Science.gov

Sample records for adsorbed organic species

  1. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  2. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  3. Alkylammonium montmorillonites as adsorbents for organic vapors from air

    SciTech Connect

    Harper, M.; Purnell, C.J. )

    1990-01-01

    Montmorillonite clays may be modified by the exchange of the inorganic interlayer cations with alkylammonium ions, resulting in a fixed internal porosity. The pore size and shape depend on the nature of the alkylammonium ion. A number of different ions were used to prepare adsorbents with varying properties, and these were examined for their potential application to sampling organic vapors in air. Characterization involved determination of nitrogen and water contents, surface area, interlayer spacing, thermal stability, and breakthrough volumes of organic vapors. The adsorbent that showed the most promise (tetramethylammonium montmorillonite (TMA)) was further evaluated for use as an adsorbent in both thermal- and solvent-desorable sampling systems.

  4. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  5. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  6. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    USGS Publications Warehouse

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  7. DESIGNING FIXED-BED ADSORBERS TO REMOVE MIXTURES OF ORGANICS.

    EPA Science Inventory

    A liquid-phase granular activated carbon (GAC) pilot plant and a full-scale GAC adsorber were designed, built, and operated in order to evaluate their performance for treating a groundwater contaminated with several volatile and synthetic organic chemicals. Several empty bed con...

  8. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  9. Influences of Dilute Organic Adsorbates on the Hydration of Low-Surface-Area Silicates.

    PubMed

    Sangodkar, Rahul P; Smith, Benjamin J; Gajan, David; Rossini, Aaron J; Roberts, Lawrence R; Funkhouser, Gary P; Lesage, Anne; Emsley, Lyndon; Chmelka, Bradley F

    2015-07-01

    Competitive adsorption of dilute quantities of certain organic molecules and water at silicate surfaces strongly influence the rates of silicate dissolution, hydration, and crystallization. Here, we determine the molecular-level structures, compositions, and site-specific interactions of adsorbed organic molecules at low absolute bulk concentrations on heterogeneous silicate particle surfaces at early stages of hydration. Specifically, dilute quantities (∼0.1% by weight of solids) of the disaccharide sucrose or industrially important phosphonic acid species slow dramatically the hydration of low-surface-area (∼1 m(2)/g) silicate particles. Here, the physicochemically distinct adsorption interactions of these organic species are established by using dynamic nuclear polarization (DNP) surface-enhanced solid-state NMR techniques. These measurements provide significantly improved signal sensitivity for near-surface species that is crucial for the detection and analysis of dilute adsorbed organic molecules and silicate species on low-surface-area particles, which until now have been infeasible to characterize. DNP-enhanced 2D (29)Si{(1)H}, (13)C{(1)H}, and (31)P{(1)H} heteronuclear correlation and 1D (29)Si{(13)C} rotational-echo double-resonance NMR measurements establish hydrogen-bond-mediated adsorption of sucrose at distinct nonhydrated and hydrated silicate surface sites and electrostatic interactions with surface Ca(2+) cations. By comparison, phosphonic acid molecules are found to adsorb electrostatically at or near cationic calcium surface sites to form Ca(2+)-phosphonate complexes. Although dilute quantities of both types of organic molecules effectively inhibit hydration, they do so by adsorbing in distinct ways that depend on their specific architectures and physicochemical interactions. The results demonstrate the feasibility of using DNP-enhanced NMR techniques to measure and assess dilute adsorbed molecules and their molecular interactions on low

  10. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  11. Enhanced photodegradation of organic dyes adsorbed on a clay.

    PubMed

    Tani, Seiji; Yamaki, Hiroshi; Sumiyoshi, Azumi; Suzuki, Yasutaka; Hasegawa, Shinya; Yamazaki, Suzuko; Kawamata, Jun

    2009-01-01

    The interaction of three photoactive organic dyes, Rhodamine B, Rhodamine 6G and a stilbazolium derivative 4'-dimethylamino-N-methyl-4-stilbazolium with synthetic sodium-saponite has been examined by UV-visible absorption spectroscopy. In all cases, bathochromic shifts and the reduction of peak absorbance for the dyes were observed in the absorption spectra at a low dye concentration (25% adsorption of the cation exchange capacity (CEC) of the clay), although the shape and the width of their absorption bands were similar to those in aqueous solution. This absorption behavior indicates that the organic dye molecules adsorbed onto the surface of the negatively charged clay particles and the adsorbed molecules were well dispersed. The photodegradation of the organic dyes in aqueous solution and in the clay suspension has been also examined by the irradiation of a laser beam at a wavelength of 532 nm. We have found that the hybridization of the organic dyes with the exfoliated clay particles largely enhanced a photodegradation. The clay particles acted as a catalyst even at a high concentration such as approximately 300% of CEC. PMID:19441365

  12. Photoluminescence Enhancement of Adsorbed Species on Si Nanoparticles.

    PubMed

    Matsumoto, Taketoshi; Maeda, Masanori; Kobayashi, Hikaru

    2016-12-01

    We have fabricated Si nanoparticles from Si swarf using the beads milling method. The mode diameter of produced Si nanoparticles was between 4.8 and 5.2 nm. Si nanoparticles in hexane show photoluminescence (PL) spectra with peaks at 2.56, 2.73, 2.91, and 3.09 eV. The peaked PL spectra are attributed to the vibronic structure of adsorbed dimethylanthracene (DMA) impurity in hexane. The PL intensity of hexane with DMA increases by ~3000 times by adsorption on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of Si nanoparticles. PMID:26744147

  13. Surface Adsorbed Species: IR Studies of SO2 and H2S Adsorbed on Oxides

    NASA Astrophysics Data System (ADS)

    Lavalley, J. C.; Lamotte, J.; Saur, O.; Mohammed Saad, A. B.; Tripp, C.; Morrow, B. A.

    1985-12-01

    The adsorption of SO, on alumina leads to the formation of several species such as SO3=, HSO3- and coordinated SO2. In addition sulfates are produced under oxidizing conditions. However, definitive vibra- tional assignments are hampered by the paucity of data below 1000 cm-1 where alumina is strongly absorbing. On the other hand, silica is partially transparent at low frequencies and subtractive IR spectroscopy has permitted us to observe bands which are tentatively assigned to the SO bending modes of bisulfite (HSO3-, 635 cm-I) and disulfite (S2O5-, 660 cm-I) surface species on sodium promoted silica catalysts when SO and H2O are coadsorbed. H2S addition to a surface pretreated with SO2 gives rise to a new band at 680 cm-1 which is pos- sibly due to S2O3 orS2O on the surface. The results are discussed in terms of intermediates in the Claus process (2 H2S + SO2 + 3/n Sn + 2 H2O).

  14. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  15. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  16. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  17. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  18. Scandium-Triflate/Metal-Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation.

    PubMed

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2015-12-01

    Scandium-triflate (Sc(OTf)3) was introduced for the first time on metal-organic frameworks (MOFs), to utilize acidic Sc(OTf)3 for adsorptive desulfurization and denitrogenation of fuel containing benzothiophene (BT), dibenzothiophene (DBT), quinoline (QUI), and indole (IND). A remarkable improvement in the adsorption capacity (about 65% based on the weight of adsorbents; 90% based on the surface area of the adsorbents) was observed with the Sc(OTf)3/MOFs as compared to the virgin MOFs for the adsorption of BT from liquid fuel. The basic QUI was also adsorbed preferentially onto the acidic Sc(OTf)3/MOFs. However, nonsupported Sc(OTf)3 showed negligible adsorption capacities. The improved adsorptive performance for BT, DBT, and QUI might be derived from acid-base interactions between the acidic Sc(OTf)3 and basic adsorbates. On the other hand, the Sc(OTf)3, loaded on MOFs, reduced the adsorption capacity for neutral IND due to lack of interaction between the neutral adsorbate and acidic adsorbent and the reduced porosities of the modified adsorbents. The reusability of the adsorbents was found satisfactory up to the fourth run. On the basis of the result, it is suggested that metal-triflates, such as Sc(OTf)3, can be prospective materials for adsorptive desulfurization/denitrogenation of fuels when supported on porous materials such as MOFs. PMID:26575418

  19. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu

    2015-11-01

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  20. Characterization of molecular and atomic species adsorbed on ferroelectric and semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Bharath, Satyaveda Chavi

    In order to clarify the mechanisms behind the adsorption of atomic and molecular species adsorbed on ferroelectric surfaces, single crystalline lithium niobate (LiNbO3, LN), 'Z-cut' along the (0001) plane, has been prepared, characterized and subsequently exposed to molecular and atomic species. 4-n-octyl-4'-cyanobiphenyl (8CB) liquid crystal was chosen as a polar molecule for our model system for this study. Low-energy electron diffraction (LEED), atomic force microscopy (AFM), surface contact angles (CA), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface of LN as well as the nature of the liquid crystal films grown on the surface. Atomically flat LN surfaces were prepared as a support for monolayer thick, 8CB molecular domains. Also, for the purpose of gaining a fundamental understanding of low coverage interactions of metal atoms on ferroelectric surfaces, we choose to deposit gold onto the LN surface. These gold atomic layers were grown under UHV conditions and characterized. Understanding anchoring mechanisms and thin film organization for LC molecules and metal atoms on uniformly poled surfaces allows for a fuller appreciation of how molecular deposition of other polarizable molecules on patterned poled LN surfaces would occur as well as yielding greater insight on the atomic characteristics of metal on ferroelectric interfaces. Also, to reveal the mechanisms involved in the adsorption of organic aromatic molecules on high-index Si surfaces, thiophene (C4H 4S) and pyrrole (C4H5N) molecules were dosed on prepared Si(5 5 12)-2x1 surfaces as our experimental system. The Si(5 5 12) surface was prepared to produce a 2x1 reconstruction after which molecules were dosed at low exposure to observe the preferred adsorption sites on the surface. All surface preparation and experiments were performed in UHV and measurements of the surface before and after deposition were performed using scanning tunneling microscopy (STM). Fundamental

  1. The analysis of surface-adsorbed organic molecules by alkali-assisted MIES combined with UPS(He I)

    NASA Astrophysics Data System (ADS)

    Günster, J.; Ochs, D.; Dieckhoff, S.; Kempter, V.

    1996-12-01

    Metastable impact electron spectroscopy (MIES) in combination with UPS(He I) is applied to the study of s-triazine and triethoxytriazine molecules adsorbed on Si(100) either alone or in combination with cesium atoms. It is demonstrated that the presence of the Cs atoms facilitates the identification of the adsorbed species considerably. It is concluded that (i) non-dissociative adsorption of the studied organic molecules occurs whereby the basal rings of the molecules lie flat on the silicon surface, in accordance with previous studies by Bu and Lin, (ii) the binding of the molecules to the surface is mainly via the lone pair orbitals of the nitrogen in the ring, and (iii) s-triazine reacts strongly with oxygen which bonds to the carbon atoms of the triazine ring.

  2. Covalent organic frameworks: Potential adsorbent for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Xie, Yinhuan

    A series of covalent organic frameworks (COFs) based on propeller shaped hexaphenylbenzene derivatives were obtained under solvothermal conditions via Schiff base reaction. The relationship between the geometry parameters of monomers and gas absorption behaviors of planar COFs was investigated. The FT-IR spectroscopy confirms the formation of imine double bond in the obtained COFs by showing a peak around 1620 cm-1. The resulting frameworks have high BET surface areas approaching 700 m2/g and CO2 uptake up to 14% at 273 K and 1 bar, which are better than most of the 2-D porous aromatic frameworks. The thermogravimetric analysis shows those frameworks are stable until 773 K, allowing for the practical application of the post-combustion CO2 technology. Moreover, a novel synthetic strategy for the trigonal pyramidal hydrozide monomers was established. It provides an efficient way to synthesize the hydrozide monomers at multi-gram scale, promising for the synthesis of hydrozane porous organic cages.

  3. COMPARISON OF SOLID ADSORBENT SAMPLING TECHNIQUES FOR VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR

    EPA Science Inventory

    The specific objective of the study was to compare the performance of three solid adsorbents (Tenax, an experimental polyimide resin, and Spherocarb) as well as cryogenic trapping/gas chromatography for sampling and analysis of a target list of volatile organic compounds in ambie...

  4. Transient magnetization of core excited organic molecules adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Ravikumar, Abhilash; Baby, Anu; Lin, He; Brivio, Gian Paolo; Fratesi, Guido

    This work presents a density functional theory based computational investigation of electronic and magnetic properties of physisorbed and chemisorbed organic molecules on graphene in the ground state and core excited one at low molecular coverage. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, it is found that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the contrary, when graphene is covalently functionalized, the system is magnetic in the ground state presenting two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. This project has received funding from the European Union Seventh Framework Programme under grant agreement n∘ 607232 [THINFACE].

  5. Surface photochemistry of adsorbed nitrate: the role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces.

    PubMed

    Nanayakkara, Charith E; Jayaweera, Pradeep M; Rubasinghege, Gayan; Baltrusaitis, Jonas; Grassian, Vicki H

    2014-01-01

    The surface photochemistry of nitrate, formed from nitric acid adsorption, on hematite (α-Fe2O3) particle surfaces under different environmental conditions is investigated using X-ray photoelectron spectroscopy (XPS). Following exposure of α-Fe2O3 particle surfaces to gas-phase nitric acid, a peak in the N1s region is seen at 407.4 eV; this binding energy is indicative of adsorbed nitrate. Upon broadband irradiation with light (λ > 300 nm), the nitrate peak decreases in intensity as a result of a decrease in adsorbed nitrate on the surface. Concomitant with this decrease in the nitrate coverage, there is the appearance of two lower binding energy peaks in the N1s region at 401.7 and 400.3 eV, due to reduced nitrogen species. The formation as well as the stability of these reduced nitrogen species, identified as NO(-) and N(-), are further investigated as a function of water vapor pressure. Additionally, irradiation of adsorbed nitrate on α-Fe2O3 generates three nitrogen gas-phase products including NO2, NO, and N2O. As shown here, different environmental conditions of water vapor pressure and the presence of molecular oxygen greatly influence the relative photoproduct distribution from nitrate surface photochemistry. The atmospheric implications of these results are discussed. PMID:24299394

  6. Electrospun polystyrene nanofibers as a novel adsorbent to transfer an organic phase from an aqueous phase.

    PubMed

    Liu, Feilong; Song, Dandan; Huang, Xueying; Xu, Hui

    2016-04-01

    The aim of this work is to develop a simple phase-transfer method for dispersive liquid-liquid microextraction. For this purpose, a polystyrene nanofiber was prepared by a facile electrospinning strategy and used for the first time as an adsorbent to transfer the organic phase in dispersive liquid-liquid microextraction procedure. The fiber was characterized and its chemical stability and excellent hydrophobicity enable it to selectively adsorb the organic solvent in an aqueous sample. High porosity and specific surface area provide a large adsorption capacity. Under the optimal conditions, the developed dispersive liquid-liquid microextraction with high-performance liquid chromatography method was successfully applied to the analysis of aldehydes in environmental water samples. The merits of this approach are that it is easy-to-operate, low-cost, time-saving, and has satisfactory sensitivity. It provides an alternative way for fast and convenient phase transfer of the hydrophobic organic solvent from the aqueous phase. PMID:26841974

  7. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  8. Low cost adsorbents for the removal of organic pollutants from wastewater.

    PubMed

    Ali, Imran; Asim, Mohd; Khan, Tabrez A

    2012-12-30

    Water pollution due to organic contaminants is a serious issue because of acute toxicities and carcinogenic nature of the pollutants. Among various water treatment methods, adsorption is supposed as the best one due to its inexpensiveness, universal nature and ease of operation. Many waste materials used include fruit wastes, coconut shell, scrap tyres, bark and other tannin-rich materials, sawdust and other wood type materials, rice husk, petroleum wastes, fertilizer wastes, fly ash, sugar industry wastes blast furnace slag, chitosan and seafood processing wastes, seaweed and algae, peat moss, clays, red mud, zeolites, sediment and soil, ore minerals etc. These adsorbents have been found to remove various organic pollutants ranging from 80 to 99.9%. The present article describes the conversion of waste products into effective adsorbents and their application for water treatment. The possible mechanism of adsorption on these adsorbents has also been included in this article. Besides, attempts have been made to discuss the future perspectives of low cost adsorbents in water treatment. PMID:23023039

  9. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

    NASA Astrophysics Data System (ADS)

    Frunza, Stefan; Frunza, Ligia; Ganea, Constantin Paul; Zgura, Irina; Brás, Ana Rita; Schönhals, Andreas

    2016-02-01

    Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species ns was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees.

  10. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, A.A.

    1996-12-10

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  11. Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks

    SciTech Connect

    Chen, Ying-Pin; Liu, Yangyang; Liu, Dahuan; Bosch, Mathieu; Zhou, Hong-Cai

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas–gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  12. Mercury removal from incineration flue gas by organic and inorganic adsorbents.

    PubMed

    Jurng, Jongsoo; Lee, Tai Gyu; Lee, Gyo Woo; Lee, Sung-Jun; Kim, Byung Hwa; Seier, Jochen

    2002-06-01

    Experiments were performed to investigate various adsorbents for their mercury removal capabilities from incineration flue gases. Four different materials were tested; Zeolite, Bentonite, activated carbon (AC), and wood char. Real incineration off-gas and in-lab simulated combustion flue gases (N2 + Hg) were used. Three cylindrical-shaped sorbent columns with 5 cm in diameter and 20 cm in length were used. The gas flow rate was fixed at 660 l/h at all times. Concentrations of NO, CO, O2, CO2, SO2, H2O, HCl, and mercury were continuously monitored. Mercury removal efficiencies of natural Zeolite and Bentonite were found to be much lower than those of the referenced AC. Amount of Hg removed were 9.2 and 7.4 microg/g of Zeolite and Bentonite, respectively. Removal efficiencies of each layer consisted of inorganic adsorbents were no higher than 7%. No significant improvement was observed with sulfur impregnation onto the inorganic adsorbents. Organic adsorbents (wood char and AC) showed much higher mercury removal efficiencies than those of inorganic ones (Zeolite and Bentonite). Mercury removal efficiency of wood char reached over 95% in the first layer, showing almost same effectiveness as AC which currently may be the most effective adsorbents for mercury. Amount of mercury captured by wood char was approximately 0.6 mg/g of wood char, close to the amount captured by AC tested in this study. Hence, wood char, made from the waste woods through a gasification process, should be considered as a possible alternative to relatively expensive AC. PMID:12108697

  13. Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media.

    PubMed

    Rodríguez-López, Joaquín; Alpuche-Avilés, Mario A; Bard, Allen J

    2008-12-17

    We introduce a new in situ electrochemical technique based on the scanning electrochemical microscope (SECM) operating in a transient feedback mode for the detection and direct quantification of adsorbed species on the surface of electrodes. A SECM tip generates a titrant from a reversible redox mediator that reacts chemically with an electrogenerated or chemically adsorbed species at a substrate of about the same size as the tip, which is positioned at a short distance from it (ca.1 microm). The reaction between the titrant and the adsorbate provides a transient positive feedback loop until the adsorbate is consumed completely. The sensing mechanism is provided by the contrast between positive and negative feedback, which allows a direct quantification of the charge neutralized at the substrate. The proposed technique allows quantification of the adsorbed species generated at the substrate at a given potential under open circuit conditions, a feature not attainable with conventional electrochemical methods. Moreover, the feedback mode allows the tip to be both the titrant generator and detector, simplifying notably the experimental setup. The surface interrogation technique we introduce was tested for the quantification of electrogenerated oxides (adsorbed oxygen species) on gold and platinum electrodes at neutral pH in phosphate and TRIS buffers and with two different mediator systems. Good agreement is found with cyclic voltammetry at the substrate and with previous results in the literature, but we also find evidence for the formation of "incipient oxides" which are not revealed by conventional voltammetry. The mode of operation of the technique is supported by digital simulations, which show good agreement with the experimental results. PMID:19053403

  14. Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product.

    PubMed

    Delval, Franck; Crini, Grégorio; Vebrel, Joël

    2006-11-01

    Two series of crosslinked starch polymers were tested for their ability to adsorb organic pollutants in aqueous solutions. The polymers were prepared by a crosslinking reaction of starch-enriched flour using epichlorohydrin as the crosslinking agent, without and in the presence of NH(4)OH. These polymers were used as sorbent materials for the removal of phenolic derivatives from wastewater. The influence of several parameters (kinetics, pH and polymer structure) on the sorption capacity was evaluated using the batch and the open column methods. Results of adsorption experiments showed that the starch-based materials exhibited high sorption capacities toward phenolic derivatives. The study of the kinetics of pollutant uptake revealed that the adsorbents presented a relatively fast rate of adsorption. The experimental data were examined using the Langmuir and Freundlich models and it was found that the Freundlich model appeared to fit the isotherm data better than the Langmuir model. PMID:16275061

  15. Comparison of Gas and Adsorbed Phase X-ray Photoemission Spectra of Oxidized Organics on Ice

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Bluhm, H.

    2011-12-01

    Most uptake studies of small chain organics on ice surfaces at near ambient conditions have been performed using flow tube and other methods which monitor the disappearance of the gas phase. We will present results using synchrotron based, ambient pressure X-ray photoemission spectroscopy which allows for the probing of the ice surface directly at near ambient conditions. C 1s XPS and C K-edge NEXAFS gas phase and adsorbed phase spectra will be compared for 2-propanol, acetone, and 1-propanal on ice at -45 C. Uptake experiments give rise to first order Langmuirian isotherms. Acetone and 2-propanol show little difference in the photoemission spectra between the gas phase and adsorbed phase, suggesting that adsorption occurs molecularly. However, adsorption of 1-propanal shows evidence of chemical transformation (oxidation) at the interface of ice. Further studies are underway to better understand this adsorption behavior.

  16. Development of adsorbent for the simultaneous removal of organic and inorganic contaminants from aqueous solution.

    PubMed

    Choi, J W; Chung, S G; Hong, S W; Kim, D J; Lee, S H

    2011-01-01

    In this study, a modified adsorbent, alginate complex beads, was prepared and applied to the removal of mixed contaminants from wastewater. The alginate complex beads were generated by the immobilization of powdered activated carbon and synthetic zeolites onto alginate gel beads, which were then dried at 110 °C for 20 h until the diameter had been reduced to 1 mm. This dry technique increased the hardness of the adsorbent to assure its durability and application. The adsorption onto the alginate complex beads of organic and inorganic compounds, as target contaminants, was investigated by performing both equilibrium and kinetic batch experiments. From the adsorption isotherms, according to the Langmuir equation, the alginate complex bead was capable of effectively removing benzene, toluene, zinc and cadmium. From kinetic batch experiments, the removal efficiencies of benzene, toluene, zinc and cadmium were found to be 66.5, 92.4, 74.1 and 76.7%, respectively, for initial solution concentrations of 100 mg L(-1). The results indicated that the adsorbent developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or contaminated groundwater. PMID:22020474

  17. Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture

    PubMed Central

    Lin, Yichao; Yan, Qiuju; Kong, Chunlong; Chen, Liang

    2013-01-01

    A series of polyethyleneimine (PEI) incorporated MIL-101 adsorbents with different PEI loadings were reported for the first time in the present work. Although the surface area and pore volume of MIL-101 decreased significantly after loading PEI, all the resulting composites exhibited dramatically enhanced CO2 adsorption capacity at low pressures. At 100 wt% PEI loading, the CO2 adsorption capacity at 0.15 bar reached a very competitive value of 4.2 mmol g−1 at 25°C, and 3.4 mmol g−1 at 50°C. More importantly, the resulting adsorbents displayed rapid adsorption kinetics and ultrahigh selectivity for CO2 over N2 in the designed flue gas with 0.15 bar CO2 and 0.75 bar N2. The CO2 over N2 selectivity was up to 770 at 25°C, and 1200 at 50°C. We believe that the PEI based metal-organic frameworks is an attractive adsorbent for CO2 capture. PMID:23681218

  18. A model to predict the adsorber thermal behavior during treatment of volatile organic compounds onto wet activated carbon.

    PubMed

    Pré, P; Delage, F; Le Cloirec, P

    2002-11-01

    A model for adsorption of volatile organic compounds (VOCs) onto a wet activated carbon bed was proposed in this study. This model accounts for temperature changes induced by the reversed and coupled mass-transfer processes of both organic species adsorption and water desorption. Indeed, it was experimentally pointed out that temperature rises, which result from the exothermal nature of the energetic interactions between the organic molecule and the activated carbon surface, are notably reduced when the adsorbent contains an initial moisture of approximately 10% in weight. Moreover, it was shown that water rate desorption was enhanced in the presence of organic vapor. This phenomenon may be explained by the displacement of sorbed water bythe organic molecules, owing to more intensive interactions with the activated carbon surface. The model proposed was elaborated from a previous comprehensive analysis of the diffusion mechanisms governing VOC adsorption at high concentrations onto a dry activated carbon bed. In a similar way, a theoretical approach was developed to model water desorption during drying of a wet activated carbon bed under pure flowing air. At last, a theoretical depiction of both competitive and reverse processes was outlined. The final model fits reasonably with experimental data relative to both breakthrough curves and thermal wave shape along the bed, even if local temperature change calculation may require some further improvement. PMID:12433182

  19. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. PMID:26808249

  20. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  1. Orientation and order of aqueous organic ions adsorbed to a solid surface

    SciTech Connect

    Sukhishvili, S.A.; Granick, S.

    1999-01-21

    The adsorption and orientation of an aqueous organic ion with anisotropic shape (1,4-dimethylpyridinium, P{sup +}) at the surface of oxidized silicon carrying opposite charge (produced by conditions of high pH) were studied using polarized infrared spectroscopy in attenuated total reflection (FTIR-ATR). Orientation relative to the surface was quantified from the dichroic ratio of in-plane skeletal vibrations of the pyridinium ring (1643 and 1523 cm{sup {minus}1}), and the adsorbed amount was inferred from the intensity of these bands. The sticking energy of the organic ion was slightly larger than that of small inorganic ions of the same charge (Li{sup +}, Na{sup +}, Cs{sup +}). From relative quantities adsorbed in competitive adsorption, the relative sticking energy was quantified ({approximately}7k{sub B}T relative to Na{sup +} at pH = 9.2 and varying in the order Cs{sup +} > Na{sup +} > Li{sup +} by the total amount of 0.6k{sub B}T). At low ionic strength (no inorganic ions present except those in the buffer solution), P{sup +} stood preferably parallel to the surface when the surface coverage was low but more nearly upright both as its surface coverage increased and as the concentration of coadsorbed small ions increased. This shows the influence of steric packing on the orientation of this ion of asymmetric shape. The larger the hydrated diameter of the coadsorbed ion, the more the P{sup +} ion tilted away from the surface (H{sup +} < Li{sup +}, Na{sup +}, Cs{sup +} < Mg{sup 2+}). Furthermore, if the mass adsorbed exceeded a critical level, both the tilt and the amount adsorbed jumped in response to increasing P{sup +} concentration in bulk solution, with hysteresis upon dilution. This jump, together with the measured ellipsometric thickness and contact angle, suggests that the discontinuity involved structural change within a single monolayer. The organic ion thus behaved at the surface as an embryonic amphiphile, although in the bulk, micelle formation has

  2. Investigation of organic, inorganic and synthetic adsorbents for the pretreatment of landfill leachate.

    PubMed

    Shahriari, H; Fernandes, L; Tezel, F H

    2008-05-01

    An investigation into the use of organic, inorganic and synthetic adsorbents for the pretreatment of landfill leachate, generated by the City of Ottawa Trail Road Landfill, was carried out. The purpose of this project was to reduce the concentration of contaminants in order to meet the local Sewer Use By-Laws, prior to transporting the leachate from the generating site to the local municipal sewage treatment plant, and thereby reducing the disposal fees. Peat moss, compost, clinoptilolite, basalt and two types of activated carbon (DSR-A and F400) were investigated to determine the adsorption capacity for contaminants from leachate. Kinetic studies were also performed. The results based on batch adsorption isotherms show that peat moss has the highest adsorption capacity for boron (B) and barium (Ba), compared with the other adsorbents. Also peat moss has good removals of Total Kjeldahl Nitrogen (TKN), Total Organic Carbon (TOC), and benzene, toluene, ethylbenzene and xylene (BTEX), but these are lower than the removals obtained with activated carbon. Because of its relatively low cost and higher adsorption of B and Ba, peat moss was selected as the filter media for the column studies. The treated leachate was tested for B, Ba, TKN, carbonaceous biological oxygen demand (CBOD5) and hydrogen sulfide (H2S). The breakthrough curves for B and Ba showed the effectiveness of peat moss in removing these contaminants. PMID:18661738

  3. Hollow Co@C prepared from a Co-ZIF@microporous organic network: magnetic adsorbents for aromatic pollutants in water.

    PubMed

    Hong, Seokjo; Yoo, Jin; Park, Nojin; Lee, Sang Moon; Park, Je-Geun; Park, Ji Hoon; Son, Seung Uk

    2015-12-28

    This work shows the new engineering strategy of magnetic adsorbents by the combination of zeolitic imidazolate framework (ZIF) and microporous organic network (MON) chemistry. ZIF-67 nanoparticles containing Co(2+) ions were coated with MON. The thermolysis of ZIF-67@MON under argon resulted in hollow carbon materials bearing cobalt nanoparticles which showed promising performance as magnetic adsorbents for aromatic pollutants in water. PMID:26490193

  4. Influence of structural fluctuations on lifetimes of adsorbate states at hybrid organic-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Müller, M.; Sánchez-Portal, D.; Lin, H.; Fratesi, G.; Brivio, G. P.; Selloni, A.

    On the road towards a more realistic description of charge transfer processes at hybrid organic-semiconductor interfaces for photovoltaic applications we extend our first-principles scheme for the extraction of elastic linewidths to include the effects of structural fluctuations. Based on snapshots obtained from Car-Parinello molecular dynamics simulations at room temperature, we set up geometries in which dye molecules at interfaces are attached to a semi-infinite TiO2 substrate. The elastic linewidths are computed using a Green's function method. This effectively introduces the coupling to a continuum of states in the substrate. In particular we investigate catechol and isonicotinic acid on rutile(110) and anatase(101) at the level of semi-local density functional theory. We perform multiple calculations of linewidths and peak-positions associated with the adsorbate's frontier orbitals for different geometric configurations to obtain a time-averaged analysis of such physical properties. We compare the results from the considered systems to understand the effects of dynamics onto interfacial charge transfer and systematically assess the dependence of the extracted elastic lifetimes on the relative alignment between adsorbate and substrate states. This project has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 607323 [THINFACE].

  5. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001).

    PubMed

    Stradi, Daniele; Garnica, Manuela; Díaz, Cristina; Calleja, Fabián; Barja, Sara; Martín, Nazario; Alcamí, Manuel; Vazquez de Parga, Amadeo L; Miranda, Rodolfo; Martín, Fernando

    2014-12-21

    Achieving control over the self-organization of functional molecules on graphene is critical for the development of graphene technology in organic electronic and spintronic. Here, by using a scanning tunneling microscope (STM), we show that the electron acceptor molecule 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) and its fluorinated derivative 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyano-p-quinodimethane (F4-TCNQ), co-deposited on the surface of epitaxial graphene on Ru(0001), transform spontaneously into their corresponding magnetic anions and self-organize in two remarkably different structures. TCNQ forms densely packed linear magnetic arrays, while F4-TCNQ molecules remain as isolated non interacting magnets. With the help of density functional theory (DFT) calculations, we trace back the origin of this behavior in the competition between the intermolecular repulsion experienced by the individual charged anions, which tends to separate the molecules, and the delocalization of the electrons transferred from the surface to the molecules, which promotes the formation of molecular oligomers. Our results demonstrate that it is possible to control the spatial arrangement of organic magnetic anions co-adsorbed on a surface by means of chemical substitution, paving the way for the design of two-dimensional fully organic magnetic structures on graphene and on other surfaces. PMID:25382549

  6. The role of adsorbed hydroxyl species in the electrocatalytic carbon monoxide oxidation reaction on platinum.

    PubMed

    Kucernak, Anthony R; Offer, Gregory J

    2008-07-01

    The assumption that "OH(ads)" or other oxygen containing species is formed on polycrystalline or nanoparticulate platinum through a fast and reversible process at relatively low potentials is often made. In this paper we discuss the implications of this assumption and the difficulty in reconciling it with experimental phenomena. We show how presenting chrono-amperometric transients as log-log plots for potentials steps in the presence and absence of an adlayer of carbon monoxide on polycrystalline platinum is particularly useful in understanding the time evolution of the CO oxidation reaction. When using log-log plots a clear power law decay can be observed in the transients both in the presence and absence of an adlayer of carbon monoxide. We explain this as an extension of current theory, such that the rate determining step in both cases is the formation of a hydrogen bonded water-OH(ads) network, strongly influenced by anions, and that CO(ads) oxidation occurs, at least in part by the diffusion of OH(ads) through this network. We hypothesize that, at low potentials the formation of OH(ads) at active sites is fast and reversible but that transport of OH(ads) away from those sites may be rate limiting. The assumption that overall OH(ads) formation on platinum is fast and reversible is therefore highly dependent upon the platinum surface and the experimental conditions and it may not be appropriate for polycrystalline surfaces in sulfuric acid. Therefore, although the formation of OH(ads) on platinum in the absence of strongly adsorbing anions on 'ideal' surfaces is almost certainly fast and reversible, on realistic fuel cell relevant surfaces under non-ideal conditions this assumption cannot be made, and instead the formation of an OH(ads) adlayer may be somewhat slow and is associated with the formation of hydrogen bonded water-OH(ads) networks on the surface. We expect this to be a more realistic description for what occurs during CO(ads) oxidation on fuel cell

  7. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule?

    PubMed

    Aleksandrov, Hristiyan A; Neyman, Konstantin M; Hadjiivanov, Konstantin I; Vayssilov, Georgi N

    2016-08-10

    The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt(0), with C-O vibrational frequencies in the region 2018-2077 cm(-1), suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm(-1). This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches. PMID:27444400

  8. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants.

    PubMed

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m(2)/g, a large pore volume of 1.66 cm(3)/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr(3+), Co(2+), Ni(2+), Ce(3+), Pb(2+)) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  9. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-11-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation.

  10. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    PubMed Central

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  11. Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions.

    PubMed

    Zhu, Zhenke; Tao, Liang; Li, Fangbai

    2013-09-01

    Dissolved organic matter (DOM) is widespread in aquatic and terrestrial environments. Iron is the most abundant transition metal in the Earth's crust. The biogeochemistry of iron and the strength of Fe(II) as a reducing agent while adsorbed on minerals are affected by DOM. This study investigated the effects of Fe(II)/DOM interactions on the reduction of 2-nitrophenol (2-NP) in TiO2 suspensions. Kinetic measurements demonstrated that rates (k) of 2-NP reduction by adsorbed Fe(II) species are affected by adding DOM (denoted O-DOM), and the obtained k values under the impact of the Fe(II)/DOM interaction with different molecular weight DOM fractions [including MW<3500Da (L-DOM), 350014000Da (H-DOM)] showed significant differences. The enhanced rates of 2-NP reduction contributed to increases in the amount of adsorbed Fe(II) species and negative shifts in peak oxidation potential values (EP) in CV tests. For different molecular weight DOM fractions, increases in k (O-DOMadsorbed Fe(II) and the lower EP values. In addition, the ETC values were slightly higher in the TiO2 suspension containing the H-DOM fraction as compared the other two DOM fractions, which would further enhance the reduction rate of 2-NP. These findings promote a general understanding of Fe(II)/DOM interactions and their impact on the fate of contaminants in actual subsurface environments. PMID:23796307

  12. Use of layered double hydroxides and their derivatives as adsorbents for inorganic and organic pollutants

    NASA Astrophysics Data System (ADS)

    You, Youwen

    Contamination of surface and groundwaters by hazardous inorganic and organic pollutants has become an increasing threat to the safety of drinking waters. Cleanup of contaminated surface and groundwaters has, therefore, become a major focus of environmental research. Primary objectives of this dissertation study were to examine the adsorption properties of layered double hydroxides (LDHs) and their derivatives for inorganic and organic contaminants and to identify potential technologies that utilize LDHs and their derivatives for environment remediation. Studies examined the adsorption characteristics of anionic selenium, arsenic and dicamba (3,6 dichloro-2-methoxy benzoic acid) on original LDHs and calcined-LDHs. Adsorption of selenium and arsenic on LDHs was a function of pH. Competing anions in solution strongly affected adsorption of all three contaminants, with divalent anions decreasing adsorption more intensely than monovalent anions. Adsorbed selenium, arsenic and dicamba could be released from LDHs in anion solutions. Adsorption isotherms for selenium and arsenic retention could be fitted to a simple Langmuir equation. Calcination processes significantly increased adsorption capacities of LDHs. Because of adsorption-desorpion characteristics, LDHs could be recycled. X-ray diffraction patterns revealed an increase of d-spacing coupling with adsorption of contaminants, verifying the intercalation of contaminants into layer structure of LDHs. Long chain anionic surfactants intercalated into LDHs modified their surface properties, resulting in organo-LDHs with hydrophobic surface properties. Various organo-LDHs were developed by incorporating different surfactants into LDHs via different synthesis methods. Surfactant intercalation properties were examined and the geometrical arrangements of the intercalated surfactants were characterized. Results revealed that surfactant molecules could adopt various configurations within the LDH interlayer space. Intercalation

  13. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    PubMed

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented. PMID:26917141

  14. Adsorbable organic halogens (AOXs) in solid residues from hazardous and clinical waste incineration.

    PubMed

    Durmusoglu, Ertan; Bakoglu, Mithat; Karademir, Aykan; Kirli, Lale

    2006-01-01

    Trace concentrations of a variety of chemicals remain in solid residues following combustion even in properly designed and operated incinerators. In the present study, the adsorbable organic halogen (AOX) levels of the solid residues, i.e., bottom ash, fly ash, and filter cake, were investigated during a 82-day of continuous operation of a Hazardous and Clinical Waste Incinerator. The distribution of halogens in the waste input prior to the incineration was also determined. The AOX levels measured in bottom ash, fly ash and filter cake were in the range of 0.014-1.879, 0.012-0.263, and 0.004-0.062 mg-Cl(-)/kg, respectively. The AOX levels are significantly low in the fly ash and filter cake due to the post-combustion process in the incinerator. At the end of the 82 days, the total AOX output in the bottom ash, fly ash, and filter cake were 571, 3.71, and 6.26 g, respectively. The partitioning of the total AOX in solid residues was 98.28, 0.64, and 1.08% for the bottom ash, fly ash and filter cake, respectively. This shows that the bottom ash is more contaminated with AOX than the other two residues. PMID:16835121

  15. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  16. Probing interactions between TiO 2 photocatalyst and adsorbing species using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Morand, R.; Noworyta, K.; Augustynski, J.

    2002-10-01

    Photoactivity of nanocrystalline TiO 2 films is shown to be strongly affected by the presence in aqueous solution of salicylic acid, known to form Ti(IV)salicylate surface complexes. In particular, the photooxidation of methanol - an effective hole scavenger - at TiO 2 appears to be in part, or even completely inhibited by the additions of increasing amounts of salicylic acid. The chemisorption of salicylic and also phthalic acid on TiO 2 was followed using quartz crystal microbalance, QCM. The observed resonant frequency changes of the quartz crystal bearing TiO 2 films, accompanying increasing additions of the benzoic acids to the contacting solutions, indicate large displacement of water as a consequence of the adsorbent-imparted hydrophobicity of the interface.

  17. ORGAN AND SPECIES SPECIFICITY IN CHEMICAL CARCINOGENESIS

    EPA Science Inventory

    The focus of the Symposium and this volume is the relative susceptibility of specific animal species strains and organs to various carcinogens. For the first time, investigators in chemical carcinogenesis are able to pool their discoveries in this area. Once analyzed, this data c...

  18. EPR studies on the organization of self-assembled spin-labeled organic monolayers adsorbed on GaAs.

    PubMed

    Ruthstein, Sharon; Artzi, Reit; Goldfarb, Daniella; Naaman, Ron

    2005-02-01

    Characterizing the structure and dynamic properties of a single monolayer is a challenge due to the minute amount of material that is probed. Here, EPR spectroscopy is used for investigating the spatial and temporal organization of self-assembled monolayers of 5- and 16-doxyl stearic acid (5 DSA and 16 DSA, respectively) adsorbed on a GaAs substrate. The results are complemented with FTIR and ellipsometery measurements, which provide the evidence for the formation of monolayers. Moreover, a comparison with the FTIR spectrum of a monolayer of stearic acid shows that the monolayers of the spin labeled molecules are less packed due to the hindrance introduced by the labeling group. The EPR spectra provide a new insight on the ordering in the layer and more interestingly, it reveals the time dependence of the organization. For 5DSA, with the spin-label group situated close to the substrate, the EPR spectrum immediately after adsorption is poorly resolved and dominated by the spin-exchange interaction between neighboring molecules. As time increases (up to 1 week) the resolution of the 14N hyperfine coupling increases, revealing a better organized monolayer where the molecules are more homogenously spaced. Moreover, the spectrum of the layer, after reaching equilibrium, shows that there is no motional freedom near the GaAs surface. Orientation dependence measurements on the equilibrated sample show the presence of a preferred orientation of the molecules, although with a wide distribution. The spectrum of the 16DSA monolayer, where the nitroxide spin label is situated at the end of the chain, far from the surface, also showed a poorly resolved spectrum at short times, but unlike 5DSA, it did not exhibit any time dependence. Through EPR line-shape simulations and by comparison with FTIR results, the differences between 5DSA and 16DSA were attributed to difference in coverage caused by the bulky spin label near the surface in the case of 5DSA. PMID:19785139

  19. Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces.

    PubMed

    Ewen, James P; Gattinoni, Chiara; Morgan, Neal; Spikes, Hugh A; Dini, Daniele

    2016-05-10

    For the successful development and application of lubricants, a full understanding of the nanoscale behavior of complex tribological systems is required, but this is difficult to obtain experimentally. In this study, we use nonequilibrium molecular dynamics (NEMD) simulations to examine the atomistic structure and friction properties of commercially relevant organic friction modifier (OFM) monolayers adsorbed on iron oxide surfaces and lubricated by a thin, separating layer of hexadecane. Specifically, acid, amide, and glyceride OFMs, with saturated and Z-unsaturated hydrocarbon tail groups, are simulated at various surface coverages and sliding velocities. At low and medium coverage, the OFMs form liquidlike and amorphous monolayers, respectively, which are significantly interdigitated with the hexadecane lubricant, resulting in relatively high friction coefficients. At high coverage, solidlike monolayers are formed for all of the OFMs, which, during sliding, results in slip planes between well-defined OFM and hexadecane layers, yielding a marked reduction in the friction coefficient. When present at equal surface coverage, OFMs with saturated and Z-unsaturated tail groups are found to yield similar structure and friction behavior. OFMs with glyceride head groups yield significantly lower friction coefficients than amide and particularly carboxylic acid head groups. For all of the OFMs and coverages simulated, the friction coefficient is found to increase linearly with the logarithm of sliding velocity; however, the gradient of this increase depends on the coverage. The structure and friction details obtained from these simulations agree well with experimental results and also shed light on the relative tribological performance of these OFMs through nanoscale structural variations. This has important implications in terms of the applicability of NEMD to aid the development of new formulations to control friction. PMID:27064962

  20. Screening Metal-Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber

    SciTech Connect

    Krishna, Rajamani; Long, Jeffrey R.

    2011-07-07

    Metal–organic frameworks (MOFs) offer considerable potential for separating a variety of mixtures that are important in applications such as CO₂ capture and H₂ purification. In view of the vast number of MOFs that have been synthesized, there is a need for a reliable procedure for comparing screening and ranking MOFs with regard to their anticipated performance in pressure swing adsorption (PSA) units. For this purpose, the most commonly used metrics are the adsorption selectivity and the working capacity. Here, we suggest an additional metric for comparing MOFs that is based on the analysis of the transient response of an adsorber to a step input of a gaseous mixture. For a chosen purity of the gaseous mixture exiting from the adsorber, a dimensionless breakthrough time τ{sub break} can be defined and determined; this metric determines the frequency of required regeneration and influences the productivity of a PSA unit. The values of τ{sub break} are dictated both by selectivity and by capacity metrics .By performing transient adsorber calculations for separation of CO₂/H₂, CO₂/CH₄, CH₄/H₂, and CO₂/CH₄/H₂ mixtures, we compare the values of τbreak to highlight some important advantages of MOFs over conventionally used adsorbents such as zeolite NaX. For a given separation duty, such comparisons provide a more realistic ranking of MOFs than afforded by either selectivity or capacity metrics alone. We conclude that breakthrough calculations can provide an essential tool for screening MOFs.

  1. In situ infrared study of adsorbed species during catalytic oxidation and carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Khatri, Rajesh A.

    2005-11-01

    of the Ni-Re/CeO2 catalyst was reduced by only 20% in the presence of sulfur compared to a 50% reduction with the Ni/CeO 2 catalyst. These results show that Re not only promotes the water-gas shift reaction but also enhances the sulfur tolerance of the Ni/CeO2 catalyst. Novel amine based solid sorbents have been developed to capture CO 2 reversibly using temperature-swing adsorption process. The IR study shows that CO2 adsorbs on amine grafted SBA-15 to form carbonates and bicarbonates. Comparison of monoamine and diamine-grafted SBA-15 showed that diamine grafted SBA-15 provides almost twice the active sites for CO 2 adsorption. The adsorption of SO2 on the amine-grafted SBA-15 revealed that SO2 adsorbs irreversibly and the sorbent cannot be regenerated under normal operating conditions. Results of these studies can be used to enhance the overall conversion of CH4 to H2 thus lowering the cost of H2 product.

  2. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    PubMed

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents. PMID:25742754

  3. Evaluation and Application of a Solid Adsorbent Method for Monitoring Exposure to Volatile Organic Compounds from Oil and Gas Operations.

    NASA Astrophysics Data System (ADS)

    Smith, K. R.; Helmig, D.; Thompson, C. R.; Wang, W.; Terrell, R. M.; Lewis, A. C.

    2014-12-01

    Residential communities are being increasingly impacted by emissions from oil and gas development and this has driven the need for simple, effective, and low-cost methods for air quality monitoring. Primary emissions from oil and gas production consist of volatile organic compounds (VOCs) ranging from the short chain alkanes and alkenes to aromatic and semi-volatile species; many of these are a concern from both an air quality and public health viewpoint, as they can lead to local ozone pollution and increased risk of cancer or respiratory illness. The fate of hydrocarbons once in the atmosphere is ultimately oxidation through to CO2 and water, adding to the greenhouse gas burden. Measurement techniques that are capable of identifying and quantifying the full range of primary emissions of concern are required to assess community exposure to air toxics and to better inform residents, as well as local and state legislators. Here, we present evaluation of a low-cost air monitoring technique using stainless steel diffusion cartridges containing multiple solid adsorbents. Over the course of a three-month period in summer of 2014, cartridges were deployed at five monitoring sites located around Boulder County in the Northern Colorado Front Range, and exposed to ambient air for periods of up to four days along with concurrent sampling using stainless steel SUMMA canisters. Samples collected with both methods were subsequently analyzed for VOCs by GC-FID and the results were compared to determine the accuracy and precision of the diffusion cartridge method. Results of this evaluation show that the diffusion cartridge method has the potential to be a simple and low-cost solution for widespread exposure monitoring in communities near oil and gas development regions. Such measurements may also provide supporting evidence on wider effects on greenhouse gas emissions from oil and gas development operations.

  4. Ethylene and oxygen species adsorbed on a defect oxidized surface Ag(1 1 1) . Theoretical analysis by DFT method

    NASA Astrophysics Data System (ADS)

    Avdeev, Vasilii I.; Zhidomirov, Georgii M.

    2001-10-01

    We suggest a cluster model AS v→Ag12-3O of the oxidized surface Ag(1 1 1) with a defect. The defect is simulated by cationic vacancy V. Density functional theory (B3LYP/LANL1MB approximation) is used to calculate ethylene and oxygen adsorption on the regular (AS r) and defect (AS d) sites on the Ag(1 1 1). Oxygen interaction with site AS r produces atomic oxygen species (AS r-O). Oxygen adsorption on site AS d is accompanied by its association with subsurface oxygen atoms to form a quasimolecular structure of metal ozonide type -Ag-O-O ep-O-Ag-, containing electrophilic oxygen O ep. Energies of atomic oxygen binding to the regular and defect surfaces are found to be approximately equal. On the regular surface, ethylene forms a π-complex with binding energy Eπ(Ag-C 2H 4)=14.2 kcal/mol. On the defect surface, ethylene produces a metal-ethylene-peroxide cycle such as Ag-O-O-C 2H 4-Ag. Determined are the frequencies of normal vibration for ethylene and oxygen species, adsorbed on the regular and defect surfaces. In the case of associative oxygen species and complete isotope replacement 16O→ 18O, the main frequency at 1000 cm -1 shifts by Δν=57-61 cm -1, but this shift decreases to Δν=25-30 cm -1 for isotope mixtures 16O/ 18O. For the adsorbed species of ethylene-oxygen mixtures, IR spectra show the frequencies within which 170-180 cm -1 are associated with stretching of bond Ag-C. Frequencies at 300-490 cm -1 are assigned to mode ν(Ag-O) of the functional group Ag-O-O ep-O-Ag. The most intensive modes at 950 and 600 cm -1 are likely to stretching and bending of the functional groups containing the O-O-O and O-O-C bonds.

