose were radiation-crosslinked to form hydrogels. Mats of crosslinked carboxylmethyl cellulose were evaluated by 68 patients after surgical operation. No bedsore was observed in almost of all patients after operation. This product was commercialized as "Non-bedsore" in Japan.

  4. Metal ion levels: how can they help us?

    PubMed

    Griffin, William L

    2014-04-01

    Ion levels have been shown to reliably predict abnormal function of the bearing surface with increased wear, but ion levels should not be used alone as a trigger for when to proceed with revision surgery with metal-metal articulations. Risk stratification strategies help determine which patients should be monitored more closely with serial ion levels, cross-sectional imaging with a MARS MRI, or proceed on to revision. Based on the current data available, an ion level greater than 4.5 ppb (Cr or Co) may serve as a threshold for when abnormal wear is occurring, and is suggested as a trigger for a MARS MRI scan.

  5. Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?

    PubMed

    Belcarz, Anna; Zalewska, Justyna; Pałka, Krzysztof; Hajnos, Mieczysław; Ginalska, Grazyna

    2015-02-01

    Bone implantable materials based on calcium sulfate dihydrate dissolve quickly in tissue liquids and release calcium ions at very high levels. This phenomenon induces temporary toxicity for osteoblasts, may cause local inflammation and delay the healing process. Reduction in the calcium ion release rate by gypsum could be therefore beneficial for the healing of gypsum-filled bone defects. The aim of this study concerned the potential use of calcium phosphate ceramics of various porosities for the reduction of high Ca(2+) ion release from gypsum-based materials. Highly porous ceramics failed to reduce the level of Ca(2+) ions released to the medium in a continuous flow system. However, it succeeded to shorten the period of high calcium level. It was not the phase composition but the high porosity of ceramics that was found crucial for both the shortening of the Ca(2+) release-related toxicity period and intensification of apatite deposition on the composite. Nonporous ceramics was completely ineffective for this purpose and did not show any ability to absorb calcium ions at a significant level. Moreover, according to our observations, complex studies imitating in vivo systems, rather than standard tests, are essential for the proper evaluation of implantable biomaterials.

  6. Silica-polyamine composite materials for heavy metal ion removal, recovery, and recycling. 2. Metal ion separations from mine wastewater and soft metal ion extraction efficiency

    SciTech Connect

    Fischer, R.J.; Pang, D.; Beatty, S.T.; Rosenberg, E.

    1999-12-01

    Silica-polyamine composites have been synthesized which have metal ion capacities as high as 0.84 mmol/g for copper ions removed from aqueous solutions. In previous reports it has been demonstrated that these materials survive more than 3,000 cycles of metal ion extraction, elution, and regeneration with almost no loss of capacity (less than 10%). This paper describes two modified silica-polyamine composite materials and reveals the results of tests designed to determine the effectiveness of these materials for extracting and separating metal ions from actual mining wastewater samples. Using these materials, the concentration of copper, aluminum, and zinc in Berkeley Pit mine wastewater is reduced to below allowable discharge limits. The recovered copper and zinc solutions were greater than 90% pure, and metal ion concentration factors of over 20 for copper were realized. Further, the ability of one of these materials to decrease low levels of the soft metals cadmium, mercury, and lead from National Sanitation Foundation recommended challenge levels to below Environmental Protection Agency allowable limits is also reported.

  7. A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Morton, Seth Michael; Jensen, Lasse

    2010-08-01

    A new polarizable quantum mechanics/molecular mechanics method for the calculation of response properties of molecules adsorbed on metal nanoparticles is presented. This method, which we denote the discrete interaction model/quantum mechanics (DIM/QM) method, represents the nanoparticle atomistically which enables the modeling of the influence of the local environment of a nanoparticle surface on the optical properties of a molecule. Using DIM/QM, we investigate the excitation energies of rhodamine-6G (R6G) and crystal violet (CV) adsorbed on silver and gold nanoparticles of different quasispherical shapes and sizes. The metal nanoparticle is characterized by its static total polarizability, a reasonable approximation for frequencies far from the plasmon resonance. We observe that for both R6G and CV, the presence of the nanoparticle shifts the strongest excitation to the red ˜40 nm and also increases the oscillator strength of that excitation. The shifts in excitation energies due to the nanoparticle surface are found to be comparable to those due to solvation. We find that these shifts decay quickly as the molecule is moved away from the surface. We also find that the wavelength shift is largest when the transition dipole moment is aligned with the edges of the nanoparticle surface where the electric field is expected to be the largest. These results show that the molecular excitations are sensitive to the local environment on the nanoparticle as well as the specific orientation of the molecule relative to the surface.

  8. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores

    PubMed Central

    El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-01-01

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467

  9. Nucleic acid-metal ion interactions in the solid state.

    PubMed

    Aoki, Katsuyuki; Murayama, Kazutaka

    2012-01-01

    Metal ions play a key role in nucleic acid structure and activity. Elucidation of the rules that govern the binding of metal ions is therefore an essential step for better understanding of the nucleic acid functions. This review is as an update to a preceding one (Metal Ions Biol. Syst., 1996, 32, 91-134), in which we offered a general view of metal ion interactions with mono-, di-, tri-, and oligonucleotides in the solid state, based on their crystal structures reported before 1994. In this chapter, we survey all the crystal structures of metal ion complexes with nucleotides involving oligonucleotides reported after 1994 and we have tried to uncover new characteristic metal bonding patterns for mononucleotides and oligonucleotides with A-RNA and A/B/Z-DNA fragments that form duplexes. We do not cover quadruplexes, duplexes with metal-mediated base-pairs, tRNAs, rRNAs in ribosome, ribozymes, and nucleic acid-drug and -protein complexes. Factors that affect metal binding to mononucleotides and oligonucleotide duplexes are also dealt with.

  10. Predicting the relative toxicity of metal ions using ion characteristics: Microtox{reg_sign} bioluminescence assay

    SciTech Connect

    McCloskey, J.T.; Newman, M.C.; Clark, S.B.

    1996-10-01

    Quantitative structure-activity relationships have been used to predict the relative toxicity of organic compounds. Although not as common, ion characteristics have also proven useful for predicting the relative toxicity of metal ions. The purpose of this study was to determine if the relative toxicity of metal ions using the Microtox{reg_sign} bioassay was predictable using ion characteristics. Median effect concentrations (EC50s) were determined for 20 metals in a NaNO{sub 3} medium, which reflected freshwater speciation conditions, using the Microtox bacterial assay. The log of EC50 values was modeled using several ion characteristics, and Akaike`s Information Criterion was calculated to determine which ion characteristics provided the best fit. Whether modeling total ion or free ion EC50 values, the one variable which best modeled EC50s was the softness index, while a combination of {chi}{sub m}{sup 2}r ({chi}{sub m} = electronegativity, r = Pauling ionic radius) and {vert_bar}log K{sub OH}{vert_bar} was the best two-variable model. Other variables, including {Delta}E{sub 0} and {chi}{sub m}{sup 2}r (one-variable models) and (AN/{Delta}IP, {Delta}E{sub 0}) and ({chi}{sub m}{sup 2}r, Z{sup 2}/r) (two-variable models), also gave adequate fits. Modeling with speciated (free ion) versus unspeciated (total ion) EC50 values did not improve fits. Modeling mono-, di-, and trivalent metal ions separately improved the models. The authors conclude that ion characteristics can be used to predict the relative toxicity of metal ions whether in freshwater (NaNO{sub 3} medium) or saltwater (NaCl medium) speciation conditions and that this approach can be applied to metal ions varying widely in both valence and binding tendencies.

  11. Ion plating seals microcracks or porous metal components

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability.

  12. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  13. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  14. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  15. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  16. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  17. An Engineered Palette of Metal Ion Quenchable Fluorescent Proteins

    PubMed Central

    Yu, Xiaozhen; Strub, Marie-Paule; Barnard, Travis J.; Noinaj, Nicholas; Piszczek, Grzegorz; Buchanan, Susan K.; Taraska, Justin W.

    2014-01-01

    Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+). Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum. PMID:24752441

  18. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  19. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  20. Frictional and morphological characteristics of ion plated soft, metallic films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buzek, B.

    1981-01-01

    Ion plated metallic films in contrast to films applied by other deposition techniques offer a lower friction coefficient, longer endurance lives and exhibit a gradual increase in friction coefficient after the film has been worn off. The friction coefficients of metallic films are affected by the degree of adherence, thickness and nucleation and growth characteristics during ion plating lead to a fine, continuous crystalline structure, which contributes to a lower friction coefficient.

  1. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    PubMed

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.

  2. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  3. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  4. Hematein chelates of unusual metal ions for tinctorial histochemistry.

    PubMed

    Smith, A A

    2010-02-01

    Hematoxylin is oxidized easily to hematein, an excellent stain for metal ions. If it already is bound to a substrate, the metal ion becomes a mordant linking the dye to the substrate. Metal ions added to hematein in solution are chelated by the hematein to form a lake. Most of these chelates stain animal tissues. They usually are bound to the tissue by a combination of hydrogen bonding of the hematein and ionic bonding of the metal ion. When binding of the lake to the tissue occurs by way of the metal ion, the metal ion is a mordant. Mordant staining often is specific. Chromium hematoxylin binds to strong acids; it can be made selective for protein-bound sulfonic acids. Zirconyl hematoxylin is selective for acidic mucins. Mucihematein can be made selective for all acidic mucins or for sulfomucins alone. Bismuth hematoxylin appears to be selective for the guanido group of arginine and there is some evidence that the bonding is covalent. Although it is not a histochemical stain, copper-chrome hematoxylin is an excellent stain for organelles with double membranes, i.e., mitochondria and nuclei.

  5. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    NASA Astrophysics Data System (ADS)

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-04-01

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI-PD/GO composite nanosheets. The PEI-PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu2+, Cd2+, Pb2+, Hg2+ are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI-PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m2/g. Although the adsorption capacity of PEI-PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI-PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu2+, Cd2+, Pb2+, and Hg2+, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater.

  6. Rice straw modified by click reaction for selective extraction of noble metal ions.

    PubMed

    Wang, Jingjing; Wei, Jun; Li, Juan

    2015-02-01

    Rice straw was modified by azide-alkyne click reaction in order to realize selective extraction of noble metal ions. The ability of the modified straw to adsorb Pd(2+) and Pt(4+) was assessed using a batch adsorption technique. It was found that the sorption equilibrium could be reached within 1h and the adsorption capacity increased with temperature for both Pd(2+) and Pt(4+). The maximum sorption capacities for Pd(2+) and Pt(4+) were respectively attained in 1.0 and 0.1 mol/L HCl. The modified straw showed excellent selectivity for noble metal ions in comparison to the pristine straw. In addition, the modified straw was examined as a column packing material for extraction of noble metal ions. It was indicated that 1.0 mL/min was the best flow rate for Pd(2+) and Pt(4+). The modified straw could be repeatedly used for 10 times without any significant loss in the initial binding affinity.

  7. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  8. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  9. ION EXCHANGE IN FUSED SALTS. II. THE DISTRIBUTION OF ALKALI METAL AND ALKALINE EARTH IONS BETWEEN CHABAZITE AND FUSED LINO3, NANO3, AND KNO3,

    DTIC Science & Technology

    ION EXCHANGE, SALTS ), (*ALKALI METALS, ION EXCHANGE), (*ALKALINE EARTH METALS, ION EXCHANGE), (*NITRATES, ION EXCHANGE), SODIUM , CALCIUM, POTASSIUM...BARIUM, RUBIDIUM, CESIUM, LITHIUM COMPOUNDS, SODIUM COMPOUNDS, POTASSIUM COMPOUNDS, DISTRIBUTION, MINERALS, IONS

  10. Treatment of metallic effluents using coconut shell coke.

    PubMed

    Feroz, S; King, P; Prasad, V S R K

    2005-04-01

    The effect of various parameters on the removal of metal ions (Zinc and Cadmium) by adsorption using coconut shell coke is investigated. The time of contact, initial metal ion concentration, adsorbent dosage, volume of the adsorbate solution, size of the adsorbent particle and the effect of the presence of another metal at various concentrations are the parameters studied. The adsorption isotherms so obtained in this study followed the Freundlich and Langmuir isotherms showing a marginal average deviation.

  11. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  12. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  13. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  14. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions.

    PubMed

    Zhang, Zhihong; Ji, Hongfei; Song, Yingpan; Zhang, Shuai; Wang, Minghua; Jia, Changchang; Tian, Jia-Yue; He, Linghao; Zhang, Xiaojing; Liu, Chun-Sen

    2017-03-07

    A new core-shell nanostructured composite composed of Fe(III)-based metal-organic framework (Fe-MOF) and mesoporous Fe3O4@C nanocapsules (denoted as Fe-MOF@mFe3O4@mC) was synthesized and developed as a platform for determining trace heavy metal ions in aqueous solution. Herein, the mFe3O4@mC nanocapsules were prepared by calcining the hollow Fe3O4@C that was obtained using the SiO2 nanoparticles as the template, followed by composing the Fe-MOF. The Fe-MOF@mFe3O4@mC nanocomposite demonstrated excellent electrochemical activity, water stability and high specific surface area, consequently resulting in the strong biobinding with heavy-metal-ion-targeted aptamer strands. Furthermore, by combining the conformational transition interaction, which is caused by the formation of the G-quadruplex between a single-stranded aptamer and high adsorbed amounts of heavy metal ions, the developed aptasensor exhibited a good linear relationship with the logarithm of heavy metal ion (Pb(2+) and As(3+)) concentration over the broad range from 0.01 to 10.0nM. The detection limits were estimated to be 2.27 and 6.73 pM toward detecting Pb(2+) and As(3+), respectively. The proposed aptasensor showed good regenerability, excellent selectivity, and acceptable reproducibility, suggesting promising applications in environment monitoring and biomedical fields.

  15. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-07-01

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 1013 ions cm-2, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated Cdbnd C bonds. For fluences around 1 × 1017 ions cm-2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼107 Ω/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm-2, being 1017 Ω/sq the corresponding sheet resistance for pristine PC.

  16. Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions.

    PubMed

    Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi

    2004-02-01

    In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions.

  17. Discriminating between Metallic and Semiconducting Single-Walled Carbon Nanotubes Using Physisorbed Adsorbates: Role of Wavelike Charge-Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Gao, Wang; Chen, Yun; Jiang, Qing

    2016-12-01

    Discriminating between metallic (M ) and semiconducting (S ) single-walled carbon nanotubes (SWNTs) remains a fundamental challenge in the field of nanotechnology. We address this issue by studying the adsorption of the isotropic atoms Xe, Kr, and a highly anisotropic molecule n heptane on M - and S -SWNTs with density functional theory that includes many-body dispersion forces. We find that the distinct polarizabilities of M - and S -SWNTs exhibit significantly different physisorption properties, which are also strongly controlled by the SWNT's diameter, adsorption site, adsorbate coverage, and the adsorbate's anisotropy. These findings stem from the wavelike nature of charge-density fluctuations in SWNTs. Particularly, these results allow us to rationalize the unusual √{3 }×√{3 }R 3 00 phase of Kr atoms on small gap M -SWNTs and the double desorption peak temperatures of n heptane on M -SWNTs in experiments, and also propose the n heptane as an effective sensor for experimentally discriminating M - and S -SWNTs.

