Sample records for adsorbed organic molecules

  1. Formation of Adsorbed Oxygen Radicals on Minerals at the Martian Surface and the Decomposition of Organic Molecules

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Freeman, B. A.; Hecht, M. H.

    2000-01-01

    We present experimental evidence that superoxide ions form on mineral grains at the martian surface and show that these adsorbates can explain the unusual reactivity of the soil as well as the apparent absence of organic molecules.

  2. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  3. How Does the Surface of Al-ITQ-HB 2D-MOF Condition the Intermolecular Interactions of an Adsorbed Organic Molecule?

    PubMed

    Caballero-Mancebo, Elena; Moreno, José María; Corma, Avelino; Díaz, Urbano; Cohen, Boiko; Douhal, Abderrazzak

    2018-05-30

    In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO 2 and NR/Al 2 O 3 composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.

  4. Thermal properties of adsorbed molecule in external field

    NASA Astrophysics Data System (ADS)

    Devi, Sumana; Vidhani, Bhavna; Prasad, Vinod

    2018-05-01

    Thermodynamic properties such as free energy, internal energy, entropy and specific heat of an adsorbed molecule are systematically investigated in static electric field for four different confinements. The confined potentials taken are suitable for different experimental conditions and are very useful in determining properties of molecules adsorbed under different environments. The time independent Schrödinger equation is solved numerically using accurate 9-point finite difference method. The Energy spectrum thus obtained is used to find thermal properties of the adsorbed molecule. Interesting results are obtained and explained.

  5. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  6. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    PubMed

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  7. Sorption of organic molecules on surfaces of a microporous polymer adsorbent modified with different quantities of uracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ganieva, A. G.; Kudasheva, F. Kh.

    2016-11-01

    The sorption of organic molecules on the surfaces of a number of adsorbents based on a microporous copolymer of styrene and divinylbenzene modified with different quantities of uracil is studied by means of inverse gas chromatography at infinite dilution. Samples containing 10-6, 10-5, 10-4, 10-3, 10-2, and 0.5 × 10‒1 weight parts of uracil (the pC of uracil ranges from 1.3 to 6) are studied. The contributions from different intermolecular interactions to the Helmholtz energy of sorption are calculated via the linear free energy relationship. It is found that as the concentration of uracil on the surface of the polymer adsorbent grows, the contributions from different intermolecular interactions and the conventional polarity of the surface have a bend at pC = 3, due probably to the formation of a supramolecular structure of uracil. Based on the obtained results, it is concluded that the formation of the supramolecular structure of uracil on the surface of the polymer adsorbent starts when pC < 3.

  8. Adsorbed molecules in external fields: Effect of confining potential

    NASA Astrophysics Data System (ADS)

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.

  9. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-05

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  11. Theory of raman scattering from molecules adsorbed at semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1983-09-01

    A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.

  12. Conductivity Modifications of Graphene by Electron Donative Organic Molecules

    NASA Astrophysics Data System (ADS)

    Masujima, Hiroaki; Mori, Takehiko; Hayamizu, Yuhei

    2017-07-01

    Graphene has been studied for the application of transparent electrodes in flexible electrical devices with semiconductor organics. Control of the charge carrier density in graphene is crucial to reduce the contact resistance between graphene and the active layer of organic semiconductor. Chemical doping of graphene is an approach to change the carrier density, where the adsorbed organic molecules donate or accept electrons form graphene. While various acceptor organic molecules have been demonstrated so far, investigation about donor molecules is still poor. In this work, we have investigated doping effect in graphene field-effect transistors functionalized by organic donor molecules such as dibenzotetrathiafulvalene (DBTTF), hexamethyltetrathiafulvalene (HMTTF), 1,5-diaminonaphthalene (DAN), and N, N, N', N'-tetramethyl- p-phenylenediamine (TMPD). Based on conductivity measurements of graphene transistors, the former three molecules do not have any significant effect to graphene transistors. However, TMPD shows effective n-type doping. The doping effect has a correlation with the level of highest occupied molecular orbital (HOMO) of each molecule, where TMPD has the highest HOMO level.

  13. DNA Molecules Adsorbed on Rippled Supported Cationic Lipid Membranes -- A new way to stretch DNAs

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo

    2005-03-01

    We discuss a novel approach to control to shapes of DNA molecules. We elucidate the recent experimental work of M. Hochrein, L. Golubovic and J. Raedler, on the conformational behavior of DNA molecules adsorbed on lipid membranes that are supported on grooved micro-structured surfaces. We explain the striking ability of the edges formed on these supported membranes to adsorb and completely orient (stretch) very long DNA molecules. Here we explain the experimentally observed DNA stretching effect in terms of the surface curvature dependent electrostatic potential seen by the adsorbed DNA molecules. On the curved, rippled membrane, we show that the DNA molecules undergo localization transitions causing them to stretch by binding to the ripple edges of the supported membrane. In the future, this stretching will allow to directly image, by the common fluorescence microscopy, fundamental biological processes of the interactions between DNA and single protein molecules.

  14. Adsorption of polar organic molecules on sediments: Case-study on Callovian-Oxfordian claystone.

    PubMed

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-08-01

    The release and transport of anthropogenic organic matter through the geosphere is often an environmental criterion of safety. Sedimentary rocks are widely studied in this context as geological barriers for waste management. It is the case of Callovian-Oxfordian claystone (COx), for which several studies report adsorption of anthropogenic organic molecules. In this study, we evaluated and reviewed adsorption data of polar organic molecules on COx claystone. Experiments were performed on raw claystone, decarbonated and clay fractions. Adsorption isotherms were measured with adsorbates of various polarities: adipate, benzoate, ortho-phthalate, succinate, gluconate, oxalate, EDTA, citrate. A significant adsorption was observed for multidentate polycarboxylic acids as evidenced with phthalate, succinate, oxalate, gluconate, EDTA and citrate (R d  = 1.53, 3.52, 8.4, 8.8, 12.4, 54.7 L kg -1 respectively). Multiple linear regression were performed as a statistical analysis to determine the predictors from these adsorption data. A linear correlation between adsorption data (R d ) and dipole moment (μ) of adsorbates was evidenced (R 2  = 0.91). Molecules with a high dipole moment, μ(D) > 2.5, displayed a significant adsorption, R d ≫1 L kg -1 . A qualitative correlation can be easily estimated using the water/octanol partition coefficient, P ow , of adsorbates (R 2  = 0.77). In this case, two opposite trends were distinguished for polar and apolar molecules. The use of organic carbon content in sediments is relevant for predicting adsorption of apolar compounds, log (P ow )>+1. The oxides/clays contents may be relevant regarding polar molecules, log ( apparent P ow )<-1. The proposed scheme offers a general methodology for investigation of geo-barriers towards heterogeneous organic plumes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Controlled enzymatic cutting of DNA molecules adsorbed on surfaces using soft lithography

    NASA Astrophysics Data System (ADS)

    Auerbach, Alyssa; Budassi, Julia; Shea, Emily; Zhu, Ke; Sokolov, Jonathan

    2013-03-01

    The enzyme DNase I was applied to adsorbed and aligned DNA molecules (Lamda, 48.5 kilobase pairs (kbp), and T4, 165.6 kbp), stretched linearly on a surface, by stamping with a polydimethylsiloxane (PDMS) grating. The DNAs were cut by the enzyme into separated, micron-sized segments along the length of the molecules at positions determined by the grating dimensions (3-20 microns). Ozone-treated PDMS stamps were coated with DNase I solutions and placed in contact with surface-adsorbed DNA molecules deposited on a 750 polymethylmethacrylate (PMMA) film spun-cast onto a silicon substrate. The stamps were applied under pressure for times up to 15 minutes at 37 C. The cutting was observed by fluorescence microscopy imaging of DNA labeled with YOYO dye. Cutting was found to be efficient despite the steric hindrance due to surface attachment of the molecules. Methods for detaching and separating the cut segments for sequencing applications will be discussed. Supported by NSF-DMR program.

  16. Adsorption of CO and O2 molecules on Li metal adsorbed graphene: Search for graphene based gas sensors

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Sachdeva, Ritika; Dharamvir, Keya

    2018-05-01

    Adsorption of small gas molecules (such as CO and O2) on pristine graphene (PG) and Li-adsorbed graphene (PG-Li) have been investigated using first principles methods within density functional theory (DFT). We also notice that PG-Li has a higher chemical reactivity towards the gas molecules as compared to PG and these molecules have higher adsorption energy on this surface. Moreover, the strong interactions between PG-Li and the adsorbed molecules (as compared to PG and gas molecules) induce dramatic changes to the electronic properties of PG adsorbed with Li and make PG-Li a promising candidate as sensing material for CO and O2 gases.

  17. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C60

    NASA Astrophysics Data System (ADS)

    Golunski, M.; Verkhoturov, S. V.; Verkhoturov, D. S.; Schweikert, E. A.; Postawa, Z.

    2017-02-01

    Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C60 projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  18. Kondo effect in single cobalt phthalocyanine molecules adsorbed on Au(111) monoatomic steps

    NASA Astrophysics Data System (ADS)

    Zhao, Aidi; Hu, Zhenpeng; Wang, Bing; Xiao, Xudong; Yang, Jinlong; Hou, J. G.

    2008-06-01

    The Kondo effect in single dehydrogenated cobalt phthalocyanine (CoPc) molecules adsorbed on Au(111) monoatomic steps was studied with a low temperature scanning tunneling microscope. The CoPc molecules adsorbed on Au(111) monoatomic steps show two typical configurations, which can be dehydrogenated to reveal Kondo effect. Moreover, the Kondo temperatures (TK) measured for different molecules vary in a large range from ~150 to ~550 K, increasing monotonically with decreasing Co-Au distance. A simple model consisting of a single Co 3dz2 orbital and a Au 6s orbital is considered and gives a qualitative explanation to the dependence. The large variation of TK is attributed to the variation of the interaction between the magnetic-active cobalt ion and the Au substrate resulted from different Co-Au distances.

  19. Electrospray deposition of organic molecules on bulk insulator surfaces.

    PubMed

    Hinaut, Antoine; Pawlak, Rémy; Meyer, Ernst; Glatzel, Thilo

    2015-01-01

    Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules.

  20. Imaging the wave functions of adsorbed molecules

    PubMed Central

    Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter

    2014-01-01

    The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291

  1. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.

    Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  2. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE PAGES

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; ...

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  3. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

    PubMed Central

    2014-01-01

    Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic

  4. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  5. Driving Organic Molecule Crystalliztion with Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica; Trovato, Gianfranco

    This work examines how surface reconstructions can drive crystallization of organic molecules via self-assembly. Organic electronic molecules have low conductivities compared to inorganic materials, but crystallizing these polymers increases their conductivity. This project uses surface reconstructions with periodically repeating topographies to drive the crystallization process. The samples are grown by placing a drop of a dilute PEDOT solution on the clean Si(001)-(2x1) or Si(111)-(7x7) surface reconstruction and heating the surface up to both evaporate the solvent and promote diffusion of the polymer to the thermodynamically defined lowest energy position. The resulting samples are characterized by scanning tunneling microscopy (STM) with respect to their crystallinity and electronic properties. Of particular interest is whether there is a preferential location for the PEDOT molecule to adsorb and whether there are any conformational changes upon adsorption that modify the HOMO-LUMO gap. This work is being done in a new pan-style RHK-STM enclosed in a glovebox at Cleveland State University. The glovebox has O2 and H2O levels of less than 1ppm. This allows for sample preparation and imaging in a controlled environment that is free from contamination.

  6. First-principles study of pollutant molecules absorbed on polymeric adsorbents using the vdW-DF2 functional

    NASA Astrophysics Data System (ADS)

    Zhu, Jinguo; Wang, Yapeng; Tian, Ting; Zhang, Qianfan

    2018-03-01

    Polymeric adsorbents have been attracting increasing attention because of their favorable structrual properties and effectiveness of solving small molecules contaminants. However, due to the absence of deep insight into the adsorption mechanism of polymeric adsorbents, researches on new polymeric adsorbents can only be carried out by repeated experiments and tests, which is extremely inefficient. Therefore, investigating the adsorption process of polymeric adsorbents, especially the mechanism of adsorbing various air pollutant molecules by materials modelling and simulation, is of great significance. Here in this work, we systematically studied the adsorption mechanism by first-principles computation with van der Waals interaction. It demonstrates that the adsorption between them was pure physisorption originating from the hydrogen bond and intermolecular forces consisting of Keesom force, Debye force and London dispersion force. The proportions of these forces varied according to different adsorption systems. The adsorption effects were determined by the polymers’ dipole moment and polarizability. The adsorption performance of some polymers with special structures was also investigated to explore their possibility as potential adsorbents. The results of our simulation can provide some guidance for developing new polymeric adsorbents with better performance.

  7. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  8. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  9. Field-induced structural control of COx molecules adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Matsubara, Manaho; Okada, Susumu

    2018-05-01

    Using the density functional theory combined with both the van der Waals correction and the effective screening medium method, we investigate the energetics and electronic structures of CO and CO2 molecules adsorbed on graphene surfaces in the field-effect-transistor structure with respect to the external electric field by the excess electrons/holes. The binding energies of CO and CO2 molecules to graphene monotonically increase with increasing hole and electron concentrations. The increase occurs regardless of the molecular conformations to graphene and the counter electrode, indicating that the carrier injection substantially enhances the molecular adsorption on graphene. Injected carriers also modulate the stable molecular conformation, which is metastable in the absence of an electric field.

  10. Surface-enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerker, M.; Wang, D.S.; Chew, H.

    1980-12-15

    A model for Raman scattering by a molecule adsorbed at the surface of a spherical particle is articulated by treating the molecule as a classical electric dipole. This follows Moskovits's suggestion (J. Chem. Phys. 69, 4159 (1978)) and the experiments by Creighton et al. (J. Chem. Soc. Faraday Trans. II, 75, 790(1979)) that such a system may exhibit SERS simlar to that at roughened electrode surfaces. The molecule is stimulated by a primary field comprised of the incident and near-scattered fields. Emission consists of the dipole field plus a scattered field, each at the shifted frequency. Addition of feedback termsmore » between the dipole and the particle makes only a negligible contribution to the fields. For pyridine adsorbed at the surface of a silver sphere, the 1010 cm/sup -1/ band is enhanced by approx.10/sup 6/ if the radius is much less than the wavelengths and the excitation wavelength is approx.382 nm, a wavelength for which the relative refractive index of silver is close to m = ..sqrt..2i. Detailed results are given for the effect upon the angular distribution and the polarization of the Raman emission of particle size, distance from the surface, excitation wavelength, and location of the molecule upon the surface. These results simulate those observed at roughened silver electrodes and suggest that the mechanism of SERS at those electrodes may resemble the electromagnetic mechanism elucidated here. The authors predict that comparable effects should be observed for fluorescent scattering. 53 references, 9 figures.« less

  11. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  12. Adsorbed Molecules and Surface Treatment Effect on Optical Properties of ZnO Nanowires Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Souissi, H.; Sallet, V.; Lusson, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2017-07-01

    We have investigated the optical properties of ZnO nanowires grown by metalorganic chemical vapor deposition (MOCVD) with nitrous oxide (N2O) as oxygen precursor. Photoluminescence (PL) and Raman measurements showed the influence of adsorbed molecules on the optical properties. Low-temperature (4 K) PL studies on the surface exciton (SX) at 3.3660 eV elucidated the nature and origin of this emission. In particular, surface treatment by annealing at high temperature under inert gas reduced the emission intensity of SX. Raman vibrational spectra proved that presence of a considerable amount of adsorbed molecules on the surface of ZnO nanowires plays a key role in the occurrence of surface excitons.

  13. Hydrogen Abstraction from Individual Thiophenol Molecules Adsorbed on Cu(111)

    NASA Astrophysics Data System (ADS)

    Rao, Bommisetty; Kwon, Ki-Young; Liu, Anwei; Zhang, Jin-Tao; Bartels, Ludwig

    2004-03-01

    Thiol compounds on metal surfaces have been studied intensively because of their ability to form self-assembled monolayers (SAMs). However, the transition from the thiol to the surface thiolate is difficult to investigate in detail in the solution phase. Here we report on STM measurements that address the adsorption of a variety of substituted thiophenols on Cu(111) at 15K in vacuum. At this temperature, adsorption does not cause immediate scission of the S-H bond. We confirmed this by STM-based vibrational spectroscopy. Consequently, the sulfur atom of the thiol group adsorbs on-top of a substrate atom, which results in a sufficient separation of the aryl group from the substrate to allow its free rotation even at 15K. Asymmetrically substituted thiophenols result in STM images of pronounced helicity, which indicates that the molecules cannot tilt upright to exchange their adsorption side. Attachment of electrons from the tunneling current can cause hydrogen abstraction from the thiophenols, which locks them into the substrate. We investigated the dependence of the yield of the hydrogen abstraction on the thiophenol substituent identity and position. We find pronounced variations which may follow the Hammett Equation known from Standard Organic Chemistry.

  14. In situ STM imaging of the structures of pentacene molecules adsorbed on Au(111).

    PubMed

    Pong, Ifan; Yau, Shuehlin; Huang, Peng-Yi; Chen, Ming-Chou; Hu, Tarng-Shiang; Yang, Yawchia; Lee, Yuh-Lang

    2009-09-01

    In situ scanning tunneling microscope (STM) was used to examine the spatial structures of pentacene molecules adsorbed onto a Au(111) single-crystal electrode from a benzene dosing solution containing 16-400 microM pentacene. Molecular-resolution STM imaging conducted in 0.1 M HClO(4) revealed highly ordered pentacene structures of ( radical31 x radical31)R8.9 degrees , (3 x 10), ( radical31 x 10), and ( radical7 x 2 radical7)R19.1 degrees adsorbed on the reconstructed Au(111) electrode dosed with different pentacene solutions. These pentacene structures and the reconstructed Au(111) substrate were stable between 0.2 and 0.8 V [vs reversible hydrogen electrode, RHE]. Increasing the potential to E > 0.8 V lifted the reconstructed Au(111) surface and disrupted the ordered pentacene adlattices simultaneously. Ordered pentacene structures could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). At potentials negative of 0.2 V, the adsorption of protons became increasingly important to displace adsorbed pentacene admolecules. Although the reconstructed Au(111) structure was not essential to produce ordered pentacene adlayers, it seemed to help the adsorption of pentacene molecules in a long-range ordered pattern. At room temperature (25 degrees C), approximately 100 pentacene molecules seen in STM images could rotate and align themselves to a neighboring domain in 10 s, suggesting that pentacene admolecules could be mobile on Au(111) under the STM imaging conditions of -150 mV in bias voltage and 1 nA in feedback current.

  15. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  16. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    NASA Astrophysics Data System (ADS)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  17. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-02-23

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6  A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.

  18. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

    PubMed Central

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-01-01

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054

  19. Characterization of natural organic matter adsorption in granular activated carbon adsorbers.

    PubMed

    Velten, Silvana; Knappe, Detlef R U; Traber, Jacqueline; Kaiser, Hans-Peter; von Gunten, Urs; Boller, Markus; Meylan, Sébastien

    2011-07-01

    The removal of natural organic matter (NOM) from lake water was studied in two pilot-scale adsorbers containing granular activated carbon (GAC) with different physical properties. To study the adsorption behavior of individual NOM fractions as a function of time and adsorber depth, NOM was fractionated by size exclusion chromatography (SEC) into biopolymers, humics, building blocks, and low molecular weight (LMW) organics, and NOM fractions were quantified by both ultraviolet and organic carbon detectors. High molecular weight biopolymers were not retained in the two adsorbers. In contrast, humic substances, building blocks and LMW organics were initially well and irreversibly removed, and their effluent concentrations increased gradually in the outlet of the adsorbers until a pseudo-steady state concentration was reached. Poor removal of biopolymers was likely a result of their comparatively large size that prevented access to the internal pore structure of the GACs. In both GAC adsorbers, adsorbability of the remaining NOM fractions, compared on the basis of partition coefficients, increased with decreasing molecular size, suggesting that increasingly larger portions of the internal GAC surface area could be accessed as the size of NOM decreased. Overall DOC uptake at pseudo-steady state differed between the two tested GACs (18.9 and 28.6 g-C/kg GAC), and the percent difference in DOC uptake closely matched the percent difference in the volume of pores with widths in the 1-50 nm range that was measured for the two fresh GACs. Despite the differences in NOM uptake capacity, individual NOM fractions were removed in similar proportions by the two GACs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Radiolysis of alanine adsorbed in a clay mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role againstmore » external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.« less

  1. Electron Transfer as a Probe of the Interfacial Quantum Dot-Organic Molecule Interaction

    NASA Astrophysics Data System (ADS)

    Peterson, Mark D.

    This dissertation describes a set of experimental and theoretical studies of the interaction between small organic molecules and the surfaces of semiconductor nanoparticles, also called quantum dots (QDs). Chapter 1 reviews the literature on the influence of ligands on exciton relaxation dynamics following photoexcitation of semiconductor QDs, and describes how ligands promote or inhibit processes such as emission, nonradiative relaxation, and charge transfer to redox active adsorbates. Chapter 2 investigates the specific interaction of alkylcarboxylated viologen derivatives with CdS QDs, and shows how a combination of steady-state photoluminescence (PL) and transient absorption (TA) experiments can be used to reveal the specific binding geometry of redox active organic molecules on QD surfaces. Chapter 3 expands on Chapter 2 by using PL and TA to provide information about the mechanisms through which methyl viologen (MV 2+) associates with CdS QDs to form a stable QD/MV2+ complex, suggesting two chemically distinct reactions. We use our understanding of the QD/molecule interaction to design a drug delivery system in Chapter 4, which employs PL and TA experiments to show that conformational changes in a redox active adsorbate may follow electron transfer, "activating" a biologically inert Schiff base to a protein inhibitor form. The protein inhibitor limits cell motility and may be used to prevent tumor metastasis in cancer patients. Chapter 5 discusses future applications of QD/molecule redox couples with an emphasis on efficient multiple charge-transfer reactions -- a process facilitated by the high degeneracy of band-edge states in QDs. These multiple charge-transfer reactions may potentially increase the thermodynamic efficiency of solar cells, and may also facilitate the splitting of water into fuel. Multiple exciton generation procedures, multi-electron transfer experiments, and future directions are discussed.

  2. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  3. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    NASA Astrophysics Data System (ADS)

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  4. Molecules for organic electronics studied one by one.

    PubMed

    Meyer, Jörg; Wadewitz, Anja; Lokamani; Toher, Cormac; Gresser, Roland; Leo, Karl; Riede, Moritz; Moresco, Francesca; Cuniberti, Gianaurelio

    2011-08-28

    The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.

  5. Thermodynamics of the adsorption of organic molecules on graphitized carbon black modified with a monolayer of 5-hydroxy-6-methyluracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ivanov, S. P.; Shaikhitdinova, Yu. F.; Kudasheva, F. Kh.

    2016-10-01

    Thermodynamic characteristics of the adsorption of alkanes, alcohols, arenes, and esters on graphitized carbon black with a deposited monolayer (0.17%) of 5-hydroxy-6-methyluracil are studied by means of inverse gas chromatography at infinite dilution. It is established that size effects (violation of the additivity of molar changes in internal energy and the entropy of adsorption for pairs of molecules of one homologous series that differ by one methyl group) are observed when organic molecules are adsorbed on the surface of the resulting adsorbent. The size effects are similar to those observed when 1% 5-hydroxy-6-methyluracil is deposited on graphitized carbon black. It is concluded that the observed violation of additivity is associated with cavities in the supramolecular structure.

  6. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  7. Bioavailability of organic and inorganic phosphates adsorbed on short-range ordered aluminum precipitate.

    PubMed

    Shang, C; Caldwell, D E; Stewart, J W; Tiessen, H; Huang, P M

    1996-01-01

    A nonreductive community-level study of P availability was conducted using various forms of adsorbed P. Orthophosphate (Pi), inositol hexaphosphate (IHP), and glucose 6-phosphate (G6P) were adsorbed to a short-range ordered Al precipitate. These bound phosphates provided a P source sufficient to support the growth of microbial communities from acidic Brazilian soils (oxisols). Adsorbed IHP, the most abundant form of organic phosphate in most soils, had the lowest bioavailability among the three phosphates studied. Adsorbed G6P and Pi were almost equally available. The amount of adsorbed Pi (1 cmol P kg(-1)) required to support microbial growth was at least 30 times less than that of IHP (30 cmol P kg(-1)). With increased surface coverage, adsorbed IHP became more bioavailable. This availability was attributed to a change in the structure of surface complexes and presumably resulted from the decreased number of high-affinity surface sites remaining at high levels of coverage. It thus appears that the bioavailability of various forms of adsorbed phosphate was determined primarily by the stability of the phosphate-surface complexes that they formed, rather than by the total amount of phosphate adsorbed. IHP, having the potential to form stable multiple-ring complexes, had the highest surface affinity and the lowest bioavailability. Bioaggregates consisting of bacteria and Al precipitate were observed and may be necessary for effective release of adsorbed P. Bacteria in the genera Enterobacter and Pseudomonas were the predominate organisms selected during these P-limited enrichments.

  8. DESIGNING FIXED-BED ADSORBERS TO REMOVE MIXTURES OF ORGANICS.

    EPA Science Inventory

    A liquid-phase granular activated carbon (GAC) pilot plant and a full-scale GAC adsorber were designed, built, and operated in order to evaluate their performance for treating a groundwater contaminated with several volatile and synthetic organic chemicals. Several empty bed con...

  9. Elimination of persistent organic pollutants from fish oil with solid adsorbents.

    PubMed

    Ortiz, X; Carabellido, L; Martí, M; Martí, R; Tomás, X; Díaz-Ferrero, J

    2011-02-01

    Fish oils are one of the main sources of ω-3 fatty acids in animal and human diet. However, they can contain high concentrations of persistent organic pollutants due to their lipophilic properties. The aim of this study is the reduction of persistent organic pollutants in fish oil using silicon-based and carbon-based solid adsorbents. A wide screening study with different commercially available adsorbents was carried out, in order to determine their capacity of pollutant removal from fish oil. Moreover, adsorption conditions were evaluated and optimized with using an experimental design and adjustment of the experimental results to response surfaces, obtaining removals rates of more than 99% of PCDD/Fs, 81% of dioxin-like PCBs, 70% of HCB, 41% of DDTs, 16% of marker PCBs and 10% of PBDEs. Finally, fish oil fatty acids were analyzed before and after the treatment with solid adsorbents, confirming that it did not affect its nutritive properties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer.

    PubMed

    Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi

    2012-06-04

    Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Polubotko, A. M.; Chelibanov, V. P.

    2018-01-01

    The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.

  12. Organizing and addressing magnetic molecules.

    PubMed

    Gatteschi, Dante; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2009-04-20

    Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and manipulation. We stress that the inherent fragility and redox sensitivity of most SMM complexes, combined with the noninnocent role played by the substrate, ask for a careful evaluation of the structural and electronic properties of deposited molecules going beyond routine methods for surface analysis. Detailed magnetic information can be directly obtained using X-ray magnetic circular dichroism or newly emerging scanning probe techniques with magnetic detection capabilities.

  13. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    NASA Astrophysics Data System (ADS)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  14. Organic molecules on Mars

    NASA Astrophysics Data System (ADS)

    ten Kate, Inge Loes

    2018-06-01

    On 6 August 2012, the Sample Analysis at Mars (SAM) instrument suite (1) arrived on Mars onboard the Curiosity rover. SAM's main aim was to search for organic molecules on the martian surface. On page 1096 of this issue, Eigenbrode et al. (2) report SAM data that provide conclusive evidence for the presence of organic compounds—thiophenic, aromatic, and aliphatic compounds—in drill samples from Mars' Gale crater. In a related paper on page 1093, Webster et al. (3) report a strong seasonal variation in atmospheric methane, the simplest organic molecule, in the martian atmosphere. Both these finding are breakthroughs in astrobiology.

  15. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  16. Combustion of Organic Molecules by the Thermal Decomposition of Perchlorate Salts: Implications for Organics at the Mars Phoenix Scout Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Morris, R.V.; Niles, B.; Lauer, H.V.; Archer, P.D.; Sutter, B.; Boynton, W.V.; Golden, D.C.

    2009-01-01

    -600 C for several of the Phoenix soils analyzed by TEGA. This low temperature release of CO2 might be any combination of 1) desorption of adsorbed CO2, 2) thermal decomposition of Fe- and Mg-carbonates, and 3) combustion of organic molecules [2].

  17. Search for complex organic molecules in space

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi

    2016-07-01

    It was 1969 when the first organic molecule in space, H2CO, was discovered. Since then many organic molecules were discovered by using the NRAO 11 m (upgraded later to 12 m), Nobeyama 45 m, IRAM 30 m, and other highly sensitive radio telescopes as a result of close collaboration between radio astronomers and microwave spectroscopists. It is noteworthy that many famous organic molecules such as CH3OH, C2H5OH, (CH3)2O and CH3NH2 were detected by 1975. Organic molecules were found in so-called hot cores where molecules were thought to form on cold dust surfaces and then to evaporate by the UV photons emitted from the central star. These days organic molecules are known to exist not only in hot cores but in hot corinos (a warm, compact molecular clump found in the inner envelope of a class 0 protostar) and even protoplanetary disks. As was described above, major organic molecules were known since 1970s. It was very natural that astronomers considered a relationship between organic molecules in space and the origin of life. Several astronomers challenged to detect glycine and other prebiotic molecules without success. ALMA is expected to detect such important materials to further consider the gexogenous deliveryh hypothesis. In this paper I summarize the history in searching for complex organic molecules together with difficulties in observing very weak signals from larger species. The awfully long list of references at the end of this article may be the most useful part for readers who want to feel the exciting discovery stories.

  18. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOEpatents

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  19. On the nucleation and initial film growth of rod-like organic molecules

    NASA Astrophysics Data System (ADS)

    Winkler, Adolf

    2016-10-01

    In this article, some fundamental topics related to the initial steps of organic film growth are reviewed. General conclusions will be drawn based on experimental results obtained for the film formation of oligophenylene and pentacene molecules on gold and mica substrates. Thin films were prepared via physical vapor deposition under ultrahigh-vacuum conditions and characterized in-situ mainly by thermal desorption spectroscopy, and ex-situ by X-ray diffraction and atomic force microscopy. In this short review article the following topics will be discussed: What are the necessary conditions to form island-like films which are either composed of flat-lying or of standing molecules? Does a wetting layer exist below and in between the islands? What is the reason behind the occasionally observed bimodal island size distribution? Can one describe the nucleation process with the diffusion-limited aggregation model? Do the impinging molecules directly adsorb on the surface or rather via a hot-precursor state? Finally, it will be described how the critical island size can be determined by an independent measurement of the deposition rate dependence of the island density and the capture-zone distribution via a universal relationship.