  5. Brominated organic species in the arctic atmosphere

    NASA Technical Reports Server (NTRS)

    Berg, W. W.; Heidt, L. E.; Pollock, W.; Sperry, P. D.; Cicerone, R. J.; Gladney, E. S.

    1984-01-01

    Measurements are reported of four gas-phase, brominated organic species found in the Arctic atmosphere during March and April 1983. Volume mixing ratios for CH3Br, CH2BrCH2Br, CHBr3, and CH2Br2 were determined by gas chromatography/mass spectrometry analysis from samples taken Arctic wide, including at the geographic North Pole and during a tropopause folding event over Baffin Bay near Thule, Greenland. Methyl bromide mixing ratios were reasonably constant at 11 plus or minus 4 pptv, while the other three brominated organics showed a high degree of variability. Bromoform (2 to 46 pptv) was found to be the dominant contributor to gaseous organic bromine to the Arctic troposphere at 38 plus or minus 10 percent followed by CH2Br2 (3 to 60 pptv) at 29 plus or minus 6 percent. Both CH3Br and CH2BrCH2Br (1 to 37 pptv) reservoirs contained less than 20 percent of the organically bound bromine. Stratospheric samples, taken during a tropopause folding event, showed mixing ratios for all four species at levels high enough to support a stratospheric total volume mixing ratio of 249 pptv Br (888 ngBr/SCM).

  6. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  7. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE PAGESBeta

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  8. Theoretical estimation for equilibrium Mo isotope fractionations between dissolved Mo species and the adsorbed complexes on (Fe,Mn)-oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Tang, M.; Liu, Y.

    2009-12-01

    Although Mo isotopes have been increasingly used as a paleoredox proxy in the study of paleo-oceanographic condition changes (Barling et al., 2001; Siebert et al., 2003, 2005,2006; Arnold et al., 2004; Poulson et al., 2006), some very basic aspects of Mo isotopes geochemistry have not been obtained yet. First, although there are several previous studies on equilibrium Mo isotope fractionation factors(Tossell,2005; Weeks et al.,2007; Wasylenki et al.,2008), these studies were dealing with situations in vacuum and we find unfortunately the solvation effects for Ge species in solution cannot be ignored. Therefore, accurate Ge fractionation factors are actually not determined yet. Second, except the dominant dissolved Mo species in seawater which is known as molybdate ion (MoO42-), the forms of possible other minor species remain elusive. Third, the Mo removal mechanisms from seawater are only known for the anoxia and euxinic conditions (e.g. Helz et al., 1996; Zheng et al., 2000), the Mo removal mechanism under oxic condition are still arguing. Fourth, the adsorption effects on Mo isotope fractionation are almost completely unknown. Especially, without the adsorption fractionation knowledge, it is difficult to understand many distinct fractionations found in a number of geologic systems and it is difficult to explain the exceptionally long residence time of Mo in seawater. Urey model or Bigeleisen-Mayer equation based theoretical method and the super-molecule clusters are used to precisely evaluate the fractionation factors. The B3LYP/(6-311+G(2df,p),LANL2DZ) level method is used for frequencies calculation. 24 water molecules are used to form the supermolecues surrounding the Mo species. At least 4 different conformers for each supermolecule are used to prevent the errors from the diversity of configurations in solution. This study provides accurate equilibrium Mo isotope fractionation factors between possible dissolved Mo species and the adsorbed Mo species on the

  9. Comparison between the adsorption behaviors of an organic cation and an organic anion on several reversed-phase liquid chromatography adsorbents.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2004-09-01

    Adsorption data of an organic cation (propranololium chloride) and an organic anion (sodium 1-naphthalene sulfonate) were measured by frontal analysis on two RPLC adsorbents, Symmetry-C18 and XTerra-C18, with aqueous solutions of methanol as the mobile phases. The influence of supporting neutral salts on the adsorption behavior of these two ions are compared. The Henry constants are close (H approximately 5). The four sets of isotherm data are all well accounted for using the bi-Moreau model. However, the isotherms of the two ions behave differently at high concentrations. The initial behaviors of all the isotherms are antilangmuirian but remain so in a much wider concentration range for the cation than for the anion, due to its stronger adsorbate-adsorbate interactions on the low-energy adsorption sites. The retention times of both ions increase with increasing concentration of neutral salt in the mobile phase, suggesting the formation of ion-pair complexes, with Cl- for the cation and with Na+ for the anion. The adsorbate-adsorbate interactions vanish in the presence of salt and the bi-Moreau isotherm model tends toward a bi-Langmuir model. Differences in adsorption behavior are also observed between the cation and the anion when bivalent inorganic anions and cations, respectively, are dissolved in the mobile phase. High concentration band profiles of 1-naphthalene sulfonic acid are langmuirian, except in the presence of a trivalent cation, while those of propranolol are antilangmuirian under certain conditions even with uni- or divalent cations. PMID:15453413

  10. Reaction of deuterium with olefins on nickel catalysts: evidence for adsorbed vinylic species

    SciTech Connect

    Mintsa-Eya, V.; Hilaire, L.; Choplin, A.; Touroude, R.; Gault, F.G.

    1983-08-01

    The interaction of deuterium with 1,2-dimethylcyclopentene, 2,3-dimethylcyclopentene, 1-methyl-2-methylenecyclopentane, 1,2-dimethylcyclobutene, 1-methyl-2-methylenecyclobutane, bicyclo(2,2,1)heptene, but-1-ene, and cis-but-2-ene was studied from -85 to 50/sup 0/C on nickel films in a static apparatus and on Ni/pumice in a flow system. Unexpected d/sub 3/ and d/sub 4/ molecules were obtained in the deuteration of bicyclo(2,2,1)heptene. The position of the double bond in the ring of the other cycloolefins was the main factor governing their behavior: in the deuteration of 1,2-dimethylcycloalkenes, the saturated products, especially the trans somers, were much more exchanged and the percentage of trans was lower than when the starting material consisted of the olefins with the double bond in 2,3 or exocyclic positions. The hyperfine distribution, obtained by microwave analysis, of the exchanged d/sub 1/ but-1-ene, revealed that the major part of the deuterium was introduced on C/sub 2/; the cis-trans isomerization was much faster than the double bond migration with the introduction of zero or one deuterium atom while the isomerized but-1-ene showed a multiple exchange up to d/sub 4/; in the isomerized d/sub 1/ but-1-ene, the deuterium atom was distributed on the three carbon atoms C/sub 1/, C/sub 2/, C/sub 3/. Most of these results clearly show that the classical Horiuti-Polanyi mechanism is not the only one taking part in the reactions. The introduction of other intermediaries, sigma-vinylic, sigma-vinylic ..pi..-olefinic, and sigma-vinylic ..pi..-allylic species, provides a coherent explanation for all our findings. It is shown that nickel and iron behave in a very similar way. 5 tables.

  11. Hybrid inorganic-organic adsorbents Part 1: Synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities.

    PubMed

    Griffith, Christopher S; De Los Reyes, Massey; Scales, Nicholas; Hanna, John V; Luca, Vittorio

    2010-12-01

    A series of functional hybrid inorganic-organic adsorbent materials have been prepared through postsynthetic grafting of mesoporous zirconium titanate xerogel powders using a range of synthesized and commercial mono-, bis-, and tris-phosphonic acids, many of which have never before been investigated for the preparation of hybrid phases. The hybrid materials have been characterized using thermogravimetric analysis, diffuse reflectance infrared (DRIFT) and 31P MAS NMR spectroscopic techniques and their adsorption properties studied using a 153Gd radiotracer. The highest level of surface functionalization (molecules/nm2) was observed for methylphosphonic acid (∼3 molecules/nm2). The level of functionalization decreased with an increase in the number of potential surface coordinating groups of the phosphonic acids. Spectral decomposition of the DRIFT and 31P MAS NMR spectra showed that each of the phosphonic acid molecules coordinated strongly to the metal oxide surface but that for the 1,1-bis-phosphonic acids and tris-phosphonic acids the coordination was highly variable resulting in a proportion of free or loosely coordinated phosphonic acid groups. Functionalization of a porous mixed metal oxide framework with the tris-methylenephosphonic acid (ATMP-ZrTi-0.33) resulted in a hybrid with the highest affinity for 153Gd3+ in nitric acid solutions across a wide range of acid concentrations. The ATMP-ZrTi-0.33 hybrid material extracted 153Gd3+ with a Kd value of 1×10(4) in 0.01 M HNO3 far exceeding that of the other hybrid phases. The unfunctionalized mesoporous mixed metal oxide had negligible affinity for Gd3+ (Kd<100) under identical experimental conditions. It has been shown that the presence of free or loosely coordinated phosphonic acid groups does not necessarily translate to affinity for 153Gd3+. The theoretical cation exchange capacity of the ATMP-ZrTi-0.33 hybrid phase for Gd3+ has been determined to be about 0.005 mmol/g in 0.01 M HNO3. This behavior and

  12. Surface vibrational spectroscopy. A comparison of the EELS spectra of organic adsorbates at Pt(111) with IR and Raman spectra of the unadsorbed organics

    NASA Astrophysics Data System (ADS)

    Kahn, Bruce E.; Chaffins, Scott A.; Gui, John Y.; Lu, Frank; Stern, Donald A.; Hubbard, Arthur T.

    1990-02-01

    In this study EELS spectra obtained for the adsorbed species formed from aqueous electrolytes at Pt(111) electrode surfaces are compared with the IR and Raman spectra of the unadsorbed compounds in order to reveal the changes in vibrational spectra resulting from chemisorption of various important functional groups, and to explore the differences in vibrational absorptivities between EELS spectra of adsorbed species and IR and Raman spectra of the corresponding unadsorbed compounds. Of particular interest are the variations in EELS vibrational frequency, bandwidth and absorptivity due to bonding with the surface, intermolecular interactions of adsorbed molecules and changes in adsorbate molecular orientation. The influence of surface bonding on the EELS spectrum of a functional group was explored through studies of phenol (PL), phenol- d6 (PLD6), benzyl alcohol (BZOH), catechol (CT), benzoic acid (BA), 2-picolinic acid (PA), 2,6-pyridine dicarboxylic acid (26PDCA), and propenoic acid (PPEA). The aromatic ring of adsorbed PL, PLD6, BZA, CT, BA, PA and 26PDCA is oriented parallel to the Pt(111) surface. The resulting strong interactions affect the frequencies and relative intensities of the EELS bands: weak CH stretching modes; a large CC stretching band (1600-1650 cm -1), and weak CH bending (700-800 cm -1). The carboxylic acid moieties of BA and PA interact strongly with the Pt surface, while those of 26PDCA do so only when adsorbed at relatively positive electrode potentials. OH stretching and bending are absent from the EELS spectra of adsorbed PL, BZOH and CT, perhaps due to dissociation of the hydroxyl hydrogen during adsorption of the molecule. Adsorption of alkenes at Pt(111) from solution preserves the characteristic CC stretching band near 1650 cm -1; examples are: PPEA; 1-hexene (HXE); propenol (PPEOH); 4-pentenol (PTEOH); and cis-2-butene-1,4-diol (CBED); adsorption of ethene, propene and butene from vacuum at room temperature has been reported to

  13. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  14. Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon.

    PubMed

    Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Niknaddaf, Saeid; Hashisho, Zaher

    2012-11-30

    This paper investigates the effect of the kinetic diameter (KD) of the reference adsorbate on the accuracy of the Dubinin-Radushkevich (D-R) equation for predicting the adsorption isotherms of organic vapors on microporous activated carbon. Adsorption isotherms for 13 organic compounds on microporous beaded activated carbon were experimentally measured, and predicted using the D-R model and affinity coefficients. The affinity coefficients calculated based on molar volumes, molecular polarizabilities, and molecular parachors were used to predict the isotherms based on four reference compounds (4.3≤KD≤6.8 Å). The results show that the affinity coefficients are independent of the calculation method if the reference and test adsorbates are from the same organic group. Choosing a reference adsorbate with a KD similar to that of the test adsorbate results in better prediction of the adsorption isotherm. The relative error between the predicted and the measured adsorption isotherms increases as the absolute difference in the kinetic diameters of the reference and test adsorbates increases. Finally, the proposed hypothesis was used to explain reports of inconsistent findings among published articles. The results from this study are important because they allow a more accurate prediction of adsorption capacities of adsorbents which allow for better design of adsorption systems. PMID:23044198

  15. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars.

    PubMed

    Lattao, Charisma; Cao, Xiaoyan; Mao, Jingdong; Schmidt-Rohr, Klaus; Pignatello, Joseph J

    2014-05-01

    Chars from wildfires and soil amendments (biochars) are strong adsorbents that can impact the fate of organic compounds in soil, yet the effects of solute and adsorbent properties on sorption are poorly understood. We studied sorption of benzene, naphthalene, and 1,4-dinitrobenzene from water to a series of wood chars made anaerobically at different heat treatment temperatures (HTT) from 300 to 700 °C, and to graphite as a nonporous, unfunctionalized reference adsorbent. Peak suppression in the NMR spectrum by sorption of the paramagnetic relaxation probe TEMPO indicated that only a small fraction of char C atoms lie near sorption sites. Sorption intensity for all solutes maximized with the 500 °C char, but failed to trend regularly with N2 or CO2 surface area, micropore volume, mesopore volume, H/C ratio, O/C ratio, aromatic fused ring size, or HTT. A model relating sorption intensity to a weighted sum of microporosity and mesoporosity was more successful. Sorption isotherm linearity declined progressively with carbonization of the char. Application of a thermodynamic model incorporating solvent-water and char-graphite partition coefficients permitted for the first time quantification of steric (size exclusion in pores) and π-π electron donor-acceptor (EDA) free energy contributions, relative to benzene. Steric hindrance for naphthalene increases exponentially from 9 to 16 kJ/mol (∼ 1.6-2.9 log units of sorption coefficient) with the fraction of porosity in small micropores. π-π EDA interactions of dinitrobenzene contribute -17 to -19 kJ/mol (3-3.4 log units of sorption coefficient) to sorption on graphite, but less on chars. π-π EDA interaction of naphthalene on graphite is small (-2 to 2 kJ/mol). The results show that sorption is a complex function of char properties and solute molecular structure, and not very predictable on the basis of readily determined char properties. PMID:24758543

  16. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    SciTech Connect

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2015-12-21

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol at a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.

  17. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    NASA Astrophysics Data System (ADS)

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2015-12-01

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53-75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol at a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.

  18. CORRELATIONS FOR THE DETERMINATION OF SURFACE DIFFUSIVITIES OF ORGANIC CHEMICALS ADSORBED ONTO GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Differential column batch reactor (DCBR) experiments in organic-free water were conducted for the following volatile organic compounds (VOCs): trichloroethene, tetrachloroethene, cis-1,2 dichlorethene, and toluene. Surface diffusion was required to explain the rate of uptake for ...

  19. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst.

    PubMed

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-05-15

    Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101mgg(-1) at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80μM) at 298K and pH 4.5 in the presence of H(2)O(2) (6.0mM) and FeR (0.4gL(-1)) was evaluated to be 0.0413min(-1) under visible light and 0.122min(-1) under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H(2)O(2) into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants. PMID:22410720

  20. Organic species in infrared dark clouds

    SciTech Connect

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, Hendrik; Voronkov, Maxim; Britton, Tui; Zinchenko, Igor; Schuller, Frederic E-mail: maxim.voronkov@csiro.au E-mail: zin@appl.sci-nnov.ru

    2014-01-01

    It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars (>8 M {sub ☉}). Submillimeter and millimeter-wave studies performed over the past 15 yr show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H{sub 2}CO, HNCO, CH{sub 3}CCH, CH{sub 3}OH, CH{sub 3}CHO, CH{sub 3}OCHO, and CH{sub 3}OCH{sub 3}. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules, a zero-dimensional gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase.

  1. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Antunes, J. C.; Frias, J. G. L.; Micaelo, A. C.; Sobral, P.

    2013-09-01

    The occurrence of stranded plastic marine debris along the Portuguese coastline was investigated. Number of items m-2 and size range of resin pellets were recorded, corresponding to 53% of total marine debris collected items. In addition, concentrations of adsorbed persistent bioaccumulative and toxic chemicals (PBTC) were determined, PAH - polycyclic aromatic hydrocarbons; PCB - polychlorinated biphenyls and DDT - dichlorodiphenyltrichloroethane. Matosinhos (Mt) and Vieira de Leiria (VL) presented the highest number of items m-2 (362 and 332, respectively). Resin pellets with 4 mm diameter were the most abundant (50%). Contaminants concentration was variable. PAH concentrations recorded values between 53 and 44800 ng g-1, PCB ranged from 2 to 223 ng g-1 and DDT between 0.42 and 41 ng g-1. In general, aged and black pellets recorded higher concentrations for all contaminants. Matosinhos (Mt), Vieira de Leiria (VL) and Sines (Si), near industrial areas and port facilities, were the most contaminated beaches. Research efforts are needed to assess the points of entry of industrial plastic pellets in order to take action and minimize impacts on the ecosystems, in particular, points of transfer during transportation from plastic manufacturers to plastic converters should be identified and controlled so that virgin pellets are contained and will not enter rivers and be carried to the oceans where they can remain for a long time and travel great distances.

  2. Comparison of nutshell granular activated carbons to commercial adsorbents for the purge-and-trap gas chromatographic analysis of volatile organic compounds.

    PubMed

    Wartelle, L H; Marshall, W E; Toles, C A; Johns, M M

    2000-05-26

    Granular activated carbons (GACs) made from agricultural by-products were investigated as adsorbents for short path thermal desorption gas chromatographic analysis of selected polar and nonpolar organic compounds. GACs made from macadamia nut, black walnut and hazelnut shells were compared to four commercially available adsorbents, namely, Tenax TA, Carboxen 569, Carbosieve SIII and coconut charcoal for their properties in purge-and-trap analysis. Adsorption values and breakthrough volumes were calculated for compounds from C3 and C6-C10. GACs derived from macadamia nut shells were found to adsorb and desorb between 80% (benzene) and 277% (ethylbenzene) more acetone (C3), benzene (C6), toluene (C7), ethyl- (C8), n-propyl- (C9), or sec.-butylbenzenes (C10) purged from water at the 100 ppb level than the commercial adsorbents tested. PMID:10893033

  3. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    PubMed

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX. PMID:26263004

  4. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene.

    PubMed

    Yu, Yang-Xin

    2014-09-24

    Electroactive organic compounds are a novel group of green cathode materials for rechargeable metal-ion batteries. However, the organic battery life is short because the organic compounds can be dissolved by nonaqueous electrolytes. Here a comparative investigation of phenanthraquinone (PQ), pyromellitic dianhydride (PMDA) and their derivatives, i.e., benzo[1,2-b:4,3-b']difuran-4,5-dione (BDFD), benzo[1,2-b:4,3-b']dithiophene-4,5-quinone (BDTQ), 3,8-phenanthroline-5,6-dione (PAD), pyromellitic dithioanhydride (PMDT), pyromellitic diimide (PMDI) and 1,4,5,8-anthracenetetrone (ATO), adsorbed on graphene is performed using a density functional theory (DFT) with a van der Waals (vdW) dispersion-correction. The computed results show a strong physisorption with the binding energies between 1.10 and 1.56 eV. A sequence of the calculated binding energies from weak to strong is found to be BDFD < BDTQ < PMDA ≤ PMDI < PMDT < PQ < PAD < ATO. The formation of stable organic molecule-graphene nanocomposites can prevent the dissolution of the eight organic compounds in nonaqueous electrolyte and hence improve cycling performance of batteries. In addition, the work functions for the nanocomposites are found to be strongly affected by the work function of each organic compound. To understand the DFT results, a novel simple expression is proposed to predict the work function of the nanocomposites from the interfacial dipole and the work functions of the isolated graphene nanosheet and organic molecules. The predicted work functions for the nanocomposites from the new equation agree quite well with the values calculated from the vdW dispersion-corrected DFT. PMID:25216389

  5. Organic Species in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, Hendrik; Voronkov, Maxim; Britton, Tui; Zinchenko, Igor; Schuller, Frederic

    2014-01-01

    It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars (>8 M ⊙). Submillimeter and millimeter-wave studies performed over the past 15 yr show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H2CO, HNCO, CH3CCH, CH3OH, CH3CHO, CH3OCHO, and CH3OCH3. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules, a zero-dimensional gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The 22 m Mopra antenna is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO. The University of New South Wales Digital Filter Bank used for the observations with the Mopra Telescope was provided with support from the Australian Research Council.

  6. Prediction of capacity factors for aqueous organic solutes adsorbed on a porous acrylic resin

    USGS Publications Warehouse

    Thurman, E.M.

    1978-01-01

    The capacity factors of 20 aromatic, allphatic, and allcycllc organic solutes with carboxyl, hydroxyl, amine, and methyl functional groups were determined on Amberlite XAD-8, a porous acrylic resin. The logarithm of the capacity factor, k???, correlated inversely with the logarithm of the aqueous molar solubility with significance of less than 0.001. The log k???-log solubility relationship may be used to predict the capacity of any organic solute for XAD-8 using only the solubility of the solute. The prediction is useful as a guide for determining the proper ratio of sample to column size In the preconcentration of organic solutes from water. The inverse relationship of solubility and capacity is due to the unfavorable entropy of solution of organic solutes which affects both solubility and sorption.

  7. Metal Vinylidenes as Catalytic Species in Organic Reactions

    PubMed Central

    McClory, Andrew

    2008-01-01

    Organic vinylidene species have found limited use in organic synthesis due to their inaccessibility. In contrast, metal vinylidenes are much more stable, and may be readily accessed through transition metal activation of terminal alkynes. These electrophilic species may be trapped by a number of nucleophiles. Additionally, metal vinylidenes can participate in pericyclic reactions and processes involving migration of a metal ligand to the vinylidene species. This review addresses the reactions and applications of metal vinylidenes in organic synthesis. PMID:18172846

  8. Use of Ni/NixB Nanoparticles as a Novel Adsorbent for the Preconcentration of Mercury Species prior to Cold Vapor-Atomic Fluorescence Spectrometric Determination.

    PubMed

    Yayayürük, Onur; Henden, Emür

    2016-01-01

    A selective matrix separation/enrichment method, utilizing a simple batch procedure with nickel/nickel boride (Ni/NixB) nanoparticles was proposed for the determination of inorganic mercury(II), Hg(2+) and methyl mercury(I), CH3Hg(+) in waters prior to cold vapor-atomic fluorescence spectrometry (CV-AFS). The Ni/NixB nanoparticles, were synthesized by the chemical reduction of Ni(II) to Ni/NixB. The novel adsorbent was selective to Hg(2+) and CH3Hg(+) species between pH values of 4 - 10. Both of the mercury species were recovered from the adsorbent using 1.0 mol L(-1) hot HNO3 with high efficiency. It was observed that the adsorbent selectively removed Hg(2+) and CH3Hg(+) from the bulk solution in the presence of several competitor ions (As(3+), Sb(3+), Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Fe(3+)) with ≥96% adsorption. The limit of detection (3σ above blank) was found to be 1.8 ng L(-1) with a preconcentration factor of 20. The validation of the method was tested through spike recovery experiments with several water samples (tap and seawater) at μg L(-1) concentration levels, and all recovery values were found to vary between 95 and 105%. PMID:27506713

  9. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    EPA Science Inventory

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  10. Composition of Organic Compounds Adsorbed on PM10 in the Air Above Maribor.

    PubMed

    Miuc, Alen; Vončina, Ernest; Lečnik, Uroš

    2015-01-01

    Organic compounds in atmospheric particulate matterabove Maribor were analysed in 120 samples of PM10 sampled according to the EN 12341:2014 reference method. Organic compounds compositions were investigated together with the primary and secondary sources of air pollution. Silylation as derivatisation method was used for the GC/MS determination of volatile and semi-volatile polar organic compounds. Distribution of fatty acids, n-alkanes and iso-alkanes, phthalate esters, siloxanes, different sterols, various sugars and sugar alcohols, compounds of lignin and resin acids, dicarboxylic acids from photochemical reactions, PAHs, organic nitrogen compounds and products from secondary oxidation of monoterpenes were determined. The use of silicone grease for the purpose of lubricating the impact surface of the air sampler caused higher values of gravimetric determination. Solid particles may have been bounced from the surface of a greasy impact plate and re-entrained within the air stream and then collected on a sample filter. The carryover of siloxanes was at least from 5% up to 15% of the accumulated particles weight, depending on ambient temperature. This was the reason that the gravimetric results for determination of PM10 according to the standard EN 12341:2014 were overestimated. PMID:26680711

  11. Design of hydrophilic metal organic framework water adsorbents for heat reallocation.

    PubMed

    Cadiau, Amandine; Lee, Ji Sun; Damasceno Borges, Daiane; Fabry, Paul; Devic, Thomas; Wharmby, Michael T; Martineau, Charlotte; Foucher, Damien; Taulelle, Francis; Jun, Chul-Ho; Hwang, Young Kyu; Stock, Norbert; De Lange, Martijn F; Kapteijn, Freek; Gascon, Jorge; Maurin, Guillaume; Chang, Jong-San; Serre, Christian

    2015-08-26

    A new hydrothermally stable Al polycarboxylate metal-organic framework (MOF) based on a heteroatom bio-derived aromatic spacer is designed through a template-free green synthesis process. It appears that in some test conditions this MOF outperforms the heat reallocation performances of commercial SAPO-34. PMID:26193346

  12. Fluorous Metal Organic Frameworks as Superhydrophobic Adsorbents for Oil Spill Cleanup and Hydrocarbons Storage

    SciTech Connect

    Yang, Chi; Mather, Qian; Wang, Xiaoping; Kaipa, Ushasree; Nesterov, Vladimir; Venero, Augustin; Omary, Mohammad A

    2011-01-01

    We demonstrate that fluorous metal-organic frameworks (FMOFs) are highly hydrophobic porous materials with a high capacity and affinity to C{sub 6}-C{sub 8} hydrocarbons of oil components. FMOF-1 exhibits reversible adsorption with a high capacity for n-hexane, cyclohexane, benzene, toluene, and p-xylene, with no detectable water adsorption even at near 100% relative humidity, drastically outperforming activated carbon and zeolite porous materials. FMOF-2, obtained from annealing FMOF-1, shows enlarged cages and channels with double toluene adsorption vs FMOF-1 based on crystal structures. The results suggest great promise for FMOFs in applications such as removal of organic pollutants from oil spills or ambient humid air, hydrocarbon storage and transportation, water purification, etc. under practical working conditions.

  13. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  14. Kinetics and dynamics of oxidation reactions involving an adsorbed CO species on bulk and supported platinum and copper-oxide

    SciTech Connect

    Harold, M.P.

    1991-07-01

    The proposed research is an integrated experimental and modeling study of oxidation reactions involving CO as a key player -- be it a reactant, adsorbed intermediate, and/or partial oxidation product -- in the catalytic sequence and chemistry. The reaction systems of interest in the project include CO, formaldehyde, and methanol oxidation by O{sub 2} and CO oxidation by NO, on both Pt and copper oxide catalysts. These reactions are of importance in automobile exhaust catalysis. There is a paucity of rate data in the literature for these important environmental control reactions. The goal of this research is to better understand the catalytic chemistry and kinetics of oxidations reactions involving CO as an adsorbed intermediate. Successfully meeting this goal requires an integration of basic kinetic measurements, in situ catalyst surface monitoring, kinetic modeling, and nonlinear mathematical tools.

  15. Recycling of Organic Waste Sludge by Hydrothermal Dry Steam Aiming for Adsorbent

    NASA Astrophysics Data System (ADS)

    Hoshikawa, Hisahiro; Hayakawa, Tomoki; Yamasaki, Nakamichi

    2006-05-01

    Global warming becomes more serious problem today. We have to develop new technology for new energy or fixation of carbon dioxide. Biomass is considered to be one of new energies. Methane fermentation is a method to make methane from biomass, such as garbage and fecal of farm animals, by methane fermentation bacteria. It has a problem, however, that bacteria are deactivated due to ammonia, which is made by itself. And much methane fermentation residue is incinerated. Therefore recycling methane fermentation residue is important for effective use of biomass. We research hydrothermal process. Dry steam means unsaturated vapor, we call. It demands a temperature less than 400 °C. And it is expected to accelerate dehydration effect, decompose and extract the organic matter, and make porous material. Thus, we try to apply the dry steam to recycling of organic waste sludge aiming for absorbent. Experiments were conducted at 250-350 °C in nitrogen atmosphere. The carbon products are analyzed by CHNS elemental analysis, and Thermogravimetry. The extractives are analyzed by gas chromatograph.

  16. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms. PMID:23456779

  17. Femtomagnetism in graphene induced by core level excitation of organic adsorbates.

    PubMed

    Ravikumar, Abhilash; Baby, Anu; Lin, He; Brivio, Gian Paolo; Fratesi, Guido

    2016-01-01

    We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numerical simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. PMID:27089847

  18. Femtomagnetism in graphene induced by core level excitation of organic adsorbates

    PubMed Central

    Ravikumar, Abhilash; Baby, Anu; Lin, He; Brivio, Gian Paolo; Fratesi, Guido

    2016-01-01

    We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numerical simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. PMID:27089847

  19. Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Babaei, Hasan; Wilmer, Christopher E.

    2016-01-01

    We have studied the mechanisms of heat transfer in a porous crystal-gas mixture system, motivated by the not insignificant challenge of quickly dissipating heat generated in metal-organic frameworks (MOFs) due to gas adsorption. Our study reveals that the thermal conductance of the system (crystal and gas) is dominated by lattice thermal conductivity in the crystal, and that conductance is reduced as the concentration of gas in the pores increases. This mechanism was observed from classical molecular simulations of a monatomic gas in an idealized porous crystal structure. We show that the decreased conductivity associated with increased gas concentration is due to phonon scattering in the crystal due to interactions with gas molecules. Calculations of scattering rates for two phonon modes reveal that scattering of the lowest frequency mode scales linearly with gas density. This result suggests that the probability of a phonon-gas collision is simply proportional to the number of gas molecules in the pore.

  20. A Water-Stable Cationic Metal-Organic Framework as a Dual Adsorbent of Oxoanion Pollutants.

    PubMed

    Desai, Aamod V; Manna, Biplab; Karmakar, Avishek; Sahu, Amit; Ghosh, Sujit K

    2016-06-27

    A three-dimensional water-stable cationic metal-organic framework (MOF) pillared by a neutral ligand and with Ni(II)  metal nodes has been synthesized employing a rational design approach. Owing to the ordered arrangement of the uncoordinated tetrahedral sulfate (SO4 (2-) ) ions in the channels, the compound has been employed for aqueous-phase ion-exchange applications. The compound exhibits rapid and colorimetric aqueous-phase capture of environmentally toxic oxoanions (with similar geometries) in a selective manner. This system is the first example of a MOF-based system which absorbs both dichromate (Cr2 O7 (2-) ) and permanganate (MnO4 (-) ) ions, with the latter acting as a model for the radioactive contaminant pertechnetate (TcO4 (-) ). PMID:26855323

  1. Femtomagnetism in graphene induced by core level excitation of organic adsorbates

    NASA Astrophysics Data System (ADS)

    Ravikumar, Abhilash; Baby, Anu; Lin, He; Brivio, Gian Paolo; Fratesi, Guido

    2016-04-01

    We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numerical simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore.

  2. Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water.

    PubMed

    Karmakar, Sankha; Dechnik, Janina; Janiak, Christoph; De, Sirshendu

    2016-02-13

    Potential of aluminium fumarate metal organic framework (MOF) for fluoride removal from groundwater has been explored in this work. The laboratory produced MOF exhibited characteristics similar to the commercial version. MOF was found to be micro-porous with surface area of 1156 m(2)/g and average pore size 17Å. Scanning electron micrograph of the AlFu MOF showed minute pores and texture was completely different from either of the parent materials. Change in the composition of AlFu MOF after fluoride adsorption was evident from powder X-ray diffraction analysis. Thermal stability of the AlFu MOF up to 700K was established by thermo-gravimetric analysis. Incorporation of fluoride phase after adsorption was confirmed by X-ray fluorescence analysis. As observed from FTIR study, hydroxyl ions in AlFu MOF were substituted by fluoride. 0.75 g/l AlFu MOF was good enough for complete removal of 30 mg/l fluoride concentration in feed solution. The maximum adsorption capacity for fluoride was 600, 550, 504 and 431 mg/g, respectively, at 293, 303, 313 and 333K. PMID:26513559

  3. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  4. Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micro-pollutants.

    PubMed

    Radwan, Emad K; Abdel Ghafar, Hany H; Moursy, Ahmed S; Langford, Cooper H; Bedair, Ahmed H; Achari, Gopal

    2015-08-01

    The present work involves the preparation of novel adsorbent materials by the insolubilization and hybridization of humic acid (HA) with carbon. The prepared materials were characterized by N2 adsorption, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, solid-state (13)C cross polarization magic angle spinning nuclear magnetic resonance, and low-field nuclear magnetic resonance (NMR) relaxometry on wetted samples. The water solubility of these materials and the lack of effect of oxidants were also confirmed. With this background, the adsorption capacities toward phenol, 2,4,6-tricholrophenol, and atrazine were evaluated, using these as model compounds for organic micropollutants of concern in water. Experimental results show that the prepared materials are mesoporous and have a higher surface area than humic acid and even than the porous carbon in the case of carbon coating. They retain the basic features of the starting materials with lowered functional group content. Moreover, there are interesting new features. NMR relaxometry shows that equilibration of water uptake is very fast, making use in water simple. They have higher adsorption capacities than the pure materials, and they can be applied under a wide range of environmental conditions. PMID:25874433

  5. EFFECTS OF COVAPORS ON ADSORPTION RATE COEFFICIENTS OF ORGANIC VAPORS ADSORBED ONTO ACTIVATED CARBON FROM FLOWING AIR

    SciTech Connect

    G. WOOD

    2000-12-01

    Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times {tau}, which are useful for determining elution orders of mixture components. We also calculated adsorption rate coefficients k{sub v} of the Wheeler (or, more general Reaction Kinetic) breakthrough curve equation, when not reported, from breakthrough times and {tau}. Ninety-five k{sub v} (in mixture)/ k{sub v} (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (0.21 standard deviation) than unity, so that we recommend using the single-vapor k{sub v} for such. Forty-seven second-eluting vapor ratios averaged 0.85 (0.24 standard deviation), also not significantly different from unity; however, other evidence and considerations lead us recommend using k{sub v} (in mixture) = 0.85 k{sub v} (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (0.16 standard deviation) for a recommended k{sub v} (in mixture) = 0.56 k{sub v} (single vapor) for such.

  6. Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water.

    PubMed

    Grace, Maebh A; Healy, Mark G; Clifford, Eoghan

    2015-06-15

    Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants. PMID:25777954

  7. Reversible CO Scavenging via Adsorbate-Dependent Spin State Transitions in an Iron(II)-Triazolate Metal-Organic Framework.

    PubMed

    Reed, Douglas A; Xiao, Dianne J; Gonzalez, Miguel I; Darago, Lucy E; Herm, Zoey R; Grandjean, Fernande; Long, Jeffrey R

    2016-05-01

    A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 μbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin Fe(II) centers of the framework convert to octahedral, low-spin Fe(II) centers upon CO coordination. Desorption of CO converts the Fe(II) sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, and magnetic susceptibility measurements. Importantly, the spin state change is selective for CO and is not observed in the presence of other gases, such as H2, N2, CO2, CH4, or other hydrocarbons, resulting in unprecedentedly high selectivities for CO adsorption for use in CO/H2, CO/N2, and CO/CH4 separations and in preferential CO adsorption over typical strongly adsorbing gases like CO2 and ethylene. While adsorbate-induced spin state transitions are well-known in molecular chemistry, particularly for CO, to our knowledge this is the first time such behavior has been observed in a porous material suitable for use in a gas separation process. Potentially, this effect can be extended to selective separations involving other π-acids. PMID:27097297

  8. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  9. The effects of framework dynamics on the behavior of water adsorbed in the [Zn(l-L)(Cl)] and Co-MOF-74 metal-organic frameworks.

    PubMed

    Terranova, Zachary L; Paesani, Francesco

    2016-03-21

    The effects of framework flexibility on the structural and dynamical properties of water adsorbed in two prototypical metal-organic frameworks are investigated through molecular dynamics simulations. It is found that water molecules in the pores of a flexible model of [Zn(l-L)(Cl)] exhibit slower dynamics than when the framework is artificially held rigid in the simulations. In contrast, the water dynamics in Co-MOF-74 is predicted to be accelerated by the framework vibrations. The origin of this different behavior directly relates to how water interacts with the two frameworks, which, in turn, determines different hydrogen-bond patterns in the pores. While the first water molecules adsorbed in [Zn(l-L)(Cl)] donate a single hydrogen bond to the Zn-Cl groups and point the other hydrogen atom towards the center of the pore, water molecules adsorbed in Co-MOF-74 initially bind to the cobalt atoms of the framework via their oxygen atoms, thus leaving each molecule free to form two hydrogen bonds with additional molecules adsorbed at higher loading. The simulation results indicate that taking into account the framework flexibility in computer simulations is necessary for a quantitative modeling of adsorption and transport processes in metal-organic frameworks. PMID:26928975

  10. COMPARATIVE TOXICITY OF TEN ORGANIC CHEMICALS TO FOUR EARTHWORM SPECIES

    EPA Science Inventory

    Ten organic chemicals were tested for toxicity to four earthworm species: Allolobophora tuberculata, Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus, using the European Economic Community's (EEC) earthworm artificial soil and contact testing procedure. The phenols were t...

  11. Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy.

    PubMed

    Wakisaka, Mitsuru; Suzuki, Hirokazu; Mitsui, Satoshi; Uchida, Hiroyuki; Watanabe, Masahiro

    2009-02-17

    We have positively identified oxygen species on Pt(111) single-crystal and polycrystalline Pt electrodes in N2-purged 0.1 M HF solution by X-ray photoelectron spectroscopy combined with an electrochemical cell. Four oxygen species (Oad, OHad, and two types of water molecules) were distinguished. The binding energies of each species were nearly constant over the whole potential region and independent of the single- or polycrystalline electrodes. The coverages, however, varied considerably and were dependent on the electrode potential. We have for the first time demonstrated clear differences in the surface oxidation processes for Pt(111) and polycrystalline Pt electrodes. PMID:19152331

  12. The hydrophobic character of nonsulfide mineral surfaces as influenced by double-bond reactions of adsorbed unsaturated collector species

    SciTech Connect

    Miller, J.D.

    1991-07-01

    A unique in-situ sampling technique has been developed which allowed for real-time analysis of surfactant adsorption processes on mineral single crystals. This technique couples FT-IR spectroscopy and internal reflection spectroscopy (FT-IR/IRS) and the mineral single crystal is referred to as a reactive'' internal reflect element (IRE). The single crystal is reactive in the sense that the adsorption occurs directly upon the surface of the IRE, which also serves to transmit IR electromagnetic radiation. The in-situ FT-IR/IRS method was previously demonstrated for the fluorite (CaF{sub 2})/oleate flotation system. Information obtained from this system included adsorption density (from mid- and near-infrared spectra), adsorption state and reactivity of adsorbed collector, and alkyl chain conformational analysis. In the second budget period, similar analyses have been performed for three other mineral systems. These systems are as follows: Insoluble Oxides: sapphire ({alpha}-Al{sub 2}O{sub 3})/sodium dodecylsulfate; Soluble Salts: sylvite (KCl)/n-octylamine; and Semisoluble Salts: calcite (CaCO{sub 3})/sodium oleate and fluorite (CaF{sub 2})/sodium oleate.

  13. Effects of water hardness and existence of adsorbent on toxic surface tension of surfactants for aquatic species.

    PubMed

    Oya, Masaru; Orito, Shintaro; Ishikawa, Yusuke; Iizuka, Tomoko

    2007-01-01

    We have studied the effectiveness of surface tension on surfactants risk assessment. gamma(tox) was defined as surface tension at a point where acute aquatic toxicity of a surfactant emerges. Oryzias latipes, Daphnia magna, and Podocopida were used for acute aquatic toxicity test of 7 surfactants and 3 detergents. Gamma(tox)values were plotted on surface tension curves, and the effect of water hardness on toxicity and surface tension were examined. Results showed that gamma(tox) varies greatly by kind of surfactant or detergent. Therefore, aquatic toxicity cannot only be explained by surface tension. The change of aquatic toxicity with varying water hardness, however, could be explained by the change of surface tension. Aquatic toxicity of LAS (Linear Alkylbenzene Sulphonate) increased and aquatic toxicity of SOAP decreased with an increase of water hardness, but both gamma(tox), values were constant. Aquatic toxicity was decreased by an addition of mud soil as adsorbent into surfactant solution. The toxicity change can be explained by the surface tension since gamma(tox) value of solution with and without mud soil were equal. These results showed that the change of aquatic toxicity of a surfactant caused by water property, such as water hardness, could be explained by the change of surface tension. PMID:17898487

  14. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent

    NASA Astrophysics Data System (ADS)

    Raji, F.; Pakizeh, M.

    2013-10-01

    A novel ZnCl2-MCM-41 adsorbent was prepared by method of solvent dispersion in toluene and characterized using XRD, N2 adsorption-desorption, FTIR and TGA techniques. The synthesized ZnCl2-MCM-41 sorbent possessed high specific surface area (602.3 m2 g-1), narrow pore size distribution (2.37 nm) and total pore volume (0.46 cm3 g-1). The hybrid sorbent was applied for the removal of Hg(II) from aqueous solution under different experimental conditions by varying contact time, initial concentration of Hg(II), pH, presence of interfering ions and solution temperature. It was found that amount of Hg(II) sorption increased with enhancement of Hg(II) initial concentration, contact time and pH but decreased as the temperature increased. Optimum conditions obtained were 20 °C, pH 10 and contact time of 30 min. Effects of foreign anions and cations on Hg(II) removal were studied and it was found that chloride ion affected strongly on adsorption. For experimental data the Langmuir isotherm showed a better fit and maximum adsorption capacity was obtained 204.1 mg g-1 for an initial concentration range 2-50 mg L-1. From the D-R isotherm, the mean free energy was calculated as 9.128 kJ mol-1 indicating that the sorption of Hg(II) was taken place by chemical reaction.

  15. Phthalocyaninato complexes with peripheral alkylthio chains: disk-like adsorbate species for the vertical anchoring of ligands on gold surfaces

    PubMed Central

    Siemeling, Ulrich; Schirrmacher, Christian; Glebe, Ulrich; Bruhn, Clemens; Baio, Joe E.; Árnadóttir, Líney; Castner, David G.; Weidner, Tobias

    2011-01-01

    Thin metalorganic films were prepared on gold by self-assembly of thioether-functionalised phthalocyaninato complexes from solution. The phthalocyaninato ligands used contain eight peripheral, β-positioned, alkylthio substituents SR (1a: R = n-C8H17, 1b: R = n-C12H25), which serve as headgroups for surface binding and promote lateral assembly, while the disk-like phthalocyaninato core offers the scope for the attachment of axial ligands to the adsorbed molecules. This process was mimicked by coordination of pyridine (Py) to [Zn(1a)] and [Zn(1b)], respectively. The crystal structures of the products [Zn(1a)(Py)] and [Zn(1b)(Py)] were determined. The crystal structures of 4,5-bis(octylthio)phthalodinitrile and 4,5-bis(dodecylthio)phthalodinitrile were also determined. The films fabricated from [Mn(1a)Cl] and [Mn(1b)Cl] on gold were characterised by XPS, ToF-SIMS and NEXAFS spectroscopy, which revealed the presence of well-defined and homogeneous self-assembled monolayers (SAMs), whose constituents are bound to the substrate by thioether–gold linkages. The orientation of the macrocycles is predominantly parallel to the surface. Strong electronic interaction of the manganese(III) centre with the substrate leads to Cl loss upon adsorption and its reduction to MnII. PMID:21857743

  16. Sulfur species behavior in soil organic matter during decomposition

    NASA Astrophysics Data System (ADS)

    Schroth, Andrew W.; Bostick, Benjamin C.; Graham, Margaret; Kaste, James M.; Mitchell, Myron J.; Friedland, Andrew J.

    2007-12-01

    Soil organic matter (SOM) is a primary reservoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to speciation in SOM, particularly in conifer forests, and S species fractions in SOM change during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S.

  17. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  18. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    SciTech Connect

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  19. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  20. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  1. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  2. Ion-imprinted silica adsorbent modified diffusive gradients in thin films technique: Tool for speciation analysis of free lead species.

    PubMed

    Sui, Dian-Peng; Chen, Hua-Xia; Liu, Lin; Liu, Ming-Xuan; Huang, Cong-Cong; Fan, Hong-Tao

    2016-02-01

    A new diffusive gradients in thin films (DGT) device, using Pb(II) ion-imprinted silica (IIS) as the binding agents and commercial cellulose acetate dialysis (CAD) membrane as the diffusion layer (CAD/IIS-DGT), has been developed and evaluated for sampling and measurement of free Pb(II) species. The CAD/IIS-DGT devices were successfully applied to the measurement of free Pb(II) species in synthetic solutions, in natural freshwaters and in industrial wastewaters. The CAD/IIS-DGT provides reliable results over pH range of 4.5-6.5 and a wide range of ionic strength from 1.0×10(-3) to 0.7 mol L(-1). The concentrations of the free Pb(II) species in synthetic solution containing different concentrations of ligands measured by CAD/IIS-DGT showed a good agreement with the value measured by Pb-ion selective electrode. Field deployments of the CAD/IIS-DGT devices allowed accurate measurements of the concentrations of free Pb(II) species. PMID:26653451

  3. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions.

    PubMed

    Yu, Jin-Gang; Yu, Lin-Yan; Yang, Hua; Liu, Qi; Chen, Xiao-Hong; Jiang, Xin-Yu; Chen, Xiao-Qing; Jiao, Fei-Peng

    2015-01-01

    Due to their high adsorption capacities, carbon-based nanomaterials such as carbon nanotubes, activated carbons, fullerene and graphene are widely used as the currently most promising functional materials. Since its discovery in 2004, graphene has exhibited great potential in many technological fields, such as energy storage materials, supercapacitors, resonators, quantum dots, solar cells, electronics, and sensors. The large theoretical specific surface area of graphene nanosheets (2630 m(2)·g(-1)) makes them excellent candidates for adsorption technologies. Further, graphene nanosheets could be used as substrates for decorating the surfaces of nanoparticles, and the corresponding nanocomposites could be applied as novel adsorbents for the removal of low concentrated contaminants from aqueous solutions. Therefore, graphene nanosheets will challenge the current existing adsorbents, including other types of carbon-based nanomaterials. PMID:25244035

  4. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent.

    PubMed

    Jing, Chuanyong; Meng, Xiaoguang; Calvache, Edwin; Jiang, Guibin

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 microg L(-1) As(III), 246 microg L(-1) As(V), 151 microg L(-1) MMA, and 202 microg L(-1) DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11,000, 14,000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 microg L(-1). However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). PMID:19339086

  5. Cortical organization in shrews: evidence from five species.

    PubMed

    Catania, K C; Lyon, D C; Mock, O B; Kaas, J H

    1999-07-19

    Cortical organization was examined in five shrew species. In three species, Blarina brevicauda, Cryptotis parva, and Sorex palustris, microelectrode recordings were made in cortex to determine the organization of sensory areas. Cortical recordings were then related to flattened sections of cortex processed for cytochrome oxidase or myelin to reveal architectural borders. An additional two species (Sorex cinereus and Sorex longirostris) with visible cortical subdivisions based on histology alone were analyzed without electrophysiological mapping. A single basic plan of cortical organization was found in shrews, consisting of a few clearly defined sensory areas located caudally in cortex. Two somatosensory areas contained complete representations of the contralateral body, corresponding to primary somatosensory cortex (S1) and secondary somatosensory cortex (S2). A small primary visual cortex (V1) was located closely adjacent to S1, whereas auditory cortex (A1) was located in extreme caudolateral cortex, partially encircled by S2. Areas did not overlap and had sharp, histochemically apparent and electrophysiologically defined borders. The adjacency of these areas suggests a complete absence of intervening higher level or association areas. Based on a previous study of corticospinal connections, a presumptive primary motor cortex (M1) was identified directly rostral to S1. Apparently, in shrews, the solution to having extremely little neocortex is to have only a few small cortical subdivisions. However, the small areas remain discrete, well organized, and functional. This cortical organization in shrews is likely a derived condition, because a wide range of extant mammals have a greater number of cortical subdivisions. PMID:10397395

  6. Characterization of silver-kaolinite (AgK): an adsorbent for long-lived (129)I species.

    PubMed

    Sadasivam, Sivachidambaram; Rao, Sudhakar M

    2016-01-01

    Bentonite is a preferred buffer and backfill material for deep geological disposal of high-level nuclear waste (HLW). Bentonite does not retain anions by virtue of its negatively charged basal surface. Imparting anion retention ability to bentonite is important to enable the expansive clay to retain long-lived (129)I (iodine-129; half-life = 16 million years) species that may escape from the HLW geological repository. Silver-kaolinite (AgK) material is prepared as an additive to improve the iodide retention capacity of bentonite. The AgK is prepared by heating kaolinite-silver nitrate mix at 400 °C to study the kaolinite influence on the transition metal ion when reacting at its dehydroxylation temperature. Thermo gravimetric-Evolved Gas Detection analysis, X-ray diffraction analysis, X-ray photo electron spectroscopy and electron probe micro analysis indicated that silver occurs as AgO/Ag2O surface coating on thermally reacting kaolinite with silver nitrate at 400 °C. PMID:27026839

  7. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    SciTech Connect

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.; Bunker, Bruce A.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  8. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  9. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens.