  18. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  19. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  20. Optical studies of ion-beam synthesized metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-01

    AuxAg1-x alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ˜45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar+ ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar+ ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of AuxAg1-x nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  1. Hall transport of divalent metal ion modified DNA lattices

    SciTech Connect

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Yoo, Sanghyun; Gnapareddy, Bramaramba; Bashar, Saima; Park, Sung Ha; Kim, Si Joon; Jung, Joohye; Jung, Tae Soo; Kim, Hyun Jae

    2015-06-29

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+})-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (C{sub s}) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤C{sub s}) and the nonspecific aggregates (>C{sub s}) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  2. A vacuum spark ion source: High charge state metal ion beams

    SciTech Connect

    Yushkov, G. Yu. Nikolaev, A. G.; Frolova, V. P.; Oks, E. M.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  3. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  4. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    SciTech Connect

    López-Moreno, S.; Romero, A. H.

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  5. Monitoring of monochlorophenols adsorbed on metal (Cu and Zn) supported pumice by infrared spectroscopy.

    PubMed

    Bardakçi, Belgin

    2009-01-01

    The adsorption of monochlorophenols (o-, m-, p-chlorophenol) on pumice, Zn/pumice and Cu/pumice has been studied through Fourier Transform Infrared (FTIR) Spectroscopy in transmission mode. The data show that after Zn and Cu were supported on pumice, the adsorption of 4-chlorophenol is characterized by the bands at 1591, 1494, 1092 and 824 cm(-1). Adsorption process occurred via metal cations on the surface of pumice. Metal oxides on pumice can mediate binding of p-chlorophenol.

  6. Structural, electronic, and magnetic properties of transition-metal atom adsorbed two-dimensional GaAs nanosheet

    NASA Astrophysics Data System (ADS)

    Luo, Jia; Xiang, Gang; Yu, Tian; Lan, Mu; Zhang, Xi

    2016-09-01

    By using first-principles calculations within the framework of density functional theory, the electronic and magnetic properties of 3d transitional metal (TM) atoms (from Sc to Zn) adsorbed monolayer GaAs nanosheets (GaAsNSs) are systematically investigated. Upon TM atom adsorption, GaAsNS, which is a nonmagnetic semiconductor, can be tuned into a magnetic semiconductor (Sc, V, and Fe adsorption), a half-metal (Mn adsorption), or a metal (Co and Cu adsorption). Our calculations show that the strong p-d hybridization between the 3d orbit of TM atoms and the 4p orbit of neighboring As atoms is responsible for the formation of chemical bonds and the origin of magnetism in the GaAsNSs with Sc, V, and Fe adsorption. However, the Mn 3d orbit with more unpaired electrons hybridizes not only with the As 4p orbit but also with the Ga 4p orbit, resulting in a stronger exchange interaction. Our results may be useful for electronic and magnetic applications of GaAsNS-based materials. Project supported by the National Natural Science Foundation of China (Grant No. 11174212).

  7. [Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven trees species].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Yang, Dan-Dan

    2013-06-01

    The purpose of this study was to assess the relationship between tree leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals. Seven tree species, including Ginkgo biloba, at heavy traffic density site in Huainan were selected to analyze the frequency of air particulate matter retained by leaves, the particle amount of different sizes per unit leaf area retained by leaves and its related micro-morphology structure, and the relationship between particle amount of different sizes per unit leaf area retained by leaves and its related accumulation of heavy metals. We found that the species characterized by small leaf area, special epidemis with abundant fax, and highly uneven cell wall, as well as big and dense stomata and without trichomes mainly absorbed fine particulate matter; while those species with many trichomes mainly retained coarse particulate matter. Accumulation of heavy metals in leaves of the seven species was significantly different except for Ph. Tree species with high capacities in heavy metal accumulation were Ginkgo biloba, Ligustrum lucidum, and Cinnamomum camphora. Accumulation of Cd, Cr, Ni, Zn, Cu and total heavy metal concentration for seven tree species was positively related to the amount of particulate matter absorbed. Correlation coefficients of d10 vs d2.5, d10 vs d1.0, d2.5 vs d1.0 were 0.987, 0.971, 0.996, respective, and the correlate level was significant. The ratios of d2.5/d10, d1.0/d10, d1.0/d2.5 were 0.844, 0.763, 0.822, indicating that the particulate matter from traffic was mainly fine particulates.

  8. Ion-Plated Soft Metallic Films Reduce Friction and Wear

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    Ion plating is ion-assisted or glow-discharge surface-deposition technique. In this process, ions or energetic atoms transfer energy, momentum, and charge to substrate and deposited surface film. Process controlled to modify physical characteristics of surface, subsurface chemical conditions, and surface and subsurface microstructures as well. Ion plating with such soft, thin metallic films as gold, silver, or lead has great potential for producing self-contained lubricating surfaces. Such films reduce friction, wear, and corrosion on sliding or rotating mechanical surfaces used in wide range of environments.

  9. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.

    PubMed

    Lo, Sut-I; Chen, Po-Cheng; Huang, Chih-Ching; Chang, Huan-Tsung

    2012-03-06

    We report a new adsorbent for removal of mercury species. By mixing Au nanoparticles (NPs) 13 nm in diameter with aluminum oxide (Al(2)O(3)) particles 50-200 μm in diameter, Au NP-Al(2)O(3) adsorbents are easily prepared. Three adsorbents, Al(2)O(3), Au NPs, and Au NP-Al(2)O(3), were tested for removal of mercury species [Hg(2+), methylmercury (MeHg(+)), ethylmercury (EtHg(+)), and phenylmercury (PhHg(+))]. The Au NP adsorbent has a higher binding affinity (dissociation constant; K(d) = 0.3 nM) for Hg(2+) ions than the Al(2)O(3) adsorbent (K(d) = 52.9 nM). The Au NP-Al(2)O(3) adsorbent has a higher affinity for mercury species and other tested metal ions than the Al(2)O(3) and Au NP adsorbents. The Au NP-Al(2)O(3) adsorbent provides a synergic effect and, thus, is effective for removal of most tested metal ions and organic mercury species. After preconcentration of mercury ions by an Au NP-Al(2)O(3) adsorbent, analysis of mercury ions down to the subppq level in aqueous solution was performed by inductively coupled plasma mass spectrometry (ICP-MS). The Au NP-Al(2)O(3) adsorbent allows effective removal of mercury species spiked in lake water, groundwater, and seawater with efficiencies greater than 97%. We also used Al(2)O(3) and Au NP-Al(2)O(3) adsorbents sequentially for selectively removing Hg(2+) and MeHg(+) ions from water. The low-cost, effective, and stable Au NP-Al(2)O(3) adsorbent shows great potential for economical removal of various mercury species.

  10. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior.

    PubMed

    Kandori, Kazuhiko; Toshima, Satoko; Wakamura, Masato; Fukusumi, Masao; Morisada, Yoshiaki

    2010-02-25

    The effects of modification of calcium hydroxyapatites (Hap; Ca10(PO4)6(OH)2) by trivalent metal ions (Al(III), La(III), and Fe(III)) on protein adsorption behavior were examined using bovine serum albumin (BSA; isoelectric point (iep) = 4.7 and molecular mass (M(s)) = 67,200 Da). The Al(III)-, La(III)-, and Fe(III)-substituted Hap particles were prepared by the coprecipitation method with different atomic ratios, metal/(Ca + metal), abbreviated as X(metal). The particles precipitated at X(metal) = 0 (original-Hap) were rod-like and 10 x 36 nm2 in size. The short, rod-like original-Hap particles were elongated upon adding metal ions up to X(metal) = 0.10, and the extent of the particle growth was in the order of La(III) < Al(III) < Fe(III). The crystallinity of the materials was slightly lowered by increasing X(metal) for all systems. The adsorption isotherms of BSA onto the Al(III)-, La(III)-, and Fe(III)-substituted Hap particles showed the Langmuirian type. The saturated amounts of adsorbed BSA (n(s)(BSA)) values were strongly dependent on X(metal) in each system. The n(s)(BSA) values for the Fe(III)-substituted Hap system were increased with an increase in X(Fe) (X(metal) value of Hap particles substituted with Fe(III)); the n(s)(BSA) value obtained at X(Fe) = 0.10 was 2.7-fold more than that for the original-Hap particle, though those for the La(III) system were decreased to ca. 1/5. On the other hand, the n(s)(BSA) values for the Al(III) system were decreased with substitution of small amounts of Al(III), showing a minimum point at X(Al) = 0.01, but they were increased again at X(Al) over 0.03. Since the concentrations of hetero metal ions dissolved from the particles exhibited extremely low values, the possibility of binder effects of trivalent cations dissolved from the particle surface for adsorbing BSA to trivalent-ion-substituted Hap particles was excluded. The increase of n(s)(BSA) by an increase in X(Fe) was explained by elongation of mean particle

  11. Removal of heavy metal ions from wastewaters: a review.

    PubMed

    Fu, Fenglian; Wang, Qi

    2011-03-01

    Heavy metal pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for heavy metal removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat heavy metal wastewater and evaluates these techniques. These technologies include chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation-flocculation, flotation and electrochemical methods. About 185 published studies (1988-2010) are reviewed in this paper. It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater.

  12. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.

    PubMed Central

    Flemming, C A; Ferris, F G; Beveridge, T J; Bailey, G W

    1990-01-01

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). These sorbed metals were leached with HNO3, Ca(NO3)2, EDTA, fulvic acid, and lysozyme at several concentrations over 48 h at room temperature. The remobilization of the sorbed metals depended on the physical properties of the organic and clay surfaces and on the character and concentration of the leaching agents. In general, the order of remobilization of metals was Cr much less than Ag less than Cu. Cr was very stable in the wall, clay, and composite systems; pH 3.0, 500 microM EDTA, 120-ppm [mg liter-1] fulvic acid, and 160-ppm Ca remobilized less than 32% (wt/wt) of sorbed Cr. Ag (45 to 87%) and Cu (up to 100%) were readily removed by these agents. Although each leaching agent was effective at mobilizing certain metals, elevated Ca or acidic pH produced the greatest overall mobility. The organic chelators were less effective. Lysozyme digestion of Bacillus walls remobilized Cu from walls and Cu-wall-kaolinite composites, but Ag, Cr, and smectite partially inhibited enzyme activity, and the metals remained insoluble. The extent of metal remobilization was not always dependent on increasing concentrations of leaching agents; for example, Ag mobility decreased with some clays and some composites treated with high fulvic acid, EDTA, and lysozyme concentrations. Sometimes the organic material-clay composites reacted in a manner distinctly different from that of their individual counterparts; e.g., 25% less Cu was remobilized from wall- and envelope-smectite composites than from walls, envelopes, or smectite individually in 500 microM EDTA. Alternatively, treatment with 160-ppm Ca removed 1.5 to 10 times more Ag from envelope-kaolinite composites than from the individual components. The particle size of the deposited metal may account

  13. Acylpyrazolones: Synthesis, self-assembly and lanthanide metal ion separation

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    The central hypothesis that nanoscale self-assemblies can provide excellent metal ion recognition has been substantiated by employing acylpyrazolones and trivalent lanthanide metal ions as model systems. Several novel acylpyrazolones and their amphiphilic analogs have been designed, synthesized, and characterized. Their lanthanide metal ion recognition efficacies have been demonstrated through baseline separations of a mixture of light, middle, and heavy lanthanide metal ions by employing them in the aqueous mobile phase of high performance liquid chromatography (HPLC) with octadecylsilanized silica (ODS) as the stationary phase. The complex separation mechanism is influenced by the structures of acylpyrazolone and amphiphilic moieties, and spontaneous self-assembly of the ligand in the aqueous and on the stationary phases. Transmission electron microscopy (TEM) studies of the ligand self-assemblies in the aqueous phase in the absence and presence of lanthanide metal ions reveal spherical, dendritic, and linear (nanofibers, nanorods, and nanotubes) nanoscale structures. Such structures have also been observed when chloromethylated acylpyrazolones are stimulated to self-assemble by a base in nonaqueous solvents and when silica nanoparticles derivatized with them spontaneously self-assemble in aqueous and nonaqueous solvents.

  14. Solvent effects and alkali metal ion catalysis in phosphodiester hydrolysis.

    PubMed

    Gomez-Tagle, Paola; Vargas-Zúñiga, Idania; Taran, Olga; Yatsimirsky, Anatoly K

    2006-12-22

    The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.

  15. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10-8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less

  16. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, Shane R.; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D'Alessandro, Evan

    2016-02-07

    Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10-8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.

  17. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  18. Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents.

    PubMed

    Liu, Si Si; Chen, Yong Zhou; De Zhang, Li; Hua, Guo Min; Xu, Wei; Li, Nian; Zhang, Ye

    2011-06-15

    Titanium oxide-Ag composite (TOAC) adsorbents were prepared by a facile solution route with Ag nanoparticles being homogeneously dispersed on layered titanium oxide materials. The as-synthesized TOAC exhibited a remarkable capability for trace Cr(VI) removal from an aqueous solution, where the concentration of Cr(VI) could be decreased to a level below 0.05 mg/L within 1h. We have systematically investigated the factors that influenced the adsorption of Cr(VI), for example, the pH value of the solution, and the contact time of TOAC with Cr(VI). We found that the adsorption of Cr(VI) was strongly pH-dependent. The adsorption behavior of Cr(VI) onto TOAC fitted well the Langmuir isotherm and a maximum adsorption capacity of Cr(VI) as 25.7 mg/g was achieved. The adsorption process followed the pseudo-second-order kinetic model, which implied that the adsorption was composed of two steps: the adsorption of Cr(VI) ions onto TOAC followed by the reduction of Cr(VI) to Cr(III) by Ag nanoparticles. Our results revealed that TOAC with high capacity of Cr(VI) removal had promising potential for wastewater treatment.

  19. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  20. Membranes Remove Metal Ions Fron Industrial Liquids

    NASA Technical Reports Server (NTRS)

    Hsu, W. P. L.; May, C.

    1983-01-01

    Use of membrane films affords convenient and economical alternative for removing and recovering metal cations present in low concentrations from large quantities of liquid solutions. Possible applications of membrane films include use in analytical chemistry for determination of small amounts of toxic metallic impurities in lakes, streams, and municipal effluents. Also suitable for use as absorber of certain pollutant gases and odors present in confined areas.

  1. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    DOEpatents

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun; Wong, Stanislaus; Koenigsmann, Christopher

    2016-11-08

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  2. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview.

    PubMed

    Büdinger, L; Hertl, M

    2000-02-01

    Metal ions such as Ni2+, Co2+, Cu2+, or Cr3+ are haptens with a high immunogenic potential, as contact dermatitis caused by ionic metals occurs in about 10-15% of the human population. Since alloys containing Ni2+, Co2+, and Cr3+ are components of implants in replacement surgery, dentures, orthodontic wires, and various other devices, adverse reactions to metal ions create serious problems in practical medicine as incompatibility reactions to metal-containing biomaterials. On the other hand, contact dermatitis to metal ions such as Ni2+ is a well-established model for studying the molecular mechanisms involved in the recognition of haptens by the immune system. Although many investigations have been performed to elucidate the molecular interactions causing contact hypersensitivity in man, many aspects remain to be clarified. This review will focus on the experimental data accumulated so far on the immunologic mechanisms responsible for the recognition of metal ions by T cells and eliciting adverse immune reactions causing contact dermatitis.

  3. Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent.