  20. Our Galactic Neighbor Hosts Complex Organic Molecules

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected

  1. Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Cao, Ruofan; Wu, Xiaofei; Huang, Jianhan; Deng, Shuguang; Lu, Xiuyang

    2013-06-15

    A hypercrosslinked poly(styrene-co-divinylbenzene) resin (TEPA) was synthesized and characterized as a specific polymeric adsorbent for concentrating berberine hydrochloride from aqueous solutions. Three organic molecules of different sizes (2-naphthol, berberine hydrochloride, and Congo red) were used as target molecules to elucidate the molecular sieving effect of the TEPA adsorbent. Because the TEPA adsorbent has a pore structure consisting mainly of micropores and mesopores, the adsorption of 2-naphthol from aqueous solutions is very efficient due to the micropore filling effect. The adsorption of berberine hydrochloride mostly takes place in the mesopores as well as macropores, while the adsorption of Congo red mainly occurs in the macropores. The smaller adsorbate molecule (2-naphthol) reaches the adsorption equilibrium much faster than the larger ones (berberine hydrochloride and Congo red). An adsorption breakthrough experiment with an aqueous solution containing 2-naphthol and berberine hydrochloride demonstrated that the TEPA adsorbent could effectively remove 2-naphthol from berberine hydrochloride at 0-107 BV (bed volume, 1 BV=10 ml), and the berberine hydrochloride concentration was increased from 66.7% to 99.4%, suggesting that this polymeric adsorbent is promising for purifying berberine hydrochloride and similar alkaloids from herbal plant extracts. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Organic small molecule semiconducting chromophores for use in organic electronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  3. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2015-02-01

    Hybrid systems consisting of organic molecules at inorganic semiconductor surfaces are gaining increasing importance as thin film devices for optoelectronics. The efficiency of such devices strongly depends on the collective behavior of the adsorbed molecules. In the present paper, we propose a novel, coarse-grained model addressing the condensed phases of a representative hybrid system, that is, para-sexiphenyl (6P) at zinc-oxide (ZnO). Within our model, intermolecular interactions are represented via a Gay-Berne potential (describing steric and van-der-Waals interactions) combined with the electrostatic potential between two linear quadrupoles. Similarly, the molecule-substrate interactions include a coupling between a linear molecular quadrupole to the electric field generated by the line charges characterizing ZnO(10-10). To validate our approach, we perform equilibrium Monte Carlo simulations, where the lateral positions are fixed to a 2D lattice, while the rotational degrees of freedom are continuous. We use these simulations to investigate orientational ordering in the condensed state. We reproduce various experimentally observed features such as the alignment of individual molecules with the line charges on the surface, the formation of a standing uniaxial phase with a herringbone structure, as well as the formation of a lying nematic phase.

  4. Use of beer bran as an adsorbent for the removal of organic compounds from wastewater.

    PubMed

    Adachi, Atsuko; Ozaki, Hiroaki; Kasuga, Ikuno; Okano, Toshio

    2006-08-23

    Beer bran was found to effectively adsorb several organic compounds, such as dichloromethane, chloroform, trichloroethylene, benzene, pretilachlor, and esprocarb. Equilibrium adsorption isotherms conformed to the Freundlich isotherm (log-log linear). Adsorption of these organic compounds by beer bran was observed in the pH range of 1-11. At equilibrium, the adsorption efficiency of beer bran for benzene, chloroform, and dichiloromethane was higher than that of activated carbon. The removal of these organic compounds by beer bran was attributed to the uptake by intracellular particles called spherosomes. The object of this work was to investigate several adsorbents for the effective removal of organic compounds from wastewater.

  5. A DFT and QTAIM study of the adsorption of organic molecules over the copper-doped coronene and circumcoronene

    NASA Astrophysics Data System (ADS)

    Malček, Michal; Cordeiro, M. Natalia D. S.

    2018-01-01

    Graphene based materials are nowadays extensively studied because of their potential applications as gas sensors, biosensors or adsorbents. Doping the graphene surface with heteroatoms or transition metals can improve its electronic properties and chemical reactivity. Polyaromatic hydrocarbons coronene and circumcoronene can be used as models of tiny graphene quantum dots. The adsorption of a set of organic molecules (water, hydrogen peroxide, hydrogen sulfide, methanol, ethanol and oxygen molecule) over the copper-doped coronene and circumcoronene was theoretically studied using density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM). In the case of coronene, only one site was considered for the Cu-doping, whereas in the case of circumcoronene being a polyaromatic hydrocarbon composed of 54 carbon atoms, three different sites for Cu-doping were considered. For the systems under study, the adsorption of O2 was found energetically the most favorable, with energetic outcome ranging from -3.1 to -3.7 eV related to the position of dopant Cu atom. Changes in the topology of charge densities at Cu and in its vicinity after the adsorption of studied molecules were investigated in the framework of QTAIM. In addition, QTAIM analysis of bond critical points (BCP) was employed to study the character of the newly formed chemical bonds. The results of this study point out the suitability of Cu-doped graphene materials as sensors and/or adsorbents in practical applications.

  6. Surface enhanced Raman spectroscopy (SERS) from a molecule adsorbed on a nanoscale silver particle cluster in a holographic plate

    NASA Astrophysics Data System (ADS)

    Jusinski, Leonard E.; Bahuguna, Ramen; Das, Amrita; Arya, Karamjeet

    2006-02-01

    Surface enhanced Raman spectroscopy has become a viable technique for the detection of single molecules. This highly sensitive technique is due to the very large (up to 14 orders in magnitude) enhancement in the Raman cross section when the molecule is adsorbed on a metal nanoparticle cluster. We report here SERS (Surface Enhanced Raman Spectroscopy) experiments performed by adsorbing analyte molecules on nanoscale silver particle clusters within the gelatin layer of commercially available holographic plates which have been developed and fixed. The Ag particles range in size between 5 - 30 nanometers (nm). Sample preparation was performed by immersing the prepared holographic plate in an analyte solution for a few minutes. We report here the production of SERS signals from Rhodamine 6G (R6G) molecules of nanomolar concentration. These measurements demonstrate a fast, low cost, reproducible technique of producing SERS substrates in a matter of minutes compared to the conventional procedure of preparing Ag clusters from colloidal solutions. SERS active colloidal solutions require up to a full day to prepare. In addition, the preparations of colloidal aggregates are not consistent in shape, contain additional interfering chemicals, and do not generate consistent SERS enhancement. Colloidal solutions require the addition of KCl or NaCl to increase the ionic strength to allow aggregation and cluster formation. We find no need to add KCl or NaCl to create SERS active clusters in the holographic gelatin matrix. These holographic plates, prepared using simple, conventional procedures, can be stored in an inert environment and preserve SERS activity after several weeks subsequent to preparation.

  7. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P.

    2014-11-01

    , determined for each of the studied molecules, range from 10-2 to 10-6 molecule photon-1 and apply for isolated molecules exposed at the surface of Mars. These kinetic parameters provide essential inputs for numerical modeling of the evolution of Mars' current reservoir of organic molecules. Organic molecules adsorbed on martian minerals may have different kinetic parameters and lead to different endproducts. The present study paves the way for the interpretation of more complex simulation experiments where organics will be mixed with martian mineral analogs.

  8. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  9. Tunable electronic and optical properties of gas molecules adsorbed monolayer graphitic ZnO: Implications for gas sensor and environment monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Du, Qikui; Zhang, Lifa

    2017-12-01

    Due to the large surface area and the peculiar electronic characters, great attention has been paid to 2D materials for the gas sensing applications. Here, using the hybrid density functional calculations, we systematically study the adsorptions of gas molecules on the monolayer graphitic ZnO (g-ZnO), including CO, H2, H2O, H2S, NH3, NO, NO2, O2, and SO2. For most of the molecules, g-ZnO shows superior sensing performance to the well-known MoS2, black phosphorus, blue phosphorus, antimonene, and germanene. H2S, NO, NO2, and SO2 act as charge acceptors, and CO, H2, H2O, and NH3 serve as charge donors. These molecules also induce distinct modifications to the electronic structures, work functions, and optical adsorptions. NO, NO2, and O2 form flat bands in the bandgaps of the spin-up or spin-down states, whereas other molecules mainly tune the bandgaps and the orbital couplings. In particular, g-ZnO is most likely to adsorb the atmospheric pollutant SO2, which has the strongest interaction through hybridizing its widely broadened 2p orbitals with the 3d orbitals of g-ZnO. Moreover, the improved visible light absorption is demonstrated in the NO2 adsorbed g-ZnO. Our results not only confirm that the electronic and optical properties of g-ZnO can be effectively tuned by the selective adsorption of gas molecules but also provide insightful guidance for the potential application of g-ZnO in the field of gas sensors.

  10. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Usingmore » the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  11. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  12. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE PAGES

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung; ...

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  13. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adsorbates in a Box: Titration of Substrate Electronic States

    NASA Astrophysics Data System (ADS)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  15. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  16. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  17. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.

    PubMed

    Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald

    2014-01-01

    Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.

  18. Trapping and desorption of complex organic molecules in water at 20 K

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Woods, Paul M.; Viti, Serena; Slater, Ben; Brown, Wendy A.

    2015-10-01

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices.

  19. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  20. Circularly Polarized Luminescence from Simple Organic Molecules

    PubMed Central

    Sánchez-Carnerero, Esther M.; Agarrabeitia, Antonia R.; Moreno, Florencio; Maroto, Beatriz L.; Muller, Gilles; Ortiz, María J.

    2015-01-01

    This article aims to show the identity of “CPL-active simple organic molecules” as a new concept in Organic Chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and nonaggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  1. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    PubMed

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  2. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    PubMed

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre

    2016-05-01

    Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

  4. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  5. A surprising way to control the charge transport in molecular electronics: the subtle impact of the coverage of self-assembled monolayers of floppy molecules adsorbed on metallic electrodes.

    PubMed

    Bâldea, Ioan

    2017-10-26

    Inspired by earlier attempts in organic electronics aiming at controlling charge injection from metals into organic materials by manipulating the Schottky energy barrier using self-assembled monolayers (SAMs), recent experimental and theoretical work in molecular electronics showed that metal-organic interfaces can be controlled via changes in the metal work function that are induced by SAMs. In this paper we indicate a different route to achieve interface-driven control over the charge transfer/transport at the molecular scale. It is based on the fact that, in floppy molecule based SAMs, the molecular conformation can be tuned by varying the coverage of the adsorbate. We demonstrate this effect with the aid of benchmark molecules that are often used to fabricate nanojunctions and consist of two rings that can easily rotate relative to each other. We show that, by varying the coverage of the SAM, the twisting angle φ of the considered molecular species can be modified by a factor of two. Given the fact that the low bias conductance G scales as cos 2  φ, this results in a change in G of over one order of magnitude for the considered molecular species. Tuning the twisting angle by controlling the SAM coverage may be significant, e.g., for current efforts to fabricate molecular switches. Conversely, the lack of control over the local SAM coverage may be problematic for the reproducibility and interpretation of the STM (scanning tunneling microscope) measurements on repeatedly forming single molecule break junctions.

  6. The missing organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  7. The missing organic molecules on Mars

    PubMed Central

    Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606

  8. The missing organic molecules on Mars.

    PubMed

    Benner, S A; Devine, K G; Matveeva, L N; Powell, D H

    2000-03-14

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  9. Storm impacts upon the composition of organic matrices in Nagara River--a study based on molecular weight and activated carbon adsorbability.

    PubMed

    Li, Fusheng; Yuasa, Akira; Chiharada, Hajime; Matsui, Yoshihiko

    2003-09-01

    The impacts of a heavy storm of rain on the composition of natural organic matter (NOM) in Nagara River water were studied in terms of molecular weights (MWs) and activated carbon (AC) adsorbabilities using six water samples collected during a critical Typhoon weather condition. The composition in MWs was analyzed using a HPSEC system and that in adsorbabilities was characterized using parameters devised to reflect NOMs average adsorptive strength (K(M)), adsorptive strength polydispersity (sigma), affinity to AC (1/n) and non-adsorbable fraction (C(non)/C(T0)), respectively. These parameters were determined by model description of observed isotherms with a distributed fictive component method. The heavy storm of rain brought higher content of larger organic components into the river source, thus causing changes of NOMs weight-averaged MWs in the range of 2962-3495 Dalton and MW polydispersity in the narrow range of 1.153-1.226. Comparison of K(M) and sigma values for all samples assessed with both indices of TOC and UV260 showed that large proportions of the storm-induced organic components had adsorptive strengths similar to those existent before the storm, with the presence levels for components revealing much strong and weak adsorbabilities being low. Among all organic components brought into the river by the storm of rain, the percentages of non-adsorbable ones was lower (smaller C(non)/C(T0) values); and the adsorbable ones had generally more affinity to the adsorbents used (smaller 1/n values).

  10. Diffusion Rates of Organic Molecules in Secondary Organic Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bertram, A. K.; Chenyakin, Y.; Song, M.; Grayson, J. W.; Ullmann, D.; Evoy, E.; Renbaum-Wolff, L.; Liu, P.; Zhang, Y.; Kamal, S.; Martin, S. T.

    2016-12-01

    Information on the diffusion rates of organic molecules in secondary organic aerosol (SOA) particles are needed when predicting their size distribution, growth rates, photochemistry and heterogeneous chemistry. We have used two approaches to determine diffusion rates of organic molecules in SOA particles and proxies of SOA. In the first approach, we measured viscosities and then predicted diffusion rates using the Stokes-Einstein relation. In the second approach, we measured diffusion rates directly using a technique referred to as fluorescence recovery after photobleaching. Results from these measurements, including diffusion coefficients as a function of water activity, will be presented and the implications discussed.

  11. Smart Adsorbents with Photoregulated Molecular Gates for Both Selective Adsorption and Efficient Regeneration.

    PubMed

    Cheng, Lei; Jiang, Yao; Yan, Ni; Shan, Shu-Feng; Liu, Xiao-Qin; Sun, Lin-Bing

    2016-09-07

    Selective adsorption and efficient regeneration are two crucial issues for adsorption processes; unfortunately, only one of them instead of both is favored by traditional adsorbents with fixed pore orifices. Herein, we fabricated a new generation of smart adsorbents through grafting photoresponsive molecules, namely, 4-(3-triethoxysilylpropyl-ureido)azobenzene (AB-TPI), onto pore orifices of the support mesoporous silica. The azobenzene (AB) derivatives serve as the molecular gates of mesopores and are reversibly opened and closed upon light irradiation. Irradiation with visible light (450 nm) causes AB molecules to isomerize from cis to trans configuration, and the molecular gates are closed. It is easy for smaller adsorbates to enter while difficult for the larger ones, and the selective adsorption is consequently facilitated. Upon irradiation with UV light (365 nm), the AB molecules are transformed from trans to cis isomers, promoting the desorption of adsorbates due to the opened molecular gates. The present smart adsorbents can consequently benefit not only selective adsorption but also efficient desorption, which are exceedingly desirable for adsorptive separation but impossible for traditional adsorbents with fixed pore orifices.

  12. Correlation between surface morphology and surface forces of protein A adsorbed on mica.

    PubMed Central

    Ohnishi, S; Murata, M; Hato, M

    1998-01-01

    We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves. PMID:9449346

  13. Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture

    PubMed Central

    Lin, Yichao; Yan, Qiuju; Kong, Chunlong; Chen, Liang

    2013-01-01

    A series of polyethyleneimine (PEI) incorporated MIL-101 adsorbents with different PEI loadings were reported for the first time in the present work. Although the surface area and pore volume of MIL-101 decreased significantly after loading PEI, all the resulting composites exhibited dramatically enhanced CO2 adsorption capacity at low pressures. At 100 wt% PEI loading, the CO2 adsorption capacity at 0.15 bar reached a very competitive value of 4.2 mmol g−1 at 25°C, and 3.4 mmol g−1 at 50°C. More importantly, the resulting adsorbents displayed rapid adsorption kinetics and ultrahigh selectivity for CO2 over N2 in the designed flue gas with 0.15 bar CO2 and 0.75 bar N2. The CO2 over N2 selectivity was up to 770 at 25°C, and 1200 at 50°C. We believe that the PEI based metal-organic frameworks is an attractive adsorbent for CO2 capture. PMID:23681218

  14. CHEMICAL TRANSPORT FACILITATED BY COLLOIDAL-SIZED ORGANIC MOLECULES

    EPA Science Inventory

    The fluid passing through the pores of soils and geologic materials is not just water with dissolved inorganic chemicals, but a complex mixture of organic and inorganic molecules. Large organic molecules such as humic and fulvic materials may impact the movement of contaminants. ...

  15. Isotherm modeling of organic activated bentonite and humic acid polymer used as mycotoxin adsorbents.

    PubMed

    Santos, R R; Vermeulen, S; Haritova, A; Fink-Gremmels, J

    2011-11-01

    The aim of the current study was to evaluate and compare two representative samples of different classes of adsorbents intended for use as feed additives in the prevention or reduction of the adverse effects exerted by mycotoxins, specifically ochratoxin A (OTA) and zearalenone (ZEN). The adsorbents, an organically activated bentonite (OAB) and a humic acid polymer (HAP), were tested in a common in vitro model with a pH course comparing the maximum pH changes that can be expected in the digestive system of a monogastric animal, i.e. pH 7.4 for the oral cavity, pH 3.0 for the stomach, and pH 8.4 for the intestines. In the first experiment, the concentration-dependent adsorbent capacity of OAB and HAB were tested using a fixed concentration of either mycotoxin. Thereafter, adsorption was evaluated applying different isotherms models, such as Freundlich, Langmuir, Brunauer-Emmett-Teller (BET) and Redlich-Peterson, to characterize the adsorption process as being either homo- or heterogeneous and representing either mono- or multilayer binding. At the recommended statutory level for the mycotoxins of 0.1 mg kg(-1) OTA and 0.5 mg kg(-1) ZEN, OAB showed an adsorbed capacity of >96% towards both mycotoxins, regardless of the pH. The HAP product was also able to absorb >96% of both mycotoxins at pH 3.0, but extensive desorption occurred at pH 8.4. Based on χ-square (χ(2)) values, Langmuir and Redlich-Peterson equations proved to be the best models to predict monolayer equilibrium sorption of OTA and ZEN onto the organically activated bentonite and the humic acid polymer. The applied methodology has a sufficient robustness to facilitate further comparative studies with different mycotoxin-adsorbing agents.

  16. Organic Molecules in Meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10

  17. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    NASA Astrophysics Data System (ADS)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  18. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    PubMed

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  19. Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Haas, Simon; Krellner, Cornelius; Mathis, Thomas; Batlogg, Bertram

    2010-04-01

    We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT’s), single crystal field-effect transistors (SC-FET’s) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of “fast” hole traps in TFT’s made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close (<0.15eV) to the mobility edge with a characteristic slope of 10-20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT’s with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.

  20. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  1. Small Molecule Organic Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Bakken, Nathan

    Organic optoelectronics include a class of devices synthesized from carbon containing 'small molecule' thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research in this area substantially. While optoelectronic organic light emitting devices have already realized commercial application, challenges to obtain extended lifetime for the high energy visible spectrum and the ability to reproduce natural white light with a simple architecture have limited the value of this technology for some display and lighting applications. In this research, novel materials discovered from a systematic analysis of empirical device data are shown to produce high quality white light through combination of monomer and excimer emission from a single molecule: platinum(II) bis(methyl-imidazolyl)toluene chloride (Pt-17). Illumination quality achieved Commission Internationale de L'Eclairage (CIE) chromaticity coordinates (x = 0.31, y = 0.38) and color rendering index (CRI) > 75. Further optimization of a device containing Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain glass substrate. In addition, accelerated aging tests suggest high energy blue emission from a halogen-free cyclometalated platinum complex could demonstrate degradation rates comparable to known stable emitters. Finally, a buckling based metrology is applied to characterize the mechanical properties of small molecule organic thin films towards understanding the deposition kinetics responsible for an elastic modulus that is both temperature and thickness dependent. These results could contribute to the viability of organic electronic technology in potentially flexible display and lighting applications. The results also provide insight to organic film growth kinetics responsible for optical

  2. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Live microbial cells adsorb Mg2+ more effectively than lifeless organic matter

    NASA Astrophysics Data System (ADS)

    Qiu, Xuan; Yao, Yanchen; Wang, Hongmei; Duan, Yong

    2018-03-01

    The Mg2+ content is essential in determining different Mg-CaCO3 minerals. It has been demonstrated that both microbes and the organic matter secreted by microbes are capable of allocating Mg2+ and Ca2+ during the formation of Mg-CaCO3, yet detailed scenarios remain unclear. To investigate the mechanism that microbes and microbial organic matter potentially use to mediate the allocation of Mg2+ and Ca2+ in inoculating systems, microbial mats and four marine bacterial strains ( Synechococcus elongatus, Staphylococcus sp., Bacillus sp., and Desulfovibrio vulgaris) were incubated in artificial seawater media with Mg/Ca ratios ranging from 0.5 to 10.0. At the end of the incubation, the morphology of the microbial mats and the elements adsorbed on them were analyzed using scanning electronic microscopy (SEM) and energy diffraction spectra (EDS), respectively. The content of Mg2+ and Ca2+ adsorbed by the extracellular polysaccharide substances (EPS) and cells of the bacterial strains were analyzed with atomic adsorption spectroscopy (AAS). The functional groups on the surface of the cells and EPS of S. elongatus were estimated using automatic potentiometric titration combined with a chemical equilibrium model. The results show that live microbial mats generally adsorb larger amounts of Mg2+ than Ca2+, while this rarely is the case for autoclaved microbial mats. A similar phenomenon was also observed for the bacterial strains. The living cells adsorb more Mg2+ than Ca2+, yet a reversed trend was observed for EPS. The functional group analysis indicates that the cell surface of S. elongatus contains more basic functional groups (87.24%), while the EPS has more acidic and neutral functional groups (83.08%). These features may be responsible for the different adsorption behavior of Mg2+ and Ca2+ by microbial cells and EPS. Our work confirms the differential Mg2+ and Ca2+ mediation by microbial cells and EPS, which may provide insight into the processes that microbes use to

  4. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  5. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    PubMed

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  6. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry

    NASA Astrophysics Data System (ADS)

    Silber, David; Kowalski, Piotr M.; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-01

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface.

  7. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  8. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.

    PubMed

    Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2013-01-01

    Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    PubMed Central

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-01-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results. PMID:27991538

  10. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-12-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results.

  11. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  12. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  13. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  14. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  15. Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon

    DOE PAGES

    Mamontov, Eugene; Yue, Yanfeng; Bahadur, Jitendra; ...

    2016-10-20

    Even when not functionalized intentionally, most carbon materials are not hydrophobic and readily adsorb water molecules from atmospheric water vapor. We have equilibrated an ultramicroporous carbon at several levels of relative humidity, thereby attaining various hydration levels. The water molecules were adsorbed on the pore walls (but did not fill completely the pore volume) and thus could be better described as hydration, or surface, rather than confined, water. We used quasielastic neutron scattering to perform a detailed investigation of the dependence of microscopic dynamics of these adsorbed water species on the hydration level and temperature. The behavior of hydration watermore » in ultramicroporous carbon clearly demonstrates the same universal traits that characterize surface (hydration) water in other materials that are surface-hydrated. In addition, unless special treatment is intentionally applied to ultramicroporous carbon, the species filling its pores in various applications, ranging from hydrogen molecules to electrolytes, likely find themselves in contact with non-freezing water molecules characterized by rich microscopic dynamics.« less

  16. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    PubMed

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from

  17. Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite

    PubMed Central

    2017-01-01

    Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from −7 to −13 kcal/mol and are by 1–2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy. PMID:28145699

  18. Organic and inorganic molecules as probes of mineral surfaces (Invited)

    NASA Astrophysics Data System (ADS)

    Sverjensky, D. A.

    2010-12-01

    Although the multi-site nature of mineral surfaces is to be expected based on the underlying crystal structure, definitive evidence of the need to use more than one site in modelling proton surface charge or adsorption of a single adsorbate at the mineral-water interface is lacking. Instead, a single-site approach affords a practical way of averaging over all possible crystal planes and sites in a powdered mineral sample. Extensive analysis of published proton surface charge and adsorption of metals on oxide mineral surfaces can be undertaken with a single site density for each mineral based on tritium exchange or estimation from averages of the site densities of likely exposed surfaces. Even in systems with competing metals (e.g. Cu and Pb on hematite), the same site density as used for proton surface charge can be employed depending on the reaction stoichiometry. All of this indicates that protons and metals can bind to a great variety of sites with the same overall site density. However, simple oxyanions such as carbonate, sulfate, selenate, arsenate and arsenite require a much lower site density for a given mineral. For example, on goethite these oxyanions utilize a site density that correlates with the BET surface area of the goethite. In this way, the oxyanions can be thought of as selectively probing the available sites on the mineral. The correlation probably arises because goethites with different BET surface areas have different proportions of singly and multiply-bonded oxygens, and only the singly-bonded oxygens are useful for inner-sphere surface complexation by the ligand exchange mechanism. Small organic molecules behave in a remarkably similar way. For example, adsorption of oxalate on goethite, and aspartate, glutamate, dihydroxyphenylalanine, lysine and arginine on rutile are all consistent with a much smaller site density than those required for metals such as calcium or neodymium. Overall, these results suggest that both inorganic oxyanions and

  19. A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water.

    PubMed

    Yu, Hongwen; Fugetsu, Bunshi

    2010-05-15

    A novel approach is described for establishing adsorbents for elimination of water-soluble organic dyes by using multi-walled carbon nanotubes (MWCNTs) as the adsorptive sites. Agglomerates of MWCNTs were dispersed into individual tubes (dispersed-MWCNTs) using sodium n-dodecyl itaconate mixed with 3-(N,N-dimethylmyristylammonio)-propanesulfonate as the dispersants. The resultant dispersed-MWCNTs were inserted into cavities of diatomite to form composites of diatomite/MWCNTs. These composites were finally immobilized onto the cell walls of flexible polyurethane foams (PUF) through an in situ PUF formation process to produce the foam-like CNT-based adsorbent. Ethidium bromide, acridine orange, methylene blue, eosin B, and eosin Y were chosen to represent typical water-soluble organic dyes for studying the adsorptive capabilities of the foam-like CNT-based adsorbent. For comparisons, adsorptive experiments were also carried out by using agglomerates of the sole MWCNTs as adsorbents. The foam-like CNT-based adsorbents were found to have higher adsorptive capacities than the CNT agglomerates for all five dyes; in addition, they are macro-sized, durable, flexible, hydrophilic and easy to use. Adsorption isotherms plotted based on the Langmuir equation gave linear results, suggesting that the foam-like CNT-based adsorbent functioned in the Langmuir adsorption manner. The foam-like CNT-based adsorbents are reusable after regeneration with aqueous ethanol solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  20. X-ray characterization of solid small molecule organic materials

    DOEpatents

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  1. Miscibility and interaction between 1-alkanol and short-chain phosphocholine in the adsorbed film and micelles.

    PubMed

    Takajo, Yuichi; Matsuki, Hitoshi; Kaneshina, Shoji; Aratono, Makoto; Yamanaka, Michio

    2007-09-01

    The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.

  2. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  3. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  4. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC.

    PubMed

    Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S

    2008-08-05

    Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.

  5. Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films.

    PubMed

    Shah, Kinjal J; Imae, Toyoko

    2016-05-09

    The 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNF) were hybridized with cation and anion-exchange organoclays, where poly(amido amine) dendrimers were loaded to enhance the functionality of gas adsorption, since dendrimers have the high adsorbability and the enough selectivity on the gas adsorption. The thin films were prepared from the organoclay-TOCNF hybrids and supplied to the gas adsorption. The adsorption of CO2 and NH3 gases increased with an increasing amount of organoclays in TOCNF films, but the behavior of the increase depended on gases, clays, and dendrimers. The hydrotalcite organoclay-TOCNF films displayed the highest adsorption of both gases, but the desorption of CO2 gas from hydrotalcite organoclay-TOCNF films was drastically high in comparison with the other systems. While the CO2 gas is adsorbed and remained on cationic dendrimer sites in cation-exchange organoclay-TOCNF films, the CO2 gas is adsorbed on cationic clay sites in anion exchange organoclay-TOCNF films, and it is easily desorbed from the films. The NH3 adsorption is inversive to the CO2 adsorption. Then the CO2 molecules adsorbed on the cationic dendrimers and the NH3 molecules adsorbed on the anionic dendrimers are preferably captured in these adsorbents. The present research incorporated dendrimers will be contributing to the development of gas-specialized adsorbents, which are selectively storable only in particular gases.

  6. Spectroscopic interaction studies of substituted and unsubstituted copper phthalocyanine with adsorbed organic vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Kang, Jasmeen; Saini, G. S. S.; Tripathi, S. K.

    2018-05-01

    The present study deals with comparing the interaction mechanism of adsorbed organic vapours with Copper Phthalocyanine thin films in its substituted and unsubstituted forms. For this purpose, the variations in vibrational levels of substituted CuPc (CuPcS) functionalized with tetrasulfonic acid tetrasodium salt and unsubstituted CuPc after exposure with methanol and benzene vapours is analyzed. Fourier transform infrared (FTIR) is used to study the interaction behaviour. The bulkier group tetrasulfonic acid tetrasodium salt added to CuPc leads to occupation of more space in the molecular arrangement as compared to unsubstituted CuPc and hence alteration of its properties. FTIR spectra of CuPc and CuPcS before and after vapours exposures highlighted the effect of these vapours on the various bonds and the role of functional group in altering the molecular structure of CuPcS during interaction with adsorbed vapours.

  7. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  8. Self-consistent field theory of polymer-ionic molecule complexation.

    PubMed

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.

  9. Evolution of organic molecules under Mars-like UV radiation conditions in space and laboratory

    NASA Astrophysics Data System (ADS)

    Rouquette, L.; Stalport, F.; Cottin, H.; Coll, P.; Szopa, C.; Saiagh, K.; Poch, O.; Khalaf, D.; Chaput, D.; Grira, K.; Dequaire, T.

    2017-09-01

    The detection and identification of organic molecules at Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now [1]. In order to get a better understanding of the evolution of organic matter at the surface of Mars, we exposed organic molecules under a Mars-like UV radiation environment. Similar organic samples were exposed to the Sun radiation, outside the International Space Station (ISS), and under a UV lamp (martian pressure and temperature conditions) in the laboratory. In both experiments, organic molecules tend to photodegrade under Mars-like UV radiation. Minerals, depending on their nature, can protect or accelerate the degradation of organic molecules. For some molecules, new products, possibly photoresistant, seem to be produced. Finally, experimenting in space allow us to get close to in situ conditions and to validate our laboratory experiment while the laboratory experiment is essential to study the evolution of a large amount and diversity of organic molecules.

  10. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    NASA Astrophysics Data System (ADS)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  11. Investigation of molecule-adsorption kinetics by a pulsed laser desorption technique

    NASA Astrophysics Data System (ADS)

    Varakin, V. N.; Lozovskii, A. D.; Panesh, A. M.; Simonov, A. P.

    1987-02-01

    The laser thermal desorption technique is used to measure the adsorption kinetics of SO2 and CO molecules on stainless steel with the aim of investigating the initial stage of oxidation of the steel by adsorbed CO molecules. Attention is given to the dependence of the rate of establishment of the equilibrium concentration of adsorbed molecules on SO2-gas pressure; CO adsorption kinetics on stainless steel at a gas pressure of 9 x 10 to the -8th torr; and the dependence of the concentration of adsorbed CO molecules on exposure in the gas at a pressure of 9 x 10 to the -8th torr under irradiation by laser pulses with repetition periods of 1-2, 2-4, 3-6, and 4-8 min.