    PubMed

    Li, Z; Yang, Z B; Yang, W R; Wang, S J; Jiang, S Z; Wu, Y B

    2012-10-01

    The objectives of the present study were to investigate the toxicity of feed-borne Fusarium mycotoxins on organ weight, serum biochemistry, and immunological parameters of broiler chickens and to evaluate the efficacy of yeast cell wall adsorbent in preventing mycotoxin-induced adverse effects. In total, 300 one-day-old vaccinated (Marek's disease and infectious bronchitis) Arbor Acres broiler chickens (mixed sex) were randomly divided into 3 treatments (5 repetitions per treatment) and fed basal diet and naturally contaminated diets with or without yeast cell wall adsorbent. Treatments were control, naturally contaminated diet (NCD; aflatoxin, 102.08 mg/kg; zearalenone, 281.92 mg/kg; fumonisin, 5,874.38 mg/kg; deoxynivalenol, 2,038.96 mg/kg), and NCD + 2 g/kg of yeast cell wall adsorbent (NCDD). The test included 2 phases: d 0-21 and d 22-42. At 42 d, broilers fed contaminated diets without yeast cell wall adsorbent had higher (P < 0.05) serum albumin and higher relative weight of liver, bursa of Fabricius, and thymus, and greater splenic mRNA expression of IL-1β and IL-6 at 42 d compared with the control, but lower (P < 0.05) serum globulin at 42 d, IgA at 21 d, relative weight of spleen at 21 d, antibody titers of Newcastle disease at both 28 d and 42 d, and splenic mRNA expression of IFN-γ at 42 d were observed in the NCD treatment compared with control. Dietary addition of yeast cell wall adsorbent in the NCD treatment showed a positive protection effect on the relative weight of the liver and spleen at 21 d, relative weight of the bursa of Fabricius and thymus at 42 d, antibody titers of Newcastle disease at both 28 d and 42 d, and splenic mRNA expression of IL-1β, IL-6, and IFN-γ at 42 d. It is suggested that feeding a naturally contaminated diet for 42 d might result in a deleterious effect in broiler chickens, and addition of 2 g/kg of yeast cell wall enterosorbent can partly neutralize the detrimental effects of the naturally contaminated feed. PMID

  10. Reactive oxygen species formed in organic lithium-oxygen batteries.

    PubMed

    Schwager, Patrick; Dongmo, Saustin; Fenske, Daniela; Wittstock, Gunther

    2016-04-20

    Li-oxygen batteries with organic electrolytes are of general interest because of their theoretically high gravimetric energy density. Among the great challenges for this storage technology is the generation of reactive oxygen species such as superoxides and peroxides that may react with the organic solvent molecules and other cell components. The generation of such species has been assumed to occur during the charging reaction. Here we show that superoxide is formed also during the discharge reaction in lithium ion-containing dimethyl sulfoxide electrolytes and is released into the solution. This is shown independently by fluorescence microscopy after reaction with the selective reagent 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and by local detection using a microelectrode of a scanning electrochemcial microscope positioned in a defined distance of 10 to 90 μm above the gas diffusion electrode. PMID:26911793

  11. The hydrophobic character of nonsulfide mineral surfaces as influenced by double-bond reactions of adsorbed unsaturated collector species. Progress report

    SciTech Connect

    Miller, J.D.

    1992-06-01

    The primary goal of this research is to improve the flotation efficiency of nonsulfide mineral systems by establishing the fundamental features of collector adsorption reactions and developing appropriate chemical control strategies. In situ real-time FR-IR/IRS measurements, nonequilibrium electrophoresis, vacuum flotation, contact-angle goniometry, and laser Raman spectroscopy have been used to accomplish this goal. These experimental techniques have led to the determination of important information concerning collector adsorption phenomena in each nonsulfide mineral system. For example, the demonstration of polymerization of adsorbed unsaturated surfactant species has added a new dimension to semi-soluble salt flotation chemistry and may have more general utility. Furthermore, refinement of the in situ FT-IR/IRS analysis has been accomplished particularly for the examination of surfactant aggregation phenomena at nonsulfide mineral surfaces. Finally, the significance of the lattice ion hydration theory has been demonstrated by nonequilibrium electrophoretic mobility measurements, and the new results will provide a better basis for the understanding of soluble-salt flotation phenomena.

  12. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    "AOX" is the abbreviation of the sum parameter for water soluble "adsorbable organic halogens" in which 'A' stands for adsorbable, 'O' for organic and 'X' for the halogens chlorine, bromine and iodine. After the introduction of the AOX in 1976, this parameter has been correctly used for "real" AOX constituents (DDT and its metabolites, PCBs, etc.) but also misused for non-adsorbable adsorbed OX-compounds, mostly high molecular organohalogens in plants and even to inorganic compounds being neither organic nor adsorbable. The question of natural "Adsorbable Organic Halogens" (AOX) formed by living organisms and/or during natural abiogenic processes has been definitively solved by the known existence of already more than 3650 organohalogen compounds, amongst them the highly reactive, cancerogenic vinyl chloride (VC). The extension of the AOX to AOX-S18 for Sludges and Sediments, in which A stands for adsorbed (not for adsorbable) is questionable. It includes the most important water insoluble technical organochlorine product: polyvinyl chloride, PVC. In addition to organic halogens it also includes inorganic, mineralogenic halides, incorporated mainly in the crystal lattice of fine grained phyllosilicates, the typical clay minerals (kaolinite, montmorillonite, illite and chlorite) which are main constituents of sediments and sedimentary rocks representing the major part of the sedimentary cover of the earth. Other phyllosilicates, biotite and muscovite, major constituents of granites and many metamorphic rocks (gneiss and mica schist) will also contribute to the AOX-S18 especially in soils as result of weathering processes. Since chlorine is incorporated into the mineral structure and, as a consequence, not soluble by the nitric acid analytical step (pH 0.5) of the S18 determination, it will account to the AOX-S18 in the final charcoal combustion step at temperatures >950 degrees C. After heavy rainfalls sewage sludge composition is strongly influenced by

  13. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    PubMed

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-01

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations. PMID:25939594

  14. [Reactive oxygen species and fibrosis in tissues and organs - review].

    PubMed

    Meng, Juan-Xia; Zhao, Ming-Feng

    2012-10-01

    Reactive oxygen species (ROS) is a kind of molecules derived by oxygen in the metabolic process of aerobic cells, which mainly includes superoxide, hydroxyl radicals, alkoxyl, hydrogen peroxide, hypochlorous acid, ozone, etc. They can destroy the structure and function of cells through the damage of biological macromolecules such as DNA, proteins and the lipid peroxidation. ROS also can regulate the proliferation, differentiation and apoptosis of cells through several signaling pathways and participate in fibrogenesis of many organs including hepatic and pulmonary fibrosis. Recent study shows that ROS might have an important effect on the forming of myelofibrosis. Consequently, ROS plays a significant role in the fibrogenesis of tissues and organs. In this review, the relevance between ROS and common tissues and organs fibrosis is summarized. PMID:23114165

  15. Hydroperiod regime controls the organization of plant species in wetlands.

    PubMed

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  16. Hydroperiod regime controls the organization of plant species in wetlands

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  17. Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre's "eastern garbage patch".

    PubMed

    Rios, Lorena M; Jones, Patrick R; Moore, Charles; Narayan, Urja V

    2010-12-01

    Floating marine plastic debris was found to function as solid-phase extraction media, adsorbing and concentrating pollutants out of the water column. Plastic debris was collected in the North Pacific Gyre, extracted, and analyzed for 36 individual PCB congeners, 17 organochlorine pesticides, and 16 EPA priority PAHs. Over 50% contained PCBs, 40% contained pesticides, and nearly 80% contained PAHs. The PAHs included 2, 3 and 4 ring congeners. The PCBs were primarily CB-11, 28, 44, 52, 66, and 101. The pesticides detected were primarily p,p-DDTs and its metabolite, o,p-DDD, as well as BHC (a,b,g and d). The concentrations of pollutants found ranged from a few ppb to thousands of ppb. The types of PCBs and PAHs found were similar to those found in marine sediments. However, these plastic particles were mostly polyethylene which is resistant to degradation and although functioning similarly to sediments in accumulating pollutants, these had remained on or near the ocean surface. Particles collected included intact plastic items as well as many pieces less than 5 mm in size. PMID:21042605

  18. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  19. A brief history of cross-species organ transplantation

    PubMed Central

    2012-01-01

    Cross-species transplantation (xenotransplantation) offers the prospect of an unlimited supply of organs and cells for clinical transplantation, thus resolving the critical shortage of human tissues that currently prohibits a majority of patients on the waiting list from receiving transplants. Between the 17th and 20th centuries, blood was transfused from various animal species into patients with a variety of pathological conditions. Skin grafts were carried out in the 19th century from a variety of animals, with frogs being the most popular. In the 1920s, Voronoff advocated the transplantation of slices of chimpanzee testis into aged men whose “zest for life” was deteriorating, believing that the hormones produced by the testis would rejuvenate his patients. Following the pioneering surgical work of Carrel, who developed the technique of blood vessel anastomosis, numerous attempts at nonhuman primate organ transplantation in patients were carried out in the 20th century. In 1963–1964, when human organs were not available and chronic dialysis was not yet in use, Reemtsma transplanted chimpanzee kidneys into 13 patients, one of whom returned to work for almost 9 months before suddenly dying from what was believed to be an electrolyte disturbance. The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within 2 hours. Starzl carried out the first chimpanzee-to-human liver transplantation in 1966; in 1992, he obtained patient survival for 70 days following a baboon liver transplant. With the advent of genetic engineering and cloning technologies, pigs are currently available with a number of different manipulations that protect their tissues from the human immune response, resulting in increasing pig graft survival in nonhuman primate models. Genetically modified pigs offer hope of a limitless supply of organs and cells for those in need of a transplant. PMID:22275786

  20. Molecular organization of terminal repetitive DNA in Beta species.

    PubMed

    Dechyeva, Daryna; Schmidt, Thomas

    2006-01-01

    We have isolated families of subtelomeric satellite DNA sequences from species of four sections of the genus Beta and from spinach, a related Chenopodiaceae. Twenty-five clones were sequenced and representative repeats of each family were characterized by Southern blotting and FISH. The families of ApaI restriction satellite repeats were designated pAv34, pAc34, the families of RsaI repeats pRp34, pRn34 and pRs34. The repeating units are 344-362 bp long and 45.7-98.8% homologous with a clear species-specific divergence. Each satellite monomer consists of two subrepeats SR1 and SR2 of 165-184 bp, respectively. The repeats of each subrepeat group are highly identical across species, but share only a homology of 40.8-54.8% with members of the other subrepeat group. Two evolutionary steps could be supposed in the phylogeny of the subtelomeric satellite family: the diversification of an ancestor satellite into groups representing SR1 and SR2 in the progenitor of Beta and Spinacea species, followed by the dimerization and diversification of the resulting 360 bp repeats into section-specific satellite DNA families during species radiation. The chromosomal localization of telomeric, subtelomeric and rDNA tandem repeats was investigated by multi-colour FISH. High-resolution analysis by fibre FISH revealed a unique physical organization of B. vulgaris chromosome ends with telomeric DNA and subtelomeric satellites extending over a maximum of 63 kb and 125 kb, respectively. PMID:17195925

  1. Mutagenicity of organic pollutants adsorbed on suspended particulate matter in the center of Wrocław (Poland)

    NASA Astrophysics Data System (ADS)

    Bełcik, Maciej; Trusz-Zdybek, Agnieszka; Galas, Ewa; Piekarska, Katarzyna

    2014-10-01

    Mutagenicity of pollutants adsorbed on suspended dust of the PM10 fraction, collected in winter and summer season alike over the Wrocław city centre (Poland) was studied using the standard Salmonella assay (plate-incorporation) and the Kado modified assay (microsuspension method). The dust was collected using Staplex high volume air sampler. Further on it was extracted with dichloromethane in a Soxhlet apparatus. PAH content in extracts was determined by the high performance liquid chromatography technique using fluorescence detection, whereas the nitro-PAH content- by the gas chromatography using mass detection. Two Salmonella typhimurium strains, TA98 and YG1041, were used in the assays. The assays were conducted with and without a metabolic activation. Investigated air pollution extracts differed against each other with regard to a total content as well as to a percentage of individual compounds, depending on the sampling season. Both the total PAH content and the nitro-PAH content in the tested samples, and their spectrum as well, were found the highest in winter season. Higher mutagenic effect was noted for the dust extract from samples collected in wintertime than from those collected in summer. Pollutants directly affecting the genetic material and those showing such indirect action were present in the examined samples. The YG1041 strain turned out to be the most sensitive, which was the sign that large amounts of nitro-aromatic compounds were present in the tested samples. Obtained results proved that the Kado modified Salmonella assay would be useful for the atmospheric air pollution monitoring in urban agglomerations. Mutagenic effect in assays conducted according to the Kado procedure was obtained by using in the assays lower concentrations of tested extracts, compared to the classical assay.

  2. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2016-07-01

    In this study, batch experiments were conducted to investigate the effects of nanoparticles (NPs) (MgO, ZnO, TiO2) and clay minerals (bentonite, zeolite) on the release of chromium (Cr) from leather factory waste (LFW) and LFW treated soil using organic acids. Chromium release from all treatments was studied in the presence of citric acid, oxalic acid and CaCl2 solutions. The results showed that, in all treatments, organic acids released more Cr than inorganic salt (CaCl2). The release of Cr by citric acid was higher than that by oxalic acid. In LFW treated soil and LFW, the release of Cr from the all treatments with NPs was less than that from the clay mineral treatments. On the other hand, in the presence of organic acids, Cr release by NPs and clay minerals decreased. Two kinetic models including pseudo-first- and pseudo-second-order model were tested to describe the time dependent Cr release data. Among the kinetic models used, the pseudo-second-order model generally gave the best fits to experimental data. Before and after release experiments, Cr in LFW, treated LFW, control soil and LFW treated soils were fractionated. In all treatments, the greatest amounts of Cr were found in the residual fraction (RES). The organic acids were effective in reducing the exchangeable (EXC), bound to organic matter (OM) and bound to carbonate (CAR) fractions of Cr in all treatments, whereas, after release of Cr from treated soils, Cr remained mainly in the RES fraction. The application of NPs and clay minerals in soil led to a significant transformation of Cr from mobile fractions to the RES fraction. Therefore, organic ligands played a dominant role in mobility and bioavailability of Cr and the removal of Cr by adsorbents. PMID:27139119

  3. QSAR models for removal rates of organic pollutants adsorbed by in situ formed manganese dioxide under acid condition.

    PubMed

    Su, Pingru; Zhu, Huicen; Shen, Zhemin

    2016-02-01

    Manganese dioxide formed in oxidation process by potassium permanganate exhibits promising adsorptive capacity which can be utilized to remove organic pollutants in wastewater. However, the structure variances of organic molecules lead to wide difference of adsorption efficiency. Therefore, it is of great significance to find a general relationship between removal rate of organic compounds and their quantum parameters. This study focused on building up quantitative structure activity relationship (QSAR) models based on experimental removal rate (r(exp)) of 25 organic compounds and 17 quantum parameters of each organic compounds computed by Gaussian 09 and Material Studio 6.1. The recommended model is rpre = -0.502-7.742 f(+)x + 0.107 E HOMO + 0.959 q(H(+)) + 1.388 BOx. Both internal and external validations of the recommended model are satisfied, suggesting optimum stability and predictive ability. The definition of applicability domain and the Y-randomization test indicate all the prediction is reliable and no possibility of chance correlation. The recommended model contains four variables, which are closely related to adsorption mechanism. f(+)x reveals the degree of affinity for nucleophilic attack. E HOMO represents the difficulty of electron loss. q(H(+)) reflect the distribution of partial charge between carbon and hydrogen atom. BO x shows the stability of a molecule. PMID:26490942

  4. Simultaneous removal of multiple pesticides from water: effect of organically modified clays as coagulant aid and adsorbent in coagulation-flocculation process.

    PubMed

    Shabeer, T P Ahammed; Saha, Ajoy; Gajbhiye, V T; Gupta, Suman; Manjaiah, K M; Varghese, Eldho

    2014-01-01

    Contamination of drinking water sources with agrochemical residues became a major concern in the twenty-first century. Coagulation-flocculation is the most widely used water-treatment process, but the efficiency to remove pesticides and other organic pollutants are limited compared to adsorption process. Thus, simultaneous action of adsorption on normal bentonite or organo-modified montmorillonite clays [modified with octadecylamine (ODA-M) and octadecylamine + amino-propyltriethoxysilane (ODAAPS-M)] followed by coagulation-flocculation by alum and poly aluminium chloride has been evaluated for removal of 10 different pesticides, namely atrazine, lindane, metribuzin, aldrin, chlorpyriphos, pendimethalin, alpha-endosulphan, beta-endosulphan, p,p'-DDT, cypermethrin and two of its metabolites, endosulphan sulphate and p,p'-DDE, from water. The coagulation without integration of adsorption was less effective (removal % varies from 12 to 49) than the adsorption-coagulation integrated system (removal % varies from 71 to 100). Further, coagulation integrated with adsorption was more effective when organically modified montmorillonite was used as adsorbent compared to normal bentonite. The removal efficiency of organic clay depends upon the concentration of pesticides, doses of clay minerals, and efficiency was more for ODAAPS-M as compared to ODA-M. The combination of ODAAPS-M-clay with coagulants was also used efficiently for the removal of pesticides from natural and fortified natural water collected and the results exhibit the usefulness of this remediation technique for application in water decontamination and in treatment of industrial and agricultural waste waters. PMID:25145219

  5. REUSABLE ADSORBENTS FOR DILUTE SOLUTIONS SEPARATION. 5: PHOTODEGRADATION OF ORGANIC COMPOUNDS ON SURFACTANT-MODIFIED TITANIA. (R828598C753)

    EPA Science Inventory

    A semiconductor titania (TiO2) surface was modified by surfactant adsorption to make it more hydrophobic and to increase the adsorption of hydrophobic organic compounds (HOCs) and their photodegradation rates under UV irradiation. Photocatalytic experiments using Ti...

  6. Reactive oxygen species in organ-specific autoimmunity.

    PubMed

    Di Dalmazi, Giulia; Hirshberg, Jason; Lyle, Daniel; Freij, Joudeh B; Caturegli, Patrizio

    2016-12-01

    Reactive oxygen species (ROS) have been extensively studied in the induction of inflammation and tissue damage, especially as it relates to aging. In more recent years, ROS have been implicated in the pathogenesis of autoimmune diseases. Here, ROS accumulation leads to apoptosis and autoantigen structural changes that result in novel specificities. ROS have been implicated not only in the initiation of the autoimmune response but also in its amplification and spreading to novel epitopes, through the unmasking of cryptic determinants. This review will examine the contribution of ROS to the pathogenesis of four organ specific autoimmune diseases (Hashimoto thyroiditis, inflammatory bowel disease, multiple sclerosis, and vitiligo), and compare it to that of a better characterized systemic autoimmune disease (rheumatoid arthritis). It will also discuss tobacco smoking as an environmental factor endowed with both pro-oxidant and anti-oxidant properties, thus capable of differentially modulating the autoimmune response. PMID:27491295

  7. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-04-01

    Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.

  8. Organ- and species-specific biological activity of rosmarinic acid.

    PubMed

    Iswandana, R; Pham, B T; van Haaften, W T; Luangmonkong, T; Oosterhuis, D; Mutsaers, H A M; Olinga, P

    2016-04-01

    Rosmarinic acid (RA), a compound found in several plant species, has beneficial properties, including anti-inflammatory and antibacterial effects. We investigated the toxicity, anti-inflammatory, and antifibrotic effects of RA using precision-cut liver slices (PCLS) and precision-cut intestinal slices (PCIS) prepared from human, mouse, and rat tissue. PCLS and PCIS were cultured up to 48h in the absence or presence of RA. Gene expression of the inflammatory markers: IL-6, IL-8/CXCL1/KC, and IL-1β, as well as the fibrosis markers: pro-collagen 1a1, heat shock protein 47, α-smooth muscle actin, fibronectin (Fn2) and plasminogen activator inhibitor-1 (PAI-1) were evaluated by qPCR. RA was only toxic in murine PCIS. RA failed to mitigate the inflammatory response in most models, while it clearly reduced IL-6 and CXCL1/KC gene expression in murine PCIS at non-toxic concentrations. With regard to fibrosis, RA decreased the gene levels of Fn2 and PAI-1 in murine PCLS, and Fn2 in murine PCIS. Yet, no effect was observed on the gene expression of fibrosis markers in human and rat PCIS. In conclusion, we observed clear organ- and species-specific effects of RA. RA had little influence on inflammation. However, our study further establishes RA as a potential candidate for the treatment of liver fibrosis. PMID:26804033

  9. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review.

    PubMed

    Mohan, Dinesh; Sarswat, Ankur; Ok, Yong Sik; Pittman, Charles U

    2014-05-01

    Biochar is used for soil conditioning, remediation, carbon sequestration and water remediation. Biochar application to water and wastewater has never been reviewed previously. This review focuses on recent applications of biochars, produced from biomass pyrolysis (slow and fast), in water and wastewater treatment. Slow and fast pyrolysis biochar production is briefly discussed. The literature on sorption of organic and inorganic contaminants by biochars is surveyed and reviewed. Adsorption capacities for organic and inorganic contaminants by different biochars under different operating conditions are summarized and, where possible, compared. Mechanisms responsible for contaminant remediation are briefly discussed. Finally, a few recommendations for further research have been made in the area of biochar development for application to water filtration. PMID:24636918

  10. Performance of PF BL-13A, a vacuum ultraviolet and soft X-ray undulator beamline for studying organic thin films adsorbed on surfaces

    NASA Astrophysics Data System (ADS)

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta; Ozawa, Kenichi

    2013-03-01

    We report on the present status of a vacuum ultraviolet and soft X-ray undulator beamline, BL-13A, located at the Photon Factory. BL-13A is mainly dedicated to the study of organic thin films adsorbed on well-defined surfaces, using angle-resolved photoelectron spectroscopy (ARPES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The photon-energy resolution (E/ΔE) is estimated to be about 10000 at a photon energy of 64 eV with an exit-slit width of 30 μm. The photon intensity is estimated to be 2.9 × 1012 to 5.6 × 108 photons/s for photon energies of 30-1600 eV with an exit-slit width of 100 μm at the ring current of 450 mA. An ultrahigh vacuum (UHV) chamber equipped with an electron-energy analyzer (Gamma Data/Scienta, SES 200) is used as the main end station for ARPES, XPS, and XAS measurements. A sample can be transferred from a UHV chamber for sample preparation or from a UHV chamber for the evaporation of organic materials. The sample-holder acceptors are equipped with a heating and cooling system. The overall electron-energy resolution is estimated to be about 12 meV at a photon energy of 30 eV.

  11. Fabrication of Isolated Metal-Organic Polyhedra in Confined Cavities: Adsorbents/Catalysts with Unusual Dispersity and Activity.

    PubMed

    Kang, Ying-Hu; Liu, Xiao-Dan; Yan, Ni; Jiang, Yao; Liu, Xiao-Qin; Sun, Lin-Bing; Li, Jian-Rong

    2016-05-18

    Metal-organic polyhedra (MOPs) have attracted great attention due to their intriguing structure. However, the applications of MOPs are severely hindered by two shortcomings, namely low dispersity and poor stability. Here we report the introduction of four MOPs (constructed from dicopper and carboxylates) to cavity-structured mesoporous silica SBA-16 via a double-solvent strategy to overcome both shortcomings simultaneously. By judicious design, the dimension of MOPs is just between the size of cavities and entrances of SBA-16, MOP molecules are thus confined in the cavities. This leads to the formation of isolated MOPs with unusual dispersion, making the active sites highly accessible. Hence, the adsorption capacity on carbon dioxide and propene as well as catalytic performance on ring opening are much superior to bulk MOPs. More importantly, the structure and catalytic activity of MOPs in confined cavities are well preserved after exposure to humid atmosphere, whereas those of bulk MOPs are degraded seriously. PMID:27049737

  12. Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces

    NASA Astrophysics Data System (ADS)

    Yoon, Tae Hyun; Johnson, Stephen B.; Musgrave, Charles B.; Brown, Gordon E.

    2004-11-01

    The types and structures of adsorption complexes formed by oxalate at boehmite (γ-AlOOH)/water and corundum (α-Al 2O 3)/water interfaces were determined using in situ attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and quantum chemical simulation methods. At pH 5.1, at least four different oxalate species were found at or near the boehmite/water interface for oxalate surface coverages (Γ ox) ranging from 0.25 to 16.44 μmol/m 2. At relatively low coverages (Γ ox < 2.47), strongly adsorbed inner-sphere oxalate species (IR peaks at 1286, 1418, 1700, and 1720 cm -1) replace weakly adsorbed carbonate species, and a small proportion of oxalate anions are adsorbed in an outer-sphere mode (IR peaks at 1314 and 1591 cm -1). IR peaks indicative of inner-sphere adsorbed oxalate are also observed for oxalate at the corundum/water interface at Γ ox = 1.4 μmol/m 2. With increasing oxalate concentration (Γ ox > 2.47 μmol/m 2), the boehmite surface binding sites for inner-sphere adsorbed oxalate become saturated, and excess oxalate ions are present dominantly as aqueous species (IR peaks at 1309 and 1571 cm -1). In addition to these adsorption processes, oxalate-promoted dissolution of boehmite following inner-sphere oxalate adsorption becomes increasingly pronounced with increasing Γ ox and results in an aqueous Al(III)-oxalate species, as indicated by shifted IR peaks (1286 → 1297 cm -1 and 1418 → 1408 cm -1). At pH 2.5, no outer-sphere adsorbed oxalate or aqueous oxalate species were observed. The similarity of adsorbed oxalate spectral features at pH 2.5 and 5.1 implies that the adsorption mechanism of aqueous HOx - species involves loss of protons from this species during the ligand-exchange reaction. As a consequence, adsorbed inner-sphere oxalate and aqueous Al(III)-oxalate complexes formed at pH 2.5 have coordination geometries very similar to those formed at pH 5.1. The coordination geometry of inner-sphere adsorbed oxalate

  13. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples.

    PubMed

    Rashidi Nodeh, Hamid; Wan Ibrahim, Wan Aini; Ali, Imran; Sanagi, Mohd Marsin

    2016-05-01

    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V). PMID:26850098

  14. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  15. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces.

    PubMed Central

    Lösche, M; Piepenstock, M; Diederich, A; Grünewald, T; Kjaer, K; Vaknin, D

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 FIGURE 11 FIGURE 12 FIGURE A1 PMID:8298041

  16. The hydrophobic character of nonsulfide mineral surfaces as influenced by double-bond reactions of adsorbed unsaturated collector species. Progress report, 15 December 1992--14 December 1993

    SciTech Connect

    Miller, J.D.

    1993-07-01

    Different collector adsorption phenomena including adsorption density, adsorption state, and conformation have been examined for soluble salt, semi-soluble salt and insoluble oxide mineral systems. In the case of the soluble salt system, the influence of crystal lattice defects on the surface charge of KCl and its flotation response was studied. In the case of semi-soluble salt minerals, the behavior of fatty acid collectors adsorbed at the surfaces of calcite and fluorite was determined by in-situ Fourier transform infrared internal reflection spectroscopy (FT-IR/IRS), multichannel laser Raman spectroscopy (MLRS), and Langmuir-Blodgett (LB) techniques. Finally, changes in the hydrophobic character of the insoluble oxide mineral surfaces of sapphire and quartz were examined with respect to the aggregative nature of the adsorbed collector phase. A number of papers and presentations were prepared from this research and these contributions are listed at the end of this progress report.

  17. Adsorption mechanism of ester phosphate on baryum titanate in organic medium. Preliminary results on the structure of the adsorbed layer

    NASA Astrophysics Data System (ADS)

    Le Bars, N.; Tinet, D.; Faugère, A. M.; van Damme, H.; Levitz, P.

    1991-05-01

    The purpose of this work is to evidence the adsorption mechanism and the structure of commercial phosphate ester surfactant stabilized BaTiO3 in organic suspension, and to relate these characteristics to rheological behaviour. Binders and plasticizers are omitted to reduce the number of system components. Firstly adsorption isotherm were determined by inductively coupled argon plasma technique and interpretated based on transmission electron microscopy and ^{31}P nuclear magnetic resonance studies. Preliminary rheological measurements were then performed and related to suspension structure. Structure of the adsorption layer is critically discussed. L'objectif de cette étude est la compréhension du mécanisme d'adsorption d'agents dispersants phosphatés dans des suspensions organiques de BaTiO3, ainsi que la caractérisation de la structure, et du comportement rhéologique de ces suspensions. Liants et plastifiants ne sont pas utilisés, afin de réduire le nombre de composants dans le système. Dans un premier temps, l'isotherme d'adsorption est établie par dosage en émission plasma, puis interprétée sur la base de résultats de Microscopie Eloctronique à Transmission, et de spectroscopie par Résonance Magnétique Nucléaire du ^{31}P. Des mesures rhéologiques préliminaires sont effectuées pour caractériser la structure des suspensions.

  18. I. Fundamental Practicum: Temperature Measurements of Falling Droplets, July, 1989. II. Industrial Practicum: Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock, April, 1988. III. Apprenticeship Practicum: Studies of Group XIII Metal Inclusion Complexes, March, 1987

    NASA Astrophysics Data System (ADS)

    Wells, Mark Richard

    The temperature of 225 μm decane droplets falling through a hot, quiescent, oxygen -free environment were measured using laser-induced exciplex fluorescence thermometry. The temperature of the droplets was found to increase approximately 0.42^ circC/^circC increase in the environment temperature as the environment temperature was increased to 250^circ C. Less than 10% evaporation of the droplets was observed at the highest environment temperatures. This represents one of the first successful applications of a remote-sensing technique for the temperature determination of droplets in a dynamic system. Industrial practicum. The industrial practicum report, entitled "Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock," is a discussion of the measurement of the effect adsorbed organic material, especially from crude petroleum, has on the surface area, cation exchange capacity, and zeta potential of reference clay material and reservoir rock. In addition, the energetics of adsorption of a petroleum extract onto several reference clays and reservoir rock were measured using both flow and batch microcalorimetry. These results are very important in evaluating and understanding the wettability of reservoir rock and its impact on the recovery of crude oil from a petroleum reservoir. Apprenticeship practicum. "Studies of Group XIII Metal Inclusion Complexes" investigates the structure and dynamics of liquid inclusion complexes having the general formula (R_4N) (Al_2 Me_6I) cdot (C_6H_6) _{rm x}. ^1H and ^{13}C spin-lattice relaxation times, nuclear Overhauser enhancements, and molecular correlation times were measured as well as diffusion coefficients of the various species in solution. The dynamics of transfer between "guest" and free solvent molecules were measured using a variety of techniques. The inherent structure of liquid inclusion complexes as an ordered medium for homogeneous catalysis was studied using hydrogenation catalyzed by

  19. Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 3: Competition with natural organic matter.

    PubMed

    Al Mardini, Fadi; Legube, Bernard

    2010-10-15

    This study (part 3) was carried out to investigate the effect of the natural organic matter (NOM) concentration on Bromacil (pesticide) adsorption on powdered activated carbon (PAC) in the same experimental conditions as in our previous studies (parts 1 and 2). Our previous findings showed that Bromacil adsorption in buffered pure water (pH 7.8) occurred at two types of site. In the presence of NOM (three kinds), we noted a significant reduction in Bromacil adsorption capacities due to the competitive effects exerted by NOM. Highly reactive sites (or pores) in PAC appeared to be blocked by NOM adsorption, as demonstrated by the application of a pseudo-single solute isotherm and of the simplified ideal adsorbed solution theory (IAST), regardless of the initial Bromacil and NOM concentrations. The competing effect of low-molecular weight NOM was found to be greater than the competing effect of high-molecular weight NOM. The pseudo-second order surface-reaction model fitted Bromacil adsorption particularly well, even in the presence of NOM. However, the adsorption-kinetic constant values were found to be independent of the aqueous equilibrium concentration of the target compound, contrary to that observed in pure water. The kinetic data thus confirmed that high reactivity PAC sites were blocked by NOM adsorption. A practical approach concluded this work. PMID:20619963

  20. A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner.

    PubMed

    Li, Ning; Zhu, Quanfei; Yang, Yang; Huang, Jianlin; Dang, Xueping; Chen, Huaixia

    2015-01-01

    Metal-organic frameworks (MOFs) have been paid widespread attention in the field of adsorption and separation materials due to its porosity, large specific surface area, unsaturated metal-ligand sites and structural diversity. In this study, the green powder MIL-101 was synthesized and used for the extraction of benzophenone, 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxy-benzophenone from toner samples for the first time. The synthesized MIL-101 was characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry and nitrogen adsorption porosimetry. The MIL-101 was applied as the dispersive solid phase extraction (DSPE) adsorbent for the extraction and preconcentration of benzophenone, 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxy-benzophenone from toner samples. The extraction conditions were investigated. Under the optimized conditions, a DSPE-HPLC method for the determination of benzophenone, 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxy-benzophenone was developed. The method yielded a linear calibration curve in the concentration ranges from 4.0 to 3500 μg L(-1) for the three analytes in toner samples with regression coefficients (r(2)) of 0.9992, 0.9999 and 0.9990, respectively. Limits of detection were 1.2, 1.2 and 0.9 μg L(-1), respectively. Both the intra-day and inter-day precisions (RSDs) were <10%. PMID:25476369

  1. Magnetic metal-organic nanotubes: An adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples.

    PubMed

    Li, Qiu-Lin; Wang, Lei-Lei; Wang, Xia; Wang, Ming-Lin; Zhao, Ru-Song

    2016-06-01

    A new type of three-dimensional, echinus-like magnetic Fe3O4 @ cobalt(Ⅱ)-based metal-organic nanotube (Fe3O4 @ Co-MONT) yolk-shell microspheres, have been designed and synthesized for the first time. Fe3O4 @ Co-MONTs yolk-shell microspheres were characterized by scanning electron micrographs, transmission electron microscopy, Fourier transform infrared spectra, X-ray diffraction, and vibrating sample magnetometry. The feasibility of the new material for use as an absorbent was investigated for magnetic solid phase-extraction (MSPE) of polychlorinated biphenyls (PCBs) from environmental water samples and biological samples. The Plackett-Burman design and Box-Behnken design were used to determine and optimize the extraction parameters influencing the extraction efficiency through response surface methodology. Under the optimized conditions, the developed method showed good linearity within the range of 5-1000ngL(-1), low limits of detection (0.31-0.49ngL(-1)), and good reproducibility (RSD<10%). The proposed method was successfully applied for the analysis of PCBs in real environmental water samples. These results demonstrated that Fe3O4 @ Co-MONTs is a promising adsorbent material for the MSPE of PCBs at trace levels from environmental water samples and biological samples. PMID:27156750

  2. Magnetic porous carbon derived from a Zn/Co bimetallic metal-organic framework as an adsorbent for the extraction of chlorophenols from water and honey tea samples.

    PubMed

    Li, Menghua; Wang, Junmin; Jiao, Caina; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2016-05-01

    A novel magnetic porous carbon derived from a bimetallic metal-organic framework, Zn/Co-MPC, was prepared by introducing cobalt into ZIF-8. Magnetic porous carbon that possesses magnetic properties and a large specific surface area was firstly fabricated by the direct carbonization of Zn/Co-ZIF-8. The prepared magnetic porous carbon material was characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, N2 adsorption, and vibrating sample magnetometry. The prepared magnetic porous carbon was used as a magnetic solid-phase extraction adsorbent for the enrichment of chlorophenols from water and honey tea samples before high-performance liquid chromatography analysis. Several experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, good linearities (r > 0.9957) for all calibration curves were obtained with low limits of detection, which are in the range of 0.1-0.2 ng mL(-1) for all the analytes. The results showed that the prepared magnetic porous carbon had an excellent adsorption capability toward the target analytes. PMID:26991637

  3. Ozone reactivity of biogenic volatile organic compounds emitted from the four dominant tree species at PROPHET - CABINEX

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Daly, R.; Bertman, S. B.

    2010-12-01

    A number of recent studies on biogenic volatile organic emissions (BVOC) released in the forest atmosphere have pointed out that identified emissions can not account for the entire chemical reactivity seen in the forest atmosphere. During the 2009 and 2010 Community Atmosphere-Biosphere Interactions Experiment (CABINEX) at the University of Michigan Biological Station (UMBS) PROPHET site BVOC emissions and their reactivity with ozone were studied with a newly developed ozone reactivity instrument. Experiments were conducted on the tree species red oak, white pine, quaking aspen, and red maple, representing ~ 87% of the canopy leaf area index at this site. BVOC emissions were sampled from a branch bag enclosure, mixed with ozone-enriched air, and directed through a series of reaction vessels. A differential ozone monitor was used to determine the reaction rate with ozone while emissions were being purged through the reaction vessel. BVOC in the outflow of the bag enclosure were also determined with a field gas chromatography-mass spectrometry instrument, and by collection on adsorbent cartridges with subsequent analysis in our Boulder laboratory. Experiments were performed over several days to capture emission changes under varying ambient temperature and light conditions. The ozone reactivity showed distinct diurnal cycles and a tight correlation with leaf temperature, typically maximizing during mid day to afternoon. Furthermore, the four tree species investigated displayed a distinctly different behavior, with emissions from the one coniferous tree species (white pine) exhibiting the overall highest ozone reactivity signal.

  4. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  5. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  6. Contribution of selected perfluoroalkyl and polyfluoroalkyl substances to the adsorbable organically bound fluorine in German rivers and in a highly contaminated groundwater.

    PubMed

    Willach, Sarah; Brauch, Heinz-Jürgen; Lange, Frank T

    2016-02-01

    Due to the lack of analytical standards the application of surrogate parameters for organofluorine detection in the aquatic environment is a complementary approach to single compound target analysis of perfluoroalkyl and polyfluoroalkyl chemicals (PFASs). The recently developed method adsorbable organically bound fluorine (AOF) is based on adsorption of organofluorine chemicals to activated carbon followed by combustion ion chromatography. This AOF method was further simplified to enable measurement of larger series of environmental samples. The limit of quantification (LOQ) was 0.77 μg/L F. The modified protocol was applied to 22 samples from German rivers, a municipal wastewater treatment plant (WWTP) effluent, and four groundwater samples from a fire-fighting training site. The WWTP effluent (AOF = 1.98 μg/L F) and only three river water samples (AOF between 0.88 μg/L F and 1.47 μg/L F) exceeded the LOQ. The AOF levels in a PFASs plume at a heavily contaminated site were in the range of 162 ± 3 μg/L F to 782 ± 43 μg/L F. In addition to AOF 17 PFASs were analyzed by high performance liquid chromatography-tandem mass spectrometry. 32-51% of AOF in the contaminated groundwater samples were explained by individual PFASs wheras in the surface waters more than 95% remained unknown. Organofluorine of two fluorinated pesticides, one pesticide metabolite and three fluorinated pharmaceuticals was recovered as AOF by >50% from all four tested water matrices. It is suggested that in the diffusely contaminated water bodies such fluorinated chemicals and not monitored PFASs contribute significantly to AOF. PMID:26692511

  7. Desorption-induced recombination-cationization of metal-adsorbate adducts from sulfur precovered Ru(0001)

    NASA Astrophysics Data System (ADS)

    Cocco, R. A.; Tatarchuk, B. J.

    1990-03-01

    Temperature programmed static secondary ion mass spectrometry (TPSS) studies of pyrrole, furan and water on sulfur precovered Ru(0001) reveal significant increases in the coverage corrected adduct yield when these species desorb from the surface in an autocatalytic fashion. This effect has been attributed to an enhancement in the recombination-cationization rate which occurs when sputtered-ruthenium species contact desorbed organics just after leaving the surface. Adsorbates which do not undergo autocatalytic/explosive desorption do not exhibit this effect.

  8. {sup 129}Xe magic-angle spinning spectra of xenon in zeolite NaA direct observation of mixed clusters of co-adsorbed species.

    SciTech Connect

    Jameson, A. K.; Jameson, C. J.; de Dios, A. C.; Oldfield, E.; Gerald, R. E., II; Turner, G. L.; Chemical Engineering; Loyola Univ.; Univ. of Illinois at Chicago; Univ. of Illinois; Spectral Data Services, Inc.

    1995-01-01

    We present the first demonstration that the individual {sup 129}Xe resonances corresponding to Xe{sub n} (n = 1-8) clusters inside the {alpha}-cages of zeolite NaA can be narrowed under magic-angle spinning (MAS). Under these high-resolution conditions we also observe upon addition of Kr the individual peaks corresponding to mixed clusters, Xe{sub n}Kr{sub m}, inside the a-cages, which will allow the first direct determination of the distribution of co-adsorbates in a microporous solid. Under MAS the chemical shifts of the Xe{sub n} clusters are shown to be highly sensitive to 'disorder' in the zeolite and provides new, quantitative information about the presence of {alpha}-cages of several types.

  9. Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers

    PubMed Central

    Zhang, Yu; Cai, Xiyun; Xiong, Weina; Jiang, Hao; Zhao, Haitong; Yang, Xianhai; Li, Chao; Fu, Zhiqiang; Chen, Jingwen

    2014-01-01

    Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2+, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. PMID:24465975

  10. A new 68Ge/68Ga generator system using an organic polymer containing N-methylglucamine groups as adsorbent for 68Ge.

    PubMed

    Nakayama, M; Haratake, M; Ono, M; Koiso, T; Harada, K; Nakayama, H; Yahara, S; Ohmomo, Y; Arano, Y

    2003-01-01

    A macroporous styrene-divinylbenzene copolymer containing N-methylglucamine groups was selected for a new 68Ge/68Ga generator system. This resin packed into a column effectively adsorbed the parent nuclide 68Ge. The daughter 68Ga was eluted from the resin with a solution of a low-affinity gallium chelating ligand such as citric or phosphoric acid. The 68Ge leakage was less than 0.0004% of the 68Ge adsorbed on the resin. By simple mixing of transferrin and desferoxamine conjugated HSA and IgG with the eluate from the column, 68Ga-labeling was completed in high yield. PMID:12485657

  11. Soil organisms shape the competition between grassland plant species.

    PubMed

    Sabais, Alexander C W; Eisenhauer, Nico; König, Stephan; Renker, Carsten; Buscot, François; Scheu, Stefan

    2012-12-01

    Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered. PMID:22678109

  12. Brain organization of gorillas reflects species differences in ecology

    PubMed Central

    Barks, Sarah K.; Calhoun, Michael E.; Hopkins, William D.; Cranfield, Michael R.; Mudakikwa, Antoine; Stoinski, Tara S.; Patterson, Francine G.; Erwin, Joseph M.; Hecht, Erin E.; Hof, Patrick R.; Sherwood, Chet C.

    2014-01-01

    Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engage in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. PMID:25360547

  13. ORGANIC PESTICIDE MODIFICATION OF SPECIES INTERACTIONS USING ANNUAL PLANT COMMUNITIES

    EPA Science Inventory

    A method is proposed and tested for assessing multispecies responses to three pesticides (atrazine, 2,4,D and malathion). Pesticides were applied at two concentrations, mon model plant communities grown in raised beds using soil containing a natural weed bank. over by species was...

  14. Brain organization of gorillas reflects species differences in ecology.

    PubMed

    Barks, Sarah K; Calhoun, Michael E; Hopkins, William D; Cranfield, Michael R; Mudakikwa, Antoine; Stoinski, Tara S; Patterson, Francine G; Erwin, Joseph M; Hecht, Erin E; Hof, Patrick R; Sherwood, Chet C

    2015-02-01

    Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. PMID:25360547

  15. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    EPA Science Inventory

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  16. Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography.

    PubMed

    Wagner, Andrea; Raue, Brigitte; Brauch, Heinz-Jürgen; Worch, Eckhard; Lange, Frank T

    2013-06-21

    A new method for the determination of trace levels of adsorbable organic fluorine (AOF) in water is presented. Even if the individual contributing target compounds are widely unknown, this surrogate parameter is suited to identify typical organofluorine contaminations, such as with polyfluorinated chemicals (PFCs), and represents a lower boundary of the organofluorine concentration in water bodies. It consists of the adsorption of organofluorine chemicals on a commercially available synthetic polystyrene-divinylbenzene based activated carbon (AC) followed by analysis of the loaded AC by hydropyrolysis combustion ion chromatography (CIC). Inorganic fluorine is displaced by excess nitrate during the extraction step and by washing the loaded activated carbon with an acidic sodium nitrate solution. Due to its high purity the synthetic AC had a very low and reproducible fluorine blank (0.3 μg/g) compared to natural ACs (up to approximately 9 μg/g). Using this AC, fluoride and the internal standard phosphate could be detected free of chromatographic interferences. With a sample volume of 100 mL and 2× 100 mg of AC packed into two extraction columns combined in series, a limit of quantification (LOQ), derived according to the German standard method DIN 32645, of 0.3 μg/L was achieved. The recoveries of six model PFCs were determined from tap water and a municipal wastewater treatment plant (WWTP) effluent. Except for the extremely polar perfluoroacetic acid (recovery of approximately 10%) the model substances showed fairly good (50% for perfluorobutanoic acid (PFBA)) to very good fluorine recoveries (100±20% for perfluorooctanoic acid (PFOA), perfluorobutanesulfonate (PFBS), 6:2 fluorotelomersulfonate (6:2 FTS)), both from tap water and wastewater matrix. This new analytical protocol was exemplarily applied to several surface water and groundwater samples. The obtained AOF values were compared to the fluorine content of 19 target PFCs analyzed by high performance

  17. The hydrophobic character of nonsulfide mineral surfaces as influenced by double-bond reactions of adsorbed unsaturated collector species. Progress report, 15 December 1990--14 December 1991

    SciTech Connect

    Miller, J.D.

    1991-07-01

    A unique in-situ sampling technique has been developed which allowed for real-time analysis of surfactant adsorption processes on mineral single crystals. This technique couples FT-IR spectroscopy and internal reflection spectroscopy (FT-IR/IRS) and the mineral single crystal is referred to as a ``reactive`` internal reflect element (IRE). The single crystal is reactive in the sense that the adsorption occurs directly upon the surface of the IRE, which also serves to transmit IR electromagnetic radiation. The in-situ FT-IR/IRS method was previously demonstrated for the fluorite (CaF{sub 2})/oleate flotation system. Information obtained from this system included adsorption density (from mid- and near-infrared spectra), adsorption state and reactivity of adsorbed collector, and alkyl chain conformational analysis. In the second budget period, similar analyses have been performed for three other mineral systems. These systems are as follows: Insoluble Oxides: sapphire ({alpha}-Al{sub 2}O{sub 3})/sodium dodecylsulfate; Soluble Salts: sylvite (KCl)/n-octylamine; and Semisoluble Salts: calcite (CaCO{sub 3})/sodium oleate and fluorite (CaF{sub 2})/sodium oleate.

  18. Conservation of cytoplasmic organization in the cystidia of Suillus species.

    PubMed

    Jenkinson, Thomas S; Celio, Gail J; Padamsee, Mahajabeen; Dentinger, Bryn T M; Meyer, Michelle L; McLaughlin, David J

    2008-01-01

    Cystidia of Suillus americanus and S. granulatus (Boletales) were examined cytochemically and ultrastructurally with cells prepared by freeze substitution. We present the first study showing ultrastructural details and cytological functions of the cystidium to be conserved in two closely related species. The results are presented for inclusion in the AFTOL Structural and Biochemical Database to aid in the application of morphological characters to phylogenetic studies. The cystidia of these Suillus species appear to be united by a series of conserved characters, including specialized secretion mechanisms, smooth tubular endoplasmic reticulum and abundant free ribosomes. The conservation of these subcellular traits among members of this genus suggests that ultrastructural details of cystidia may provide a suite of phylogenetically informative characters. Inclusion of such characters in phylogenetic analyses might resolve or provide support for monophyletic groups at the level of family or genus. PMID:18833747

  19. The Model Organism Hermissenda crassicornis (Gastropoda: Heterobranchia) Is a Species Complex

    PubMed Central

    Lindsay, Tabitha

    2016-01-01

    Hermissenda crassicornis is a model organism used in various fields of research including neurology, ecology, pharmacology, and toxicology. In order to investigate the systematics of this species and the presence of cryptic species in H. crassicornis, we conducted a comprehensive molecular and morphological analysis of this species covering its entire range across the North Pacific Ocean. We determined that H. crassicornis constitutes a species complex of three distinct species. The name Hermissensa crassicornis is retained for the northeast Pacific species, occurring from Alaska to Northern California. The name H. opalescens is reinstated for a species occurring from the Sea of Cortez to Northern California. Finally, the name H. emurai is maintained for the northwestern species, found in Japan and in the Russian Far East. These three species have consistent morphological and color pattern differences that can be used for identification in the field. PMID:27105319

  20. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program

    NASA Astrophysics Data System (ADS)

    Curtis, A. J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S.