    PubMed

    Stawiński, Wojciech; Węgrzyn, Agnieszka; Freitas, Olga; Chmielarz, Lucjan; Mordarski, Grzegorz; Figueiredo, Sónia

    2017-01-15

    The aim of this work was the modification of vermiculite in order to produce a low cost, efficient and sustainable adsorbent for dyes and metals. Three activation methods consisting of acid, base and combined acid/base treatment were applied to improve the of vermiculite's adsorption properties. Adsorbents were tested in single, bi- and tricomponent solutions containing cationic dyes and Cu(2+) cations. The raw material showed low adsorption capacity for dyes and metal. The acid/base treated vermiculite had very good adsorption capacity toward dyes while the maximum adsorption capacity for Cu(2+) did not change comparing to the starting material. The alkaline treated vermiculite was a good adsorbent for metals, while still being able to remove dyes on the level of the not treated material. Moreover, it was shown that the materials may be regenerated and used in several adsorption-desorption cycles. Furthermore, it was possible to separate adsorbed dyes from metals that were desorbed, using as eluents ethanol/NaCl and 0.05M HNO3, respectively. This opens a possibility for sustainable disposal and neutralization of both of the pollutants or for their further applications in other processes.

  4. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  5. Takovite-aluminosilicate@MnFe2O4 nanocomposite, a novel magnetic adsorbent for efficient preconcentration of lead ions in food samples.

    PubMed

    Kardar, Zahra Shakeri; Beyki, Mostafa Hossein; Shemirani, Farzaneh

    2016-10-15

    Here in we report preparation of MnFe2O4 and magnetic takovite-aluminosilicate adsorbent via precipitation methodology. The synthesized nanocomposite was applied in preconcentration of Pb(2+) ions from various matrices. The structural, surface, and magnetic characteristics of the adsorbent were investigated by XRD, EDX, FE-SEM, and VSM techniques. Several parameters affecting preconcentration efficiency, including sample pH, contact time, adsorbent amount, and sample volume were studied and optimized. Under optimized conditions, the calibration graph was linear in the range of 2.0-100μgL(-1), the relative standard deviation was 3.00% (n=5), the limit of detection was 0.67μgL(-1), and the enrichment factor was 70.0. The maximum adsorption capacity of the adsorbent was calculated to be 69.9mgg(-1). The suggested method was successfully applied in determination of trace amount of Pb(2+) ions in water and food samples.

  6. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  7. Metal ion modulated electron transfer in photosynthetic proteins.

    SciTech Connect

    Utschig, L. M.; Thurnauer, M. C.; Chemistry

    2004-07-01

    Photosynthetic purple bacterial reaction center (RC) proteins are ideal native systems for addressing basic questions regarding the nature of biological electron transfer because both the protein structure and the electron-transfer reactions are well-characterized. Metal ion binding to the RC can affect primary photochemistry and provides a probe for understanding the involvement of local protein environments in electron transfer. The RC has two distinct transition metal ion binding sites, the well-known non-heme Fe{sup 2+} site buried in the protein interior and a recently discovered Zn{sup 2+} site located on the surface of the protein. Fe{sup 2+} removal and Zn{sup 2+} binding systematically affect different electron-transfer steps in the RC. Factors involved in the metal ion alteration of RC electron transfer may provide a paradigm for other biological systems involved in electron transfer.

  8. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  9. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost.

    PubMed

    He, Xin; Zhang, Yaxin; Shen, Maocai; Tian, Ye; Zheng, Kaixuan; Zeng, Guangming

    2017-02-08

    The simultaneous adsorption of heavy metals (Pb, Cd) and organic pollutant (tetracycline (TC)) by a sewage sludge-derived vermicompost was investigated. The maximal adsorption capacity for Pb, Cd, and TC in a single adsorptive system calculated from Langmuir equation was 12.80, 85.20, and 42.94 mg L(-1), while for mixed substances, the adsorption amount was 2.99, 13.46, and 20.89 mg L(-1), respectively. The adsorption kinetics fitted well to the pseudo-second-order model, implying chemical interaction between adsorbates and functional groups, such as -COOH, -OH, -NH, and -CO, as well as the formation of organo-metal complexes. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area measurement were adopted to gain insight into the structural changes and a better understanding of the adsorption mechanism. The sewage sludge-derived vermicompost can be a low cost and environmental benign eco-material for high efficient wastewater remediation.

  10. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  11. Reactions of fourth-period metal ions (Ca + - Zn + ) with O2: Metal-oxide ion bond energies

    NASA Astrophysics Data System (ADS)

    Fisher, Ellen R.; Elkind, J. L.; Clemmer, D. E.; Georgiadis, R.; Loh, S. K.; Aristov, N.; Sunderlin, L. S.; Armentrout, P. B.

    1990-08-01

    Reactions of Ca+, Zn+ and all first-row atomic transition metal ions with O2 are studied using guided ion beam techniques. While reactions of the ground states of Sc+, Ti+, and V+ are exothermic, the remaining metal ions react with O2 in endothermic processes. Analyses of these endothermic reactions provide new determinations of the M+-O bond energies for these eight elements. Source conditions are varied such that the contributions of excited states of the metal ions can be explicitly considered for Mn+, Co+, Ni+, and Cu+. Results (in eV) at 0 K are D0(Ca+-O)= 3.57±0.05, D0(Cr+-O)=3.72±0.12, D0(Mn+-O)=2.95±0.13, D0(Fe+-O)=3.53±0.06 (reported previously), D0(Co+-O)=3.32±0.06, D0(Ni+-O) =2.74±0.07, D0(Cu+-O)=1.62±0.15, and D0(Zn+-O)=1.65±0.12. These values along with literature data for neutral metal oxide bond energies and ionization energies are critically evaluated. Periodic trends in the ionic metal oxide bond energies are compared with those of the neutral metal oxides and those of other related molecules.

  12. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  13. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1972-01-01

    Metal ions including Na-40(+), Mg-24(+), Si-28(+), K-39(+), Ca-40(+), Sc-45(+), Cr-52(+), Fe-56(+), and Ni-58(+) were detected in the upper atmosphere during the beta Taurids meteor shower. Abundances of these ions relative to Si(+) show agreement in most instances with chondrites. A notable exception is 45(+), which is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  14. Determination of metal ions in biological purification of waste waters

    SciTech Connect

    Tikhomirova, L.N.; Spiridonova, N.N.; Mandzhgaladze, I.D.

    1994-12-01

    Chromium, nickel, copper, zinc, and manganese were determined in active sludge extracted for utilization from sewage purification works in biological purification of waste waters. The measurements were carried out by the atomic absorption method and with Merck colorimetric kits for rapid determination of metal ions. The results obtained by the rapid colorimetric method agree fairly well with those obtained by the atomic absorption method, which makes it possible to recommend rapid colorimetric methods for routine analysis of biological objects for the content of ions of heavy metals.

  15. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    SciTech Connect

    Kyaw, Htet Htet; Boonruang, Sakoolkan E-mail: waleed.m@bu.ac.th; Mohammed, Waleed S. E-mail: waleed.m@bu.ac.th; Dutta, Joydeep

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  16. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Kyaw, Htet Htet; Boonruang, Sakoolkan; Mohammed, Waleed S.; Dutta, Joydeep

    2015-10-01

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as "Electric-Field assisted SPR system". High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd2+) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  17. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions.

  18. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  19. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  20. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  1. Metal-Ion Additives Reduce Thermal Expansion Of Polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Emerson, Burt R., Jr.; Willis, George L.

    1994-01-01

    Polyimides widely used as high-performance polymers because of their excellent thermal stability and toughness. However, their coefficients of thermal expansion (CTE's) greater than those of metals, ceramics, and glasses. Decreasing CTE's of polyimides increase usefulness for aerospace and electronics applications in which dimensional stability required. Additives containing metal ions reduce coefficients of thermal expansion of polyimides. Reductions range from 11 to over 100 percent.

  2. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    SciTech Connect

    Fish, D.

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  3. Metal ions and RNA folding: a highly charged topic with a dynamic future.

    PubMed

    Woodson, Sarah A

    2005-04-01

    Metal ions are required to stabilize RNA tertiary structure and to begin the folding process. How different metal ions enable RNAs to fold depends on the electrostatic potential of the RNA and correlated fluctuations in the positions of the ions themselves. Theoretical models, fluorescence spectroscopy, small angle scattering and structural biology reveal that metal ions alter the RNA dynamics and folding transition states. Specifically coordinated divalent metal ions mediate conformational rearrangements within ribozyme active sites.

  4. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  5. How do energetic ions damage metallic surfaces?

    DOE PAGES

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films withmore » (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.« less

  6. How do energetic ions damage metallic surfaces?

    SciTech Connect

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films with (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.

  7. ToF-SIMS Analysis of Adsorbed Proteins: Principal Component Analysis of the Primary Ion Species Effect on the Protein Fragmentation Patterns.

    PubMed

    Muramoto, Shin; Graham, Daniel J; Wagner, Matthew S; Lee, Tae Geol; Moon, Dae Won; Castner, David G

    2011-12-15

    In time-of-flight secondary ion mass spectrometry (ToF-SIMS), the choice of primary ion used for analysis can influence the resulting mass spectrum. This is because different primary ion types can produce different fragmentation pathways. In this study, analysis of single-component protein monolayers were performed using monatomic, tri-atomic, and polyatomic primary ion sources. Eight primary ions (Cs(+), Au(+), Au(3) (+), Bi(+), Bi(3) (+), Bi(3) (++), C(60) (+)) were used to examine to the low mass (m/z < 200) fragmentation patterns from five different proteins (bovine serum albumin, bovine serum fibrinogen, bovine immunoglobulin G and chicken egg white lysozyme) adsorbed onto mica surfaces. Principal component analysis (PCA) processing of the ToF-SIMS data showed that variation in peak intensity caused by the primary ions was greater than differences in protein composition. The spectra generated by Cs(+), Au(+) and Bi(+) primary ions were similar, but the spectra generated by monatomic, tri-atomic and polyatomic primary ion ions varied significantly. C(60) primary ions increased fragmentation of the adsorbed proteins in the m/z < 200 region, resulting in more intense low m/z peaks. Thus, comparison of data obtained by one primary ion species with that obtained by another primary ion species should be done with caution. However, for the spectra generated using a given primary ion beam, discrimination between the spectra of different proteins followed similar trends. Therefore, a PCA model of proteins created with a given ion source should only be applied to datasets obtained using the same ion source. The type of information obtained from PCA depended on the peak set used. When only amino acid peaks were used, PCA was able to identify the relationship between proteins by their amino acid composition. When all peaks from m/z 12-200 were used, PCA separated proteins based on a ratio of C(4)H(8)N(+) to K(+) peak intensities. This ratio correlated with the thickness

  8. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions.

    PubMed

    Tang, Qunwei; Sun, Xiaoming; Li, Qinghua; Wu, Jihuai; Lin, Jianming

    2009-02-01

    A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG) interpenetrating network (IPN) hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni(2 +), Cr(3 +) and Cd(2 +), the preparation conditions were optimized. In our system, the greatest amount of Ni(2 +), Cr(3 +) and Cd(2 +) adsorbed were 102.34, 49.38 and 33.41 mg g(- 1), respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  9. Adsorption characteristics of metal ions on chitosan chemically modified by D-galactose

    SciTech Connect

    Kondo, Kazuo; Sumi, Hisaharu; Matsumoto, Michiaki

    1996-07-01

    The adsorption characteristics of metal ions on chitosan chemically modified by D-galactose were examined. The pH dependency on the distribution ratio was found to be affected by the valency of the metal ion, and the apparent adsorption equilibrium constants of the metal ions were determined. The order of adsorption of the metal ions is Ga > In > Nd > Eu for the trivalent metal ions and Cu > Ni > Co for the divalent metal ions. It is believed that amino and hydroxyl groups in the chitosan act as a chelating ligand.

  10. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    PubMed

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future.

  11. Metal ion bombardment of onion skin cell wall

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L. D.; Verdaguer, A.; Ratera, I.; Ogletree, D. F.; Monteiro, O. R.; Brown, I. G.

    2005-01-01

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30 keV, and the implantation fluence was in the range 1014-1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  12. Metal ion bombardment of onion skin cell wall

    SciTech Connect

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L.D.; Verdaguer, A.; Ratera, I.; Ogletree, D.F.; Monteiro, O.R.; Brown, I.G.

    2004-05-10

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30keV, and the implantation fluence was in the range 1014 1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  13. Purification of equine chorionic gonadotropin (eCG) using magnetic ion exchange adsorbents in combination with high-gradient magnetic separation.

    PubMed

    Müller, Christine; Heidenreich, Elena; Franzreb, Matthias; Frankenfeld, Katrin

    2015-01-01

    Current purification of the glycoprotein equine chorionic gonadotropin (eCG) from horse serum includes consecutive precipitation steps beginning with metaphosphoric acid pH fractionation, two ethanol precipitation steps, and dialysis followed by a numerous of fixed-bed chromatography steps up to the specific activity required. A promising procedure for a more economic purification procedure represents a simplified precipitation process requiring only onethird of the solvent, followed by the usage of magnetic ion exchange adsorbents employed together with a newly designed 'rotor-stator' type High Gradient Magnetic Fishing (HGMF) system for large-scale application, currently up to 100 g of magnetic adsorbents. Initially, the separation process design was optimized for binding and elution conditions for the target protein in mL scale. Subsequently, the magnetic filter for particle separation was characterized. Based on these results, a purification process for eCG was designed consisting of (i) pretreatment of the horse serum; (ii) binding of the target protein to magnetic ion exchange adsorbents in a batch reactor; (iii) recovery of loaded functionalized adsorbents from the pretreated solution using HGMF; (iv) washing of loaded adsorbents to remove unbound proteins; (v) elution of the target protein. Finally, the complete HGMF process was automated and conducted with either multiple single-cycles or multicycle operation of four sequential cycles, using batches of pretreated serum of up to 20 L. eCG purification with yields of approximately 53% from single HGMF cycles and up to 80% from multicycle experiments were reached, with purification and concentration factors of around 2,500 and 6.7, respectively.

  14. Current and prospective applications of metal ion-protein binding.

    PubMed

    Ueda, E K M; Gout, P W; Morganti, L

    2003-02-21

    Since immobilized metal ion affinity chromatography (IMAC) was first introduced, several variants of this method and many other metal affinity-based techniques have been devised. IMAC quickly established itself as a highly reliable purification procedure, showing rapid expansion in the number of preparative and analytical applications while not remaining confined to protein separation. It was soon applied to protein refolding (matrix-assisted refolding), evaluation of protein folding status, protein surface topography studies and biosensor development. In this review, applications in protein processing are described of IMAC as well as other metal affinity-based technologies.

  15. Uptake of Metal Ions by Rhizopus arrhizus Biomass

    PubMed Central

    Tobin, J. M.; Cooper, D. G.; Neufeld, R. J.