  12. Preservation of organic molecules at Mars' near-surface

    NASA Astrophysics Data System (ADS)

    Freissinet, Caroline

    2016-07-01

    One of the biggest concerns for the in situ detection of organics on extraterrestrial environment is the preservation potential of the molecules at the surface and subsurface given the harsh radiation conditions and oxidants they are exposed to. The Mars Science Laboratory (MSL) search for hydrocarbons is designed to understand taphonomic windows of organic preservation in the Mars' near-surface. The Sample Analysis at Mars (SAM) instrument on the MSL Curiosity rover discovered chlorohydrocarbon indigenous to a mudstone drilled sample, Cumberland (CB). The discovery of chlorohydrocarbons in the martian surface means that reduced material with covalent bonds has survived despite the severe degrading conditions. However, the precursors of the chlorohydrocarbons detected by pyrolysis at CB remain unknown. Organic compounds in this ancient sedimentary rock on Mars could include polycyclic aromatic hydrocarbons and refractory organic material, either formed on Mars from igneous, hydrothermal, atmospheric, or biological processes or, alternatively, delivered directly to Mars via meteorites, comets, or interplanetary dust particles. It has been postulated that organic compounds in near-surface rocks may undergo successive oxidation reactions that eventually form metastable benzenecarboxylates, including phthalic and mellitic acids. These benzenecarboxylates are good candidates as the precursors of the chlorohydrocarbons detected in SAM pyrolysis at CB. Indeed, recently, SAM performed a derivatization experiments on a CB sample, using the residual vapor of N-methyl-N-tertbutylsilyltrifluoroacetamide (MTBSTFA) leaking into the system. The preliminary interpretations are compatible with the presence of benzocarboxylates, coincidently with long chain carboxylic acids and alcohols. The analysis of this interesting data set to identify these derivatization products, as well as future SAM measurements on Mt Sharp, should shed additional light on the chemical nature and the

  13. Electronic properties of NH{sub 4}-adsorbed graphene nanoribbon as a promising candidate for a gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Naoki, E-mail: harada.naoki@jp.fujitsu.com; Sato, Shintaro

    2016-05-15

    The electronic properties of NH{sub 4}-adsorbed N = 7 armchair graphene nanoribbons (AGNRs) were theoretically investigated using self-consistent atomistic simulations to explore the feasibility of AGNRs as a gas sensing material. Whereas a pristine AGNR has a finite band gap and is an intrinsic semiconductor, an NH{sub 4}-adsorbed AGNR exhibits heavily doped n-type properties similar to a graphene sheet with the molecules adsorbed. The electric characteristics of a back-gated AGNR gas sensor were also simulated and the drain current changed exponentially with increasing number of adsorbed molecules. We may conclude that an AGNR is promising as a highly sensitive gas-sensingmore » material with large outputs.« less

  14. Nanofiber adsorbents for high productivity downstream processing.

    PubMed

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2013-04-01

    Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non-optimized DEAE-nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10-fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 µm filtered yeast homogenate) and harsh cleaning-in-place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. Copyright © 2012 Wiley Periodicals, Inc.

  15. Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores.

    PubMed

    Kim, Ji Min; Kim, Ji Hoon; Lee, Chang Yeon; Jerng, Dong Wook; Ahn, Ho Seon

    2018-02-15

    Volatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.1-0.5g on a 50×50mm 2 area, to evaluate their adsorption features with low gas concentrations. The morphology and chemical composition of the adsorbents were characterized using scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. Microwave irradiation and heat treatment near 800°C under KOH activation resulted in enlargement of the pristine graphene surface and its specific surface area; maximum volume capacities of 3510m 3 /g and 630m 3 /g were observed for toluene and acetaldehyde gas. The high removal efficiency for toluene (98%) versus acetaldehyde (30%) gas was attributed to π-π interactions between the pristine graphene surface and toluene molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Organization of Single Molecule Magnets on Surfaces

    NASA Astrophysics Data System (ADS)

    Sessoli, Roberta

    2006-03-01

    The field of magnetic molecular clusters showing slow relaxation of the magnetization has attracted a great interest for the spectacular quantum effects in the dynamics of the magnetization that range from resonant quantum tunneling to topological interferences. Recently these systems, known as Single Molecule Magnets (SMMs), have also been proposed as model systems for the investigation of flame propagation in flammable substances. A renewed interest in SMMs also comes from the possibility to exploit their rich and complex magnetic behavior in nano-spintronics. However, at the crystalline state these molecular materials are substantially insulating. They can however exhibit significant transport properties if the conduction occurs through one molecule connected to two metal electrodes, or through a tunneling mechanism when the SMM is grafted on a conducting surface, as occurs in scanning tunnel microscopy experiments. Molecular compounds can be organized on surfaces thanks to the self assembly technique that exploits the strong affinity of some groups for the surface, e.g. thiols for gold surfaces. However the deposition of large molecules mainly comprising relatively weak coordinative bonds is far from trivial. Several different approaches have started to be investigated. We will briefly review here the strategies developed in a collaboration between the Universities of Florence and Modena. Well isolated molecules on Au(111) surfaces have been obtained with sub-monolayer coverage and different spacers. Organization on a large scale of micrometric structures has been obtained thanks to micro-contact printing. The magnetic properties of the grafted molecules have been investigated through magneto-optical techniques and the results show a significant change in the magnetization dynamics whose origin is still object of investigations.

  17. Organic synthesis toward small-molecule probes and drugs

    PubMed Central

    Schreiber, Stuart L.

    2011-01-01

    Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328

  18. Molecular Structure and Equilibrium Forces of Bovine Submaxillary Mucin Adsorbed at a Solid-Liquid Interface.

    PubMed

    Zappone, Bruno; Patil, Navinkumar J; Madsen, Jan B; Pakkanen, Kirsi I; Lee, Seunghwan

    2015-04-21

    By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than, yet of the same order of magnitude as the diameter, indicating that the molecule can be modeled as a relatively rigid polymeric chain due to the large persistence length of the central glycosylated domain. Mucin molecules adsorbed abundantly onto mica from saline buffer, generating polymer-like, long-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin-mucin and mucin-substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated by an adsorbed layer with a fixed surface coverage also remained unaltered upon acidification. This observation can be linked to the surface-protective, pH-resistant role of bovine submaxillary mucin in the variable environmental conditions of the oral cavity.

  19. The influence of adsorbent microstructure upon adsorption equilibria: Investigations of a model system

    NASA Astrophysics Data System (ADS)

    Kaminsky, R. D.; Monson, P. A.

    1991-08-01

    We present a theoretical study of the influence of the microstructure of a porous adsorbent upon associated adsorption behavior. A model is developed which describes the interactions of adsorbed molecules with an adsorbent treated as a matrix of particles each of which is a continuum of interaction centers. The model leads to an analytic expression for the adsorbate-adsorbent particle potential which is an analog of the 9-3 potential model for adsorption on planar solid surfaces. To illustrate the utility of the approach, an application to methane adsorbed in a microporous silica gel is presented. Several adsorbent microstructures are investigated, including a variety of crystal lattices as well as structures derived from equilibrium configurations of hard spheres. Adsorption in these structures is studied through calculation of Henry's law constants and by using grand canonical Monte Carlo simulation to determine adsorption isotherms and the structure of adsorbed fluids. The results obtained are related to details of the adsorbent microstructure.

  20. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maverick, Andrew W

    2011-12-17

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ²-diketone ligands as building blocks to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  1. Framework for scalable adsorbate–adsorbate interaction models

    DOE PAGES

    Hoffmann, Max J.; Medford, Andrew J.; Bligaard, Thomas

    2016-06-02

    Here, we present a framework for physically motivated models of adsorbate–adsorbate interaction between small molecules on transition and coinage metals based on modifications to the substrate electronic structure due to adsorption. We use this framework to develop one model for transition and one for coinage metal surfaces. The models for transition metals are based on the d-band center position, and the models for coinage metals are based on partial charges. The models require no empirical parameters, only two first-principles calculations per adsorbate as input, and therefore scale linearly with the number of reaction intermediates. By theory to theory comparison withmore » explicit density functional theory calculations over a wide range of adsorbates and surfaces, we show that the root-mean-squared error for differential adsorption energies is less than 0.2 eV for up to 1 ML coverage.« less

  2. Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size

    NASA Astrophysics Data System (ADS)

    Sellaoui, Lotfi; Mechi, Nesrine; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Ben Lamine, Abdelmottaleb

    2017-10-01

    Based on statistical physics elements, the equilibrium adsorption of diclofenac (DFC) and nimesulide (NM) on activated carbon was analyzed by a multilayer model with saturation. The paper aimed to describe experimentally and theoretically the adsorption process and study the effect of adsorbate size using the model parameters. From numerical simulation, the number of molecules per site showed that the adsorbate molecules (DFC and NM) were mostly anchored in both sides of the pore walls. The receptor sites density increase suggested that additional sites appeared during the process, to participate in DFC and NM adsorption. The description of the adsorption energy behavior indicated that the process was physisorption. Finally, by a model parameters correlation, the size effect of the adsorbate was deduced indicating that the molecule dimension has a negligible effect on the DFC and NM adsorption.

  3. Anisotropic behavior of organic molecules on prepatterned surfaces

    NASA Astrophysics Data System (ADS)

    Hopp, Stefan Frieder; Heuer, Andreas

    2012-04-01

    The nucleation of organic molecules on surfaces, prepatterned with stripes, is investigated with emphasis on anisotropy effects. Representing the molecules as ellipsoids, the related particle-particle interaction is modeled by means of a generalized Gay-Berne potential for similar biaxial particles. The orientation behavior of these ellipsoidal molecules induced by the stripe pattern is studied for the first monolayer by performing kinetic Monte Carlo simulations. It is shown how the properties of the particle alignment depend on energy scales, temperature, and flux. Based on the fact the particles strictly arrange in rows, it is furthermore instructive to analyze the orientation behavior within the different rows. Finally, the transfer of orientation from a preset row of molecules with fixed orientation to other nucleating particles is examined.

  4. In Situ Detection of Organic Molecules on the Martian Surface With the Mars Organic Molecule Analyzer (MOMA) on Exomars 2018

    NASA Technical Reports Server (NTRS)

    Li, Xiang; Brinckerhoff, William B.; Pinnick, Veronica T; van Amerom, Friso H. W.; Danell, Ryan M.; Arevalo, Ricardo D., Jr.; Getty, Stephanie; Mahaffy, Paul R.

    2015-01-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. The MOMA instrument is centered around a miniaturized linear ion trap (LIT) that facilitates two modes of operation: i) pyrolysisgas chromatography mass spectrometry (pyrGC-MS); and, ii) laser desorptionionization mass spectrometry (LDI-MS) at ambient Mars pressures. The LIT also enables the structural characterization of complex molecules via complementary analytical capabilities, such as multi-frequency waveforms (i.e., SWIFT) and tandem mass spectrometry (MSMS). When combined with the complement of instruments in the rovers Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds.

  5. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces.

    PubMed

    Giacomelli, Carla E; Norde, Willem

    2005-05-23

    The conformational change of the 39-43 residues of the amyloid beta-peptide (Abeta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the self-aggregation of Abeta is related to the different pathways the peptide may take after cleavage from the amyloid precursor proteins at cellular membranes. This work is aiming at determining the conformation of the Abeta (1-40) adsorbed on hydrophobic Teflon and hydrophilic silica particles, as model sorbent surfaces mimicking the apolar transmembrane environment and the polar, charged membrane surface, respectively. The mechanism by which the Abeta interacts with solid surfaces strongly depends on the hydrophobic/hydrophilic character of the particles. Hydrophobic and electrostatic interactions contribute differently in each case, causing a completely different conformational change of the adsorbed molecules on the two surfaces. When hydrophobic interactions between the peptide and the sorbent prevail, the adsorbed Abeta (1-40) mainly adopts an alpha-helix conformation due to H-bonding in the apolar part of the peptide that is oriented towards the surface. On the other hand, when the peptide adsorbs by electrostatic interactions beta-sheet formation is promoted due to intermolecular association between the apolar parts of the adsorbed peptide. Irrespective of the characteristics of the solid sorbent, crowding the surface results in intermolecular association between adsorbed molecules leading to a strong aggregation tendency of the Abeta (1-40). [Diagram: see text] CD spectra of Abeta (1-40) at pH 7: A) in solution ([Abeta]=0.2 mg.ml(-1)) freshly prepared (line) and after overnight incubation (symbols);B) on Teflon (Gamma=0.5 mg.m(-2)).

  6. Laboratory simulation to support the search for organic molecules at the surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars’ exploration. Understanding the chemical evolution of organic molecules under current Martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters provide new inputs for numerical modeling of current reservoirs of organic molecules on Mars. (1) O. Poch et al., Planetary and Space Science 85, 188-197, http://dx.doi.org/10.1016/j.pss.2013.06.013

  7. Structure of Irreversibly Adsorbed Star Polymers

    NASA Astrophysics Data System (ADS)

    Akgun, Bulent; Aykan, Meryem Seyma; Canavar, Seda; Satija, Sushil K.; Uhrig, David; Hong, Kunlun

    Formation of irreversibly adsorbed polymer chains on solid substrates have a huge impact on the wetting, glass transition, aging and polymer chain mobility in thin films. In recent years there has been many reports on the formation, kinetics and dynamics of these layers formed by linear homopolymers. Recent studies showed that by varying the number of polymer arms and arm molecular weight one can tune the glass transition temperature of thin polymer films. Using polymer architecture as a tool, the behavior of thin films can be tuned between the behavior of linear chains and soft colloids. We have studied the effect of polymer chain architecture on the structure of dead layer using X-ray reflectivity (XR) and atomic force microscopy. Layer thicknesses and densities of flattened and loosely adsorbed chains has been measured for linear, 4-arm, and 8-arm star polymers with identical total molecular weight as a function of substrate surface energy, annealing temperature and annealing time. Star polymers have been synthesized using anionic polymerization. XR measurements showed that 8-arm star PS molecules form the densest and the thickest dead layers among these three molecules.

  8. Probing the dynamics of 3He atoms adsorbed on MCM-41 with pulsed NMR

    NASA Astrophysics Data System (ADS)

    Huan, C.; Masuhara, N.; Adams, J.; Lewkowitz, M.; Sullivan, N. S.

    2018-03-01

    We report measurements of the nuclear spin-spin and spin-lattice relaxation times for 3He adsorbed on MCM-41 for temperatures 0.08 < T < 1.2 K. Deviations from Curie behavior are observed at low temperatures. The relaxation times exhibit a two-component behavior representing the differing dynamics of the mobile quasi-free molecules in the center of the tubes compared to the adsorbed layer on the walls. The amplitudes of the two components provide an accurate measure of the number of fluid-like molecules traveling in the center of the nanotubes.

  9. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  10. The Density and Refractive Index of Adsorbing Protein Layers

    PubMed Central

    Vörös, Janos

    2004-01-01

    The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488

  11. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    PubMed

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    PubMed Central

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  13. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  14. Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer

    DOE PAGES

    Tan, Kui; Zuluaga, Sebastian; Fuentes, Erika; ...

    2016-12-13

    The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk—as is typically done to enhance adsorption—here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO 2, SO 2, C 2H 4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained bymore » ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. Lastly, these findings may provide alternative strategies for gas storage, delivery and separation.« less

  15. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  16. Metal‐Catalysed Azidation of Organic Molecules

    PubMed Central

    Goswami, Monalisa

    2016-01-01

    The azide moiety is a desirable functionality in organic molecules, useful in a variety of transformations such as olefin aziridination, C–H bond amination, isocyanate synthesis, the Staudinger reaction and the formation of azo compounds. To harness the versatility of the azide functionality fully it is important that these compounds be easy to prepare, in a clean and cost‐effective manner. Conventional (non‐catalysed) methods to synthesise azides generally require quite harsh reaction conditions that are often not tolerant of functional groups. In the last decade, several metal‐catalysed azidations have been developed in attempts to circumvent this problem. These methods are generally faster, cleaner and more functional‐group‐tolerant than conventional methods to prepare azides, and can sometimes even be conveniently combined with one‐pot follow‐up transformations of the installed azide moiety. This review highlights metal‐catalysed approaches to azide synthesis, with a focus on the substrate scopes and mechanisms, as well as on advantages and disadvantages of the methods. Overall, metal‐catalysed azidation reactions provide shorter routes to a variety of potentially useful organic molecules containing the azide moiety. PMID:28344503

  17. DNA molecules on periodically microstructured lipid membranes: Localization and coil stretching

    NASA Astrophysics Data System (ADS)

    Hochrein, Marion B.; Leierseder, Judith A.; Golubović, Leonardo; Rädler, Joachim O.

    2007-02-01

    We explore large scale conformations of DNA molecules adsorbed on curved surfaces. For that purpose, we investigate the behavior of DNA adsorbed on periodically shaped cationic lipid membranes. These unique membrane morphologies are supported on grooved, one-dimensionally periodic microstructured surfaces. Strikingly, we find that these periodically structured membranes are capable to stretch DNA coils. We elucidate this phenomenon in terms of surface curvature dependent potential energy attained by the adsorbed DNA molecules. Due to it, DNA molecules undergo a localization transition causing them to stretch by binding to highly curved sections (edges) of the supported membranes. This effect provides a new venue for controlling conformations of semiflexible polymers such as DNA by employing their interactions with specially designed biocompatible surfaces. We report the first experimental observation of semiflexible polymers unbinding transition in which DNA molecules unbind from one-dimensional manifolds (edges) while remaining bound to two-dimensional manifolds (cationic membranes).

  18. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    PubMed

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  19. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents.

    PubMed

    Zhang, Weiming; Xu, Zhengwen; Pan, Bingcai; Hong, Changhong; Jia, Kun; Jiang, Peijuan; Zhang, Qingjian; Pan, Bingjun

    2008-09-01

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, pi-pi stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  20. Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu(3-x)Zn(x)(btc)2.

    PubMed

    Gul-E-Noor, Farhana; Michel, Dieter; Krautscheid, Harald; Haase, Jürgen; Bertmer, Marko

    2013-07-21

    The (13)C nuclear spin-lattice relaxation time of (13)CO and (13)CO2 molecules adsorbed in the metal-organic frameworks (MOFs) Cu2.97Zn0.03(btc)2 and Cu3(btc)2 is investigated over a wide range of temperatures at resonance frequencies of 75.468 and 188.62 MHz. In all cases a mono-exponential relaxation is observed, and the (13)C spin-lattice relaxation times (T1) reveal minima within the temperature range of the measurements and both frequencies. This allows us to carry out a more detailed analysis of the (13)C spin relaxation data and to consider the influence due to the spectral functions of the thermal motion. In a model-free discussion of the temperature dependence of the ratios T1 (T)∕T1,min we observe a motional mechanism that can be described by a single correlation time. In relation to the discussion of the relaxation mechanisms this can be understood in terms of dominating translational motion with mean jump distance being larger than the minimum distances between neighboring adsorption sites in the MOFs. A more detailed discussion of the jump-like motion observed here might be carried out on the basis of self-diffusion coefficients. From the present spin relaxation measurements activation energies for the local motion of the adsorbed molecules in the MOFs can be estimated to be 3.3 kJ∕mol and 2.2 kJ∕mol, for CO and CO2 molecules, respectively. Finally, our findings are compared with our recent results derived from the (13)C line shape analysis.

  1. Photodecomposition of Mo(CO)/sub 6/ adsorbed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creighton, J.R.

    1986-01-15

    The photochemical properties of Mo(CO)/sub 6/ adsorbed on Si(100) were investigated using temperature programmed desorption (TPD) and Auger spectroscopy. TPD experiments indicate that Mo(CO)/sub 6/ physisorbs on silicon and desorbs at 210--230 K. At 150 K, KrF laser radiation (248 nm) partially decomposes the adsorbed Mo(CO)/sub 6/ releasing gas-phase CO in the process and TPD experiments after irradiation show that additional CO desorbs at 335 K. However, Auger analysis indicates that one CO molecule per molybdenum atom dissociates, leaving the molybdenum overlayer heavily contaminated with carbon and oxygen. The cross section for photodecomposition was measured to be 5 +- 3more » x 10/sup -17/ cm/sup 2/. Decomposition of the excited molecule must compete strongly with energy relaxation to account for the magnitude of this cross section.« less

  2. Direct structural evidence of commensurate-to-incommensurate transition of hydrocarbon adsorption in a microporous metal organic framework

    DOE PAGES

    Banerjee, Debasis; Wang, Hao; Gong, Qihan; ...

    2015-10-27

    Here, the efficiency of physisorption-based separation of gas-mixtures depends on the selectivity of adsorbent which is directly linked to size, shape, polarizability and other physical properties of adsorbed molecules. Commensurate adsorption is an interesting and important adsorption phenomenon, where the adsorbed amount, location, and orientation of an adsorbate are commensurate with the crystal symmetry of the adsorbent. Understanding this phenomenon is important and beneficial as it can provide vital information about adsorbate–adsorbent interaction and adsorption–desorption mechanism. So far, only sporadic examples of commensurate adsorption have been reported in porous materials such as zeolites and metal organic frameworks (MOFs). In thismore » work we show for the first time direct structural evidence of commensurate-to-incommensurate transition of linear hydrocarbon molecules (C 2–C7) in a microporous MOF, by employing a number of analytical techniques including single crystal X-ray diffraction (SCXRD), in situ powder X-ray diffraction coupled with differential scanning calorimetry (PXRD-DSC), gas adsorption and molecular simulations.« less

  3. Organic Molecules On the Surfaces of Iapetus and Phoebe

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Dalle Ore, Cristina M.; Clark, Roger N.; Cruikshank, Dale P.

    2017-01-01

    Absorption bands of both aliphatic and aromatic organic molecules are found in the reflectance spectra of Saturn satellites Iapetus, Phoebe, and Hyperion obtained with the Cassini Visible-Infrared Mapping Spectrometer (VIMS). The VIMS data do not fully resolve the individual bands of C-H functional groups specific to particular molecules, but instead show absorption envelopes representing blended clusters of the bands of aromatic (approximately 3.28 microns) and aliphatic (approximately 3.4 microns) hydrocarbons known in spectra of interstellar dust. In Cruikshank et al. (2014), we matched components of the unresolved hydrocarbon band envelopes with clusters of bands of a range of functional groups in specific types of organic compounds (e.g., normal and N-substituted polycyclic aromatic hydrocarbons, olefins, cycloalkanes, and molecules with lone-pair interactions of N and O with CH3+). In the work reported here, we revisit the spectra of Iapetus and Phoebe using VIMS data processed with improved radiometric and wavelength calibration (denoted RC19). The band envelopes of both aromatic and aliphatic hydrocarbons are now more clearly defined, corroborating the provisional assignment of specific classes of molecules in Cruikshank et al. 2014, but permitting a more reliable quantitative assessment of the relative contributions of those classes, and a revision to the earlier estimate of the ratio of the abundances of aromatic to aliphatic molecules.

  4. Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules

    NASA Astrophysics Data System (ADS)

    Simic-Glavaski, B.

    1986-02-01

    This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.

  5. Analytical Protocols for Analysis of Organic Molecules in Mars Analog Materials

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Brinkerhoff, W.; Buch, A.; Demick, J.; Glavin, D. P.

    2004-01-01

    A range of analytical techniques and protocols that might be applied b in situ investigations of martian fines, ices, and rock samples are evaluated by analysis of organic molecules m Mars analogues. These simulants 6om terrestrial (i.e. tephra from Hawaii) or extraterrestrial (meteoritic) samples are examined by pyrolysis gas chromatograph mass spectrometry (GCMS), organic extraction followed by chemical derivatization GCMS, and laser desorption mass spectrometry (LDMS). The combination of techniques imparts analysis breadth since each technique provides a unique analysis capability for Certain classes of organic molecules.

  6. The Mars Organic Analyzer: Instrumentation and Methods for Detecting Trace Organic Molecules in our Solar System

    NASA Astrophysics Data System (ADS)

    Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.

    2014-07-01

    Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.

  7. Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF.

    PubMed

    Chia, Chung-Lim; Avendaño, Carlos; Siperstein, Flor R; Filip, Sorin

    2017-10-24

    ReaxFF-based molecular dynamics simulations are used in this work to study the effect of the polarity of adsorbed molecules in the liquid phase on the structure and polarization of hematite (α-Fe 2 O 3 ). We compared the adsorption of organic molecules with different polarities on a rigid hematite surface and on a flexible and polarizable surface. We show that the displacements of surface atoms and surface polarization in a flexible hematite model are proportional to the adsorbed molecule's polarity. The increase in electrostatic interactions resulting from charge transfer in the outermost solid atoms in a flexible hematite model results in better-defined adsorbed layers that are less ordered than those obtained assuming a rigid solid. These results suggest that care must be taken when parametrizing empirical transferable force fields because the calculated charges on a solid slab in vacuum may not be representative of a real system, especially when the solid is in contact with a polar liquid.

  8. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  9. Abatement of organic pollutants using fly ash based adsorbents.

    PubMed

    Adegoke, Kayode Adesina; Oyewole, Rhoda Oyeladun; Lasisi, Bukola Morenike; Bello, Olugbenga Solomon

    2017-11-01

    The presence of organic pollutants in the environment is of major concern because of their toxicity, bio-accumulating tendency, threat to human life and the environment. It is a well-known fact that, these pollutants can damage nerves, liver, and bones and could also block functional groups of essential enzymes. Conventional methods for removing dissolved pollutants include chemical precipitation, chemical oxidation or reduction, filtration, ion-exchange, electrochemical treatment, application of membrane technology, evaporation recovery and biological treatment. Although all the pollutant treatment techniques can be employed, they have their inherent advantages and limitations. Among all these methods, adsorption process is considered better than other methods because of convenience, easy operation and simplicity of design. A fundamentally important characteristic of good adsorbents is their high porosity and consequent larger surface area with more specific adsorption sites. This paper presents a review of adsorption of different pollutants using activated carbon prepared from fly ash sources and the attendant environmental implications. Also, the ways of overcoming barriers to fly ash utilization together with regeneration studies are also discussed.

  10. Meteors do not break exogenous organic molecules into high yields of diatomics

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Schaller, Emily L.; Laux, Christophe O.; Wilson, Michael A.; Schmidt, Greg; Rairden, Rick L.

    2004-01-01

    Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.

  11. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  12. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  13. Comprehensive mass spectrometric analysis of novel organic semiconductor molecules

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana

    This work presents a comprehensive mass spectrometry (MS) study of novel organic semiconductor molecules including ion mobility/reactivity measurements and trace elemental analysis. The organic molecules investigated here are important semiconductor materials for molecular electronic devices such as Organic Field-Effect Transistors (OFETs) and Light Emitted Diodes (LED). A high-performance orthogonal time-of flight mass spectrometer (TOF-MS) in combination with a matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure was used to perform MALDI/TOF analyses of pentacene and some of its derivatives with and without an added matrix. The observation of ion-molecule reactions between "cold" analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI/TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene. Furthermore, we reported ion mobility measurements of functionalized pentacene ions with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions for a prolong period of time. These capabilities were successfully employed in the measurement of ion mobilities in different modes of the IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully

  14. A-D-A small molecules for solution-processed organic photovoltaic cells.

    PubMed

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  15. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes.

    PubMed

    Zhang, Jingqing; Boghossian, Ardemis A; Barone, Paul W; Rwei, Alina; Kim, Jong-Ho; Lin, Dahua; Heller, Daniel A; Hilmer, Andrew J; Nair, Nitish; Reuel, Nigel F; Strano, Michael S

    2011-01-26

    We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.

  16. The trap DOS in small molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang; Haas, Simon; Pernstich, Kurt; Mathis, Thomas; Batlogg, Bertram

    2010-03-01

    Our study shows that it is possible to reach one of the ultimate goals of organic electronics: organic field-effect transistors can be produced with trap densities as low as in the bulk of single crystals. Several analytical methods to calculate the spectral density of localized states in the band gap (trap DOS) from measured data were used to clarify, if the different methods lead to similar results. We then compared quantitatively trap DOS information from the literature, correcting for differences due to different calculation methods. In the bulk of single crystals the trap DOS is lower by several orders of magnitude than in thin films. The compilation of all data strongly suggests that structural defects at grain boundaries are the main cause of ``fast'' traps in TFT's made with vacuum-evaporated pentacene. For high-performance transistors made with small molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric. We will discuss to what degree band broadening due to the thermal fluctuations of the intermolecular transfer integral is reflected in the trap DOS very close (<0.15 eV) to the mobility edge.

  17. TiO2/porous adsorbents: Recent advances and novel applications.

    PubMed

    MiarAlipour, Shayan; Friedmann, Donia; Scott, Jason; Amal, Rose

    2018-01-05

    This article reviews two interrelated areas of research: the first is the use of TiO 2 -supported adsorbent materials as enhanced heterogeneous photocatalysts and their application to various reactions for organic pollutant removal from air and water; the second is the combination of adsorbent materials with TiO 2 photocatalysts which aims to efficiently regenerate adsorbent materials using illumination. By reviewing both areas of research, the following topics are covered; (i) photocatalytic activation of TiO 2; (ii) related properties of photocatalytic TiO 2; (iii) shortcomings of photocatalytic processes; (iv) preparation methods of composite TiO 2 /adsorbent materials and their photocatalytic performance; (v) properties of common adsorbents and their applications for pollutant removal from air and water; (vi) adsorbent regeneration methods and their economic and operational issues; (vii) conclusions and future outlooks. This topic has not been previously reviewed to such an extent, and considerable knowledge can be gained from assembling the large number of studies on adsorption-photocatalysis combinations. As such, this review provides guidance for researchers working in the fields of environmental and chemical engineering focussing on organic pollutant removal and the engineering of new high performance photocatalytic TiO 2 -supported porous adsorbent materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculations.

    PubMed

    Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas

    2017-12-14

    The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.

  19. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  20. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  1. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  2. Charge-transfer photodissociation of adsorbed molecules via electron image states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, E. T.

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  3. Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate.

    PubMed

    Schaaf, Marcel J M; Koopmans, Wiepke J A; Meckel, Tobias; van Noort, John; Snaar-Jagalska, B Ewa; Schmidt, Thomas S; Spaink, Herman P

    2009-08-19

    It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.

  4. Sputtering and detection of large organic molecules from Europa

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Sundqvist, B. U. R.

    2018-07-01

    Mass spectroscopy of bio-molecules by heavy ion induced sputtering, which became a practical laboratory procedure, was also suggested as a potential tool for spacecraft studies of targets of interest in astrobiology. With the planning of new missions to Europa, there is renewed interest in the possibility of detecting organic molecules that might have originated in its subsurface ocean and can be sputtered from its surface often intact by impacting energetic heavy ions trapped in Jupiter's magnetosphere. Here we review the laboratory data and modeling bearing on this issue. We then give estimates of the ejection into the gas-phase of trace organic species embedded in an ice matrix on Europa's surface and their possible detection during a flyby mission.

  5. An algorithm to identify functional groups in organic molecules.

    PubMed

    Ertl, Peter

    2017-06-07

    The concept of functional groups forms a basis of organic chemistry, medicinal chemistry, toxicity assessment, spectroscopy and also chemical nomenclature. All current software systems to identify functional groups are based on a predefined list of substructures. We are not aware of any program that can identify all functional groups in a molecule automatically. The algorithm presented in this article is an attempt to solve this scientific challenge. An algorithm to identify functional groups in a molecule based on iterative marching through its atoms is described. The procedure is illustrated by extracting functional groups from the bioactive portion of the ChEMBL database, resulting in identification of 3080 unique functional groups. A new algorithm to identify all functional groups in organic molecules is presented. The algorithm is relatively simple and full details with examples are provided, therefore implementation in any cheminformatics toolkit should be relatively easy. The new method allows the analysis of functional groups in large chemical databases in a way that was not possible using previous approaches. Graphical abstract .

  6. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  7. Magnetic coupling of Fe-porphyrin molecules adsorbed on clean and c(2×2) oxygen-reconstructed Co(100) investigated by spin-polarized photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Weber, A. P.; Caruso, A. N.; Vescovo, E.; Ali, Md. E.; Tarafder, K.; Janjua, S. Z.; Sadowski, J. T.; Oppeneer, P. M.