    2014-10-01

    The biogenic volatile organic compound (BVOC) emissions of nine urban tree species were studied to assess the air quality impacts from planting a large quantity of these trees in the City and County of Denver, Colorado, through the Mile High Million tree-planting initiative. The deciduous tree species studied were Sugar maple, Ohio buckeye, northern hackberry, Turkish hazelnut, London planetree, American basswood, Littleleaf linden, Valley Forge elm, and Japanese zelkova. These tree species were selected using the i-Tree Species Selector (itreetools.org). BVOC emissions from the selected tree species were investigated to evaluate the Species Selector data under the Colorado climate and environmental growing conditions. Individual tree species were subjected to branch enclosure experiments in which foliar emissions of BVOC were collected onto solid adsorbent cartridges. The cartridge samples were analyzed for monoterpenes (MT), sesquiterpenes (SQT), and other C10-C15 BVOC using thermal desorption-gas chromatography-flame ionization detection/mass spectroscopy (GC-FID/MS). Individual compounds and their emission rates (ER) were identified. MT were observed in all tree species, exhibiting the following total MT basal emission rates (BER; with a 1-σ lower bound, upper bound uncertainty window): Sugar maple, 0.07 (0.02, 0.11) μg g-1 h-1; London planetree, 0.15 (0.02, 0.27) μg g-1 h-1; northern hackberry, 0.33 (0.09, 0.57) μg g-1 h-1; Japanese zelkova, 0.42 (0.26, 0.58) μg g-1 h-1; Littleleaf linden, 0.71 (0.33, 1.09) μg g-1 h-1; Valley Forge elm, 0.96 (0.01, 1.92) μg g-1 h-1; Turkish hazelnut, 1.30 (0.32, 2.23) μg g-1 h-1; American basswood, 1.50 (0.40, 2.70) μg g-1 h-1; and Ohio buckeye, 6.61 (1.76, 11.47) μg g-1 h-1. SQT emissions were seen in five tree species with total SQT BER of: London planetree, 0.11 (0.01, 0.20) μg g-1 h-1; Japanese zelkova, 0.11 (0.05, 0.16) μg g-1 h-1; Littleleaf linden, 0.13 (0.06, 0.21) μg g-1 h-1; northern hackberry, 0.20 (0

  1. Gains to species diversity in organically farmed fields are not propagated at the farm level.

    PubMed

    Schneider, Manuel K; Lüscher, Gisela; Jeanneret, Philippe; Arndorfer, Michaela; Ammari, Youssef; Bailey, Debra; Balázs, Katalin; Báldi, András; Choisis, Jean-Philippe; Dennis, Peter; Eiter, Sebastian; Fjellstad, Wendy; Fraser, Mariecia D; Frank, Thomas; Friedel, Jürgen K; Garchi, Salah; Geijzendorffer, Ilse R; Gomiero, Tiziano; Gonzalez-Bornay, Guillermo; Hector, Andy; Jerkovich, Gergely; Jongman, Rob H G; Kakudidi, Esezah; Kainz, Max; Kovács-Hostyánszki, Anikó; Moreno, Gerardo; Nkwiine, Charles; Opio, Julius; Oschatz, Marie-Louise; Paoletti, Maurizio G; Pointereau, Philippe; Pulido, Fernando J; Sarthou, Jean-Pierre; Siebrecht, Norman; Sommaggio, Daniele; Turnbull, Lindsay A; Wolfrum, Sebastian; Herzog, Felix

    2014-01-01

    Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity. PMID:24958283

  2. Heterogeneous Reactions of Surface-Adsorbed Catechol: A Comparison of Tropospheric Aerosol Surrogates

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.; Woodill, L. A.

    2009-12-01

    Surface-adsorbed organics can alter the chemistry of tropospheric solid-air interfaces, such as aerosol and ground level surfaces, thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed-catechol with nitrogen dioxide and, in separate preliminary experiments, ozone. Graphite, kaolinite, and sodium halide (NaF, NaCl, NaBr) powders served as carbonaceous, mineral and sea salt aerosol surrogates, respectively. Broad OH stretching bands for adsorbed catechol shifted to lower wavenumber with peak frequencies following the trend NaBr > NaCl > NaF ≈ kaolinite, consistent with the increasing basicity of the halide anions and basic Brønsted sites on kaolinite. The dark heterogeneous reaction of NO2 with NaCl-adsorbed catechol at relative humidity (RH) <2% promoted nitration forming 4-nitrocatechol and oxidation forming 1,2-benzoquinone and the ring cleavage product muconic acid, with product yields of 88%, 8%, and 4%, respectively. 4-Nitrocatechol was the dominant product for catechol adsorbed on NaF and kaolinite, while NaBr-adsorbed catechol produced less 4-nitrocatechol and more 1,2-benzoquinone and muconic acid. For all three sodium halides, the reactions of NO2 with adsorbed catechol were orders of magnitude faster than between NO2 and each NaX substrate. 4-Nitrocatechol rates and product yields were consistent with the relative ability of each substrate to enhance the deprotonated nature of adsorbed-catechol. Increasing the relative humidity caused the rate of each product channel to decrease and also altered the product branching ratios. Most notably, 1,2-benzoquinone formation decreased significantly even at 13% RH. The dramatic

  3. Role of ionic species in modifying properties of organic LEDs

    NASA Astrophysics Data System (ADS)

    MacDiarmid, Alan G.; Huang, F.; Hsieh, Bing R.

    1998-04-01

    Ionic species in emissive polymer: The performance of polymer LEDs having the configuration Al/MEH-PPV/ITO (where MEH-PPV equals poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene- vinylene) have been improved by light iodine p-doping of the emissive MEH-PPV polymer layer to presumably produce (MEH- PPV)x+y(I3)xy- whereby the turn-on voltage is reduced from approximately 10 V to approximately 5 V and the external quantum efficiency is increased by an order of magnitude. It differs from non-doped MEH-PPV LEDs in that light emission is observed in both forward and reverse bias modes. The presence of (MEH-PPV)x+y ions at the cathode facilitate electron injection due to (partial) compensation of the injected charge while I3- ions at the anode analogously facilitate injection of holes. Ionic species in non-emissive polymer: LEDs having the configuration Al/MEH-PPV/ITO, at a constant applied potential of approximately 11 V, reached maximum intensity of light- emission after approximately 0.07 minute. Those having the configuration Al/MEH-PPV/EB/ITO reached maximum intensity (at approximately 11 V) after approximately 4.2 minutes (where 'EB' equals emeraldine base, the non-doped form of polyaniline), while those having the configuration Al/MEH- PPV/EB.HCSA/ITO reached maximum intensity (at approximately 11 V) after approximately 7.2 minutes (where 'EB.HCSA' is EB completely doped by camphor sulfonic acid). In each case, decay in intensity began to occur after the maximum was reached. The behavior of both systems are consistent with a non-electrochemical model wherein the new phenomena are controlled by an electric field induced diffusion of positive and negative ions towards the appropriate electrodes.

  4. The occurrence of enteric pathogens and Aeromonas species in organic vegetables.

    PubMed

    McMahon, M A; Wilson, I G

    2001-10-22

    A range of commercially available organic vegetables (n = 86) was examined for the presence of Salmonella, Campylobacter, Escherichia coli, E. coli O 157. Listeria and Aeromonas spp., to provide information on the occurrence of such organisms in organic vegetables in Northern Ireland. The study was not designed to quantify such organisms or to compare occurrence with conventionally farmed vegetables. Standard enrichment techniques were used to isolate and identify enteric pathogens and Aeromonas species. No Salmonella, Campylobacter, E. coli. E. coli O 157, Listeria were found in any of the samples examined. Aeromonas species were isolated from 34% of the total number of organic vegetables examined. Many (64%) of the organic vegetables examined were "ready-to-eat" after minimal processing, i.e., washing. Aeromonas spp. was isolated from 41% of these vegetables. Aeromonas spp. was not recovered from certain vegetable types. The most commonly isolated species of Aeromonas was Aeromonas schubertii with 21.0% of all samples contaminated with this species; 5.8% of samples contained A. hydrophila, 5.8% A. trota, 3.5% A. caviae and 2.3% contained A. veronii biovar veronii. Although Aeromonas species are frequently detected in organic vegetables, the absence of accepted enteric pathogens was encouraging, and does not support the allegation of organic foods being of high risk due to the farming methods used. PMID:11759753

  5. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  6. EVALUATION OF THREE FISH SPECIES AS BIOASSAY ORGANISMS FOR DREDGED MATERIAL TESTING

    EPA Science Inventory

    Three fish species, Cyprinodon variegatus, Fundulus similis, and Menidia menidia, were evaluated to determine which is most suitable as a bioassay organism for solid phase testing of dredged material. Acute toxicity and bioaccumulation of polychlorinated biphenyls (PCBs) were mon...

  7. How long may a breath sample be stored for at  -80 °C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax:Carbograph trap adsorbent bed from exhaled breath.

    PubMed

    Kang, S; Paul Thomas, C L

    2016-06-01

    Thermal desorption is used extensively in exhaled breath volatile organic compound (VOC) analysis, and it is often necessary to store the adsorbent tube samples before analysis. The possible introduction of storage artefacts is an important potential confounding factor in the development of standard methodologies for breath sampling and analysis. The stability of VOCs trapped from breath samples onto a dual bed Tenax(®) TA:Carbograph adsorbent tube and stored  -80°C was studied over 12.5 month. 25 samples were collected from a single male participant over 3 h and then stored at  -80 °C. Randomly selected adsorbent tubes were subsequent analysed by thermal desorption-gas chromatography-mass spectrometry at 5 times points throughout the 12.5 month of the study. Toluene-d8, decane-d22 and hexadecane-d34 internal standards were used to manage the instrument variability throughout the duration of the study. A breath-matrix consisting of 161 endogenous and 423 exogenous VOC was created. Iterative orthogonal partial least squared discriminant analysis (OPLS-DA) and principal components analysis (PCA) indicated that it was not possible to detect storage artefacts at 1.5 month storage. By 6 month storage artefacts were discernible with significant changes observed for 27% of the recovered VOC. Endogenous VOC were observed to be more susceptible to storage. A paired two-tailed t-test on the endogenous compounds indicated that the maximum storage duration under these conditions was 1.5 month with 94% of the VOCs stable. This study indicates that a prudent approach is best adopted for the storage of adsorbent samples; storage times should be minimised, and storage time examined as a possible discriminatory factor in multivariate analysis. PMID:27272219

  8. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  9. SORPTION PROPERTIES OF MODEL COMPOUNDS ON C18 ADSORBENTS

    EPA Science Inventory

    The bonded silica adsorbent Bondapak-C18 was evaluated for removing organic matter from secondary sewage effluents and from solutions of pure organic compounds. The adsorbent is hydrophobic and its behavior with water samples may be erratic unless first wet with a solvent. Howeve...

  10. Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent.

    PubMed

    Sitko, Rafal; Janik, Paulina; Zawisza, Beata; Talik, Ewa; Margui, Eva; Queralt, Ignasi

    2015-03-17

    A new method based on dispersive microsolid phase extraction (DMSPE) and total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for multielemental ultratrace determination of heavy metal ions and arsenic species. In the developed methodology, the crucial issue is a novel adsorbent synthesized by grafting 3-mercaptopropyl trimethoxysilane on a graphene oxide (GO) surface. Mercapto-modified graphene oxide (GO-SH) can be applied in quantitative adsorption of cobalt, nickel, copper, cadmium, and lead ions. Moreover, GO-SH demonstrates selectivity toward arsenite in the presence of arsenate. Due to such features of GO-SH nanosheets as wrinkled structure and excellent dispersibility in water, GO-SH seems to be ideal for fast and simple preconcentration and determination of heavy metal ions using methodology based on DMSPE and TXRF measurement. The suspension of GO-SH was injected into an analyzed water sample; after filtration, the GO-SH nanosheets with adsorbed metal ions were redispersed in a small volume of internal standard solution and deposited onto a quartz reflector. The high enrichment factor of 150 allows obtaining detection limits of 0.11, 0.078, 0.079, 0.064, 0.054, and 0.083 ng mL(-1) for Co(II), Ni(II), Cu(II), As(III), Cd(II), and Pb(II), respectively. Such low detection limits can be obtained using a benchtop TXRF system without cooling media and gas consumption. The method is suitable for the analysis of water, including high salinity samples difficult to analyze using other spectroscopy techniques. Moreover, GO-SH can be applied to the arsenic speciation due to its selectivity toward arsenite. PMID:25707847

  11. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    NASA Technical Reports Server (NTRS)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  12. Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes.

    PubMed

    Lohren, Hanna; Blagojevic, Lara; Fitkau, Romy; Ebert, Franziska; Schildknecht, Stefan; Leist, Marcel; Schwerdtle, Tanja

    2015-10-01

    Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity. PMID:26302930

  13. Integrative biology of Idas iwaotakii (Habe, 1958), a 'model species' associated with sunken organic substrates.

    PubMed

    Thubaut, Justine; Corbari, Laure; Gros, Olivier; Duperron, Sébastien; Couloux, Arnaud; Samadi, Sarah

    2013-01-01

    The giant bathymodioline mussels from vents have been studied as models to understand the adaptation of organisms to deep-sea chemosynthetic environments. These mussels are closely related to minute mussels associated to organic remains decaying on the deep-sea floor. Whereas biological data accumulate for the giant mussels, the small mussels remain poorly studied. Despite this lack of data for species living on organic remains it has been hypothesized that during evolution, contrary to their relatives from vents or seeps, they did not acquire highly specialized biological features. We aim at testing this hypothesis by providing new biological data for species associated with organic falls. Within Bathymodiolinae a close phylogenetic relationship was revealed between the Bathymodiolus sensu stricto lineage (i.e. "thermophilus" lineage) which includes exclusively vent and seep species, and a diversified lineage of small mussels, attributed to the genus Idas, that includes mostly species from organic falls. We selected Idas iwaotakii (Habe, 1958) from this latter lineage to analyse population structure and to document biological features. Mitochondrial and nuclear markers reveal a north-south genetic structure at an oceanic scale in the Western Pacific but no structure was revealed at a regional scale or as correlated with the kind of substrate or depth. The morphology of larval shells suggests substantial dispersal abilities. Nutritional features were assessed by examining bacterial diversity coupled by a microscopic analysis of the digestive tract. Molecular data demonstrated the presence of sulphur-oxidizing bacteria resembling those identified in other Bathymodiolinae. In contrast with most Bathymodiolus s.s. species the digestive tract of I. iwaotakii is not reduced. Combining data from literature with the present data shows that most of the important biological features are shared between Bathymodiolus s.s. species and its sister-lineage. However Bathymodiolus

  14. Analytical and characterization studies of organic and inorganic species in brown coal

    SciTech Connect

    G. Domazetis; M. Raoarun; B.D. James; J. Liesegang; P.; J. Pigram; N. Brack

    2006-08-15

    Detailed studies have been carried out on the distribution of organic functional groups and inorganic species in as-received (ar) and acid-washed (aw) brown coals using elemental analysis, energy dispersive X-ray analysis (SEM-EDX), X-ray photoelectron spectroscopy (XPS), and Time-of-flight-secondary ion mass spectrometry (TOF-SIMS). Surface concentrations of the various carbon groups, organic oxygen, and inorganic hydroxide were obtained using XPS, but oxygen from clay and quartz, if present, interfered with organic oxygen determinations for the coals. A comparison of ar and aw coals using XPS and SEM-EDX is provided in terms of inorganic and organic sulfur groups. Chloride in these coals is present mainly as acid extractable forms, but small amounts of chloride in the organic matrix were indicated by the elemental analysis of ultra low-ash coals. TOF-SIMS fragments from brown coals were indicative of polymers consisting mainly of single aromatic groups linked by hydrocarbons with carboxyl and phenol functional groups. Sulfur fragments were from inorganic sulfur, thiols, organo-sulfates, and S-N-organic species. Numerous fragments containing organically bound chloride were observed. Fragments of the inorganic species Na, Mg, Al, Si, K, Ca, Ti, Cr, Fe, Mn, Ni, Cu, and Ga were also observed. Environmentally undesirable species, particularly from organo-sulfur and organo-chloride groups in brown coal, are likely to emerge from processes that heat coal-water mixture. 54 refs., 3 figs., 10 tabs.

  15. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    NASA Astrophysics Data System (ADS)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  16. UV-enhanced exchange of O{sub 2} with H{sub 2}O adsorbed on TiO{sub 2}

    SciTech Connect

    Muggli, D.S.; Falconer, J.L.

    1999-01-01

    Ultraviolet light dramatically increases the rate of isotope exchange between gas-phase O{sub 2} and water adsorbed on TiO{sub 2} at room temperature, but it does not affect the rate of CO{sub 2}-water exchange. Both ethanol and acetaldehyde, when coadsorbed with H{sub 2}{sup 18}O, dramatically decrease the rate of O{sub 2} exchange, but not CO{sub 2} exchange, with adsorbed H{sub 2}{sup 18}O. The decrease is attributed to a combination of competition for adsorbed oxygen between exchange and photocatalytic oxidation of the adsorbed organic and blocking of the oxygen adsorption sites by the organic. The same oxygen species participate in O{sub 2}-H{sub 2}{sup 18}O exchange and photocatalytic oxidation.

  17. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. PMID:23466730

  18. Species Detection and Identification in Sexual Organisms Using Population Genetic Theory and DNA Sequences

    PubMed Central

    Birky, C. William

    2013-01-01

    Phylogenetic trees of DNA sequences of a group of specimens may include clades of two kinds: those produced by stochastic processes (random genetic drift) within a species, and clades that represent different species. The ratio of the mean pairwise sequence difference between a pair of clades (K) to the mean pairwise sequence difference within a clade (θ) can be used to determine whether the clades are samples from different species (K/θ≥4) or the same species (K/θ<4) with probability ≥0.95. Previously I applied this criterion to delimit species of asexual organisms. Here I use data from the literature to show how it can also be applied to delimit sexual species using four groups of sexual organisms as examples: ravens, spotted leopards, sea butterflies, and liverworts. Mitochondrial or chloroplast genes are used because these segregate earlier during speciation than most nuclear genes and hence detect earlier stages of speciation. In several cases the K/θ ratio was greater than 4, confirming the original authors' intuition that the clades were sufficiently different to be assigned to different species. But the K/θ ratio split each of two liverwort species into two evolutionary species, and showed that support for the distinction between the common and Chihuahuan raven species is weak. I also discuss some possible sources of error in using the K/θ ratio; the most significant one would be cases where males migrate between different populations but females do not, making the use of maternally inherited organelle genes problematic. The K/θ ratio must be used with some caution, like all other methods for species delimitation. Nevertheless, it is a simple theory-based quantitative method for using DNA sequences to make rigorous decisions about species delimitation in sexual as well as asexual eukaryotes. PMID:23308113

  19. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Footprint organization of chiral molecules on metallic surfaces

    NASA Astrophysics Data System (ADS)

    Uñac, R. O.; Rabaza, A. V. Gil; Vidales, A. M.; Zgrablich, G.

    2007-10-01

    We study the behavior of chiral molecules adsorbed on clean metallic surfaces using a lattice-gas model and Monte Carlo simulation. The aim is to model and simulate the structure (footprints and organization) formed by molecules on the surface as they adsorb. The model, which is applicable to chiral species like S- and R-alanine, or similar, discloses the conditions to generate different ordered phases that have been observed in experiments by other authors. In our model, each enantiomer may adsorb in two different configurations (species) and several effects are taken into account: inhibition, blockage of neighboring adsorptive sites (steric effects) and promotion of sites representing, in some sense, modifications in the surface properties due to molecule-surface interactions. These adsorption rules are inspired by the enantiomeric character of adsorbed species. We perform a systematic study of the different phases formed in order to qualitatively understand the mechanism for the formation of adsorbate structures experimentally found by other authors.

  1. The Evolutionary Panorama of Organ-Specifically Expressed or Repressed Orthologous Genes in Nine Vertebrate Species

    PubMed Central

    Shen, Libing; Liu, Gangbiao; Zou, Yangyun; Zhou, Zhan; Su, Zhixi; Gu, Xun

    2015-01-01

    RNA sequencing (RNA-Seq) technology provides the detailed transcriptomic information for a biological sample. Using the RNA-Seq data of six organs from nine vertebrate species, we identified a number of organ-specifically expressed or repressed orthologous genes whose expression patterns are mostly conserved across nine species. Our analyses show the following results: (i) About 80% of these genes have a chordate or more ancient origin and more than half of them are the legacy of one or multiple rounds of large-scale gene duplication events. (ii) Their evolutionary rates are shaped by the organ in which they are expressed or repressed, e.g. the genes specially expressed in testis and liver generally evolve more than twice as fast as the ones specially expressed in brain and cerebellum. The organ-specific transcription factors were discriminated from these genes. The ChIP-seq data from the ENCODE project also revealed the transcription-related factors that might be involved in regulating human organ-specifically expressed or repressed genes. Some of them are shared by all six human organs. The comparison of ENCODE data with mouse/chicken ChIP-seq data proposes that organ-specifically expressed or repressed orthologous genes are regulated in various combinatorial fashions in different species, although their expression features are conserved among these species. We found that the duplication events in some gene families might help explain the quick organ/tissue divergence in vertebrate lineage. The phylogenetic analysis of testis-specifically expressed genes suggests that some of them are prone to develop new functions for other organs/tissues. PMID:25679776

  2. Biodiversity in Organic Farmland - How Does Landscape Context Influence Species Diversity in Organic Vs. Conventional Agricultural Fields?

    NASA Astrophysics Data System (ADS)

    Seufert, V.; Wood, S.; Reid, A.; Gonzalez, A.; Rhemtulla, J.; Ramankutty, N.

    2014-12-01

    The most important current driver of biodiversity loss is the conversion of natural habitats for human land uses, mostly for the purpose of food production. However, by causing this biodiversity loss, food production is eroding the very same ecosystem services (e.g. pollination and soil fertility) that it depends on. We therefore need to adopt more wildlife-friendly agricultural practices that can contribute to preserving biodiversity. Organic farming has been shown to typically host higher biodiversity than conventional farming. But how is the biodiversity benefit of organic management dependent on the landscape context farms are situated in? To implement organic farming as an effective means for protecting biodiversity and enhancing ecosystem services we need to understand better under what conditions organic management is most beneficial for species. We conducted a meta-analysis of the literature to answer this question, compiling the most comprehensive database to date of studies that monitored biodiversity in organic vs. conventional fields. We also collected information about the landscape surrounding these fields from remote sensing products. Our database consists of 348 study sites across North America and Europe. Our analysis shows that organic management can improve biodiversity in agricultural fields substantially. It is especially effective at preserving biodiversity in homogeneous landscapes that are structurally simplified and dominated by either cropland or pasture. In heterogeneous landscapes conventional agriculture might instead already hold high biodiversity, and organic management does not appear to provide as much of a benefit for species richness as in simplified landscapes. Our results suggest that strategies to maintain biodiversity-dependent ecosystem services should include a combination of pristine natural habitats, wildlife-friendly farming systems like organic farming, and high-yielding conventional systems, interspersed in structurally

  3. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  4. Atmospheric and ocean measurements of reactive organic species from the Tropical Atlantic ocean.

    NASA Astrophysics Data System (ADS)

    Williams, J.; Holzinger, R.; Gros, V.; Hofmann, R.; Xu, X.; Wallace, D.

    2003-04-01

    Reactive organic species play an important role in the chemistry of the atmosphere. Large uncertainties exist in how the ocean influences the global budgets of reactive organic species. The first German SOLAS cruise M55 carried instrumentation to measure a range of organic species in the atmosphere and ocean surface layer. Between 12th October and 15th November the research vessel Meteor steamed from Curacao to Cameroon approximately along 10^o N. Approximately mid-Atlantic the ship performed two transects (N-S and S-N) reaching the equator and crossing the ITCZ twice. An assessment will be given of the organics over the Tropical Atlantic including data from 2 PTR-MS systems (air and water), canister air collection followed by GC-MS analysis, cartridge collection followed by 2D-GC-FID analysis, as well as ozone and CO instruments. The prevailing wind was easterly at all times so that air with decreasing extents of ocean contact time was encountered during the crossing. Longitudinal and interhemispheric gradients of organic species will be presented.

  5. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text.

    PubMed

    Pafilis, Evangelos; Frankild, Sune P; Fanini, Lucia; Faulwetter, Sarah; Pavloudi, Christina; Vasileiadou, Aikaterini; Arvanitidis, Christos; Jensen, Lars Juhl

    2013-01-01

    The exponential growth of the biomedical literature is making the need for efficient, accurate text-mining tools increasingly clear. The identification of named biological entities in text is a central and difficult task. We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition, which we here use to identify names of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists. The SPECIES software is open source and can be downloaded from http://species.jensenlab.org along with dictionary files and the manually annotated gold-standard corpus. The ORGANISMS web resource can be found at http://organisms.jensenlab.org. PMID:23823062

  6. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oakadsorbed H+ than SOM from oak soils. Such differences in Al and H bonding are not only important for pH buffering and metal solubility controls, but also for stabilization of SOM via saturation of functional groups by Al and H. PMID:25596350

  7. Elemental analysis of organic species with electron ionization high-resolution mass spectrometry.

    PubMed

    Aiken, Allison C; DeCarlo, Peter F; Jimenez, Jose L

    2007-11-01

    We present a new elemental analysis (EA) technique for organic species (CHNO) that allows fast on-line analysis (10 s) and reduces the required sample size to approximately 1 ng, approximately 6 orders of magnitude less than standard techniques. The composition of the analyzed samples is approximated by the average elemental composition of the ions from high-resolution electron ionization (EI) mass spectra. EA of organic species can be performed on organic/inorganic mixtures. Elemental ratios for the total organic mass, such as oxygen/carbon (O/C), hydrogen/carbon (H/C), and nitrogen/carbon (N/C), in addition to the organic mass to organic carbon ratio (OM/OC), can be determined. As deviations between the molecular and the ionic composition can appear due to chemical influences on the ion fragmentation processes, the method was evaluated and calibrated using spectra from 20 compounds from the NIST database and from 35 laboratory standards sampled with the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The analysis of AMS (NIST) spectra indicates that quantification of O/C is possible with an error (average absolute value of the relative error) of 30% (17%) for individual species. Precision is much better than accuracy at +/-5% in the absence of air for AMS data. AMS OM/OC has an average error of 5%. Additional calibration is recommended for types of species very different from those analyzed here. EA was applied to organic mixtures and ambient aerosols (sampled at 20 s from aircraft). The technique is also applicable to other EI-HRMS measurements such as direct injection MS. PMID:17914892

  8. Organic Contaminant Levels in Three Fish Species Downchannel from the Los Alamos National Laboratory

    SciTech Connect

    Gonzales, G.J.; Fresquez, P.R.; Beveridge, J.W.

    1999-06-01

    The LANL contribution, if any, to organic contaminant levels in the common carp, the channel catfish, and the white sucker in the Rio Grande appear to be small; however, low sample sizes, high variation, and potential interaction of species effect with location treatment effect require additional sampling and analysis.

  9. Tempo and mode in fossil molluscs: Investigating organism-environment interactions, species, and speciation

    SciTech Connect

    Geary, D.H. )

    1992-01-01

    After 20 years of investigation into the tempo and mode of species-level change in the fossil record, it is clear that both punctuated equilibrium and phyletic gradualism occur, as do a variety of intermediate patterns. Important questions regarding the maintenance and diversification of species remain, however. The author documents a variety of evolutionary patterns from gastropods and bivalves, and uses these to discuss two basic issues: environment-organism interactions over time, and the importance of information on geographic variation. The tempo of morphological change is an expression of the interaction of organisms and their environment. The initial over which new species appear may be a geologic instant'' (Melanopsis gastropods), or may last 10[sup 4]--10[sup 5] years (Prunum gastropods), or 10[sup 6] years (Melanopsis). This wide range of intervals indicates a variety of tempos of environmental change, and/or different kinds of organismal responses. Analysis of geographic variation is of critical importance in understanding species and speciation, yet is lacking in many paleontological studies. An example of the utility of geographic information is a study of the muricid gastropod Acanthina, which demonstrates how a geographically localized form may spread through a species range. Another example involves a species of Pleuriocardia in stasis: geographic variation among roughly correlative samples greatly exceeds long-term temporal variation. Considerations of the mechanisms for stasis and change must take into account such intraspecific variation.

  10. A global organism detection and monitoring system for non-native species

    USGS Publications Warehouse

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  11. Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany.

    PubMed

    Huang, Jen-How; Matzner, Egbert

    2007-03-01

    Little is known about the fate and behavior of diffuse inputs of arsenic (As) species in forested catchments which often are the sources of drinking water. The objective of this study was to investigate the mobility and transformation of different As species in forest ecosystems to assess the environmental risk related to the diffuse pollution of As. We determined concentrations and fluxes in precipitation, litterfall, soil solutions (Oa horizon and 20- and 90-cm depth), and runoff of organic and inorganic As species and Astotal in a forest ecosystem in NE-Bavaria, Germany. The concentrations of Astotal were mostly <1 microg As L(-1) in aqueous samples and were highest in forestfloor percolates (7.6 microg As L(-1)). In litterfall, the concentrations of As species never exceeded 0.1 microg As g(-1). Arsenate and arsenite were the prevalent As species in all samples. Organic As species, comprising monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and three unidentified organic As species, were mostly found in throughfall reaching up to 45% of Astotal. The total deposition of Astotal (calculated as throughfall + litterfall) was 5.6 g As ha(-1) yr(-1) with 16% contribution of litterfall. The annual Astotal fluxes were 30 g As ha(-1) yr(-1) for forest floor percolates, 8.0 g As ha(-1) yr(-1) at 20-cm soil depth, and 1.4 g As ha(-1) yr(-1) at 90-cm soil depth. The annual runoff of Astotal from the catchment amounted to 3.8 g As ha(-1) yr(-1). The annual fluxes of total organic As species was highest in total deposition (1.1 g As ha(-1) yr(-1)) and decreased largely with depth in the soil profile. The annual runoff of total organic As species was only 0.08 g As ha(-1) yr(-1). Significant correlations in soil solutions and runoff were found between Astotal and dissolved organic C and Fe. Correlations between Astotal concentrations in runoff and water fluxes were seasonally dependent and with a steeper slope in the growing season than in

  12. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds. PMID:20213151

  13. The interaction of organic adsorbate vibrations with substrate lattice waves in methyl-Si(111)-(1 × 1)

    SciTech Connect

    Brown, Ryan D.; Hund, Zachary M.; Sibener, S. J.; Campi, Davide; Bernasconi, M.; O’Leary, Leslie E.; Lewis, Nathan S.; Benedek, G.

    2014-07-14

    A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH{sub 3}-Si(111)-(1 × 1) and CD{sub 3}-Si(111)-(1 × 1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy vibrations of the adsorbate and the lattice waves of the underlying substrate, as well as characterization of the interactions between neighboring methyl groups, across the entire wavevector resolved vibrational energy spectrum of each system. The Rayleigh wave was found to hybridize with the surface rocking libration near the surface Brillouin zone edge at both the M{sup ¯}-point and K{sup ¯}-point. The calculations indicated that the range of possible energies for the potential barrier to the methyl rotation about the Si-C axis is sufficient to prevent the free rotation of the methyl groups at a room temperature interface. The density functional perturbation theory calculations revealed several other surface phonons that experienced mode-splitting arising from the mutual interaction of adjacent methyl groups. The theory identified a Lucas pair that exists just below the silicon optical bands. For both the CH{sub 3}- and CD{sub 3}-terminated Si(111) surfaces, the deformations of the methyl groups were examined and compared to previous experimental and theoretical work on the nature of the surface vibrations. The calculations indicated a splitting of the asymmetric deformation of the methyl group near the zone edges due to steric interactions of adjacent methyl groups. The observed shifts in vibrational energies of the -CD{sub 3} groups were consistent with the expected effect of isotopic substitution in this system.

  14. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  15. Different pathways for the uptake of benzo(a)pyrene adsorbed to sediment by the mussel Mytilus galloprovincialis

    SciTech Connect

    Narbonne, J.F.; Ribera, D.; Garrigues, P.; Lafaurie, M.; Romana, A.

    1992-07-01

    Polynuclear aromatic hydrocarbons (PAHs) are a major class of organic contaminants in the marine environment and may not only affect productivity of marine organisms but may ultimately affect the human health. In the aquatic habitat, many organisms readily accumulate PAHs from the environment and store them at a relatively high level in their tissues. Consequently, it is of interest to determine the bioavailability of PAHs for marine species such as mussels consumed by humans. Most of the studies on experimental accumulation and depuration of PAHs in marine organisms were carried out by addition of either water solubilized PAHs or sediment adsorbed compounds to a clean environment. To test the bioavailability of PAHs adsorbed in sediment, the present study describes the release of labelled B(a)P from contaminated sediment and its transfer to water and mussels (Mytilus galloprovincialis). The effect of sediment suspension was also investigated. 11 refs., 3 figs., 1 tab.

  16. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  17. Interaction of organic surfaces with active species in the high-vacuum environment

    NASA Astrophysics Data System (ADS)

    Podzorov, V.; Menard, E.; Pereversev, S.; Yakshinsky, B.; Madey, T.; Rogers, J. A.; Gershenson, M. E.

    2005-08-01

    Using single-crystal organic field-effect transistors with the conduction channel exposed to environmental agents, we have observed generation of electronic defects at the organic surface in the high-vacuum environment. Rapid decrease of the source-drain current of an operating device is observed upon exposure of the channel to the species generated by high-vacuum gauges. We attribute this effect to interaction of the organic surface with electrically neutral free radicals produced in the process of hydrocarbon cracking on hot filaments with a relatively low activation energy Ea˜2.5eV (240kJ/mol). The reported results might be important for optimizing the high-vacuum processes of fabrication and characterization of a wide range of organic and molecular electronic devices.

  18. VH gene organization in a relict species, the coelacanth Latimeria chalumnae: evolutionary implications.

    PubMed Central

    Amemiya, C T; Ohta, Y; Litman, R T; Rast, J P; Haire, R N; Litman, G W

    1993-01-01

    The living coelacanth Latimeria chalumnae is a relict species whose higher-level phylogenetic relationships have not been resolved clearly by traditional systematic approaches. Previous studies show that major differences in immunoglobulin gene structure and organization typify different phylogenetic lineages. To date, mammalian-, avian-, and elasmobranch-type gene organizations have been identified in representatives of these different phylads. A fourth form or organization is found in Latimeria, which possesses immunoglobulin heavy-chain variable region (VH) elements separated by approximately 190 nucleotides from diversity (D) elements. Adjacency of VH and D elements is characteristic of the elasmobranch "clustered" arrangement, although many other features of coelacanth VH gene organization and structure are more similar to those of bony fishes and tetrapods. These observations strongly support a phylogenetic hypothesis in which Latimeria occupies a sister-group relationship with teleosts and tetrapods. Images Fig. 2 Fig. 4 Fig. 6 PMID:8341683

  19. Reactive Uptake of Ammonia and Formation of Organic Nitrogen Species for Non-Liquid/Liquid Secondary Organic Material

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Li, Y.; Liu, P.

    2015-12-01

    Formation of ammonium and organic nitrogen (ON) species was studied for secondary organic material (SOM) of variable viscosity, ranging from non-liquid to liquid physical states. The SOM was produced as particles of 50 to 150 nm in diameter in aerosol form from six precursors, including three terpenoid and three aromatic species. The viscosity of the hygroscopic SOM was adjusted by exposure to relative humidity (RH) from <5% to >90% RH in steps of 10% at 293 ± 2 K. The aerosol was subsequently exposed to 5 ppm NH3 for mean reaction times of 30, 370, or 5230 s. Ammonium and ON were characterized by high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). The ammonium-to-organic ratio of mass concentrations (MNH4/MOrg) in the particles increased monotonically from <5% RH to a limiting value at a threshold RH, implicating a switchover in the reaction kinetics from a system limited by diffusivity within the SOM for low RH to one limited by other factors, such as saturated uptake, at higher RH. Formation of ON was observed for aromatic-derived SOMs, but not significant for terpenoid-derived SOMs. For aromatic-derived SOMs, the ON-to-organic ratio of mass concentrations (MON/MOrg) was negligible for RH <20%, increased monotonically from 20% to 60% RH, and stayed constant for RH >60%. The threshold RH for the switchover from kinetically controlled regime to a non-kinetically-controlled one was thus different between formation of ammonium and ON. This difference suggests that water may play a role in the slow reactions of ON formation as a reactant or a catalyst, in addition to affecting the reactant diffusion as in the fast reaction of ammonium formation. The implication is that formation of ammonium salts and organic nitrogen species by certain SOMs should be treated separately in chemical transport models to reflect the different roles of water that may affect the phase state of the SOMs or may act as a reactant or a catalyst.

  20. SUPERCRITICAL FLUID EXTRACTION OF PARTICULATE AND ADSORBENT MATERIALS

    EPA Science Inventory

    The report is a summary of work performed by PNL on the extraction of semivolatile organic materials (SVOCs), for example, polynuclear aromatic compounds, from various adsorbents and environmental matrices, using supercritical fluids (SCFs) as extractants. The results of the work...

  1. Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry

    NASA Astrophysics Data System (ADS)

    Ito, Akinori; Sillman, Sanford; Penner, Joyce E.

    2007-03-01

    This work evaluates the sensitivity of tropospheric ozone and its precursors to the representation of nonmethane volatile organic compounds (NMVOCs) and organic nitrates. A global 3-D tropospheric chemistry/transport model (IMPACT) has been exercised initially using the GEOS-Chem chemical reaction mechanism. The model was then extended by adding emissions and photochemical reactions for aromatic and terpenoid hydrocarbons, and by adding explicit representation of hydroxy alkyl nitrates produced from isoprene. Emissions of methanol, phenol, acetic acid and formic acid associated with biomass burning were also added. Results show that O3 increases by 20% in most of the troposphere, peroxyacetyl nitrate (PAN) increases by 30% over much of the troposphere and OH increases by 10%. NOx (NO + NO2) decreases near source regions and increases in remote locations, reflecting increased transport of NOx away from source regions by organic nitrates. The increase in O3 was driven largely by the increased role of PAN as a transporter of NOx and by the rerelease of NOx from isoprene nitrates. The increased PAN production was associated with increases in methyl glyoxal and hydroxyacetone. Comparison with measured values show reasonable agreement for O3 and PAN, but model measurement agreement does not either improve or degrade in the extended model. The extended model shows improved agreement with measurements for methanol, acetic acid and peroxypropional nitrate (PPN). Results from the extended model were consistent with measured alkyl nitrates and glycolaldehyde, but hydroxyacetone and methyl glyoxal were overestimated. The latter suggests that the effect of the isoprene nitrates is somewhat smaller than estimated here. Although the model measurement comparison does not show specific improvements with the extended model, it provides a more complete description of tropospheric chemistry that we believe is important to include.

  2. Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu3-xZnx(btc)2

    NASA Astrophysics Data System (ADS)

    Gul-E-Noor, Farhana; Michel, Dieter; Krautscheid, Harald; Haase, Jürgen; Bertmer, Marko

    2013-07-01

    The 13C nuclear spin-lattice relaxation time of 13CO and 13CO2 molecules adsorbed in the metal-organic frameworks (MOFs) Cu2.97Zn0.03(btc)2 and Cu3(btc)2 is investigated over a wide range of temperatures at resonance frequencies of 75.468 and 188.62 MHz. In all cases a mono-exponential relaxation is observed, and the 13C spin-lattice relaxation times (T1) reveal minima within the temperature range of the measurements and both frequencies. This allows us to carry out a more detailed analysis of the 13C spin relaxation data and to consider the influence due to the spectral functions of the thermal motion. In a model-free discussion of the temperature dependence of the ratios T1 (T)/T1,min we observe a motional mechanism that can be described by a single correlation time. In relation to the discussion of the relaxation mechanisms this can be understood in terms of dominating translational motion with mean jump distance being larger than the minimum distances between neighboring adsorption sites in the MOFs. A more detailed discussion of the jump-like motion observed here might be carried out on the basis of self-diffusion coefficients. From the present spin relaxation measurements activation energies for the local motion of the adsorbed molecules in the MOFs can be estimated to be 3.3 kJ/mol and 2.2 kJ/mol, for CO and CO2 molecules, respectively. Finally, our findings are compared with our recent results derived from the 13C line shape analysis.

  3. New troglomorphic species of Tomocerus with well-developed postantennal organs (Collembola: Tomoceridae).

    PubMed

    Yu, Daoyuan; Li, Youbang

    2016-01-01

    Three new troglobitic species of Tomocerus are described from the southwestern karsts of China. All of them have well developed postantennal organs. Tomocerus dong sp. nov. is similar to Tomocerus postantennalis Yu, Zhang & Deharveng and Tomocerus deharvengi sp. nov., but is different from them mainly in the number of prelabral chaetae and the dorsal body chaetotaxy. T. deharvengi sp. nov. is very similar to T. postantennalis but differs from the latter in the cephalic chaetotaxy, the number of manubrial pseudopores and the number of dental spines. T. cthulhu sp. nov. is peculiar for the multi-furcated vesicles of ventral tube, and is different from the three aforementioned species mainly in the dorsal body chaetotaxy. The position of the new species and the relationships between them are discussed. PMID:27615979

  4. Longevity, Lignin Content and Construction Cost of the Assimilatory Organs of Nepenthes Species

    PubMed Central

    Osunkoya, Olusegun O.; Daud, Siti Dayanawati; Wimmer, Franz L.

    2008-01-01

    Background and Aims This study examined level of causal relationships amongst functional traits in leaves and conjoint pitcher cups of the carnivorous Nepenthes species. Methods Physico-chemical properties, especially lignin content, construction costs, and longevity of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, northern Borneo were determined. Key Results Longevity of these assimilatory organs was linked significantly to construction cost, lignin content and structural trait of tissue density, but these effects are non-additive. Nitrogen and phosphorus contents (indicators of Rubisco and other photosynthetic proteins), were poor predictors of organ longevity and construction cost, suggesting that a substantial allocation of biomass of the assimilatory organs in Nepenethes is to structural material optimized for prey capture, rigidity and escape from biotic and abiotic stresses rather than to light interception. Leaf payback time – a measure of net carbon revenue – was estimated to be 48–60 d. This is in line with the onset of substantial mortality by 2–3 months of tagged leaves in many of the Nepenthes species examined. However, this is a high ratio (i.e. a longer minimum payback time) compared with what is known for terrestrial, non-carnivorous plants in general (5–30 d). Conclusions It is concluded that the leaf trait bivariate relationships within the Nepenthes genus, as in other carnivorous species (e.g. Sarraceniaceae), is substantially different from the global relationship documented in the Global Plant Trait Network. PMID:18757449

  5. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms.

    PubMed

    DeForest, David K; Schlekat, Christian E

    2013-10-01

    In Europe, the European Union's Existing Substances Regulation (EEC 793/93), the REACH Regulation, and Water Framework Directive all share common guidance for conducting environmental effects assessments, which can be further used to derive predicted no effect concentrations (PNECs) and environmental quality standards (EQS) for chemical substances. To meet the criteria for using a species sensitivity distribution (SSD) in the effects assessment of Ni for marine organisms, chronic toxicity data from the published scientific literature were augmented with toxicity testing of several additional marine species including: a unicellular alga (Dunalliela tertiolecta), a diatom (Skeletonema costatum), 2 macroalgae (Champia parvula, Macrocystis pyrifera), 2 mollusks (Crassostrea gigas, Mytilus galloprovincialis), 2 echinoderms (Dendraster excentricus, Strongylocentrotus purpuratus), a polychaete (Neanthes arenaceodentata), and a fish (Cyprinodon variegatus). Based on this updated database, which includes chronic Ni toxicity data for a total of 17 marine species, HC5 values (hazardous concentrations to 5% of the species) were derived using an SSD. The most sensitive species is a tropical sea urchin from the Caribbean region, Diadema antillarum, which has an EC10 that is approximately 6-fold less than the EC10 for the second most sensitive species tested. There is some uncertainty in the representativeness of D. antillarum to temperate European marine waters because 1) a European sea urchin species (Paracentrotus lividus) is approximately 48-fold less sensitive to Ni, and (2) ambient marine Ni concentrations in at least some European waters closely approach the D. antillarum EC10. The HC5 values with and without D. antillarum included in the SSD are 3.9 and 20.9 μg/L, respectively. Site-specific toxicity testing with local species may be warranted for locations where Ni concentrations fall between the range in HC5s of 3.9 to 20.9 μg/L. PMID:23553986

  6. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species.

    PubMed

    Chan, Man Nin; Choi, Man Yee; Ng, Nga Lee; Chan, Chak K

    2005-03-15

    Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles. PMID:15819209

  7. Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus

    PubMed Central

    Rodríguez-Cattaneo, Alejo; Pereira, Ana Carolina; Aguilera, Pedro A.; Crampton, William G. R.; Caputi, Angel A.

    2008-01-01

    Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane. PMID:18461122

  8. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species.

    PubMed

    Avolio, Meghan L; Tuininga, Amy R; Lewis, J D; Marchese, Michael

    2009-08-01

    While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha(-1) y(-1) for eight weeks, to achieve a total application of 35 kg ha(-1) during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33-83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33-66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in

  9. The role of tree species and soil moisture in soil organic matter stabilization and destabilization

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Dewey, J.; Roberts, S.; McNeal, K.; Shaman, A.

    2014-12-01

    Inputs of labile organic substrates to soils are commonly associated with elevated soil organic carbon mineralization rates; this process is known as the priming effect. Plant presence and soil conditions (i.e. water regime, nutrient status) are known to be interacting factors governing priming. In this study, we examine the role of differing species, loblolly pine (Pinus taeda L.) and nuttall oak (Quercus texana B.), and moisture regimes (low and high) upon the soil priming effect in a fine textured soil. We explore whether there is depletion of original soil carbon and concurrent replacement through addition of fresh organic matter from the planted tree species. By employing a series of planted and plant-free pots in a greenhouse mesocosm study, we were able to characterize the composition of soil organic matter and its carbon with the use of CuO oxidation products (e.g. lignin, cutin/suberin biomarkers). Carbon was elevated on the low moisture samples relative to all other treatments, and the C:N ratio suggests that newly produced plant carbon replaced original soil carbon. The soil lignin content of the planted treatments was lower than the plant-free treatments suggesting that lignin present in the original soil may have been preferentially degraded by priming and not replaced. We will discuss the utility of CuO oxidation products to explore soil organic carbon dynamics and the implications of understanding the role of species and soil moisture in predicting the response of soil carbon to land use and climate change.

  10. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain

    USGS Publications Warehouse

    Habib, D.; Miller, J.A.

    1989-01-01

    Palynological evidence is used to date and interpret depositional environments of sediments of Campanian, Maestrichtian and early Danian ages cored in three wells from South Carolina and Georgia. The evidence is usefil for distinguishing environments which lithofacies evidence indicates a range from nonmarine to coastal to inner neritic shallow shelf. Numerous dinoflagellate species and an organic facies defined abundant amoprphous debris (amorphous debris facies) distinguish shallow shelf sediments deposited during marine transgression. The nearshore amorphous debris facies of late Campanian age consists of heterogenous assemblages dominated by Palaeohystrichophora infusorioides Deflandre or Hystrichosphaerina varians (May). The farther offshore amorphous debris facies of late early Maestrichtian to late Maestrichtian age consists of heterogenous assemblages dominated by Glaphyrocysta retiintexta (Cookson) and/or Areoligera medusettiformis (Wetzel). The larger number of dinoflagellate species in the offshore facies represents the maximum transgression detected in the investigated interval. A multiple occurrence datum defined by the combination of first appearance, klast appearances and sole occurrence of dinoflagellate species at the base of each interval distinguished by the amorphous debris facies provides the first evidence of marine transgression. Relatively small organic residues consisting of intertinite and few or no palynomorphs define the inertinite facies in nonmarine deltaic and in coastal (lagoonal, tidal flat, interdistributary bary) sediments. Dinocyt{star, open}s are absent in the nonmarine sediments and are represented by few species and few specimens in the coastal inertinite faceis. A third organic facies (vascular tissue facies) is defined by the abundance of land plant tissue. Sporomorph species, including those of the Normapolles pollen group and of pteridophyte spores, comprise a large proportion of the total palynomorph flora in the

  11. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. PMID:26144019

  12. Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species

    PubMed Central

    Finlay, Barbara L.; Hinz, Flora; Darlington, Richard B.