    1984-01-01

    Rhizopus arrhizus biomass was found to absorb a variety of different metal cations and anions but did not absorb alkali metal ions. The amount of uptake of the cations was directly related to ionic radii of La3+, Mn2+, Cu2+, Zn2+, Cd2+, Ba2+, Hg2+, Pb2+, UO22+, and Ag+. The uptake of all the cations is consistent with absorption of the metals by sites in the biomass containing phosphate, carboxylate, and other functional groups. The uptake of the molybdate and vanadate anions was strongly pH dependent, and it is proposed that the uptake mechanism involves electrostatic attraction to positively charged functional groups. PMID:16346521

  16. Principles Governing Metal Ion Selectivity in Ion Channel Proteins

    NASA Astrophysics Data System (ADS)

    Lim, Carmay

    2014-03-01

    Our research interests are to (i) unravel the principles governing biological processes and use them to identify novel drug targets and guide drug design, and (ii) develop new methods for studying macromolecular interactions. This talk will provide an overview of our work in these two areas and an example of how our studies have helped to unravel the principles underlying the conversion of Ca2+-selective to Na+-selective channels. Ion selectivity of four-domain voltage-gated Ca2+(Cav) and sodium (Nav) channels, which is controlled by the selectivity filter (SF, the narrowest region of an open pore), is crucial for electrical signaling. Over billions of years of evolution, mutation of the Glu from domain II/III in the EEEE/DEEA SF of Ca2+-selective Cav channels to Lys made these channels Na+-selective. This talk will delineate the physical principles why Lys is sufficient for Na+/Ca2+selectivity and why the DEKA SF is more Na+-selective than the DKEA one.

  17. Quadrupole ion trap studies of the structure and reactivity of transition metal ion pair complexes

    PubMed

    Vachet; Callahan

    2000-03-01

    Ion pairs are common species observed in the electrospray mass spectra of transition metal coordination complexes. To understand the nature of these ion pairs, a systematic study of the gas-phase chemistry of these species using ion-molecule reactions and collision-induced dissociation (CID) was carried out. Ion pair complexes of the type MLnX+ (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II), L is 1,10-phenanthroline, 2,2'-bipyridine, ethylenediamine, diethylenetriamine or 1,4,8,11-tetraazacyclotetradecane and X is Cl-, NO3-, acetylacetonate, ClO4-, acetate or SCN-) were studied. Ion-molecule reactions can distinguish whether the counterion in an ion pair is an inner- or outer-sphere ligand and can determine the coordination mode of the counterion. In addition, CID and ion-molecule reactions reveal some interesting chemistry of these complexes and unique coordination modes for some of the anions studied here were inferred from the ion-molecule reactions. For example, the thiocyanate ion is found to coordinate in a bidentate fashion in Zn(II) and Ni(II) complexes, contrasting behavior typically observed in solution. Also, certain Co(II) and Fe(II) ion pair complexes undergo oxidation reactions in which species such as dioxygen and nitric oxide from the counterions ClO4- and NO3- are transferred to the Co(II) and Fe(II) complexes, showing the inherent affinity of these metals for these molecules. These complexes were also studied by ion-molecule reactions and CID. Dioxygen in complexes formed by CID is demonstrated to be bidentate, suggesting the formation of a peroxo ligand with concurrent oxidation of the metal.

  18. Host Materials for Transition-Metal Ions

    DTIC Science & Technology

    1989-09-01

    BeA1204 (Chrysoberyl, Cr:BeA204 - Alexandrite ) ..................... 90 15.1 Crystallographic Data on BeA 204 ............................ 9 0 15.2 X...Chrysoberyl, Cr:BeA1 2 04 = Alexandrite ) 15.1 Crystallographic Data on BeA204 Orthorhombic D 16 (Pnma), 62, Z = 4 Orthorhomb__ D2h Ion Site Symmetry x...Stimulated Emission from Alexandrite (BeAl 1204 :Cr 3 +) Sov. J. Quantum Electron. 8 (1978), 671. 2. C. F. Cline, R. C. Morris, M. Dutoit, and P. J

  19. Precipitation of alkylbenzene sulfonates with metal ions

    SciTech Connect

    Peacock, J.M.; Matijevic, E.

    1980-10-01

    The precipitation domains of P-(1-methylnonyl)benzene sulfonate ions with Li/sup +/, Na/sup +/, K/sup +/, Ca/sup 2 +/, Mg/sup 2 +/, Al/sup 3 +/, and La/sup 3 +/ and of Ca/sup 2 +/-P-(hexyloctyl)benzene sulfonate have been determined at constant pH and 25 C. The linear solubility boundaries reverse their slope at the critical micellar concentration of the surfactant. A semiquantitative interpretation of the data is offered. The properties of the solids formed also are described. 18 references.

  20. Neutralization by metal ions of the toxicity of sodium selenide.

    PubMed

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺) or weakly interact (Fe²⁺) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  1. Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium.

    PubMed

    Sharma, Gaurav; Naushad, Mu; Al-Muhtaseb, Ala'a H; Kumar, Amit; Khan, Mohammad Rizwan; Kalia, Susheel; Shweta; Bala, Manju; Sharma, Arush

    2017-02-01

    In this study, chitosan-crosslinked-poly (alginic acid) nanohydrogel (CN-cl-PL(AA)NHG) was synthesized by co-polymerization method. It was used an effective adsorbent for the exclusion of Cr(VI) metal ion from aqueous medium. The synthesized nanohydrogel was characterized by FTIR, SEM and TEM. The TEM images clearly indicated the appearance of smooth surface with average size of particles ranging from 30 to 80nm. The effect of different adsorption parameters like agitation time, temperature, initial metal ion concentration and adsorbent dosage was studied and optimized. The results demonstrated that the prepared chitosan-crosslinked-poly (alginic acid) nanohydrogel had high adsorption tendency for the removal of Cr(VI) from the aqueous solution. The pseudo-second-order equation represented the better adsorption kinetics for the adsorption process. The thermodynamic studies showed the adsorption of Cr(VI) onto CN-cl-PL(AA)NHG was spontaneous and chemical in nature.

  2. Fluorous Metal Organic Frameworks as Superhydrophobic Adsorbents for Oil Spill Cleanup and Hydrocarbons Storage

    SciTech Connect

    Yang, Chi; Mather, Qian; Wang, Xiaoping; Kaipa, Ushasree; Nesterov, Vladimir; Venero, Augustin; Omary, Mohammad A

    2011-01-01

    We demonstrate that fluorous metal-organic frameworks (FMOFs) are highly hydrophobic porous materials with a high capacity and affinity to C{sub 6}-C{sub 8} hydrocarbons of oil components. FMOF-1 exhibits reversible adsorption with a high capacity for n-hexane, cyclohexane, benzene, toluene, and p-xylene, with no detectable water adsorption even at near 100% relative humidity, drastically outperforming activated carbon and zeolite porous materials. FMOF-2, obtained from annealing FMOF-1, shows enlarged cages and channels with double toluene adsorption vs FMOF-1 based on crystal structures. The results suggest great promise for FMOFs in applications such as removal of organic pollutants from oil spills or ambient humid air, hydrocarbon storage and transportation, water purification, etc. under practical working conditions.

  3. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  4. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  5. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  6. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  7. Selective quenching of benzimidazole derivatives by Cu2+ metal ion

    NASA Astrophysics Data System (ADS)

    Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K.; Sathishkumar, R.

    2012-11-01

    It is a very big challenge to develop a Cu2+ selective fluorescent sensor with the ability to exclude the interference of some metal ions such as Fe3+, Mg2+, Ag+, K+ and Na+. Herein, we report a fluorescence quenching of some benzimidazole derivatives (1-6) with Cu2+ metal ion. These benzimidazole derivatives have been shown to bind copper ions resulting in quenching of its fluorescence. The response to Cu2+ is rapid, selective and reversible upon addition of a copper chelator. These benzimidazole derivatives were characterized by 1H, 13C NMR mass and elemental analysis. XRD analysis was carried out for 1-(4-methylbenzyl)-2-p-tolyl-1H-benzo[d]imidazole.

  8. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  9. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  10. Metal negative ion beam extraction from a radio frequency ion source

    SciTech Connect

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  11. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers.

    PubMed

    Neghlani, Parvin Karimi; Rafizadeh, Mehdi; Taromi, Faramarz Afshar

    2011-02-15

    Polyacrylonitrile nanofibers (PAN-nFs) were produced using the electrospinning method. Subsequently, the electrospun fibers were modified by diethylenetriamine to produce aminated polyacrylonitrile (APAN) nanofibers. Finally, the adsorbability of copper ions on the surface of the nanofibers was examined in an aqueous solution. Attenuated total internal reflection (ATIR) analysis confirmed the surface amination of the produced PAN-nFs. The grafting yield was calculated by the gravimetric method. The optimum condition was determined to yield the maximum grafting of amine groups to PAN with no losses in sample flexibility. Atomic absorption spectroscopy (AAS) was used to measure the copper ion concentration in the solution. Results indicate that the adsorption process in nanofibers is three times faster in comparison with microfibers. Moreover, the pH effect was studied based on the adsorption behavior of copper ions on the APAN nanofibers. In addition, thermodynamic parameters were calculated, revealing that the process was endothermic and demonstrating that randomness increased at the solid-solution interface during the process. The obtained enthalpy value indicates that the chelation of copper ions among the aminated polyacrylonitrile can be regarded as a chemical adsorption process. The adsorption data fit well with the Langmuir isotherm. The saturation adsorption capacity obtained from the Langmuir model for Cu(II) ions was 116.522 mg/g which is five times more than the reported value for APAN microfibers [S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal, Langmuir,19 (2003)5058-5064]. Analysis using atomic force microscopy (AFM) showed that the surface roughness increased upon adsorption of the metal ion. Scanning electron microscopy (SEM) examination demonstrated that there were no cracks or sign of degradation on the surface after amination.

  12. Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries.

    PubMed

    Zhao, Yunlong; Han, Chunhua; Yang, Junwei; Su, Jie; Xu, Xiaoming; Li, Shuo; Xu, Lin; Fang, Ruopian; Jiang, Hong; Zou, Xiaodong; Song, Bo; Mai, Liqiang; Zhang, Qingjie

    2015-03-11

    Intercalation of ions in electrode materials has been explored to improve the rate capability in lithium batteries and supercapacitors, due to the enhanced diffusion of Li(+) or electrolyte cations. Here, we describe a synergistic effect between crystal structure and intercalated ion by experimental characterization and ab initio calculations, based on more than 20 nanomaterials: five typical cathode materials together with their alkali metal ion intercalation compounds A-M-O (A = Li, Na, K, Rb; M = V, Mo, Co, Mn, Fe-P). Our focus on nanowires is motivated by general enhancements afforded by nanoscale structures that better sustain lattice distortions associated with charge/discharge cycles. We show that preintercalation of alkali metal ions in V-O and Mo-O yields substantial improvement in the Li ion charge/discharge cycling and rate, compared to A-Co-O, A-Mn-O, and A-Fe-P-O. Diffraction and modeling studies reveal that preintercalation with K and Rb ions yields a more stable interlayer expansion, which prevents destructive collapse of layers and allow Li ions to diffuse more freely. This study demonstrates that appropriate alkali metal ion intercalation in admissible structure can overcome the limitation of cyclability as well as rate capability of cathode materials, besides, the preintercalation strategy provides an effective method to enlarge diffusion channel at the technical level, and more generally, it suggests that the optimized design of stable intercalation compounds could lead to substantial improvements for applications in energy storage.

  13. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  14. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  15. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  16. Hydrogasification of carbon adsorbed on sulfur-poisoned dispersed metal catalysts. Final report

    SciTech Connect

    McCarty, J.G.; Wood, B.J.

    1993-12-01

    The temperature programmed reaction of 1- to 10-atom hydrogen (TPRH) with carbon deposited on alumina supported Ni, Ru, and Co and on fused Fe catalysts has been developed to examine the effect of sulfur poisoning on coking rates and the nature of the deposited carbon. A new procedure, passivation by carbon deposition on clean reduced metals and low temperature (20--50 C) exposure to recirculate dilute H{sub 2}S with moderate 0.1 atm partial pressure of CO{sub 2} was used to slow the rate of sulfur chemisorption. This method facilitated slow uniform sulfur chemisorption to fractional saturation coverages. Fractional sulfur poisoning generally blocked sites of active surface carbon (or hydrocarbon fragments) while suppressing rates of hydrogasification as shown by the increasing temperatures in the TPRH hydrogasification rate versus temperature spectra. Fractional sulfur poisoning (e.g., half saturation) appears to inhibit H{sub 2} gasification with surface carbon surprisingly without strongly affecting catalytic activity. Sulfur poisoning to saturation levels (defined here as {approximately}1 ppm H{sub 2}S in 1-atm H{sub 2} at 500 C) always results in complete loss of activity and is also marked by the growth of a very unreactive form of carbon.

  17. Switching orientation of adsorbed molecules: Reverse domino on a metal surface

    NASA Astrophysics Data System (ADS)

    Braatz, C. R.; Esat, T.; Wagner, C.; Temirov, R.; Tautz, F. S.; Jakob, P.

    2016-01-01

    A thus far unknown phase of 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA) on Ag(111), characterized by an all perpendicular orientation of the planar molecules and bound to the Ag substrate through the carboxyl oxygen atoms has been identified using infrared absorption spectroscopy and scanning tunneling microscopy. Its formation process requires second layer NTCDA to squeeze into empty spaces between relaxed monolayer NTCDA molecules. Remarkably, this process causes initially parallel oriented NTCDA to likewise adopt the new, highly inclined adsorption geometry. According to our SPA-LEED and STM findings, the new phase displays a distinct long range order and shows a pronounced tendency to form 1D rows or narrow islands. We suggest that extra NTCDA preferentially transforms into the upright configuration close to existing islands and attaches to them, i.e. the transformation process proceeds in a directed and recurrent manner (reverse domino scenario). Identical processing starting with a compressed NTCDA/Ag(111) monolayer leads to a purely parallel oriented bilayer, that is, the NTCDA monolayer phase is retained and merely acts as a passive template for bilayer NTCDA. The new vertical NTCDA phase represents an unusual molecular system with π-orbitals oriented parallel to a metal surface. A substantially reduced coupling of these orbitals to Ag(111) electronic levels is conjectured, which will have a major impact on intermolecular couplings and electronically excited state lifetimes.

  18. ‘Pseudotumour’ invading the proximal femur with normal metal ions following metal on metal hip resurfacing

    PubMed Central

    Krishnan, Harry; Sugand, Kapil; Ali, Ibrahim; Smith, Jay

    2015-01-01

    A 75-year-old woman who had undergone hybrid metal-on-metal hip resurfacing 8 years earlier underwent revision arthroplasty because of hip, groin and lateral thigh pain. The main differential was aseptic loosening; however, serum cobalt and chromium levels were normal. Multiple imaging modalities revealed a periprosthetic, cystic soft tissue mass adjacent to the proximal femur. A large ‘pseudotumour’ with proximal femoral invasion was found at revision arthroplasty. We report the first finding of a ‘pseudotumour’ invading the proximal femur with normal metal ions following metal on metal hip resurfacing. PMID:25670783

  19. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    PubMed

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni(2+), as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  20. Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods.

    PubMed

    Chakravorty, Dhruva K; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J; Giedroc, David P; Merz, Kenneth M

    2013-06-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) simulations constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational sampling in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies.

  1. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    SciTech Connect

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed (√3x√3)R30° at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c(√3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  2. Immobilization of carboxymethylated polyethylenimine-metal-ion complexes in porous membranes to selectively capture his-tagged protein.