    2013-05-01

    The spin-polarized electronic structure of iron octaethylporphyrin (FeOEP) molecules adsorbed on a pristine and on a c(2×2) oxygen-reconstructed Co(100) surface has been analyzed by means of spin-polarized photoemission spectroscopy (SPPES) and first-principles density functional theory with the on-site Coulomb repulsion U term (DFT+U) calculations with and without Van der Waals corrections. The aim is to examine the magnetic exchange mechanism between the FeOEP molecules and the Co(100) substrate in the presence or absence of the oxygen mediator. The results demonstrate that the magnetic coupling from the ferromagnetic substrate to the adsorbed FeOEP molecules is ferromagnetic, whereas, the coupling is antiferromagnetic for the FeOEP on the c(2×2)O/Co(100) system. Spin-resolved partial densities of states extracted from ab initio DFT+U modeling are in fairly good comparison with the electronic spectral densities seen in angle-integrated SPPES energy dispersion curves for submonolayer coverages of FeOEP. Through combined analysis of these spectra and theoretical results, we determine that hybridization of 2p orbitals of N and O with Co 3d orbitals facilitates indirect magnetic exchange interactions between Fe and Co, whereas, a direct Fe-Co interaction involving the Fe dz2 orbital is also found for FeOEP on Co. It is observed through SPPES that the spin polarization of the photoemission-visible molecular overlayers decreases to zero as coverage is increased beyond the submonolayer regime, indicating that only interfacial magnetic coupling is at work. Microspot low-energy electron diffraction and low-energy electron microscopy were performed to characterize the physical order of the molecular coverage, revealing that FeOEP structural domains are orders of magnitude greater in size on c(2×2)O/Co(100) than on clean Co(100), which coincides with reduced scattering from the disorder and sharper features seen in SPPES.

  8. Adsorbing H₂S onto a single graphene sheet: A possible gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis; Auluck, S.

    2014-09-14

    The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causesmore » to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.« less

  9. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  10. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  11. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding ofmore » adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.« less

  12. Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach

    DOE PAGES

    Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.

    2016-12-08

    Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species, where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, in this work, we presentmore » reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. In conclusion, this work provides useful guidance in determining how the identities of the base groups and functional groups are correlated with desirable reduction and oxidation potentials.« less

  13. Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.

    Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species, where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, in this work, we presentmore » reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. In conclusion, this work provides useful guidance in determining how the identities of the base groups and functional groups are correlated with desirable reduction and oxidation potentials.« less

  14. Halo-substituted azobenzenes adsorbed at Ag(111) and Au(111) interfaces: Structures and optical properties

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Baev, Alexander; Prasad, Paras N.; Walsh, Tiffany R.

    2017-05-01

    The adsorption of azobenzene (AB), ortho fluoro-azobenzene (FAB) and ortho chlor-azobenzol (ClAB), in both the cis and trans isomers, at the Au(111) and Ag(111) surfaces is investigated using plane-wave density functional calculations with the revPBE-vdW-DF functional. The resulting adsorption energies and internal structures of AB adsorbed to both metal surfaces are in broad agreement with available experimental data. In the gas phase, FAB and ClAB feature a significant reduction in the energy difference between the two isomeric states, compared with AB. This relative reduction in the energy difference is still significant for the adsorbed form of FAB but is only weakly apparent for ClAB. The absorption spectra of the molecules have also been calculated, with the halogen substituents generating significant changes in the gas phase, but only a modest difference for the adsorbed molecules.

  15. Interplay of polyelectrolytes with different adsorbing surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Feng

    We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly

  16. Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules.

    PubMed

    Pan, Yi; Yang, Bing; Hulot, Catherine; Blechert, Siegfried; Nilius, Niklas; Freund, Hans-Joachim

    2012-08-21

    Using STM topographic imaging and spectroscopy, we have investigated the adsorption of two thioether molecules, 1,2-bis(phenylthio)benzene and (bis(3-phenylthio)-phenyl)sulfane, on noble and transition metal surfaces. The two substrates show nearly antipodal behaviour. Whereas complexes with one or two protruding centres are observed on Au(111), only flat and uniform ad-structures are found on NiAl(110). The difference is ascribed to the possibility of the thioethers to form metal-organic complexes by coordinating lattice-gas atoms on the Au(111), while only the pristine molecules adsorb on the alloy surface. The metal coordination in the first case is driven by the formation of strong Au-S bonds and enables the formation of characteristic monomer, dimer and chain-like structures of the thioethers, using the Au atoms as linkers. A similar mechanism is not available on the NiAl, because no lattice gas develops at this surface at room temperature. Our work demonstrates how surface properties, i.e. the availability of mobile ad-species, determine the interaction of organic molecules with metallic substrates.

  17. Dynamics of copper-phthalocyanine molecules on Au/Ge(001).

    PubMed

    Sotthewes, K; Heimbuch, R; Zandvliet, H J W

    2015-10-07

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a "molecular bridge" configuration, where two benzopyrrole groups (lobes) are connected to a Au-induced nanowire, whereas the other two lobes are connected to the adjacent nanowire. Three types of lobe configurations are found: a bright lobe, a dim lobe, and a fuzzy lobe. The dim and fuzzy lobes exhibit a well-defined switching behavior between two discrete levels, while the bright lobe shows a broad oscillation band. The observed dynamic behavior is induced by electrons that are injected into the LUMO+1 orbital of the CuPc molecule. By precisely adjusting the tip-molecule distance, the switching frequency of the lobes can be tuned accurately.

  18. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    PubMed Central

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  19. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement.

    PubMed

    Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong

    2017-07-05

    Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.

  20. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  1. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE PAGES

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji; ...

    2018-03-28

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  2. Ordered phases of ethylene adsorbed on charged fullerenes and their aggregates☆

    PubMed Central

    Zöttl, Samuel; Kaiser, Alexander; Daxner, Matthias; Goulart, Marcelo; Mauracher, Andreas; Probst, Michael; Hagelberg, Frank; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-01-01

    In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of (C60)m(C2H4)n+ measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature. PMID:25843960

  3. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    NASA Astrophysics Data System (ADS)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  4. Small organic molecule based flow battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskinson, Brian; Marshak, Michael; Aziz, Michael J.

    The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.

  5. A theoretical study on metal atom-modified BC3 sheets for effects of gas molecule adsorptions

    NASA Astrophysics Data System (ADS)

    Tang, Yanan; Cui, Xiao; Chen, Weiguang; Zhu, Dalei; Chai, Huaduo; Dai, Xianqi

    2018-06-01

    Based on the first-principle calculations, the chemical reactivity of transition metal (Fe, Co, Ni, and Cu) dopants within BC3 sheets toward toxic gas molecules (CO, NO, NO2, SO2, and HCN) is comparably investigated. First, the adsorbed gases on metal-modified BC3 sheets exhibit the different stability. Compared with other gases, the metal-modified BC3 substrates exhibit the stronger affinity toward the NO and NO2 molecules (> 1.0 eV), while the adsorbed HCN has the smallest adsorption energy, illustrating that the NO and NO2 as specific toxic gas molecule can be easily detected. Second, the adsorbed gas molecules can effectively regulate the electronic structure and magnetic property of BC3 systems. Fox example, the strong adsorption of NO and NO2 on Fe-modified BC3 systems exhibits non-magnetic property, yet these gases on Co modified BC3 systems exhibit the magnetic character. In addition, the adsorbed NO and SO2 can induce and turn the degree of magnetic moments of Ni- and Cu-modified BC3 systems. Therefore, the different kinds of adsorbed gases on metal-modified BC3 sheets can be distinguished through investigating the changed magnetic moments of system, which would provide important information for designing the functional BC3-based materials.

  6. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions.

    PubMed

    Wu, Gege; Ma, Jiping; Li, Shuang; Guan, Jing; Jiang, Bo; Wang, Liyan; Li, Jinhua; Wang, Xiaoyan; Chen, Lingxin

    2018-05-30

    Fe 3 O 4 /HKUST-1 magnetic copper based metal-organic frameworks (MOF) were synthesized by a simple and facile method and applied as an effective and recyclable adsorbent for the adsorptive removal of two widely used ciprofloxacin (CIP) and norfloxacin (NOR) fluoroquinolone antibiotics (FQAs) from aqueous solutions. Fe 3 O 4 /HKUST-1 was thoroughly characterized, and the major influence factors including solution pH, adsorbent amount and salt concentration were investigated. Compared to the reported adsorbents, Fe 3 O 4 /HKUST-1 has a very high adsorption rate, and it is found that CIP and NOR could be removed within 30 min. Moreover, the maximum adsorption capacities of the magnetic composites toward CIP and NOR reached as high as 538 mg g -1 and 513 mg g -1 , respectively, much higher than those of most of the reported adsorbents for these two FQAs. The saturation magnetization value of Fe 3 O 4 /HKUST-1 was 44 emu g -1 , which was sufficient for the separation of the Fe 3 O 4 /HKUST-1adsorbent from the aqueous solution by the application of an external magnetic field. Additionally, this magnetic material showed a good reusability with the adsorption capability decreasing only slightly after reuse for ten cycles. These results indicated that the magnetic composites Fe 3 O 4 /HKUST-1 may be a promising adsorbent in the decontamination of FQAs from wastewater due to its high adsorption capability, fast kinetics, easy separation from water, and excellent recyclability. The adsorption mechanism was proposed based on the effects of pH on adsorption and on the zeta potential of the adsorbent. For the adsorption of CIP and NOR by Fe 3 O 4 /HKUST-1, both electrostatic and π-π interactions may be important. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  8. Dynamics of copper-phthalocyanine molecules on Au/Ge(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotthewes, K.; Heimbuch, R.; Zandvliet, H. J. W.

    2015-10-07

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a “molecular bridge” configuration, where two benzopyrrole groups (lobes) are connected to a Au-induced nanowire, whereas the other two lobes are connected to the adjacent nanowire. Three types of lobe configurations are found: a bright lobe, a dim lobe, and a fuzzy lobe. The dim and fuzzy lobes exhibit a well-defined switching behavior between two discrete levels, while the bright lobe shows a broad oscillationmore » band. The observed dynamic behavior is induced by electrons that are injected into the LUMO+1 orbital of the CuPc molecule. By precisely adjusting the tip-molecule distance, the switching frequency of the lobes can be tuned accurately.« less

  9. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.

    PubMed

    Gómez-Navarro, C; Moreno-Herrero, F; de Pablo, P J; Colchero, J; Gómez-Herrero, J; Baró, A M

    2002-06-25

    A fundamental requirement for a molecule to be considered a molecular wire (MW) is the ability to transport electrical charge with a reasonably low resistance. We have carried out two experiments that measure first, the charge transfer from an electrode to the molecule, and second, the dielectric response of the MW. The latter experiment requires no contacts to either end of the molecule. From our experiments we conclude that adsorbed individual DNA molecules have a resistivity similar to mica, glass, and silicon oxide substrates. Therefore adsorbed DNA is not a conductor, and it should not be considered as a viable candidate for MW applications. Parallel studies on other nanowires, including single-walled carbon nanotubes, showed conductivity as expected.

  10. Triton - Stratospheric molecules and organic sediments

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Singh, Sushil K.; Khare, B. N.; Sagan, Carl

    1989-01-01

    Continuous-flow plasma discharge techniques show production rates of hydrocarbons and nitriles in N2 + CH4 atmospheres appropriate to the stratosphere of Titan, and indicate that a simple eddy diffusion model together with the observed electron flux quantitatively matches the Voyager IRIS observations for all the hydrocarbons, except for the simplest ones. Charged particle chemistry is very important in Triton's stratosphere. In the more CH4-rich case of Titan, many hydrocarbons and nitriles are produced in high yield. If N2 is present, the CH4 fraction is low, but hydrocarbons and nitriles are produced in fair yield, abundances of HCN and C2H2 in Triton's stratosphere exceed 10 to the 19th molecules/sq cm per sec, and NCCN, C3H4, and other species are predicted to be present. These molecules may be detected by IRIS if the stratosphere is as warm as expected. Both organic haze and condensed gases will provide a substantial UV and visible opacity in Triton's atmosphere.

  11. Solution Based Functionalization of Nanostructured Oxides with Organic Molecules

    NASA Astrophysics Data System (ADS)

    Pearce, Brady Lawrence

    The surface modification of wide bandgap semiconductors with organic molecules provides novel functionalities to the composite material. These functionalities can include tuning of the optical properties, providing solution stability of the inorganic material, as well as many others. The use of an in-situ functionalization method for surface attachment of phosphonic group containing molecules to the surface of gallium nitride (GaN) has shown promise. This technique is particularly advantageous due to the etching and functionalization steps occurring at the same time, in the same beaker, as well as not being reliant on organic solvents or high temperatures. In this functionalization process, surface hydroxide groups are preferentially grown on the surface of GaN, which serve as attachment sites for phosphonic groups on organic moieties. Molecules with these hydroxyl groups available natively on their surface, such as AlOOH and GaOOH, provide a unique advantage. The requirement for an etching step is removed, and the functionalization process could be performed in a simple one-step modification. The work in this dissertation seeks to address the possibility of using these materials as the inorganic component in organic/inorganic composite material in devices. Of particular importance in solar cell and bioelectronic devices is the ability to withstand varying pH environments, and to avoid the leaching of toxic ionic species. Lysine has shown to reduce the leaching of ionic species, when particles of inorganic molecules are cross-linking agents for the amino acid. In this work, the aqueous stability of both AlOOH and GaOOH in a lysine environment will be explored. The optical and size characteristics observed in nanostructured forms of the mixed composition AlxGa1-xOOH material system is of interest, due optical tunability providing a distinct advantage in optoelectronic devices containing these organic/inorganic hybrids. Immobilizing phosphonic group containing

  12. Atomic-Scale Control of Electron Transport through Single Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.

    2010-04-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.

  13. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation

    NASA Astrophysics Data System (ADS)

    Buch, A.; Belmahdi, I.; Szopa, C.; Freissinet, C.; Glavin, D. P.; Coll, P. J.; Cabane, M.; Millan, M.; Eigenbrode, J. L.; Navarro-Gonzalez, R.; Stern, J. C.; Pinnick, V. T.; Coscia, D.; Teinturier, S.; Stambouli, M.; Dequaire, T.; Mahaffy, P. R.

    2015-12-01

    Among the experiments which explore the martian soil aboard the Curiosity Rover, SAM experiment is mainly dedicated to the search for indigenous organic compounds. To reach its goals SAM can operate in different analysis modes: Pyrolysis-GC-MS and Pyrolysis-MS (EGA). In addition SAM includes wet chemistry experiments [1] to supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The two wet chemistry experimental capabilities of SAM provide alternatives to the nominal inert-thermal desorption/pyrolysis analytical protocol and are more aptly suited for polar components: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4-5]. Here we focus on the MTBSTFA derivatization experiment. In order to build a support used to help the interpretation of SAM results, we have investigated the artifacts and backgrounds sources generated by the all analysis process: Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25μm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device: Among the sources of artifact, we test: (1) the thermal stability and the organic material released during the degradation of Tenax® and carbosieve, (2) the impact of MTBSTFA and a mixture of DMF and MTBSTFA on the adsorbent, (3) the reaction between the different adsorbents (Tenax® and Carbosieve) and calcium perchlorate and then (4) the sources

  14. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  15. Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Ho, Steven Sai Hang; Wang, Liqin; Chow, Judith C.; Watson, John G.; Xue, Yonggang; Huang, Yu; Qu, Linli; Li, Bowei; Dai, Wenting; Li, Lijuan; Cao, Junji

    2018-04-01

    The feasibility of using adsorbent tubes to collect volatile organic compounds (VOCs) has been demonstrated since the 1990's and standardized as Compendium Method TO-17 by the U.S. Environmental Protection Agency (U.S EPA). This paper investigates sampling and analytical variables on concentrations of 57 ozone (O3) precursors (C2-C12 aliphatic and aromatic VOCs) specified for the Photochemical Assessment Monitoring Station (PAMS). Laboratory and field tests examined multi-bed adsorbent tubes containing a sorbate combination of Tenax TA, Carbograph 1 TD, and Carboxen 1003. Analyte stabilities were influenced by both collection tube temperature and ambient O3 concentrations. Analytes degraded during storage, while blank levels were elevated by passive adsorption. Adsorbent tube storage under cold temperatures (- 10 °C) in a preservation container filled with solid silica gel and anhydrous calcium sulfate (CaSO4) ensured sample integrity. A high efficiency (> 99%) O3 scrubber (i.e., copper coil tube filled with saturated potassium iodide [KI]) removed O3 (i.e., < 200 ppbv) from the air stream with a sampling capacity of 30 h. Water vapor scrubbers interfered with VOC measurements. The optimal thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) desorption time of 8 min was found at 330 °C. Good linearity (R2 > 0.995) was achieved for individual analyte calibrations (with the exception of acetylene) for mixing ratios of 0.08-1.96 ppbv. The method detection limits (MDLs) were below 0.055 ppbv for a 3 L sample volume. Replicate analyses showed relative standard deviations (RSDs) of < 10%, with the majority of the analytes within < 5%.

  16. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.

    PubMed

    Nagasaka, Masanari; Kondoh, Hiroshi; Nakai, Ikuyo; Ohta, Toshiaki

    2007-01-28

    The dynamics of adsorbate structures during CO oxidation on Pt(111) surfaces and its effects on the reaction were studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. The lateral interaction energies between adsorbed species were calculated by the density functional theory method. Dynamic Monte Carlo simulations were performed for the oxidation reaction over a mesoscopic scale, where the experimentally determined activation energies of elementary paths were altered by the calculated lateral interaction energies. The simulated results reproduced the characteristics of the microscopic and mesoscopic scale adsorbate structures formed during the reaction, and revealed that the complicated reaction kinetics is comprehensively explained by a single reaction path affected by the surrounding adsorbates. We also propose from the simulations that weakly adsorbed CO molecules at domain boundaries promote the island-periphery specific reaction.

  17. Sampling and Analysis of Organic Molecules in the Plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Monroe, A. A.; Williams, P.; Anbar, A. D.; Tsou, P.

    2012-12-01

    The recent detection of organic molecules in the plumes of Enceladus, which also contain water and nitrogen (Waite et al., 2006; Matson et al., 2007), suggests that the geologically active South polar region contains habitable, subsurface water (McKay et al., 2008). Characterizing these molecules will be a high priority for any future mission to Enceladus. Sample return is highly desirable, but can it capture useful samples at Enceladus? Using Stardust mission parameters for comparison, we consider the survival of complex organic molecules during collection to assess the feasibility of one aspect of a sample return mission. A successful sample return mission must include the capability to capture and recover intact or partly intact molecules of particular astrobiological interest: lipids, amino and nucleic acids, polypeptides, and polynucleotides. The Stardust mission to comet Wild 2 successfully captured amino acids, amines, and PAHs using a combination of aerogel and Al foil (Sandford et al., 2006, 2010). For larger and more fragile molecules, particularly polypeptides and polynucleotides, low collisional damage is achieved by impact on low molecular weight surfaces. A particularly intriguing possibility is a capture surface pre-coated with organic matrices identified as ideal for analysis of various biomolecules using MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) (Hillenkamp and Karas, 2007). MALDI is a standard technique with attomole sensitivity, exceptional mass resolution, and (bio)molecular specificity (Vestal, 2011). Capture surfaces appropriate for MALDI-MS analysis could be analyzed directly without post-return manipulation, minimizing post-capture damage to these molecules and the risk of contamination during handling. A hypothetical sample collection encounter speed of ~ 5 km/s corresponds to ~0.13 eV kinetic energy per amu. Studies of molecule survival and fragmentation exist for free hexapeptides impacting hydrocarbon

  18. A study of surface enhanced Raman scattering for furfural adsorbed on silver surface

    NASA Astrophysics Data System (ADS)

    Jia, Ting-jian; Li, Peng-wei; Shang, Zhi-guo; Zhang, Ling; He, Ting-chao; Mo, Yu-jun

    2008-02-01

    The normal Raman spectrum (NRS) and the surface enhanced Raman scattering (SERS) spectrum of furfural in silver colloid were recorded and analyzed in this paper. The assignment of these bands to furfural molecules was performed by density functional theory (DFT) calculation. The data of the SERS by comparing with the one of NRS show that furfural molecules are adsorbed on the silver surface via the nonbonding electrons of the carbonyl oxygen.

  19. Adsorption of organic molecules may explain growth of newly nucleated clusters and new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wexler, Anthony S.

    2013-05-01

    New particle formation consists of formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size. Because of the large coagulation rate of clusters smaller than 3 nm with the preexisting aerosol population, for new particle formation to take place, these clusters need to grow sufficiently fast to escape removal by coagulation. Previous studies have indicated that condensation of low-volatility organic vapor may play an important role in the initial growth of the clusters. However, due to the relatively high vapor pressure and partial molar volume of even highly oxidized organic compounds, the strong Kelvin effect may prevent typical ambient organics from condensing on these small clusters. Earlier studies did not consider that adsorption of organic molecules on the cluster surface, due to the intermolecular forces between the organic molecule and cluster, may occur and substantially alter the growth process under sub-saturated conditions. Using the Brunauer-Emmett-Teller (BET) isotherm, we show that the adsorption of organic molecules onto the surface of clusters may significantly reduce the saturation ratio required for condensation of organics to occur, and therefore may provide a physico-chemical explanation for the enhanced initial growth by condensation of organics despite the strong Kelvin effect.

  20. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    NASA Astrophysics Data System (ADS)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  1. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-05

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. Copyright © 2016. Published by Elsevier B.V.

  2. Adsorption of different amphiphilic molecules onto polystyrene latices.

    PubMed

    Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A

    2005-02-15

    In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.

  3. Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Li-Jung; Gill, Gary A.; Strivens, Jonathan E.

    Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method tomore » strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT

  4. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  5. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy.

    PubMed

    Pluchery, Olivier; Humbert, Christophe; Valamanesh, Mehrnoush; Lacaze, Emmanuelle; Busson, Bertrand

    2009-09-21

    Sum frequency generation (SFG) and difference frequency generation (DFG) are applied to study vibrational resonance of the thiophenol molecule adsorbed on two different gold samples. One sample is made of 17 nm gold nanoparticles (AuNPs) fixed on a silicon substrate that has been previously functionalized with a silane monolayer (aminopropyltriethoxysilane, APTES). This sample is fully characterized through visible reflection spectroscopy and AFM. The second sample is a gold monocrystal also covered with thiophenol molecules. From their comparison, an enhancement factor of 21 is deduced for the SFG signal on AuNPs with respect to the Au(111), related to the surface plasmon resonance (SPR). From a combined analysis of the SFG and DFG spectra, we demonstrate that SFG/DFG spectroscopy is able to identify the nature of the substrate where the molecules are adsorbed. This opens new perspectives for this nonlinear spectroscopy by adding to its well-known intrinsic surface specificity, the ability to selectively probe the chemical layer capping the AuNPs.

  6. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo

    2015-12-21

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol atmore » a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.« less

  7. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  8. Design and engineering of organic molecules for customizable Terahertz tags

    NASA Astrophysics Data System (ADS)

    Ray, Shaumik; Dash, Jyotirmayee; Nallappan, Kathirvel; Kaware, Vaibhav; Basutkar, Nitin; Ambade, Ashootosh; Joshi, Kavita; Pesala, Bala

    2014-03-01

    Terahertz (THz) frequency band lies between the microwave and infrared region of the electromagnetic spectrum. Molecules having strong resonances in this frequency range are ideal for realizing "Terahertz tags" which can be easily incorporated into various materials. THz spectroscopy of molecules, especially at frequencies below 10 THz, provides valuable information on the low frequency vibrational modes, viz. intermolecular vibrational modes, hydrogen bond stretching, torsional vibrations in several chemical and biological compounds. So far there have been very few attempts to engineer molecules which can demonstrate customizable resonances in the THz frequency region. In this paper, Diamidopyridine (DAP) based molecules are used as a model system to demonstrate engineering of THz resonances (< 10 THz) by fine-tuning the molecular mass and bond strengths. Density Functional Theory (DFT) simulations have been carried out to explain the origin of THz resonances and factors contributing to the shift in resonances due to the addition of various functional groups. The design approach presented here can be easily extended to engineer various organic molecules suitable for THz tags application.

  9. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  10. Optimization of thermochemolysis analysis conditions for the in situ detection of organic compounds in Martian soil with the Mars Organic Molecule Analyzer (MOMA) experiment

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Raulin, François; Stambouli, Moncef

    2017-04-01

    Martian surface is exposed to harsh radiative and oxidative conditions which are destructive for organic molecules. That is why the future ExoMars rover will examine the molecular composition of samples acquired from depths down to two meters below the Martian surface, where organics may have been protected from radiative and oxidative degradation. The samples will then be analyzed by the Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) operational mode of the Mars Organic Molecule Analyzer (MOMA) instrument. To prevent thermal alteration of organic molecules during pyrolysis, thermochemolysis with tetramethylammonium hydroxide (TMAH) will extract the organics from the mineral matrix and methylate the polar functional groups, allowing the volatilization of molecules at lower temperatures and protecting the most labile chemical groups from thermal degradation. This study has been carried out on a Martian regolith analogue (JSC-Mars-1) with a high organic content with the aim of optimizing the thermochemolysis temperature within operating conditions similar to the MOMA experiment ones. We also performed Pyrolysis-GC-MS analysis as a comparison. The results show that, unlike pyrolysis alone - which mainly produces aromatics, namely thermally altered molecules - thermochemolysis allows the extraction and identification of numerous organic molecules of astrobiological interest. They also show that the main compounds start to be detectable at low thermochemolysis temperatures ranging from 400°C to 600°C. However, we noticed that the more the temperature increases, the more the chromatograms are saturated with thermally evolved molecules leading to many coelutions and making identification difficult.

  11. Adsorption and structure of the adsorbed layer of ionic surfactants.

    PubMed

    Ivanov, Ivan B; Ananthapadmanabhan, Kavssery P; Lips, Alex

    2006-11-16

    Our goal in this study was to investigate theoretically and experimentally the adsorption of ionic surfactants and the role of different factors in the mechanism of adsorption, the adsorption parameters and the structure of the adsorbed layer. We used available literature data for the interfacial tension, sigma, vs. concentration, C(s), for sodium dodecyl sulfate (SDS) in three representative systems with Air/Water (A/W), Oil/Water (O/W) and Oil/Water + 0.1 M NaCl (O/WE) interfaces. We derived 6 new adsorption isotherms and 6 new equations of state (EOS) based on the adsorption isotherms for non-ionic surfactants of Langmuir, Volmer and Helfand-Frisch-Lebowitz (HFL) with interaction term betatheta2/2 in the EOS, theta=alphaGamma being the degree of coverage, with Gamma--adsorption and alpha--minimum area per molecule. We applied Gouy equation for high surface potentials and modified it to account for partial penetration of the counterions in the adsorbed layer. The equations were written in terms of the effective concentration C=[C(s)(C(s)+C(el))](1/2), where C(s) and C(el) are, respectively concentrations of the surfactant and the electrolyte. We showed that the adsorption constant K was model independent and derived an equation for the effective thickness of the adsorbed layer, delta(s). We found also that the minimum area per molecule, alpha, is larger than the true area, alpha(0), which depends on the adsorption model and is a function of the adsorption Gamma. The interaction term betatheta2/2 in the Langmuir EOS was found to be exact for small beta<1, but for the Volmer EOS it turned out to be only a crude approximation. Semi-quantitative considerations about the interaction between adsorbed discrete charges revealed that at A/W interface part of the adsorbed surfactant molecules are partially immersed in water, which leads to decreased repulsion and increased adsorption Gamma. At O/W the larger adsorption energy keeps the surfactant molecules on the surface

  12. Electrostatic placement of single ferritin molecules

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Yoshii, Shigeo; Yamada, Kiyohito; Matsukawa, Nozomu; Fujiwara, Isamu; Iwahori, Kenji; Yamashita, Ichiro

    2006-04-01

    We electrostatically placed a single ferritin molecule on a nanometric 3-aminopropyltriethoxysilane (APTES) pattern that was on an oxidized Si substrate. The numerical analysis of the total interaction free energy for ferritin predicted that a quadrilateral array of 15nm diameter APTES nanodisks placed at intervals of 100nm would accommodate a single molecule of ferritin in each disk under a Debye length of 14nm. The experiments we conducted conformed to theoretical predictions and we successfully placed a single ferritin molecule on each ATPES disk without ferritin adsorbing on the SiO2 substrate surface.

  13. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids

    NASA Astrophysics Data System (ADS)

    Longhurst, M. J.; Quirke, N.

    2006-11-01

    We have previously shown that the upshift in the radial breathing mode (RBM) of closed (or infinite) carbon nanotubes in solution is almost entirely due to coupling of the RBM with an adsorbed layer of fluid on the nanotube surface. The upshift can be modeled analytically by considering the adsorbed fluid as an infinitesimally thin shell, which interacts with the nanotube via a continuum Lennard-Jones potential. Here we extend the model to include internally as well as externally adsorbed waterlike molecules, and find that filling the nanotubes leads to an additional upshift of two to six wave numbers. We show that using molecular dynamics, the RBM can be accurately reproduced by replacing the fluid molecules with a mean field harmonic shell potential, greatly reducing simulation times.

  14. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.

    PubMed

    Gangupomu, Roja Haritha; Kositkanawuth, Ketwalee; Sattler, Melanie L; Ramirez, David; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-05-01

    To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples. In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 degrees C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4 x 6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated

  15. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  17. New Antifouling Platform Characterized by Single-Molecule Imaging

    PubMed Central

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  18. New antifouling platform characterized by single-molecule imaging.

    PubMed

    Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin

    2014-03-12

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.

  19. Engineering topological superconductors using surface atomic-layer/molecule hybrid materials

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi

    2015-08-01

    Surface atomic-layer (SAL) superconductors consisting of epitaxially grown metal adatoms on a clean semiconductor surface have been recently established. Compared to conventional metal thin films, they have two important features: (i) space-inversion symmetry-breaking throughout the system and (ii) high sensitivity to surface adsorption of foreign species. These potentially lead to manifestation of the Rashba effect and a Zeeman field exerted by adsorbed magnetic organic molecules. After introduction of the archetypical SAL superconductor Si(111)-(√7 × √3)-In, we describe how these features are utilized to engineer a topological superconductor with Majorana fermions and discuss its promises and expected challenges.

  20. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    PubMed

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  2. Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface

    NASA Astrophysics Data System (ADS)

    Xiaojuan, Yuan; Huaimin, Gu; Jiwei, Wu

    2010-08-01

    Raman and SERS spectra of homodipeptide Gly-Gly and Gly were recorded and compared in this paper, and band assignment for the functional groups contained in these molecules was analyzed in detail. Time-dependent and pH-dependent SERS spectra of Gly-Gly molecule adsorbed on nano-colloidal silver surface were also studied. The time-dependent SERS spectra of Gly-Gly are characterized by the increase in intensity of bands primarily representing the vibrational signatures emanating from the amino and amide moiety of Gly-Gly molecule. It is found that the adsorption style of Gly-Gly on the silver colloid changes as time goes on; at 5 min after adding the sample to the silver colloid, Gly-Gly adsorbs on silver surface firstly through the carboxylate, amino and amide groups, and then the carboxylate group is far away from the silver surface at 10 min to 3 days. The SERS variation of Gly-Gly with the change of pH suggests that the adsorption style is pH-dependent, the different adsorption behavior of the Gly-Gly occurs on silver surface at different pH values.

  3. An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold

    NASA Astrophysics Data System (ADS)

    Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland

    2018-03-01

    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.

  4. Development of a computationally-designed polymeric adsorbent specific for mycotoxin patulin.

    PubMed

    Piletska, Elena V; Pink, Demi; Karim, Kal; Piletsky, Sergey A

    2017-12-04

    Patulin is a toxic compound which is found predominantly in apples affected by mould rot. Since apples and apple-containing products are a popular food for the elderly, children and babies, the monitoring of the toxin is crucial. This paper describes a development of a computationally-designed polymeric adsorbent for the solid-phase extraction of patulin, which provides an effective clean-up of the food samples and allows the detection and accurate quantification of patulin levels present in apple juice using conventional chromatography methods. The developed bespoke polymer demonstrates a quantitative binding towards the patulin present in undiluted apple juice. The polymer is inexpensive and easy to mass-produce. The contributing factors to the function of the adsorbent is a combination of acidic and basic functional monomers producing a zwitterionic complex in the solution that formed stronger binding complexes with the patulin molecule. The protocols described in this paper provide a blueprint for the development of polymeric adsorbents for other toxins or different food matrices.