    2011-01-01

    The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities. PMID:21690129

  13. Production and excitation-emission fluorescence properties of colored dissolved organic matter from marine tropical species

    NASA Astrophysics Data System (ADS)

    Mendoza, W. G.; Zika, R. G.

    2009-12-01

    Colored dissolved organic matter (CDOM) plays an important key role in the photochemistry and biogeochemical cycling of carbon in the coastal region. Their distribution can vary in space and time due to supply of CDOM from different sources. To determine properties of fluorescence-CDOM produced by various marine tropical species, two species from each of the different marine communities were examined after incubation in the dark for forty-nine (49) days: seagrasses-Enhalus acoroides (EA), Thalassia testudinium (TT); corals-Pocillopora cylindrical (PC), Seriatopora hystrix (SH) ; mangroves- Avicennia marina (AM), Sonneratia alba (SA); brown algae-Hormophysa cuneiformis (HC), Sargassum sp.(SS). Average CDOM production is highest from mangrove species (218 QSU/g-sample/day), followed by seagrass (42 QSU/g-sample/day), brown alga (26 QSU/g-sample/day) then corals (19 QSU/g-sample/day).The fluorescence maximum at 312; 380-420 nm emission-excitation pair appears to be present in all species that is an identified humic-like signature. These results suggest that the production of the fluorescent CDOM fraction is a common phenomenon of tropical marine species and as such constitutes a major part of the marine CDOM pool in coastal regions.

  14. Role(s) of adsorbed water in the surface chemistry of environmental interfaces.

    PubMed

    Rubasinghege, Gayan; Grassian, Vicki H

    2013-04-18

    The chemistry of environmental interfaces such as oxide and carbonate surfaces under ambient conditions of temperature and relative humidity is of great interest from many perspectives including heterogeneous atmospheric chemistry, heterogeneous catalysis, photocatalysis, sensor technology, corrosion science, and cultural heritage science. As discussed here, adsorbed water plays important roles in the reaction chemistry of oxide and carbonate surfaces with indoor and outdoor pollutant molecules including nitrogen oxides, sulfur dioxide, carbon dioxide, ozone and organic acids. Mechanisms of these reactions are just beginning to be unraveled and found to depend on the details of the reaction mechanism as well as the coverage of water on the surface. As discussed here, adsorbed water can: (i) alter reaction pathways and surface speciation relative to the dry surface; (ii) hydrolyze reactants, intermediates and products; (iii) enhance surface reactivity by providing a medium for ionic dissociation; (iv) inhibit surface reactivity by blocking sites; (v) solvate ions; (vi) enhance ion mobility on surfaces and (vii) alter the stability of surface adsorbed species. In this feature article, drawing on research that has been going on for over a decade on the reaction chemistry of oxide and carbonate surfaces under ambient conditions of temperature and relative humidity, a number of specific examples showing the multi-faceted roles of adsorbed water are presented. PMID:23417201

  15. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  16. Comparative Inter-Species Pharmacokinetics of Phenoxyacetic Acid Herbicides and Related Organic Acids. Evidence that the Dog is Not a Relevant Species for Evaluation of Human Health Risk.

    SciTech Connect

    Timchalk, Chuck

    2004-07-15

    Phenoxyacetic acids including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) are widely utilized organic acid herbicides that have undergone extensive toxicity and pharmacokinetic analyses. The dog is particularly susceptible to the toxicity of phenoxyacetic acids and related organic acids relative to other species. Active renal clearance mechanisms for organic acids are ubiquitous in mammalian species, and thus a likely mechanism responsible for the increased sensitivity of the dog to these agents is linked to a lower capacity to secrete organic acids from the kidney. Using published data describing the pharmacokinetics of phenoxyacetic and structurally related organic acids in a variety of species including humans, inter-species comparative pharmacokinetics were evaluated using allometic parameter scaling. For both 2,4-D and MCPA the dog plasma half-life (t1/2) and renal clearance (Clr; ml hr-1) rates did not scale as a function of body weight across species; whereas for all other species evaluated, including humans, these pharmacokinetic parameters reasonably scaled. This exceptional response in the dog is clearly illustrated by comparing the plasma t1/2 at comparable doses of 2,4-D and MCPA, across several species. At a dosage of 5 mg/kg, in dogs the plasma t1/2 for 2,4-D and MCPA were {approx}92 - 106 hr and 63 hr, respectively, which is substantially longer than in the rat ({approx}1 and 6 hr, respectively) or in humans (12 and 11 hr, respectively). This longer t1/2, and slower elimination in the dog, results in substantially higher body burdens of these organic acids, at comparable doses, relative to other species. Although these results indicate the important role of renal transport clearance mechanisms as determinants of the clearance and potential toxicity outcomes of phenoxyacetic acid herbicides across several species, other contributing mechanisms such as reabsorption from the renal tubules is highly likely. These

  17. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  18. Activated carbon adsorbents from waste tires for air quality control

    SciTech Connect

    Lehmann, C.M.B.; Rostam-Abadi, M.; Rood, M.J.; Hsi, H.C.

    1999-07-01

    This study evaluates methodologies for utilizing waste tire rubber to produce carbonaceous adsorbents for use in air quality control operations. Such an approach provides a two-fold environmental and economic benefit. A recycling path is developed for waste tire rubber and new adsorbents are produced from a low cost feedstock for use in environmentally-related operations. Bench-scale and pilot-scale quantities of tire-derived activated carbon (TDAC) were produced from waste tire rubber. Raw tire rubber samples and devolatilized tire char were obtained from several US vendors. The raw samples were analyzed using proximate, ultimate, and elemental analyses. Batches of activated carbon samples were prepared using a bench-scale fixed-tubular reactor to prepare {approximately}10 g samples and a fluidized-bed reactor to prepare {approximately}100 g quantities. About 25 kg of activated carbon was also produced at a pilot-scale commercial facility. The resulting TDACs were then characterized by nitrogen adsorption at 77K. The sample surface areas were determined by the BET method, and the pore size distribution (PSD) was evaluated using the BJH model, and a 3-D PSD model. Performance of the TDACs was evaluated in their ability to remove gaseous mercury species from simulated power-plant flue-gas streams, and for the removal of organic compounds (e.g., acetone and 1,1,1-trichloroethane) from flowing gas streams.

  19. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  20. Removal of adsorbed gases with CO2 snow

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    1991-09-01

    During the outgassing of orbiting astronomical observatories, the condensation of molecular species on optical surfaces can create difficulties for astronomers. The problem is particularly severe in ultraviolet astronomy where the adsorption of only a few atomic layers of some substances can be very damaging. In this paper the removal of adsorbed atomic layers using carbon dioxide snow is discussed. The rate of removal of adsorbed layers of isopropyl alcohol, Freon TF, and deionized distilled water on Teflon substrates was experimentally determined. The removal of fingerprints (containing fatty acids such as stearic acid) from optical surfaces is also demonstrated. The presence and rate of removal of the multilayers was monitored by detecting the molecular dipole field of adsorbed molecular species. For isopropyl alcohol, Freon TF (trichlorotrifluoroethane), and water adsorbed multilayers were removed in under 1.5 seconds. Fingerprint removal was much more difficult and required 20 seconds of spraying with a mixture of carbon dioxide snow flakes and atomized microdroplets of isopropyl alcohol.

  1. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.

    PubMed

    Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C

    2015-01-01

    Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes. PMID:26867142

  2. High Resolution Mass Spectrometry of Organic Nitrogen Species in Atmospheric Fog and Cloud Waters

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Mazzoleni, L.; Collett, J.; Anastasio, C.; Rowchowdhury, U.; Zhang, Q.

    2007-12-01

    Past studies have shown that organic nitrogen (ON) species are ubiquitous in atmospheric particles and water droplets and they are significant components of both wet and dry depositions. However, very little is known about the characteristics of this class of compounds and the roles that they play in atmospheric chemistry. To fill in this gap, we have developed a method that allows us to bulk-characterize and quantify organic nitrogen species in atmospheric aqueous phases using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). We evaluated this method by analyzing a suite of ON compounds including amino acids, amines, proteins, amides, and nitriles. The mass spectra of these compounds show similar structures to those in the NIST database, though with more fragmentation due to the higher vaporization/ionization temperature (~ 600 oC). The elemental compositions determined from the high resolution mass spectra agree well with the theoretical values. With this method, we analyzed a number of fog waters collected from the Central Valley of California and cloud waters from the Whiteface Mountain of New York. A large fraction of water soluble materials in both fog and cloud waters was identified to be organic, of which a significant portion contains nitrogen. On average, ON accounts for ~ 20% and 5%, respectively, of the total nitrogen (= NH4+ + NO3- + NO2- + ON) in the Central Valley fog and Whiteface Mountain cloud waters. Water soluble organic matter (WSOM) in the Central Valley fog and Whiteface Mountain cloud waters show highly oxygenated properties with mass spectra resemble those of highly aged organic aerosols sampled in rural areas and humic/fulvic acids. Finally, we will attempt to extend pertinent data analysis techniques to in-situ AMS data for ON characterization in ambient aerosols.

  3. Organic matter dynamics control plant species coexistence in a tropical peat swamp forest

    PubMed Central

    Shimamura, Tetsuya; Momose, Kuniyasu

    2005-01-01

    We studied the relationship between the coexistence of tree species and the dynamics of organic matter in forests. A tropical peat swamp forest was selected as a model ecosystem, where abiotic factors, such as geological topography or parent rock types, are homogeneous and only biological processes create habitat heterogeneity. The temporal or spatial variation of the ground elevation of peat soils is mainly caused by changes in the balance between organic matter inputs to soils and decomposition, which is affected by the growth and death of influential trees. To clarify the processes of elevation dynamics, we measured the microtopography around some tree groups, estimated organic matter (in the form of litter and roots) in soils under three kinds of microtopographic conditions, measured decomposition rates and detected dominant species' shifting distribution patterns in different stages of growth in relation to the locations of tree groups creating specific microtopographic conditions. We found that growth or death of buttressed trees has the greatest effects on the rising or sinking of ground surfaces through changes in litter supply and root production. We discuss here the possibility of extending our model to other forest types. PMID:16011926

  4. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    PubMed

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific. PMID:27129975

  5. Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats.

    PubMed

    Timofeyev, M A; Steinberg, C E W

    2006-10-01

    The aim of the present work is to comparatively evaluate the oxidative stress response on exposure to natural organic matter (NOM) in three amphipod (Crustacea, Amphipoda) species from different taxonomic groups and different habitats of Lake Baikal. Endemic species from Lake Baikal were used: the shallow-water dwelling Gmelinoides fasciatus (Dyb.), Pallasea cancelloides (Gerstf.), and the deep-layer inhabitant Ommatogammarus flavus (Dyb.). Three key enzymes, catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST), were studied. The applied NOM from Lake Schwarzer (Germany) directly impacts the two littoral species which quickly respond. The response is characterized by a significant decrease of POD and an increase of CAT activities. GST activity remains stable or decreased slightly. In contrast to the littoral amphipods, the deep-layer inhabitant O. flavus showed no significant reaction to NOM exposure, probably due to decreased adaptive ability of this species. The stable environment of the Baikalean deep zones obviously does not provide triggers for the development of flexible antioxidant or general defense systems. PMID:16914340

  6. The influence of sediment particle size on the properties of adsorbed dissolved organic matter in the Yangtze Estuary and its interactions with As/Sb.

    PubMed

    Wang, Ying; Zhang, Manman; Zhang, Di; Shen, Zhenyao

    2016-04-15

    The characteristics of dissolved organic matter (DOM) extracted from sediments with four particle sizes (<25, 63-25, 200-63 and >200μm) in the Yangtze Estuary were compared. The differences in their binding capacities for individual fluorescent components with As/Sb were studied using fluorescence-quenching titrations combined with excitation-emission matrix (EEM) spectra. The results indicated that the particle size influenced the quality and quantity of extracted DOM. With increasing particle size, the extracted DOM content, value of UV280 and acidic functional group content of the DOM decreased. Three protein-like components (C2, C3 and C4) and one humic-like component (C1) were identified using the parallel factor analysis (PARAFAC) model. Wherein, protein-like material dominated in DOM on different particle-size fractions and possessed a stronger complex capacity with As/Sb. A significant positive correlation between the complexation capacity of extracted DOM from samples, as well as with the acidic functional group content, was observed. PMID:26965093

  7. Systematic Investigation of Nanoscale Adsorbate Effects at Organic Light-Emitting diode Interfaces. Interfacial Structure-Charge Injection-Luminance Relationships

    SciTech Connect

    Huang,Q.; Li, J.; Evmenenko, G.; Dutta, P.; Marks, T.

    2006-01-01

    Molecule-scale structure effects at indium tin oxide (ITO) anode-hole transport layer (HTL) interfaces in organic light-emitting diode (OLED) heterostructures are systematically probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine precursors differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure and charge-injection/electroluminescence properties. These precursors form conformal and largely pinhole-free self-assembled monolayers (SAMs) on the ITO anode surface with angstrom-level thickness control. Deposition of a HTL on top of the SAMs places the probe molecules precisely at the anode-HTL interface. OLEDs containing ITO/SAM/HTL configurations have dramatically varied hole-injection magnitudes and OLED responses. These can be correlated with the probe molecular structures and electrochemically derived heterogeneous electron-transfer rates for such triarylamine fragments. The large observed interfacial molecular structure effects offer an approach to tuning OLED hole-injection flux over 1-2 orders of magnitude, resulting in up to 3-fold variations in OLED brightness at identical bias and up to a 2 V driving voltage reduction at identical brightness. Very bright and efficient ({approx}70 000 cd/m{sup 2}, {approx}2.5% forward external quantum efficiency, {approx}11 lm/W power efficiency) Alq (tris(8-hydroxyquinolinato)aluminum(III))-based OLEDs can thereby be fabricated.

  8. Toxicity of tributyltin (TBT) to terrestrial organisms and its species sensitivity distribution.

    PubMed

    Silva, Patrícia V; Silva, Ana Rita R; Mendo, Sónia; Loureiro, Susana

    2014-01-01

    The contamination of the terrestrial environment by disposal of tributyltin (TBT) by contaminated harbour sediments, sewage sludge and/or biocide products has been raising concerns and it may pose a risk to soil invertebrates and plants. This study aimed to improve the amount and quality of data for TBT toxicity in soils in order to assess the ecological risk of TBT to the terrestrial ecosystems. For this, bioassays were performed with the species Porcellionides pruinosus, Folsomia candida, Brassica rapa and Triticum aestivum to evaluate the toxic effects of TBT (as chloride) on these species. Additionally, this study contributed to increase the amount of data concerning TBT toxicity on soil dwelling organisms. The results showed a dose-response relationship between TBT concentration and the increase of toxicity in all species tested. These results were collated with results from literature to construct species sensitivity distributions (SSDs) and to calculate the hazardous concentration at 5% (HC₅) for all data, for each type of soil and TBT formulation used. The HC₅ value for TBT in soil was 2.06 mg TBT/kg soil dw. Little information is available concerning the concentrations of TBT in soils. In addition the predicted no-effect concentration (PNEC) value was determined to be 30 μg/kg soil. Only one study was found referring to TBT contaminated soils, and where TBT concentrations were lower than 0.024 μg TBT/kg for the wetland soil. Therefore it can be concluded that the real TBT concentrations determined represent low risk for environmental effects. In conclusion, the construction of SSDs and the calculation of HC5 using all the data available showed to be a more suitable method rather than the construction of several SSDs for each soil and TBT types. Further investigations concerning TBT concentrations and toxicity on soil organisms need to be performed to increase data and improve risk calculations. PMID:23994735

  9. Quantification of Semi-Volatile gas-phase Organic Compounds (SVOCs) & Organic Aerosol species and the role of SVOCs in Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Khan, M. H.; Holzinger, R.

    2013-12-01

    A Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS) with different sampling systems (multi-stage denuder for gas phase and impact on a collector for aerosol phase) has been deployed in summer 2013 during the Southern Oxidant and Aerosol Study (SOAS) at the SEARCH ground site, Centreville, Alabama for in-situ gas phase and aerosol measurements on an hourly time resolution. A bunch of DB-1 column (0.53 mm x 5.0 μm) is used in the denuder for capturing the bulk of SVOCs and a collection-thermal-desorption (CTD) cell is used for collecting aerosol particles. Several hundreds semivolatile organic compounds (SVOCs) in gas phase and aerosol phases have been detected. The high mass resolution capabilities of ~5000, low detection limit (<0.05 pptv for gas species, <0.01 ng m-3 for aerosol species) and good physical and chemical characterization of SVOCs with the TD-PTR-MS allows constraining both, the quantity and the chemical composition. The SEARCH site was highly impacted by Biogenic Volatile Organic Compounds (BVOCs) and occasionally influenced by anthropogenic pollution. BVOCs and their oxidation products are capable of partitioning into the particle phase, so their simultaneous quantification in both phases has been used to determine the gas/particle-phase partitioning. Our results show the expected diurnal variation based on the changes of air temperature for many species. The results from this study give valuable insights into sources and processing of Secondary Organic Aerosols (SOAs) that can be used to improve parameterization algorithms in regional and global climate models.

  10. Gaetice depressus (Crustacea, Varunidae): Species profile and its role in organic carbon and nitrogen flow

    NASA Astrophysics Data System (ADS)

    Wahyudi, A'an. J.; Wada, Shigeki; Aoki, Masakazu; Hama, Takeo

    2015-06-01

    Gaetice depressus is one of the most dominant macrozoobenthos species in boulder shores of intertidal coastal ecosystems in Japan. As recorded in previous studies, this species is also considered as having high density and biomass. Consequently, it is thought to be one of the more important species in the organic matter flow of boulder shores, especially through the food web. In this study, some taxonomic problems related to G. depressus were tackled and the autoecology and ecological processes in the intertidal ecosystem of G. depressus, such as organic matter flow, were investigated. Furthermore, in order to clarify the taxonomy description, resolve inconsistencies in the scientific name, and learn about the life history, a literature review was conducted. Seasonal changes in density, morphology pattern and population structure were determined based on the data obtained in Ebisu Island, Japan. Then, the role of G. depressus was determined by estimating the intake and emittance fluxes of organic carbon and nitrogen through ingestion and egestion process in the boulder shores of Ebisu Island. A feeding rate experiment was also conducted in order to estimate the intake flux by using the catch-release-recapture method. Meanwhile, to estimate the emittance flux, a defecation rate experiment was conducted by catching some individuals of G. depressus, and then incubating them in the laboratory. The feeding rate measured by the speed of diet consumption of G. depressus was about 12.6 mg ind-1 h-1. Considering the average density, the intake flux through the feeding process could be estimated as 25.2 mgC m-2 h-1 and 2.6 mgN m-2 h-1. On the other hand, G. depressus egested fecal pellet at the rate of 5.4 mg ind-1 h-1. The average emittance flux through the fecal pellet egesting process is estimated at 5.6 mgC m-2 h-1 and 0.7 mgN m-2 h-1. Therefore, it can be estimated that about 25% of organic matter from diet is egested as fecal pellet, which means that about 75% of the

  11. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol.

    PubMed

    Flores, Rosa M; Doskey, Paul V

    2015-10-30

    Two, 3-step methods for derivatizing mono- and multi-functional species with carbonyl (CO), carboxylic acid (-COOH), and alcohol (-OH) moieties were compared and optimized. In Method 1, the CO, -COOH, and -OH moieties were converted (1) to methyloximes (R-CN-OCH3) with O-methylhydroxylamine hydrochloride (MHA), (2) to methyl esters (OC-R-OCH3) with (trimethylsilyl)diazomethane in methanol (TMSD/MeOH), and (3) to trimethylsilyl ethers [R-OSi(CH3)3] with N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS), respectively. Steps 1 and 3 of both methods were identical; however, in Step 2 of Method 2, -COOH moieties were derivatized with 10% (v/v) boron trifluoride (BF3) in MeOH or n-butanol (n-BuOH). The BF3/MeOH and BF3/n-BuOH were ineffective at converting species with more than 2-OH moieties. Average standard deviations for derivatization of 36 model compounds by the 3-step methods using TMSD/MeOH and BF3/(MeOH) were 7.4 and 14.8%, respectively. Average derivatization efficiencies for Methods 1 and 2 were 88.0 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of mono- and multi-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC×GC-ToF-MS were 0.3-54pgm(-3). Approximately 100 oxygenated organic species were identified and quantified in aerosol filtered from 39m(3) of air in an urban location. Levels of species were 0.013-17ngm(-3) and were nearly all above the Method 1 limit of detection. PMID:26427323

  12. A Comparative study of Volatile Organic Compounds from two desert plant species growing in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Paasche, K. M.; Meyers, K.; Jardine, K.

    2012-12-01

    Throughout their lives, plants are subjected to a multitude of stressors, ranging from herbivory to changes in weather. In order to survive, plants have created an arsenal of volatile organic compounds (VOCs), including green leaf volatiles (GLVs) and aromatic compounds, to combat these stressors. In this study, two plant species, Baccharis salicifolia (Seep willow) and Dodonaea viscosa (Hopbush) were examined for isoprenoids, GLVs, and aromatic compound emissions. Although, the species are not related, they should share some emitted compounds as they can be seen growing in the same environment, though the majority of the emitted compounds should remain unique to each species type. Both the Seep willow, sampled in Catalina State Park, and the Hopbush, sampled at Biosphere 2, were sampled using a Teflon bag enclosure connected to an apex lite air-sampling device and a thermal desorption (TD) tube, which was used to collect the emitted compounds. TD tube samples were analyzed using a Unity 2 thermal desorption system, which was directly connected to a 5975C series gas chromatograph/electron impact mass spectrometer with a triple-axis detector. The major compounds emitted from the Seep willow were GLVs (Octanal, Decanal, and Nonanal) and aromatics (Benzoic acid, Benzaldehyde, 1,2,3-Trifluorobenzene, and Acetophenone). The major compounds emitted from the Hopbush were isoprene and monoterpenes (1R-α-Pinene, Limonene, and α-Phellandrene.) Our results show the two species emit completely different compounds from each other, which could indicate adaptive differences. The Hopbush may be a hardier species better adapted to the Arizona environment as isoprene and monoterpenes have been indicated in thermo tolerance. GLVs on the other hand indicate the Seep willow is under severe stress.

  13. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    SciTech Connect

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  14. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    DOE PAGESBeta

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  15. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR.

    PubMed

    Johnson, Robert L; Perras, Frédéric A; Kobayashi, Takeshi; Schwartz, Thomas J; Dumesic, James A; Shanks, Brent H; Pruski, Marek

    2016-01-31

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticle catalysts. By offering >2500-fold time savings, the technique enabled the observation of (13)C-(13)C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface. PMID:26675287

  16. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species

    PubMed Central

    Striedter, Georg F.; Belgard, T. Grant; Chen, Chun-Chun; Davis, Fred P.; Finlay, Barbara L.; Güntürkün, Onur; Hale, Melina E.; Harris, Julie A.; Hecht, Erin E.; Hof, Patrick R.; Hofmann, Hans A.; Holland, Linda Z.; Iwaniuk, Andrew N.; Jarvis, Erich D.; Karten, Harvey J.; Katz, Paul S.; Kristan, William B.; Macagno, Eduardo R.; Mitra, Partha P.; Moroz, Leonid L.; Preuss, Todd M.; Ragsdale, Clifton W.; Sherwood, Chet C.; Stevens, Charles F.; Stüttgen, Maik C.; Tsumoto, Tadaharu; Wilczynski, Walter

    2014-01-01

    Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system ‘maps’ comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of ‘reference species’ to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be

  18. Kinetics and dynamics of oxidation reactions involving an adsorbed CO species on bulk and supported platinum and copper-oxide. First year annual report, January 1, 1991--December 31, 1991

    SciTech Connect

    Harold, M.P.

    1991-07-01

    The proposed research is an integrated experimental and modeling study of oxidation reactions involving CO as a key player -- be it a reactant, adsorbed intermediate, and/or partial oxidation product -- in the catalytic sequence and chemistry. The reaction systems of interest in the project include CO, formaldehyde, and methanol oxidation by O{sub 2} and CO oxidation by NO, on both Pt and copper oxide catalysts. These reactions are of importance in automobile exhaust catalysis. There is a paucity of rate data in the literature for these important environmental control reactions. The goal of this research is to better understand the catalytic chemistry and kinetics of oxidations reactions involving CO as an adsorbed intermediate. Successfully meeting this goal requires an integration of basic kinetic measurements, in situ catalyst surface monitoring, kinetic modeling, and nonlinear mathematical tools.

  19. Organic sulfur species in Argonne premium coal Sample No. 3 Illinois No. 6

    SciTech Connect

    Winans, R.E.; Scott, R.G.; McBeth, R.L.; Neill, P.H.

    1987-01-01

    Objectives of this study were to identify and quantify the organic sulfur compounds present in a high-sulfur Illinois bituminous coal. In order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. However, these molecules are typically bonded into an insoluble macromolecular network. Vacuum pyrolysis was used to break down this network into smaller molecules. The coal was pyrolysed, either directly into a mass spectrometer (PyMS) or in a batch mode where the tars were collected and analyzed by low eV ultra high resolution MS. In the PyMS experiment, the aliphatic sulfur compounds evolved at 250 to 350/sup 0/C while aromatics volatilized at a much higher temperature, 425 to 525/sup 0/C. Aromatic species dominate and include thiophenes, benzothiophenes and dibenzothiophenes. It is interesting to note that a significant amount of thiophenol species are seen. In a low voltage HRMS study, larger molecules were found with molecular ions ranging from m/z 200 to 600. They appear to be highly alkylated, annellated thiophenes, but the PyMS results indicate the majority are probably less than four rings in size. A large number of aromatics containing an additional heteroatom have been found. 12 refs., 5 figs.

  20. Comparable ecological dynamics underlie early cancer invasion and species dispersal, involving self-organizing processes

    PubMed Central

    Marco, Diana E.; Cannas, Sergio A.; Montemurro, Marcelo A.; Hu, Bo; Cheng, Shi-Yuan

    2010-01-01

    Occupancy of new habitats through dispersion is a central process in nature. In particular, long-distance dispersal is involved in the spread of species and epidemics, although it has not been previously related with cancer invasion, a process that involves cell spreading to tissues far away from the primary tumour. Using simulations and real data we show that the early spread of cancer cells is similar to the species individuals spread and we suggest that both processes are represented by a common spatio-temporal signature of long-distance dispersal and subsequent local proliferation. This signature is characterized by a particular fractal geometry of the boundaries of patches generated, and a power-law scaled, disrupted patch size distribution. In contrast, invasions involving only dispersal but not subsequent proliferation (“physiological invasions”) like trophoblast cells invasion during normal human placentation did not show the patch size power-law pattern. Our results are consistent under different temporal and spatial scales, and under different resolution levels of analysis. We conclude that the scaling properties are a hallmark and a direct result of long-distance dispersal and proliferation, and that they could reflect homologous ecological processes of population self-organization during cancer and species spread. Our results are significant for the detection of processes involving long-range dispersal and proliferation like cancer local invasion and metastasis, biological invasions and epidemics, and for the formulation of new cancer therapeutical approaches. PMID:18930739

  1. Composition of essential oils in subterranean organs of three species of Valeriana L.

    PubMed

    Samaneh, Ekhteraei Tousi; Tayebeh, Radjabian; Hassan, Ebrahimzadeh; Vahid, Niknam

    2010-11-01

    Essential oils from the subterranean organs of three species of Valeriana L. from Iran (Valeriana sisymbriifolia Vahl, Valeriana alliariifolia Adams and Valeriana officinalis L.) belonging to Valerianaceae family have been obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry in order to discern the differences and similarities between the volatile chemical compositions of these species. More than 100 components were identified in essential oils of the studied plants (Supplementary Table S1--online only). The principal common constituents of the three species of Valeriana were spathulenol, limonene, γ-terpinene, vulgarone B and p-cymene. The main essential oil ingredients were α-selinene (7.83%) in V. sisymbriifolia, limonene (3.53%) in V. alliariifolia and spathulenol (13.33%), α-campholenal (11.48%), vulgarone B (8.38%) and valerenal (8.32%) in V. officinalis plants. Ageratochromene (precocene II), a chromene substance with antibacterial, antifungal, insecticidal and antijuvenile hormonal activities, was found at high levels (35.59% and 36.58%) in the essential oils of V. sisymbriifolia plants. PMID:21104529

  2. Size distribution of trace organic species emitted from biomass combustion and meat charbroiling

    NASA Astrophysics Data System (ADS)

    Kleeman, Michael J.; Robert, Michael A.; Riddle, Sarah G.; Fine, Philip M.; Hays, Michael D.; Schauer, James J.; Hannigan, Michael P.

    Size-resolved particulate matter emissions from pine, California oak, east coast oak, eucalyptus, rice straw, cigarette smoke, and meat cooking were analyzed for trace organic species using solvent-extraction followed by GC-MS analysis. Six particle size fractions were studied between 0.056, 0.1, 0.18, 0.32, 0.56, 1.0, and 1.8 μm particle diameter. The smallest particle size fraction analyzed was in the ultrafine (Dp<0.1 μm) range that has been implicated as a potential health concern. Fourteen PAHs were detected in the ultrafine size fraction of wood smoke with the most abundant species (benzo[ ghi]fluoranthene) emitted at a rate of 0.2-0.4 (mg kg -1 wood burned). Nine PAHs were detected in the ultrafine size fraction of rice straw smoke with the most abundant compound (benzo[ a]pyrene) emitted at 0.01 (mg kg -1 rice straw burned). The most abundant PAH measured in the ultrafine size fraction of cigarette smoke was benzo[ ghi]fluoranthene (0.07 mg cigarette -1) followed closely by chrysene/triphenylene (0.06 mg cigarette -1). Besides PAHs, the most abundant compounds identified in the wood included levoglucosan (0.9) with the size distribution of particle-phase organic carbon (OC) and/or elemental carbon (EC). The only organic compounds besides PAHs detected in the ultrafine size fraction of rice straw and cigarette smoke were benz[ de]anthracen-7-one (0.19 mg kg -1 rice straw burned) and 4-methylphenylacetone (2.64 mg cigarette -1), respectively. Caffeine was measured in cigarette smoke size fractions >0.1 μm with a total PM 1.8 emissions rate of 1 (mg cigarette -1). The most abundant organic species measured in meat cooking smoke was cholesterol with a size distribution that was highly

  3. Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge.

    PubMed

    Wang, Xiaoxia; Qiu, Zhaofu; Lu, Shuguang; Ying, Weichi

    2010-04-15

    Batch ultrasonic treatments (sonication) were performed on two waste activated sludge (WAS) samples, BNR-WAS from the biological nitrogen removal unit and BNPR-WAS from the biological nitrogen and phosphorus removal unit of two Shanghai municipal WWTPs, to determine the effects of sonication time and intensity on the amount and distribution of the organic, N and P species released from the samples. The concentration profiles of COD, TOC fractions in different molecular weight (MW) ranges (<2 kDa, 2-100 kDa, and >100 kDa), TN, organic-N, NH(3)-N, TP and PO(4)-P were monitored during the treatment at three sonication intensity levels (0.167, 0.330 and 0.500 W/mL). Species releases increased with sonication time and/or intensity; the release rates were accelerated when the sonication intensity was above a critical level between 0.330 and 0.500 W/mL. After 1 h of treatment, 37.9%, 37.5% and 50.8% of the organic content (measured as COD) of BNR-WAS were released, while the same for BNPR-WAS were 40.9%, 55.3% and 56.9%. It also resulted in the release of 40.9%, 38.7%, and 52.1% of total nitrogen from BNR-WAS, relative to 46.2%, 61.6%, and 70.4% of the same from BNPR-WAS; most released nitrogen were organic-N (65.0% and 84.9%), followed by NH(3)-N (34.7% and 14.9%) and trace amounts of nitrate and nitrite. More total phosphorus of a higher orthophosphate content was released from BNRP-WAS (>60% release after 1 h of sonication, 80% was PO(4)-P) than from BNR-WAS (<50% release, 40% was PO(4)-P). The differences in the releases as well as the molecular weight distribution pattern of the soluble TOC species were due to the different structure and composition of the sludge samples. Sonication is a viable sludge treatment process when it is combined with a phosphorus recovery process to remove most of the released PO(4)-P so that the supernatant may be returned for further biological treatment. PMID:20022695

  4. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  5. Organic compounds temporal trends at some invertebrate species from the Balearics, Western Mediterranean.

    PubMed

    Deudero, S; Box, A; March, D; Valencia, J M; Grau, A M; Tintore, J; Calvo, M; Caixach, J

    2007-08-01

    Concentrations of persistent organic pollutants (POPs) such as hexachlorobenzene (HCB), dichlore diphenyl trichloretane (DDT), polychlorinated biphenyls (PCBs), and gamma-hexachlorocyclohexane (gamma-HCH or lindane) were determined in tissue of marine benthic invertebrates such as Mytilus galloprovincialis, Chamelea gallina, Venus verrucosa, Lithophaga lithophaga and Paracentrotus lividus. Species were selected due to their habitat, trophic level, feeding behaviour and their consumption. Invertebrate species were systematically sampled from December 1996 to December 2005 from several sites along the Balearic Islands. The highest concentrations of PCBs (785ng/g lipid) were found in M. galloprovincialis while the lowest concentrations were found in the sea-urchin P. lividus (193ng/g lipid). Among the 7 PCB quantified congeners the higher values are mainly obtained for CB138 and CB153. All bivalves presented higher PCBs contents than the sea-urchin P. lividus are possibly linked with the bioaccumulation process of POPs throughout the food web and to differential detoxifying mechanisms. The concentration of SigmaDDT exceeds that of HCB and gamma-HCH at all species and sampling stations. DDT concentrations ranged from 0.4ng/g ww at the bivalve C. gallina in 2002, to values of 15.8ng/g ww at the bivalve L. lithophaga in 1998. The values obtained for the organic compounds (HCH, HCB, PCBs, DDT) depend upon the place and year of sampling and are compared to values found by other authors for the mussel M. galloprovincialis in other Mediterranean areas. gamma-HCH and HCB were found in lower concentrations than the other POPs. PMID:17524450

  6. SERS effect of isonicotinic acid adsorbed on a copper electrode

    NASA Astrophysics Data System (ADS)

    Noda, Lucia K.; Sala, O.

    1987-11-01

    The surface enhanced Raman spectra (SERS) of isonicotinic acid adsorbed on a copper electrode were obtained in order to verify their dependence on the type of electrolyte solution, pH and applied potential. The results are discussed considering the most characteristic bands of the species (protonated or nonprotonated) in the ring nitrogen and in the carboxylic group. In specifically adsorbed electrolytes (Cl - and mainly I -) the completely protonated species is more stabilized on the electrode surface than it is in non-specifically adsorbed anions (ClO -4), because of the formation of ion pairs with the coadsorbed halide ions. For more negative potentials, even at low pH values, the spectra are characteristic of the nonprotonated species.

  7. Pythium Species Associated with Damping-off of Pea in Certified Organic Fields in the Columbia Basin of Central Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey of Pythium species in organic vegetable production areas of the semi-arid Columbia Basin of central Washington was carried out in the fall of 2009 to identify species associated with damping-off during early spring planting. Isolates (n = 305) baited from soil sampled from 37 certified orga...

  8. Asplenioideae Species as a Reservoir of Volatile Organic Compounds with Potential Therapeutic Properties.

    PubMed

    Froissard, Didier; Rapior, Sylvie; Bessière, Jean-Marie; Buatois, Bruno; Fruchier, Alain; Sol, Vincent; Fons, Françoise

    2015-06-01

    Twelve French Asplenioideae ferns (genera Asplenium and subgenera Ceterach and Phyllitis) were investigated for the first time for volatile organic compounds (VOC) using GC-MS. Sixty-two VOC biosynthesized from the lipidic, shikimic, terpenic and carotenoid pathways were identified. Several VOC profiles can be highlighted from Asplenium jahandiezii and A. xalternifolium with exclusively lipidic derivatives to A. onopteris with an equal ratio of lipidic/shikimic compounds. Very few terpenes as caryophyllene derivatives were identified, but only in A. obovatum subsp. bilotii. The main odorous lipidic derivatives were (E)-2-decenal (waxy and fatty odor), nonanal (aldehydic and waxy odor with a fresh green nuance), (E)-2-heptenal (green odor with a fatty note) and 1-octen-3-ol (mushroom-like odor), reported for all species. A few VOC are present in several species in high content, i.e., 9-oxononanoic acid used as a precursor for biopolymers (19% in A. jahandiezii), 4-hydroxyacetophenone with a sweet and heavy floral odor (17.1% in A. onopteris), and 4-hydroxybenzoic acid used as a precursor in the synthesis of parabens (11.3% in A. foreziense). Most of the identified compounds have pharmacological activities, i.e., octanoic acid as antimicrobial, in particular against Salmonellas, with fatty and waxy odor (41.1% in A. petrarchae), tetradecanoic acid with trypanocidal activity (13.3% in A. obovatum subsp. bilotii), 4-hydroxybenzoic acid (8.7% in A. onopteris) with antimicrobial and anti-aging effects, 3,4-dihydroxybenzaldehyde as an inhibitor of growth of human cancer cells (6.7% in Ceterach officinarum), and phenylacetic acid with antifungal and antibacterial activities (5.8% in A. onopteris). Propionylfilicinic acid was identified in the twelve species. The broad spectrum of odorous and bioactive VOC identified from the Asplenium, Ceterach and Phyllitis species are indeed of great interest to the cosmetic and food industries. PMID:26197556

  9. Estimates of Octanol-Water Partitioning for Thousands of Dissolved Organic Species in Oil Sands Process-Affected Water.

    PubMed

    Zhang, Kun; Pereira, Alberto S; Martin, Jonathan W

    2015-07-21

    In this study, the octanol-water distribution ratios (DOW, that is, apparent KOW at pH 8.4) of 2114 organic species in oil sands process-affected water were estimated by partitioning to polydimethylsiloxane (PDMS) coated stir bars and analysis by ultrahigh resolution orbitrap mass spectrometry in electrospray positive ((+)) and negative ((-)) ionization modes. At equilibrium, the majority of species in OSPW showed negligible partitioning to PDMS (i.e., DOW <1), however estimated DOW's for some species ranged up to 100,000. Most organic acids detected in ESI- had negligible partitioning, although some naphthenic acids (O2(-) species) had estimated DOW ranging up to 100. Polar neutral and basic compounds detected in ESI+ generally partitioned to PDMS to a greater extent than organic acids. Among these species, DOW was greatest among 3 groups: up to 1000 for mono-oxygenated species (O(+) species), up to 127,000 for NO(+) species, and up to 203,000 for SO(+) species. A positive relationship was observed between DOW and carbon number, and a negative relationship was observed with the number of double bonds (or rings). The results highlight that nonacidic compounds in OSPW are generally more hydrophobic than naphthenic acids and that some may be highly bioaccumulative and contribute to toxicity. PMID:26098972

  10. Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, P.; Broekhuizen, K.; Abbatt, J. P. D.

    2003-05-01

    The ability of sub-micron-sized organic acid particles to act as cloud condensation nuclei (CCN) has been examined at room temperature using a newly constructed continuous-flow, thermal-gradient diffusion chamber (TGDC). The organic acids studied were: oxalic, malonic, glutaric, oleic and stearic. The CCN properties of the highly soluble acids - oxalic, malonic and glutaric - match very closely Köhler theory predictions which assume full dissolution of the dry particle and a surface tension of the growing droplet equal to that of water. In particular, for supersaturations between 0.3 and 0.6, agreement between the dry particle diameter which gives 50% activation and that calculated from Köhler theory is to within 3nm on average. In the course of the experiments, considerable instability of glutaric acid particles was observed as a function of time and there is evidence that they fragment to some degree to smaller particles. Stearic acid and oleic acid, which are both highly insoluble in water, did not activate at supersaturations of 0.6% with dry diameters up to 140nm. Finally, to validate the performance of the TGDC, we present results for the activation of ammonium sulfate particles that demonstrate good agreement with Köhler theory if solution non-ideality is considered. Our findings support earlier studies in the literature that showed highly soluble organics to be CCN active but insoluble species to be largely inactive.

  11. The BEAF-32 insulator coordinates genome organization and function during the evolution of Drosophila species

    PubMed Central

    Yang, Jingping; Ramos, Edward; Corces, Victor G.

    2012-01-01

    Understanding the relationship between genome organization and expression is central to understanding genome function. Closely apposed genes in a head-to-head orientation share the same upstream region and are likely to be coregulated. Here we identify the Drosophila BEAF-32 insulator as a cis regulatory element separating close head-to-head genes with different transcription regulation modes. We then compare the binding landscapes of the BEAF-32 insulator protein in four different Drosophila genomes and highlight the evolutionarily conserved presence of this protein between close adjacent genes. We find that changes in binding of BEAF-32 to sites in the genome of different Drosophila species correlate with alterations in genome organization caused by DNA rearrangements or genome size expansion. The cross-talk between BEAF-32 genomic distribution and genome organization contributes to new gene-expression profiles, which in turn translate into specific and distinct phenotypes. The results suggest a mechanism for the establishment of differences in transcription patterns during evolution. PMID:22895281

  12. Speciation of organic phosphorus in a sediment profile of Lake Taihu. II. Molecular species and their depth attenuation.

    PubMed

    Ding, Shiming; Di, Xu; Bai, Xiuling; Yao, Shuchun; Fan, Chengxin; Zhang, Chaosheng

    2013-05-01

    The understanding of organic phosphorus (P) dynamics in sediments requires information on their species at the molecular level, but such information in sediment profiles is scarce. A sediment profile was selected from a large eutrophic lake, Lake Taihu (China), and organic P species in the sediments were detected using solution phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) following extraction of the sediments with a mixture of 0.25 mol/L NaOH and 50 mmol/L EDTA (NaOH-EDTA) solution. The results showed that P in the NaOH-EDTA extracts was mainly composed of orthophosphate, orthophosphate monoesters, phospholipids, DNA, and pyrophosphate. Concentrations of the major organic P compound groups and pyrophosphate showed a decreasing trend with the increase of depth. Their half-life times varied from 3 to 27 years, following the order of orthophosphate monoesters > phospholipids > or = DNA > pyrophosphate. Principal component analysis revealed that the detected organic P species had binding phases similar to those of humic acid-associated organic P (NaOH-NRP(HA)), a labile organic P pool that tends to transform to recalcitrant organic P pools as the early diagenetic processes proceed. This demonstrated that the depth attenuation of the organic P species could be partly attributed to their increasing immobilization by the sediment solids, while their degradation rates should be significantly lower than what were suggested in previous studies. PMID:24218822

  13. Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO2 nanoparticles to benthic organisms

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  14. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Pausch, Johanna; Zhu, Biao; Cheng, Weixin

    2015-04-01

    Living roots and their rhizodeposits can stimulate microbial activity and soil organic matter (SOM) decomposition up to several folds. This so-called rhizosphere priming effect (RPE) varies widely among plant species possibly due to species-specific differences in the quality and quantity of rhizodeposits and other root functions. However, whether the RPE is influenced by plant inter-species interactions remains largely unexplored, even though these interactions can fundamentally shape plant functions such as carbon allocation and nutrient uptake. In a 60-day greenhouse experiment, we continuously labeled monocultures and mixtures of sunflower, soybean and wheat with 13C-depleted CO2 and partitioned total CO2 efflux released from soil at two stages of plant development for SOM- and root-derived CO2. The RPE was calculated as the difference in SOM-derived CO2 between the planted and the unplanted soil, and was compared among the monocultures and mixtures. We found that the RPE was positive under all plants, ranging from 43% to 136% increase above the unplanted control. There were no significant differences in RPE at the vegetative stage. At the flowering stage however, the RPE in the soybean-wheat mixture was significantly higher than those in the sunflower monoculture, the sunflower-wheat mixture, and the sunflower-soybean mixture. These results indicated that the influence of plant inter-specific interactions on the RPE is case-specific and phenology-dependent. To evaluate the intensity of inter-specific effects on priming, we calculated an expected RPE for the mixtures based on the RPE of the monocultures weighted by their root biomass and compared it to the measured RPE under mixtures. At flowering, the measured RPE was significantly lower for the sunflower-wheat mixture than what can be expected from their monocultures, suggesting that RPE was significantly reduced by the inter-species effects of sunflower and wheat. In summary, our results clearly demonstrated

  15. Orbital tomography for highly symmetric adsorbate systems

    NASA Astrophysics Data System (ADS)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  16. Activity patterns of nucleolar organizer region during spermatogenesis of different curimatid species (Characiformes: Curimatidae).

    PubMed

    Sampaio, Tatiane R; Pires, Larissa B; da Rosa, Renata; Dias, Ana Lúcia

    2014-02-01

    The nucleolus is an important nuclear structure where transcription of ribosomal DNA (rDNA) takes place. During mitotic division, the nucleolus passes through different processes that inactivate rDNA transcription; in meiosis, its reassembly takes place during telophase II. The objective of this study was to identify the activity patterns and localization of nucleolar organizer regions (NORs) during meiotic division in fish species of the family Curimatidae. For this analysis, the meiotic division in five curimatid species was studied using silver nitrate impregnation, fluorescent in situ hybridization (FISH), and base-specific fluorochrome staining. Silver nitrate staining indicated the presence of a nucleolus in interphase nuclei, one chromosome pair in the spermatogonial metaphases, and one bivalent at the pachytene stage. No Ag-NORs were identified for cells at the diplotene, diakinesis, metaphase I, or metaphase II stages; however, FISH confirmed the presence of Ag-NORs in the nuclei, in spermatogonia, and at the pachytene phase. FISH identified this region during the other stages of meiosis, as did fluorochrome CMA3 staining, which revealed fluorescent marks corresponding to NORs during all stages of meiosis analyzed. The gene activity and localization of this ribosomal sequence during the different stages involved will also be discussed. PMID:24702069

  17. New insights into perfluorinated adsorbents for analytical and bioanalytical applications.

    PubMed

    Marchetti, Nicola; Guzzinati, Roberta; Catani, Martina; Massi, Alessandro; Pasti, Luisa; Cavazzini, Alberto

    2015-01-01

    Perfluorinated (F-) adsorbents are generally prepared by bonding perfluoro-functionalized silanes to silica gels. They have been employed for a long time essentially as media for solid-phase extraction of F-molecules or F-tagged molecules in organic chemistry and heterogeneous catalysis. More recently, this approach has been extended to proteomics and metabolomics. Owing to their unique physicochemical properties, namely fluorophilicity and proteinophilicity, and a better understanding of some fundamental aspects of their behavior, new applications of F-adsorbents in the field of environmental science and bio-affinity studies can be envisaged. In this article, we revisit the most important features of F-adsorbents by focusing, in particular, on some basic information that has been recently obtained through (nonlinear) chromatographic studies. Finally, we try to envisage new applications and possibilities that F-adsorbents will allow in the near future. PMID:25358910

  18. Volatile organic compounds of six French Dryopteris species: natural odorous and bioactive resources.

    PubMed

    Froissard, Didier; Rapior, Sylvie; Bessière, Jean-Marie; Fruchier, Alain; Buatois, Bruno; Fons, Françoise

    2014-01-01

    Aerial parts of six Dryopteris species collected in France were investigated for volatile organic compounds (VOC) for the first time. Fifty-three biosynthesized VOC from the shikimic, lipidic and terpenic pathways were identified using gas chromatography/mass spectrometry. Many bioactive polyketide compounds as filicinic derivatives (from 8.5 to 23.5%) and phloroglucinol derivatives (from 8.2 to 53.8%) with various pharmacological activities were detected in high amount from five analysed Dryopteris species, in particular D. oreades and D. borreri, i.e., propionylfilicinic acid (> 10% in D. affinis and D. ardechensis) and 2,6-dihydroxy-4-methoxy-3-methylbutyrophenone (aspidinol) (19.1% and 14.6% in D. oreades and D. borreri, respectively). Several terpenic derivatives with a low odor threshold were identified, i.e., carota-5,8-diene (from 2.5 to 18.4%: floral, woody or fresh bark note), (E)-nerolidol (> 10% for D. borreri and D. cambrensis; floral or woody odor), alpha-selinene (> 7% for D. ardechensis; woody-spicy odor), and aristolene (12.8% in D. affinis; flower, sweet odor). The main isoprenoid derivatives were 4-hydroxy-5,6-epoxyionol, 3-oxo-alpha-ionol and 4-oxo-7,8-dihydro-beta-ionone (essentially in D. remota), whereas the main aromatic compound was 4-hydroxy-3-methoxyacetophenone (20.6% and 12.6% in D. cambrensis and D. borreri, respectively) and the main lipid derivative was 1-octen-3-ol with a mushroom-like odor (from 0.4 to 8.3%). Dryopteris species resources are of great interest as a reservoir of odorous and bioactive compounds. PMID:24660483

  19. Mechanisms for Species-Selective Oriented Crystal Growth at Organic Templates

    SciTech Connect

    Kewalramani,S.; Kim, K.; Evmenenko, G.; Zschack, P.; Karapetrova, E.; Bai, J.; Dutta, P.