    PubMed

    Ning, Wenjing; Wijeratne, Salinda; Dong, Jinlan; Bruening, Merlin L

    2015-02-04

    Membrane adsorbers rapidly capture tagged proteins because flow through membrane pores efficiently conveys proteins to binding sites. Effective adsorbers, however, require membrane pores coated with thin films that bind multilayers of proteins. This work employs adsorption of polyelectrolytes that chelate metal ions to create functionalized membranes that selectively capture polyhistidine-tagged (His-tagged) proteins with binding capacities equal to those of high-binding commercial beads. Adsorption of functional polyelectrolytes is simpler than previous membrane-modification strategies such as growth of polymer brushes or derivatization of adsorbed layers with chelating moieties. Sequential adsorption of protonated poly(allylamine) (PAH) and carboxymethylated branched polyethylenimine (CMPEI) leads to membranes that bind Ni(2+) and capture ∼60 mg of His-tagged ubiquitin per mL of membrane. Moreover, these membranes enable isolation of His-tagged protein from cell lysates in <15 min. The backbone amine groups in CMPEI likely increase swelling in water to double protein binding compared to films composed of PAH and the chelating polymer poly[(N,N-dicarboxymethyl)allylamine] (PDCMAA), which has a hydrocarbon backbone. Metal leaching from PAH/CMPEI- and PAH/PDCMAA-modified membranes is similar to that from GE Hitrap FF columns. Eluates with 0.5 M imidazole contain <10 ppm of Ni(2+).

  3. Development and evaluation of Mn oxide-coated composite adsorbent for the removal and recovery of heavy metals from coal processing wastewater. Final report, December 1995

    SciTech Connect

    Fan, Huan Jung; Anderson, P.R.

    1995-12-31

    The overall objective of this research was to evaluate a Mn oxide-coated granular activated carbon (MnGAC) for the removal and recovery of metals from wastewaters. The composite adsorbent was prepared by coating M-n-oxide onto granular activated carbon. Three coating methods (adsorption, precipitation, and dry oxidation) were developed and studied in this research. The adsorbent (MnTOG) prepared by a dry oxidation method had the highest Cu(II) adsorption capacity of the three synthesis methods. In multiple adsorption/regeneration cycle tests, MnTOG had better Cu(II) removal relative to those adsorbents prepared by other methods. MnTOG had the ability to remove Cu(II) and Cd(II) to trace level (< 4 ug/L) in a column process at least through 3000 and 1400 BV, respectively. Cd(II) removal was hindered by the presence of Cu(II). However, Cu(II) removal was only slightly reduced by the presence of Cd(II). Cu(II) adsorption in batch and fixed-bed processes onto MnTOG was successfully modeled with a homogeneous surface diffusion model (HSDM). However, the HSDM could only successfully describe the adsorption of Cd(II) onto MnTOG in the batch process, but not the fixed-bed process. M-n oxide can be deposited on GAC to create a composite adsorbent with an increased Cu(II) or Cd(II) adsorption capacity. Composite adsorbent (MnGAC) has the potential to become an efficient way to remove metals from metal contaminated wastewater.

  4. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    NASA Astrophysics Data System (ADS)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-06-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  5. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  6. Peptide immobilisation on porous silicon surface for metal ions detection

    NASA Astrophysics Data System (ADS)

    Sam, Sabrina S.; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F.; Etcheberry, Arnaud A.; Gabouze, Nour-Eddine N.

    2011-06-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl- N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  7. Peptide immobilisation on porous silicon surface for metal ions detection.

    PubMed

    Sam, Sabrina S; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F; Etcheberry, Arnaud A; Gabouze, Nour-Eddine N

    2011-06-06

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization.The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  8. Peptide immobilisation on porous silicon surface for metal ions detection

    PubMed Central

    2011-01-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution. PMID:21711937

  9. Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates.

    PubMed

    Tan, Lulu; Chen, Zhengbo; Zhao, Yan; Wei, Xiangcong; Li, Yonghui; Zhang, Chi; Wei, Xinling; Hu, Xiaochen

    2016-11-15

    We have presented an extensible, facile and sensitive multidimensional sensor based on DNA-gold nanoparticle (DNA-AuNP) conjugates for heavy metal ions (Ag(+), Hg(2+), Cr(3+), Sn(4+), Cd(2+), Cu(2+), Pb(2+), Zn(2+), and Mn(2+)) discrimination. In the presence of metal ions, the excluded effect of DNA and AuNPs with the same negative charges is disrupted, and the amount of FAM-labeled DNA adsorbed on AuNP surfaces increases, resulting in a more obvious fluorescence quenching effect. With the addition of NH2OH and HAuCl4, AuNPs grow into morphologically varied nanostructures (spherical to branched) depending on the resulting aptamer coverage, which gives rise to different colored solutions (reddish blush, purple and blue) observed by naked eyes. By simply changing the DNA sequences, three sensing elements can be easily obtained and added into this dual-channel multidimensional sensor. 9 heavy metal ions are distinguished by linear discriminant analysis (LDA) and primary component analysis (PCA). A highly sensitive discrimination of metal ion targets with the detection limit as low as 50nM with 100% identification accuracy is obtained. Remarkably, Cu(2+) and Hg(2+) ions with similar catalytic performance at various concentrations (300nM, 400nM, 500nM, respectively) and the mixture of the two metal ions with different volume ratios (total metal ion concentration: 500nM) can be successfully discriminated. In addition, nine heavy metal ions are also well-distinguished in river samples, and the accuracy of discrimination of these metal ions samples reaches 100%. Therefore, it will broaden the application field of DNA-AuNP conjugates-based multidimensional sensors.

  10. Low energy ion beam assisted growth of metal multilayers

    NASA Astrophysics Data System (ADS)

    Quan, Junjie

    Vapor deposited metal multilayers have attracted a great deal of interest in recent years because they offer extraordinary strength, hardness, heat resistance, and unexpected new properties like high reflectivity and spin-dependent conductivity. The giant magnetoresistance effects discovered in Fe/Cr artificial superstructures in 1988 stimulated a large number of studies on the electronic transport properties of spintronic materials because of their important applications in highly sensitive magnetic sensors, nonvolatile random access memories, and the data storage industry in general. Magnetic multilayers allow exploitation of unique micromagnetic, magnetooptic, and magnetoelectronic phenomena that cannot be realized using conventional materials. For example, if ferromagnetic layers (such as CoFe) with a thicknesses of 5-7 nm are separated by a non-magnetic spacer (such as Cu or AlOx) of an appropriate thickness (1-3 nm), they can exhibit large changes in their electrical resistance when a magnetic field is applied. These changes are caused mainly by spin-dependent conduction electron scattering at magnetic multilayer interfaces. Many experimental and theoretical works have sought to promote a basic understanding of the effect of atomic structure in thin film multilayers upon spin dependent transport. It has been found that interfacial imperfections, such as interfacial roughness and interlayer mixing, dramatically reduce the properties exploited for spintronic applications. A combination of computer modeling and experiments has been used to discover more effective ways to control the interfacial structures of metal multilayers. Earlier atomic simulations had indicated that it is very important to control adatom energy during deposition in order to improve interface properties. Based on these ideas, this dissertation has investigated the effects of low energy ion assistance during metal multilayer deposition. Using molecular dynamics modeling, the effects of ion

  11. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins.

  12. Preconcentration and separation of trace amount of heavy metal ions on bis(2-hydroxy acetophenone)ethylendiimine loaded on activated carbon.

    PubMed

    Ghaedi, M; Shokrollahi, A; Kianfar, A H; Pourfarokhi, A; Khanjari, N; Mirsadeghi, A S; Soylak, M

    2009-03-15

    A sensitive and simple method for simultaneous preconcentration of trace heavy metal ions in some food samples has been reported. The method is based on the adsorption of Cr(3+), Fe(3+), Cu(2+), Ni(2+), Co(2+) and Zn(2+) on bis(2-hydroxy acetophenone)ethylendiimine (BHAPED) loaded on activated carbon (AC). The adsorbed metals on activated carbon were eluted using 2 mol L(-1) nitric acid in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The effects of matrix ions on the recoveries of analyte ions were also investigated. The recoveries of analytes were generally higher than 94%. The method has been successfully applied for analysis of the metal contents in real samples including natural water samples.

  13. Ion Implantation Effects on the Metal-Semiconductor Interfaces.

    NASA Astrophysics Data System (ADS)

    Yapsir, Andrie Setiawan

    1988-12-01

    In this thesis, the effects of ion implantation on metal-semiconductor interfaces are studied. Hydrogen ions have been used as the implanted species. The implantation is carried out on Al/n-Si Schottky contacts. Electrical characterizations, deep level transient spectroscopy measurements, and the ^{15}N hydrogen profiling technique have been used to study the effects of ion implantation. It is demonstrated that the defect centers in the depletion region created by hydrogen implantation have more likely negative or possibly neutral signatures, rather than a positive signature as has been previously speculated. These negatively charged centers compensate for the positive donor resulting in a widening of the depletion region and reduction in the capacitance of the metal-semiconductor contacts. The tendency of hydrogen to passivate its own damage which results in the recovery of electronic transport across the metal-semiconductor junction upon low temperature heat treatment is also demonstrated. In connection with the behavior of hydrogen in silicon, in the second part of this thesis, detailed theoretical calculations on the hydrogen passivation of defects in silicon are carried out. A particular type of defect, namely, a substitutional sulfur in silicon, is chosen and is studied using the modified intermediate neglect of differential overlap (MINDO/3) molecular orbital method. It is found that the sulfur center can be passivated using one or two hydrogen atoms. The calculations indicate that the most stable positions of the hydrogen atoms are between the sulfur and its silicon neighbors. The hydrogens bond to the nearest silicon atoms and only weakly interact with the sulfur. Thermochemistry considerations predict that a single hydrogen passivates the sulfur center, provided these centers are in abundance in the silicon. Hydrogen ion implantation has also been carried out on Schottky contacts having a large difference in metal work function, Ti/p-Si and Pt

  14. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part II: Polymer permeation-ion exchange separation adsorbents with polyethylene glycol and strong anion exchange groups.

    PubMed

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-02

    In chromatographic separations, the most general problem in small biomolecule isolation and purification is that such biomolecules are usually found in extremely low concentrations together with high concentrations of large molecular weight proteins. In the first part of this work, adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide Immobilized Metal Affinity Chromatography (IMAC) matrix was synthesized and used to develop chromatographic adsorbents that preferentially adsorb and separate low molecular weight biomolecules while rejecting large molecular weight proteins. In this second part, we expand the concept of controlled access polymer permeation adsorption (CAPPA) media by grafting polyethylene glycol (PEG) on a high capacity polysaccharide ion exchange (IEX) chromatographic resin where PEG acts as a semi-permeable barrier that preferentially allows the permeation of small molecules while rejecting large ones. The IEX resin bearing quaternary ammonium groups binds permeated biomolecules according to their ion exchange affinity while excluding large biomolecules by the PEG barrier and thus cannot compete for the binding sites. This new AdSEC media was used to study the retention of peptides and proteins covering a wide range of molecular weights from 1 to 150 kDa. The effect of protein molecular weight towards retention by ion exchange was performed using pure protein solutions. Recovery of insulin from insulin-spiked human serum and insulin-spiked human urine was evaluated under polymer controlled permeation conditions. The CAPPA media consisted of agarose beads modified with amino-PEG-methoxy and with trimethyl ammonium groups, having chloride capacities between 20 and 40 μeq/mL and were effective in rejecting high molecular weight proteins while allowing the preferential adsorption of small proteins and peptides.

  15. Polymer filtration systems for dilute metal ion recovery

    SciTech Connect

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  16. N/S-heterocyclic contaminant removal from fuels by the mesoporous metal-organic framework MIL-100: the role of the metal ion.

    PubMed

    Van de Voorde, Ben; Boulhout, Mohammed; Vermoortele, Frederik; Horcajada, Patricia; Cunha, Denise; Lee, Ji Sun; Chang, Jong-San; Gibson, Emma; Daturi, Marco; Lavalley, Jean-Claude; Vimont, Alexandre; Beurroies, Isabelle; De Vos, Dirk E

    2013-07-03

    The influence of the metal ion in the mesoporous metal trimesate MIL-100(Al(3+), Cr(3+), Fe(3+), V(3+)) on the adsorptive removal of N/S-heterocyclic molecules from fuels has been investigated by combining isotherms for adsorption from a model fuel solution with microcalorimetric and IR spectroscopic characterizations. The results show a clear influence of the different metals (Al, Fe, Cr, V) on the affinity for the heterocyclic compounds, on the integral adsorption enthalpies, and on the uptake capacities. Among several factors, the availability of coordinatively unsaturated sites and the presence of basic sites next to the coordinative vacancies are important factors contributing to the observed affinity differences for N-heterocyclic compounds. These trends were deduced from IR spectroscopic observation of adsorbed indole molecules, which can be chemisorbed coordinatively or by formation of hydrogen bonded species. On the basis of our results we are able to propose an optimized adsorbent for the deep and selective removal of nitrogen contaminants out of fuel feeds, namely MIL-100(V).

  17. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions.

    PubMed

    Kuroda, K; Shibasaki, S; Ueda, M; Tanaka, A

    2001-12-01

    A histidine oligopeptide (hexa-His) with the ability to chelate divalent heavy metal ions was displayed on the yeast cell surface for the purpose of enhanced adsorption of heavy metal ions. We genetically fused a hexa-His-encoding gene with the gene encoding the C-terminal half of alpha-agglutinin that includes a glycosylphosphatidylinositol anchor attachment signal sequence and attached the hexa-His peptide on the cell wall of Saccharomyces cerevisiae. This surface-engineered yeast adsorbed three to eight times more copper ions than the parent strain and was more resistant to copper (4 mM) than the parent (below 1 mM at pH 7.8). It was possible to recover about a half of the copper ions adsorbed by whole cells with EDTA treatment without disintegrating the cells. Thus, we succeeded in constructing a novel yeast cell with both tolerance to toxic contaminants and enhanced adsorption of metal ions onto the cell surface.

  18. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue.

    PubMed

    Kırbıyık, Çisem; Pütün, Ayşe Eren; Pütün, Ersan

    2016-01-01

    In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform-infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.

  19. Ion beam mixing of metal/fluoropolymer interfaces

    NASA Astrophysics Data System (ADS)

    Dennis, D. L.; Giedd, R. E.; Wang, Y. Q.; Glass, G. A.

    1999-06-01

    Ion beam mixing of metals and polymers with very low dielectric constants such as Teflon can provide many applications in the area of electronic materials. This work is a study of the "mixing" effect of 50 keV nitrogen implanted thin metal layers on Teflon PTFE (polytetrafluoroethylene) substrates. RBS analysis shows that the distribution of thin layers of copper and chromium (approximately 300-400 Å thick) through the implant layer of the Teflon depends on the reactivity of the metal. As the implant fluence is increased, the distribution of metal atoms in the polymer matrix becomes concentrated over smaller ranges near the bottom of the implant layer. In situ RGA analysis during the implantation shows the liberation of an abundance of fluorine in many different forms. This is supported by results from a NRA experiment that shows the non-uniform concentration profile of fluorine throughout the implant layer. During the implantation process, the fluorine is released through the incident ion track leaving a carbon and metal rich region near the surface of the implant layer. The fluorine density increases with depth through the implant layer making a smooth transition to the undamaged bulk Teflon below. Low dielectric materials with highly conductive surfaces, such as this one, may provide an opportunity for a broad range of new microelectronic applications.

  20. Metal Ion Toxins and Brain Aquaporin-4 Expression: An Overview

    PubMed Central

    Ximenes-da-Silva, Adriana

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage. PMID:27313504

  1. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  2. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?