  5. Electron and hole transport in the organic small molecule α-NPD

    NASA Astrophysics Data System (ADS)

    Rohloff, R.; Kotadiya, N. B.; Crǎciun, N. I.; Blom, P. W. M.; Wetzelaer, G. A. H.

    2017-02-01

    Electron and hole transport properties of the organic small molecule N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine are investigated by space-charge-limited current measurements. The hole transport shows trap-free behavior with a mobility of 2.3 × 10-8 m2/Vs at vanishing carrier density and electric field. The electron transport, on the other hand, shows heavily trap-limited behavior, which leads to highly unbalanced transport. A trap concentration of 1.3 × 1024 m-3 was found by modeling the electron currents, similar to the universal trap concentration found in conjugated polymers. This indicates that electron trapping is a generic property of organic semiconductors, ranging from vacuum-deposited small-molecules to solution-processed conjugated polymers.

  6. Recent observations of organic molecules in nearby cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Ohishi, M.; Morimoto, M.; Kaifu, N.; Friberg, P.

    1985-01-01

    Recent investigations of the organic chemistry of relatively nearby cold, dark interstellar clouds are reported. Specifically, the presence of interstellar tricarbon monoxide (C3O) in Taurus Molecular Cloud 1 (TMC-1) is confirmed. The first detection in such regions of acetaldehyde (CH3CHO), the most complex oxygen-containing organic molecule yet found in dark clouds is reported, as well as the first astronomical detection of several molecular rotational transitions, including the J = 18-17 and 14-13 transitions of cyanodiacetylene (HC5N), the 1(01)-0(00) transition of acetaldehyde, and the J = 5-4 transition of C3O. A significant upper limit is set on the abundance of cyanocarbene (HCCN) as a result of the first reported interstellar search for this molecule.

  7. Forces between Two Glass Surfaces with Adsorbed Hexadecyltrimethylammonium Salicylate.

    PubMed

    Imae, T; Kato, M; Rutland, M

    2000-02-22

    Forces have been measured for hexadecyltrimethylammonium salicylate (C(16)TASal) layers on glass beads. During the inward process, hydrophobic attraction occurred at lower adsorption of C(16)TASal and electrostatic repulsion interactions happened at higher adsorption. While the jump-in phenomenon was observed for solutions of concentrations below the critical micelle concentration (cmc = 0.15 mM), the step-in phenomenon was characteristic for solutions at the cmc and above the cmc, suggesting the push-out of adsorbed C(16)TASal layers and/or inserted micelles. The remarkable pull-off phenomenon on the outward process occurred for all solutions, indicating a strong interaction between C(16)TASal molecules. For aqueous 0.15 mM C(16)TASal solutions of various NaSal concentrations, on the inward process, the electrostatic repulsive interaction decreased with adding NaSal. This is due to the electrostatic shielding by salt excess. The height of the force wall on the inward process reached a maximum at 0.01 M NaSal, but the interlocking between molecules on two surfaces during the outward process was minimized at 0.1 M NaSal. These tendencies, which are different from that of the electrostatic repulsion interaction, imply the strong cohesion between adsorbed C(16)TASal layers.

  8. Ab Initio Cluster Calculations for the Adsorption of Small Molecules on Oxide Surfaces - from Single Molecules to Monolayers

    NASA Astrophysics Data System (ADS)

    Pykavy, M.; Staemmler, V.; Rittner, F.

    2000-04-01

    Quantum chemical ab initio cluster calculations were performed for the adsorption of small molecules on metal oxide surfaces. Two systems were studied in detail: The adsorption of N2 on the (110) surface plane of TiO2 (rutile) and the adsorption of CO on the polar (0001) surface of Cr2O3. In both cases a full five-dimensional potential for the interaction of a single molecule with the respective surface was calculated. For N2/TiO2 (110) the minimum was found for the end-on adsorption of N2 atop a coordinately unsaturated surface Ti atom, with an adsorption energy of (35 ± 5) kJ/mol. In the case of CO/Cr2O3 (0001) the CO molecule is adsorbed strongly tilted (almost side-on) along a line connecting two Cr3+ ions at the surface; the calculated adsorption energy is 22 kJ/mol. In conjunction with empirical pair potentials for the N2/N2 and CO/CO interaction in the gas phase, Monte Carlo simulations were carried out to determine adsorption isotherms and the geometric structure of adsorbed monolayers.

  9. Electron scattering effects at physisorbed hydrogen molecules on break-junction electrodes and nanowires formation in hydrogen environment

    NASA Astrophysics Data System (ADS)

    van der Maas, M.; Vasnyov, S.; Hendriksen, B. L. M.; Shklyarevskii, O. I.; Speller, S.

    2012-06-01

    Physisorption of hydrogen molecules on the surface of gold and other coinage metals has been studied using distance tunneling spectroscopy. We have observed that the distance dependence of the tunnel current (resistance) displays a strong N-shaped deviation from exponential behavior. Such deviations are difficult to explain within the Tersoff-Hamann approximation. We suggest the scattering of tunneling electrons by H2 molecules as an origin for the observed effect. We have found that this phenomenon is also common for strongly adsorbed organic molecules with a single anchoring group. Pulling Au, Cu and Pt nanowires at 22 K in hydrogen environment shows that the break-junction electrodes are still connected through hydrogen-metal monoatomic chains down to very low conductance values of 10-4-10-6 G0.

  10. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    PubMed

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  11. An accurate empirical method to predict the adsorption strength for π-orbital contained molecules on two dimensional materials.

    PubMed

    Li, Hongping; Wang, Changwei; Xun, Suhang; He, Jing; Jiang, Wei; Zhang, Ming; Zhu, Wenshuai; Li, Huaming

    2018-06-01

    To obtain the adsorption strength is the key point for materials design and parameters optimization in chemical engineering. Here we report a simple but accuracy method to estimate the adsorptive energies by counting the number of π-orbital involved atoms based on theoretical computations for hexagonal boron nitride (h-BN) and graphene. Computational results by density function theory (DFT) as well as spin-component scaled second-order Møller-Plesset perturbation theory (SCS-MP2) both confirm that the adsorptive energies correlate well with the number of π-orbital involved atoms for π-orbital contained molecules. The selected molecules (adsorbates) are commonly used in chemical industry, which contains C, N, S, O atoms. The predicted results for the proposed formulas agree well with the current and previous DFT calculated values both on h-BN and graphene surfaces. Further, it can be also used to predict the adsorptive energies for small π-orbital contained molecules on BN and carbon nanotubes. The interaction type for these adsorptions is typical π-π interaction. Further investigations show that the physical origin of these interactions source from the polar interactions between the adsorbents and adsorbates. Hence, for separation or removal of aromatic molecules, how to modify the aromaticity and polarity of both adsorbents and adsorbates will be the key points for experiments. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    PubMed

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

  13. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.

    PubMed

    Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S

    2014-10-08

    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.

  14. Optical and Transport Properties of Organic Molecules: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Strubbe, David Alan

    Organic molecules are versatile and tunable building blocks for technology, in nanoscale and bulk devices. In this dissertation, I will consider some important applications for organic molecules involving optical and transport properties, and develop methods and software appropriate for theoretical calculations of these properties. Specifically, we will consider second-harmonic generation, a nonlinear optical process; photoisomerization, in which absorption of light leads to mechanical motion; charge transport in junctions formed of single molecules; and optical excitations in pentacene, an organic semiconductor with applications in photovoltaics, optoelectronics, and flexible electronics. In the Introduction (Chapter 1), I will give an overview of some phenomenology about organic molecules and these application areas, and discuss the basics of the theoretical methodology I will use: density-functional theory (DFT), time-dependent density-functional theory (TDDFT), and many-body perturbation theory based on the GW approximation. In the subsequent chapters, I will further discuss, develop, and apply this methodology. 2. I will give a pedagogical derivation of the methods for calculating response properties in TDDFT, with particular focus on the Sternheimer equation, as will be used in subsequent chapters. I will review the many different response properties that can be calculated (dynamic and static) and the appropriate perturbations used to calculate them. 3. Standard techniques for calculating response use either integer occupations (as appropriate for a system with an energy gap) or fractional occupations due to a smearing function, used to improve convergence for metallic systems. I will present a generalization which can be used to compute response for a system with arbitrary fractional occupations. 4. Chloroform (CHCl3) is a small molecule commonly used as a solvent in measurements of nonlinear optics. I computed its hyperpolarizability for second

  15. Growth Of Organic Semiconductor Thin Films with Multi-Micron Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve.

    PubMed

    Fesenko, Pavlo; Flauraud, Valentin; Xie, Shenqi; Kang, Enpu; Uemura, Takafumi; Brugger, Jürgen; Genoe, Jan; Heremans, Paul; Rolin, Cédric

    2017-07-19

    To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 μm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.

  16. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    PubMed

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  17. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies

    NASA Astrophysics Data System (ADS)

    Scivetti, Iván; Persson, Mats

    2017-09-01

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals—HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  18. A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers

    NASA Astrophysics Data System (ADS)

    Vignola, Emanuele; Steinmann, Stephan N.; Vandegehuchte, Bart D.; Curulla, Daniel; Stamatakis, Michail; Sautet, Philippe

    2017-08-01

    The accurate description of the energy of adsorbate layers is crucial for the understanding of chemistry at interfaces. For heterogeneous catalysis, not only the interaction of the adsorbate with the surface but also the adsorbate-adsorbate lateral interactions significantly affect the activation energies of reactions. Modeling the interactions of the adsorbates with the catalyst surface and with each other can be efficiently achieved in the cluster expansion Hamiltonian formalism, which has recently been implemented in a graph-theoretical kinetic Monte Carlo (kMC) scheme to describe multi-dentate species. Automating the development of the cluster expansion Hamiltonians for catalytic systems is challenging and requires the mapping of adsorbate configurations for extended adsorbates onto a graphical lattice. The current work adopts machine learning methods to reach this goal. Clusters are automatically detected based on formalized, but intuitive chemical concepts. The corresponding energy coefficients for the cluster expansion are calculated by an inversion scheme. The potential of this method is demonstrated for the example of ethylene adsorption on Pd(111), for which we propose several expansions, depending on the graphical lattice. It turns out that for this system, the best description is obtained as a combination of single molecule patterns and a few coupling terms accounting for lateral interactions.

  19. Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution.

    PubMed

    Gonçalves, Maraisa; Guerreiro, Mário César; Ramos, Paulize Honorato; de Oliveira, Luiz Carlos Alves; Sapag, Karim

    2013-01-01

    The processing of coffee beans generates large amounts of solid and liquid residues. The solid residues (pulp, husk and parchment) represent a serious environmental problem and do not have an adequate disposal mechanism. In this work, activated carbons (ACs) for adsorption of organic compounds were prepared from coffee pulp by controlled temperature at different pulp/Na2HPO4 ratios (4:1, 2:1, 5:4 and 1:1). The N2 adsorption/desorption isotherms showed ACs with high quantities of mesopores and micropores and specific surface areas of 140, 150, 450 and 440 m(2)g(-1) for AC 4:1, AC 2:1, AC 5:4 and AC 1:1, respectively. The prepared material AC 5:4 showed a higher removal capacity of the organic contaminants methylene blue (MB), direct red (DR) and phenol than did a Merck AC. The maximum capacities for this AC are approximately 150, 120 and 120 mg g(-1) for MB, DR and phenol, respectively. Thus, a good adsorbent was obtained from coffee pulp, an abundant Brazilian residue.

  20. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  1. Static and hydrodynamic studies of the conformation of adsorbed macromolecules at the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Yavorsky, D. P.

    1981-08-01

    The structure of an adsorbed macromolecular layer at the solid/liquid interface under both stationary and flow conditions is examined. The conformation of adsorbed bovine serum albumin (BSA) is deduced from the thickness of surface layers formed on the pore walls of track etched (mica) membranes. Changes in membrane permeability due to protein adsorption are related directly to a net reduction in pore size or an equivalent adsorbed layer thickness. Complementary permeability measurements using electrolyte conduction, tracer diffusion, and pressure driven flow have verified the unique structural qualities of the track etched membrane and collectively demonstrate an ability to determine bare pore size with an accuracy of + or - 2A. The average static thickness of an adsorbed BSA layer, as derived from electrolyte conduction and tracer diffusion, was 43 + or - 3A independent of pore size. In comparison with the known BSA solution dimensions, this measured thickness is consistent with a monolayer of structurally unperturbed protein molecules each oriented in a "side-on" position. Pronounced conformational changes in adsorbed BSA layers were observed under conditions of shear flow. Electrostatic interactions were also shown to significantly affect adsorbed protein conformation through changes in solution ionic strength and surface charge.

  2. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments

    PubMed Central

    Goesmann, Fred; Brinckerhoff, William B.; Raulin, François; Danell, Ryan M.; Getty, Stephanie A.; Siljeström, Sandra; Mißbach, Helge; Steininger, Harald; Arevalo, Ricardo D.; Buch, Arnaud; Freissinet, Caroline; Grubisic, Andrej; Meierhenrich, Uwe J.; Pinnick, Veronica T.; Stalport, Fabien; Szopa, Cyril; Vago, Jorge L.; Lindner, Robert; Schulte, Mitchell D.; Brucato, John Robert; Glavin, Daniel P.; Grand, Noel; Li, Xiang; van Amerom, Friso H. W.

    2017-01-01

    Abstract The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars—Mass spectrometry—Life detection—Planetary instrumentation. Astrobiology 17, 655–685.

  3. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  4. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  5. Development of resin adsorbents for blood purification at Nankai University in China.

    PubMed

    Wang, Yong-Jian; Yu, Yao-Ting

    2011-04-01

    Various types of porous resin adsorbents based on polystyrene, agarose, and cellulose as matrixes coupling with DNA, amino acids and other biological active molecules as ligands were extensively studied in China. Molecular recognition between the ligand and pathogenic molecule was investigated. Several commercialized products are now widely used in hospitals all over China. Whole blood hemoperfusion is used to treat patients suffering from autoimmune diseases, uremia acute intoxication, and hyperbilirubinemia. Clinical performances of hundreds and thousands of patients treated by whole blood sorption therapy show that the therapy is safe, efficient, and cost-effective.

  6. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics

    NASA Astrophysics Data System (ADS)

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C. O.; Taylor, Robert A.; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  7. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics.

    PubMed

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C O; Taylor, Robert A; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  8. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope.

    PubMed

    Vesenka, J; Guthold, M; Tang, C L; Keller, D; Delaine, E; Bustamante, C

    1992-07-01

    A simple method of substrate preparation for imaging circular DNA molecules with the scanning force microscope (SFM) is presented. These biomolecules are adsorbed onto mica that has been soaked in magnesium acetate, sonicated and glow-discharged. The stylus-sample forces that may be endured before sample damage occurs depends on the ambient relative humidity. Images of circular DNA molecules have been obtained routinely using tips specially modified by an electron beam with a radius of curvature, Rc, of about 10 nm [D. Keller and C. Chih-Chung, Surf. Sci. 268 (1992) 333]. The resolution of these adsorbed biomolecules is determined by the Rc. At higher forces individual circular DNA molecules can be manipulated with the SFM stylus. Strategies to develop still sharper probes will be discussed.

  9. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    PubMed

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes

    NASA Astrophysics Data System (ADS)

    Peng, Chengxin; Ning, Guo-Hong; Su, Jie; Zhong, Guiming; Tang, Wei; Tian, Bingbing; Su, Chenliang; Yu, Dingyi; Zu, Lianhai; Yang, Jinhu; Ng, Man-Fai; Hu, Yong-Sheng; Yang, Yong; Armand, Michel; Loh, Kian Ping

    2017-07-01

    Even though organic molecules with well-designed functional groups can be programmed to have high electron density per unit mass, their poor electrical conductivity and low cycle stability limit their applications in batteries. Here we report a facile synthesis of π-conjugated quinoxaline-based heteroaromatic molecules (3Q) by condensation of cyclic carbonyl molecules with o-phenylenediamine. 3Q features a number of electron-deficient pyrazine sites, where multiple redox reactions take place. When hybridized with graphene and coupled with an ether-based electrolyte, an organic cathode based on 3Q molecules displays a discharge capacity of 395 mAh g-1 at 400 mA g-1 (1C) in the voltage range of 1.2-3.9 V and a nearly 70% capacity retention after 10,000 cycles at 8 A g-1. It also exhibits a capacity of 222 mAh g-1 at 20C, which corresponds to 60% of the initial specific capacity. Our results offer evidence that heteroaromatic molecules with multiple redox sites are promising in developing high-energy-density, long-cycle-life organic rechargeable batteries.

  11. Mechanochemical synthesis of small organic molecules

    PubMed Central

    Achar, Tapas Kumar; Bose, Anima

    2017-01-01

    With the growing interest in renewable energy and global warming, it is important to minimize the usage of hazardous chemicals in both academic and industrial research, elimination of waste, and possibly recycle them to obtain better results in greener fashion. The studies under the area of mechanochemistry which cover the grinding chemistry to ball milling, sonication, etc. are certainly of interest to the researchers working on the development of green methodologies. In this review, a collection of examples on recent developments in organic bond formation reactions like carbon–carbon (C–C), carbon–nitrogen (C–N), carbon–oxygen (C–O), carbon–halogen (C–X), etc. is documented. Mechanochemical syntheses of heterocyclic rings, multicomponent reactions and organometallic molecules including their catalytic applications are also highlighted. PMID:29062410

  12. Lab-on-a-Chip Instrumentation and Method for Detecting Trace Organic and Bioorganic Molecules in Planetary Exploration: The Enceladus Organic Analyzer (EOA)

    NASA Astrophysics Data System (ADS)

    Butterworth, A.; Stockton, A. M.; Turin, P.; Ludlam, M.; Diaz-Aguado, M.; Kim, J.; Mathies, R. A.

    2015-12-01

    Lab-on-a-chip instrumentation is providing an ever more powerful in situ approach for detecting organic molecules relevant for chemical/biochemical evolution in our solar system obviating the cost, risk and long mission duration associated with sample return. Microfabricated analysis systems are particularly feasible when directly sampling from comet comae, or ejecta from icy moons, such as targeting organic molecules in plumes from Enceladus. Furthermore, the superb ppm to ppb sensitivity of chip analyzers, like the Enceladus Organic Analyzer (EOA), coupled with the ability to examine organics with a wide variety of functional groups enhance the probability of detecting organic molecules and determining whether they have a biological origin. The EOA is based on 20 years of research and development of microfabricated capillary electrophoresis (CE) analyzers at Berkeley that provide ppb sensitivity for a wide variety of organic molecules including amino acids, carboxylic acids, amines, aldehydes, ketones and polycyclic aromatic hydrocarbons [1]. Organic molecules are labeled with a fluorescent reagent according to their functional group in a programmable microfluidic processor [2,3] and then separated in a CE system followed by laser-induced fluorescence detection to determine molecular size and concentration. The EOA will be flown through Enceladus plumes and uses a specially designed impact plate/door to capture ice-particles. After closing the door, the material in the capture chamber is dissolved, labeled and analyzed by the microfabricated CE system. Only a few thousand 2 μm diameter particles containing ppm organic concentrations will provide an EOA detectable signal. If amino acids are detected, their chirality is determined because chirality is the best indicator of a biologically produced molecule. We have developed a flight design of this instrument for planetary exploration that is compact (16x16x12 cm), has low mass (3 kg), and requires very low power

  13. The molecular inventory around protostars: water, organic molecules, and the missing oxygen problem

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.

    2018-06-01

    Massive star formation is accompanied by significant chemical evolution in the surrounding interstellar gas. Here, grains are heated up and icy mantles evaporate, releasing a rich inventory of water and organic molecules into the gas-phase within “hot core” regions surrounding massive protostars. Because molecules on the grain surface present broad infrared features without rotational structure, only the most abundant molecules can be identified unambiguously in the solid phase; once released into the gas-phase, however, where they are free to rotate, the constituents of grain mantles can be identified easily by means of rotational spectroscopy at millimeter and submillimeter wavelengths or through rovibrational spectroscopy in the mid-infrared. While observations of pure-rotational emission lines provide a broad view of hot core chemistry, absorption line spectroscopy of rovibrational transitions can probe the very hottest material closest to the protostar. With access to the mid-infrared spectral region from above 99% of Earth’s water vapor, SOFIA provides a unique platform for high-resolution rovibrational spectroscopy of water and organic molecules, many of which have vibrational transitions in the 5 – 8 micron spectral region that is unobservable from the ground. High spectral resolution is essential for disentangling the rotational structure and providing reliable measurements of the molecular column densities and temperatures. Future SOFIA observations will help elucidate the inventory of water and organic molecules around young protostars, and can address a puzzle related to the “oxygen budget” in the interstellar medium: surprisingly, the main interstellar reservoirs of the third-most abundant element in the Universe have yet to be identified.

  14. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities.

    PubMed

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-10-03

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as -OH and -NH 2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH) 2 ) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of -OH and -(OH) 2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water.

  15. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    NASA Astrophysics Data System (ADS)

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-10-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as -OH and -NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of -OH and -(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water.

  16. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    PubMed Central

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-01-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water. PMID:27695005

  17. A study of vibrating nanotubes with additional adsorbed masses

    NASA Astrophysics Data System (ADS)

    Adler, Joan; Adler, Omri

    2017-11-01

    We describe calculations of the electronic density surrounding strained nanotubes. These are then used to estimate the nanotube wall width. This width is an essential parameter for the analysis of the nanotube vibrations. By studying the effect of additional adsorbed molecules on the nanotubes’ vibrations and their frequency changes we can deduce the molecules’ mass. Our calculations show that the strain does not greatly affect the nanotube width, but the vibrations change sufficiently for the mass to be detected.

  18. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    NASA Astrophysics Data System (ADS)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  19. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  20. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.

    PubMed

    Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P

    2015-03-28

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  1. Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface

    NASA Astrophysics Data System (ADS)

    Caffrey, Nuala M.; Ferriani, Paolo; Marocchi, Simone; Heinze, Stefan

    2013-10-01

    Using first-principles calculations, we show that the magnetic properties of a two-dimensional antiferromagnetic transition-metal surface are modified on the atomic scale by the adsorption of small organic molecules. We consider benzene (C6H6), cyclooctatetraene (C8H8), and a small transition-metal-benzene complex (BzV) adsorbed on a single atomic layer of Mn deposited on the W(110) surface—a surface which exhibits a nearly antiferromagnetic alignment of the magnetic moments in adjacent Mn rows. Due to the spin dependent hybridization of the molecular pz orbitals with the d states of the Mn monolayer, there is a significant reduction of the magnetic moments in the Mn film. Furthermore, the spin polarization at this organic-antiferromagnetic interface is found to be modulated on the atomic scale, both enhanced and inverted, as a result of the molecular adsorption. We show that this effect can be resolved by spin-polarized scanning tunneling microscopy (SP-STM). Our simulated SP-STM images display a spatially dependent spin resolved vacuum charge density above an adsorbed molecule—i.e., different regions above the molecule sustain different signs of spin polarization. While states with s and p symmetry dominate the vacuum charge density in the vicinity of the Fermi energy for the clean magnetic surface, we demonstrate that after a molecule is adsorbed those d states, which are normally suppressed due to their symmetry, can play a crucial role in the vacuum due to their interaction with the molecular orbitals. We also model the effect of small deviations from perfect antiferromagnetic ordering, induced by the slight canting of magnetic moments due to the spin spiral ground state of Mn/W(110).

  2. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James

    capacity from natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2CO 3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...« less

  3. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    NASA Technical Reports Server (NTRS)

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  4. Evaluation of Adsorption Characteristics of a Fibrous Adsorbent Containing Zwitter-Ionic Functional Group, Targeting Organic Acids.

    PubMed

    Nakazawa, Akira; Tang, Ning; Inoue, Yoshinori; Kamichatani, Waka; Katoh, Toshifumi; Saito, Mitsuru; Obara, Kenji; Toriba, Akira; Hayakawa, Kazuichi

    2017-01-01

    Diallylamine-maleic acid copolymer (DAM)-nonwoven fabric (DAM-f), a fibrous adsorbent, contains DAM with zwitter-ionic functional groups and forms a hydration layer on the surface. The aim of this report was to evaluate the adsorption selectivity of DAM-f to semi-volatile organic acid (C1-C5). In the aqueous phase, formic acid dissolved in the hydration layer bound to the imino group of DAM-f due to anion exchange interaction. In the gas phase, the adsorption amounts of organic acids increased with the exposure time. Moreover, the adsorption rate constants correlated with the air/water partition coefficients (log K aw ) for formic acid, propionic acid, butyric acid, valeric acid and isovaleric acid, except for acetic acid. These results indicate that DAM-f is highly selective to hydrophilic compounds which easily move from the air to the hydration layer of DAM-f.

  5. Indistinguishable near-infrared single photons from an individual organic molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebbia, Jean-Baptiste; Tamarat, Philippe; Lounis, Brahim

    2010-12-15

    By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate postselected polarization-entangled photon pairs as a test bench for applications in quantum information.

  6. Degradation of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Song, Q. L.; Wang, M. L.; Obbard, E. G.; Sun, X. Y.; Ding, X. M.; Hou, X. Y.; Li, C. M.

    2006-12-01

    Small-molecule organic solar cells with a structure of indium tin oxide (ITO)tris-8-hydroxy-quinolinato aluminum (Alq3) (2nm)fullerene (C60) (40nm)\\copper phthalocyanine (CuPc) (32nm)Au (40nm) were fabricated. The shelf lifetime of unencapsulated devices was over 1500h, and the power conversion efficiency reached 0.76% under AM1.5G (air mass 1.5 global) 75mW/cm2. The long lifetime was attributed to the inverted structure compared to the conventional ITO CuPcC60bufferAl structure since the former could effectively protect C60 from the diffusion of oxygen and modify interfacial electrical properties. The introduction of a 2nm Alq3 layer into the cells enhanced the power conversion efficiency by more than 20 times. The presence of the thin Alq3 film on the ITO substrate lowered the substrate work function and hence increased the electric field in the organic layers, which was beneficial to the collection of free carriers. The reasons for the degradation of such kind of organic solar cells are analyzed in detail.

  7. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  8. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  9. M4FT-15OR03100415 - Update on COF-based Adsorbent Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Richard T.; Dai, Sheng

    2015-02-01

    This letter report provides an update on activities focused on generating nanoporous adsorbents involving covalent organic frameworks (COF) and zeolitic imidazolium frameworks (ZIF). The adsorbents have been generated and screened in a uranyl-spiked brine (6 ppm U) to understand uranyl-binding behavior. Porous organic polymers (POP) also qualify under this title and are similar to the COF PPN-6 that is discussed herein. Seven COF/POP and one 1 ZIF were synthesized and screened for uranyl adsorption. Seawater screening is on-going via batch testing while flow screening systems are being developed at PNNL.

  10. Many-body perturbation theory for understanding optical excitations in organic molecules and solids

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar

    2018-04-01

    Semiconductors composed of organic molecules are promising as components for flexible and inexpensive optoelectronic devices, with many recent studies aimed at understanding their electronic and optical properties. In particular, computational modeling of these complex materials has provided new understanding of the underlying properties which give rise to their excited-state phenomena. This article provides an overview of recent many-body perturbation theory (MBPT) studies of optical excitations within organic molecules and solids. We discuss the accuracy of MBPT within the GW/BSE approach in predicting excitation energies and absorption spectra, and assess the impact of two commonly used approximations, the DFT starting point and the Tamm–Dancoff approximation. Moreover, we summarize studies that elucidate the role of solid-state structure on the nature of excitons in organic crystals. These studies show that a rich physical understanding of organic materials can be obtained from GW/BSE.

  11. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  12. Relative Sizes of Organic Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. Molecular dynamics simulations of Palmitic acid adsorbed on NaCl

    NASA Astrophysics Data System (ADS)

    Lovrić, Josip; Brizquez, Stéphane; Duflot, Denis; Monnerville, Maurice; Pouilly, Brigitte; Toubin, Céline

    2015-04-01

    The aerosol and gases effects in the atmosphere play an important role on health, air quality and climate, affecting both political decisions and economic activities around the world [1]. Among the several approaches of studying the origin of these effects, computational modeling is of fundamental importance, providing insights on the elementary chemical processes. Sea salts are the most important aerosol in the troposphere (109T/year) [2]. Our theoretical work consists in modeling a (100) NaCl surface coated with palmitic acid (PA) molecules. Molecular dynamics simulations are carried out with the GROMACS package [3], in the NPT ensemble at different temperatures, different PA coverages and various humidity. We focus on two aspects of the PA organization at the salt surface: the first one is related to transition in molecular orientation of the adsorbate as a function of PA coverage. The second one implies the effect of humidity, by adding water molecules, on the organization of the fatty acid at the salt surface, and especially on the occurrence of PA isolated islands as observed in the experiments [4]. For high humidity conditions, PA are removed from the salt surface and form islands on top of the water. This effect is enhanced when temperature increases. Acknowledgments: this research has been supported by the CaPPA project (Chemical and Physical Properties of the Atmosphere), funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-10-LABX-005. [1] O. Boucher et al, 5th Assessment Report IPCC, (2013) [2] B. J. Finlayson-Pitts, Chem. Rev.103, 4801-4822 (2003) [3] http://www.gromacs.org/ [4] S. Sobanska et al, private communication

  14. Chemical and electrochemical oxidation of small organic molecules

    NASA Astrophysics Data System (ADS)

    Smart, Marshall C.

    Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be

  15. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  16. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  17. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.

    PubMed

    Dražević, Emil; Košutić, Krešimir; Svalina, Marin; Catalano, Jacopo

    2017-06-01

    Reverse osmosis (RO) membranes are primarily designed for removal of salts i.e. for desalination of brackish and seawater, but they have also found applications in removal of organic molecules. While it is clear that steric exclusion is the dominant removal mechanism, the fundamental explanation for how and why the separation occurs remains elusive. Until recently there was no strong microscopic evidences elucidating the structure of the active polyamide layers of RO membranes, and thus they have been conceived as "black boxes"; or as an array of straight capillaries with a distribution of radii; or as polymers with a small amount of polymer free domains. The knowledge of diffusion and sorption coefficients is a prerequisite for understanding the intrinsic permeability of any organic solute in any polymer. At the same time, it is technically challenging to accurately measure these two fundamental parameters in very thin (20-300 nm) water-swollen active layers. In this work we have measured partition and diffusion coefficients and RO permeabilities of ten organic solutes in water-swollen active layers of two types of RO membranes, low (SWC4+) and high flux (XLE). We deduced from our results and recent microscopic studies that the solute flux of organic molecules in polyamide layer of RO membranes occurs in two domains, dense polymer (the key barrier layer) and the water filled domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGES

    Bi, Sheng; He, Zhengran; Chen, Jihua; ...

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10 -2 cm 2/V s, whichmore » is the highest mobility from SMDPPEH ever reported.« less

  19. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    PubMed

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Many-Body Perturbation Theory for Understanding Optical Excitations in Organic Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar

    Organic semiconductors are promising as light-weight, flexible, and strongly absorbing materials for next-generation optoelectronics. The advancement of such technologies relies on understanding the fundamental excited-state properties of organic molecules and solids, motivating the development of accurate computational approaches for this purpose. Here, I will present first-principles many-body perturbation theory (MBPT) calculations aimed at understanding the spectroscopic properties of select organic molecules and crystalline semiconductors, and improving these properties for enhanced photovoltaic performance. We show that for both gas-phase molecules and condensed-phase crystals, MBPT within the GW/BSE approximation provides quantitative accuracy of transport gaps extracted from photoemission spectroscopy and conductance measurements, as well as with measured polarization-dependent optical absorption spectra. We discuss the implications of standard approximations within GW/BSE on accuracy of these results. Additionally, we demonstrate significant exciton binding energies and charge-transfer character in the crystalline systems, which can be controlled through solid-state morphology or change of conjugation length, suggesting a new strategy for the design of optoelectronic materials. We acknowledge NSF for financial support; NERSC and Boston University for computational resources.