    2007-01-01

    Langmuir monolayers floating on supersaturated aqueous subphases can act as templates for the growth of oriented inorganic films--a 'bioinspired' nucleation process. We have performed in situ grazing incidence x-ray diffraction studies of the selective nucleation of BaClF and BaF2 under fatty acid monolayers. The arrangement of the fatty acid headgroups, the monolayer charge, and ion-specific effects all play important roles in selecting the inorganic species. When the monolayer is in a neutral state, both BaClF and BaF2 nucleate at the interface and are well aligned, but when the monolayer headgroup is deprotonated, only oriented BaF2 grows at the interface. We also observe an enhanced alignment of BaF2 crystals during growth from highly supersaturated solutions, presumably due to reorganization of preformed crystals at the organic template. These results show that a delicate interplay between multiple factors governs the oriented growth of inorganic films at organic templates.

  20. Effect of organic species on the solar detoxification of water polluted with pesticides.

    PubMed

    Soler, J; Santos-Juanes, L; Miró, P; Vicente, R; Arques, A; Amat, A M

    2011-04-15

    The effect of organic species on a solar-driven photo-Fenton treatment of a mixture of pesticides (methyl-oxydemethon, methidathion, carbaryl and dimethoate) has been studied in this paper. Triethoxyisododecyl alcohol, acetophenone and ethylenediaminetetraacetic acid (EDTA) have been used as examples of surfactants, solvents and complexing agents, respectively. An inhibitory effect on mineralization as well as on the elimination of the pesticides was observed in the case of the aliphatic surfactants, most probably due to the competition between the pesticides and the added organic matter for reaction with the relatively unselective hydroxyl radical. A methodology combining chemical analyses and bioassays was tested in order to explore the applicability of coupling a photo-Fenton process with a biological treatment in the presence of the surfactant. Despite the complexity of the mixture under study, a reliable monitoring of the process was accomplished; the biocompatibility of the mixture was enhanced and the optimal irradiation intensity was achieved just after complete removal of the pesticides. PMID:21353387

  1. Survival and persistence of Campylobacter and Salmonella species under various organic loads on food contact surfaces.

    PubMed

    De Cesare, Alessandra; Sheldon, Brian W; Smith, Katie S; Jaykus, Lee-Ann

    2003-09-01

    Although many cases of Campylobacter and Salmonella enteritis have been attributed to the undercooking of poultry and other foods, cross-contamination between raw and cooked foods via food contact surfaces and worker contact has also been identified as a significant risk factor. Cross-contamination may be particularly important in relation to the high prevalence of contamination in raw poultry products and other foods and the low infectious doses that have been reported for Campylobacter species. Lag phase and decimal reduction times (D-values at 27 degrees C [81 degrees F] and 60 to 62% relative humidity) were determined for Campylobacter jejuni and Salmonella species (five-strain pools) suspended in either a phosphate-buffered saline (PBS) solution or Trypticase soy broth (TSB) and then inoculated (0.1-ml drop per surface) on 5-cm2 samples of Formica laminate (F), glazed ceramic tile (CT), 304 polished stainless steel (SS), and 100% cotton dishcloth (D). Triplicate samples were collected from each contact surface periodically, and the populations of surviving organisms were enumerated on Campy Cefex and brain heart infusion agars for C. jejuni and Salmonella species, respectively. Lag time and rate of inactivation were influenced by organism type, contact surface, and suspending medium. Initial mean lag times ranging from 60 to 190 min were followed by log-linear (r2 > 0.94) decreases in cell populations that varied across contact surfaces. D-values of 12.5, 19.1, 24.1, and 29.7 min and of 23.7, 10.5, 12.7, and 13.9 min were calculated for C. jejuni suspended in PBS and TSB and then spotted on D, F, SS, and CT surfaces, respectively. The times required to produce a 3-log reduction in population with PBS and TSB ranged from 102 (D) to 247 (F) min and from 112 (CT) to 167 (F) min, respectively. C. jejuni cells suspended in the nutritionally enriched medium (TSB) and spotted on the hard surfaces were inactivated about 1.4 times as fast as cells suspended in PBS. For

  2. Using multidimensional gas chromatography to group secondary organic aerosol species by functionality

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2014-10-01

    A carbon number-functionality grid (CNFG) for a complex mixture of secondary organic aerosol (SOA) precursors and oxidation products was developed from the theoretical retention index diagram of a multidimensional gas chromatographic (GC × 2GC) analysis of a mixture of SOA precursors and derivatized oxidation products. In the GC × 2GC analysis, comprehensive separation of the complex mixture was achieved by diverting the modulated effluent from a polar primary column into 2 polar secondary columns. Column stationary phases spanned the widest range of selectivity of commercially available GC analytic columns. In general, separation of the species by the polar primary column was by the number of carbon atoms in the molecule (when the homologous series of reference compounds was selected to have molecular volumes and functionalities similar to the target analytes) and the polar secondary columns provided additional separation according to functionality. An algebraic transformation of the Abraham solvation parameter model was used to estimate linear retention indices of solutes relative to elution of a homologous series of methyl diesters on the primary and secondary columns to develop the theoretical GC × 2GC retention diagram. Retention indices of many of the oxidation products of SOA precursors were estimated for derivatized forms of the solutes. The GC stationary phases selected for the primary column [(50%-Trifluoropropyl)-methylpolysiloxane] and secondary columns (90% Cyanopropyl Polysilphenylene-siloxane and Polyethylene Glycol in a Sol-Gel matrix) provided a theoretical separation of 33 SOA precursors and 98 derivatized oxidation products into 35 groups by molecular volume and functionality. Comprehensive analysis of extracts of vapor and aerosol samples containing semivolatile SOA precursors and oxidation products, respectively, is best accomplished by (1) separating the complex mixture of the vapor and underivatized aerosol extracts with a (50

  3. Experiments on δ34S mixing between organic and inorganic sulfur species during thermal maturation

    USGS Publications Warehouse

    Amrani, Alon; Said-Ahamed, Ward; Lewan, Michael D.; Aizenshtat, Zeev

    2006-01-01

    Reduced sulfur species were studied to constrain isotopic exchange-mixing with synthetic polysulfide cross-linked macromolecules (PCLM), model sulfur containing molecules and natural sulfur-rich kerogen, asphalt and oil of the Dead Sea area. PCLM represents protokerogens that are rich in sulfur and thermally unstable. Mixing rates of PCLM with HS-(aq) (added as (NH4)2S(aq)) at low to moderate temperatures (50–200 °C) are rapid. Elemental sulfur and H2S(gas) fully mix isotopes with PCLM during pyrolysis conditions at 200 °C. During these reactions significant structural changes of the PCLM occur to form polysulfide dimers, thiolanes and thiophenes. As pyrolysis temperatures or reaction times increase, the PCLM thermal products are transformed to more aromatic sulfur compounds. Isotopic mixing rates increase with increasing pyrolysis temperature and time. Polysulfide bonds (S–S) in the PCLM are responsible for most of these structural and isotopic changes because of their low stability. Conversely, sulfur isotope mixing does not occur between dibenzothiophene (aromatic S) or hexadecanthiol (C–SH) and HS-(aq) at 200 °C after 48 h. This shows that rates of sulfur isotope mixing are strongly dependent on the functionality of the sulfur in the organic matter. The order of isotopic mixing rates for organic matter is kerogen > asphalt > oil, which is inverse to their sulfur thermal stability. Asphalt and oil with more refractory sulfur show significantly lower isotopes mixing rates than the kerogen with more labile sulfur. Based on the findings of the present study we suggest that sulfur isotopes mixing can occur from early diagenesis into catagenesis and result in isotopic homogenization of the inorganic and organic reduced sulfur pools.

  4. Experiments on δ 34S mixing between organic and inorganic sulfur species during thermal maturation

    NASA Astrophysics Data System (ADS)

    Amrani, Alon; Said-Ahamed, Ward; Lewan, Michael D.; Aizenshtat, Zeev

    2006-10-01

    Reduced sulfur species were studied to constrain isotopic exchange-mixing with synthetic polysulfide cross-linked macromolecules (PCLM), model sulfur containing molecules and natural sulfur-rich kerogen, asphalt and oil of the Dead Sea area. PCLM represents protokerogens that are rich in sulfur and thermally unstable. Mixing rates of PCLM with HS-(aq) (added as (NH 4) 2S (aq)) at low to moderate temperatures (50-200 °C) are rapid. Elemental sulfur and H 2S (gas) fully mix isotopes with PCLM during pyrolysis conditions at 200 °C. During these reactions significant structural changes of the PCLM occur to form polysulfide dimers, thiolanes and thiophenes. As pyrolysis temperatures or reaction times increase, the PCLM thermal products are transformed to more aromatic sulfur compounds. Isotopic mixing rates increase with increasing pyrolysis temperature and time. Polysulfide bonds (S-S) in the PCLM are responsible for most of these structural and isotopic changes because of their low stability. Conversely, sulfur isotope mixing does not occur between dibenzothiophene (aromatic S) or hexadecanthiol (C-SH) and HS-(aq) at 200 °C after 48 h. This shows that rates of sulfur isotope mixing are strongly dependent on the functionality of the sulfur in the organic matter. The order of isotopic mixing rates for organic matter is kerogen > asphalt > oil, which is inverse to their sulfur thermal stability. Asphalt and oil with more refractory sulfur show significantly lower isotopes mixing rates than the kerogen with more labile sulfur. Based on the findings of the present study we suggest that sulfur isotopes mixing can occur from early diagenesis into catagenesis and result in isotopic homogenization of the inorganic and organic reduced sulfur pools.

  5. Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice*

    PubMed Central

    Cao, Xiao-chuang; Ma, Qing-xu; Wu, Liang-huan; Zhu, Lian-feng; Jin, Qian-yu

    2016-01-01

    In recent years, excessive use of chemical nitrogen (N) fertilizers has resulted in the accumulation of excess ammonium (NH4 +) in many agricultural soils. Though rice is known as an NH4 +-tolerant species and can directly absorb soil intact amino acids, we still know considerably less about the role of high exogenous NH4 + content on rice uptake of soil amino acids. This experiment examined the effects of the exogenous NH4 + concentration on rice uptake of soil adsorbed glycine in two different soils under sterile culture. Our data showed that the sorption capacity of glycine was closely related to soils’ physical and chemical properties, such as organic matter and cation exchange capacity. Rice biomass was significantly inhibited by the exogenous NH4 + content at different glycine adsorption concentrations. A three-way analysis of variance demonstrated that rice glycine uptake and glycine nutritional contribution were not related to its sorption capacity, but significantly related to its glycine:NH4 + concentration ratio. After 21-d sterile cultivation, the rice uptake of adsorbed glycine accounted for 8.8%‒22.6% of rice total N uptake, which indicates that soil adsorbed amino acids theoretically can serve as an important N source for plant growth in spite of a high NH4 + application rate. However, further studies are needed to investigate the extent to which this bioavailability is realized in the field using the 13C, 15N double labeling technology.

  6. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. PMID:26498500

  7. A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations.

    PubMed

    Arnold, W Ray; Cotsifas, Jeffrey S; Ogle, R Scott; Depalma, Sarah G S; Smith, D Scott

    2010-02-01

    The copper sensitivity of four saltwater invertebrates (the mussel Mytilus galloprovincialis, the oyster Crassostrea virginica, the sand dollar Dendraster excentricus, and the sea urchin Strongylocentrotus purpuratus) was determined experimentally using chronic-estimator embryo-larval test procedures. The effect of sample dissolved organic matter (DOM) content on Cu bioavailability was determined for these species using commonly prescribed test procedures. Comparisons were made among these test results and test results reported previously for two other invertebrate species: the mussel Mytilus edulis and the copepod Eurytemora affinis. All six species exhibited a direct and significant relationship between the sample dissolved organic carbon (DOC; a surrogate measure of DOM) and either the dissolved Cu median lethal concentration (LC50) values or median effect concentration (EC50) values. This relationship is significant even when the DOM has different quality as evidenced by molecular fluorescence spectroscopy. Once normalized for the effects of DOM, the Cu sensitivity of these species from least to most sensitive were E. affinis < D. excitricus < C. virginica approximately S. purpuratus approximately M. edulis approximately M. galloprovincialis. This ranking of species sensitivity differs from the saltwater species sensitivity distribution proposed in 2003 by the U.S. Environmental Protection Agency. These results support the need to account for factors that modify Cu bioavailability in future saltwater Cu criteria development efforts. More specifically, Cu saltwater species sensitivity distribution data will need to be normalized by factors affecting Cu bioavailability to assure that accurate and protective criteria are subsequently developed for saltwater species and their uses. PMID:20821449

  8. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  9. Chromium(VI) removal via reduction-sorption on bi-functional silica adsorbents.

    PubMed

    Zaitseva, Nataliya; Zaitsev, Vladimir; Walcarius, Alain

    2013-04-15

    Organically-modified silica gels bearing mercaptopropyl and ethylenediaminetriacetate groups (SiO2-SH/ED3A) have been used for reduction and subsequent sequestration of Cr(VI) species. The uptake mechanism involves Cr(VI) reduction by thiol groups (SH) and further immobilization of the so-generated Cr(III) species via complexation to the ethylenediaminetriacetate moieties (ED3A). The most appropriate pH range (1-3) for complete Cr(VI) reduction-sorption by SiO2-SH/ED3A originates from the balance between full reduction of Cr(VI) by SH, requiring low pH values, and quantitative complexation of Cr(III) by ED3A, which is favored in less acidic media. Such bi-functional adsorbents are considerably more effective at removal of Cr(VI) than those simply modified with thiol groups alone. The whole reduction-sorption process was characterized by fast kinetics, thus permitting efficient use of the SiO2-SH/ED3A adsorbent in dynamic conditions (column experiments). Monitoring the amount of immobilized chromium species on the solid was achieved using X-ray fluorescence spectroscopy and UV-vis spectroscopy. Studying the influence of ionic strength and presence of heavy metals revealed few interference on Cr(VI) removal. PMID:23500426

  10. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    NASA Astrophysics Data System (ADS)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  11. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  12. The functionalization of metallic and semiconductor surfaces with organic and inorganic species

    NASA Astrophysics Data System (ADS)

    Schmeltzer, Jason M.

    The discipline of surface chemistry has rapidly expanded within recent years, attaining richness and diversity not unlike the more traditional divisions of organic, inorganic, physical, and biological chemistries. The boundless human drive to better understand the natural order as well as to better improve the existence of mankind has not ignored the physical, material, and chemical activities of interfaces, but rather the opposite. As computers shrink to ever-smaller sizes while growing in complexity---as devices and machines diminish to near-inconceivable dimensions---as the agents of technology miniaturize to comply with the endless demands of more-for-less---the chemistry of surfaces will continue to fulfill a crucial part in the advancement of new industries. This thesis details work into three realms of surface chemistry. Chapter One introduces porous silicon and presents a background of this unique, nanocrystalline substance. Described particularly is a new surface reaction to functionalize this material with organic groups; named carbocation-mediated hydrosilylation, this chemical treatment yields substrates derivatized with silicon-carbon bonds, the optimal surface group for imparting stability and functionality to the easily corroded, chemically limited material. Chapter Two discusses the electroless deposition of noble metal particles upon a number of metal and semiconductor surfaces. These reactions require neither external reducing agents nor electrical current to accomplish the formation of metal films, exciting and essential not merely from the fundamental perspectives of surface researches, but also from the aspects of fabricating micro- and nanoscale devices via controlled and patterned metallization reactions. Chapter Three returns to porous silicon and discusses attempts to covalently functionalize the material surface with thiolate-encapsulated gold nanoparticles; such surface-bound species may be useful for sensing, composite materials, and a

  13. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  14. Study on bending behavior of ionic polymer metal composites with various organic solvents and cationic species

    NASA Astrophysics Data System (ADS)

    Nam, Byung K.; Yoo, Youngtai

    2005-05-01

    Ion exchange polymer metal composites (IPMC) are electro-active actuators that show large deformation in the presence of low applied voltage. Perfluorosulfonic acid membrane, Nafion, is one of the most widely studied materials for this purpose. Experimental studies were carried out on the bending behavior of Nafion-based IPMCs containing various solvents and cation species. Various counter cations of sulfonate groups in the membrane were obtained by soaking the composite membrane in aqueous salt solutions. The salts used in ion exchange process include LiOH, NaOH, Cu(NO3)2, Co(NO3)2. Ion-exchange capacity of the IPMC was measured by ICP. In the case of cationic effect the Li-form IPMC demonstrated an immediate and efficient deformation behavior at 1 DC V, while divalent cuprous cation containing IPMC exhibited the larger tip displacement at an elevated electric potential. A threshold electric driving force appears to be required for cations with large hydration and high volume. IPMCs were also prepared by soaking in various transport media. The solutions were prepared by adding 1 mole of NMP, DMF, DMSO, and PEG 200 in water. The feasibility of D2O was also investigated. Addition of organic polar solvents in water decreases the dielectric constant of medium, which subsequently reduces the dissociation of ion pairs. Among the various solutions the heavy water, D2O and DMSO/water (1 Mole/L) mixture demonstrated unusually stable tendency in terms of electrolysis.

  15. Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework

    SciTech Connect

    Fei, Honghan; Shin, JaeWook; Meng, Ying Shirley; Adelhardt, Mario; Sutter, Jörg; Meyer, Karsten; Cohen, Seth M.

    2014-04-02

    An isolated metal-monocatecholato moiety has been achieved in a highly robust metal–organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and ⁵⁷Fe Mössbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = University of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.5–1 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for ‘green’ chemistry processes.

  16. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    PubMed

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-01

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity. PMID:26942867

  17. Source apportionment of airborne particulate matter using inorganic and organic species as tracers

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Xia, Xiaoyan; Rattigan, Oliver V.; Chalupa, David C.; Utell, Mark J.

    2012-08-01

    Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solution was found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of them was necessary to resolve SOA and wood combustion factors in urban areas.

  18. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    PubMed

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  19. Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana.

    PubMed

    Courtois, Elodie A; Paine, C E Timothy; Blandinieres, Pierre-Alain; Stien, Didier; Bessiere, Jean-Marie; Houel, Emeline; Baraloto, Christopher; Chave, Jerome

    2009-11-01

    Volatile organic compounds (VOCs) are produced by a broad range of organisms, from bacteria to mammals, and they represent a vast chemical diversity. In plants, one of the preeminent roles of VOCs is their repellent or cytotoxic activity, which helps the plant deter its predators. Most studies on VOCs emitted by vegetative parts have been conducted in model plant species, and little is known about patterns of VOC emissions in diverse plant communities. We conducted a survey of the VOCs released immediately after mechanical damage of the bark and the leaves of 195 individual trees belonging to 55 tropical tree species in a lowland rainforest of French Guiana. We discovered a remarkably high chemical diversity, with 264 distinct VOCs and a mean of 37 compounds per species. Two monoterpenes (alpha-pinene and limonene) and two sesquiterpenes (beta-caryophyllene and alpha-copaene), which are known to have cytotoxic and deterrent effects, were the most frequent compounds in the sampled species. As has been established for floral scents, the blend of VOCs is largely species-specific and could be used to discriminate among 43 of the 55 sampled species. The species with the most diverse blends were found in the Sapindales, Laurales, and Magnoliales, indicating that VOC diversity is not uniformly distributed among tropical species. Interspecific variation in chemical diversity was caused mostly by variation in sesquiterpenes. This study emphasizes three aspects of VOC emission by tropical tree species: the species-specificity of the mixtures, the importance of sesquiterpenes, and the wide-ranging complexity of the mixtures. PMID:20012675

  20. Self-organized multi-species vegetation patterns: the role of connectivity of environmental niches in natural water harvesting ecosystems

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.

  1. Adsorption of organic molecules on silica surface.

    PubMed

    Parida, Sudam K; Dash, Sukalyan; Patel, Sabita; Mishra, B K

    2006-09-13

    The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review

  2. CONCENTRATIONS OF PARTICULATE ORGANIC SPECIES MEASURED IN INDOOR AND OUTDOOR ENVIRONMENTS DURING THE TAMPA ASTHMATIC CHILDREN'S STUDY ( TACS )

    EPA Science Inventory

    The Tampa Asthmatic Children's Study (TACS) was completed to assess environmental exposures for a group of asthmatic children (n = 9) under the age of six and living in Tampa, Florida. Concentrations of particulate organic species are reported from residential indoor, residential...

  3. Photodecomposition of chloromethanes adsorbed on silica surfaces

    NASA Technical Reports Server (NTRS)

    Ausloos, P.; Rebbert, R. E.; Glasgow, L.

    1977-01-01

    Irradiation of CCl4, CFCl3, and CF2Cl2 in the presence of C2H6 in vessels containing silica sand or fused quartz tubing results in the formation of chlorine-containing products. The formation of these compounds occurs at wavelengths extending up to approximately 400 nm, that is, at wavelengths well beyond the absorption threshold of the chloromethanes in the gas phase. It is suggested that CCl4 adsorbed on silica surfaces photodissociates to yield CCl3 and CCl2 species. The poor material balance obtained in these experiments indicates that several of the chlorine-containing fragments are strongly adsorbed on the surface. At a CCl4 pressure of 13 Pa (0.1 torr), photolysis with 366 nm light in the presence of sand results in the decomposition of one molecule for every 10,000 photons striking the surface. Under otherwise identical conditions, the photon-induced breadkdown of CFCl3 and CF2Cl2 is respectively only 10% or 3% as efficient.

  4. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na2CO3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...

  5. Spectroscopic investigations of the chemical and physical interactions of organic molecules with ice

    NASA Astrophysics Data System (ADS)

    Hill, N.; Horn, A.

    2003-04-01

    Following suggestions that the interaction between organic species and ice has the potential to influence the gas phase concentrations of oxygen-containing organic species in the upper troposphere, spectroscopic studies of the nature of the partitioning process have been performed. IR spectra reveal that non-ionising species such as alcohols and ketones, although not strongly adsorbed to the ice at upper troposphere temperatures, nevertheless disrupt the ice surface sufficiently to perturb the chemistry of other species. For example, nitrogen oxide species (NO_2, HNO_3) interact differently with clean and organic-doped ice surfaces. We present an analysis of this phenomenon and its potential implications for upper troposphere chemistry.

  6. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities. PMID:27056098

  7. Reactive and organic halogen species in three different European coastal environments

    NASA Astrophysics Data System (ADS)

    Peters, C.; Pechtl, S.; Stutz, J.; Hebestreit, K.; Hönninger, G.; Heumann, K. G.; Schwarz, A.; Winterlik, J.; Platt, U.

    2005-12-01

    We present results of three field campaigns using active longpath DOAS (Differential Optical Absorption Spectroscopy) for the study of reactive halogen species (RHS) BrO, IO, OIO and I2. Two recent field campaigns took place in Spring 2002 in Dagebüll at the German North Sea Coast and in Spring 2003 in Lilia at the French Atlantic Coast of Brittany. In addition, data from a campaign in Mace Head, Ireland in 1998 was partly re-evaluated. During the recent field campaigns volatile halogenated organic compounds (VHOCs) were determined by a capillary gas chromatograph coupled with an electron capture detector and an inductively coupled plasma mass spectrometer (GC/ECD-ICPMS) in air and water. Due to the inhomogeneous distribution of macroalgae at the German North Sea Coast we found a clear connection between elevated levels of VHOCs and the appearance of macroalgae. Extraordinarily high concentrations of several VHOCs, especially CH3I and CH3Br of up to 1830 pptv and 875 pptv, respectively, were observed at the coast of Brittany, demonstrating the outstanding level of bioactivity there. We found CH2I2 at levels of up to 20 pptv, and a clear anti-correlation with the appearance of IO. The IO mixing ratio reached up to 7.7±0.5 ppt(pmol/mol) during the day, in reasonable agreement with model studies designed to represent the meteorological and chemical conditions in Brittany. For the two recent campaigns the DOAS spectra were evaluated for BrO, OIO and I2, but none of these species could be clearly identified (average detection limits around 2 ppt, 3 ppt, 20 ppt, resp., significantly higher in individual cases). Only in the Mace Head spectra evidence was found for the presence of OIO. Since macroalgae under oxidative stress are suggested to be a further source for I2 in the marine boundary layer, we re-analyzed spectra in the 500-600 nm range taken during the 1998 PARFORCE campaign in Mace Head, Ireland, which had not previously been analyzed for I2. We identified

  8. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences

    PubMed Central

    Tran, Trung D.; Cao, Hieu X.; Jovtchev, Gabriele; Novák, Petr; Vu, Giang T. H.; Macas, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-01-01

    The monophyletic carnivorous genus Genlisea (Lentibulariaceae) is characterized by a bi-directional genome size evolution resulting in a 25-fold difference in nuclear DNA content. This is one of the largest ranges found within a genus so far and makes Genlisea an interesting subject to study mechanisms of genome and karyotype evolution. Genlisea nigrocaulis, with 86 Mbp one of the smallest plant genomes, and the 18-fold larger genome of G. hispidula (1,550 Mbp) possess identical chromosome numbers (2n = 40) but differ considerably in chromatin organization, nuclear and cell size. Interphase nuclei of G. nigrocaulis and of related species with small genomes, G. aurea (133 Mbp, 2n ≈ 104) and G. pygmaea (179 Mbp, 2n = 80), are hallmarked by intensely DAPI-stained chromocenters, carrying typical heterochromatin-associated methylation marks (5-methylcytosine, H3K9me2), while in G. hispidula and surprisingly also in the small genome of G. margaretae (184 Mbp, 2n = 38) the heterochromatin marks are more evenly distributed. Probes of tandem repetitive sequences together with rDNA allow the unequivocal discrimination of 13 out of 20 chromosome pairs of G. hispidula. One of the repetitive sequences labeled half of the chromosome set almost homogenously supporting an allopolyploid status of G. hispidula and its close relative G. subglabra (1,622 Mbp, 2n = 40). In G. nigrocaulis 11 chromosome pairs could be individualized using a combination of rDNA and unique genomic probes. The presented data provide a basis for future studies of karyotype evolution within the genus Genlisea. PMID:26347752

  9. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences.

    PubMed

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Novák, Petr; Vu, Giang T H; Macas, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-01-01

    The monophyletic carnivorous genus Genlisea (Lentibulariaceae) is characterized by a bi-directional genome size evolution resulting in a 25-fold difference in nuclear DNA content. This is one of the largest ranges found within a genus so far and makes Genlisea an interesting subject to study mechanisms of genome and karyotype evolution. Genlisea nigrocaulis, with 86 Mbp one of the smallest plant genomes, and the 18-fold larger genome of G. hispidula (1,550 Mbp) possess identical chromosome numbers (2n = 40) but differ considerably in chromatin organization, nuclear and cell size. Interphase nuclei of G. nigrocaulis and of related species with small genomes, G. aurea (133 Mbp, 2n ≈ 104) and G. pygmaea (179 Mbp, 2n = 80), are hallmarked by intensely DAPI-stained chromocenters, carrying typical heterochromatin-associated methylation marks (5-methylcytosine, H3K9me2), while in G. hispidula and surprisingly also in the small genome of G. margaretae (184 Mbp, 2n = 38) the heterochromatin marks are more evenly distributed. Probes of tandem repetitive sequences together with rDNA allow the unequivocal discrimination of 13 out of 20 chromosome pairs of G. hispidula. One of the repetitive sequences labeled half of the chromosome set almost homogenously supporting an allopolyploid status of G. hispidula and its close relative G. subglabra (1,622 Mbp, 2n = 40). In G. nigrocaulis 11 chromosome pairs could be individualized using a combination of rDNA and unique genomic probes. The presented data provide a basis for future studies of karyotype evolution within the genus Genlisea. PMID:26347752

  10. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity.

    PubMed

    Li, Yang; Niu, Junfeng; Shang, Enxiang; Crittenden, John Charles

    2016-07-01

    The effect of humic acid (HA) or fulvic acid (FA) on reactive oxygen species (ROS) generation by six metal-oxide nanoparticles (NPs) and their toxicities toward Escherichia coli was investigated under UV irradiation. Dissolved organic matter (DOM) decreased OH generation by TiO2, ZnO, and Fe2O3, with FA inhibiting OH generation more than HA. The generated OH in NPs/DOM mixtures was higher than the measured concentrations because DOM consumes OH faster than its molecular probe. None of NPs/FA mixtures produced O2(-). The generated O2(-) concentrations in NPs/HA mixtures (except Fe2O3/HA) were higher than the sum of O2(-) concentrations that produced as NPs and HA were presented by themselves. Synergistic O2(-) generation in NPs/HA mixtures resulted from O2 reduction by electron transferred from photoionized HA to NPs. DOM increased (1)O2 generation by TiO2, CuO, CeO2, and SiO2, and FA promoted (1)O2 generation more than HA. Enhanced (1)O2 generation resulted from DOM sensitization of NPs. HA did not increase (1)O2 generation by ZnO and Fe2O3 primarily because released ions quenched (1)O2 precursor ((3)HA*). Linear correlation was developed between total ROS concentrations generated by NPs/DOM mixtures and bacterial survival rates (R(2) ≥ 0.80). The results implied the necessity of considering DOM when investigating the photoreactivity of NPs. PMID:27064207

  11. Organic complexation and translocation of ferric iron in podzols of the Negro River watershed. Separation of secondary Fe species from Al species

    NASA Astrophysics Data System (ADS)

    Fritsch, E.; Allard, Th.; Benedetti, M. F.; Bardy, M.; do Nascimento, N. R.; Li, Y.; Calas, G.

    2009-04-01

    The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of Fe III in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of Fe III stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses. Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe 2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted Fe III bound to organic ligands (Fe IIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of Fe IIIOM to the rivers. The concentration of Fe IIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The

  12. Synthesis of 4-vinylpyridine-divinylbenzene copolymer adsorbents for microwave-assisted desorption of benzene.

    PubMed

    Meng, Qing Bo; Yang, Go-Su; Lee, Youn-Sik

    2012-02-29

    Reports on the development of polymer adsorbents for microwave-assisted desorption of nonpolar volatile organic compounds (VOCs) are rare. In this study, we synthesized macroporous polymeric adsorbents with hydrophilic methyl pyridinium units for microwave-assisted desorption of nonpolar VOCs. The benzene adsorption and desorption properties of the adsorbents were investigated under both dry and humid conditions. Under humid conditions, as the content of the hydrophilic methyl pyridinium units in the adsorbents increased from 0 to 20%, the adsorption capacity of benzene decreased from about 21 to 7 mg/g, while the desorption efficiency of benzene increased significantly from 48 to 87%. The maximum concentration of desorbate also increased significantly as the content of the hydrophilic units was increased under humid conditions. We attributed the enhanced desorption efficiency mainly to more adsorbed moisture, which indirectly allowed heating of the polymer adsorbents to higher temperatures upon irradiation with 600 W microwaves. PMID:22236950

  13. Adsorption characteristics of water vapor on gear-pellet and honeycomb-pellet types of adsorbents containing A-type zeolite

    SciTech Connect

    Nakamura, A.; Munakata, K.; Hara, K.; Narita, S.; Sugiyama, T.; Kotoh, K.; Tanaka, M.; Uda, T.

    2015-03-15

    It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritiated water vapor on adsorbents with high surface areas. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. In this study, attention was focused on new adsorbents, which are gear-type pellet MS5A adsorbent, gear-type pellet MS4A adsorbent and honeycomb-type pellet MS5A adsorbent. The adsorption characteristics of the new adsorbent were comparatively studied with conventional type of adsorbents (pellet-type MS5A adsorbent and pebble-type MS5A adsorbent), in terms of adsorption capacity, pressure loss and adsorption rate. It was found that the adsorption capacity of water vapor on the gear-type adsorbents is higher than that on a honeycomb-type adsorbent. The experimental breakthrough curves indicate that the adsorption rates of water vapor on gear-type and honeycomb-type adsorbents are smaller than that on conventional type adsorbents. Various adsorption models were also tested to correlate the experimental isotherms. It was found that the Langmuir-Freundlich model could properly correlate the experimental adsorption isotherms.

  14. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  15. Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms

    PubMed Central

    2010-01-01

    Background Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns) in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. Results The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Conclusion Frozen plasticity theory, which includes the Darwinian model of evolution as a special case - the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. Reviewers This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell). PMID:20067646

  16. Mapping the Biosphere: exploring species to understand the origin, organization, and sustainability of biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The time is ripe for a comprehensive mission to explore and document Earth’s species. We conclude that a goal to describe 10 million new species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation, and...

  17. Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus

    PubMed Central

    Sztarker, Julieta; Strausfeld, Nicholas; Andrew, David; Tomsic, Daniel

    2014-01-01

    Crustaceans are among the most extensively distributed arthropods, occupying many ecologies and manifesting a great variety of compound eye optics; but in comparison with insects, relatively little is known about the organization and neuronal morphologies of their underlying optic neuropils. Most studies, which have been limited to descriptions of the first neuropil - the lamina - suggest that different species have approximately comparable cell types. However, such studies have been limited with regard to the types of neurons they identify and most omit their topographic relationships. It is also uncertain whether similarities, such as they are, are independent of visual ecologies. The present account describes and compares the morphologies and dispositions of monopolar and other efferent neurons as well as the organization of tangential and smaller centrifugal neurons in two grapsoid crabs, one from the S. Atlantic, the other from the N. Pacific. Because these species occupy significantly disparate ecologies we ask whether this might be reflected in differences of cell arrangements within the most peripheral levels of the visual system. The present study identifies such differences with respect to the organization of centrifugal neurons to the lamina. We also identify in both species neurons in the lamina that have hitherto not been identified in crustaceans and we draw specific comparisons between the layered organization of the grapsoid lamina and layered laminas of insects. PMID:19123235

  18. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  19. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Shao, Min; Lee, Frank S. C.; Yu, Jianzhen

    2013-11-01

    In China, fast increase in passenger cars and gasoline consumption with yet quite limited vapor recovery during gasoline distribution has procured growing concern about gasoline evaporation as an important emission source of volatile organic compounds (VOCs), particularly in megacities hard-hit by air quality problems. This study presents VOC species profiles related to major pathways of gasoline evaporative loss in China, including headspace displacement, refueling operations and spillage/leakage. Apart from liquid gasoline and headspace vapors, gasoline vapors emitted when refueling cars in service stations or tank trucks in oil marketing depots were also sampled in situ with vapor recovery units (VRUs) turning on/off. Alkanes, alkenes and aromatic hydrocarbons accounted for 55-66, 21-35 and 4-8% in refueling vapors, 59-72, 18-28 and 4-10% in headspace vapors and 33-51, 8-15 and 38-48% in liquid gasoline samples, respectively. During refueling with VRUs turning on, total VOCs in vapors were less than one fifth of that with VRUs turning off, and aromatic hydrocarbons had higher weight percentages of about 8% in contrast with that of about 4% during refueling with VRUs turning off. Refueling vapors, especially for that with VRUs turning off, showed a larger fraction of light hydrocarbons including C3-C5 light alkenes when compared to headspace vapors, probably due to splashing and disturbance during filling operation. In refueling or headspace vapors the ratios of i-pentane/benzene, i-pentane/toluene, and MTBE (methyl tert-butyl ether)/benzene ranged 8.7-57, 2.7-4.8, and 1.9-6.6, respectively; and they are distinctively much higher than those previously reported in vehicle exhausts. Calculated normalized reactivity or ozone formation potential of the gasoline vapors in China ranged 3.3-4.4 g O3 g-1 VOC, about twice that of gasoline headspace vapors reported in USA as a result of larger fractions of alkenes in China's gasoline vapors. The results suggested that

  20. Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2005-01-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions

  1. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  2. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift

  3. Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment

    SciTech Connect

    Talmage, S.S. Oak Ridge National Lab., TN ); Walton, B.T. )

    1990-08-01

    The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparative evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo(a)pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs.

  4. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  5. Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna.

    PubMed

    Gaudron, S M; Pradillon, F; Pailleret, M; Duperron, S; Le Bris, N; Gaill, F

    2010-07-01

    In this study, our goal was to test whether typical vent/seep organisms harbouring symbionts or not, would be able to settle on organic substrates deployed in the vicinity of chemosynthetic ecosystems. Since 2006, a series of novel standardized colonization devices (CHEMECOLI: CHEMosynthetic Ecosystem COlonization by Larval Invertebrates) filled with three types of substrates (wood, alfalfa and carbonate) have been deployed in different types of reducing habitats including cold seeps in the eastern Mediterranean, a mud volcano in the Norwegian Sea, and hydrothermal vents on the Mid-Atlantic Ridge for durations of 2 weeks to 1 year. For all deployments, highest species diversities were recovered from CHEMECOLIs filled with organic substrates. Larvae from species associated with thiotrophic symbionts such as thyasirid, vesicomyid and mytilid bivalves, were recovered in the eastern Mediterranean and at the Mid-Atlantic Ridge. At the Haakon Mosby Mud Volcano, larvae of symbiotic siboglinids settled on both organic and carbonate substrates. Overall, novel colonization devices (CHEMECOLI) filled with organic substrates attracted both fauna relying on chemosynthesis-derived carbon as well as fauna relying on heterotrophy the latter being opportunistic and tolerant to sulphide. PMID:20334908

  6. USING SELF-ORGANIZING MAPS TO EXPLORE PATTERNS IN SPECIES RICHNESS AND PROTECTION

    EPA Science Inventory

    The combination of species distributions with abiotic and landscape variables using Geographic Information Systems can be used to help prioritize areas for biodiversity protection, although the number of variables and complexity of the relationships between them can prove difficu...

  7. Tunable and white light emitting AlPO{sub 4} mesoporous glass by design of inorganic/organic luminescent species

    SciTech Connect

    He, Jin; Li, Rihong Yuan, Xinqiang; Zhang, Long; Wang, Yan; Xu, Shiqing

    2015-04-01

    The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin) luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu{sup 2+}/Eu{sup 3+} ions and coumarin 535 in sol-gel AlPO{sub 4} mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  8. Effect of Organic Matter Decomposition Level on Bacterial Species Diversity and Composition in Relationship to Pythium Damping-Off Severity

    PubMed Central

    Boehm, M. J.; Madden, L. V.; Hoitink, H. A. J.

    1993-01-01

    Rhizosphere bacteria were isolated from root tip segments of cucumber seedlings grown in a suppressive, slightly decomposed light-colored peat mix, a conducive, more decomposed dark-colored peat mix, and a suppressive dark peat mix amended with composted hardwood bark. The bacteria were identified by a gas chromatographic fatty acid methyl ester analysis. The total number of taxa recovered from a single root tip segment ranged from 9 to 18. No single taxon predominated on all root tip segments harvested from any of the mixes. The highest relative population density reached by a given taxon on any root tip segment was 45%. Hill's first and second diversity numbers, the modified Hill's ratio, and Hurlbert's rarefaction method, which were used as measures of species diversity, indicated that the organic matter decomposition level of the potting mixes did not affect bacterial species diversity. Bray-Curtis polar ordination and Dice resemblance functions, however, indicated that the organic matter decomposition level of a mix significantly influenced the composition of bacterial species in the rhizosphere. Pseudomonas spp. and other taxa capable of inducing suppression of pythium damping-off predominated in the suppressive mixes. These organisms were absent from the conducive mix, in which Arthrobacter and Bacillus spp. predominated. Although effective bacterial biocontrol agents were isolated from both the suppressive mixes and the conducive mix, the majority were isolated from the less decomposed suppressive mixes. Finally, the efficacy of strains was significantly greater in the slightly decomposed light peat mix than in the decomposed dark peat mix. Natural disease suppression within these mixes was associated with the organic matter decomposition level and the bacterial species compositions of the mixes. PMID:16349117

  9. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  10. The Spemann organizer meets the anterior-most neuroectoderm at the equator of early gastrulae in amphibian species

    PubMed Central

    Yanagi, Takanori; Ito, Kenta; Nishihara, Akiha; Minamino, Reika; Mori, Shoko; Sumida, Masayuki; Hashimoto, Chikara

    2015-01-01

    The dorsal blastopore lip (known as the Spemann organizer) is important for making the body plan in amphibian gastrulation. The organizer is believed to involute inward and migrate animally to make physical contact with the prospective head neuroectoderm at the blastocoel roof of mid- to late-gastrula. However, we found that this physical contact was already established at the equatorial region of very early gastrula in a wide variety of amphibian species. Here we propose a unified model of amphibian gastrulation movement. In the model, the organizer is present at the blastocoel roof of blastulae, moves vegetally to locate at the region that lies from the blastocoel floor to the dorsal lip at the onset of gastrulation. The organizer located at the blastocoel floor contributes to the anterior axial mesoderm including the prechordal plate, and the organizer at the dorsal lip ends up as the posterior axial mesoderm. During the early step of gastrulation, the anterior organizer moves to establish the physical contact with the prospective neuroectoderm through the “subduction and zippering” movements. Subduction makes a trench between the anterior organizer and the prospective neuroectoderm, and the tissues face each other via the trench. Zippering movement, with forming Brachet's cleft, gradually closes the gap to establish the contact between them. The contact is completed at the equator of early gastrulae and it continues throughout the gastrulation. After the contact is established, the dorsal axis is formed posteriorly, but not anteriorly. The model also implies the possibility of constructing a common model of gastrulation among chordate species. PMID:25754292

  11. Complementary effects of soil organism and plant propagule introductions in restoration of species-rich grassland communities.

    SciTech Connect

    Kardol, Paul; Bezemer, T Martijn; van der Putten, Wim H.

    2009-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods to introduce plant seeds. However, the question is whether soil fertility reduction is always necessary for getting plant species established on target sites. In a three-year field experiment with ex-arable soil with intensive farming history, we tested single and combined effects of soil fertility reduction and sowing mid-successional plant species on plant community development and soil biological properties. A controlled microcosm study was performed to test short-term effects of soil fertility reduction measures on biomass production of mid-successional species. Soil fertility was manipulated by adding carbon (wood or straw) to incorporate plant-available nutrients into organic matter, or by removing nutrients through top soil removal (TSR). The sown species established successfully and their establishment was independent of carbon amendments. TSR reduced plant biomass, and effectively suppressed arable weeds, however, created a desert-like environment, inhibiting the effectiveness of sowing mid-successional plant species. Adding straw or wood resulted in short-term reduction of plant biomass, suggesting a temporal decrease in plant-available nutrients by microbial immobilisation. Straw and wood addition had little effects on soil biological properties, whereas TSR profoundly reduced numbers of bacteria, fungal biomass and nematode abundance. In conclusion, in ex-arable soils, on a short term sowing is more effective for grassland restoration than strategies aiming at soil fertility reduction.

  12. Trueness, Precision, and Detectability for Sampling and Analysis of Organic Species in Airborne Particulate Matter

    EPA Science Inventory

    Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...

  13. Influence of sediment organic carbon on estuarine benthic species of the US West Coast

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of nutrient enrichment in estuarine environments. However, the determination of biologically relevant TOC criteria to indicate sediment quality is complicated by the relationship between TOC and grain size. Both variables...

  14. EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

  15. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further. PMID:10048207

  16. Species-Specific Effects of Epigeic Earthworms on Microbial Community Structure during First Stages of Decomposition of Organic Matter

    PubMed Central

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2012-01-01

    Background Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. Methodology/Principal Findings To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus. Conclusions/Significance Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is

  17. Structural characterization of adsorbed helical and beta-sheet peptides

    NASA Astrophysics Data System (ADS)

    Samuel, Newton Thangadurai

    Adsorbed peptides on surfaces have potential applications in the fields of biomaterials, tissue engineering, peptide microarrays and nanobiotechnology. The surface region, the "biomolecular interface" between a material and the biological environment, plays a crucial role in these applications. As a result, characterization of adsorbed peptide structure, especially with respect to identity, concentration, spatial distribution, conformation and orientation, is important. The present research employs NEXAFS (near-edge X-ray absorption fine structure spectroscopy) and SFG (sum frequency generation spectroscopy) to provide information about the adsorbed peptide structure. Soft X-ray NEXAFS is a synchrotron-based technique which typically utilizes polarized X-rays to interrogate surfaces under ultra-high vacuum conditions. SFG is a non-linear optical technique which utilizes a combination of a fixed visible and a tunable infrared laser beams to generate a surface-vibrational spectrum of surface species. SFG has the added advantage of being able to directly analyze the surface-structure at the solid-liquid interface. The main goals of the present research were twofold: characterize the structure of adsorbed peptides (1) ex situ using soft X-ray NEXAFS, and (2) in situ using non-linear laser spectroscopy (SFG). Achieving the former goal involved first developing a comprehensive characterization of the carbon, nitrogen and oxygen k-edge NEXAFS spectra for amino acids, and then using a series of helical and beta-sheet peptides to demonstrate the sensitivity of polarization-dependent NEXAFS to secondary structure of adsorbed peptides. Characterizing the structure of adsorbed peptides in situ using SFG involved developing a model system to probe the solid-liquid interface in situ; demonstrating the ability to probe the molecular interactions and adsorbed secondary structure; following the time-dependent ordering of the adsorbed peptides; and establishing the ability to obtain

  18. Management filters and species traits: Weed community assembly in long-term organic and conventional systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Community assembly theory provides a useful framework to assess the response of weed communities to agricultural management systems and to improve the predictive power of weed science. Under this framework, weed community assembly is constrained by abiotic and biotic "filters" that act on species tr...

  19. Spiroplasma-like organisms closely associated with the gut in five leafhopper species (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spiroplasmas are bacteria in the Class Mollicutes that are frequently associated with insects and/or plants. Here, we identified apparent commensal spiroplasmas in the midgut and hindgut of five leafhopper species from laboratory-reared colonies. Those found in Dalbulus elimatus, Endria inimica and ...

  20. TIME DEPENDENCE OF ACCUMULATION AND BINDING OF INORGANIC AND ORGANIC ARSENIC SPECIES IN RABBIT ERYTHROCYTES

    EPA Science Inventory

    The uptake by rabbit erythrocytes of 0.4 mM arsenite, As(III), arsenate, As(V), monomethylarsinate, MMA(V) and dimethylarsonate, DNM(V) were compared over 24 hours. n membrane-free hemolysate, the protein-to-cytosol ratio was determined by ultrafiltration and arsenic species were...

  1. Domain organization and phylogenetic analysis of the chitinase family of proteins in three species of insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bioinformatics investigation of three insect species with completed genome sequences has revealed that insect chitinase-like proteins (glycosylhydrolase family 18) are encoded by a rather large and diverse group of genes. We identified 15, 16, and 13 putative chitinase-like genes in the genomic d...

  2. The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways

    PubMed Central

    Dugrand-Judek, Audray; Olry, Alexandre; Hehn, Alain; Costantino, Gilles; Ollitrault, Patrick; Froelicher, Yann; Bourgaud, Frédéric

    2015-01-01

    Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the “grapefruit juice effect”. Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas) and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas) synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus varieties for use in

  3. Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples.

    PubMed

    Glaus, Reto; Riedel, Jens; Gornushkin, Igor

    2015-10-01

    Recently, the detection of molecular species in laser-induced breakdown spectroscopy (LIBS) has gained increasing interest, particularly for isotopic analysis. In LIBS of organic materials, it is predominantly CN and C2 species that are formed, and multiple mechanisms may contribute to their formation. To gain deeper insight into the formation of these species, laser-induced plasma of (13)C and (15)N labeled organic materials was investigated in a temporally and spatially resolved manner. LIBS on fumaric acid with a (13)C labeled double bond allowed the formation mechanism of C2 to be investigated by analyzing relative signal intensities of (12)C2, (12)C(13)C, and (13)C2 molecules. In the early plasma (<5 μs), the majority of C2 originates from association of completely atomized target molecules, whereas in the late plasma, the increased concentration of (13)C2 is due to incomplete dissociation of the carbon double bond. The degree of this fragmentation was found to be up to 80% and to depend on the type of the atmospheric gas. Spatial distributions of C2 revealed distinct differences for plasma generated in nitrogen and argon. A study of the interaction of ablated organics with ambient nitrogen showed that the ambient nitrogen contributed mainly to CN formation. The pronounced anisotropy of the C(15)N to C(14)N ratio across the diameter of the plasma was observed in the early plasma, indicating poor initial mixing of the plasma with the ambient gas. Overall, for accurate isotope analysis of organics, LIBS in argon with relatively short integration times (<10 μs) provides the most robust results. On the other hand, if information about the original molecular structure is of interest, then experiments in nitrogen (or air) with long integration times appear to be the most promising. PMID:26402464

  4. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  5. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction

    PubMed Central

    2010-01-01

    Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of

  6. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?

    PubMed

    Sulmon, Cécile; van Baaren, Joan; Cabello-Hurtado, Francisco; Gouesbet, Gwenola; Hennion, Françoise; Mony, Cendrine; Renault, David; Bormans, Myriam; El Amrani, Abdelhak; Wiegand, Claudia; Gérard, Claudia

    2015-07-01

    Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning. PMID:25813422

  7. Local NASA Scientists Discover New Species of Organism in Mars-Like Environment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Microbiologist Dr. Elena V. Pikuta, and Astrobiologist Richard Hoover culture extremophiles, microorganisms that can live in extreme environments, in the astrobiology laboratory at the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama. The scientists recently discovered a new species of extremophiles, Spirochaeta Americana. The species was found in Northern California's Mono Lake, an alkaline, briny oxygen-limited lake in a closed volcanic crater that Hoover believes may offer new clues to help identify sites to research for potential life on Mars. Hoover is an astrobiologist at NASA's Marshall Space Flight Center (MSFC), and Pikuta is a microbiologist with the Center for Space Plasma and Aeronomy Research Laboratory at the University of Alabama in Huntsville. The NSSTC is a partnership with MSFC, Alabama universities, industry, research institutes, and federal agencies.