    PubMed

    Gutten, Ondrej; Beššeová, Ivana; Rulíšek, Lubomír

    2011-10-20

    To address fundamental questions in bioinorganic chemistry, such as metal ion selectivity, accurate computational protocols for both the gas-phase association of metal-ligand complexes and solvation/desolvation energies of the species involved are needed. In this work, we attempt to critically evaluate the performance of the ab initio and DFT electronic structure methods available and recent solvation models in calculations of the energetics associated with metal ion complexation. On the example of five model complexes ([M(II)(CH(3)S)(H(2)O)](+), [M(II)(H(2)O)(2)(H(2)S)(NH(3))](2+), [M(II)(CH(3)S)(NH(3))(H(2)O)(CH(3)COO)], [M(II)(H(2)O)(3)(SH)(CH(3)COO)(Im)], [M(II)(H(2)S)(H(2)O)(CH(3)COO)(PhOH)(Im)](+) in typical coordination geometries) and four metal ions (Fe(2+), Cu(2+), Zn(2+), and Cd(2+); representing open- and closed-shell and the first- and second-row transition metal elements), we provide reference values for the gas-phase complexation energies, as presumably obtained using the CCSD(T)/aug-cc-pVTZ method, and compare them with cheaper methods, such as DFT and RI-MP2, that can be used for large-scale calculations. We also discuss two possible definitions of interaction energies underlying the theoretically predicted metal-ion selectivity and the effect of geometry optimization on these values. Finally, popular solvation models, such as COSMO-RS and SMD, are used to demonstrate whether quantum chemical calculations can provide the overall free enthalpy (ΔG) changes in the range of the expected experimental values for the model complexes or match the experimental stability constants in the case of three complexes for which the experimental data exist. The data presented highlight several intricacies in the theoretical predictions of the experimental stability constants: the covalent character of some metal-ligand bonds (e.g., Cu(II)-thiolate) causing larger errors in the gas-phase complexation energies, inaccuracies in the treatment of solvation of the

  3. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  4. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  5. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  6. The corrosion protection of metals by ion vapor deposited aluminum

    SciTech Connect

    Danford, M.D.

    1993-10-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  7. Chelating fibers prepared with a wet spinning technique using a mixture of a viscose solution and a polymer ligand for the separation of metal ions in an aqueous solution.

    PubMed

    Kagaya, Shigehiro; Miyazaki, Hiroyuki; Inoue, Yoshinori; Kato, Toshifumi; Yanai, Hideyuki; Kamichatani, Waka; Kajiwara, Takehiro; Saito, Mitsuru; Tohda, Koji

    2012-02-15

    Chelating fibers containing polymer ligands such as carboxymethylated polyallylamine, carboxymethylated polyethyleneimine, and a copolymer of diallylamine hydrochloride/maleic acid were prepared with a wet spinning technique using mixtures of a viscose solution and the polymer ligands. The chelating fibers obtained effectively adsorbed various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Ti(IV), and Zn(II). The metal ions adsorbed could be readily desorbed using 0.1 or 0.5 mol L(-1) HNO(3). The chelating fiber containing carboxymethylated polyallylamine was available for the separation of some metal ions in synthetic wastewater containing a large amount of Na(2)SO(4). The wet spinning technique using a solution containing a base polymer and a polymer ligand was quite simple and effective and would be applicable for preparing various chelating fibers.

  8. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    DOEpatents

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  9. Photoelectric properties in metal ion modified DNA nanostructure.

    PubMed

    Kulkarni, Atul; Dugasani, Sreekantha Reddy; Jang Ah Kim; Kim; Sung Ha Park; Taesung Kim

    2015-08-01

    Due to specific or as designed self-assembly, DNA nanostructures gaining popularity in various nanoscale electronic applications. Herein, a novel divalent metal ion-DNA complex known as M-DNA have been investigated for its photoelectric characteristics. The increased conductivity of M-DNA thin films is attributed to the metal ion electrical and optical properties. The gate voltage effect along with illumination on the conductivity of M-DNA demonstrates that M-DNA can be used as an active element of a field-effect transistor. The Zn DNA shows maximum conductivity of 300μS/cm at 480 nm light illumination suggest that M-DNA can be utilized in nano-opto-electronics and bio-sensing applications.

  10. Thermodynamic analysis of metal ion-induced protein assembly.

    PubMed

    Herr, Andrew B; Conrady, Deborah G

    2011-01-01

    A large number of biological systems are regulated by metal ion-induced protein assembly. This phenomenon can play a critical role in governing protein function and triggering downstream biological responses. We discuss the basic thermodynamic principles of linked equilibria that pertain to metal ion-induced dimerization and describe experimental approaches useful for studying such systems. The most informative techniques for studying these systems are sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation, although a wide range of other spectroscopic, chromatographic, or qualitative approaches can provide a wealth of useful information. These experimental procedures are illustrated with examples from two systems currently under study: zinc-induced assembly of a staphylococcal protein responsible for intercellular adhesion in bacterial biofilms and calcium-induced dimerization of a human nucleotidase.

  11. In-situ leaching of south Texas uranium ores--part 2: Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  12. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent.

    PubMed

    Laus, Rogério; Costa, Thiago G; Szpoganicz, Bruno; Fávere, Valfredo T

    2010-11-15

    In this study, chitosan (CTS) was crosslinked with both epichlorohydrin (ECH) and triphosphate (TPP), by covalent and ionic crosslinking, respectively. The resulting new CTS-ECH-TPP adsorbent was characterized by CHN analysis, EDS, FTIR spectroscopy, TGA and DSC, and the adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions in aqueous solution were investigated. Potentiometric studies were also performed and revealed three titratable protons for each pK(a) value of 5.14, 6.76 and 9.08. The results obtained showed that the optimum pH values for adsorption were 6.0 for Cu(II), 7.0 for Cd(II) and 5.0 for Pb(II). The kinetics study demonstrated that the adsorption process proceeded according to the pseudo-second-order model. Three isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed in the analysis of the adsorption equilibrium data. The Langmuir model resulted in the best fit and the new adsorbent had maximum adsorption capacities for Cu(II), Cd(II) and Pb(II) ions of 130.72, 83.75 and 166.94 mg g(-1), respectively. Desorption studies revealed that HNO(3) and HCl were the best eluents for desorption of Cu(II), Cd(II) and Pb(II) ions from the crosslinked chitosan.

  13. In-situ leaching of south Texas uranium ores--part 2: oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  14. Metal Ions: Supporting Actors in the Playbook of Small Ribozymes

    PubMed Central

    Johnson-Buck, Alexander E.; McDowell, Sarah E.; Walter, Nils G.

    2012-01-01

    Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes – the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes – catalyze the same self-cleavage reaction as RNAse A, resulting in two products, one bearing a 2′–3′ cyclic phosphate and the other a 5′-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general. PMID:22010272

  15. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  16. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage.

  17. The role of transition metal ions chemistry on multiphase chemistry

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Leriche, M.; Monod, A.; Chaumerliac, N.

    2003-04-01

    A modelling study of the role of transition metal ions chemistry on cloud chemistry is presented. First, new developments of the Model of Multiphase Cloud Chemistry (M2C2) are described: the transition metal ions reactivity and variable photolysis in the aqueous phase. Secondly, three summertime scenarios describing urban, remote and marine conditions are simulated. First, comparisons between results from M2C2 and from CAPRAM2.3 models for the same scenarios (Herrmann et al., 2000) show a good agreement between the two models with respect to their different chemical mechanisms. Secondly, chemical regimes in cloud are analysed to understand the role of transition metal ions chemistry on cloud chemistry. This study focuses on HOx chemistry, which afterwards influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the few measurements of Fe speciation available. In the polluted case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered. This implies a more important oxidation of VOCs in droplets, which produces the HO2 radical, the hydrogen peroxide precursor. In fact, the HO2 radical is mainly converted into hydrogen peroxide by reactions between HO2/O2- radicals with Fe(II). This production of hydrogen peroxide leads to a rapid conversion of S(IV) into S(VI) at the beginning of the simulation.

  18. Measuring and Imaging Metal Ions With Fluorescence-Based Biosensors: Speciation, Selectivity, Kinetics, and Other Issues.

    PubMed

    Thompson, Richard B; Fierke, Carol A

    2017-01-01

    Fluorescence-based biosensors have shown themselves to be a powerful tool for the study of a variety of chemical species in biological systems, notably including metal ions. This chapter provides an overview of several important issues in using such sensors to study metallobiochemistry. These issues include selectivity for the analyte over potential interferents, including those that do not themselves induce a signal, the different forms in which metal ions are found (speciation), the utility of metal ion buffers, and the importance of kinetics in studying metal ion binding reactions. Finally, the chapter briefly discusses some of the issues in understanding whole-organism distribution of metal ions and its control.

  19. Ion-exchange behavior of alkali metals on treated carbons

    SciTech Connect

    Mohiuddin, G.; Hata, W.Y.; Tolan, J.S.

    1983-01-01

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature.

  20. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  1. Plasmonics for the study of metal ion-protein interactions.

    PubMed

    Grasso, Giuseppe; Spoto, Giuseppe

    2013-02-01

    The study of metal-protein interactions is an expanding field of research investigated by bioinorganic chemists as it has wide applications in biological systems. Very recently, it has been reported that it is possible to study metal-protein interactions by immobilizing biomolecules on metal surfaces and applying experimental approaches based on plasmonics which have usually been used to investigate protein-protein interactions. This is possible because the electronic structure of metals generates plasmons whose properties can be exploited to obtain information from biomolecules that interact not only with other molecules but also with ions in solution. One major challenge of such approaches is to immobilize the protein to be studied on a metal surface with preserved native structure. This review reports and discusses all the works that deal with such an expanding new field of application of plasmonics with specific attention to surface plasmon resonance, highlighting the advantages and drawbacks of such approaches in comparison with other experimental techniques traditionally used to study metal-protein interactions.

  2. Molecular designs for controlling the local environments around metal ions.

    PubMed

    Cook, Sarah A; Borovik, A S

    2015-08-18

    -oxyl radical. We therefore probed the amount of spin density on the oxido ligand of our complexes using EPR spectroscopy in conjunction with oxygen-17 labeling. Our findings showed that there is a significant amount of spin on the oxido ligand, yet the M-oxo bonds are best described as highly covalent and there is no indication that an oxyl radical is formed. These results offer the intriguing possibility that high-spin M-oxo complexes are involved in O-O bond formation in biology. Ligand redesign to incorporate H-bond accepting units (sulfonamido groups) simultaneously provided a metal ion binding pocket, adjacent H-bond acceptors, and an auxiliary binding site for a second metal ion. These properties allowed us to isolate a series of heterobimetallic complexes of Fe(III) and Mn(III) in which a group II metal ion was coordinated within the secondary coordination sphere. Examination of the influence of the second metal ion on the electron transfer properties of the primary metal center revealed unexpected similarities between Ca(II) and Sr(II) ions, a result with relevance to the OEC. In addition, the presence of a second metal ion was found to prevent intramolecular oxidation of the ligand with an O atom transfer reagent.

  3. Structures and physical properties of gaseous metal cationized biological ions.

    PubMed

    Burt, Michael B; Fridgen, Travis D

    2012-01-01

    Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.

  4. Note: An ion source for alkali metal implantation beneath graphene and hexagonal boron nitride monolayers on transition metals

    SciTech Connect

    Lima, L. H. de; Cun, H. Y.; Hemmi, A.; Kälin, T.; Greber, T.

    2013-12-15

    The construction of an alkali-metal ion source is presented. It allows the acceleration of rubidium ions to an energy that enables the penetration through monolayers of graphene and hexagonal boron nitride. Rb atoms are sublimated from an alkali-metal dispenser. The ionization is obtained by surface ionization and desorption from a hot high work function surface. The ion current is easily controlled by the temperature of ionizer. Scanning Tunneling Microscopy measurements confirm ion implantation.

  5. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  6. Measurement of binding constants of poly(ethylenimine) with metal ions and metal chelates in aqueous media by ultrafiltration

    SciTech Connect

    Juang, R.S.; Chen, M.N.

    1996-06-01

    Equilibrium constants for the binding of poly(ethylenimine) (PEI) with metal ions and metal chelates of ethylenediaminetetraacetic acid and nitrilotriacetic acid in the aqueous sulfate solutions were determined by batch ultrafiltration (UF) in the pH range of 3.0--3.8. The average coordination number of PEI groups interacting with one metal ion and metal chelate was also obtained by varying the initial concentration ratio of PEI to metal ion. A simple chemical equilibrium model proposed in this work enabled the authors to satisfactorily predict the rejection coefficient of UF of metal ions and metal chelates in the presence of PEI. Also, the effect of the formation of soluble hydroxy complexes of metal chelates on their retention was emphasized.

  7. MRI findings following metal on metal hip arthroplasty and their relationship with metal ion levels and acetabular inclination angles.

    PubMed

    Fox, Ciara M; Bergin, Karen M; Kelly, Gabrielle E; McCoy, Gerry F; Ryan, Anthony G; Quinlan, John F

    2014-08-01

    Following the global recall of all ASR metal on metal hip products, our aim was to correlate MRI findings with acetabular inclination angles and metal ion levels in patients with these implants. Both cobalt and chromium levels were significantly higher in the presence of a periprosthetic fluid collection. There was no association between the presence of a periprosthetic mass, bone marrow oedema, trochanteric bursitis or greater levels of abductor muscle destruction for cobalt or chromium. There was no association between the level of periprosthetic tissue reaction and the acetabular inclination angle with any of the pathologies identified on MRI. The relationship between MRI pathology, metal ion levels and acetabular inclination angles in patients with ASR implants remains unclear adding to the complexity of managing patients.

  8. Adsorption of metal ions on polyaminated highly porous chitosan chelating resin

    SciTech Connect

    Kawamura, Yoshihide; Mitsuhashi, Masaki; Tanibe, Hiroaki ); Yoshida, Hiroyuki )

    1993-02-01

    Highly porous chelating resin was fabricated from the natural polysaccharide chitosan. The adsorption capacity was increased by polyamination with poly(ethylene imine) (MW = 10,000). The capacity was about 1-2 times larger than that of commercial chelate resins. The selectivity for adsorption of metal ions on the resin, which was determined for a single solute at pH [approx equal] 7, was Hg(II) > UO[sub 2](II) > Cd(II) > Zn(II) > Cu(II) > Ni(II). Mg(II), Ca(II), Ga(III), As(III), and Sr(II) were not adsorbed on the resin at all. The selectivity depended on the pH of each metal solution. The equilibrium isotherms for adsorption of HgCl[sub 2] were correlated by the Langmuir equation. The saturation capacities were close to the concentration of amino group fixed on the resin. When HCl or NaCl coexisted in HgCl[sub 2] solution and their concentrations were lower than 100 mol/m[sup 3], the saturation capacity of HgCl[sub 2] was little affected by them. When 500 mol/m[sup 3] H[sub 2]SO[sub 4] coexisted in HgCl[sub 2] solution, extremely low pH inhibited the adsorption of Hg(II) at all.

  9. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.

    PubMed

    Monier, M; Abdel-Latif, D A

    2013-04-15

    A new chelating fiber (PET-TSC) was prepared with PET for fast removal of Hg(2+), Cu(2+) and Co(2+) from water. Elemental analysis, SEM, BET surface area, (13)C NMR, FTIR and X-ray diffraction spectra were used to characterize PET-TSC. The higher uptake capacity of the studied metal ions was observed at higher pH values. Kinetic study indicated that the adsorption of Hg(2+), Cu(2+) and Co(2+) followed the pseudo-second-order equation, suggesting chemical sorption as the rate-limiting step of the adsorption process. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 120.02, 96.81 and 78.08 mg/g for Hg(2+), Cu(2+) and Co(2+) ions, respectively. 1M HCl or 0.1M EDTA could be used as effective eluant to desorb the Hg(2+), Cu(2+) and Co(2+) adsorbed by PET-TSC, and the adsorption capacity of PET-TSC for the three heavy metal ions could still be maintained at about 90% level at the 5th cycle. Accordingly, it is expected that PET-TSC could be used as a promising adsorbent for fast removal of heavy metal ions from water, and the present work also might provide a simple and effective method to reuse the waste PET fibers.