  1. Electrochemical assembly of organic molecules by the reduction of iodonium salts

    DOEpatents

    Dirk, Shawn M [Albuquerque, NM; Howell, Stephen W [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2009-06-23

    Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.

  2. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage« less

  3. UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases.

    PubMed

    Song, Ji Yoon; Ahmed, Imteaz; Seo, Pill Won; Jhung, Sung Hwa

    2016-10-03

    The metal-organic framework (MOF) UiO-66 was synthesized in one step from zirconium chloride and isophthalic acid (IPA), together with the usual link material, terephthalic acid (TPA). UiO-66 with free -COOH can be obtained in a facile way by replacing up to 30% of the TPA with IPA. However, the chemical and thermal stability of the synthesized MOFs decreased with increasing IPA content used in the syntheses, suggesting an increase in the population of imperfect bonds in the MOFs because of the asymmetrical structure of IPA. The obtained MOFs with free -COOH were applied in liquid-phase adsorptions from both water and model fuel to not only estimate the potential applications but also confirm the presence of -COOH in the MOFs. The adsorbed amounts of several organics (triclosan and oxybenzone from water and indole and pyrrole from fuel) increased monotonously with increasing IPA content applied in MOF synthesis (or -COOH in the MOFs). The favorable contribution of free -COOH to adsorption can be explained by H-bonding, and the direction of H-bonds (adsorbates: H donor; MOFs: H acceptor) was confirmed by the adsorption of oxybenzone in a wide pH range. The versatile applications of the MOFs with -COOH in adsorptions from both polar and nonpolar phases are remarkable considering that hydrophobic and hydrophilic adsorbents are generally required for water and fuel purification, respectively. Finally, the presence of free -COOH in the MOFs was confirmed by liquid-phase adsorptions together with general Fourier transform infrared analyses and decreased chemical and thermal stability.

  4. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    PubMed

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrophoretic assembly of organic molecules and composites for electrochemical supercapacitors.

    PubMed

    Su, Y; Zhitomirsky, I

    2013-02-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of 1-pyrenebutyric acid (PBH) films from aqueous solutions. The films can be deposited at constant voltage or potentiodynamic conditions. The method allowed the formation of 0.1-2 μm thick films, containing needle-shape PBH particles. The deposition mechanism involved the electrophoresis, pH decrease at the anode surface, charge neutralization and formation of insoluble PBH films. The film morphology and shape of the PBH particles are controlled by the π-π stacking mechanism of the polyaromatic PBH molecules. The important finding was the possibility of controlled EPD of multiwalled carbon nanotubes (MWCNTs) using PBH as a charging, dispersing and film forming agent. It was found that at low voltages or low PBH concentrations the deposits contained mainly MWCNT. The increase in the deposition voltage or/and PBH concentration resulted in co-deposition of MWCNT and needle-shape PBH particles. The new approach to the deposition of MWCNT was used for the fabrication of composite MnO(2)-MWCNT films for electrodes of electrochemical supercapacitors, which showed a specific capacitance of 250 F g(-1). The EPD method developed in this investigation paves the way for the deposition of other small organic molecules and composites and their applications in new materials and devices, utilizing functional properties of the organic molecules, CNT, and other advanced materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    PubMed

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  7. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D.

    PubMed

    Tammelin, Tekla; Merta, Juha; Johansson, Leena-Sisko; Stenius, Per

    2004-12-07

    The adsorption and viscoelastic properties of layers of a cationic polyelectrolyte (cationic starch, CS, with 2-hydroxy-3-trimethylammoniumchloride as the substituent) adsorbed from aqueous solutions (pH 7.5, added NaCl 0, 1, 100, and 500 mM) on silica were studied with a quartz crystal microbalance with dissipation (QCM-D). Three different starches were investigated (weight-average molecular weights M(w) approximately 8.7 x 10(5) and 4.5 x 10(5) with degree of substitution DS = 0.75 and M(w) approximately 8.8 x 10(5) with DS = 0.2). At low ionic strength, the adsorbed layers are thin and rigid and the amount adsorbed can be calculated using the Sauerbrey equation. When the ionic strength is increased, significant changes take place in the amount of adsorbed CS and the viscoelasticity of the adsorbed layer. These changes were analyzed assuming that the layer can be described as a Voigt element on a rigid surface in contact with purely viscous solvent. It was found that CS with low charge density forms a thicker and more mobile layer with higher viscosity and elasticity than CS with high charge density. The polymers adsorbed on the silica even when the ionic strength was so high that electrostatic interactions were effectively screened. At this high ionic strength, it was possible to study the effect of molecular weight and molecular weight distribution of the CS on the properties of the adsorbed film. Increasing the molecular weight of CS resulted in a larger hydrodynamic thickness. CS with a narrow molecular weight distribution formed a more compact and rigid layer than broadly distributed CS, presumably due to the better packing of the molecules.

  9. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.

    PubMed

    Xue, J; Feng, Y

    2018-06-01

    Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.

  10. Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy

    PubMed Central

    He, Xiaochuan; Zhu, Gangbei; Yang, Jianbing; Chang, Hao; Meng, Qingyu; Zhao, Hongwu; Zhou, Xin; Yue, Shuai; Wang, Zhuan; Shi, Jinan; Gu, Lin; Yan, Donghang; Weng, Yuxiang

    2015-01-01

    Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly. PMID:26611323

  11. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    PubMed

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-08

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural, electronic and optical properties of CO adsorbed on the defective anatase TiO2 (101) surface; a DFT study

    NASA Astrophysics Data System (ADS)

    Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad

    2017-08-01

    This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.

  13. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  14. Continuous hemoadsorption with a cytokine adsorber during sepsis - a review of the literature.

    PubMed

    Houschyar, Khosrow S; Pyles, Malcolm N; Rein, Susanne; Nietzschmann, Ina; Duscher, Dominik; Maan, Zeshaan N; Weissenberg, Kristian; Philipps, Hubertus M; Strauss, Catharina; Reichelt, Beate; Siemers, Frank

    2017-05-29

    Sepsis is a well-recognized healthcare issue worldwide, ultimately resulting in significant mortality, morbidity and resource utilization during and after critical illness. In its most severe form, sepsis causes multi-organ dysfunction that produces a state of critical illness characterized by severe immune dysfunction and catabolism. Sepsis induces the activation of complement factor via 3 pathways and the release of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β), resulting in a systemic inflammatory response. The inflammatory cytokines and nitric oxide release induced by sepsis decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Several clinical and experimental studies have reported that treatment using adsorption of cytokines is beneficial during endotoxemia and sepsis. This review article analyzes the efficacy of CytoSorb® adsorber in reducing the inflammatory response during sepsis. The CytoSorb® adsorber is known to have excellent adsorption rates for inflammatory cytokines such as IL-1β, IL-6, IL-8, IL-10, and TNF-α. Studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Additionally, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamic stabilization and in preventing organ failure in critically ill patients. Although further investigations and clinical trials are needed, treatment with cytokine adsorbing columns may play an important role in the treatment of sepsis in the near future.

  15. Computational laser intensity stabilisation for organic molecule concentration estimation in low-resource settings

    NASA Astrophysics Data System (ADS)

    Haider, Shahid A.; Kazemzadeh, Farnoud; Wong, Alexander

    2017-03-01

    An ideal laser is a useful tool for the analysis of biological systems. In particular, the polarization property of lasers can allow for the concentration of important organic molecules in the human body, such as proteins, amino acids, lipids, and carbohydrates, to be estimated. However, lasers do not always work as intended and there can be effects such as mode hopping and thermal drift that can cause time-varying intensity fluctuations. The causes of these effects can be from the surrounding environment, where either an unstable current source is used or the temperature of the surrounding environment is not temporally stable. This intensity fluctuation can cause bias and error in typical organic molecule concentration estimation techniques. In a low-resource setting where cost must be limited and where environmental factors, like unregulated power supplies and temperature, cannot be controlled, the hardware required to correct for these intensity fluctuations can be prohibitive. We propose a method for computational laser intensity stabilisation that uses Bayesian state estimation to correct for the time-varying intensity fluctuations from electrical and thermal instabilities without the use of additional hardware. This method will allow for consistent intensities across all polarization measurements for accurate estimates of organic molecule concentrations.

  16. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  17. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  18. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).

    PubMed

    Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X

    2011-03-31

    Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.

  19. Ultraviolet Pretreatment of Titanium Dioxide and Tin-Doped Indium Oxide Surfaces as a Promoter of the Adsorption of Organic Molecules in Dry Deposition Processes: Light Patterning of Organic Nanowires.

    PubMed

    Oulad-Zian, Youssef; Sanchez-Valencia, Juan R; Parra-Barranco, Julian; Hamad, Said; Espinos, Juan P; Barranco, Angel; Ferrer, Javier; Coll, Mariona; Borras, Ana

    2015-08-04

    In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2.

  20. Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent.

    PubMed

    Zhao, Yuanyuan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2013-08-07

    Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kinetics and isothermal processes of chlorpyrifos sorption to WTRs were better described by a pseudo-second-order model and by the Freundlich equation, respectively. Moreover, compared with paddy soil and other documented absorbents, the WTRs exhibited a greater affinity for chlorpyrifos (log Koc = 4.76-4.90) and a higher chlorpyrifos sorption capacity (KF = 5967 mg(1-n)·L·kg(-1)) owing to the character and high content of organic matter. Further investigation demonstrated that the pH had a slight but statistically insignificant effect on chlorpyrifos sorption to WTRs; solution ionic strength and the presence of low molecular weight organic acids both resulted in concentration-dependent inhibition effects. Overall, these results confirmed the feasibility of using WTRs as a novel chlorpyrifos adsorbent.

  1. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

    PubMed Central

    Behm, R Jürgen

    2014-01-01

    Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512

  2. Curiosity: organic molecules on Mars? (Italian Title: Curiosity: molecole organiche su Marte?)

    NASA Astrophysics Data System (ADS)

    Guaita, C.

    2015-05-01

    First analytical results from SAM instrument onboard of Curiosity are coherent with the presence, on Mars, of organic molecules possibly linked to bacterial metabolism. These data require also a modern revision of the debated results obtained by Viking landers.

  3. Rapid Water Transport through Organic Layers on Ice.

    PubMed

    Kong, Xiangrui; Toubin, Céline; Habartova, Alena; Pluharova, Eva; Roeselova, Martina; Pettersson, Jan B C

    2018-05-31

    Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.

  4. The molecular transport and intercalation of guest molecules into hydrogen-bonded metal-organic frameworks (HMOFs)

    NASA Astrophysics Data System (ADS)

    Hogan, Greg Anthony

    The process of molecular transport and intercalation has been widely studied for many years, resulting in the discovery of molecular frameworks that are capable of hosting guest molecules or ions. Layered and porous metal-organic frameworks (MOFs) have been found to have applications in the field of catalysis, storage, separations, and ion-exchange. More recently, molecular components with peripheral hydrogen-bonding moieties have been used to affect the synthesis of hydrogen-bonded metal-organic frameworks (HMOFs) as an alternative to MOFs, which are interconnected via coordinate-covalent bonds. While MOFs are perhaps stronger materials, HMOFs have the advantage of being easily modifiable and more flexible. Because HMOFs have not been extensively studied for their ability to host molecules, and because their ability to withstand guest loss and guest exchange is essentially unknown, here we report the synthesis and molecular transport properties of both close-packed and porous HMOFs. Layered materials can mimic the behavior of naturally occurring clays, where guest molecules are absorbed and the layer will expand to accommodate the entering guest molecule. We have created a clay mimic composed of a metal pyridine-dicarboxylates and ammonium counterions (a layered HMOF), which is suitable for studying the ability of such materials to absorb guest molecules. We can control the distance of the interlayer region, as well as the chemical nature (hydrophobic or hydrophilic) by varying the organic amine. The metal complex contains axial water ligands that are replaceable, and such ligand exchange has precedence in coordination polymer (MOF) systems, and has been termed "coordinative intercalation". Using the synthesized layered material we examined the process of intercalation, having chosen a variety of guest molecules ranging from alkyl to aryl molecules, each of which have substituents varying in size, shape and electronics. The first set of guest molecules are non

  5. Thermal and FTIR spectroscopic analysis of the interactions of aniline adsorbed on to MCM-41 mesoporous material.

    PubMed

    Eimer, Griselda A; Gómez Costa, Marcos B; Pierella, Liliana B; Anunziata, Oscar A

    2003-07-15

    The adsorption of aniline on Na-AlMCM-41 synthesized by us has been characterized by infrared spectroscopy, temperature programmed desorption (TPD), and differential thermal analysis methods. Aniline would be mostly bound to the mesostructure through weak pi interactions. On the mesostructure containing adsorbed water, the co-adsorption of aniline could occur by weak hydrogen bonding through surface water molecules. For water, two possible modes of adsorption have been identified. Different associations between aniline and hydrated and nonhydrated mesostructures have been evaluated in order to favor the posterior in situ polymerization of adsorbed aniline.

  6. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.

    PubMed

    Yazaydin, A Ozgür; Snurr, Randall Q; Park, Tae-Hong; Koh, Kyoungmoo; Liu, Jian; Levan, M Douglas; Benin, Annabelle I; Jakubczak, Paulina; Lanuza, Mary; Galloway, Douglas B; Low, John J; Willis, Richard R

    2009-12-30

    A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.

  7. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  8. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE PAGES

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.; ...

    2018-04-25

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  9. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  10. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    NASA Astrophysics Data System (ADS)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  11. Effect of the endcapping of reversed-phase high-performance liquid chromatography adsorbents on the adsorption isotherm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2005-09-01

    The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C{sub 18} and the non-endcapped Resolve-C{sub 18} are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C{submore » 18} and Symmetry-C{sub 18}, respectively. This is explained by the effect of the mobile phase composition on the structure of the C{sub 18}-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.« less

  12. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    PubMed Central

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  13. Synchrotron-based soft X-ray spectroscopic studies of the electronic structure of organic semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander

    Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be

  14. Normal and frictional interactions of purified human statherin adsorbed on molecularly-smooth solid substrata.

    PubMed

    Harvey, Neale M; Carpenter, Guy H; Proctor, Gordon B; Klein, Jacob

    2011-09-01

    Human salivary statherin was purified from parotid saliva and adsorbed to bare hydrophilic (HP) mica and STAI-coated hydrophobic (HB) mica in a series of Surface Force Balance experiments that measured the normal (F(n)) and friction forces (F(s)*) between statherin-coated mica substrata. Readings were taken both in the presence of statherin solution (HP and HB mica) and after rinsing (HP mica). F(n) measurements showed, for both substrata, monotonic steric repulsion that set on at a surface separation D ~20 nm, indicating an adsorbed layer whose unperturbed thickness was ca 10 nm. An additional longer-ranged repulsion, probably of electrostatic double-layer origin, was observed for rinsed surfaces under pure water. Under applied pressures of ~1 MPa, each surface layer was compressed to a thickness of ca 2 nm on both types of substratum, comparable with earlier estimates of the size of the statherin molecule. Friction measurements, in contrast with F(n) observations, were markedly different on the two different substrata: friction coefficients, μ ≡ ∂F(s)*/∂F(n), on the HB substratum (μ ≈ 0.88) were almost an order of magnitude higher than on the HP substratum (μ ≈ 0.09 and 0.12 for unrinsed and rinsed, respectively), and on the HB mica there was a lower dependence of friction on sliding speed than on the HP mica. The observations were attributed to statherin adsorbing to the mica in multimer aggregates, with internal re-arrangement of the protein molecules within the aggregate dependent on the substratum to which the aggregate adsorbed. This internal re-arrangement permitted aggregates to be of similar size on HP and HB mica but to have different internal molecular orientations, thus exposing different moieties to the solution in each case and accounting for the very different friction behaviour.

  15. Nucleation of Organic Molecules via a Hot Precursor State: Pentacene on Amorphous Mica

    PubMed Central

    2013-01-01

    Organic thin films have attracted considerable interest due to their applicability in organic electronics. The classical scenario for thin film nucleation is the diffusion-limited aggregation (DLA). Recently, it has been shown that organic thin film growth is better described by attachment-limited aggregation (ALA). However, in both cases, an unusual relationship between the island density and the substrate temperature was observed. Here, we present an aggregation model that goes beyond the classical DLA or ALA models to explain this behavior. We propose that the (hot) molecules impinging on the surface cannot immediately equilibrate to the substrate temperature but remain in a hot precursor state. In this state, the molecules can migrate considerable distances before attaching to a stable or unstable island. This results in a significantly smaller island density than expected by assuming fast equilibration and random diffusion. We have applied our model to pentacene film growth on amorphous Muscovite mica. PMID:24340130

  16. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    PubMed

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  17. From molecule to solid: The prediction of organic crystal structures

    NASA Astrophysics Data System (ADS)

    Dzyabchenko, A. V.

    2008-10-01

    A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.

  18. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    PubMed

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  19. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    NASA Astrophysics Data System (ADS)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  20. Thermal Reactivity Of Organic Molecules With Perchlorates And The Detection Of Organics In Mars Samples With SAM Onboard Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Millan, M.; Buch, A.; Freissinet, C.; Guzman, M.; Glavin, D. P.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2017-12-01

    The search for organic molecules at the Mars surface is a key objective to assess the potential for habitability of the planet and to find biomarkers. Both the past Viking landers and the Curiosity rover of today carry onboard instruments based on gas chromatography coupled to mass spectrometry with the aim to analyze the content of organics present in soil or rock samples. These instruments analyze the volatile compounds released from the samples submitted to thermal or chemical treatments. Even though these sample preparation processes are commonly used on Earth for their efficient extraction of organic materials from mineral matrixes, the presence of oxychlorines recently discovered in the Mars soil [1, 2] makes the process for space applications more complex and the results more difficult to interpret. Indeed, the release of volatile inorganic reactive molecules from oxychlorines during the sample heating process induces reactions of chlorination and oxidation of the organic molecules. For this reason, in an effort to contribute to the interpretation of the results obtained with the Viking/GCMS, and the MSL/SAM experiment our team currently operates on Mars, we started to study systematically the thermal reactivity of a series of organic molecules, of interest for Mars and life purposes, mixed with oxychlorines either detected or potentially present in the soil of Mars [3]. In this presentation, we will mainly focus on two sets of results that were obtained while studying the reactivity of calcium perchlorates with polyaromatic hydrocarbons, amino acids and carboxylic acids under pyrolytic conditions similar to those used in the SAM experiment. First of all, we will show the dependence of reactivity on the temperature of sublimation and decomposition of the individual components in the mixture and, secondly, we will discuss the detection of aromatic chlorinated species by SAM in samples collected at the Cumberland site from the results obtained in this study

  1. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    NASA Astrophysics Data System (ADS)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  2. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Search for clues of life or habitability at Mars: laboratory simulation of the evolution of organic molecules at the surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien

    Several lines of evidence suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars until now. Organic matter is therefore expected to be present at the surface/subsurface of the planet. The search for these organic relics is one of the main objectives of Mars exploration missions. But current environmental conditions at the surface - UV radiation, oxidants and energetic particles - can generate physico-chemical processes that may induce organic molecules evolution. Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters

  4. Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study

    NASA Astrophysics Data System (ADS)

    Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian

    2018-02-01

    As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.

  5. Insight into Multifunctional Reactive Adsorbents: Engaging Chemistry, Porosity, Photoactivity and Conductivity into Decontamination Process

    DTIC Science & Technology

    2017-06-07

    AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d...Insight Into Multifunctional Reactive Adsorbents: Engaging Chemistry , Porosity, Photoactivity and Conductivity into Decontamination Process The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 CWA decontamination, multifunctional adsorbents, porosity, surface chemistry

  6. Complex organic molecules in the Galactic Centre: the N-bearing family

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Jiménez-Serra, I.; Rivilla, V. M.; Martín, S.; Martín-Pintado, J.; Requena-Torres, M. A.; Armijos-Abendaño, J.; Riquelme, D.; Aladro, R.

    2018-05-01

    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.

  7. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Loffreda, David

    2006-05-01

    Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.

  8. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  9. Measurement of the average mass of proteins adsorbed to a nanoparticle by using a suspended microchannel resonator.

    PubMed

    Nejadnik, M Reza; Jiskoot, Wim

    2015-02-01

    We assessed the potential of a suspended microchannel resonator (SMR) to measure the adsorption of proteins to nanoparticles. Standard polystyrene beads suspended in buffer were weighed by a SMR system. Particle suspensions were mixed with solutions of bovine serum albumin (BSA) or monoclonal human antibody (IgG), incubated at room temperature for 3 h and weighed again with SMR. The difference in buoyant mass of the bare and protein-coated polystyrene beads was calculated into real mass of adsorbed proteins. The average surface area occupied per protein molecule was calculated, assuming a monolayer of adsorbed protein. In parallel, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and zeta potential measurements were performed. SMR revealed a statistically significant increase in the mass of beads because of adsorption of proteins (for BSA and IgG), whereas DLS and NTA did not show a difference between the size of bare and protein-coated beads. The change in the zeta potential of the beads was also measurable. The surface area occupied per protein molecule was in line with their known size. Presented results show that SMR can be used to measure the mass of adsorbed protein to nanoparticles with a high precision in the presence of free protein. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Meng, X; Calvache, E

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumesmore » of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.« less

  11. Adsorbed states of chlorophenol on Cu(110) and controlled switching of single-molecule junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuyama, H., E-mail: hokuyama@kuchem.kyoto-u.ac.jp; Kitaguchi, Y.; Hattori, T.

    A molecular junction of substituted benzene (chlorophenol) is fabricated and controlled by using a scanning tunneling microscope (STM). Prior to the junction formation, the bonding geometry of the molecule on the surface is characterized by STM and electron energy loss spectroscopy (EELS). EELS shows that the OH group of chlorophenol is dissociated on Cu(110) and that the molecule is bonded nearly flat to the surface via an O atom, with the Cl group intact. We demonstrate controlled contact of an STM tip to the “available” Cl group and lift-up of the molecule while it is anchored to the surface viamore » an O atom. The asymmetric bonding motifs of the molecule to the electrodes allow for reversible control of the junction.« less

  12. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  13. Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model.

    PubMed

    Harm, Stephan; Gabor, Franz; Hartmann, Jens

    2015-01-01

    Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation.

  14. Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model

    PubMed Central

    Gabor, Franz; Hartmann, Jens

    2015-01-01

    Introduction. Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. Methods. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. Results. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. Conclusion. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation. PMID:26770992

  15. Organic Optoelectronic Devices Employing Small Molecules

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt

  16. Evolution of organic molecules under Mars-like UV radiation with EXPOSE-R2, a photochemistry experiment outside the International Space Station

    NASA Astrophysics Data System (ADS)

    Rouquette, Laura; Stalport, Fabien; Cottin, Hervé; Coll, Patrice; Szopa, Cyril; Saiagh, Kafila; Poch, Olivier; Khalaf, Diana; Chaput, Didier; Grira, Katia; Chaouche, Naila; Dequaire, Tristan

    2016-10-01

    The detection and identification of organic molecules on Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now.The EXPOSE R2 facility has been placed in low Earth orbit (LEO) under solar radiation, outside the International Space Station (ISS) in 2014. One of the EXPOSE R2 experiment, called PSS (Photochemistry on the Space Station), is dedicated to astrobiology- and astrochemistry-related studies. Part of PSS samples have been dedicated to the study of the evolution of organic molecules under Mars-like surface radiation conditions. Indeed, UV radiation above 200 nm reaches the surface of Mars and could degrade organic matter. Organic samples have been exposed directly to the Sun under KBr filters (>200 nm) from November 2014 to February 2016, mimicking the UV radiation conditions of the surface of Mars. Four types of samples were exposed as thin layers of solid molecules: adenine, adenine with nontronite (a kind of clay mineral detected on Mars), chrysene and glycine with nontronite.To characterize the evolution of our samples under irradiation, infrared (IR) transmission analyses were performed, before the launch of EXPOSE R2 to the ISS in 2014, and after the exposure in space and the return on Earth, this year. These analyses allowed determining whether each molecule is preserved or photodegraded, and if so, its photolysis rate. The effect of nontronite on organic molecules preservation has been investigated as well. We also compared these results from LEO with laboratory data, obtained by irradiating organic samples under a UV lamp.

  17. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest thatmore » the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single

  18. Pursuing High-Mobility n-Type Organic Semiconductors by Combination of "Molecule-Framework" and "Side-Chain" Engineering.

    PubMed

    Zhang, Cheng; Zang, Yaping; Zhang, Fengjiao; Diao, Ying; McNeill, Christopher R; Di, Chong-An; Zhu, Xiaozhang; Zhu, Daoben

    2016-10-01

    "Molecule-framework" and "side-chain" engineering is powerful for the design of high-performance organic semiconductors. Based on 2DQTTs, the relationship between molecular structure, film microstructure, and charge-transport property in organic thin-film transistors (OTFTs) is studied. 2DQTT-o-B exhibits outstanding electron mobilities of 5.2 cm 2 V -1 s -1 , which is a record for air-stable solution-processable n-channel small-molecule OTFTs to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules

    NASA Astrophysics Data System (ADS)

    Panigrahi, P.; Naqvi, S. R.; Hankel, M.; Ahuja, R.; Hussain, T.

    2018-06-01

    In a quest to find optimum materials for efficient storage of clean energy, we have performed first principles calculations to study the structural and energy storage properties of one-dimensional carbon nanotubes (CNTs) functionalized with polylithiated molecules (PLMs). Van der Waals corrected calculations disclosed that various PLMs like CLi, CLi2, CLi3, OLi, OLi2, OLi3, bind strongly to CNTs even at high doping concentrations ensuring a uniform distribution of dopants without forming clusters. Bader charge analysis reveals that each Li in all the PLMs attains a partial positive charge and transform into Li+ cations. This situation allows multiple H2 molecules adsorbed with each Li+ through the polarization of incident H2 molecules via electrostatic and van der Waals type of interaction. With a maximum doping concentration, that is 3CLi2/3CLi3 and 3OLi2/3OLi3 a maximum of 36 H2 molecules could be adsorbed that corresponds to a reasonably high H2 storage capacity with the adsorption energies in the range of -0.33 to -0.15 eV/H2. This suits the ambient condition applications.

  20. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    PubMed

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  1. Imaging the cell surface and its organization down to the level of single molecules.

    PubMed

    Klenerman, David; Shevchuk, Andrew; Novak, Pavel; Korchev, Yuri E; Davis, Simon J

    2013-02-05

    Determining the organization of key molecules on the surface of live cells in two dimensions and how this changes during biological processes, such as signalling, is a major challenge in cell biology and requires methods with nanoscale spatial resolution and high temporal resolution. Here, we review biophysical tools, based on scanning ion conductance microscopy and single-molecule fluorescence and the combination of both of these methods, which have recently been developed to address these issues. We then give examples of how these methods have been be applied to provide new insights into cell membrane organization and function, and discuss some of the issues that will need to be addressed to further exploit these methods in the future.

  2. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    DOE PAGES

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; ...

    2017-02-21

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. Here, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by constructionmore » captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. This approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.« less

  3. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.

    2017-03-01

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.

  4. Complex organic molecules toward low-mass and high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Favre, C.; Ceccarelli, C.; Lefloch, B.; Bergin, E.; Carvajal, M.; Brouillet, N.; Despois, D.; Jørgensen, J.; Kleiner, I.

    2016-12-01

    One of the most important questions in molecular astrophysics is how, when, and where complex organic molecules, COMs (≥ 6 atoms) are formed. In the Interstellar-Earth connection context, could this have a bearing on the origin of life on Earth? Formation mechanisms of COMs, which include potentially prebiotic molecules, are still debated and may include grain-mantle and/or gas-phase chemistry. Understanding the mechanisms that lead to the interstellar molecular complexification, along with the involved physicochemical processes, is mandatory to answer the above questions. In that context, active researches are ongoing in theory, laboratory experiment, chemical modeling and observations. Thanks to recent progress in radioastronomy instrumentation for both single-dish and millimeter array (e.g. Herschel, NOEMA, ALMA), new results have been obtained. I will review some notable results on the detection of COMs, including prebiotic molecules, towards star forming regions.

  5. Isotope-selective high-order interferometry with large organic molecules in free fall

    NASA Astrophysics Data System (ADS)

    Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus

    2018-03-01

    Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.

  6. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  7. QSAR models for removal rates of organic pollutants adsorbed by in situ formed manganese dioxide under acid condition.

    PubMed

    Su, Pingru; Zhu, Huicen; Shen, Zhemin

    2016-02-01

    Manganese dioxide formed in oxidation process by potassium permanganate exhibits promising adsorptive capacity which can be utilized to remove organic pollutants in wastewater. However, the structure variances of organic molecules lead to wide difference of adsorption efficiency. Therefore, it is of great significance to find a general relationship between removal rate of organic compounds and their quantum parameters. This study focused on building up quantitative structure activity relationship (QSAR) models based on experimental removal rate (r(exp)) of 25 organic compounds and 17 quantum parameters of each organic compounds computed by Gaussian 09 and Material Studio 6.1. The recommended model is rpre = -0.502-7.742 f(+)x + 0.107 E HOMO + 0.959 q(H(+)) + 1.388 BOx. Both internal and external validations of the recommended model are satisfied, suggesting optimum stability and predictive ability. The definition of applicability domain and the Y-randomization test indicate all the prediction is reliable and no possibility of chance correlation. The recommended model contains four variables, which are closely related to adsorption mechanism. f(+)x reveals the degree of affinity for nucleophilic attack. E HOMO represents the difficulty of electron loss. q(H(+)) reflect the distribution of partial charge between carbon and hydrogen atom. BO x shows the stability of a molecule.

  8. Hexadimethrine-montmorillonite nanocomposite: Characterization and application as a pesticide adsorbent

    NASA Astrophysics Data System (ADS)

    Gámiz, B.; Hermosín, M. C.; Cornejo, J.; Celis, R.

    2015-03-01

    The goal of this work was to prepare and characterize a novel functional material by the modification of SAz-1 montmorillonite with the cationic polymer hexadimethrine (SA-HEXAD), and to explore the potential use of this nanocomposite as a pesticide adsorbent. Comparative preparation and characterization with the well-known hexadecyltrimethylammonium-modified SAz-1 montmorillonite (SA-HDTMA) was also assessed. The characterization was performed by elemental analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), physisorption of N2, scanning electron microscopy (SEM) and Z potential measurements. The characterization and adsorption experiments showed that the extent of pesticide adsorption was markedly subjected to the structure and features of the surface of each organo-clay and also to the nature of the considered pesticide. SA-HEXAD displayed a high affinity for anionic pesticides which, presumably, were adsorbed by electrostatic attraction on positively-charged ammonium groups of the polymer not directly interacting with the clay. In contrast, SA-HDTMA displayed great adsorption of both uncharged and anionic pesticides with predominance of hydrophobic interactions. This work provided information about the surface properties of a new organic-inorganic nanohybrid material, SA-HEXAD, and its potential as an adsorbent for the removal of anionic organic pollutants from aqueous solutions.

  9. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  10. Enhancing the low frequency THz resonances (< 1 THz) of organic molecules via electronegative atom substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2015-03-01

    Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.