  8. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  9. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    PubMed Central

    Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L

    2009-01-01

    Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800

  10. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Buerkle, C Alex; Forister, Matthew L; Fordyce, James A; Nice, Chris C

    2014-09-01

    Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome-wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree- and genetic ancestry-based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities. PMID:24866941

  11. The influence of tree species composition on the storage and mobility of semivolatile organic compounds in forest soils.

    PubMed

    Komprdová, Klára; Komprda, Jiří; Menšík, Ladislav; Vaňková, Lenka; Kulhavý, Jiří; Nizzetto, Luca

    2016-05-15

    Soil contamination with PCBs and PAHs in adjacent forest plots, characterized by a distinct composition in tree species (spruce only, mixed and beech only), was analyzed to investigate the influence of ecosystem type on contaminant mobility in soil under very similar climate and exposure conditions. Physical-chemical properties and contaminant concentrations in litter (L), organic (F, H) and mineral (A, B) soil horizons were analyzed. Contaminant distribution in the soil core varied both in relation to forest type and contaminant group/properties. Contaminant mobility in soil was assessed by examining the ratios of total organic carbon (TOC)-standardized concentrations across soil horizons (Enrichment factors, EFTOC) and the relationship between EFTOC and the octanol-water equilibrium partitioning coefficient (KOW). Contaminant distribution appeared to be highly unsteady, with pedogenic/biogeochemical drivers controlling contaminant mobility in organic layers and leaching controlling accumulation in mineral layers. Lighter PCBs displayed higher mobility in all forest types primarily controlled by leaching and, to a minor extent, diffusion. Pedogenic processes controlling the formation of soil horizons were found to be crucial drivers of PAHs and heavier PCBs distribution. All contaminants appeared to be more mobile in the soil of the broadleaved plot, followed by mixed canopy and spruce forest. Increasing proportion of deciduous broadleaf species in the forest can thus lead to faster degradation or the faster leaching of PAHs and PCBs. The composition of humic substances was found to be a better descriptor of contaminant concentration than TOC. PMID:26938316

  12. Anatomy of Subterranean Organs of Medicinally Used Cardueae and Related Species and its Value for Discrimination

    PubMed Central

    Fritz, Elisabeth; Saukel, Johannes

    2011-01-01

    Numerous species of the Asteraceae, the composites, are famous for their use in both traditional and conventional medicine. Reliable anatomical descriptions of these plants and of possible adulterations provide a basis for fast identification and cheap purity controls of respective medicinal drugs by means of light microscopy. Nevertheless, detailed comparative studies on root and rhizome anatomy of valuable as well as related inconsiderable composite plants are largely missing yet. The presented study aims to narrow this gap by performing anatomical analyses of roots and rhizomes of 16 species belonging to the tribe Cardueae, of formerly and currently used drugs as well as their near relatives as potential adulterations (Carlina acaulis L., Carlina vulgaris L., Arctium lappa L., Arctium tomentosum Mill., Carduus defloratus L., Carduus personata (L.) Jacq, Cirsium arvense (L.) Scop., Cirsium vulgare (Savi) Ten., Cirsium erisithales (Jacq.) Scop., Onopordum acanthium L., Silybum marianum (L.) Gaertn., Rhaponticum scariosum Lam., Centaurea jacea L., Centaurea scabiosa L., Centaurea cyanus L., Cnicus benedictus L.). A detailed verbal and graphical survey of the analysed anatomical features is provided. Several characters were finally extracted which allow for discrimination of the examined species and may be effectively used for drug quality controls. PMID:21617780

  13. Replication and Adaptive Mutations of Low Pathogenic Avian Influenza Viruses in Tracheal Organ Cultures of Different Avian Species

    PubMed Central

    Petersen, Henning; Matrosovich, Mikhail; Pleschka, Stephan; Rautenschlein, Silke

    2012-01-01

    Transmission of avian influenza viruses (AIV) between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP) AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC) and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants. PMID:22912693

  14. Seasonal variation of pheophorbide a and flavonoid in different organs of two Carpinus species and its correlation with immunosuppressive activity.

    PubMed

    Sheng, Qianqian; Fang, Xianying; Zhu, Zunling; Xiao, Wei; Wang, Zhenzhong; Ding, Gang; Zhao, Linguo; Li, Yujian; Yu, Ping; Ding, Zhibin; Sun, Qinru

    2016-06-01

    The genus Carpinus of Betulaceae is the most widely distributed in the European landscape. This study reports a comparative study based on the pheophorbide a and flavonoid content from the two main species of the genus Carpinus, Carpinus betulus and Carpinus turczaninowii, respectively, in Nanjing, China. The pheophorbide a and flavonoid content depends on the organ, species, and season. HPLC analysis showed that the pheophorbide a and flavonoid levels were the highest in May and June, respectively, from the leaves of C. betulus 'Fastigiata.' In contrast, the content of pheophorbide a and flavonoid in the stems of C. betulus 'Fastigiata' or in other species was low. The immunosuppressive effects of the ethyl acetate extracts and methanol extracts from the two Carpinus species were also evaluated. The ethyl acetate extracts of C. betulus 'Fastigiata' in May and the methanol extracts of C. betulus 'Fastigiata' in June showed better immunosuppressive activity than in other seasons, which coincided with the content of pheophorbide a and flavonoid, respectively. Our findings indicated that C. betulus 'Fastigiata' can serve as a medicinal plant against inflammation because of its pheophorbide a and flavonoid content. PMID:27112162

  15. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  16. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-19

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  17. INDUCTION OF PROPHAGE LAMBDA BY CHLORINATED ORGANICS: DETECTION OF SOME SINGLE-SPECIES/SINGLE-SITE CARCINOGENS

    EPA Science Inventory

    Twenty-eight chlorinated organic compounds were evaluated for their ability to induce DNA damage using the Microscreen prophage-induction assay in Escherichia coli. omparison of the performance characteristics of the prophage-induction and Salmonella assays to rodent carcinogenic...

  18. Effect of Natural Organic Matter on the Reduction of Nitroaromatics by Fe(II) Species

    EPA Science Inventory

    Although natural organic matter is a necessary electron source for the microbial mediated development of redox zones in nature, uncertainty still exists regarding its role(s) in the reduction of chemicals. This work studied the effect of Suwannee river humic acid (SRHA) on the r...

  19. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  20. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  1. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal.

    PubMed

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2016-02-24

    Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN. PMID:26888033

  2. A simultaneous multiple species acute toxicity test comparing relative sensitivities of six aquatic organisms to HgCl{sub 2}

    SciTech Connect

    McCrary, J.E.; Heagler, M.G.

    1995-12-31

    In the last few years there has been concern in the scientific community about observed declines in some amphibian species. These population declines could be reflecting a global phenomenon due to a general class sensitivity or may be part of a natural cycle. The suggestion of an overall greater sensitivity of amphibians is not supported. Studies show that amphibians, as a class, are neither more or less susceptible than fish to environmental conditions. Mercury has been found to be one of the most toxic of the heavy metals introduced into amphibian breeding waters. Six aquatic species were simultaneously exposed in a comparative acute toxicity test with mercury chloride: three amphibians, Rana catesbeiana (bullfrog), R. clamitans (green frog), and R. sphenocephala (southern leopard frog, formally classified as R. utricularia); two fish, Gambusia affinis (mosquitofish) and Notemigonus crysoleucas (golden shiner); one aquatic aligochaete, Lumbriculus variegatus (aquatic earthworm). The five test concentrations used were 1.4, 3.9, 12.0, 110.0, and 487.0 {micro}g Hg/L respectively. Ten organisms per species were randomly placed into the six test tanks (control and five concentrations), each species in a separate chamber. The resultant LC50-96hr values produced the following rank order: R. sphenocephala, 6.59 {micro}g Hg/L; R. clamitans, 14.7 {micro}g Hg/L; N. crysoleucas, 16.75 {micro}g Hg/L; L. variegatus, 43.72,ug Hg/L; G. affinis, 52.62 {micro}g Hg/L; R. catesbeiana, 63.36 {micro}g Hg/L. No general organism class sensitivity trend, for amphibians, was developed from this data, contrary to the implicit suggestions of some researchers.

  3. Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs.

    PubMed

    Laino, Aldana; Mattoni, Camilo; Ojanguren-Affilastro, Andrés; Cunningham, Mónica; Fernando Garcia, C

    2015-12-01

    Within arthropods most of the information related to the type of mobilization and storage of lipids is found in insects and crustaceans. Literature is scarce with relation to scorpions. This order is a remarkably important model of the biochemistry, since it is characterized as an animal with very primitive traits which have varied minimally through time. In the present study we characterize and compare lipids and fatty acids present in three species of scorpion: Timogenes elegans, Timogenes dorbignyi, and Brachistosternus ferrugineus, focusing the study on the main organs/tissues involved in the dynamics of lipids. As found in the fat body of insects, hepatopancreas of crustaceans and midgut diverticula of spiders, the hepatopancreas of the three species studied here turned out to be the organ of lipid storage (great quantity of triacylglycerides). With relation to the hemolymph and muscles, a great quantity of phospholipids was observed, which is possibly involved in membrane formation. It is important to highlight that unlike what happens in insects, in scorpions the main circulating energetic lipid is the triacylglyceride. This lipid is found in greater proportion in the hepatopancreas of females, surely for reproduction. The fatty acid of the different organs/tissues analyzed remained constant in the three species studied with certain characteristic patterns, thus observing saturated and unsaturated most abundant fatty acids of C16 and C18. Finally, it could be observed that in T. elegans, T. dorbignyi and B. ferrugineus scorpions, there is a lack of 20:4 that generates a special condition within fatty acids of arthropods. PMID:26303276

  4. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Galbičková, Blanka; Ševčíková, Janka; Soldán, Maroš

    2014-12-01

    The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  5. MOFs as adsorbents for low temperature heating and cooling applications.

    PubMed

    Henninger, Stefan K; Habib, Hesham A; Janiak, Christoph

    2009-03-01

    The 3D metal-organic framework (MOF) (3)(infinity){[Ni(3)(mu(3)-btc)(2)(mu(4)-btre)(2)(mu-H(2)O)(2)]. approximately 22H(2)O} is found to be a reversibly dehydratable-hydratable water-stable MOF material with a large loading spread of 210 g/kg as a candidate for solid adsorbents in heat transformation cycles for refrigeration, heat pumping, and heat storage. PMID:19206233

  6. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  7. Circadian consequences of social organization in the ant species Camponotus compressus

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Lone, Shahnaz Rahman; Goel, Anubhuthi; Chandrashekaran, M. K.

    The locomotor activity rhythm of different castes of the ant species Camponotus compressus was monitored individually under laboratory light/dark (LD) cycles, and under continuous darkness (DD). The colony of this ant species comprises two sexual castes, the queens and the males, and three worker castes, namely the major, media, and minor workers. The virgin males and virgin queens display rhythmic activity patterns, but the mated queens were arrhythmic while laying eggs, with the rhythmicity resuming soon after egg-laying. Under the LD regime, major workers showed nocturnal patterns, while about 75% of the media workers displayed nocturnal patterns and about 25% showed diurnal patterns. Under the DD regime, most major workers exhibited circadian rhythm of activity with a single steady state, whereas media workers displayed two types of activity patterns, with activity patterns changing after 6-9 days in DD (turn-arounds). The pre-turn-around τ of the ants that showed nocturnal activity patterns during LD entrainment was <24 h after release into DD, which then became >24 h, after 6-9 days. On the other hand, the pre-turn-around τ of those ants that exhibited diurnal patterns during LD entrainment was first >24 h after release into DD, and then became <24 h, after 6-9 days. The activity of the minor workers neither entrained to LD cycles nor showed any sign of free-run in DD. It appears that the circadian clocks of the ant species C. compressus are flexible, and may perhaps depend upon the tasks assigned to them in the colony.

  8. To-date spacecraft applications and demonstration testing results, and future product development for new molecular adsorber technologies

    NASA Technical Reports Server (NTRS)

    Thomson, Shaun; Hansen, Patricia; Straka, Sharon; Chen, Philip; Triolo, Jack; Bettini, Ron; Carosso, Paolo; Carosso, Nancy

    1997-01-01

    The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.

  9. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGESBeta

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  10. The Uranium from Seawater Program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary; Kuo, Li-Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T; Bonheyo, George; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang P; Bianucci, Laura; Wood, Jordana; Warner, Marvin G; Peterson, Sonja; Abrecht, David; Mayes, Richard T; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas; Addleman, Shane R; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Dr. Ken; Breier, Crystalline; D'Alessandro, Dr. Evan

    2016-01-01

    The Pacific Northwest National Laboratory s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole

  11. Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor.

    PubMed

    Huang, Jen-How; Matzner, Egbert

    2007-09-01

    To identify the role of the forest floor in arsenic (As) biogeochemistry, concentrations and fluxes of inorganic and organic As in throughfall, litterfall and forest floor percolates at different layers were investigated. Nearly 40% of total As(total) input (5.3g Asha(-1)yr(-1)) was retained in Oi layer, whereas As(total) fluxes from Oe and Oa layers exceeded the input by far (10.8 and 20g Asha(-1)yr(-1), respectively). Except dimethylarsinic acid (DMA), fluxes of organic As decreased with depth of forest floor so that <10% of total deposition (all <0.3g Asha(-1)yr(-1)) reached the mineral soil. All forest floor layers are sinks for most organic As. Conversely, Oe and Oa layers are sources of As(total), arsenite, arsenate and DMA. Significant correlations (r>/=0.43) between fluxes of As(total), arsenite, arsenate or DMA and water indicate hydrological conditions and adsorption-desorption as factors influencing their release from the forest floor. The higher net release of arsenite from Oe and Oa and of DMA from Oa layer in the growing than dormant season also suggests microbial influences on the release of arsenite and DMA. PMID:17624646

  12. Organic and inorganic species in produced water: Implications for water reuse

    USGS Publications Warehouse

    Kharaka, Y.K.; Rice, C.A.

    2004-01-01

    Currently 20-30 billion bbl/yr of formation water are co-produced in the US with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ??? 5000 to > 350,000 mg/L TDS. Chloride, Na, and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3, and dissolved organics, including, BTEX, phenols and PAH may be relatively high. As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western US. The cost of reclaiming this water to meet irrigation, industrial, and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, CA. This produced water had low salinity but high concentration of Si and organics. Removal of B, Si, NH3, and especially organics from this water proved difficult, and the estimated treatment cost was high for water treated for industrial and municipal uses.

  13. Heterogeneous Ozonolysis of Surface Adsorbed Lignin Pyrolysis Products

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.

    2012-12-01

    Biomass combustion releases semi-volatile organic compounds into the troposphere, including many phenols and methoxyphenols as the result of lignin pyrolysis. Given their relatively low vapor pressures, these compounds readily adsorb on inorganic and organic aerosol substrates where they may alter aerosol properties and undergo heterogeneous chemistry. We use infrared spectroscopy (DRIFTS and ATR-FTIR) to monitor the adsorption and subsequent heterogeneous ozonolysis of model lignin pyrolysis products, including catechol, eugenol, and 4-propylguaiacol. Ozonolysis reaction kinetics were compared on various inorganic substrates - such as Al2O3 and NaCl, which serve as mineral and sea salt aerosol substrates, respectively - and as a function of ozone concentration and relative humidity. Following in situ FTIR analysis, the adsorbed organics were extracted and analyzed using gas chromatography-mass spectroscopy to identify reaction products and quantify product branching ratios. Ozonolysis of catechol and 4-propylguaiacol readily resulted in ring cleavage forming dicarboxylic acids (e.g., muconic acid). Eugenol ozonolysis proceeded rapidly at the alkene side chain producing homovanillic acid and homovanillin in an approximate 2:1 branching ratio at 0% RH; ring cleavage was also observed. For all lignin pyrolysis products, heterogeneous ozonolysis was faster on NaCl versus Al2O3. Implications for the atmospheric chemistry of semi-volatile methoxylphenols adsorbed on aerosol substrates will be discussed.

  14. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    DOE PAGESBeta

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; et al

    2014-09-10

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has anmore » exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic – heterotrophic difference in carbon isotope compositions.« less

  15. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R.; Yao, B.; Zhao, Y.; Lin, G.; Wu, B.; Lu, Q.; Meng, P.

    2015-01-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, hypothesized to be the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs, while processes such as fractionating foliar metabolism and preferentially loading into phloem of 13C-enriched sugars may contribute to the overall autotrophic-heterotrophic difference in carbon isotope compositions.

  16. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R.; Yao, B.; Zhao, Y.; Lin, G.; Wu, B.; Lu, Q.; Meng, P.

    2014-09-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic - heterotrophic difference in carbon isotope compositions.

  17. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review.

    PubMed

    Nsanganwimana, Florien; Pourrut, Bertrand; Mench, Michel; Douay, Francis

    2014-10-01

    The mitigation of potential health hazards and land scarcity due to land use change can be addressed by restoring functional and ecosystem services of contaminated land. Physico-chemical remediation options are criticized as being costly and not providing environment-friendly solutions. The use of plants and associated microorganisms could be a sustainable, cost-effective option to reduce pollutant exposure. Phytomanagement aims at using valuable non-food crops to alleviate environmental and health risks induced by pollutants, and at restoring ecosystem services. Suitable plant species must be tolerant to contaminants, reduce their transfer into the food chain, and efficiently produce marketable biomass. Based on Miscanthus' capacity to sequestrate inorganic contaminants into the root system and to induce dissipation of persistent organic contaminants in soil, these plant species are favorable for phytostabilization and phytodegradation. Among Miscanthus species, the noninvasive hybrid Miscanthus × giganteus, with a high lignocellulosic content, is a promising biomass crop for the bio-economy, notably the biorefinery and bioenergy industries. Planting this species on contaminated and marginal land is a promising option to avoid changes in arable land use to mitigate the food vs. biofuel controversy. Key issues in promoting sustainable management of Miscanthus sp. on contaminated land are: (a) crop suitability, integration, and sustainability in a region with a potential local market; (b) site suitability in relation to the species' requirements and potential, (c) biotic interactions in the landscape diversity; and (d) increase in shoot yields in line with various stressors (e.g., pollutants, drought, cold temperatures), and with minimal inputs. PMID:24905642

  18. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  19. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction. PMID:25532343

  20. The fate of complex ecologies: How do species organize? An exact method

    NASA Astrophysics Data System (ADS)

    Roman, Ahmed; Pleimling, Michel

    2014-03-01

    Complex ecology models present a bridge between far from equilibrium physics and biology of populations. The May-Leonard, Rock-Paper-Scissor and Lotka-Volterra models have been extensively studied in an attempt to understand the dynamics of finite but large populations. In this talk we present a new theoretical technique which predicts the dynamics of these models for any complex ecology with interactions similar to the aforementioned models. This method has applications to real-world systems as it presents a simple method to predict correlations among two or more species in a complex ecology. We apply this method to the models mentioned and show that exact agreement between predictions and Monte-Carlo simulation data is obtained. This method could be applied to a wide variety of problems from economics to biology and game theory. This work is supported by the US National Science Foundation through grant DMR-1205309.

  1. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization.

    PubMed

    Mitchell, S E; Cockburn, A F; Seawright, J A

    1993-12-01

    The complete sequence (15,455 bp) of the mitochondrial DNA of the mosquito Anopheles quadrimaculatus species A is reported. This genome is compact and very A+T rich (77.4% A+T). It contains genes for 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 subunits of the mitochondrial inner membrane respiratory complexes. The gene arrangement is the same as in Drosophila yakuba, except that the positions of two contiguous tRNAs are reversed and a third tRNA is transcribed from the complementary strand. Protein-coding genes, rRNAs, and most tRNAs were similar to D. yakuba. Two tRNAs had nonstandard secondary structures comparable with those of nematode mitochondrial tRNAs. The very small putative control region (625 bp) contains no sequence motifs similar to those used in vertebrates and other insects for initiation of transcription and replication. PMID:8112570

  2. Accumulation of polychlorinated organic contaminants from sediment by three benthic marine species

    SciTech Connect

    Pruell, R.J.; Rubinstein, N.I.; Taplin, B.K.; LiVolsi, J.A.; Bowen, R.D.

    1993-01-01

    A laboratory experiment was conducted to measure the accumulation of selected polychlorinated compounds by marine benthos exposed to environmentally contaminated sediment. Sandworms (Nereis virens), clams (Macoma nasuta), and grass shrimp (Palaemonetes pugio) were exposed to sediment collected from the Passaic River, New Jersey. All three species accumulated 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and polychlorinated biphenyls (PCBs) from the sediment. In addition, a recently identified sulfur containing analog of tetrachlorinated dibenzofurans. The objectives of the study were to determine the relative bioavailability of 2,3,7,8-TCDD, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and selected PCB congeners from bottom sediments as well as to examine the relationship between contaminant concentrations in sediments and biota.

  3. Organic and Inorganic Species in CBM Produced Water: Implications for Water Management Strategies

    NASA Astrophysics Data System (ADS)

    Kharaka, Y. K.; Rice, C. A.

    2003-12-01

    Coal-bed methane (CBM) wells currently produce close to one billion bbl of water annually and deliver about 8% of total natural gas in the USA. The salinity of this produced water generally is lower than that of water from conventional petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges from 200 to 150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water generally has no oil and grease and has relatively low (2-10 mg/L) dissolved organic carbon (DOC), but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has low (<1,000 mg/L TDS) salinity and sodium adsorption ratio (SAR) is considered acceptable for irrigation, surface discharge and for injection into freshwater aquifers. Because groundwater associated with coal, especially with lignite and subbituminous coal, is known to contain a variety of toxic or potentially toxic organics, including hydroxyphenols and PAHs, the organic and inorganic compositions of CBM waters should be systematically characterized and their potential for harm to human health, crops and the environment carefully evaluated prior to its addition to existing water supplies. As an alternative to costly disposal, lower salinity produced water from high-yield CBM wells is being considered for reclamation. The treated water would be a valuable new water resource, especially in the arid western USA. The feasibility and cost of reclaiming produced water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study. The estimated treatment cost was high at about 0.39/bbl (3,000/acre-ft) for potable water, but would be substantially lower and competitive for irrigation and industrial uses in some arid regions of the USA.

  4. In vitro binding of zearalenone to different adsorbents.

    PubMed

    Bueno, Dante J; Di Marco, Liliana; Oliver, Guillermo; Bardón, Alicia

    2005-03-01

    Zearalenone (ZEA) is a potent estrogenic metabolite produced by some Fusarium species. No treatment has been successfully employed to get rid of the ZEA contained in foods. This study was conducted to evaluate the ability (adsorptive power) of five adsorbents--activated carbon, bentonite, talc, sandstone, and calcium sulfate--to trap ZEA in vitro. Activated carbon was the best adsorbent, binding 100% ZEA (pH 3 and 7.3) at 0.1, 0.25, 0.5, and 1% dose levels. Bentonite, talc,and calcium sulfate were less efficient than activated carbon but still could bind ZEA to some extent. On the other hand, sandstone was inactive in the experimental conditions employed. Our results indicate that activated carbon could be a good candidate for detoxification of ZEA present in foods. PMID:15771192

  5. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms.

    PubMed

    Kubis, S E; Heslop-Harrison, J S; Desel, C; Schmidt, T

    1998-04-01

    We have isolated and characterized conserved regions of the reverse transcriptase gene from non-LTR retrotransposons, also called long interspersed nuclear elements (LINEs), from Beta vulgaris, B. lomatogona and B. nana. The novel elements show strong homology to other non-LTR retrotransposons from plants, man and animals. LINEs are present in all species of the genus Beta tested, but there was variation in copy number. Analysis by Southern hybridization and fluorescent in situ hybridization revealed the clustered organization of these retroelements in beet species. PCR amplification using degenerate primers to conserved motifs of the predicted LINE protein sequence enabled the cloning of LINEs from both Monocotyledonae (Allium cepa, Oryza sativa and Secale cereale) and Dicotyledonae (Nicotiana tabacum and Antirrhinum majus) indicating that LINEs are a universal feature of plant genomes. A dendrogram of fifteen new and six previously isolated sequences showed the high level of sequence divergence while revealing families characteristic of some genera. The genomic organization of non-LTR retrotransposons was examined more detailed in A. majus and O. sativa. PMID:9520275

  6. A guideline for the identification of environmentally relevant, ionizable organic molecule species.

    PubMed

    Schaffer, Mario; Licha, Tobias

    2014-05-01

    An increasing number of organic compounds detected today in the aquatic environment are ionizable and, therefore, partially or permanently charged (ionic) under the pH conditions encountered in these systems. For evaluating their environmental behavior, which strongly depends on the charge state, the identification of functional groups together with their correct assignment of the respective acidic or basic dissociation constants (pKa) is essential. Despite the growing concern and increasing awareness for ionizable compounds, contradicting and/or confusing information regarding their acid/base properties can be regularly found in the literature, especially when complex structures are encountered. Therefore, we provide a simplified, general, and comprehensive guideline for the identification of ionizable functional groups in organic compounds combined with the correct assignment of their respective pKa values. Beside the explicit definition of basic terms, several tables with more than 30 of the most frequently encountered ionizable compound classes, including their typical pKa value ranges are the centerpiece of the proposed procedure. The straight forward application of the guideline is successfully shown for several environmentally relevant compounds as example. PMID:24412098

  7. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  8. Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent

    SciTech Connect

    Efroymson, R.A.; Alexander, M. )

    1991-05-01

    An Arthrobacter strain mineralized naphthalene and n-hexadecane dissolved in 2,2,4,4,5,6,6-heptamethylnonane. The extent of mineralization increased with greater volumes of solvent. The rate of mineralization of hexadecone was rapid, although partitioning of the compound into aqueous solution was not detected. The Arthrobacter sp. grown in media with or without heptamethylnonane did not excrete products that increased the aqueous solubility of naphthalene and hexadecane. Measurements of the number of cells in the aqueous phase showed that the Arthrobacter sp. attached to the heptamethylnonane-water interface, but attachment was evident even without a substrate in the heptamethylnonane. Tests with small inocula of the Arthrobacter sp. demonstrated that at least a portion of naphthalene or hexadecane dissolved in heptamethylnonane was degraded by cells attached to the solvent-water interface. The cells did not adhere in the presence of 0.1% Triton X-100. The surfactant prevented mineralization of the hexadecane initially dissolved in heptamethylnonene, but it increased the rate and extent of mineralization of naphthalene initially dissolved in heptamethylnonane. The data show that organic solvents into which hydrophobic compounds partition affect the biodegradation of those compounds and that attachment of microorganisms to the organic solvent-water interface may be important in the transformation.

  9. Nanovalved Adsorbents for CH4 Storage.

    PubMed

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications. PMID:27124722

  10. NOx adsorber and method of regenerating same

    SciTech Connect

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  11. Accuracy of MicroRNA Discovery Pipelines in Non-Model Organisms Using Closely Related Species Genomes

    PubMed Central

    Etebari, Kayvan; Asgari, Sassan

    2014-01-01

    Mapping small reads to genome reference is an essential and more common approach to identify microRNAs (miRNAs) in an organism. Using closely related species genomes as proxy references can facilitate miRNA expression studies in non-model species that their genomes are not available. However, the level of error this introduces is mostly unknown, as this is the result of evolutionary distance between the proxy reference and the species of interest. To evaluate the accuracy of miRNA discovery pipelines in non-model organisms, small RNA library data from a mosquito, Aedes aegypti, were mapped to three well annotated insect genomes as proxy references using miRanalyzer with two strict and loose mapping criteria. In addition, another web-based miRNA discovery pipeline (DSAP) was used as a control for program performance. Using miRanalyzer, more than 80% reduction was observed in the number of mapped reads using strict criterion when proxy genome references were used; however, only 20% reduction was recorded for mapped reads to other species known mature miRNA datasets. Except a few changes in ranking, mapping criteria did not make any significant differences in the profile of the most abundant miRNAs in A. aegypti when its original or a proxy genome was used as reference. However, more variation was observed in miRNA ranking profile when DSAP was used as analysing tool. Overall, the results also suggested that using a proxy reference did not change the most abundant miRNAs’ differential expression profiles when infected or non-infected libraries were compared. However, usage of a proxy reference could provide about 67% of the original outcome from more extremely up- or down-regulated miRNA profiles. Although using closely related species genome incurred some losses in the number of miRNAs, the most abundant miRNAs along with their differential expression profile would be acceptable based on the sensitivity level of each project. PMID:24404190

  12. Effect of adsorbent addition on floc formation and clarification.

    PubMed

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. PMID:27064206

  13. Optimization of microwave-assisted extraction for six inorganic and organic arsenic species in chicken tissues using response surface methodology.

    PubMed

    Zhang, Wenfeng; Hu, Yuanan; Cheng, Hefa

    2015-09-01

    Response surface methodology was applied to optimize the parameters for microwave-assisted extraction of six major inorganic and organic arsenic species (As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone) from chicken tissues, followed by detection using a high-performance liquid chromatography with inductively coupled mass spectrometry detection method, which allows the simultaneous analysis of both inorganic and organic arsenic species in the extract in a single run. Effects of extraction medium, solution pH, liquid-to-solid ratio, and the temperature and time of microwave-assisted extraction on the extraction of the targeted arsenic species were studied. The optimum microwave-assisted extraction conditions were: 100 mg of chicken tissue, extracted by 5 mL of 22% v/v methanol, 90 mmol/L (NH4 )2 HPO4 , and 0.07% v/v trifluoroacetic acid (with pH adjusted to 10.0 by ammonium hydroxide solution), ramping for 10 min to 71°C, and holding for 11 min. The method has good extraction performance for total arsenic in the spiked and nonspiked chicken tissues (104.0 ± 13.8% and 91.6 ± 7.8%, respectively), except for the ones with arsenic contents close to the quantitation limits. Limits of quantitation (S/N = 10) for As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone in chicken tissues using this method were 0.012, 0.058, 0.039, 0.061, 0.102, and 0.240 mg/kg (dry weight), respectively. PMID:26106064

  14. Separation of the attractive and repulsive contributions to the adsorbate-adsorbate interactions of polar adsorbates on Si(100)

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsiu; Jeng, Horng-Tay; Lin, Deng-Sung

    2015-11-01

    Dissociative adsorption of H2O, NH3, CH3OH and CH3NH2 polar molecules on the Si(100) surface results in a 1:1 mixture of two adsorbates (H and multi-atomic fragment A = OH, NH2, CH3O, CH3NH, respectively) on the surface. By using density functional theory (DFT) calculations, the adsorption geometry, the total energies and the charge densities for various possible ordered structures of the mixed adsorbate layer have been found. Analyzing the systematic trends in the total energies unveils concurrently the nearest-neighbor interactions ENN and the next nearest-neighbor interactions ENNN between two polar adsorbates A. In going from small to large polar adsorbates, ENN's exhibit an attractive-to-repulsive crossover behavior, indicating that they include competing attractive and repulsive contributions. Exploration of the charge density distributions allows the estimation of the degree of charge overlapping between immediately neighboring A's, the resulting contribution of the steric repulsions, and that of the attractive interactions to the corresponding ENN's. The attractive contributions to nearest neighboring adsorbate-adsorbate interactions between the polar adsorbates under study are shown to result from hydrogen bonds or dipole-dipole interactions.

  15. A Rapid, Fluorescence-Based Field Screening Technique for Organic Species in Soil and Water Matrices.

    PubMed

    Russell, Amber L; Martin, David P; Cuddy, Michael F; Bednar, Anthony J

    2016-06-01

    Real-time detection of hydrocarbon contaminants in the environment presents analytical challenges because traditional laboratory-based techniques are cumbersome and not readily field portable. In the current work, a method for rapid and semi-quantitative detection of organic contaminants, primarily crude oil, in natural water and soil matrices has been developed. Detection limits in the parts per million and parts per billion were accomplished when using visual and digital detection methods, respectively. The extraction technique was modified from standard methodologies used for hydrocarbon analysis and provides a straight-forward separation technique that can remove interference from complex natural constituents. For water samples this method is semi-quantitative, with recoveries ranging from 70 % to 130 %, while measurements of soil samples are more qualitative due to lower extraction efficiencies related to the limitations of field-deployable procedures. PMID:26988223

  16. Fiddler on the tree--a bush-cricket species with unusual stridulatory organs and song.

    PubMed

    Heller, Klaus-Gerhard; Hemp, Claudia

    2014-01-01

    Insects of the order Orthoptera are well-known for their acoustic communication. The structures used for this purpose show a high diversity which obviously relates to differences in song parameters and to the physics of sound production. Here we describe song and morphology of the sound producing organs of a tropical bush-cricket, Ectomoptera nepicauda, from East Africa. It has a very unusual calling song consisting of frequency-modulated, pure-tone sounds in the high ultrasonic range of 80 to 120 kHz and produced by extremely fast wing movements. Concerning morphology, it represents the most extreme state in the degree of left-right fore-wing differentiation found among Orthoptera: the acoustic parts of the left fore-wing consist exclusively of the stridulatory file, comparable in function to the bow of a violin, while the right wing carries only the plectrum ( =  string) and mirror ( =  soundbox). PMID:24643071

  17. Real-Time Discrimination and Versatile Profiling of Spontaneous Reactive Oxygen Species in Living Organisms with a Single Fluorescent Probe.

    PubMed

    Zhang, Ruilong; Zhao, Jun; Han, Guangmei; Liu, Zhengjie; Liu, Cui; Zhang, Cheng; Liu, Bianhua; Jiang, Changlong; Liu, Renyong; Zhao, Tingting; Han, Ming-Yong; Zhang, Zhongping

    2016-03-23

    Fluorescent probes are powerful tools for the investigations of reactive oxygen species (ROS) in living organisms by visualization and imaging. However, the multiparallel assays of several ROS with multiple probes are often limited by the available number of spectrally nonoverlapping chromophores together with large invasive effects and discrepant biological locations. Meanwhile, the spontaneous ROS profilings in various living organs/tissues are also limited by the penetration capability of probes across different biological barriers and the stability in reactive in vivo environments. Here, we report a single fluorescent probe to achieve the effective discrimination and profiling of hydroxyl radicals (•OH) and hypochlorous acid (HClO) in living organisms. The probe is constructed by chemically grafting an additional five-membered heterocyclic ring and a lateral triethylene glycol chain to a fluorescein mother, which does not only turn off the fluorescence of fluorescein, but also create the dual reactive sites to ROS and the penetration capability in passing through various biological barriers. The reactions of probe with •OH and HClO simultaneously result in cyan and green emissions, respectively, providing the real-time discrimination and quantitative analysis of the two ROS in cellular mitochondria. Surprisingly, the accumulation of probes in the intestine and liver of a normal-state zebrafish and the transfer pathway from intestine-to-blood-to-organ/tissue-to-kidney-to-excretion clearly present the profiling of spontaneous •OH and HClO in these metabolic organs. In particular, the stress generation of •OH at the fresh wound of zebrafish is successfully visualized for the first time, in spite of its extremely short lifetime. PMID:26938117

  18. Organic Nutrients and Contaminants In Subsistence Species of Alaska: Concentrations and Relationship To Food Preparation Method

    PubMed Central

    Moses, Sara K.; Whiting, Alex V.; Muir, Derek C.G.; Wang, Xiaowa; O'Hara, Todd M.

    2009-01-01

    Objectives To determine nutrient and contaminant concentrations, document concentration changes related to common preparation methods and provide a basic risk-benefit analysis for select subsistence foods consumed by residents of Kotzebue, Alaska. Study design Eleven organic nutrients and 156 persistent organic pollutants (POPs) were measured in foods derived from spotted seals and sheefish. Methods Nutrients in foodstuffs were compared to Daily Recommended Intake criteria. POPs were compared to Tolerable Daily Intake Limits (TDIL). Results Cooking, as well as absence/presence of skin during sheefish processing, altered nutrient and contaminant concentrations in seals and fish. Sheefish muscle and seal blubber were particularly rich in omega-3 fatty acids and seal liver in vitamin A. Seal liver exceeded the recommended upper limit for vitamin A. POP contribution to TDIL was <25% in all tissues except blubber, in which 4 POPs were present at >25% TDIL. No POPs exceeded TDIL in a serving of any tissue studied. The most prominent concerns identified were levels of vitamin A in spotted seal liver and certain POPs in blubber, warranting consideration when determining how much and how often these foods should be consumed. Conclusions Preparation methods altering tissues from their raw state significantly affect nutrient and contaminant concentrations, thus direct evaluation of actual food items is highly recommended to determine risk-benefits ratios of traditional diets. Traditional foods provide essential nutrients with very limited risk from contaminants. We encourage the consumption of traditional foods and urge public health agencies to develop applicable models to assess overall food safety and quality. PMID:19917188

  19. Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting.

    PubMed

    Li, Tangliang; O'Brien, Patricia C M; Biltueva, Larisa; Fu, Beiyuan; Wang, Jinhuan; Nie, Wenhui; Ferguson-Smith, Malcolm A; Graphodatsky, Alexander S; Yang, Fengtang

    2004-01-01

    With complete sets of chromosome-specific painting probes derived from flow-sorted chromosomes of human and grey squirrel (Sciurus carolinensis), the whole genome homologies between human and representatives of tree squirrels (Sciurus carolinensis, Callosciurus erythraeus), flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) have been defined by cross-species chromosome painting. The results show that, unlike the highly rearranged karyotypes of mouse and rat, the karyotypes of squirrels are highly conserved. Two methods have been used to reconstruct the genome phylogeny of squirrels with the laboratory rabbit (Oryctolagus cuniculus) as the out-group: (1) phylogenetic analysis by parsimony using chromosomal characters identified by comparative cytogenetic approaches; (2) mapping the genome rearrangements onto recently published sequence-based molecular trees. Our chromosome painting results, in combination with molecular data, show that flying squirrels are phylogenetically close to New World tree squirrels. Chromosome painting and G-banding comparisons place chipmunks (Tamias sibiricus ), with a derived karyotype, outside the clade comprising tree and flying squirrels. The superorder Glires (orde Rodentia + order Lagomorpha) is firmly supported by two conserved syntenic associations between human chromosomes 1 and 10p homologues, and between 9 and 11 homologues. PMID:15241012

  20. Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor†

    PubMed Central

    Rivera-Reyna, Nidia; Hinojosa-Reyes, Laura; Guzmán-Mar, Jorge Luis; Cai, Yong; O'Shea, Kevin; Hernández-Ramírez, Aracely

    2012-01-01

    The photocatalytic removal of arsenite [As(III)] and monomethylarsonic acid [MMA(V)] was investigated in the presence of UV light (350 nm) and aqueous suspensions of ZnO synthesized by the sol–gel technique. Photocatalytic removal of these potent arsenic compounds results in the effective and rapid mineralization to less toxic inorganic arsenate [As(V)]. The effect of ZnO loading and solution pH on the treatment efficiency of the UV/ZnO photocatalytic process was evaluated. The optimal conditions for the removal of 5 mg L−1 [As(III)] and [MMA(V)] aqueous solutions were observed at catalyst loadings of 0.25 and 0.50 g L−1 with solution pH values of 7 and 8, respectively. Under these conditions, the activity of photocatalyst sol–gel ZnO was compared with TiO2 Degussa P25 and commercial ZnO catalyst. The results demonstrate that the high adsorption capacity of ZnO synthesized by sol–gel gives enhanced removal of arsenic species from water samples, indicating that this catalyst is a promising material for treatment of arsenic contaminated groundwater. PMID:23064294

  1. Synthesis of Formamide and Related Organic Species in the Interstellar Medium via Chemical Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Spezia, Riccardo; Jeanvoine, Yannick; Hase, William L.; Song, Kihyung; Largo, Antonio

    2016-08-01

    We show, by means of direct dynamics simulations, how it is possible to define possible reactants and mechanisms leading to the formation of formamide in the interstellar medium. In particular, different ion–molecule reactions in the gas phase were considered: NH3OH+, NH2OH{}2+, H2COH+, and NH4 + for the ions and NH2OH, H2CO, and NH3 for the partner neutrals. These calculations were combined with high level ab initio calculations to investigate possible further evolution of the products observed. In particular, for formamide, we propose that the NH2OH{}2+ + H2CO reaction can produce an isomer, NH2OCH{}2+, that, after dissociative recombination, can produce neutral formamide, which was observed in space. The direct dynamics do not pre-impose any reaction pathways and in other reactions, we did not observe the formation of formamide or any possible precursor. On the other hand, we obtained other interesting reactions, like the formation of NH2CH{}2+. Finally, some radiative association processes are proposed. All of the results obtained are discussed in light of the species observed in radioastronomy.

  2. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    PubMed

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. PMID:26538339

  3. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae.

    PubMed

    Gauthier, Philippe; Hima, Karmadine; Dobigny, Gauthier

    2010-06-01

    Pericentromeric repeats have been claimed to mediate centric fusions through heterologous recombination of arrays of tandemly repeated and highly homogenized motifs. However, mammalian case studies are essentially restricted to pathologic fusions in human, or to the house mouse Roberstonian (Rb) races. We here provide an example in a wild gerbil rodent, Gerbillus nigeriae, which displays an extensive Rb polymorphism, with 2n ranging between 2n = 60 and 74. The distribution of two closely related repeats, GERB1 and GERB2 that were previously isolated by Volobouev et al. (Chromosoma 104:252-259, 1995) in this African species, were investigated in the genomes of seven individuals with various diploid numbers. Our results clearly show that GERB1 and GERB2 are organized in a non-random manner, with GERB2 and GERB1 being clearly juxtacentromeric and centromeric, respectively. Finally, cloning and sequencing revealed that, unlike GERB2, GERB1 monomers display a more homogeneous organization at both the nucleotide and structural levels. Altogether, our results point toward a pivotal role of GERB1 repeats in the mediation of Rb fusions through heterologous recombination, with some evidence of subsequent loss of repeats after the Rb fusion during the course of evolution of metacentric elements. Moreover, the repeat pattern observed in G. nigeriae closely matches the organization and sequence structure of satellite DNAs described in human acrocentrics. Consequently, G. nigeriae appears as an additional model for the study of repeat evolution and its role in centric fusions and their consequences in mammals. PMID:20361248

  5. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments. PMID:26422294

  6. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  7. Domain organization of phytochelatin synthase: functional properties of truncated enzyme species identified by limited proteolysis.

    PubMed

    Ruotolo, Roberta; Peracchi, Alessio; Bolchi, Angelo; Infusini, Giuseppe; Amoresano, Angela; Ottonello, Simone

    2004-04-01

    Phytochelatin synthase (PCS) is a major determinant of heavy metal tolerance in plants and other organisms. No structural information on this enzyme is as yet available. It is generally believed, however, that the active site region is located in the more conserved N-terminal portion of PCS, whereas various, as yet unidentified (but supposedly less critical) roles have been proposed for the C-terminal region. To gain insight into the structural/functional organization of PCS, we have conducted a limited proteolysis analysis of the enzyme from Arabidopsis (AtPCS1), followed by functional characterization of the resulting polypeptide fragments. Two N-terminal fragments ending at positions 372 (PCS_Nt1) and 283 (PCS_Nt2) were produced sequentially upon V8 protease digestion, without any detectable accumulation of the corresponding C-terminal fragments. As revealed by the results of in vivo and in vitro functional assays, the core PCS_Nt2 fragment is biosynthetically active in the presence of cadmium ions and supports phytochelatin formation at a rate that is only approximately 5-fold lower than that of full-length AtPCS1. The loss of the C-terminal region, however, substantially decreases the thermal stability of the enzyme and impairs phytochelatin formation in the presence of certain heavy metals (e.g. mercury and zinc, but not cadmium or copper). The latter phenotype was shared by PCS_Nt2 and by its precursor fragment PCS_Nt1, which, on the other hand, was almost as stable and biosynthetically active (in the presence of cadmium) as the full-length enzyme. AtPCS1 thus appears to be composed of a protease-resistant (and hence presumably highly structured) N-terminal domain, flanked by an intrinsically unstable C-terminal region. The most upstream part of such a region (positions 284-372) is important for enzyme stabilization, whereas its most terminal part (positions 373-485) appears to be required to determine enzyme responsiveness to a broader range of heavy metals

  8. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-06-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65-89%, VOC/NOx ∼3-9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally

  9. Novel adsorbent applicability for decontamination of printing wastewater

    NASA Astrophysics Data System (ADS)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ < B = pure C < C with PEG 600 addition. The adsorption equilibrium data of Zn(II) ion on NZ, B, pure C and C with PEG 600 were analyzed in terms of the Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The characteristic parameters for each isotherms and related correlation coefficients were determined. The values of correlation coefficient (R2) indicated the following order of the isotherm models: Freundlich > Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential

  10. The vertebrate taxonomy ontology: a framework for reasoning across model organism and species phenotypes

    PubMed Central

    2013-01-01

    Background A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. Description As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. Conclusions The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution. PMID:24267744

  11. Synoptic Sampling of Dissolved Nitrogen Species and Organic Carbon in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Villinski, J. E.; Hogan, J. F.; Brooks, P. D.; Haas, P. A.; Mills, S. K.

    2002-12-01

    Synoptic sampling has been performed along the Rio Grande from the headwaters in Colorado to Fort Quitman, Texas, south of El Paso. Samples from August 2001 and January 2002 were analyzed for nitrate (NO3-), ammonium (NH_{4}$+), total dissolved nitrogen (TDN), and dissolved organic carbon (DOC). DOC concentrations increase slowly between Colorado and southern New Mexico and then approximately double in Texas. Large sources of N during both sampling periods were the urban areas around Albuquerque and El Paso, Texas and Ciudad Juarez, Mexico, and agricultural regions in the Rincon and Mesilla valleys of southern New Mexico. Nitrate-N concentrations remained high south of Albuquerque to Elephant Butte reservoir in the summer, presumably due to lack of primary production. Inorganic N concentrations generally are higher in the winter than in the summer. During the summer, ammonium concentrations were greater than 100 mg N/l only at the outlet of Elephant Butte Reservoir, and in Texas. However, winter concentrations were on average an order of magnitude greater, again with the largest ammonium values (5000 \\mug N/l) in Texas. These patterns are consistent with a reduction in biological nutrient demand during the non-growing season.

  12. The import and export of organic nitrogen species at a Scottish ombrotrophic peatland

    NASA Astrophysics Data System (ADS)

    McKenzie, Rebecca M.; Özel, Mustafa Z.; Cape, J. Neil; Drewer, Julia; Dinsmore, Kerry J.; Nemitz, Eiko; Sim Tang, Y.; van Dijk, Netty; Anderson, Margaret; Hamilton, Jacqueline F.; Sutton, Mark A.; Gallagher, Martin W.; Skiba, Ute

    2016-04-01

    Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget, but is not routinely measured in precipitation or stream water. In order to investigate the contribution of DON to the deposition and export of N, precipitation, stream and soil water samples were collected from an ombrotrophic peatland and analysed for DON over a 2-year period. In wet-only deposition DON contributed up to 10 % of the total dissolved nitrogen (TDN) and was the most dominant fraction in soil water (99 %) and stream water (75 %). NH4+ was the most dominate form of N in precipitation, with NO3- contributing the least to precipitation, soil water and stream water. Precipitation and stream DON were qualitatively analysed by a two-dimensional gas chromatograph coupled to a nitrogen chemiluminescence detector (GC × GC-NCD) after trapping onto C18 solid phase extraction (SPE) cartridges. Ten unique compounds were detected and five identified as pyrrole, benzonitrile, dodecylamine, N-nitrosodipropylamine and decylamine. Five compounds were present in both precipitation and stream samples: pyrrole, benzonitrile and three unidentified compounds. The SPE-extraction efficiency for DON was very low (11 %), but with improvements DON speciation could become a valuable tool to provide information on its sources and pathways and inform chemical transport models.

  13. Site blocking effects on adsorbed polyacrylamide conformation

    NASA Astrophysics Data System (ADS)

    Brotherson, Brett A.

    The use of polymers as flocculating additives is a common practice in many manufacturing environments. However, exactly how these polymers interact with surfaces is relatively unknown. One specific topic which is thought to be very important to flocculation is an adsorbed polymer's conformation. Substantial amounts of previous work, mainly using simulations, have been performed to elucidate the theory surrounding adsorbed polymer conformations. Yet, there is little experimental work which directly verifies current theory. In order to optimize the use of polymer flocculants in industrial applications, a better understanding of an adsorbed polymer's conformation on a surface beyond theoretical simulations is necessary. This work looks specifically at site blocking, which has a broad impact on flocculation, adsorption, and surface modification, and investigated its effects on the resulting adsorbed polymer conformation. Experimental methods which would allow direct determination of adsorbed polymer conformational details and be comparable with previous experimental results were first determined or developed. Characterization of an adsorbed polymer's conformation was then evaluated using dynamic light scattering, a currently accepted experimental technique to examine this. This commonly used technique was performed to allow the comparison of this works results with past literature. Next, a new technique using atomic force microscopy was developed, building on previous experimental techniques, to allow the direct determination of an adsorbed polymer's loop lengths. This method also was able to quantify changes in the length of adsorbed polymer tails. Finally, mesoscopic simulation was attempted using dissipative particle dynamics. In order to determine more information about an adsorbed polymer's conformation, three different environmental factors were analyzed: an adsorbed polymer on a surface in water, an adsorbed polymer on a surface in aqueous solutions of varying

  14. Adsorbate-induced curvature and stiffening of graphene.

    PubMed

    Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H

    2015-01-14

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  15. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-01

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. PMID:24001944

  16. Quality of soluble organic C, N, and P produced by different types and species of litter: root litter versus leaf litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In forested ecosystems, the quality of dissolved organic matter (DOM) produced by freshly senesced litter may differ by litter type and species, and these differences may influence the amount of DOM that is respired versus that which may either contribute to soil organic matter accumulation or be le...