  10. Sputtering of metals at ion-electron irradiation

    NASA Astrophysics Data System (ADS)

    Martynenko, Yu. V.; Korshunov, S. N.; Skorlupkin, I. D.

    2014-02-01

    It has been found that, in contrast to the commonly accepted opinion, simultaneous irradiation by 15-keV Ar+ ions and 2.5-keV electrons at temperatures above 0.5 T m ( T m is the melting temperature) induces much larger sputtering of metallic copper, nickel, and steel than irradiation only by Ar+ ions. The effect increases with the temperature. At T = 0.7 T m, the sputtering coefficients in the case of ion-electron irradiation are more than twice as large as the sputtering coefficients in the case of irradiation by Ar+ ions. The experiments on the sublimation of copper show that the sublimation rate in the case of the heating of a sample by an electron beam is higher than that in the case of heating in an electric vacuum oven. The revealed effects are explained by the electron-induced excitation of adatoms (atoms stuck over the surface, which appear owing to ion bombardment). Excited adatoms have a smaller binding energy with the surface and are sputtered more easily.

  11. Radiation damage from single heavy ion impacts on metal surfaces

    SciTech Connect

    Donnelly, S.E.; Birtcher, R.C.

    1998-06-01

    The effects of single ion impacts on the surfaces of films of Au, Ag, In and Pb have been studied using in-situ transmission electron microscopy. On all of these materials, individual ion impacts produce surface craters, in some cases, with associated expelled material. The cratering efficiency scales with the density of the irradiated metal. For very thin Au foils ({approx} 20--50 nm), in some cases individual ions are seen to punch small holes completely through the foil. Continued irradiation results in a thickening of the foil. The process giving rise to crater and hole formation and other changes observed in the thin foils has been found to be due to pulsed localized flow--i.e. melting and flow due to the thermal spikes arising from individual ion impacts. Experiments carried out on thin films of silver sandwiched between SiO{sub 2} layers have indicated that pulsed localized flow also occurs in this system and contributes to the formation of Ag nanoclusters in SiO{sub 2}--a system of interest for its non-linear optical properties. Calculation indicates that, when ion-induced, collision cascades occur near surfaces (within {approx} 5 nm) with energy densities sufficient to cause melting, craters are formed. Crater formation occurs as a result of the explosive outflow of material from the hot molten core of the cascade. Processes occurring in the sandwiched layer are less well understood.

  12. Optical metal-organic framework sensor for selective discrimination of some toxic metal ions in water.

    PubMed

    Shahat, Ahmed; Hassan, Hassan M A; Azzazy, Hassan M E

    2013-09-02

    This paper reports the development of a facile and effective approach, based on the use of Zr-based metal-organic frameworks (UiO-66) sensor with micropores geometry, shape and particle morphology for the visual detection and removal of ultra-traces of some toxic metal ions such as Bi(III), Zn(II), Pb(II), Hg(II) and Cd(II). UiO-66 was used as selective carriers for accommodating hydrophobic chromophore probes such as dithizone (DZ) without coupling agent for sensitive and selective discrimination of trace level of toxic analytes. The developed UiO-66 sensor was utilized for the detection of ultra-traces of some toxic metal ions with the naked eye. The new sensor displays high sensitivity and selectivity of a wide range of detectable metals analytes up to 10(-10) mol dm(-3) in solution, in a rapid analyte uptake response (seconds). The developed sensor is stable, cost effective, easy to prepare, and would be useful for rapid detection and removal of ultra-traces of toxic metal ions in water samples.

  13. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  14. Molecular Designs for Controlling the Local Environments around Metal Ions

    PubMed Central

    Cook, Sarah A.; Borovik, A.S.

    2015-01-01

    of an Mn–oxyl radical. We therefore probed the amount of spin density on the oxido ligand of our complexes using EPR spectroscopy in conjunction with oxygen-17 labeling. Our findings showed that there is a significant amount of spin on the oxido ligand, yet the M–oxo bonds are best described as highly covalent and there is no indication that an oxyl radical is formed. These results offer the intriguing possibility that high spin M–oxo complexes are involved in O–O bond formation in biology. Ligand redesign to incorporate H-bond accepting units (sulfonamido groups) simultaneously provided a metal ion binding pocket, adjacent H-bond acceptors, and an auxiliary binding site for a second metal ion. These properties allowed us to isolate a series of heterobimetallic complexes of FeIII and MnIII in which a group II metal ion was coordinated within the secondary coordination sphere. Examination of the influence of the second metal ion on the electron transfer properties of the primary metal center revealed unexpected similarities between CaII and SrII ions—a result with relevance to the OEC. In addition, the presence of a second metal ion was found to prevent intramolecular oxidation of the ligand with an O-atom transfer reagent. PMID:26181849

  15. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

    PubMed

    Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan

    2014-06-10

    The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.

  16. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions.

    PubMed

    Wang, Ying; Liu, Xu; Wang, Hongfang; Xia, Guangmei; Huang, Wei; Song, Rui

    2014-02-15

    In the current study, microporous spongy chitosan monoliths doped with small amount of graphene oxide (CSGO monoliths) with high porosity (96-98%), extraordinary high water absorption (more than 2000%) and low density (0.0436-0.0607 g cm(-3)) were prepared by the freeze-drying method and used as adsorbents for anionic dyes methyl orange (MO) and Cu(2+) ions. The adsorption behavior of the CSGO monoliths and influencing factors such as pH value, graphene oxide (GO) content, concentration of pollutants as well as adsorption kinetics were studied. Specifically, the saturated adsorption capacity for MO is 567.07 mg g(-1), the highest comparing with other publication results, and it is 53.69 mg g(-1) for Cu(2+) ions. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these microporous spongy CSGO monoliths will be the promising candidates for water purification.

  17. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application.

  18. The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing.

    PubMed

    Huang, Hongduan; Liao, Lei; Xu, Xiao; Zou, Mingjian; Liu, Feng; Li, Na

    2013-12-15

    The electron-transfer based quenching effect of commonly encountered transition metal ions on the photoluminescence of grapheme quantum dots (GQDs) was for the first time investigated, and was found to be associated with electron configuration of the individual metal ion. Ethylene diamine tetraacetic acid (EDTA), the metal ion chelator, can competitively interact with metal ions to recover the quenched photoluminescence of GQDs. Basically, metal ions with empty or completely filled d orbits could not quench the photoluminescence of GQDs, but this quenching effect was observed for the metal ions with partly filled d orbits. Based on the quenching-recovering strategy, a simple optical metal sensing platform was established by taking Ni(2+) as an example. Using the nickel ion-specific chelating reagent, dimethylglyoxime (DMG), to replace EDTA, a detection limit of 4.1 μM was obtained in standard solution. This proposed strategy does not need further functionalization of GQDs, facilitating the application for simple, fast and cost-effective screening of metal ions.

  19. An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks.

    PubMed

    Wiersum, Andrew D; Chang, Jong-San; Serre, Christian; Llewellyn, Philip L

    2013-03-12

    An adsorbent performance indicator (API) is proposed in an effort to initially highlight porous materials of potential interest for PSA separation processes. This expression takes into account working capacities, selectivities, and adsorption energies and additionally uses weighting factors to reflect the specific requirements of a given process. To demonstrate the applicability of the API, we have performed the adsorption of carbon dioxide and methane at room temperature on a number of metal-organic frameworks, a zeolite and a molecular sieve carbon. The API is calculated for two different CO2/CH4 separation case scenarios: "bulk separation" and "natural gas purification". This comparison highlights how the API can be more versatile than previously proposed comparison factors for an initial indication of potential adsorbent performance.

  20. Selected metal ions protect Bacillus subtilis biofilms from erosion.

    PubMed

    Grumbein, S; Opitz, M; Lieleg, O

    2014-08-01

    Many problems caused by bacterial biofilms can be traced back to their high resilience towards chemical perturbations and their extraordinary sturdiness towards mechanical forces. However, the molecular mechanisms that link the mechanical properties of a biofilm with the ability of bacteria to survive in different chemical environments remain enigmatic. Here, we study the erosion stability of Bacillus subtilis (B. subtilis) biofilms in the presence of different chemical environments. We find that these biofilms can utilize the absorption of certain metal ions such as Cu(2+), Zn(2+), Fe(2+), Fe(3+) and Al(3+) into the biofilm matrix to avoid erosion by shear forces. Interestingly, many of these metal ions are toxic for planktonic B. subtilis bacteria. However, their toxic activity is suppressed when the ions are absorbed into the biofilm matrix. Our experiments clearly demonstrate that the biofilm matrix has to fulfill a dual function, i.e. regulating both the mechanical properties of the biofilm and providing a selective barrier towards toxic chemicals.

  1. Extraordinary rates of transition metal ion-mediated ribozyme catalysis

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2006-01-01

    In pre-steady-state, fast-quench kinetic analysis, the tertiary-stabilized hammerhead ribozyme “RzB” cleaves its substrate RNA with maximal measured k obs values of ∼3000 min−1 in 1 mM Mn2+ and ∼780 min−1 in 1 mM Mg2+ at 37°C (pH 7.4). Apparent pKa for the catalytic general base is ∼7.8–8.5, independent of the corresponding metal hydrate pKa, suggesting potential involvement of a nucleobase as general base as suggested previously from nucleobase substitution studies. The pH-rate profile is bell-shaped for Cd2+, for which the general catalytic acid has a pKa of 7.3 ± 0.1. Simulations of the pH-rate relation suggest a pKa for the general catalytic acid to be ∼9.5 in Mn2+ and >9.5 in Mg2+. The acid pKa's follow the trend in the pKa of the hydrated metal ions but are displaced by ∼1–2 pH units in the presence of Cd2+ and Mn2+. One possible explanation for this trend is direct metal ion coordination with a nucleobase, which then acts as general acid. PMID:16912216

  2. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2003-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  3. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2002-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  4. No association between serum metal ions and implant fixation in large-head metal-on-metal total hip arthroplasty

    PubMed Central

    Søballe, Kjeld; Jakobsen, Stig Storgaard; Lorenzen, Nina Dyrberg; Mechlenburg, Inger; Stilling, Maiken

    2014-01-01

    Background The mechanism of failure of metal-on-metal (MoM) total hip arthroplasty (THA) has been related to a high rate of metal wear debris, which is partly generated from the head-trunnion interface. However, it is not known whether implant fixation is affected by metal wear debris. Patients and methods 49 cases of MoM THA in 41 patients (10 women) with a mean age of 52 (28–68) years were followed with stereoradiographs after surgery and at 1, 2, and 5 years to analyze implant migration by radiostereometric analysis (RSA). Patients also participated in a 5- to 7-year follow-up with measurement of serum metal ions, questionnaires (Oxford hip score (OHS) and Harris hip score (HHS)), and measurement of cup and stem positions and systemic bone mineral density. Results At 1–2 years, mean total translation (TT) was 0.04 mm (95% CI: –0.07 to 0.14; p = 0.5) for the stems; at 2–5 years, mean TT was 0.13 mm (95% CI: –0.25 to –0.01; p = 0.03), but within the precision limit of the method. For the cups, there was no statistically significant TT or total rotation (TR) at 1–2 and 2–5 years. At 2–5 years, we found 4 cups and 5 stems with TT migrations exceeding the precision limit of the method. There was an association between cup migration and total OHS < 40 (4 patients, 4 hips; p = 0.04), but there were no statistically significant associations between cup or stem migration and T-scores < –1 (n = 10), cup and stem positions, or elevated serum metal ion levels (> 7µg/L (4 patients, 6 hips)). Interpretation Most cups and stems were well-fixed at 1–5 years. However, at 2–5 years, 4 cups and 5 stems had TT migrations above the precision limits, but these patients had serum metal ion levels similar to those of patients without measurable migrations, and they were pain-free. Patients with serum metal ion levels > 7 µg/L had migrations similar to those in patients with serum metal ion levels < 7 µg/L. Metal wear debris does not appear to influence the

  5. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  6. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells

    DOE PAGES

    Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.

    2017-01-05

    Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs,more » Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each MnII ion deposited in the SEI causes trapping of ~102 additional Li+ ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail.« less

  7. High current metal ion implantation to synthesize some conducting metal-silicides

    SciTech Connect

    Liu, B. X.; Gao, K. Y.

    1999-06-10

    High current metal-ion implantation by a metal vapor vacuum arc ion source was conducted to synthesize some conducting metal-silicides. It was found that C54-TiSi{sub 2}, ZrSi{sub 2}, NiSi{sub 2}, CoSi{sub 2}, {beta}-FeSi{sub 2}, NbSi{sub 2} and TaSi{sub 2} layers on Si wafers with good electric properties could be obtained directly after implantation. In comparison, the formation of some other silicides like {alpha}-FeSi{sub 2}, NbSi{sub 2}, TaSi{sub 2}, tetragonal-WSi{sub 2} and tetragonal-MoSi{sub 2} required an additional post-annealing to improve their crystallinity and thus their electric properties. Interestingly, the NiSi{sub 2} layers of superior electric properties were obtained at a selected Ni-ion current density of 35 {mu}A/cm{sup 2}. At this current, a beam heating raised the Si wafer to a specific temperature of 380 deg. C, at which the size difference between NiSi{sub 2} and Si lattices was nil. The resistivity of the NiSi{sub 2} layers so obtained was much lower than that of the Ni-disilicide formed by solid-state reaction at >750 deg. C. The formation mechanism of the above metal-silicides and the associated electric properties will also be discussed.

  8. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  9. Metallic atoms and ions in comets: Comet Halley 1986 3

    NASA Technical Reports Server (NTRS)

    Ibadov, S.

    1992-01-01

    The origin of metallic atoms and ions in the cometary comae is investigated theoretically. Two effects are revealed in the comas of bright comets: (1) the Na anomalous type effect is possible within the gas-dust jets of comet P/Halley 1986 3 due to cooling cometary dust by cryogenic gas flow from the nucleus; and (2) the production of ions of refractory elements (Fe(+), Si(+), etc.) at large heliocentric distances is possible in the comas of the Halley type dusty comets due to high-velocity impacts between cometary and zodiacal dust particles. Spectral observations of comets with high sensitivity and spatial resolution are important for studying both comets and interplanetary dust.

  10. Alloying of metal nanoparticles by ion-beam induced sputtering

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivastava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Saravanan, K.; Das, A.; Panigrahi, B. K.

    2017-01-01

    Ion-beam sputtering technique has been utilized for controlled synthesis of metal alloy nanoparticles of compositions that can be tuned. Analysis of various experimental results reveals the formation of Ag-Cu alloy nanoparticles on a silica substrate. Surface-plasmon optical resonance positions and observed shifts of Ag Bragg angles in X-ray diffraction pattern particularly confirm formation of alloy nanoparticles on glass samples. Sputtering induced nano-alloying mechanism has been discussed and compared with thermal mixing of Ag and Cu thin films on glass substrates. Compositions and sizes of alloy nanoparticles formed during ion-beam induced sputtering are found to exceed far from the values of thermal mixing.