  11. Acenes, Heteroacenes and Analogous Molecules for Organic Photovoltaic and Field Effect Transistor Applications

    NASA Astrophysics Data System (ADS)

    Granger, Devin Benjamin

    Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have likewise been investigated. Functionalization of acene compounds by placement of groups around the molecule affects the way in which molecules interact in the solid state, in addition to the energetics of the molecule. The use of electron donating or electron withdrawing groups affects the frontier molecular orbitals and thus affects the optical and electronic gaps of the molecules. The use of bulky side groups such as alkylsilylethynyl groups allows for crystal engineering of molecular aggregates, and changing the volume and dimensions of the alkylsilyl groups affects the intermolecular interactions and thus changes the packing motif. In chapter 2, a series of tetracene and pentacene molecules with strongly electron withdrawing groups is described. The investigation focuses on the change in energetics of the frontier molecular orbitals between the base acene and the nitrile and dicyanovinyl derivatives as well as the differences between the pentacene and tetracene molecules. The differences in close packing motifs through use of bulky alkylsilylethynyl groups is also discussed in relation to electron acceptor material design and bulk heterojunction organic photovoltaic characteristics. Chapter 3 focuses on molecular acceptor and

  12. Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Nosir, M. A.; Martin-Gondre, L.; Bocan, G. A.; Díez Muiño, R.

    2016-09-01

    We present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12 = - 7.8 % and Δ23 = - 21.7 % with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34 = 9.7 % . Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.

  13. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  14. Elastic Organic Crystals of a Fluorescent π-Conjugated Molecule.

    PubMed

    Hayashi, Shotaro; Koizumi, Toshio

    2016-02-18

    An elastic organic crystal of a π-conjugated molecule has been fabricated. A large fluorescent single crystal of 1,4-bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene (over 1 cm long) exhibited a fibril lamella morphology based on slip-stacked molecular wires, and it was found to be a remarkably elastic crystalline material. The straight crystal was capable of bending more than 180° under applied stress and then quickly reverted to its original shape upon relaxation. In addition, the fluorescence quantum yield of the crystal was about twice that of the compound in THF solution. Mechanical bending-relaxation resulted in reversible change of the morphology and fluorescence. This research offers a more general approach to flexible crystals as a promising new family of organic semiconducting materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Adsorption heights and bonding strength of organic molecules on a Pb-Ag surface alloy

    NASA Astrophysics Data System (ADS)

    Stadtmüller, Benjamin; Haag, Norman; Seidel, Johannes; van Straaten, Gerben; Franke, Markus; Kumpf, Christian; Cinchetti, Mirko; Aeschlimann, Martin

    2016-12-01

    The understanding of the fundamental geometric and electronic properties of metal-organic hybrid interfaces is a key issue on the way to improving the performance of organic electronic and spintronic devices. Here, we studied the adsorption heights of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on a Pb1Ag2 surface alloy on Ag(111) using the normal-incidence x-ray standing waves technique. We find a significantly larger adsorption height of both molecules on the Pb-Ag surface alloy compared to the bare Ag(111) surface which is caused by the larger size of Pb. This increased adsorption height suppresses the partial chemical interaction of both molecules with Ag surface atoms. Instead, CuPc and PTCDA molecules bond only to the Pb atoms with different interaction strength ranging from a van der Waals-like interaction for CuPc to a weak chemical interaction with additional local bonds for PTCDA. The different adsorption heights for CuPc and PTCDA on Pb1Ag2 are the result of local site-specific molecule-surface bonds mediated by functional molecular groups and the different charge donating and accepting character of CuPc and PTCDA.

  16. Ordered Structure Formed by Biologically Related Molecules

    NASA Astrophysics Data System (ADS)

    Hatta, Ichiro; Nishino, Junichiro; Sumi, Akinori; Hibino, Masahiro

    1995-07-01

    The two-dimensional arrangement of biologically related molecules was studied by means of scanning probe microscopy. For monolayers of fatty acid molecules with a saturated hydrocarbon chain adsorbed on a graphite substrate, in the scanning tunneling microscope image, the position associated with the carbon atoms was clearly distinguished. In addition, based on the image for fatty acid molecules with an unsaturated hydrocarbon chain, at the position of a double bond, local electrical conductance was found to increase. Based on the images, it was pointed out that not the position of each carbon but the interaction between a graphite substrate and an alkyl chain plays an important role in imaging. On the other hand, for the surface of Langmuir-Blodgett films composed of phosphatidic acids with cations, the scanning force microscope image shows, for the first time, evidence of the methyl ends in the arrangement of phospholipid molecules.

  17. Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V.

    PubMed

    Ni, Wang; Li, Miaomiao; Kan, Bin; Liu, Feng; Wan, Xiangjian; Zhang, Qian; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-01-11

    A new small molecule named DTBTF with thiobarbituric acid as a terminal group was designed and synthesized as an acceptor for organic photovoltaic applications. DTBTF exhibits strong absorption in the visible region, and a relatively high lying LUMO energy level (-3.62 eV). All-small-molecule organic solar cells based on DR3TSBDT:DTBTF blend films show a considerable PCE of 3.84% with a high V(oc) of 1.15 V.

  18. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.

    PubMed

    Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo

    2009-09-08

    Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.

  19. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory A.; Zubkov, Tykhon; Smith, R. Scott

    2014-11-14

    We have examined the adsorption of the weakly bound species N2, O2, CO and Kr on the water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O2 have little effect on the structure and vibrational spectrum of the “ ” water monolayermore » while adsorption of both N2, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “ ” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.« less

  20. The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.

    2002-01-01

    Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.

  1. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  2. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  3. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  4. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    PubMed

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Crystallographic studies of gas sorption in metal–organic frameworks

    PubMed Central

    Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee

    2014-01-01

    Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587

  6. On the Teneurin track: a new synaptic organization molecule emerges

    PubMed Central

    Mosca, Timothy J.

    2015-01-01

    To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins. PMID:26074772

  7. On the SIMS Ionization Probability of Organic Molecules.

    PubMed

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-06-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

  8. Effect of adsorbent addition on floc formation and clarification.

    PubMed

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Simulated Raman Spectral Analysis of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Lu, Lu

    The advent of the laser technology in the 1960s solved the main difficulty of Raman spectroscopy, resulted in simplified Raman spectroscopy instruments and also boosted the sensitivity of the technique. Up till now, Raman spectroscopy is commonly used in chemistry and biology. As vibrational information is specific to the chemical bonds, Raman spectroscopy provides fingerprints to identify the type of molecules in the sample. In this thesis, we simulate the Raman Spectrum of organic and inorganic materials by General Atomic and Molecular Electronic Structure System (GAMESS) and Gaussian, two computational codes that perform several general chemistry calculations. We run these codes on our CPU-based high-performance cluster (HPC). Through the message passing interface (MPI), a standardized and portable message-passing system which can make the codes run in parallel, we are able to decrease the amount of time for computation and increase the sizes and capacities of systems simulated by the codes. From our simulations, we will set up a database that allows search algorithm to quickly identify N-H and O-H bonds in different materials. Our ultimate goal is to analyze and identify the spectra of organic matter compositions from meteorites and compared these spectra with terrestrial biologically-produced amino acids and residues.

  10. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; ...

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  11. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  12. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin

    2016-01-15

    A novel porous anionic metal–organic framework, (Me{sub 2}NH{sub 2}){sub 2}[Zn{sub 2}L{sub 1.5}bpy]·2DMF (BUT-201; H{sub 4}L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH{sub 3}){sub 2}NH{sub 2}{sup +}, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acidmore » Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Graphical abstract: A porous anionic metal–organic framework (BUT-201) can selectively adsorb the cationic dyes by cationic guest molecule substitution, and the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Highlights: • An anionic metal-organic framework (BUT-201) has been synthesized and characterized. • BUT-201 has a three-dimensional (3D) pillared double-layer structure. • BUT-201 can selectively and rapidly adsorb cationic dyes. • The adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}.« less

  13. Cometary delivery of organic molecules to the early earth

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Thomas, Paul J.; Sagan, Carl; Brookshaw, Leigh

    1990-01-01

    It has long been speculated that earth accreted prebiotic organic molecules important for the origins of life from impacts of carbonaceous asteroids and comets during the period of heavy bombardment 4.5 x 10 to the 9th to 3.8 x 10 to the 9th years ago. A comprehensive treatment of comet-asteroid interaction with the atmosphere, surface impact, and resulting organic pyrolysis demonstrates that organics will not survive impacts at velocities greater than about 10 kilometers per second and that even comets and asteroids as small as 100 meters in radius cannot be aerobraked to below this velocity in 1-bar atmospheres. However, for plausible dense (10-bar carbon dioxide) early atmospheres, it is found that 4.5 x 10 to the 9th years ago earth was accreting intact cometary organics at a rate of at least about 10 to the 6th to 10 to the 7th kilograms per year, a flux that thereafter declined with a half-life of about 10 to the 8th years. These results may be put in context by comparison with terrestrial oceanic and total biomasses, about 3 x 10 to the 12th kilograms and about 6 x 10 to the 14th kilograms, respectively.

  14. Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development.

    PubMed

    Nakamura, Eiichi

    2017-06-20

    A molecule is a quantum mechanical entity. "Watching motions and reactions of a molecule with our eyes" has therefore been a dream of chemists for a century. This dream has come true with the aid of the movies of atomic-resolution transmission electron microscopic (AR-TEM) molecular images through real-time observation of dynamic motions of single organic molecules (denoted hereafter as single-molecule atomic-resolution real-time (SMART) TEM imaging). Since 2007, we have reported movies of a variety of single organic molecules, organometallic molecules, and their assemblies, which are rotating, stretching, and reacting. Like movies in the theater, the atomic-resolution molecular movies provide us information on the 3-D structures of the molecules and also their time evolution. The success of the SMART-TEM imaging crucially depends on the development of "chemical fishhooks" with which fish (organic molecules) in solution can be captured on a single-walled carbon nanotube (CNT, serving as a "fishing rod"). The captured molecules are connected to a slowly vibrating CNT, and their motions are displayed on a monitor in real time. A "fishing line" connecting the fish and the rod may be a σ-bond, a van der Waals force, or other weak connections. Here, the molecule/CNT system behaves as a coupled oscillator, where the low-frequency anisotropic vibration of the CNT is transmitted to the molecules via the weak chemical connections that act as an energy filter. Interpretation of the observed motions of the molecules at atomic resolution needs us to consider the quantum mechanical nature of electrons as well as bond rotation, letting us deviate from the conventional statistical world of chemistry. What new horizons can we explore? We have so far carried out conformational studies of individual molecules, assigning anti or gauche conformations to each C-C bond in conformers that we saw. We can also determine the structures of van der Waals assemblies of organic molecules

  15. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  16. Metal-organic frameworks for adsorption and separation of noble gases

    DOEpatents

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  17. Searching for Bio-Precursors and Complex Organic Molecules in Space using the GBT

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Kisiel, Z.

    2012-01-01

    Using the latest microwave receiver technology, large organic molecules with abundances as low as approx. 10(exp -11) times that of molecular hydrogen are detectable in cold interstellar clouds via their rotational emission line spectra. We report new observations to search for complex molecules, including molecules of possible pre-biotic importance, using the newly-commissioned Kband focal plane array (KFPA) of the NRAO Robert C. Byrd Green Bank Telescope. Spectra are presented of the dense molecular cloud TMC-1, showing strict upper limits on the level of emission from nitrogen-bearing rings pyrimidine, quinoline and iso-quinoline, carbon-chain oxides C60, C70, HC60 and HC70, and the carbon-chain anion C4H-. The typical RMS brightness temperature noise levels we achieved are approx. 1 mK at around 20 GHz.

  18. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alvarez, Laurent; Almadori, Yann; Belhboub, Anouar; Le Parc, Rozenn; Aznar, Raymond; Dieudonné-George, Philippe; Rahmani, Abdelali; Hermet, Patrick; Fossard, Frédéric; Loiseau, Annick; Jousselme, Bruno; Campidelli, Stéphane; Saito, Takeshi; Wang, Guillaume; Bantignies, Jean-Louis

    2016-03-01

    Photoactive pi-conjugated molecules (quaterthiophene and phthalocyanine) are either encapsulated into the hollow core of single-walled carbon nanotubes or noncovalently stacked at their outer surface in order to elaborate hybrid nanosystems with new physical properties, providing practical routes to fit different requirements for potential applications. We are interested in the relationship between the structure and the optoelectronic properties. The structural properties are investigated mainly by x-ray diffraction and/or transmission electron microscopy and Raman spectroscopy. We show that the supramolecular organizations of confined quaterthiophenes depend on the nanocontainer size, whereas phthalocyanine encapsulation leads to the formation of a one-dimensional phase for which the angle between the molecule ring and the nanotube axis is close to 32 deg. Confined phthalocyanine molecules display Raman spectra hardly altered with respect to the bulk phase, suggesting a rather weak interaction with the tubes. In contrast, the vibrational properties of the molecules stacked at the outer surface of tubes display important modifications. We assume a significant curvature of the phthalocyanine induced by the interaction with the tube walls and a change of the central atom position within the molecular ring, in good agreement with our density functional theory calculations.

  20. Scanning tunneling microscopy studies of pulse deposition of dinuclear organometallic molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Guo, Song; Alex Kandel, S.

    2008-01-01

    Ultrahigh-vacuum scanning tunneling microscopy (STM) was used to study trans-[Cl(dppe)2Ru(CC)6Ru(dppe)2Cl] [abbreviated as Ru2, diphenylphosphinoethane (dppe)] on Au(111). This large organometallic molecule was pulse deposited onto the Au(111) surface under ultrahigh-vacuum (UHV) conditions. UHV STM studies on the prepared sample were carried out at room temperature and 77K in order to probe molecular adsorption and to characterize the surface produced by the pulse deposition process. Isolated Ru2 molecules were successfully imaged by STM at room temperature; however, STM images were degraded by mobile toluene solvent molecules that remain on the surface after the deposition. Cooling the sample to 77K allows the solvent molecules to be observed directly using STM, and under these conditions, toluene forms organized striped domains with regular domain boundaries and a lattice characterized by 5.3 and 2.7Å intermolecular distances. When methylene chloride is used as the solvent, it forms analogous domains on the surface at 77K. Mild annealing under vacuum causes most toluene molecules to desorb from the surface; however, this annealing process may lead to thermal degradation of Ru2 molecules. Although pulse deposition is an effective way to deposit molecules on surfaces, the presence of solvent on the surface after pulse deposition is unavoidable without thermal annealing, and this annealing may cause undesired chemical changes in the adsorbates under study. Preparation of samples using pulse deposition must take into account the characteristics of sample molecules, solvent, and surfaces.

  1. Self-assembly of amphiphilic molecules in organic liquids

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang

    2007-12-01

    Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a

  2. Diffusivity of dicarboxylic acids molecules to secondary organic material governed by particle phase state

    NASA Astrophysics Data System (ADS)

    Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.

    2017-12-01

    Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the

  3. The interfacial energetics of the oil molecules interactions with shale media using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, J.

    2017-12-01

    Characterizing the behavior of oil molecules in nanopore is vital to the understanding of geochemistry of hydrocarbon-bearing fluid in ultra-tight source rocks, such as shale. The heterogeneous nature of hydrocarbon system of nanoscale complicates experimental studies of oil / shale interfacial interaction. Therefore, to gain mechanistic understanding of the interplay of oil molecules in rock nanopore, molecular dynamics simulations have been applied to study the interactions of polar and non-polar oil on both calcite and kerogen surfaces. The effect of surface wetting, oil polarity, and temperature on the Gibbs free energy of adsorption have been investigated. The free energy, entropy, and enthalpy profiles have been calculated using advanced molecular dynamics method: umbrella sampling. In agreement with experiment, 1) surface with adsorbed water layer significantly reduces the oil adsorption energy on kerogen and turns the calcite surface to highly oil-repellent; 2) polar oil has overall stronger adsorption free energy than that of non-polar oil on both non-wetted calcite and kerogen surface; 3) organic interface (e.g. kerogen) exhibits stronger adsorption of oil molecules compared to inorganic one (e.g. calcite). The finding of this study indicates that oil displacement in nanopores can be enhanced by promoting the water adsorption on surface and reducing the polarity of oil on both inorganic and organic interfaces.

  4. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian

    In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less

  5. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules

    DOE PAGES

    Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian; ...

    2017-12-12

    In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less

  6. Theoretical Investigation of Single-Molecule Sensing Using Nanotube-Enhanced Circular Dichroism.

    PubMed

    Silva, Jaime; Milne, Bruce F; Nogueira, Fernando

    2018-06-19

    First-principles calculations have been used to investigate the potential use of circular dichroism (CD) spectroscopy in single-molecule sensing. Using a real-space implementation of time-dependent density functional theory (TDDFT), several systems involving single-walled carbon nanotubes (SWCNT) and small molecules have been studied to evaluate their CD response. Large induced CD (ICD) effects, differing for each test molecule, were observed in all SWCNT-molecule complexes. As the SWCNT used in this study shows no intrinsic CD response, the ICD spectra are the result of interaction with the small molecules. This finding is general and independent of the (a)chiral nature of the adsorbed molecule. Our results indicate that it is possible to design a system that uses SWCNT for detection of molecules using the change in CD spectrum of the system induced by adsorption of the molecule onto the SWCNT surface.

  7. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    NASA Astrophysics Data System (ADS)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination

  8. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.

  9. Guest molecules as a design element for metal–organic frameworks

    DOE PAGES

    Allendorf, Mark D.; Medishetty, Raghavender; Fischer, Roland A.

    2016-11-07

    The well-known synthetic versatility of MOFs is rooted in the ability to predict the metal ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of “non-innocent” guest molecules as a component of framework design has been largely ignored. Nevertheless, recent reports show that the presence of guest molecules can have dramatic effects, even when these are seemingly innocuous species such as water or polar solvents. Advantages of using guests to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the properties materialmore » at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article we describe the “Guest@MOF” concept and provide examples illustrating its potential as a new MOF design element.« less

  10. Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-06-01

    Based on the density functional theory (DFT) calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic NO2 and O3 molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined based on the most stable structures. We found that both of these molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of NO2 and O3 molecules. The side oxygen atoms of the gas molecules were found to be chemically bonded to these titanium atoms. The adsorption of gas molecules is an exothermic process, and the adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, which indicate the adsorption energies were increased for the most sable configurations. The gas sensing response and charge transfers were analyzed in detail. The pristine nanocomposites have better sensing response than the doped ones. The spin density distribution plots indicate that the magnetization was mainly located over the adsorbed gas molecules. Mulliken charge analysis reveals that both NO2 and O3 molecules behave as charge acceptors, as evidenced by the accumulation of electronic charges on the adsorbed molecules predicted by charge density difference calculations. Our DFT results provide a theoretical basis for an innovative gas sensor system designed from a sensitive TiO2/Stanene heterostructures for efficient detection of harmful air pollutants such as NO2 and O3.

  11. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  12. Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory.

    PubMed

    Nicolaou, K C

    2014-03-08

    Synthetic organic chemists have the power to replicate some of the most intriguing molecules of living nature in the laboratory and apply their developed synthetic strategies and technologies to construct variations of them. Such molecules facilitate biology and medicine, as they often find uses as biological tools and drug candidates for clinical development. In addition, by employing sophisticated catalytic reactions and appropriately designed synthetic processes, they can synthesize not only the molecules of nature and their analogues, but also myriad other organic molecules for potential applications in many areas of science, technology and everyday life. After a short historical introduction, this article focuses on recent advances in the field of organic synthesis with demonstrative examples of total synthesis of complex bioactive molecules, natural or designed, from the author's laboratories, and their impact on chemistry, biology and medicine.

  13. Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory

    PubMed Central

    Nicolaou, K. C.

    2014-01-01

    Synthetic organic chemists have the power to replicate some of the most intriguing molecules of living nature in the laboratory and apply their developed synthetic strategies and technologies to construct variations of them. Such molecules facilitate biology and medicine, as they often find uses as biological tools and drug candidates for clinical development. In addition, by employing sophisticated catalytic reactions and appropriately designed synthetic processes, they can synthesize not only the molecules of nature and their analogues, but also myriad other organic molecules for potential applications in many areas of science, technology and everyday life. After a short historical introduction, this article focuses on recent advances in the field of organic synthesis with demonstrative examples of total synthesis of complex bioactive molecules, natural or designed, from the author’s laboratories, and their impact on chemistry, biology and medicine. PMID:24611027

  14. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    NASA Astrophysics Data System (ADS)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  15. Predicting Complex Organic Molecule Emission from TW Hya

    NASA Astrophysics Data System (ADS)

    Vissapragada, Shreyas; Walsh, Catherine

    2017-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has significantly increased our ability to observe the rich chemical inventory of star and planet formation. ALMA has recently been used to detect CH3OH (methanol) and CH3CN (methyl cyanide) in protoplanetary disks; these molecules may be vital indicators of the complex organic ice reservoir in the comet-forming zone. We have constructed a physiochemical model of TW Hya, a well-studied protoplanetary disk, to explore the different formation mechanisms of complex ices. By running our model through a radiative transfer code and convolving with beam sizes appropriate for ALMA, we have obtained synthetic observations of methanol and methyl cyanide. Here, we compare and comment on these synthetic observations, and provide astrochemical justification for their spatial distributions.

  16. Terahertz Time Domain Spectroscopy of Complex Organic Molecules in Astrophysically Relevant Ices

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Ioppolo, Sergio; Allodi, Marco A.; Kelley, Matthew J.; Blake, Geoffrey A.

    2013-06-01

    We have constructed a new system to study the spectra of astrophysically-relevant ice analogs using THz time-domain spectroscopy from 300 GHz - 7 THz. Here, we present our initial efforts to explore the spectra of pure ices of simple, abundant interstellar species as well as complex organic molecules (COMs) and COM-doped ice mixtures. We will present preliminary spectra of pure H_2O, CO_2, methanol (CH_3OH), and methyl formate (CH_3COOH) ices, as well as spectra of these molecules embedded in a variety of other relevant interstellar analogs. Our results are discussed in the context of astronomical observations and the possibility of probing ice compositions in the absence of a background radiation source.

  17. Guest–host interactions of a rigid organic molecule in porous silica frameworks

    PubMed Central

    Wu, Di; Hwang, Son-Jong; Zones, Stacey I.; Navrotsky, Alexandra

    2014-01-01

    Molecular-level interactions at organic–inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic–inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.0 nm). We used hydrofluoric acid solution calorimetry to obtain the enthalpies of interaction between silica framework materials and TMAAI, and the values range from −56 to −177 kJ per mole of TMAAI. The phase evolution as a function of pore size was investigated by X-ray diffraction, IR, thermogravimetric differential scanning calorimetry, and solid-state NMR. The results suggest the existence of three types of inclusion depending on the pore size of the framework: single-molecule confinement in a small pore, multiple-molecule confinement/adsorption of an amorphous and possibly mobile assemblage of molecules near the pore walls, and nanocrystal confinement in the pore interior. These changes in structure probably represent equilibrium and minimize the free energy of the system for each pore size, as indicated by trends in the enthalpy of interaction and differential scanning calorimetry profiles, as well as the reversible changes in structure and mobility seen by variable temperature NMR. PMID:24449886

  18. Experimental demonstration of a single-molecule electric motor.

    PubMed

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  19. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent wasmore » synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.« less

  20. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  1. Breakthrough indicator for aromatic VOCs using needle trap samplers for activated carbon adsorbent.

    PubMed

    Cheng, Wen-Hsi; Jiang, Jia-Rong; Huang, Yi-Ning; Huang, Shiun-Chian; Yu, Yan-Pin

    2012-08-01

    Internal circulation cabinets equipped with granular activated carbon (GAC) for adsorbing volatile organic compounds (VOCs) are widely used to store bottles containing organic solvents in universities, colleges, and hospital laboratories throughout Taiwan. This work evaluates the VOC adsorption capacities of GAC using various adsorption times for gas stream mixtures of 100 ppm toluene and 100 ppm o-xylene. Additionally, needle trap sampling (NTS) technology was used to indicate the time for renewing the GAC to avoid VOC breakthrough from adsorbents. Experimental results demonstrate that the proposed models can linearly express toluene and o-xylene adsorption capacities as the natural logarithm of adsorption time (ln(t)) and can accurately simulate the equilibrium adsorption capacities (Qe, g VOCs/g GAC) for gaseous toluene and o-xylene. The NTS, packed with 60-80 mesh divinylbenzene (DVB) particles, was compared in terms of extraction efficiency by simultaneously using the 75-microm Carboxen/polydimethylsiloxane-solid-phase microextraction (Carboxen/PDMS-SPME) fiber for time-weighted average (TWA) sampling, and experimental results indicated that the packed DVB-NTS achieved higher toluene extraction rates. Additionally, the NTS installed in the outlet air stream for adsorbing toluene and o-xylene exhausted through GAC accurately indicated toluene and o-xylene breakthrough times of 4700-5000 min. The GAC-NTS operational instructions to indicate the replacing time of adsorbent in the internal circulation cabinets are also included in this paper.

  2. Spectrophotometric and electrical properties of imperatorin: an organic molecule

    NASA Astrophysics Data System (ADS)

    Mir, Feroz A.

    2015-09-01

    Imperatorin (molecular formula = C16H14O4, molecular mass = 270) an organic molecule was isolated from ethyl acetate extract of the root parts of the plant Prangos pabularia. The optical study was carried out by ultraviolet-visible spectroscopy, and this compound showed an indirect allowed transition. The optical band gap ( E g ) was found around 3.75 eV. Photoluminescence shows various good emission bands. The frequency-dependent real part of the complex ac conductivity was found to follow the universal dielectric response: σ ac ( ω) α ω s [where σ ac ( ω) is the frequency-dependent total conductivity, ω is the frequency, and s is the frequency exponent]. From ac conductivity data analysis, correlated barrier hopping charge-transport mechanism is the dominant electrical transport process shown by this compound. The good emission, less absorption, wide band gap and good electrical properties shown by this compound project them as a bright choice for organic electronic devices.

  3. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide

    PubMed Central

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887

  4. An All-Organic Composite System for Resistive Change Memory via the Self-Assembly of Plastic-Crystalline Molecules.

    PubMed

    Cha, An-Na; Lee, Sang-A; Bae, Sukang; Lee, Sang Hyun; Lee, Dong Su; Wang, Gunuk; Kim, Tae-Wook

    2017-01-25

    An all-organic composite system was introduced as an active component for organic resistive memory applications. The active layer was prepared by mixing a highly polar plastic-crystalline organic molecule (succinonitrile, SN) into an insulating polymer (poly(methyl methacrylate), PMMA). As increasing concentrations of SN from 0 to 3.0 wt % were added to solutions of different concentrations of PMMA, we observed distinguishable microscopic surface structures on blended films of SN and PMMA at certain concentrations after the spin-casting process. The structures were organic dormant volcanos composed of micron-scale PMMA craters and disk type SN lava. Atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometer (EDX) analysis showed that these structures were located in the middle of the film. Self-assembly of the plastic-crystalline molecules resulted in the phase separation of the SN:PMMA mixture during solvent evaporation. The organic craters remained at the surface after the spin-casting process, indicative of the formation of an all-organic composite film. Because one organic crater contains one SN disk, our system has a coplanar monolayer disk composite system, indicative of the simplest composite type of organic memory system. Current-voltage (I-V) characteristics of the composite films with organic craters revealed that our all-organic composite system showed unipolar type resistive switching behavior. From logarithmic I-V characteristics, we found that the current flow was governed by space charge limited current (SCLC). From these results, we believe that a plastic-crystalline molecule-polymer composite system is one of the most reliable ways to develop organic composite systems as potential candidates for the active components of organic resistive memory applications.

  5. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p: reinterpretation of recent single molecule experiments.

    PubMed

    Stigter, Dirk

    2004-07-01

    Brewer et al. (Biophys. J. 85 (2003) 2519-2524) have studied the compaction of dsDNA in a double flow cell by observing the extension of stained DNA tethered in buffer solutions with or without Abf2p. They use a Langmuir adsorption model in which one Abf2p molecule adsorbs on one site on the DNA, and the binding constant, K, is given as the ratio of the experimental rates of adsorption and desorption. This paper presents an improved interpretation. Instead of Langmuir adsorption we use the more appropriate McGhee-von Hippel (J. Mol. Biol. 86 (1974) 469-489) theory for the adsorption of large ligands to a one-dimensional lattice. We assume that each adsorbed molecule shortens the effective contour length of DNA by the foot print of Abf2p of 27 base pairs. When Abf2p adsorbs to DNA stretched in the flowing buffer solution, we account for a tension effect that decreases the adsorption rate and the binding constant by a factor of 2 to 4. The data suggest that the accessibility to Abf2p decreases significantly with increasing compaction of DNA, resulting in a lower adsorption rate and a lower binding constant. The kinetics reported by Brewer et al. (Biophys. J. 85 (2003) 2519-2524) lead to a binding constant K=3.6 x 10(6) M(-1) at the beginning, and to K=5 x 10(5) M(-1) near the end of a compaction run, more than an order of magnitude lower than the value K=2.57 x 10(7) M(-1) calculated by Brewer et al. (Biophys. J. 85 (2003) 2519-2524).

  6. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudenko, Gabby

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affectmore » their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.« less

  7. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  8. Effect of adsorbate electrophilicity and spiky uneven surfaces on single gold nanourchin-based localized surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Kim, Geun Wan; Ha, Ji Won

    2018-04-01

    We present single particle studies on gold nanourchins (AuNUs) for their use as localized surface plasmon resonance (LSPR) biosensors under dark-field (DF) microscopy. First, the LSPR wavelength of single AuNUs was red-shifted as thiol molecules were attached onto the surface. AuNUs with sharp tips showed higher sensitivity for detecting thiol molecules than gold nanospheres (AuNSs) of similar size. Second, the degree of red shift was affected by the electrophilicity of adsorbate molecules on the nanoparticle surface. Last, real-time monitoring of molecular binding events on single AuNUs was achieved with introducing 1 μM of 4-aminothiophenol.

  9. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Greg A., E-mail: gregory.kimmel@pnnl.gov, E-mail: bruce.kay@pnnl.gov; Zubkov, Tykhon; Smith, R. Scott

    2014-11-14

    We have examined the adsorption of the weakly bound species N{sub 2}, O{sub 2}, CO, and Kr on the (√(37)×√(37))R25.3{sup ∘} water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O{sub 2} have little effect on the structure and vibrational spectrum of the “√(37)”more » water monolayer while adsorption of both N{sub 2}, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “√(37)” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.« less

  10. Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets

    NASA Astrophysics Data System (ADS)

    Jalbout, A. F.; Ortiz, Y. P.; Seligman, T. H.

    2013-03-01

    We study the adsorption of Li to graphene flakes simulated as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for boron-nitrogen sheets, and also for other light alkalines as adsorbants.

  11. Metal-organic and supramolecular architectures based on mechanically interlocked molecules

    NASA Astrophysics Data System (ADS)

    Fernando, Isurika Rosini

    The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized

  12. Possible pore size effects on the state of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas and their temperature dependence.

    PubMed

    Tagaya, Motohiro; Ogawa, Makoto

    2008-12-07

    The states of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas with different pore sizes (2.5, 3.1 and 5.0 nm) were investigated. Alq3 was successfully occluded into the mesoporous silicas from solution and the adsorbed amount of Alq3 per BET surface area was effectively controlled by changing the added amount Alq3 to the solution. The state of Alq3 in the mesopore varied depending on the pore size as well as the adsorbed amount of Alq3 as revealed by variation of the photoluminescence spectra. The luminescence of the adsorbed Alq3 was found to be temperature-dependent, indicating the mobility of the adsorbed Alq3 to temperature variations. The temperature-dependence also depended on the pore size. The guest-guest interactions between Alq3 molecules as well as the host-guest interactions between Alq3 and the mesopore were controlled by the pore size.

  13. Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Förstel, Marko; Kaiser, Ralf I.