  17. The import and export of organic nitrogen species at a Scottish ombrotrophic peatland

    NASA Astrophysics Data System (ADS)

    McKenzie, R. M.; Özel, M. Z.; Cape, J. N.; Drewer, J.; Dinsmore, K. J.; Nemitz, E.; Hamilton, J. F.; Sutton, M. A.; Gallagher, M. W.; Skiba, U.

    2015-01-01

    Dissolved organic nitrogen (DON) can contribute significantly to the overall nitrogen budget, but is not routinely measured in precipitation or stream water. In order to investigate the contribution of DON to deposition and export of N, precipitation, stream and soil water samples were collected from an ombrotrophic peatland and analysed for DON Over a two year period. In wet only deposition DON contributed up to 10% of the total dissolved nitrogen (TDN), 99% in soil water, and 75% in stream water. No correlations were observed between DIN and DON in precipitation stream water or soil water. DIN is an important source of nutrients and in ombrotrophic peatlands, is only deposited via precipitation. Too much nitrogen to a sensitive ecosystem can result in problems with the way in which it is processed, such as an increase in the export of N via nearby water bodies. It is therefore important to monitor N deposition and export. Precipitation DIN showed a loose seasonal pattern, with peak concentrations occurring between January and June, while DON concentrations tended to be lower in the winter months. Stream water DON and NH4+ showed no obvious seasonal pattern but NO3- showed larger concentrations in cooler months and the smallest during warmer months, with the exception of June and July 2010, when concentrations were high. Precipitation and stream DON was qualitatively analysed using GC × GC-NCD. Ten unique compounds were detected, of which only five could be identified: pyrrole, benzonitrile, dodecylamine, N-nitrosodipropylamine and decylamine. Five compounds were present in both precipitation and stream samples: pyrrole, benzonitrile and three unidentified compounds. A more detailed DON speciation may be used to identify sources and pathways of DON.

  18. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  19. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  20. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  1. Direct Observation of the Photodegradation of Anthracene and Pyrene Adsorbed onto Mangrove Leaves

    PubMed Central

    Wang, Ping; Wu, Tun-Hua; Zhang, Yong

    2014-01-01

    An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR) and anthracene (ANT) adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L.) Blanco (Ac) and Kandelia obovata (Ko) in multicomponent mixtures (mixture of the ANT and PYR). Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs. PMID:25144741

  2. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  3. New approaches for morphological diagnosis of bovine Eimeria species: a study on a subtropical organic dairy farm in Brazil.

    PubMed

    Florião, Mônica Mateus; Lopes, Bruno do Bomfim; Berto, Bruno Pereira; Lopes, Carlos Wilson Gomes

    2016-03-01

    Bovine eimeriosis or coccidiosis is an intestinal disease caused by Eimeria spp. which is related to gastrointestinal disorders and, in some cases, death. The current work aimed to identify and provide detailed morphological characteristic features of the different Eimeria spp. parasites of crossbred cows of a subtropical organic dairy farm in Brazil, offering tools for the diagnosis of bovine eimeriosis. Eimeria auburnensis, Eimeria bovis, Eimeria bukidnonensis, Eimeria canadensis, Eimeria cylindrica, Eimeria ildefonsoi, and Eimeria zuernii were identified. The application of line regressions and ANOVA provided a means for the identification of these species. Finally, the current work proposes a dichotomous key to assist in the morphologic identification of bovine Eimeria spp. oocysts. PMID:26873157

  4. Distribution of Cd and As in organs and tissues of four marine mammal species stranded along the Italian coasts.

    PubMed

    Bellante, Antonio; Sprovieri, Mario; Buscaino, Giuseppa; Buffa, Gaspare; Di Stefano, Vincenzo; Manta, Daniela Salvagio; Barra, Marco; Filiciotto, Francesco; Bonanno, Angelo; Mazzola, Salvatore

    2012-09-01

    Concentrations of Cd and As were determined in organs and tissues (muscle, heart, kidney, lung and liver) of four cetacean species (Stenella coeruleoalba, Truncatus truncatus, Grampus griseus and Ziphius cavirostris) stranded along the Italian coasts during the period 2000-2009. Significant differences were found between Cd concentrations in the different analysed tissues. Particularly, the kidney shows the highest concentrations of Cd in all analysed specimens, followed by the liver. No systematic or statistically significant difference in As concentrations was found in the analysed tissues. Considerable differences of Cd and As values in samples from different geographical areas (Sicily Channel, Adriatic Sea and Tyrrhenian Sea) were found, with the highest values measured in samples from the Sicily Channel. This basically suggests that anthropogenic and natural sources significantly affect Cd and As content in cetaceans. PMID:22797766

  5. Diatoms can be an important exception to temperature–size rules at species and community levels of organization

    PubMed Central

    Adams, Georgina L; Pichler, Doris E; Cox, Eileen J; O'Gorman, Eoin J; Seeney, Alex; Woodward, Guy; Reuman, Daniel C

    2013-01-01

    Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-warming-related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature–size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James’ and Bergmann's temperature–size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature–size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole-community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size. PMID:23749600

  6. Sampling and analysis of municipal waste-water sludge incinerator emissions for metals, metal species, and organics

    SciTech Connect

    DeWees, W.G.; Davis, C.A.; McClintock, S.C.; Cone, A.L.; Bostian, H.E.

    1991-01-01

    There is concern regarding chromium and nickel species in the emissions from incineration of municipal wastewater sludge because of the associated cancer risk. The Environmental Protection Agency's (EPA) Office of Water Regulations and Standards (OWRS) is developing new regulations for sewage sludge incinerators and EPA's Risk Reduction Engineering Laboratory (RREL) has been assisting OWRS in the collection of supporting data. The paper reports new data on emissions of chromium and nickel species and associated emissions needed to respond to public comments. The primary objectives of the portion of the RREL/OWRS research program described in the paper are to determine (1) the ratio of hexavalent chromium to total chromium and (2) the ratio of nickel subsulfide to total nickel in sewage sludge incinerator emissions under several incinerator operating conditions. Secondary objectives include comparing the analytical results for emissions of chromium and nickel subspecies determined by different analytical procedures, and gathering data on other metals and inorganic and organic gaseous components in uncontrolled and controlled incinerator emissions.

  7. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge.

    PubMed

    Cao, Jing-Pei; Zhao, Xiao-Yan; Morishita, Kayoko; Wei, Xian-Yong; Takarada, Takayuki

    2010-10-01

    Pyrolysis of sewage sludge was performed at 500 degrees C and a sweeping gas flow rate of 300 cm(3)/min in a drop tube furnace. Liquid fraction (i.e., bio-oil) from the sewage sludge pyrolysis was separated by silica-gel column chromatography (SGCC) with different solvents, including mixed solvents, as eluants. A series of alkanenitriles (C(13)-C(18)), oleamide, alkenenitrile, fatty acid amides and aromatic nitrogen species were fractionated from the bio-oil by SGCC and analyzed with a gas chromatography/mass spectrometry (GC/MS). Most of the GC/MS-detectable organic nitrogen species (ONSs) are lactams, amides and N-heterocyclic compounds, among which acetamide is the most abundant. N-heterocyclics with 1-3 rings, including pyrrole, pyridine, indole, benzoimidazole, carbazole, norharman and harman, were observed. The lactams detected include pyrrolidin-2-one, succinimide, phathalimide, glutarimide, piperidin-2-one and 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, all of which should be formed via decarboxylation and cyclization of gamma- and delta-amino acids. Such a procedure provides an effective approach to fractionation and identification of ONSs from bio-oil produced by fast pyrolysis of sewage sludge. PMID:20488694

  8. Chromosomal Homology and Molecular Organization of Muller's Elements D and E in the Drosophila Repleta Species Group

    PubMed Central

    Ranz, J. M.; Segarra, C.; Ruiz, A.

    1997-01-01

    Thirty-three DNA clones containing protein-coding genes have been used for in situ hybridization to the polytene chromosomes of two Drosophila repleta group species, D. repleta and D. buzzatii. Twenty-six clones gave positive results allowing the precise localization of 26 genes and the tentative identification of another nine. The results were fully consistent with the currently accepted chromosomal homologies and in no case was evidence for reciprocal translocations or pericentric inversions found. Most of the genes mapped to chromosomes 2 and 4 that are homologous, respectively, to chromosome arms 3R and 3L of D. melanogaster (Muller's elements E and D). The comparison of the molecular organization of these two elements between D. melanogaster and D. repleta (two species that belong to different subgenera and diverged some 62 million years ago) showed an extensive reorganization via paracentric inversions. Using a maximum likelihood procedure, we estimated that 130 paracentric inversions have become fixed in element E after the divergence of the two lineages. Therefore, the evolution rate for element E is approximately one inversion per million years. This value is comparable to previous estimates of the rate of evolution of chromosome X and yields an estimate of 4.5 inversions per million years for the whole Drosophila genome. PMID:9071584

  9. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species.

    PubMed

    Nery, Mariana F; Arroyo, José Ignacio; Opazo, Juan C

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes-HBE and HBH-and two adult expressed genes-HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection. PMID:24259315

  10. Genomic Organization and Differential Signature of Positive Selection in the Alpha and Beta Globin Gene Clusters in Two Cetacean Species

    PubMed Central

    Nery, Mariana F.; Arroyo, José Ignacio; Opazo, Juan C.

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes—HBE and HBH—and two adult expressed genes—HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection. PMID:24259315

  11. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  12. Comparative Investigation of the Efficacy of Three Different Adsorbents against OTA-Induced Toxicity in Broiler Chickens

    PubMed Central

    Nedeljković-Trailović, Jelena; Trailović, Saša; Resanović, Radmila; Milićević, Dragan; Jovanovic, Milijan; Vasiljevic, Marko

    2015-01-01

    The aim of our study was to determine the efficacy of three different adsorbents, inorganic (modified zeolite), organic (esterified glucomannans) and mixed (inorganic and organic components, with the addition of enzymes), in protecting broilers from the toxic effects of ochratoxin A in feed. Broilers were fed diets containing 2 mg/kg of ochratoxin A (OTA) and supplemented with adsorbents at the recommended concentration of 2 g/kg for 21 days. The presence of OTA led to a notable reduction in body weight, lower weight gain, increased feed conversion and induced histopathological changes in the liver and kidneys. The presence of inorganic, organic and mixed adsorbents in contaminated feed only partially reduced the negative effects of OTA on the broiler performances. Broilers that were fed with adsorbent-supplemented feed reached higher body weight (17.96%, 19.09% and 13.59%), compared to the group that received only OTA. The presence of adsorbents partially alleviated the reduction in feed consumption (22.68%, 12.91% and 10.59%), and a similar effect was observed with feed conversion. The applied adsorbents have also reduced the intensity of histopathological changes caused by OTA; however, they were not able to prevent their onset. After the withdrawal of the toxin and adsorbents from the feed (21–42 days), all previously observed disturbances in broilers were reduced, but more remarkably in broilers fed with adsorbents. PMID:25855130

  13. Comparative investigation of the efficacy of three different adsorbents against OTA-induced toxicity in broiler chickens.

    PubMed

    Nedeljković-Trailović, Jelena; Trailović, Saša; Resanović, Radmila; Milićević, Dragan; Jovanovic, Milijan; Vasiljevic, Marko

    2015-04-01

    The aim of our study was to determine the efficacy of three different adsorbents, inorganic (modified zeolite), organic (esterified glucomannans) and mixed (inorganic and organic components, with the addition of enzymes), in protecting broilers from the toxic effects of ochratoxin A in feed. Broilers were fed diets containing 2 mg/kg of ochratoxin A (OTA) and supplemented with adsorbents at the recommended concentration of 2 g/kg for 21 days. The presence of OTA led to a notable reduction in body weight, lower weight gain, increased feed conversion and induced histopathological changes in the liver and kidneys. The presence of inorganic, organic and mixed adsorbents in contaminated feed only partially reduced the negative effects of OTA on the broiler performances. Broilers that were fed with adsorbent-supplemented feed reached higher body weight (17.96%, 19.09% and 13.59%), compared to the group that received only OTA. The presence of adsorbents partially alleviated the reduction in feed consumption (22.68%, 12.91% and 10.59%), and a similar effect was observed with feed conversion. The applied adsorbents have also reduced the intensity of histopathological changes caused by OTA; however, they were not able to prevent their onset. After the withdrawal of the toxin and adsorbents from the feed (21-42 days), all previously observed disturbances in broilers were reduced, but more remarkably in broilers fed with adsorbents. PMID:25855130

  14. IR investigations of surfaces and adsorbates

    SciTech Connect

    Gwyn Williams

    2001-12-10

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  15. Examining Adsorbed Polymer Conformations with Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Parkes, Maria; Chennaoui, Mourad; Wong, Janet; Tribology Group, Dept. of Mechanical Engineering Team

    2011-03-01

    The conformation of adsorbed polymers can have significant impact on their properties such as dynamics and elasticity as well as their ability to take part in reactions with other molecules. Experimental research to determine adsorbed polymer conformation has relied mainly on atomic force microscopy (AFM) studies. During an AFM scan, the contact between the scanning probe and the polymer could affect the polymer conformation, particularly where parts of the polymer might have formed projected loops and tails. In this work, conformations of model polymers are examined with total internal reflection fluorescence microscopy (TIRFM). The advantage of TIRFM over AFM is that TIRFM is a non contact technique. Lambda DNA labelled along its length with fluorescent probes was adsorbed in a projected 2D -- 3D state. With TIRFM, the relationship between intensity and depth was used as a basis to determine how the conformation of the adsorbed polymers evolved with time using our custom algorithm.

  16. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge.

    PubMed

    Huang, Wenli; Cai, Wei; Huang, He; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-01-01

    Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH₄-N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4-67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9-70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca₅(PO₄)₃(OH)) and iron phosphate (Fe₇(PO₄)₆) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (³¹P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic

  17. Microbial inoculants and organic amendment improves the establishment of autochtonous shrub species and microbial activity recovery in a semiarid soil

    NASA Astrophysics Data System (ADS)

    Mengual, Carmen; Schoebitz, Mauricio; Azcon, Rosario; Torres, Pilar; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (B. megaterium, Enterobacter sp, B. thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium+SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp+SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis+SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.

  18. Influence of coagulation mechanisms on the residual aluminum--the roles of coagulant species and MW of organic matter.

    PubMed

    Jiao, Ruyuan; Xu, Hui; Xu, Weiying; Yang, Xiaofang; Wang, Dongsheng

    2015-06-15

    Aluminum (Al) based coagulants are widely used in coagulation process to enhance the removal of turbidity and dissolved substances in the drinking water treatment. However, it raised more concerns due to the increase of residual aluminum in treated water, which can cause even more issues. In this study, the effects of organic matter molecular weight and coagulants species on the concentration and aluminum distribution in residual aluminum were investigated. The residual aluminum concentration decreases as the organic matter (OM) molecular weight (MW) rises. Charge neutralization mechanism was found to be the most important factor that determines the residual aluminum concentration directly. Basically, higher Ala percentage leads to lower residual Al concentration at acidic conditions, and Alb/Alc plays an important role in controlling the residual Al concentration at neutral and alkaline condition. The flocs structures formed by charge neutralization mechanism will be more compact for the mid and high MW OM, and fractal dimension (Df) was important to reflect the dissolved residual aluminum rather than the flocs size. The total dissolved residual aluminum concentration of Al13 and Al30 was mainly contributed by the fractions with low and/or high MW, especially by the fraction with MW range of 0-1 kDa. PMID:25731148

  19. Dispersed-phase adsorbents for biotechnology applications

    SciTech Connect

    Scott, C.D.

    1987-01-01

    A new type of adsorbent material has been developed in which very small adsorbent particles are entrapped in a hydrocolloidal gel matrix that is formed into small, monodisperse spherical beads. Examples of applications of this type of material include dispersed, hydrous transition metal oxides that can be used for the retention of biocatalysts, such as enzymes, and certain microorganisms or microbial fragments that can be dispersed into the gel matrix to accumulate and isolate various dissolved metals. 7 refs., 2 figs., 2 tabs.

  20. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  1. Mesoporous Silica: A Suitable Adsorbent for Amines

    PubMed Central

    2009-01-01

    Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices. PMID:20628459

  2. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  3. Thiophilic adsorbents for RIA and ELISA procedures.

    PubMed

    Oscarsson, S; Chaga, G; Porath, J

    1991-10-25

    Three types of agarose derivatives have been prepared and investigated as adsorbents for radioimmunoassay and ELISA analysis. The analytical systems were evaluated using beta 2 microglobulin as a model. After a competitive reaction between the immunocomponents in solution, the formed immune complexes were adsorbed onto the adsorbent in the presence of 0.5 M potassium sulfate in 0.1 M Tris, pH 7.5. The binding constant between the interaction site on human IgG and the adsorbent 3-(2-pyridylthio)-2-hydroxypropylagarose (Py-S-gel) was determined to be 1.5 x 10(7) M-1 and the binding capacity was 20 mg/ml gel. The immune complex was desorbed by deleting potassium sulfate from the buffer, and only 0.5% of the total applied protein remained after washing the adsorbent with 0.5 M NaOH. The same adsorbent can be used repetitively with different systems. PMID:1940385

  4. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  5. Persistent organic pollutant concentrations in blubber of 16 species of cetaceans stranded in the Pacific Islands from 1997 through 2011.

    PubMed

    Bachman, Melannie J; Keller, Jennifer M; West, Kristi L; Jensen, Brenda A

    2014-08-01

    Persistent organic pollutants (POPs) are toxic man-made chemicals that bioaccumulate and biomagnify in food webs, making them a ubiquitous threat to the marine environment. Although many studies have determined concentrations of POPs in top predators, no studies have quantified POPs in stranded cetaceans within the last 30 years around the Hawaiian Islands. A suite of POPs was measured in the blubber of 16 cetacean species that stranded in the tropical Pacific, including Hawai'i from 1997 to 2011. The sample set includes odontocetes (n=39) and mysticetes (n=3). Median (range) contaminant concentrations in ng/g lipid for the most representative species category (delphinids excluding killer whales [n=27]) are: 9650 (44.4-99,100) for ∑DDTs, 6240 (40.8-50,200) for ∑PCBs, 1380 (6.73-9520) for ∑chlordanes, 1230 (13.4-5510) for ∑toxaphenes, 269 (1.99-10,100) for ∑PBDEs, 280 (2.14-4190) for mirex, 176 (5.43-857) for HCB, 48.1 (<5.42-566) for ∑HCHs, 33.9 (<2.42-990) for ∑HBCDs, 1.65 (<0.435-11.7) for octachlorostyrene and 1.49 (<2.07-13.1) for pentachlorobenzene. ∑PCB concentrations in these Pacific Island cetaceans approach and sometimes exceed proposed toxic threshold values. Backward stepwise multiple regressions indicated the influence of life history parameters on contaminant concentrations when performed with three independent variables (species category, year of stranding, and sex/age class). No temporal trends were noted (p>0.063), but sex/age class influences were evident with adult males exhibiting greater contaminant loads than adult females and juveniles for ∑DDT, ∑PCBs, ∑CHLs, and mirex (p≤0.036). POP concentrations were lower in mysticetes than odontocetes for many compound classes (p≤0.003). p,p'-DDE/∑DDTs ratios were greater than 0.6 for all species except humpback whales, suggesting exposure to an old DDT source. These POP levels are high enough to warrant concern and continued monitoring. PMID:24821437

  6. Mediated electron transfer between Fe(II) adsorbed onto hydrous ferric oxide and a working electrode.

    PubMed

    Klein, Annaleise R; Silvester, Ewen; Hogan, Conor F

    2014-09-16

    The redox properties of Fe(II) adsorbed onto mineral surfaces have been highly studied over recent years due to the wide range of environmental contaminants that react with this species via abiotic processes. In this work the reactivity of Fe(II) adsorbed onto hydrous ferric oxide (HFO) has been studied using ferrocene (bis-cyclopentadienyl iron(II); Fc) derivatives as electron shuttles in cyclic voltammetry (CV) experiments. The observed amplification of the ferrocene oxidation peak in CV is attributed to reaction between the electrochemically generated ferrocenium (Fc(+)) ion and adsorbed Fe(II) species in a catalytic process (EC' mechanism). pH dependence studies show that the reaction rate increases with Fe(II) adsorption and is maintained in the absence of aqueous Fe(2+), providing strong evidence that the electron transfer process involves the adsorbed species. The rate of reaction between Fc(+) and adsorbed Fe(II) increases with the redox potential of the ferrocene derivative, as expected, with bimolecular rate constants in the range 10(3)-10(5) M(-1) s(-1). The ferrocene-mediated electrochemical method described has considerable promise in the development of a technique for measuring electron-transfer rates in geochemical and environmental systems. PMID:25157830

  7. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    PubMed

    Wach, Michael; Hellmich, Richard L; Layton, Raymond; Romeis, Jörg; Gadaleta, Patricia G

    2016-08-01

    Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies. PMID:26922585

  8. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    PubMed

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. PMID:27083813

  9. Removal effects and mechanisms of Microcystic aeruginosa by Chitosan-modified Adsorbent

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Wu, Cuirong; He, Yan; Zhang, Bingru; Li, Fengting

    2010-11-01

    The health of humans and other organisms is threatened by increasingly serious water contamination by algae in all the country's major lakes such as Taihu Lake. This experiment was conducted to investigate the removal effects and mechanism of Microcystic aeruginosa by Chitosan-modified adsorbent, with comparison of polyaluminium chloride (PAC) and poly ferric sulfate (PFS). Microcystic aeruginosa grown in the laboratory was used for this experiment. The results showed that the algae-removal efficiency of Chitosan-modified adsorbent presents a good performance. When the dosage of the adsorbent reached 20 ppm, the turbidity and the chlorophyll a of treated water dropped by 90% and 86%, respectively. Compared to conventional coagulation, the dosage was reduced. The adhesive bridge effect of Chitosan and adsorption of modified adsorbent provided an important complement to subsequent dehydrating treatment for algae.

  10. Investigating the potential of metal-organic framework material as an adsorbent for matrix solid-phase dispersion extraction of pesticides during analysis of dehydrated Hyptis pectinata medicinal plant by GC/MS.

    PubMed

    Aquino, Adriano; Ferreira, Jordana Alves; Navickiene, Sandro; Wanderley, Kaline A; de Sá, Gilberto F; Júnior, Severino A

    2012-01-01

    Metal-organic frameworks aluminum terephthalate MIL-53 and Cu-benzene-1,3,5-tricarboxylate (BTC) were tested for extraction of pyrimethanil, ametryn, dichlofluanid, tetraconazole, flumetralin, kresoximmethyl, and tebuconazole from the medicinal plant Hyptis pectinata, with analysis using GC/MS in the selected ion monitoring mode. Experiments carried out at different fortification levels (0.1, 0.5, and 1.0 microg/g) resulted in recoveries in the range 61 to 107% with RSD values between 3 and 12% for the metal-organic framework materials. Detection and quantification limits ranged from 0.02 to 0.07 and 0.05 to 0.1 microg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.04-20.0 microg/g), with correlation coefficients ranging from 0.9987 to 0.9998. Comparison of MIL-53 and Cu-BTC with C18-bonded silica showed good performance of the MIL-53 metal-organic framework as a sorbent for the pesticides tested. PMID:23175963

  11. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell.

    PubMed

    Sigot, Léa; Ducom, Gaëlle; Benadda, Belkacem; Labouré, Claire

    2016-01-01

    Biogas contains trace compounds detrimental for solid oxide fuel cell (SOFC) application, especially sulphur-containing compounds and volatile organic silicon compounds (VOSiCs). It is therefore necessary to remove these impurities from the biogas for fuelling an SOFC. In this paper, dynamic lab-scale adsorption tests were performed on synthetic polluted gas to evaluate the performance of a polishing treatment to remove hydrogen sulphide (H2S - sulphur compound) and octamethylcyclotetrasiloxane (D4 - VOSiC). Three kinds of adsorbents were tested: an activated carbon, a silica gel (SG) and a zeolite (Z). Z proved to be the best adsorbent for H2S removal, with an adsorbed quantity higher than [Formula: see text] at the SOFC tolerance limit. However, as concerns D4 removal, SG was the most efficient adsorbent, with an adsorbed quantity of about 184 mgD4/gSG at the SOFC tolerance limit. These results could not be explained by structural characteristics of the adsorbents, but they were partly explained by chemical interactions between the adsorbate and the adsorbent. In these experiments, internal diffusion was the controlling step, Knudsen diffusion being predominant to molecular diffusion. As Z was also a good adsorbent for D4 removal, competition phenomena were investigated with Z for the simultaneous removal of H2S and D4. It was shown that H2S retention was dramatically decreased in the presence of D4, probably due to D4 polymerization resulting in pore blocking. PMID:26183696

  12. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any

  13. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  14. Monitoring organic nitrogen species in the UT/LS - a new system for analysis of CARIBIC whole air samples

    NASA Astrophysics Data System (ADS)

    Sauvage, Carina; Thorenz, Ute; Baker, Angela; Brenninkmeijer, Carl; Williams, Jonathan

    2014-05-01

    The CARIBIC project is a unique program for long term and global scale monitoring of the atmosphere (http://www.caribic-atmospheric.com). An instrument container is installed monthly into a civil aircraft operated by Lufthansa (Airbus A 340-600) and makes atmospheric observations en route from Frankfurt, Germany to various destinations around the globe. In four to six long distance flights at a cruising altitude of 10 to 12 km online measurements of various atmospheric tracers are performed during the flight as well as whole air samples are taken with two different sampling units (116 samples in both glass and stainless steel canisters). These samples are routinely analyzed for greenhouse gases, non-methane hydrocarbons (NMHC) and halogenated compounds. Nitrogen containing compounds play various important roles in the atmosphere. Alkyl nitrates (RONO2) are products of the reaction of NMHC with OH and other oxidants in the presence of NO. They can provide information on the oxidative history of an air mass. Moreover they influence photolchemical ozone formation and act as a transport mechanism for reactive nitrogen. Less reactive nitrogen containing species such as HCN and acetonitrile are important markers for biomass burning, while organic amines are involved in gas to particle partitioning. Finally N2O is a long lived nitrogen containing gas important for the Earth's radiative budget. Regular measurements of such nitrogen compounds would therefore be a significant contribution to the CARIBIC data set. Especially for high altitude samples, in which the mixing ratios of many species are expected to be in the low ppt range, a highly sensitive method for analysis is required. Therefore a new system for measurement of nitrogen compounds has been built up, comprising a gas chromatograph (GC) using a nitrogen chemiluminescence detector (NCD). An important advantage of the NCD is that it is selective for nitrogen and equimolar. The nitrogen compounds are sequentially pre

  15. Decomposition of trichloroethene on ozone-adsorbed high silica zeolites.

    PubMed

    Fujita, Hirotaka; Izumi, Jun; Sagehashi, Masaki; Fujii, Takao; Sakoda, Akiyoshi

    2004-01-01

    We developed a novel ozonation process for water treatment using high silica zeolites as an adsorptive concentrator of water-dissolved ozone and organic pollutants, resulting in a significant increase in reaction rate. In experiments involving trichloroethene (TCE) decomposition using a tubular flow reactor, TCE decomposition was much greater in the presence of ZSM-5 (SiO(2)/Al(2)O(3) ratio=3000) than in its absence, possibly due to the high concentrations of ozone and TCE inside the adsorbent. The TCE conversion obtained in our experiments was found to reach its theoretically maximum limit. PMID:14630114

  16. Adsorbate modification of the structural, electronic, and magnetic properties of ferromagnetic fcc {110} surfaces

    NASA Astrophysics Data System (ADS)

    Gunn, D. S. D.; Jenkins, Stephen J.

    2011-03-01

    We identify trends in structural, electronic, and magnetic modifications that occur on ferromagnetic {110} surfaces upon varying either the substrate material or the adsorbate species. First, we have modeled the adsorption of several first-row p-block elements on the surface of fcc Co{110} at two coverages [0.5 and 1.0 monolayer (ML)]. All adsorbates were found to expand the distance between the first and second substrate layers and to contract the distance between the second and third layers. The energetic location of a characteristic trough in the density-of-d-states difference plot correlates with the direction of the adsorbate magnetic coupling to the surface, and a trend of antiferromagnetic to ferromagnetic coupling to the surface was observed across the elements from boron to fluorine. A high fluorine adatom coverage (1.0 ML) was found to enhance the surface spin magnetic moment by 11%. Second, we also calculate and contrast adsorption of 0.5 and 1.0 ML of carbon, nitrogen, and oxygen adatoms on fcc iron, cobalt, and nickel {110} surfaces and compare the structural, electronic, and magnetic properties of these systems. Carbon and nitrogen are found to couple antiferromagnetically, and oxygen ferromagnetically, to all surfaces. It was found that antiferromagnetically coupled adsorbates retained their largest spin moment values on iron, whereas ferromagnetically coupled adsorbates possessed their lowest moments on this surface. The strongly localized influence of these adsorbates is clearly illustrated in partial density-of-states plots for the surface atoms.

  17. Anatomical deviation of male organs of land planarians from Rio de Janeiro, Brazil, with description of two new species of Cratera (Platyhelminthes, Tricladida).

    PubMed

    Carbayo, Fernando

    2015-01-01

    Two new land planarian species, collected in the State of Rio de Janeiro, Brazil, are described. Their external aspect is similar to that of Imbira marcusi Carbayo et al., 2013 and Pseudogeoplana theresopolitana (Schirch, 1929), respectively. The analysis of the internal organs, however, revealed they belong to the genus Cratera. The male copulatory organs of one species is very different from any other geoplaninid, for the penis papilla holds a large, distal cavity receiving the ejaculatory duct and, furthermore, the papilla projects vertically downwards from the roof of the male atrium. Thus we consider it as a new species, Cratera cuarassu sp. nov. The second species differs from its congeners in that the dorsal insertion of the penis papilla is anterior to the ventral one, and in that the female atrium is narrowed in the anterior portion. The species was found in the type locality of Pseudogeoplana theresopolitana (Schirch, 1929) and compares well with it in the external features. However, since its internal organs are unknown and the type material of the species is seemingly lost, we describe it as Cratera anamariae Carbayo, sp. nov. PMID:25781812

  18. Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica Y. W.; Chan, Chak K.; Lee, C.-T.; Lau, Arthur P. S.

    Interest in the role and contribution of fungi to atmospheric aerosols and processes grows in the past decade. Substantial data or information such as fungal mass or carbon loading to ambient aerosols is however still lacking. This study aimed to quantify the specific organic carbon content (OC per spore) of eleven fungal species commonly found airborne in the subtropics, and estimated their contribution to organic carbon in aerosols. The specific OC contents showed a size-dependent relationship ( r = 0.64, p < 0.05) and ranged from 3.6 to 201.0 pg carbon per spore or yeast cell, giving an average of 6.0 pg carbon per spore (RSD 51%) for spore or cell size less than 10 μm. In accounting for natural variations in the composition and abundance of fungal population, weighted-average carbon content for field samples was adopted using the laboratory determined specific OC values. An average of 5.97 pg carbon per spore (RSD 3.8%) was enumerated from 28 field samples collected at the university campus. The mean fungal OC concentration was 3.7, 6.0 and 9.7 ng m -3 in PM 2.5, PM 2.5-10 and PM 10, respectively. These corresponded to 0.1%, 1.2% and 0.2% of the total OC in PM 2.5, PM 2.5-10 and PM 10, respectively. In the study period, rain provided periods with low total OC but high fungal prevalence and fungi contributed 7-32% OC in PM 2.5-10 or 2.4-7.1% OC in PM 10. More extensive studies are deserved to better understand the spatial-, temporal- and episodic dependency on the fungal OC contribution to the atmospheric aerosols.

  19. Comparison of organic contaminant accumulation by semipermeable membrane devices (SPMDs) and the caged mussel species Mytilus edulis

    SciTech Connect

    Hofelt, C.; Shea, D.

    1995-12-31

    The accumulation of anthropogenic contaminants by sentinel species such as the blue mussel, Mytilus edulis, is common in many monitoring programs such as the National Status and Trends Mussel Watch Program. Bivalves are used because they are filter-feeding organisms with a high lipid content and therefore accumulate pollutants readily, and they do not appear to metabolize contaminants to a large extent. There are difficulties associated with this approach however, such as mortality, changing lipid mass and respiration rates, and interspecies differences; therefore the use of a non-living substrate may be more practical. The semipermeable membrane device (SPMD) consists of a length of thin-walled polyethylene tubing with a film of high molecular weight neutral lipid (triolein) sealed inside. The SPMD, when suspended in the water column, will concentrate lipophilic organic contaminants from the surrounding environment. The authors deployed SPMDs and caged Mytilus edulis side-by-side at five sites near New Bedford Harbor, MA; an area highly contaminated with polychlorinated biphenyls (PCBs). A good correlation was observed between the SPMDs and the caged blue mussels, with R{sup 2} ranging from 0.57 to 0.85 (N = 16) for chlorinated pesticides and from 0.81 to 0.96 (N = 20) for PCBs. Bioconcentration factors (BCF) based on water column concentrations were also calculated and a good correlation was obtained between the SPMD BCFs and corresponding octanol-water partition coefficients. Unlike previous investigations, the authors found good agreement even with the highest chlorinated PCBs suggesting that there was no steric hindrance of uptake through the SPMD membrane.

  20. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  1. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  2. M4FT-15OR03100415 - Update on COF-based Adsorbent Survey

    SciTech Connect

    Mayes, Richard T.; Dai, Sheng

    2015-02-01

    This letter report provides an update on activities focused on generating nanoporous adsorbents involving covalent organic frameworks (COF) and zeolitic imidazolium frameworks (ZIF). The adsorbents have been generated and screened in a uranyl-spiked brine (6 ppm U) to understand uranyl-binding behavior. Porous organic polymers (POP) also qualify under this title and are similar to the COF PPN-6 that is discussed herein. Seven COF/POP and one 1 ZIF were synthesized and screened for uranyl adsorption. Seawater screening is on-going via batch testing while flow screening systems are being developed at PNNL.

  3. First insights on the organic species from the high resolution mass spectrometer ROSINA DFMS on-board the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Le Roy, L.; Altwegg, K.; Berthelier, J. J.; Calmonte, U.; Dhooghe, F.; Fiethe, B.; Fuselier, S.; Gombosi, T. I.; Rubin, M.; Tzou, C. Y.

    2014-12-01

    Starting in August 2014, the ROSINA experiment will characterize the composition and dynamics of 67P/Churyumov-Gerasimenko's coma. ROSINA consists of a suite of three instruments: a pressure sensor (COPS: COmetary Pressure Sensor) and two mass spectrometers: the Reflectron Time of Flight mass spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS). Here we will focus on the first results obtained by DFMS, the high-resolution mass spectrometer of ROSINA. DFMS is a traditional magnetic mass spectrometer that combines an electrostatic analyzer for energy analysis with a magnet for momentum analysis. To date, DFMS is the highest mass resolution mass spectrometer in space, with resolution (m/Δm = 3000 at 1% of the peak height at 28 amu/q). It will be able to resolve CO from N2 at m/z= 28 amu/q or 12CH and 13C at m/z= 13 amu/q. We will present the first results of DFMS: the detection of organic species and their implication for the origin of cometary material.

  4. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species.

    PubMed

    Boominathan, Rengasamy; Doran, Pauline M

    2003-03-01

    Heavy metal uptake and distribution were investigated in hairy roots of the Cd hyperaccumulator, Thlaspi caerulescens, and the Ni hyperaccumulator, Alyssum bertolonii. Hairy roots of both species contained high constitutive levels of citric, malic and malonic acids. After treatment with 20 ppm Cd or 25 ppm Ni, about 13% of the total Cd in T. caerulescens roots and 28% of the total Ni in A. bertolonii were associated with organic acids. T. caerulescens and A. bertolonii hairy roots remained healthy and grew well at high concentrations of Cd and Ni, respectively, whereas hairy roots of the non-hyperaccumulator, Nicotiana tabacum, did not. Most of the Cd in T. caerulescens and N. tabacum roots was localised in the cell walls. In contrast, 85-95% of the Ni in A. bertolonii and N. tabacum was associated with the symplasm. Growth of T. caerulescens and A. bertolonii hairy roots was severely reduced in the presence of diethylstilbestrol (DES), an inhibitor of plasma membrane H(+)-ATPase. Treatment with DES increased the concentration of Cd in the symplasm of T. caerulescens about 6-fold with retention of root viability, whereas viability and Ni transport across the plasma membrane were both reduced in A. bertolonii. These results suggest that the mechanisms of Cd tolerance and hyperaccumulation in T. caerulescens hairy roots are capable of withstanding the effects of plasma membrane depolarisation, whereas Ni tolerance and hyperaccumulation in A. bertolonii hairy roots are not. PMID:12568742

  5. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  6. Organizations.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    This is a list of aerospace organizations and other groups that provides educators with assistance and information in specific areas. Both government and nongovernment organizations are included. (Author/SA)

  7. Tree species related functional properties of dissolved and total organic matter in throughfall, stemflow and forest floor solutions

    NASA Astrophysics Data System (ADS)

    Michalzik, Beate; Bischoff, Sebastian; Schwarz, Martin; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang

    2016-04-01

    The amount and chemical nature of water-bound organic matter is a prerequisite for advancing our understanding of the C and nutrient cycling and associated ecosystem processes. While many investigations have addressed the nature and dynamics of DOM in terrestrial ecosystems, only a few have investigated the dynamics and composition of water-bound total OM (TOM) including the particulate organic matter fraction (POM; 0.45 μm < POM < 500 μm). Since water-bound element and nutrient concentrations are conventionally measured after 0.45 μm-filtration, the exclusion of the POM fraction results in misleading inferences and budgeting gaps of nutrient and energy fluxes in terrestrial ecosystems. Furthermore, tree species differ in leaf composition (e.g. nutrient, polyphenols content) and leaf litter quality, which in turn affect a variety of ecosystem processes. Nevertheless, the composition and amount of DOM and TOM derived from living plant material via throughfall (TF), stemflow (SF) and its compositional fate traversing the forest floor (FF) are insufficiently understood. In particular we asked: How do tree species and forest types affect the amount of dissolved and particulate C and N in TF and FF solutions and thus the input into the mineral soil? Do functional properties (e.g. aromaticity) of DOM and TOM differ in TF, SF and FF solutions collected in beech and spruce stands and among different beech stands across Germany? To monitor (mineral) soil input fluxes of DOM and POM in different spruce and beech forests, we fortnightly sampled TF and FF solution over three years (2010-2012) in the "Hainich-Dün-Exploratory", Thuringia, Central Germany, which forms part of the DFG SPP 1374 "Exploratories for Large-scale and Long-term Functional Biodiversity Research". To characterize chemical properties of DOM and TOM, we applied solid-state 13C NMR spectroscopy to TF, SF and FF solutions from three European beech regions across Germany and from Norway spruce sites of the

  8. Cryptic Species or Inadequate Taxonomy? Implementation of 2D Geometric Morphometrics Based on Integumental Organs as Landmarks for Delimitation and Description of Copepod Taxa.

    PubMed

    Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M

    2016-03-01

    Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a

  9. Promotion of CO oxidation on PdO(101) by adsorbed H2O

    NASA Astrophysics Data System (ADS)

    Choi, Juhee; Pan, Li; Mehar, Vikram; Zhang, Feng; Asthagiri, Aravind; Weaver, Jason F.

    2016-08-01

    We investigated the influence of adsorbed H2O on the oxidation of CO on PdO(101) using temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations. We find that water inhibits CO adsorption on PdO(101) by site blocking, but also provides a more facile pathway for CO oxidation compared with the bare oxide surface. In the presence of adsorbed H2O, the oxidation of CO on PdO(101) produces a CO2 TPRS peak that is centered at a temperature ~ 50 K lower than the main CO2 TPRS peak arising from CO oxidation on clean PdO(101) (~ 330 vs. 380 K). RAIRS shows that CO continues to adsorb on atop-Pd sites of PdO(101) when H2O is co-adsorbed, and provides no evidence of other reactive intermediates. DFT calculations predict that the CO oxidation mechanism follows the same steps for CO adsorbed on PdO(101) with and without co-adsorbed H2O, wherein an atop-CO species recombines with an oxygen atom from the oxide surface lattice. According to DFT, hydrogen bonding interactions with adsorbed H2O species stabilize the carboxyl-like transition structure and intermediate that result from the initial recombination of CO and O on the PdO(101) surface. This stabilization lowers the energy barrier for CO oxidation on PdO(101) by ~ 10 kJ/mol, in good agreement with our experimental estimate.

  10. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  11. [Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5 ].

    PubMed

    Liang, Dan; Wang, Bin; Wang, Yun-qi; Zhang, Hui-lan; Yang, Song-nan; Li, Ang

    2014-09-01

    Four typical types of green shrubs of Beijing (Euonymus japonicus, Buxus microphylla, Berberis thunbergii cv. atropurpurea, Taxus cuspidate cv. nana) were selected to study their capacities in adsorbing and arresting PM2.5 using both field observations and air chamber simulations. Concurrently, in order to analyze the pollution characteristics of Beijing in winter and spring, the PM2.5 concentrations of December 2012 to May 2013 were collected. Experimental results showed that: From the gas chamber experiments, the ability to adsorb and arrest PM2.5 was in the order of Berberis thunbergii cv. atropurpurea > Buxus microphylla > Taxus cuspidate cv. nana > Euonymus japonicus, mainly due to the differences in leaf characteristics; Outside measurement results showed that the ability to adsorb and arrest PM2.5 was ranked as Buxus microphylla > Berberis thunbergii cv. atropurpurea > Taxus cuspidate cv. nana > Euonymus japonicus. Chamber simulation and outdoor observation showed that Buxus microphylla and Berberis thunbergii cv. atropurpurea had strong ability to adsorb and arrest PM2.5; Meanwhile, the slight differences between the chamber simulation and outdoor observation results might be related to plant structure. Compared to tree species, the planting condition of shrub species was loose, and it greened quickly; By analyzing the Beijing PM2.5 concentration values in winter and spring, it was found that the PM2.5 concentration was particularly high in the winter of Beijing, and evergreen shrubs maintained the ability to adsorb and arrest PM2.5. PMID:25518685

  12. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil.

    PubMed

    Drese, Jeffrey H; Talley, Anne D; Jones, Christopher W

    2011-03-21

    The fast pyrolysis of biomass is a potential route to the production of liquid biorenewable fuel sources. However, degradation of the bio-oil mixtures due to reaction of oxygenates, such as aldehydes and ketones, reduces the stability of the liquids and can impact long-term storage and shipping. Herein, solid aminosilica adsorbents are described for the selective adsorptive removal of reactive aldehyde and ketone species. Three aminosilica adsorbents are prepared through the reaction of amine-containing silanes with pore-expanded mesoporous silica. A fourth aminosilica adsorbent is prepared through the ring-opening polymerization of aziridine from pore-expanded mesoporous silica. Adsorption experiments with a representative mixture of bio-oil model compounds are presented using each adsorbent at room temperature and 45 °C. The adsorbent comprising only primary amines adsorbs the largest amount of aldehydes and ketones. The overall reactivity of this adsorbent increases with increasing temperature. Additional aldehyde screening experiments show that the reactivity of aldehydes with aminosilicas varies depending on their chemical functionality. Initial attempts to regenerate an aminosilica adsorbent by acid hydrolysis show that they can be at least partially regenerated for further use. PMID:21246749

  13. Dimensionally Frustrated Diffusion towards Fractal Adsorbers

    NASA Astrophysics Data System (ADS)

    Nair, Pradeep R.; Alam, Muhammad A.

    2007-12-01

    Diffusion towards a fractal adsorber is a well-researched problem with many applications. While the steady-state flux towards such adsorbers is known to be characterized by the fractal dimension (DF) of the surface, the more general problem of time-dependent adsorption kinetics of fractal surfaces remains poorly understood. In this Letter, we show that the time-dependent flux to fractal adsorbers (1

  14. Standoff Spectroscopy of Surface Adsorbed Chemicals

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2009-01-01

    Despite its immediate applications, selective detection of trace quantities of surface adsorbed chemicals, such as explosives, without physically collecting the sample molecules is a challenging task. Standoff spectroscopic techniques offer an ideal method of detecting chemicals without using a sample collection step. Though standoff spectroscopic techniques are capable of providing high selectivity, their demonstrated sensitivities are poor. Here we describe standoff detection of trace quantities of surface adsorbed chemicals using two quantum cascade lasers operated simultaneously, with tunable wavelength windows that match with absorption peaks of the analytes. This standoff method is a variation of photoacoustic spectroscopy, where scattered light from the sample surface is used for exciting acoustic resonance of the detector. We demonstrate a sensitivity of 100 ng/cm{sup 2} and a standoff detection distance of 20 m for surface adsorbed analytes such as explosives and tributyl phosphate.

  15. Composites for removing metals and volatile organic compounds and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Reynolds, John G.

    2006-12-12

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  16. Toxicokinetic toxicodynamic (TKTD) modeling of Ag toxicity in freshwater organisms: whole-body sodium loss predicts acute mortality across aquatic species.

    PubMed

    Veltman, Karin; Hendriks, A Jan; Huijbregts, Mark A J; Wannaz, Cédric; Jolliet, Olivier

    2014-12-16

    ToxicoKinetic ToxicoDynamic (TKTD) models are considered essential tools to further advance acute toxicity prediction of metals for a range of species and exposure conditions, but they are currently underutilized. We present a mechanistic TKTD model for acute toxicity prediction of silver (Ag) in freshwater organisms. In this new approach, we explicitly link relevant TKTD processes to species (physiological) characteristics, which facilitates model application to other untested freshwater organisms. The model quantifies the reduction in whole-body sodium concentration over time as a function of the target site inhibition over time, the target site density and the species-specific sodium turnover rate. Freshwater species are assumed to die instantly when they have lost a critical amount of their initial whole-body sodium concentration. Results show that mortality is significantly related to sodium loss (r(2) = 0.86) for various aquatic organisms and exposure durations. The model accurately predicts lethal effect concentrations for different freshwater organisms, including Daphnia magna, rainbow trout and juvenile crayfish, and is able to capture the observed size-specific variation of nearly 2 orders of magnitude in empirical LC50s. PMID:25420046

  17. PHYTOTOX DATABASE EVALUATION OF SURROGATE PLANT SPECIES RECOMMENDED BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY AND THE ORGANIZATION FOR ECONOMIC COOPERATION AND DEVELOPMENT

    EPA Science Inventory

    The USEPA and the Organization for Economic Cooperation and Development have recommended or are considering recommendations for phytotoxicity testing. A study was conducted to determine the amount of quantitative data published on the species suggested in those tests. Also, the s...

  18. Determination of maximal amount of minor gases adsorbed in a shale sample by headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2014-02-01

    In this paper, we present a novel method for determining the maximal amount of ethane, a minor gas species, adsorbed in a shale sample. The method is based on the time-dependent release of ethane from shale samples measured by headspace gas chromatography (HS-GC). The study includes a mathematical model for fitting the experimental data, calculating the maximal amount gas adsorbed, and predicting results at other temperatures. The method is a more efficient alternative to the isothermal adsorption method that is in widespread use today. PMID:24411088

  19. Unoccupied electronic states in adsorbate systems

    NASA Astrophysics Data System (ADS)

    Bertel, E.

    1991-11-01

    Experimental work on unoccupied electronic states in adsorbate systems on metallic substrates is reviewed with emphasis on recent developments. The first part is devoted to molecular adsorbates. Weakly chemisorbed hydrocarbons are briefly discussed. An exhaustive inverse photoemission (IPE) study of the CO bond to the transition metals Ni, Pb, and Pt is presented. Adsorbed NO is taken as an example to demonstrate the persisting discrepancies in the interpretation of IPE spectra. Atomic adsorbates are discussed in the second part. The quantum well state model is applied to interpret the surface states in reconstructing and non-reconstructing adsorption systems of alkali metals and hydrogen. A recent controversy on the unoccupied electronic states of the Cu(110)/O p(2×1) surface is critically reviewed. The quantum well state model is then compared to tight binding and local-density-functional calculations of the unoccupied bands and the deficiencies of the various approaches are pointed out. Finally, the relation between the surface state model and more chemically oriented models of surface bonding is briefly discussed.

  20. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.

    PubMed

    Montiel-Rozas, M M; Madejón, E; Madejón, P

    2016-09-01

    Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quanti