  11. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  12. Correlation between the limiting pH of metal ion solubility and total metal concentration

    SciTech Connect

    Apak, R.; Hizal, J.; Ustaer, C.

    1999-03-15

    As an alternative to species distribution diagrams (pM vs pH curves in aqueous solution) drawn for a fixed total metal concentration, this work has developed simple linear models for correlating the limiting pH of metal ion solubility -- in equilibrium with the least soluble amorphous metal hydroxide solid phase -- to the total metal concentration. Thus adsorptive metal removal processes in complex systems can be better designed once the limiting pH of heavy metal solubility (i.e., pH{sup *}) in such a complex environment can be envisaged by simple linear equations. pH{sup *} vs pM{sub t} (M{sub t} = total metal concentration that can exist in aqueous solution in equilibrium with M(OH){sub 2(s)}) linear curves for uranyl-hydroxide, uranyl-carbonate-hydroxide, and mercuric-chloride-hydroxide simple and mixed-ligand systems and cupric-carbonate-hydroxide complexes in equilibrium with mixed hydroxide solid phases may enable the experimental chemist to distinguish true adsorption (e.g., onto hydrous oxide sorbents) from bulk precipitation removal of the metal and to interpret some anomalous metal fixation data -- usually attributed to pure adsorption in the literature -- with precipitation if the pM{sub t} at the studied pH is lower than that tolerated by pH{sup *} vs pM{sub t} curves. This easily predictable pH{sup *} corresponding to a given pM{sub t} may aid the design of desorptive mobilization experiments for certain metals as well as their adsorptive removal with the purpose of simulating metal adsorption and desorption cycles in real complex environments with changing groundwater pH.

  13. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  14. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  15. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  16. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  17. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  18. Screening Metal-Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber

    SciTech Connect

    Krishna, Rajamani; Long, Jeffrey R.

    2011-07-07

    Metal–organic frameworks (MOFs) offer considerable potential for separating a variety of mixtures that are important in applications such as CO₂ capture and H₂ purification. In view of the vast number of MOFs that have been synthesized, there is a need for a reliable procedure for comparing screening and ranking MOFs with regard to their anticipated performance in pressure swing adsorption (PSA) units. For this purpose, the most commonly used metrics are the adsorption selectivity and the working capacity. Here, we suggest an additional metric for comparing MOFs that is based on the analysis of the transient response of an adsorber to a step input of a gaseous mixture. For a chosen purity of the gaseous mixture exiting from the adsorber, a dimensionless breakthrough time τ{sub break} can be defined and determined; this metric determines the frequency of required regeneration and influences the productivity of a PSA unit. The values of τ{sub break} are dictated both by selectivity and by capacity metrics .By performing transient adsorber calculations for separation of CO₂/H₂, CO₂/CH₄, CH₄/H₂, and CO₂/CH₄/H₂ mixtures, we compare the values of τbreak to highlight some important advantages of MOFs over conventionally used adsorbents such as zeolite NaX. For a given separation duty, such comparisons provide a more realistic ranking of MOFs than afforded by either selectivity or capacity metrics alone. We conclude that breakthrough calculations can provide an essential tool for screening MOFs.

  19. The two faces of metal ions: From implants rejection to tissue repair/regeneration.

    PubMed

    Vasconcelos, Daniel M; Santos, Susana G; Lamghari, Meriem; Barbosa, Mário A

    2016-04-01

    The paradigm of metallic ions as exclusive toxic agents is changing. During the last 60 years, knowledge about toxicological and immunological reactions to metal particles and ions has advanced considerably. Hip prostheses, namely metal-on-metal bearings, have prompted studies about excessive and prolonged exposure to prosthetic debris. In that context, the interactions of metal particles and ions with cells and tissues are mostly harmful, inducing immune responses that lead to osteolysis and implant failure. However, in the last decade, new strategies to promote immunomodulation and healing have emerged based on the unique properties of metallic ions. The atom-size and charge enable ions to interact with key macromolecules (e.g. proteins, nucleic acids) that affect cellular function. Moreover, these agents are inexpensive, stable and can be integrated in biomaterials, which may open new avenues for a novel generation of medical devices. Herein, orthopedic devices are discussed as models for adverse responses to metal ions, and debated together with the potential to use metal ions-based therapies, thus bridging the gap between unmet clinical needs and cutting-edge research. In summary, this review addresses the two "faces" of metallic ions, from pathological responses to innovative research strategies that use metal ions for regenerative medicine.

  20. Is there a difference in van der Waals interactions between rare gas atoms adsorbed on metallic and semiconducting single-walled carbon nanotubes?

    PubMed

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A; Yates, John T; Cole, Milton W; Johnson, J Karl

    2013-03-29

    The differences in the polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals--corrected density functional theory that the binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programed desorption experiments of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected density functional theory are in good agreement with experiments.

  1. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  2. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    SciTech Connect

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A.; Yates, John T.; Cole, Milton W.; Johnson, J. Karl

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  3. R&D for graft adsorbents by radiation processing

    NASA Astrophysics Data System (ADS)

    Seko, Noriaki; Tamada, Masao

    Fibrous adsorbent for removal and recovery of metal ions have been synthesized by graft polymerization. In the grafting, the functional groups which have high selectivity against for target metal ions such as Fe, Sc, As, and U are introduced onto nonwoven fabric. When the monomer has a chelate group which makes selective coordination bond to specific these ions, it was directly grafted on the trunk polymer. In the case of precursor monomer having functional groups such as epoxy ring, the grafted trunk fabric is chemically modified. The resultant fibrous adsorbent leads the swift adsorption of metal ions. This property by using fibrous material can reduce the column size of adsorbent in the purification of waste water. The size of purification equipment becomes quite compact and that implies total volume of equipment can reduce. Instead of organic solvent, emulsion system which disperses monomer micelles in water with assistance of surfactant was found to accelerate the graft polymerization. This means the air pollution from organic solvent can be avoided by water system grafting. Furthermore, since the emulsion grafting was highly efficient, the required irradiation dose was considerably lower compared to general organic solvent system. As a result, the emulsion grafting has enormous potential for natural polymer to use as a trunk material for grafting. If a natural polymer such as cellulose can be used, the dependence on petroleum resources, the amount of industrial waste and the generation of carbon dioxide will be reduced to some extent.

  4. Mechanism of beta-purothionin antimicrobial peptide inhibition by metal ions: molecular dynamics simulation study.

    PubMed

    Oard, Svetlana; Karki, Bijaya

    2006-04-20

    Wheat beta-purothionin is a highly potent antimicrobial peptide which, however, is inactivated by metal ions. The key structural properties and mechanisms of inhibition of beta-purothionin were investigated for the first time using unconstrained molecular dynamics simulations in explicit water. A series of simulations were performed to determine effects of temperature and the metal ions. Analyses of the unconstrained simulations allowed the experimentally unavailable structural and dynamic details to be unambiguously examined. The global fold and the alpha1 helix of beta-purothionin are thermally stable and not affected by metal ions. In contrast, the alpha2 helix unfolds with shift of temperature from 300 K and in the presence of metal ions. The network of conserved residues including Arg30 and Lys5 is sensitive to environmental changes and triggers unfolding. Loop regions display high flexibility and elevated dynamics, but are affected by metal ions. Our study provides insights into the mechanism of metal ion-based inhibition.

  5. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    PubMed Central

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-01-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water. PMID:27695005

  6. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    NASA Astrophysics Data System (ADS)

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-10-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water.

  7. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  8. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O.; Guerout, R.

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  9. Sorption of polluting metal ions on a palm tree frond sawdust studied by the means of modified carbon paste electrodes.

    PubMed

    Nouacer, Sana; Hazourli, Sabir; Despas, Christelle; Hébrant, Marc

    2015-11-01

    Water remediation by adsorption of the metal ions on a low cost sorbent is the frame of the present study. The metal ions adsorption properties of sawdust of palm tree fronds (PTF sawdust) are investigated by both equilibrium measurements and modified carbon paste electrode. The ability to adsorb Cu(II), Cr(VI) and As(III) in significant quantities is demonstrated. Carbon paste electrodes modified by incorporation of PTF sawdust (PTF-CPE) or, for comparison, an organically modified silica for the detection of copper(II) are investigated in term of sensitivity, estimation of number of possible reuses, repeatability and interference effect. A detection limit for Cu(II) analysis of 1.0×10(-8) M has been achieved after 5 min preconcentration and a single PTF-CPE can be used for up to 10 preconcentration-analysis-regeneration cycles. The relative standard deviation (n=9) for the determination of a 10(-6) M Cu(II) solution (pH=5) was about 26%. The effects of Ca(II), As(III) and Cr(VI) on the copper detection are investigated: calcium ions were shown to compete with copper on the same adsorption sites, arsenic(III) has no effect on the copper detection whereas chromium(VI) was shown to enhance the copper detection.

  10. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-20

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater.

  11. State promotion and neutralization оf ions near metal surface

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2011-05-01

    When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  12. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  13. Metal ion sorption by untreated and chemically treated biomass

    SciTech Connect

    Kilbane, J.J.; Xie, J.

    1992-12-31

    The metal-binding ability of biosorbents is well known; however, in comparison with commercial ion-exchange resins the capacity of biosorbents is low. The purpose of this research was to examine chemically modified biosorbents and biosorbents prepared from microorganisms isolated from extreme environments to determine if significant improvements in metal-binding capacity or biosorbents with unique capabilities could be produced. Chemical treatments examined included acid, alkali, carbon disulfide, phosphorus oxychloride, anhydrous formamide, sodium thiosulfate, sodium chloroacetic acid, and phenylsulfonate. Biosorbents were prepared from microorganisms isolated from pristine and acid mine drainage impacted sites and included heterotrophs, methanotrophs, algae, and sulfate reducers. Chemical modification with carbon disulfide, phosphorous oxychloride, and sodium thiosulfate yielded biosorbents with such as much as 74%, 133%, and 155% improvements, respectively, in metal-binding capacity, but the performance of these chemically modified biosorbents deteriorated upon repeated use. A culture isolated from an acid mine drainage impacted site, IGTM17, exhibits about 3-fold higher metal-binding capacity in comparison with other biosorbents examined in this study. IGTM17 also exhibits superior metal-binding ability at decreased pH or in the presence of interfering common cations in comparison with other biosorbents or some commercially available cation exchange resins. Some biosorbents, such as IGTM5, can bind anions. To our knowledge this is the first demonstration of the ability of biosorbents to bind anions. Moreover, preliminary data indicate that the chemical modification of biosorbents may be capable of imparting the ability to selectively bind certain anions. Further research is needed to optimize conditions for the chemical modification and stabilization of biosorbents.

  14. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    PubMed

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  15. Nanoparticles reduce nickel allergy by capturing metal ions

    NASA Astrophysics Data System (ADS)

    Vemula, Praveen Kumar; Anderson, R. Rox; Karp, Jeffrey M.

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

  16. Surface oxidation of metals by oxygen ion bombardment

    NASA Astrophysics Data System (ADS)

    Alov, Nikolai V.

    2007-03-01

    Surface oxidation of molybdenum, tungsten, niobium and tantalum by low-energy oxygen ion beams is investigated using X-ray photoelectron spectroscopy (XPS). Oxygen ion bombardment of molybdenum and tungsten surfaces leads to the formation of thin oxide films containing metals in oxidation states 4+, 5+ and 6+. At the initial stage of irradiation, rapid surface oxidation of molybdenum and tungsten was observed. At higher fluences the oxidation reaches saturation and the surface composition remains almost unchanged with increasing fluence. Oxygen ion bombardment of niobium and tantalum surfaces leads to the formation of thin oxide films containing niobium and tantalum in oxidation states 2+, 4+ and 5+. At the initial stage of irradiation, again rapid surface oxidation of niobium and tantalum was observed. At higher fluences the population of Nb2+ and Nb4+, Ta2+ and Ta4+ reaches a maximum and then begins to decrease. The population of Nb5+ and Ta5+ continues to increase and finally the entire oxide films consists of only Nb5+ and Ta5+, respectively.

  17. Use of Divalent Metal Ions in the DNA Cleavage Reaction of Human Type II Topoisomerases†

    PubMed Central

    Deweese, Joseph E.; Burch, Amber M.; Burgin, Alex B.; Osheroff, Neil

    2009-01-01

    All type II topoisomerases require divalent metal ions in order to cleave and ligate DNA. In order to further elucidate the mechanistic basis for these critical enzyme-mediated events, the role of the metal ion in the DNA cleavage reaction of human topoisomerase IIβ was characterized and compared to that of topoisomerase IIα. The present study utilized divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that substituted a sulfur atom for the 3′-bridging oxygen or the non-bridging oxygens of the scissile phosphate. Based on time courses of DNA cleavage, cation titrations, and metal ion mixing experiments, we propose the following model for the use of divalent metal ions by human type II topoisomerases. First, both enzymes employ a two-metal-ion mechanism to support DNA cleavage. Second, an interaction between one divalent metal ion and the 3′-bridging atom of the scissile phosphate greatly enhances enzyme-mediated DNA cleavage, most likely by stabilizing the leaving 3′-oxygen. Third, there is an important interaction between a divalent second metal ion and a non-bridging atom of the scissile phosphate that stimulates DNA cleavage mediated by topoisomerase IIβ. If this interaction exists in topoisomerase IIα, its effects on DNA cleavage are equivocal. This last aspect of the model highlights a difference in metal ion utilization during DNA cleavage mediated by human topoisomerase IIα and IIβ. PMID:19222228

  18. Prostate cancer outcome and tissue levels of metal ions

    USGS Publications Warehouse

    Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; MacIas, V.; Gao, W.; Liang, W.-M.; Beam, C.; Gray, Michael A.; Kajdacsy-Balla, A.

    2011-01-01

    BACKGROUND There are several studies examining prostate cancer and exposure to cadmium, iron, selenium, and zinc. Less data are available on the possible influence of these metal ions on prostate cancer outcome. This study measured levels of these ions in prostatectomy samples in order to examine possible associations between metal concentrations and disease outcome. METHODS We obtained formalin fixed paraffin embedded tissue blocks of prostatectomy samples of 40 patients with PSA recurrence, matched 1:1 (for year of surgery, race, age, Gleason grading, and pathology TNM classification) with tissue blocks from 40 patients without recurrence (n = 80). Case-control pairs were compared for the levels of metals in areas adjacent to tumors. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for quantification of Cd, Fe, Zn, and Se. RESULTS Patients with biochemical (PSA) recurrence of disease had 12% lower median iron (95 ??g/g vs. 111 ??g/g; P = 0.04) and 21% lower zinc (279 ??g/g vs. 346 ??g/g; P = 0.04) concentrations in the normal-appearing tissue immediately adjacent to cancer areas. Differences in cadmium (0.489 ??g/g vs. 0.439 ??g/g; 4% higher) and selenium (1.68 ??g/g vs. 1.58 ??g/g; 5% higher) levels were not statistically significant in recurrence cases, when compared to non-recurrences (P = 0.40 and 0.21, respectively). CONCLUSIONS There is an association between low zinc and low iron prostate tissue levels and biochemical recurrence in prostate cancer. Whether these novel findings are a cause or effect of more aggressive tumors, or whether low zinc and iron prostatic levels raise implications for therapy, remains to be investigated. Copyright ?? 2011 Wiley-Liss, Inc.

  19. Characterisation of adsorbents pr