    2016-01-01

    Complex organic molecules (COM) such as aldehydes, ketones, carboxylic acids, esters, and amides are ubiquitous in the interstellar medium, but traditional gas phase astrochemical models cannot explain their formation routes. By systematically exploiting on line and in situ vacuum ultraviolet photoionization coupled with reflectron time of flight mass spectrometry (PI-ReTOF-MS) and combining these data with infrared spectroscopy (FTIR), we reveal that complex organic molecules can be synthesized within interstellar ices that are condensed on interstellar grains via non-equilibrium reactions involving suprathermal hydrogen atoms at temperatures as low as 5 K. By probing for the first time specific structural isomers without their degradation (fragment-free), the incorporation of tunable vacuum ultraviolet photoionization allows for a much greater understanding of reaction mechanisms that exist in interstellar ices compared to traditional methods, thus eliminating the significant gap between observational and laboratory data that existed for the last decades. With the commission of the Atacama Large Millimeter/Submillimeter Array (ALMA), the number of detections of more complex organic molecules in space will continue to grow ⿿ including biorelevant molecules connected to the Origins of Life theme ⿿ and an understanding of these data will rely on future advances in sophisticated physical chemistry laboratory experiments.

  14. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  15. Enhanced removal of nitrate from water using surface modification of adsorbents--a review.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya

    2013-12-15

    Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Determination of adsorbable organic halogens in surface water samples by combustion-microcoulometry versus combustion-ion chromatography titration.

    PubMed

    Kinani, Aziz; Sa Lhi, Hacène; Bouchonnet, Stéphane; Kinani, Said

    2018-03-02

    Adsorbable Organic Halogen (AOX) is an analytical parameter of considerable interest since it allows to evaluate the amount of organohalogen disinfection by-products (OXBPs) present in a water sample. Halogen speciation of AOX into adsorbable organic chlorine, bromine and iodine, respectively AOCl, AOBr and AOI, is extremely important since it has been shown that iodinated and brominated organic by-products tend to be more toxic than their chlorinated analogues. Chemical speciation of AOX can be performed by combustion-ion chromatography (C-IC). In the present work, the effectiveness of the nitrate wash according to ISO 9562 standard method protocol to eliminate halide ions interferences was firstly examined. False positive AOX values were observed when chloride concentration exceeded 100 ppm. The improvements made to the washing protocol have eliminated chloride interference for concentrations up to 1000 ppm. A C-IC method for chemical speciation of AOX into AOCl, AOBr, and AOI has been developed and validated. The most important analytical parameters were investigated. The following optimal conditions were established: an aqueous solution containing 2.4 mM sodium bicarbonate/2.0 mM sodium carbonate, and 2% acetone (v/v) as mobile phase, 2 mL of aqueous sodium thiosulfate (500 ppm) as absorption solution, 0.2 mL min -1 as water inlet flow rate for hydropyrolysis, and 10 min as post-combustion time. The method was validated according to NF T90-210 standard method. Calibration curves fitted through a quadratic equation show coefficients of determination (r 2 ) greater than 0.9998, and RSD less than 5%. The LOQs were 0.9, 4.3, and 5.7 μg L -1 Cl for AOCl, AOBr, and AOI, respectively. The accuracy, in terms of relative error, was within a ± 10% interval. The applicability of the validated method was demonstrated by the analysis of twenty four water samples from three rivers in France. The measurements reveals AOX amounts above 10

  17. Mechanisms and time-resolved dynamics for trihydrogen cation (H 3 +) formation from organic molecules in strong laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekanayake, Nagitha; Nairat, Muath; Kaderiya, Balram

    Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. Here, we present evidence for the existence of two different reaction pathways for H 3 + formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followedmore » by the abstraction of a proton from the remaining CHOH 2+ fragment by the roaming H 2 molecule. This reaction has similarities to the H 2+H 2 + mechanism leading to formation of H 3 + in the universe. These exotic chemical reaction mechanisms, involving roaming H 2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.« less

  18. Mechanisms and time-resolved dynamics for trihydrogen cation (H 3 +) formation from organic molecules in strong laser fields

    DOE PAGES

    Ekanayake, Nagitha; Nairat, Muath; Kaderiya, Balram; ...

    2017-07-05

    Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. Here, we present evidence for the existence of two different reaction pathways for H 3 + formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followedmore » by the abstraction of a proton from the remaining CHOH 2+ fragment by the roaming H 2 molecule. This reaction has similarities to the H 2+H 2 + mechanism leading to formation of H 3 + in the universe. These exotic chemical reaction mechanisms, involving roaming H 2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.« less

  19. A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A.

    PubMed

    Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang

    2012-03-30

    Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    PubMed

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-07

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    PubMed

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are immobilized on highly ordered mesoporous silicas (SBA-15) to catch CO(2) as primary, secondary, and tertiary aminosilica adsorbents. X-ray photoelectron spectroscopy was used to analyze the immobilized APTMS, MAPTMS, and DEAPTMS on the SBA-15. We report an interesting discovery that the CO(2) adsorption and desorption on the adsorbent depend on the amine type of the aminosilica adsorbent. The adsorbed CO(2) was easily desorbed from the adsorbent with the low energy consumption in the order of tertiary, secondary, and primary amino-adsorbents while the adsorption amount and the bonding-affinity increased in the reverse order. The effectiveness of amino-functionalized (1(o), 2(o), and 3(o) amines) SBA-15s as a CO(2) capturing agent was investigated in terms of adsorption capacity, adsorption-desorption kinetics, and thermodynamics. This work demonstrates apt amine types to catch CO(2) and regenerate the adsorbent, which may open new avenues to designing "CO(2) basket". Copyright © 2011. Published by Elsevier Inc.

  2. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  3. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    PubMed Central

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  4. "Molecules-in-Medicine": Peer-Evaluated Presentations in a Fast-Paced Organic Chemistry Course for Medical Students

    ERIC Educational Resources Information Center

    Kadnikova, Ekaterina N.

    2013-01-01

    To accentuate the importance of organic chemistry in development of contemporary pharmaceuticals, a three-week unit entitled "Molecules-in-Medicine" was included in the curriculum of a comprehensive one-semester four-credit organic chemistry course. After a lecture on medicinal chemistry concepts and pharmaceutical practices, students…

  5. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  6. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  7. The survival of large organic molecules during hypervelocity impacts with water ice: implications for sampling the icy surfaces of moons

    NASA Astrophysics Data System (ADS)

    Hurst, A.; Bowden, S. A.; Parnell, J.; Burchell, M. J.; Ball, A. J.

    2007-12-01

    There are a number of measurements relevant to planetary geology that can only be adequately performed by physically contacting a sample. This necessitates landing on the surface of a moon or planetary body or returning samples to earth. The need to physically contact a sample is particularly important in the case of measurements that could detect medium to low concentrations of large organic molecules present in surface materials. Large organic molecules, although a trace component of many meteoritic materials and rocks on the surface of earth, carry crucial information concerning the processing of meteoritic material in the surface and subsurface environments, and can be crucial indicators for the presence of life. Unfortunately landing on the surface of a small planetary body or moon is complicated, particularly if surface topography is only poorly characterised and the atmosphere thin thus requiring a propulsion system for a soft landing. One alternative to a surface landing may be to use an impactor launched from an orbiting spacecraft to launch material from the planets surface and shallow sub-surface into orbit. Ejected material could then be collected by a follow-up spacecraft and analyzed. The mission scenario considered in the Europa-Ice Clipper mission proposal included both sample return and the analysis of captured particles. Employing such a sampling procedure to analyse large organic molecules is only viable if large organic molecules present in ices survive hypervelocity impacts (HVIs). To investigate the survival of large organic molecules in HVIs with icy bodies a two stage light air gas gun was used to fire steel projectiles (1-1.5 mm diameter) at samples of water ice containing large organic molecules (amino acids, anthracene and beta-carotene a biological pigment) at velocities > 4.8 km/s.UV-VIS spectroscopy of ejected material detected beta-carotene indicating large organic molecules can survive hypervelocity impacts. These preliminary results

  8. Exploring Charge Transport in Guest Molecule Infiltrated Cu 3(BTC) 2 Metal Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, Francois Leonard; Stavila, Vitalie; Allendorf, Mark D.

    2014-09-01

    The goal of this Exploratory Express project was to expand the understanding of the physical properties of our recently discovered class of materials consisting of metal-organic frameworks with electroactive ‘guest’ molecules that together form an electrically conducting charge-transfer complex (molecule@MOF). Thin films of Cu 3(BTC) 2 were grown on fused silica using solution step-by-step growth and were infiltrated with the molecule tetracyanoquinodimethane (TCNQ). The infiltrated MOF films were extensively characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy, electrical conductivity, and thermoelectric properties. Thermopower measurements on TCNQ@Cu 3(BTC) 2 revealed a positive Seebeck coefficient of ~400 μV/k, indicating that holesmore » are the primary carriers in this material. The high value of the Seebeck coefficient and the expected low thermal conductivity suggest that molecule@MOF materials may be attractive for thermoelectric power conversion applications requiring low cost, solution-processable, and non-toxic active materials.« less

  9. Isomerization of One Molecule Observed through Tip-Enhanced Raman Spectroscopy.

    PubMed

    Tallarida, Nicholas; Rios, Laura; Apkarian, Vartkess A; Lee, Joonhee

    2015-10-14

    While exploring photoisomerization of azobenzyl thiols (ABT) adsorbed on Au(111), through joint scanning tunneling microscopy (STM) and tip-enhanced Raman scattering (TERS) studies, the reversible photoisomerization of one molecule is captured in TERS trajectories. The unique signature of single molecule isomerization is observed in the form of anticorrelated flip-flops between two distinct spectra with two discrete, on- and off-levels. The apparently heterogeneously photocatalyzed reaction is assigned to cis-trans isomerization of an outlier, which is chemisorbed on the silver tip of the STM. Otherwise, the ensemble of ABT molecules that lie flat on Au(111) remain strongly coupled to the surface, excluding the possibility of photoisomerization or detection through TERS.

  10. Enhanced CO2 adsorptive performance of PEI/SBA-15 adsorbent using phosphate ester based surfactants as additives.

    PubMed

    Cheng, Dandan; Liu, Yue; Wang, Haiqiang; Weng, Xiaole; Wu, Zhongbiao

    2015-12-01

    In this study, a series of polyetherimide/SBA-15: 2-D hexagonal P6mm, Santa Barbara USA (PEI/SBA-15) adsorbents modified by phosphoric ester based surfactants (including tri(2-ethylhexyl) phosphate (TEP), bis(2-ethylhexyl) phosphate (BEP) and trimethyl phosphonoacetate (TMPA)) were prepared for CO2 adsorption. Experimental results indicated that the addition of TEP and BEP had positive effects on CO2 adsorption capacity over PEI/SBA-15. In particular, the CO2 adsorption amount could be improved by around 20% for 45PEI-5TEP/SBA-15 compared to the additive-free adsorbent. This could be attributed to the decrease of CO2 diffusion resistance in the PEI bulk network due to the interactions between TEP and loaded PEI molecules, which was further confirmed by adsorption kinetics results. In addition, it was also found that the cyclic performance of the TEP-modified adsorbent was better than the surfactant-free one. This could be due to two main reasons, based on the results of in situ DRIFT and TG-DSC tests. First and more importantly, adsorbed CO2 species could be desorbed more rapidly over TEP-modified adsorbent during the thermal desorption process. Furthermore, the enhanced thermal stability after TEP addition ensured lower degradation of amine groups during adsorption/desorption cycles. Copyright © 2015. Published by Elsevier B.V.

  11. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars.

    PubMed

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; Ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-03-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C 2 to C 4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

  12. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2

  13. Mixing Behavior in Small Molecule: Fullerene Organic Photovoltaics [On the Mixing Behavior in Small Molecule: Fullerene Organic Photovoltaics

    DOE PAGES

    Oosterhout, Stefan D.; Savikhin, Victoria; Zhang, Junxiang; ...

    2017-02-22

    Here, we report a novel method to determine the amount of pure, aggregated phase of donor and acceptor in organic photovoltaic (OPV) bulk heterojunctions. By determination of the diffraction intensity per unit volume for both donor and acceptor, the volume content of pure, aggregated donor and acceptor in the blend can be determined. We find that for the small molecule X2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) system, in contrast to most polymer systems, all the PCBM is aggregated, indicating there is negligible miscibility of PCBM with X2. This provides an explanation why the performance of OPV devices of X2:PCBM are highmore » over a large range of PCBM concentrations. This is in contrast to many other OPV blends, where PCBM forms a mixed phase with the donor and does not provide sufficient transport for electrons when the PCBM concentration is low. This study demonstrates that a mixed phase is not necessarily a requirement for good OPV device performance.« less

  14. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  15. Highly ordered molecular rotor matrix on a nanopatterned template: titanyl phthalocyanine molecules on FeO/Pt(111).

    PubMed

    Lu, Shuangzan; Huang, Min; Qin, Zhihui; Yu, Yinghui; Guo, Qinmin; Cao, Gengyu

    2018-08-03

    Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C 32 H 16 N 8 OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.

  16. Ensemble control of Kondo screening in molecular adsorbates

    DOE PAGES

    Maughan, Bret; Zahl, Percy; Sutter, Peter; ...

    2017-04-06

    Switching the magnetic properties of organic semiconductors on a metal surface has thus far largely been limited to molecule-by-molecule tip-induced transformations in scanned probe experiments. Here we demonstrate with molecular resolution that collective control of activated Kondo screening can be achieved in thin-films of the organic semiconductor titanyl phthalocyanine on Cu(110) to obtain tunable concentrations of Kondo impurities. Using low-temperature scanning tunneling microscopy and spectroscopy, we show that a thermally activated molecular distortion dramatically shifts surface–molecule coupling and enables ensemble-level control of Kondo screening in the interfacial spin system. This is accompanied by the formation of a temperature-dependent Abrikosov–Suhl–Kondo resonancemore » in the local density of states of the activated molecules. This enables coverage-dependent control over activation to the Kondo screening state. Finally, our study thus advances the versatility of molecular switching for Kondo physics and opens new avenues for scalable bottom-up tailoring of the electronic structure and magnetic texture of organic semiconductor interfaces at the nanoscale.« less

  17. Submillimeter-wave Observations of Complex Organic Molecules in Southern Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Sakai, Takeshi; Sakai, Nami; Hirota, Tomoya; Yamamoto, Satoshi

    2013-03-01

    Submillimeter-wave observations of complex organic molecules toward southern massive star forming regions were carried out with ASTE 10m telescope. Methyl formate (HCOOCH3) and dimethyl ether (CH3OCH3) were detected in some molecular cloud cores with young protostars. Differences in chemical composition among neighboring cores were also found.

  18. 3D Oxidized Graphene Frameworks: An Efficient Adsorbent for Methylene Blue

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Deb, Madhurima; Tiwari, Shreya; Pawar, Pranav Bhagwan; Saxena, Sumit; Shukla, Shobha

    2018-04-01

    Extraordinary properties of graphene and its derivatives have found application in varied areas such as energy, electronics, optical devices and sensors, to name a few. Large surface area along with specialized functional groups make these materials attractive for removal of dye molecules in solution via adsorption. Industrial effluents contain large amounts of toxic chemicals resulting in pollution of water bodies, which pose environmental hazards in general. Here we report application of 3D oxidized graphene frameworks in the efficient removal of cationic dye molecules such as methylene blue via adsorption. Systematic parametric studies investigating the effect of the initial dye concentration, pH and contact time have been performed. Spectroscopic analysis of the filtrate suggests that tortuous paths in 3D oxidized graphene frameworks result in efficient removal of dye molecules due to enhanced interaction. The hydroxyl groups retained in these 3D oxidized graphene frameworks facilitate adsorption of the dye molecules while passing through the adsorbent. pH studies suggest that maximum removal efficiency for methylene blue was achieved at pH value of 9. The results suggest that these 3D oxidized graphene frameworks can be used for purification of large volumes of contaminated water from cationic dyes in waste water treatment plants.

  19. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    PubMed

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  20. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    PubMed

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  1. Molecular and structural characterization of dissolved organic matter from the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic molecules

    USGS Publications Warehouse

    Reemtsma, T.; These, A.; Linscheid, M.; Leenheer, J.; Spitzy, A.

    2008-01-01

    Dissolved organic matter isolated from the deep Atlantic Ocean and fractionated into a so-called hydrophobic (HPO) fraction and a very hydrophilic (HPI) fraction was analyzed for the first time by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to resolve the molecular species, to determine their exact masses, and to calculate their molecular formulas. The elemental composition of about 300 molecules was identified. Those in the HPO fraction (14C age of 5100 year) are very similar to much younger freshwater fulvic acids, but less aromatic and more oxygenated molecules are more frequent. This trend continues toward the HPI fraction and may indicate biotic and abiotic aging processes that this material experienced since its primary production thousands of years ago. In the HPI fraction series of nitrogenous molecules containing one, two, or three nitrogens were identified by FTICR-MS. Product ion spectra of the nitrogenous molecules suggest that the nitrogen atoms in these molecules are included in the (alicyclic) backbone of these molecules, possibly in reduced form. These mass spectrometric data suggest that a large set of stable fulvic acids is ubiquitous in all aquatic compartments. Although sources may differ, their actual composition and structure appears to be quite similar and largely independent from their source, because they are the remainder of intensive oxidative degradation processes. ?? 2008 American Chemical Society.

  2. Chemical wiring and soldering toward all-molecule electronic circuitry.

    PubMed

    Okawa, Yuji; Mandal, Swapan K; Hu, Chunping; Tateyama, Yoshitaka; Goedecker, Stefan; Tsukamoto, Shigeru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2011-06-01

    Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed. © 2011 American Chemical Society

  3. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    PubMed

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A potentiometric titration method for the crystallization of drug-like organic molecules.

    PubMed

    Du-Cuny, Lei; Huwyler, Jörg; Fischer, Holger; Kansy, Manfred

    2007-09-05

    It is generally accepted, that crystalline solids representing a low energy polymorph should be selected for development of oral dosage forms. As a consequence, efficient and robust procedures are needed at an early stage during drug discovery to prepare crystals from drug-like organic molecules. In contrast to the use of supersaturated solutions, we present a potentiometric crystallization procedure where saturated solutions are prepared in a controlled manner by pH-titration. Crystallization is carried out under defined conditions using the sample concentration and experimental pK(a) values as input parameters. Crystals of high quality were obtained for 11 drugs selected to demonstrate the efficiency and applicability of the new method. Technical improvements are suggested to overcome practical limitations and to enhance the possibility of obtaining crystals from molecules in their uncharged form.

  5. Formation of highly oxygenated organic molecules from aromatic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  6. Commensurability and transformations of adsorbed phases on a heterogeneous solid with periodic distribution of surface energy

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquin; Valencia, Eliana

    1997-07-01

    Monte Carlo experiments are used to investigate the adsorption of argon on a heterogeneous solid with a periodic distribution of surface energy. A study is made of the relation between the adsorbate molecule's diameter and the distance between the sites of maximum surface energy on the critical temperature, the observed phase changes, and the commensurability of the surface phase structure determined in the simulation.

  7. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    PubMed Central

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-01-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486

  8. Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples.

    PubMed

    Tokalıoğlu, Şerife; Yavuz, Emre; Demir, Selçuk; Patat, Şaban

    2017-12-15

    In this study, zirconium-based highly porous metal-organic framework, MOF-545, was synthesized and characterized. The surface area of MOF-545 was found to be 2192m 2 /g. This adsorbent was used for the first time as an adsorbent for the vortex assisted-solid phase extraction of Pb(II) from cereal, beverage and water samples. Lead in solutions was determined by FAAS. The optimal experimental conditions were as follows: the amount of MOF-545, 10mg; pH of sample, 7; adsorption and elution time, 15min; and elution solvent, 2mL of 1molL -1 HCl. Under the optimal conditions of the method, the limit of detection, preconcentration factor and precision as RSD% were found to be 1.78μgL -1 , 125 and 2.6%, respectively. The adsorption capacity of the adsorbent for lead was found to be 73mgg -1 . The method was successfully verified by analyzing two certified reference materials (BCR-482 Lichen and SPS-WW1 Batch 114) and spiked chickpea, bean, wheat, lentil, cherry juice, mineral water, well water and wastewater samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Young; Xu, Pan; Camillone, Nina R.; White, Michael G.; Camillone, Nicholas

    2016-07-01

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate-adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate-substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate-substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, ηel, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of ηel largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  10. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    PubMed Central

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. Key Points First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition PMID:26690960

  11. Biotin conjugated organic molecules and proteins for cancer therapy: A review.

    PubMed

    Maiti, Santanu; Paira, Priyankar

    2018-02-10

    The main transporter for biotin is sodium dependent multivitamin transporter (SMVT), which is overexpressed in various aggressive cancer cell lines such as ovarian (OV 2008, ID8), leukemia (L1210FR), mastocytoma (P815), colon (Colo-26), breast (4T1, JC, MMT06056), renal (RENCA, RD0995), and lung (M109) cancer cell lines. Furthermore, its overexpression was found higher to that of folate receptor. Therefore, biotin demand in the rapidly growing tumors is higher than normal tissues. Several biotin conjugated organic molecules has been reported here for selective delivery of the drug in cancer cell. Biotin conjugated molecules are showing higher fold of cytotoxicity in biotin positive cancer cell lines than the normal cell. Nanoparticles and polymer surface modified drugs and biotin mediated cancer theranostic strategy was highlighted in this review. The cytotoxicity and selectivity of the drug in cancer cells has enhanced after biotin conjugation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  13. Surface Chirality of Gly-Pro Dipeptide Adsorbed on a Cu(110) Surface.

    PubMed

    Cruguel, Hervé; Méthivier, Christophe; Pradier, Claire-Marie; Humblot, Vincent

    2015-07-01

    The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. © 2015 Wiley Periodicals, Inc.

  14. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  15. Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: an inverse gas chromatography study.

    PubMed

    Gutiérrez, Inés; Díaz, Eva; Vega, Aurelio; Ordóñez, Salvador

    2013-01-25

    The role of the structure of three isoreticular metal-organic frameworks (IRMOFs) on their adsorption behavior has been studied in this work, selecting different kinds of volatile organic compounds (VOCs) as adsorbates (alkanes, alkenes, cycloalkanes, aromatics and chlorinated). For this purpose, three samples (IRMOF-1, IRMOF-8 and IRMOF-10) with cubic structure and without functionalities on the organic linkers were synthesized. Adsorption capacities at infinite dilution were derived from the adsorption isotherms, whereas thermodynamic properties have been determined from chromatographic retention volume. The capacity and the strength of adsorption were strongly influenced by the adsorbate size. This effect is especially relevant for n-alkanes adsorption, indicating the key role of the cavity size on this phenomenon, and hence the importance of the IRMOF structural properties. A different behavior has been observed for the polar compounds, where an enhancement on the specificity of the adsorption with the π-electron rich regions was observed. This fact suggests the specific interaction of these molecules with the organic linkers of the IRMOFs. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Organization of 'nanocrystal molecules' using DNA

    NASA Astrophysics Data System (ADS)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  17. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    NASA Astrophysics Data System (ADS)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  18. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    PubMed Central

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-01-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697

  19. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    NASA Astrophysics Data System (ADS)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the

  20. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars).

  1. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  2. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  3. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  4. Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules

    NASA Technical Reports Server (NTRS)

    Marder, S. R.; Beratan, D. N.; Cheng, L.-T.

    1991-01-01

    Conjugated organic molecules with electron-donating and -accepting moieties can exhibit large electronic second-order nonlinearities, or first hyperpolarizabilities, beta. The present two-state, four-orbital independent-electron analysis of beta leads to the prediction that its absolute value will be maximized at a combination of donor and acceptor strengths for a given conjugated bridge. Molecular design strategies for beta optimization are proposed which give attention to the energetic manipulations of the bridge states. Experimental results have been obtained which support the validity of this approach.

  5. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  7. Mars Organic Matter Revealed by the Detection of Organo-chlorinated Molecules from Pyro-GCMS Analyses of Yellowknife Bay Mudstone

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Freissinet, C.; Glavin, D. P.; Buch, A.; Coll, P. J.; Cabane, M.; Millan, M.; Belmahadi, I.; Navarro-Gonzalez, R.; Steele, A.; Summons, R. E.; Eigenbrode, J. L.; Mahaffy, P. R.

    2015-12-01

    Mudstones collected on the Yellowknife Bay site in Gale crater by the Curiosity rover, were analyzed with the Sample Analysis at Mars (SAM) chemical laboratory with the aim (among others) to detect and identify organic molecules in the Martian reglith [1]. The pyrolysis (to 900°C)-gas chromatography-mass spectrometry (Pyro-GCMS) analytical mode was systematically used to reach that goal. It revealed the existence of complex interactions between compounds present in the soil sample (e.g. oxychlorines [2]) and internal components of the SAM experiment (e.g. derivatization reactant) resulting in signals complex to interpret [3]. By comparing these results with those obtained for the other Mars samples analysed with SAM, and by carefully identifying, from laboratory work, the possible SAM internal contributions to the organic molecules detected [4], chlorobenzene has already been identified as mainly originating from organics present in the mudstone [5]. Since this discovery, we did additional studies of the chromatograms that reveal the presence of dichlorobenzene originating from an organic source endogenous to the sample. Even if the exact original source of these organic molecules cannot be strictly identified, the detection of several chlorinated aromatic molecules suggests the presence of a significant amount of aromatized materials which are in an oxidized state involving oxygen in the mudstone. We present here the corresponding results and the implication it can have on the origin of these organic materials References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Ming D. et al. (2013), Science 32, 64, [4] Miller K. et al. (In press), JGR, [5] Freissinet et al., (2015), JGR Pla. 120, 495.

  8. Fluorescence detection of organic molecules in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Rogowski, R. S.

    1975-01-01

    A search for fluorescent emission due to the presence of possible organic molecules in the Jovian atmosphere is described. We first consider natural Jovian fluorescent emission excited by precipitating auroral particles. Due to our lack of knowledge of the Jovian precipitating particle energies and fluxes we next consider fluorescent emission excited by a laser system aboard a Jupiter spacecraft. Laser-induced fluorescence is routinely used to monitor trace constituents and pollutants in the terrestrial atmosphere. Several spacecraft laser systems are currently under development. Our calculations indicate that laser-induced fluorescent detection is approximately two orders of magnitude more sensitive than rocket ultraviolet measurements of possible Jovian absorption features at 2600 A that have been attributed to the presence of adenine or benzene.

  9. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens.

    PubMed

    Li, Z; Yang, Z B; Yang, W R; Wang, S J; Jiang, S Z; Wu, Y B

    2012-10-01

    The objectives of the present study were to investigate the toxicity of feed-borne Fusarium mycotoxins on organ weight, serum biochemistry, and immunological parameters of broiler chickens and to evaluate the efficacy of yeast cell wall adsorbent in preventing mycotoxin-induced adverse effects. In total, 300 one-day-old vaccinated (Marek's disease and infectious bronchitis) Arbor Acres broiler chickens (mixed sex) were randomly divided into 3 treatments (5 repetitions per treatment) and fed basal diet and naturally contaminated diets with or without yeast cell wall adsorbent. Treatments were control, naturally contaminated diet (NCD; aflatoxin, 102.08 mg/kg; zearalenone, 281.92 mg/kg; fumonisin, 5,874.38 mg/kg; deoxynivalenol, 2,038.96 mg/kg), and NCD + 2 g/kg of yeast cell wall adsorbent (NCDD). The test included 2 phases: d 0-21 and d 22-42. At 42 d, broilers fed contaminated diets without yeast cell wall adsorbent had higher (P < 0.05) serum albumin and higher relative weight of liver, bursa of Fabricius, and thymus, and greater splenic mRNA expression of IL-1β and IL-6 at 42 d compared with the control, but lower (P < 0.05) serum globulin at 42 d, IgA at 21 d, relative weight of spleen at 21 d, antibody titers of Newcastle disease at both 28 d and 42 d, and splenic mRNA expression of IFN-γ at 42 d were observed in the NCD treatment compared with control. Dietary addition of yeast cell wall adsorbent in the NCD treatment showed a positive protection effect on the relative weight of the liver and spleen at 21 d, relative weight of the bursa of Fabricius and thymus at 42 d, antibody titers of Newcastle disease at both 28 d and 42 d, and splenic mRNA expression of IL-1β, IL-6, and IFN-γ at 42 d. It is suggested that feeding a naturally contaminated diet for 42 d might result in a deleterious effect in broiler chickens, and addition of 2 g/kg of yeast cell wall enterosorbent can partly neutralize the detrimental effects of the naturally contaminated feed.

  10. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  11. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  12. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Organic Molecules in Oxygen-Rich Circumstellar Envelopes: Methanol and Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Tielens, A. G. G. M.; Kress, M. E.

    1995-01-01

    The existence of anomalously high abundances of gaseous CH4 has been invoked to explain the unexpectedly high abundances of the carbon-bearing molecules HCN and H2CO in the outflows from O-rich red giants. We have modelled the chemistry that proceeds in the outer envelope when CH4 is injected from the inner envelope. We find that photolysis by the interstellar radiation field drives an ion-neutral chemistry which produces several organic molecules. The calculated abundances of CH3OH, C2H and C2 can be comparable to those calculated for H2CO and HCN. Species such as C2H4, C2H2 and CH3CN can also be abundant. A search for CH3OH and C2H in several O-rich outflows known to exhibit strong HCN emission is needed. As it derives entirely from the CH4 photochain, is insensitive to the envelope temperature distribution, and has accessible transitions at millimetre wavelengths, the detection of the C2H radical would provide further indirect support for the presence of the hypothesized methane.

  14. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  15. Semiempirical evaluation of post-Hartree-Fock diagonal-Born-Oppenheimer corrections for organic molecules.

    PubMed

    Mohallem, José R

    2008-04-14

    Recent post-Hartree-Fock calculations of the diagonal-Born-Oppenheimer correction empirically show that it behaves quite similar to atomic nuclear mass corrections. An almost constant contribution per electron is identified, which converges with system size for specific series of organic molecules. This feature permits pocket-calculator evaluation of the corrections within thermochemical accuracy (10(-1) mhartree or kcal/mol).

  16. Modulating the magnetic behavior of Fe(II)-MOF-74 by the high electron affinity of the guest molecule.

    PubMed

    Han, Sungmin; Kim, Heejin; Kim, Jaehoon; Jung, Yousung

    2015-07-14

    As a new class of magnetic materials, metal-organic framework (MOF) has received a significant attention due to their functionality and porosity that can provide diverse magnetic phenomena by utilizing host-guest chemistry. For Fe-MOF-74, we here find using density functional calculations that the O2 and C2H4 adsorptions result in the ferromagnetic (FM) and antiferromagnetic (AFM) orderings along the 1D chain of an hexagonal MOF framework, respectively, while their adsorption energies, pi-complexation, and geometrical changes are all similar upon binding. We reveal that this different magnetism behavior is attributed to the different electronic effects, where the adsorbed O2 greatly withdraws a minor spin electron from the Fe centers. The latter significant back donation opens a new channel for superexchange interactions that can enhance the FM coupling between Fe centers, where the strength of calculated intrachain FM coupling constrant (Jin) in O2 adsorbed Fe-MOF-74 is more than 10 times enhanced compared to bare Fe-MOF-74. This prediction suggests a possibility for the conceptual usage of Fe-MOF-74 as a gas sensor based on its magnetic changes caused by the adsorbed gases. Furthermore, the suggested mechanism might be used to control the magnetic properties of MOFs using the guest molecules, although concrete strategies to enhance such magnetic interactions to be used in practical applications would require further significant investigation.

  17. Exploration of organic-inorganic hybrid perovskites for surface-enhanced infrared spectroscopy of small molecules.

    PubMed

    Chen, Jia; Mo, Zhi-Hong; Yang, Xiao; Zhou, Hai-Ling; Gao, Qin

    2017-06-22

    The organic-inorganic hybrid perovskites efficiently enhance the infrared absorption of small molecules. It is suggested that the quantum wells of perovskites enable the electrons of the perovskites to be excited by light in the infrared region. The exploration has opened a new path for chemical sensing through infrared spectroscopy.

  18. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of

  19. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  20. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool